Science.gov

Sample records for alcohol pva concentration

  1. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  2. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  3. Crystal structures and magnetic properties of magnetite (Fe3O4)/Polyvinyl alcohol (PVA) ribbon

    NASA Astrophysics Data System (ADS)

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-01

    Ribbon of magnetite (Fe3O4)/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe3O4 sample and ribbon Fe3O4/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe3O4 more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  4. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  5. Effect of PVA concentration on bond modifications in PVA-PMMA blend films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Sharma, A.; Bisen, R.; Shripathi, T.

    2016-05-01

    The optical properties of poly (methylmethacrylate) (PMMA) polymer are found to be modified when PVA molecules are added in the matrix of PMMA and vice versa making a blend. The concentrations studied were kept low to preserve the original properties of the host. It was seen that PMMA well protects its bonds and dominated the optical properties, while the properties of PVA are comparatively easier to modify when small amount of PMMA is inserted in PVA matrix. The results are interpreted in terms of bond modifications as seen from FTIR and absorption measurements and are useful in understanding the transparency and bandgap of the blend films.

  6. Study of parallel oriented electrospun polyvinyl alcohol (PVA) nanofibers using modified electrospinning method

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Ula, Nur Mufidatul; Jahidah, Khannah; Kusumasari, Ervanggis Minggar; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Parallel orientedpolyvinyl alcohol (PVA) nanofibershasbeen successfully prepared by using modified electrospinning method. This method uses two pairs of copper (Cu) electrodes which are set apart at a certain distance and applied voltage of 15 kV. The concentrations of PVA were varied from 11%, 13%, 15%, 17%, and 19%. The width of gap collector were varied from 5 mm, 10 mm, 15 mm, and 20 mm. The diameter of nanofibers increase as increasing concentration of PVA. As the width of gap collector increase, first diameter of nanofibers decrease and reach a minimum value at 355 ± 7nm in 15 mm of gap, then the diameters increase again. We also calculated the alignment parameter (S) for given aligned nanofiber. The result showed that alignment parameters (S) were on values around 0,9-1.

  7. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres.

    PubMed

    Damasceno, Raquel; Roggia, Isabel; Pereira, Claudio; de Sá, Enilson

    2013-11-01

    The electrospinning technique of rhizobia immobilization in nanofibres is an innovative and promising alternative for reducing the harmful effects of environmental stress on bacteria strains in a possible inoculant nanotechnology product for use in agriculture. The use of polyvinyl alcohol (PVA) shows up as an effective polymer in cell encapsulation because of its physical characteristics, such as viscosity and power of scattering. The aim of these studies has been to evaluate the survival of rhizobia incorporated in PVA nanofibres, which were applied to soybean seed and then subjected to different storage times and exposure to fungicide. The maintenance of the symbiotic characteristics of the incorporated bacterial strains was also evaluated, noting the formation of nodules in the soybean seedlings. No significant differences in the cell survival at 0 h and after 24 h of storage were observed. After 48 h, a significant difference in the bacterial cell concentration of the seeds affixed with PVA nanofibres was observed. Exposure to the fungicide decreased the viability of the bacteria strains even when coated with the nanofibres. A larger number of nodules formed in soybean seedlings from seeds inoculated with rhizobia incorporated in PVA nanofibres than from seeds inoculated with rhizobia without PVA. Thus, the electrospinning technique is a great alternative to the usual protector inoculants because of its unprecedented capacity to control the release of bacteria. PMID:24206353

  8. Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fenton reaction.

    PubMed

    Bossmann, S H; Oliveros, E; Göb, S; Kantor, M; Göppert, A; Lei, L; Yue, P L; Braun, A M

    2001-01-01

    The reaction mechanism of the oxidative degradation of polyvinyl alcohol (PVA) by the photochemically enhanced Fenton reaction was studied using a homogeneous (Fe2+(aq) + H2O2) and a heterogeneous reaction system (iron(III)-exchanged zeolite Y+ H2O2). In the homogeneous Fenton system, efficient degradation was observed in a batch reactor, equipped with a medium pressure mercury arc in a Pyrex envelope and employing 80% of the stoichiometric amount of H2O2 required for the total oxidation of PVA and a concentration ratio as low as I mole of iron(II) sulfate per 20 moles of PVA sub-units (C2H40). Model PVA polymers of three different molecular weights (15,000, 49,000 and 100,000 g mol(-1)) were found to follow identical degradation patterns. Strong experimental evidence supports the formation of supermacromolecules (MW: 1-5 x 10(6) g/mol) consisting of oxidized PVA and trapped iron(III) at an early reaction stage. Low molecular weight intermediates, such as oxalic acid, formic acid or formaldehyde were not found during PVA degradation in the homogeneous Fenton system, and we may deduce that the manifold of degradation reactions is mainly taking place within the super-macromolecules from which CO2 is directly released. However, in the heterogeneous Fenton system, the reaction behavior was found to be distinctly different: a decrease of the molecular weights of all three tested monodisperse PVA samples was observed by the broadening of the GPC-traces during irradiation, and oxalic acid was formed. The results lead to the mechanistic hypothesis that during the heterogeneous Fenton process, the cleavage of the PVA-chains may occur at random positions, the reactive centres being located inside the iron(III)-doped zeolite Y photocatalysts.

  9. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  10. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    NASA Astrophysics Data System (ADS)

    Lahariya, Vikas

    2016-05-01

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blend crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.

  11. Diffraction efficiency improvement in high spatial frequency holographic gratings stored in PVA/AA photopolymers: several ACPA concentrations

    NASA Astrophysics Data System (ADS)

    Fernandez, Elena; Fuentes, Rosa; Ortuño, Manuel; Beléndez, Augusto; Pascual, Inmaculada

    2015-01-01

    High spatial frequency in holographic gratings is difficult to obtain due to limitations of the recording material. In this paper, the results obtained after storing holographic transmission gratings with a spatial frequency of 2656 lines/mm in a material based on polyvinyl alcohol and acrylamide (PVA/AA) are presented. A chain transfer agent, 4, 4‧-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the composition of the material to improve the response of the material at a high spatial frequency. Different concentrations of ACPA were used in order to find the optimal concentration giving maximum diffraction efficiency for high spatial frequencies.

  12. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  13. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    SciTech Connect

    Prabhudesai, S. A. Mitra, S.; Mukhopadhyay, R.; Lawrence, Mathias B.; Desa, J. A. E.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  14. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  15. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  16. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane. PMID:22325932

  17. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  18. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis.

    PubMed

    Jiang, Hongjun; Campbell, Gord; Boughner, Derek; Wan, Wan-Kei; Quantz, Mackenzie

    2004-05-01

    Although current artificial heart valves are life sustaining medical devices, improvements are still necessary to address deficiencies. Bioprosthetic valves have a compromised fatigue life, while mechanical valves have better durability but are prone to thromboembolic complications. A novel, one-piece, tricuspid valve, consisting of leaflets, stent and sewing ring, made entirely from the hydrogel, polyvinyl alcohol cryogel (PVA-C), has been developed and demonstrated. This valve has three thin leaflets attached to a cylindrical stent. In order to approximate the complex shape of the surface of the natural heart valve leaflets, two different geometries have been proposed: revolution about an axis of a hyperboloid shape and revolution about an axis of an arc subtending (joining) two straight lines. The parameters of both geometries were examined based on a compromise between avoiding sharp curvature of leaflets and minimization of the central opening of the valve when closed. The revolution of an arc subtending two straight lines was selected as the preferred geometry since it has the benefit of a smaller central opening when the value of the maximum curvature for the leaflets is the same for each valve geometry. A cavity mold has been designed and constructed to form the PVA-C heart valve. The three leaflets were formed and integrated into the stent and sewing ring in a single process. Prototype heart valves were manufactured in the mold from a solution of PVA and water, by controlled freezing and thawing cycles. PMID:15121052

  19. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  20. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA).

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2011-05-01

    Use of ultrasound can yield polymer degradation as reflected by a significant reduction in the intrinsic viscosity or the molecular weight. The ultrasonic degradation of two water soluble polymers viz. carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) has been studied in the present work. The effect of different operating parameters such as time of irradiation, immersion depth of horn and solution concentration has been investigated initially using laboratory scale operation followed by intensification studies using different additives such as air, sodium chloride and surfactant. Effect of scale of operation has been investigated with experiments in the available different capacity reactors with an objective of recommending a suitable type of configuration for large scale operation. The experimental results show that the viscosity of polymer solution decreased with an increase in the ultrasonic irradiation time and approached a limiting value. Use of additives such as air, sodium chloride and surfactant helps in increasing the extent of viscosity reduction. At higher frequency operation the viscosity reduction has been found to be negligible possibly attributed to less contribution of the physical effects. The viscosity reduction in the case of ultrasonic horn has been observed to be more as compared to other large capacity reactors. Kinetic analysis of the polymer degradation process has also been performed. The present work has enabled us to understand the role of the different operating parameters in deciding the extent of viscosity reduction in polymer systems and also the controlling effects of low frequency high power ultrasound with experiments on different scales of operation.

  1. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  2. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules.

  3. Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, Shobhna; Sengwa, R. J.

    2016-05-01

    Complex dielectric function, electric modulus, ac conductivity and impedance spectra of PVA-SiO2 nanocomposite films have been investigated in the frequency range of 20 Hz to 1 MHz and temperature range from 30 °C to 60 °C. Real part of dielectric function of the nanocomposites slowly decreases with increase of frequency and it shows a non-linear increase with the increase of temperature. An anomalous variation is observed in dielectric and electrical functions with increase of SiO2 concentrations in the PVA matrix. The ac conductivity of these materials increases whereas impedance values decrease linearly by five orders of magnitude with increase of frequency from 20 Hz to 1 MHz. Dielectric loss values of these films are found minimum at intermediate frequency region, and it increases at low and high frequency regions confirming the presence of multiple relaxation processes. The contributions of interfacial polarization effect and dipolar ordering in dielectric properties of these materials have been explored, and their technological applications as nanodielectrics have been discussed. The XRD patterns reveal that the interactions between PVA and SiO2 disturb the dipolar ordering resulting decrease of crystallinity of the PVA in the nanocomposites.

  4. Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1997-04-01

    PVA films have been used as mold releases, strippable coatings, binders for photopolymers and when sensitized with metals and/or dyes they have been used as photoresists, volume HOEs, multiplexed holographic optical memory and real time non destructive holographic testing. The list goes on and includes Slime and birth control. In holography, DC-PVA is a real time photoanisotropic recording material useful for phase conjugation experiments and also a stable long term storage medium needing no processing other than heat. Now we add the capability of greatly increasing the versatility of PVA by boosting the index modulation by almost two orders of magnitude. We can add broadband display and HOE applications that were not possible before. Simple two or three step liquid processing is all that is required to make the index modulation grow.

  5. 49 CFR 199.215 - Alcohol concentration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Alcohol concentration. 199.215 Section 199.215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Alcohol Misuse Prevention Program § 199.215 Alcohol concentration. Each operator shall prohibit a covered employee...

  6. 49 CFR 199.215 - Alcohol concentration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Alcohol concentration. 199.215 Section 199.215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Alcohol Misuse Prevention Program § 199.215 Alcohol concentration. Each operator shall prohibit a covered employee...

  7. 49 CFR 199.215 - Alcohol concentration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Alcohol concentration. 199.215 Section 199.215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Alcohol Misuse Prevention Program § 199.215 Alcohol concentration. Each operator shall prohibit a covered employee...

  8. 49 CFR 199.215 - Alcohol concentration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Alcohol concentration. 199.215 Section 199.215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Alcohol Misuse Prevention Program § 199.215 Alcohol concentration. Each operator shall prohibit a covered employee...

  9. 49 CFR 199.215 - Alcohol concentration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Alcohol concentration. 199.215 Section 199.215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING Alcohol Misuse Prevention Program § 199.215 Alcohol concentration. Each operator shall prohibit a covered employee...

  10. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    NASA Astrophysics Data System (ADS)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  11. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe2O4 were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5-6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe2O4 as the main phase and Co3O4 as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (Mmax) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field (iHc) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the iHc value changes from 83 Oe to 493 Oe. The mechanism of changes in Mmax and iHc values has been explained.

  12. Effect of Polyvinyl Alcohol (PVA) Containing Artemether in Treatment of Cutaneous Leishmaniasis Caused by Leishmania major in BALB/c Mice

    PubMed Central

    Ebrahimisadr, Parisa; Ghaffarifar, Fatemeh; Hassan, Zuhir Mohammad; Sirousazar, Mohammad; Mohammadnejad, Fatemeh

    2014-01-01

    Background: Polyvinyl alcohol (PVA) is one of the well-known polymers, which has been used in numerous biomedical applications because of its good biocompatibility. Objectives: Due to problems made by the therapeutics already used for leishmaniasis, the aim of this study was to evaluate the effect of PVA containing artemether in treating cutaneous leishmaniasis in BALB/c mice. Materials and Methods: Aqueous solution of PVA was prepared by mixing with Double Distilled Water. After preparation of PVA, 4.33 mg of each drug (main drug artemether and control drug 14% glucantime) was added to 100 g of prepared PVA-honey solution. The solution was incubated at 37°C and the release of artemether was evaluated by measuring absorbance at 260 nm wave length. In this study for treatment of mice lesion, we used PVA containing artemether and glucantime and this method was compared with ointment treatment. Results: Mean diameters of lesions in mice treated with artemether were smaller than the control group and the differences were significant (P < 0.05). The mean lesion size of mice treated with PVA containing artemether in comparison with the group treated with ointment of artemether were smaller and the differences were significant (P < 0.05). Conclusions: PVA containing artemether is a new method for treatment of cutaneous leishmaniasis and according to the obtained results, artemether is an appropriate and effective drug, especially when used with PVA as a lesion dressing; thus we suggest that this method can be applied for the treatment of cutaneous leishmaniasis. PMID:25147717

  13. 49 CFR 382.201 - Alcohol concentration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Alcohol concentration. 382.201 Section 382.201... ALCOHOL USE AND TESTING Prohibitions § 382.201 Alcohol concentration. No driver shall report for duty or remain on duty requiring the performance of safety-sensitive functions while having an...

  14. 49 CFR 382.201 - Alcohol concentration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Alcohol concentration. 382.201 Section 382.201... ALCOHOL USE AND TESTING Prohibitions § 382.201 Alcohol concentration. No driver shall report for duty or remain on duty requiring the performance of safety-sensitive functions while having an...

  15. 49 CFR 382.201 - Alcohol concentration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Alcohol concentration. 382.201 Section 382.201... ALCOHOL USE AND TESTING Prohibitions § 382.201 Alcohol concentration. No driver shall report for duty or remain on duty requiring the performance of safety-sensitive functions while having an...

  16. 49 CFR 382.201 - Alcohol concentration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Alcohol concentration. 382.201 Section 382.201... ALCOHOL USE AND TESTING Prohibitions § 382.201 Alcohol concentration. No driver shall report for duty or remain on duty requiring the performance of safety-sensitive functions while having an...

  17. 49 CFR 382.201 - Alcohol concentration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Alcohol concentration. 382.201 Section 382.201... ALCOHOL USE AND TESTING Prohibitions § 382.201 Alcohol concentration. No driver shall report for duty or remain on duty requiring the performance of safety-sensitive functions while having an...

  18. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  19. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-06-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I-V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  20. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.

    2016-01-01

    An innovative method has been used to reduce the bandgap of poly(vinyl alcohol) (PVA) polymer by addition of a nontoxic, inexpensive, and environmentally friendly material. The resulting materials are small-bandgap polymers, hence opening new frontiers in green chemistry. The doped PVA films showed a wide range of light absorption of the solar spectrum from 200 nm to above 800 nm. Nonsharp absorption behavior versus wavelength was observed for the samples. The refractive index exhibited a wide range of dispersion. Shift of the absorption edge from 6.2 eV to 1.5 eV was observed. The energy bandgap of PVA was diminished to 1.85 eV upon addition of black tea extract solution, lying in the range of small-bandgap polymers. Increase of the optical dielectric constant was observed with increasing tea solution addition. The results indicate that small-bandgap PVA with good film-forming ability could be useful in terms of cost-performance tradeoff, solving problems of short lifetime, cost, and flexibility associated with conjugated polymers. The decrease of the Urbach energy upon addition of black tea extract solution indicates modification of PVA from a disordered to ordered material. X-ray diffraction results confirm an increase of the crystalline fraction in the doped samples.

  1. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  2. Surface resistivity temperature dependence measures of commercial, multiwall carbon nanotubes (MWCNT), or silver nano-particle doped polyvinylidene difluoride (PVDF) and polyvinyl alcohol (PVA) films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Egarievwe, Stephen; Kukhtareva, Tatiana; Polius, Jemilia; Janen, Afef; Corda, John

    2014-10-01

    The detection of infrared radiation (IR) with pure and doped Polyvinylidene difluoride (PVDF) films has been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made from Polyvinyl Alcohol (PVA) have received considerable attention in recent years. The investigation of surface resistivities of both such films, to this point, has received far less consideration in comparison to pyroelectric effects. In this research, we report temperature dependent surface resistivity measurements of commercial, and of multiwall carbon nanotubes (MWCNT), or Ag-nanoparticle doped PVA films. Without any variation in the temperature range from 22°C to 40°C with controlled humidity, we found that the surface resistivity decreases initially, reaches a minimum, but rises steadily as the temperature continues to increase. This research was conducted with the combined instrumentation of the Keithley Model 6517 Electrometer and Keithley Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films. With the objective to quantify the suitability of PVDF and PVA films as IR detector materials, when using the surface resistivity phenomenon, instead of or in addition to the pyroelectricity, surface resistivity measurements are reported when considering bolometry. We find the surface resistivity of PVDF films to be in the range, which extends beyond the upper limit of our Keithley electrometer, but our measurements on PVA films were readily implemented.

  3. Illumination Dependent Admittance Characteristics of Au/Zinc Acetate Doped Polyvinyl Alcohol (PVA:Zn)/n-Si Schottky Barrier Diodes (SBDs)

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, I.; Aydemir, U.; Altındal, Ş.; Tunç, T.

    2011-12-01

    This study presents the effect of illumination on main electrical parameters of Schottky barrier diode (SBD). The admittance (capacitance-voltage (C-V) and conductance-voltage (G/ω-V)) characteristics of Au/Zinc acetate doped polyvinyl alcohol (PVA:Zn)/n-Si SBD were investigated in dark and under various illumination intensities. Experimental results demonstrate that the C-V plots give a peak due to the illumination induced interface states or electron-hole pairs at metal/semiconductor (M/S) interface. The C-2-V plots were also drawn to determine main electrical parameters such as doping concentration (ND), depletion layer width (WD) and barrier height (ΦB(C-V)) of device. In addition, the voltage dependence Rs values were obtained from C-V and G/ω-V data by using Nicollian and Brews method. In order to obtain the real diode capacitance and conductance, the high frequency (1 MHz) Cm and Gm/w values were corrected for the effect of series resistance. All these observations confirm that both C-V and G/w-V characteristics were strongly affected by illumination.

  4. Spectral studies of Donepezil release from streched PVA polymer films

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen-Beatrice; Stoica, Iuliana; Closca, Valentina; Dorohoi, Dana-Ortansa

    2013-07-01

    The focus of this research is to obtain poly vinyl alcohol (PVA) polymer foils containing Donepezil in different concentration, in order to be used in controlled drug release as a palliative treatment of mild to moderate Alzheimer's disease. The influence of polymeric foil stretching degree on drug release was analyzed using spectral measurements.

  5. Determining the electrical mechanism of the surface resistivity property of doped polyvinyl alcohol (PVA) and the pyroelectric property of polyvinylidene difluoride (PVDF) thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Janen, Afef; Guggilla, Padmaja; Polius, Jemelia; Douglas, Jade; Curley, Michael

    2015-08-01

    Previously, we have reported measurements of the temperature-dependent surface resistivity of pure and multi-walled carbon nanotubes doped Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C, with a humidity-controlled environment, we found the surface resistivity to decrease initially but to rise steadily as the temperature continued to increase. Correspondingly, we have measured the temperature-dependent pyroelectric coefficient of doped polyvinylidene difluoride (PVDF) thin films, very well. While the physical mechanism of the pyroelectric phenomenon in PVDF thin films is quite well known, the surface resistivity behavior of PVA thin films is not so well known. Here, we address this concern by reporting the electrical mechanistic phenomena that contribute to surface resistivity of pure and doped PVA thin films, and give preliminary surface resistivity detectivity and other relevant quality factors for infrared (IR) and motion sensors. Regarding the pyroelectric effect of doped PVDF thin films, we give materials Figures-of-Merit based on our measurements. In addition, pyroelectric and surface resistivity infrared fundamentals, IR sensor uniqueness, and innovative techniques are presented.

  6. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  7. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.

    PubMed

    Hakalahti, Minna; Salminen, Arto; Seppälä, Jukka; Tammelin, Tekla; Hänninen, Tuomas

    2015-08-01

    TEMPO/NaClO2 oxidized cellulosic nanofibrils (TCNF) were covalently bonded with poly(vinyl alcohol) (PVA) to render water stable films. Pure TCNF films and TCNF-PVA films in dry state showed similar humidity dependent behavior in the elastic region. However, in wet films PVA had a significant effect on stability and mechanical characteristics of the films. When soaked in water, pure TCNF films exhibited strong swelling behavior and poor wet strength, whereas covalently bridged TCNF-PVA composite films remained intact and could easily be handled even after 24h of soaking. Wet tensile strength of the films was considerably enhanced with only 10 wt% PVA addition. At 25% PVA concentration wet tensile strengths were decreased and films were more yielding. This behavior is attributed to the ability of PVA to reinforce and plasticize TCNF-based films. The developed approach is a simple and straightforward method to produce TCNF films that are stable in wet conditions.

  8. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  9. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. PMID:27267574

  10. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA.

  11. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  12. Information on Blood Alcohol Concentration: Evaluation of Two Alcohol Nomograms.

    ERIC Educational Resources Information Center

    Werch, Chudley E.

    The purpose of this study was to compare with an alcohol information warning card the utility of two common alcohol nomograms (statistical information tables) in impacting decisions regarding drinking, driving after drinking, the development of knowledge of the relations between personal alcohol consumption and the legal level of intoxication, and…

  13. Influence of surface concentration on poly(vinyl alcohol) behavior at the water-vacuum interface: a molecular dynamics simulation study.

    PubMed

    Tesei, Giulio; Paradossi, Gaio; Chiessi, Ester

    2014-06-19

    Poly(vinyl alcohol) (PVA) is an amphiphilic macromolecule with surfactant activity. The peculiar behavior of this polymer at the water-air interface is at the basis of its use as material for hydrated microdevices, films, and nanofibers. This work aims to investigate the behavior of PVA and water within the surface domain of highly diluted aqueous solutions by means of atomistic molecular dynamics simulations. Monodisperse atactic oligomers of 30 residues were distributed within water slabs in a vacuum box and allowed to diffuse toward the surface. After equilibration, structural features and dynamical properties of polymer chains and water in the interfacial domains were analyzed as a function of PVA surface concentration at 293 K. Surface pressure values obtained from simulations are in agreement with experimental values at corresponding polymer specific surface areas. In the explored concentration range of 6-34 μmol of residues/m(2), the chains display a transition between two states. At lower surface concentrations, elongated, quite rigid structures are adsorbed on the surface, whereas partially submerged globular aggregates, locally covered by thin water layers, are formed at higher surface concentrations. At PVA concentrations higher than about 20 μmol of residues/m(2), the percolation of chain aggregates over the interface plane produces a surface-confined polymer network with stable pores filled by water molecules. A substantial slowing of polymer and water dynamics in the interfacial domains is highlighted by the mean squared displacement time behavior of terminal residues and the interaction time of PVA-water hydrogen bonding. The diffusion coefficient of water and lifetime of hydrogen bonds between solvent molecules are halved and doubled, respectively, at the interface with the highest polymer concentration. The attenuation of water and polymer mobility concur to stabilize PVA hydrated networks in contact with air.

  14. 32 CFR 634.34 - Blood alcohol concentration standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Blood alcohol concentration standards. 634.34... alcohol concentration standards. (a) Administrative revocation of driving privileges and other enforcement measures will be applied uniformly to offenders driving under the influence of alcohol or drugs. When...

  15. 32 CFR 634.34 - Blood alcohol concentration standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Blood alcohol concentration standards. 634.34... alcohol concentration standards. (a) Administrative revocation of driving privileges and other enforcement measures will be applied uniformly to offenders driving under the influence of alcohol or drugs. When...

  16. 32 CFR 634.34 - Blood alcohol concentration standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Blood alcohol concentration standards. 634.34... alcohol concentration standards. (a) Administrative revocation of driving privileges and other enforcement measures will be applied uniformly to offenders driving under the influence of alcohol or drugs. When...

  17. 32 CFR 634.34 - Blood alcohol concentration standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Blood alcohol concentration standards. 634.34... alcohol concentration standards. (a) Administrative revocation of driving privileges and other enforcement measures will be applied uniformly to offenders driving under the influence of alcohol or drugs. When...

  18. 32 CFR 634.34 - Blood alcohol concentration standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Blood alcohol concentration standards. 634.34... alcohol concentration standards. (a) Administrative revocation of driving privileges and other enforcement measures will be applied uniformly to offenders driving under the influence of alcohol or drugs. When...

  19. [Concentration of endogenous ethanol and alcoholic motivation].

    PubMed

    Burov, Iu V; Treskov, V G; Kampov-Polevoĭ, A B; Kovalenko, A E; Rodionov, A P

    1983-11-01

    Trials with patients suffering from stage II chronic alcoholism and normal test subjects as well as experiments made on male C57BL mice (with genetically determined alcoholic motivation) and CBA mice (with genetically determined alcoholic aversion) and random-bred male rats with different levels of initial alcoholic motivation have shown the presence of reverse proportional dependence between blood plasma endogenous ethanol and alcoholic motivation.

  20. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  1. Fabrication and photocatalytic performance of electrospun PVA/silk/TiO2 nanocomposite textile

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chan, Shun-Hsiang; Lin, Ting-Han

    2015-02-01

    Many organic/inorganic nanocomposites have been fabricated into fibrous materials using electrospinning techniques, because electrospinning processes have many attractive advantages and the ability to produce relatively large-scale continuous films. In this study, the polyvinyl alcohol (PVA)/silk/titanium dioxide (TiO2) nanocomposite self-cleaning textiles were successfully produced using electrospinning technique. After optimizing electrospinning conditions, we successfully obtained the PVA/silk/TiO2 nanocomposite fibers with average diameter of ˜220 nm and TiO2 concentration can be as high as 18.0 wt.%. For the case of the PVA/silk/TiO2 nanocomposite textile, the color of brilliant green coated on the textile surface changed from the initial green color to colorless after ultraviolet (UV) irradiation. Because of its worthy photocatalytic performance, the developed PVA/silk/TiO2 nanocomposite materials in this study will be beneficial for the design and fabrication of multifunctional fibers and textiles.

  2. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn.

    PubMed

    Burd, L; Blair, J; Dropps, K

    2012-09-01

    Fetal alcohol spectrum disorders (FASDs) are a common cause of intellectual impairment and birth defects. More recently, prenatal alcohol exposure (PAE) has been found to be a risk factor for fetal mortality, stillbirth and infant and child mortality. This has led to increased concern about detection and management of PAE. One to 2 h after maternal ingestion, fetal blood alcohol concentrations (BACs) reach levels nearly equivalent to maternal levels. Ethanol elimination by the fetus is impaired because of reduced metabolic capacity. Fetal exposure time is prolonged owing to the reuptake of amniotic-fluid containing ethanol by the fetus. Alcohol elimination from the fetus relies on the mother's metabolic capacity. Metabolic capacity among pregnant women varies eightfold (from 0.0025 to 0.02 g dl(-1)  h(-1)), which may help explain how similar amounts of ethanol consumption during pregnancy results in widely varying phenotypic presentations of FASD. At birth physiological changes alter the neonate's metabolic capacity and it rapidly rises to a mean value of 83.5% of the mother's capacity. FASDs are highly recurrent and younger siblings have increased risk. Detection of prenatal alcohol use offers an important opportunity for office-based interventions to decrease exposure for the remainder of pregnancy and identification of women who need substance abuse treatment. Mothers of children with FAS have been found to drink faster, get drunk quicker and to have higher BACs. A modest increase in the prevalence of a polymorphism of alcohol dehydrogenase, which increases susceptibility to adverse outcomes from PAE has been reported. Lastly, detection of alcohol use and appropriate management would decrease risk from PAE for subsequent pregnancies.

  3. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  4. Effect of alcohol consumption status and alcohol concentration on oral pain induced by alcohol-containing mouthwash.

    PubMed

    Satpathy, Anurag; Ravindra, Shivamurthy; Porwal, Amit; Das, Abhaya C; Kumar, Manoj; Mukhopadhyay, Indranil

    2013-01-01

    Alcohol exposure alters oral mucosa. Patient compliance with mouthwash use may be reduced by oral pain resulting from rinsing with alcohol-containing mouthwash. However, information regarding the effects of alcohol consumption and mouthwash alcohol concentration on oral pain is limited. In this double-blind, randomized, controlled cross-over study, we investigated the effects of alcohol consumption status and mouthwash alcohol concentration on response to and perception of oral pain induced by alcohol-containing mouthwash. Fifty healthy men aged 33 to 56 years were enrolled and classified as drinkers and nondrinkers according to self-reported alcohol consumption. All subjects rinsed with two commercially available mouthwash products (which contained high and low concentrations of alcohol) and a negative control, in randomized order. Time of onset of oral pain, time of cessation of oral pain (after mouthwash expectoration), and pain duration were recorded, and oral pain intensity was recorded on a verbal rating scale. Drinkers had later oral pain onset and lower pain intensity. High-alcohol mouthwash was associated with earlier pain onset and greater pain intensity. In addition, oral pain cessation was later and pain duration was longer in nondrinkers rinsing with high-alcohol mouthwash. In conclusion, alcohol consumption status and mouthwash alcohol concentration were associated with onset and intensity of oral pain.

  5. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  6. Comparison of blood alcohol concentrations after beer and whiskey.

    PubMed

    Roine, R P; Gentry, R T; Lim, R T; Helkkonen, E; Salaspuro, M; Lieber, C S

    1993-06-01

    To determine whether blood alcohol concentrations achieved by ingestion of various alcoholic beverages differ as a function of prandial state, healthy male volunteers, aged 24 to 48 years, were given the same amount of alcohol (0.3 g/kg) as different beverages. The alcohol was consumed in three prandial states: postprandial (1 hr after a meal, n = 10), prandial (during the meal, n = 10), and preprandial (after an overnight fast, n = 9). Each subject was tested with both beer and whiskey, and in the postprandial state also with wine and sherry, in a within-subjects design. Blood alcohol concentrations were estimated by breath analysis for 4 hr or until concentrations reached zero. Peak blood alcohol levels were higher with beer than with whiskey in the postprandial and prandial conditions (p < 0.01), whereas the opposite was true in the preprandial state (p < 0.05). Similarly, the area under the blood alcohol curve was higher with beer in the prandial state (p < 0.05), and higher with whiskey in the preprandial condition (p < 0.01). Wine and sherry yielded peak concentrations intermediate between those of beer and whiskey in the postprandial state. The results indicate that a dilute alcoholic drink can yield either higher or lower blood alcohol levels than a concentrated beverage, depending on the prandial state.

  7. Utilization of concentrated cheese whey for the production of protein concentrate fuel alcohol and alcoholic beverages

    SciTech Connect

    Krishnamurti, R.

    1983-01-01

    The objective of this investigation was to recover the major components of whey and to develop food applications for their incorporation/conversion into acceptable products of commercial value. Reconstituted dried sweet whey with 36% solids was ultrafiltered to yield a protein concentrate (WPC) and a permeate containing 24% lactose and 3.7% ash. Orange juice fortified up to 2.07% and chocolate milks fortified up to 5.88% total protein levels with WPC containing 45% total protein were acceptable to about 90% of a panel of 24 individuals. Fermentation of demineralized permeate at 30/sup 0/C with Kluyveromyces fragilis NRRL Y 2415 adapted to 24% lactose levels, led to 13.7% (v/v) ethanol in the medium at the end of 34 hours. Batch productivity was 3.2 gms. ethanol per liter per hour and conversion efficiency was 84.26% of the theoretical maximum. Alcoholic fermentation of permeate and subsequent distillation produced compounds with desirable aroma characters in such products. This study suggests that there is potential for the production of protein fortified non-alcoholic products and alcoholic beverages of commercial value from whey, thus providing a cost effective solution to the whey utilization problem.

  8. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    NASA Astrophysics Data System (ADS)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  9. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    NASA Astrophysics Data System (ADS)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  10. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume.

  11. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume. PMID:21457992

  12. The Dynamic Reinforcement of Polyvinyl Alcohol (PVA) as a Result of Non-equilibrium State of Polymer Supermolecular Structures and their Confinement in Nanofibers

    NASA Astrophysics Data System (ADS)

    Zussman, Eyal; Shaked, Emil; Arinstein, Arkadi

    2009-03-01

    The results of mechanical testing of PVA -based electrospun nanofibers and bulk in static and dynamic modes are presented. An increase in the elastic moduli resulting from sample deformation was observed in both the bulk and as-spun fibers. This increase occurs when the deformation rate exceeds a critical value and can be attributed to the non-equilibrium dynamics of the supermolecular structures of the polymer matrix. That is, the evolution of these supermolecular structures results in an observably extended relaxation time. It is noted that the rate of the modulus increase of the nanofibers is nearly double that of the bulk fibers' rate. This difference can be explained by confinement influence on the polymer matrix of the nanofibers. In addition, the tests revealed that the, Tg, of the nanofiber is noticeably higher than that of bulk specimen. Reinforcing the nanofibrs by cellulose whiskers showing that the dependence of the effective modulus on the whisker concentration has an initial increase that changes to a decrease when the whisker concentration exceeds 2 %. Such behavior can be explained in the framework of an aggregation concept -- when the cluster size reaches that of the fiber diameter (cluster confinement), the whisker distribution becomes inhomogeneous and results in a measurable weakening of the composite.

  13. Complications associated with blood alcohol concentration following injury.

    PubMed

    Friedman, Lee S

    2014-06-01

    Alcohol increases the risk of injuring oneself and others. However, following an injury there appears to be a benefit to alcohol in mediating the body's response to a traumatic injury and reducing mortality. The physiological mechanism underlying this reported association is poorly understood. One approach to explaining the pathways by which alcohol affects acute mortality following a traumatic injury is to identify differential prevalence of medical complications associated with increased mortality. The goal of this study was to evaluate the association between blood alcohol concentration and complications subsequent to a traumatic injury that are associated with increased in-hospital mortality. This study involved a retrospective analysis of traumatic injuries occurring between 2000 and 2009 as reported by all level I and II trauma units in the state of Illinois. The study includes all patients with blood alcohol toxicological examination levels ranging from zero to 500 mg/dL and meeting additional inclusion criteria (n = 84,974). A reduction in complications of cardiac and renal function by 23.5% and 30.0%, respectively, was attributable to blood alcohol concentration. In addition, blood alcohol concentration was associated with fewer cases of pneumothorax and convulsions. However, blood alcohol concentration continued to be positively associated with aspiration pneumonitis and acute pancreatitis in the final models. The net impact of alcohol following an injury is protective, largely attributable to a reduction in complications relating to cardiac and renal function. This study helps to explain the observed protective effect from blood alcohol concentrations in reducing in-hospital mortality after an injury, as reported in many studies.

  14. Saliva alcohol concentrations in accident and emergency attendances

    PubMed Central

    Simpson, T; Murphy, N; Peck, D

    2001-01-01

    Objectives—Although alcohol is known to play a key part in accidents, no UK study has assessed alcohol concentrations in a comprehensive sample of accident and emergency (A&E) attenders. This study set out to do this, and examine the relation between alcohol concentrations and the severity, type and circumstances of presentation, and the sociodemographic characteristics of patients. Methods—A survey was conducted of all new A&E attenders (aged 10 years or over). Two 24 hour periods for each day of the week were covered in 6, 7 or 11 hour sessions over a two month period. Alcohol concentrations were assessed from saliva samples using a disposable device. Data were collected from 638 attenders, of whom 544 provided saliva samples; the remainder refused or were unable to participate. Results—Positive saliva alcohol readings were obtained in 22% of attenders (95%CI 19% to 26%); this increased to 25% if others were included (for example, those who refused to participate but were judged to be intoxicated). Alcohol was associated with 94% of incidents of self harm, 54% of non-specific/multiple complaints, 47% of collapses, 50% of assaults, and 50% of patients admitted to hospital. Higher concentrations of alcohol were found from Friday to Sunday, between midnight and 0900, and in patients aged 41 to 60. Among people with positive alcohol results, those attending with a companion had higher concentrations than those attending alone. There were no significant differences between men and women in alcohol concentrations. Discussion—These findings show that alcohol use is an important factor in A&E attendance, but it should not be assumed that there is a causal relation between alcohol use and injury. Several accident related and sociodemographic variables were predictive of alcohol use before attending. The overall level of prediction was too weak to permit accurate identification of drinkers for screening purposes, but routine alcohol concentration assessments may be

  15. Turbidimetric Estimation of Alcohol Concentration in Aqueous-Alcohol Mixtures

    ERIC Educational Resources Information Center

    Swinehart, William E.; Zimmerman, Bonnie L.; Powell, Kinsey; Moore, Stephen D.; Iordanov, Tzvetelin D.

    2014-01-01

    A concept of the turbidimetric method for determining the concentration of ethanol in water-ethanol mixtures is described. A closed sample cell containing the analyte was heated to achieve vapor saturation and subsequent condensation. As the condensation occurred, the decrease in percentage transmittance with time due to light scattering was…

  16. Measuring Breath Alcohol Concentrations with an FTIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Kneisel, Adam; Bellamy, Michael K.

    2003-12-01

    An FTIR spectrometer equipped with a long-path gas cell can be used to measure breath alcohol concentrations in an instrumental analysis laboratory course. Students use aqueous ethanol solutions to make a calibration curve that relates absorbance signals of breath samples with blood alcohol concentrations. Students use their calibration curve to determine the time needed for their calculated blood alcohol levels to drop below the legal limit following use of a commercial mouthwash. They also calculate their blood alcohol levels immediately after chewing bread. The main goal of the experiment is to provide the students with an interesting laboratory exercise that teaches them about infrared spectrometers. While the results are meant to be only semiquantitative, they have compared well with results from other published studies. A reference is included that describes how to fabricate a long-path gas cell.

  17. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  18. Vaginal absorption of polyvinyl alcohol in Fischer 344 rats.

    PubMed

    Sanders, J M; Matthews, H B

    1990-03-01

    Polyvinyl alcohol (PVA) is a polymer with a wide range of molecular weights and uses. Recently, low molecular weight formulations of PVA have been used as components of contraceptive products designed for intravaginal administration in human females. Previous studies in animals have determined that little or no absorption of PVA occurs from the gastrointestinal (GI) tract. However, there is some concern that PVA of lower molecular weights might be absorbed across membranes of the reproductive tract. Consequently, this work has investigated the absorption of low molecular weight PVA across biological membranes of the reproductive and GI tracts of Fischer 344 rats. Oral administration of ten consecutive daily doses of 14C PVA resulted in little apparent absorption of the dose from the GI tract. In contrast, intravaginal administration of 14C PVA resulted in increasing concentrations of PVA-derived radioactivity in major tissues following one, three or ten daily doses of the estimated human dose of 3 mg/kg. PVA-derived radioactivity was concentrated mainly in the liver, reaching a peak greater than 1750 ng equivalents/g tissue 24 hours following ten daily doses. Over 300 ng equivalents/g tissue were still present in the liver 30 days following the last dose.

  19. Influence of moderate alcohol intake on wakening plasma thiopental concentration.

    PubMed

    Loft, S; Jensen, V; Rørsgaard, S

    1983-06-01

    In an earlier study, an inverse correlation between thiopental-induced sleeping time and alcohol intake in the preceding week was demonstrated in women undergoing termination of pregnancy. In order to investigate the mechanism behind the apparent cross-tolerance, the relationship between alcohol consumption in the week preceding thiopental/nitrous oxide/oxygen anesthesia and wakening plasma thiopental concentration on one hand and sleeping time on the other was examined in 68 women scheduled for termination of pregnancy and in 37 women scheduled for diagnostic uterine dilatation and curettage. In terms of pure alcohol, the weekly intake (mean +/- s.d.) was 1.17 +/- 2.07 ml . kg-1 in the former and 1.49 +/- 1.70 ml . kg-1 in the latter group. A positive correlation between alcohol consumption and wakening plasma thiopental concentration was found in both groups, reaching statistical significance (P less than 0.05) in the group undergoing termination of pregnancy, but not in the other. The inverse correlation found earlier between alcohol intake and sleeping time was not reproduced significantly in any of the groups. The results indicate that moderate alcohol intake may induce cerebral tolerance to thiopental.

  20. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Song, Kunlin; Cheng, H N; Wu, Qinglin

    2016-11-20

    The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems. PMID:27561516

  1. Indiana Residents' Perceptions of Driving and Lower Blood Alcohol Concentration

    ERIC Educational Resources Information Center

    Seo, Dong-Chul; Torabi, Mohammed R.

    2005-01-01

    Since Congress passed .08 blood alcohol concentration (BAC) as the national standard for impaired driving in October 2000, 28 U.S. States including Indiana have enacted .08 BAC law. This study investigated perceived impact of the .08 law among Indiana residents and their attitudinal and perceptional changes since the enforcement of the law. The…

  2. Ionic conductivity studies in crystalline PVA/NaAlg polymer blend electrolyte doped with alkali salt KCl

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish

    2014-04-01

    Potassium Chloride (KCl) doped poly(vinyl alcohol) (PVA)/sodium alginate (NaAlg) in 60:40 wt% polymer blend electrolytes were prepared by solution casting method. The complexation of KCl with host PVA/NaAlg blend is confirmed by FTIR and UV-Vis spectra. The XRD studies show that the crystallinity of the prepared blends increases with increase in doping. The dc conductivity increases with increase in dopant concentration. Temperature dependent dc conductivity shows an Arrhenius behavior. The dielectric properties show that both the dielectric constant and dielectric loss increases with increase in KCl doping concentration and decreases with frequency. The cole-cole plots show a decrease in bulk resistance, indicates the increase in ac conductivity, due to increase in charge carrier mobility. The doping of KCl enhances the mechanical properties of PVA/NaAlg, such as Young's modulus, tensile strength, stiffness.

  3. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  4. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study

    PubMed Central

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511

  5. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Alghunaim, Naziha Suliman

    Nanocomposite films of polyvinyl alcohol (PVA) containing constant ratio of both single and multi-wall carbon nanotubes had been obtained by dispersion techniques and were investigated by different techniques. The infrared spectrum confirmed that SWNTs and MWNTs have been covalently related OH and Csbnd C bonds within PVA. The X-ray diffraction indicated lower crystallinity after the addition of carbon nanotubes (CNTs) due to interaction between CNTs and PVA. Transmission electron microscope (TEM) illustrated that SWNTs and MWNTs have been dispersed into PVA polymeric matrix and it wrapped with PVA. The properties of PVA were enhanced by the presence of CNTs. TEM images show uniform distribution of CNTs within PVA and a few broken revealing that CNTs broke aside as opposed to being pulled out from fracture surface which suggests an interfacial bonding between CNTs and PVA. Maximum value of AC conductivity was recorded at higher frequencies. The behavior of both dielectric constant (ɛ‧) and dielectric loss (ɛ″) were decreased when frequency increased related to dipole direction within PVA films to orient toward the applied field. At higher frequencies, the decreasing trend seems nearly stable as compared with lower frequencies related to difficulty of dipole rotation.

  6. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  7. Comparing the Effects of Alcohol Mixed with Artificially-Sweetened and Carbohydrate Containing Beverages on Breath Alcohol Concentration

    ERIC Educational Resources Information Center

    Irwin, Christopher; Shum, David; Desbrow, Ben; Leveritt, Michael

    2014-01-01

    This study investigated the impact of alcohol mixed with artificially sweetened or carbohydrate containing beverages on breath alcohol concentration s (BrAC) under various levels of hydration status. Two groups of males participated in 3 experimental trials where alcohol was consumed under three different levels of hydration status. One group…

  8. [The comparison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence].

    PubMed

    Lukaszewicz, A; Markowski, T; Pawlak, D

    1997-01-01

    In this report the concentration of endogenous ethanol in blood serum in alcoholics at different stages of abstinence and in non-alcoholics was studied. 36 people--26 alcoholics and 10 non-alcoholics were examined and gas chromatography was used. It was revealed that the longer the period of abstinence in alcoholics, the lower the concentration of endogenous ethanol in blood serum. Moreover, the alcoholics showed a higher concentration of endogenous ethanol in blood serum as compared to non-alcoholics.

  9. Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts.

    PubMed

    Dia, Vermont P; Pangloli, Philipus; Jones, Lynsey; McClure, Angela; Patel, Anjali

    2016-08-10

    Sorghum is an important cereal with reported health benefits. The objectives of this study were to measure the biological activities of alcoholic extracts of ten sorghum varieties and to determine the association between the color of the extracts and their biological activities. Variation on concentrations of bioactives among sorghum varieties was observed with ethanolic extracts giving higher concentrations than methanolic extracts. The color of the extracts significantly correlated with the concentrations of bioactives and with nitric oxide scavenging activity. Freeze-dried ethanol extract is more potent than freeze-dried methanol extract and caused cytotoxicity to A27801AP and PTX-10 OVCA with ED50 values of 0.69 and 1.29 mg mL(-1), respectively. Pre-treatment of OVCA with ethanol extract led to chemosensitization to paclitaxel and the proliferation and colony formation of OVCA cells were reduced by 14.7 to 44.6% and 36.4 to 40.1%, respectively. Sorghum is a potential source of colorants with health promoting properties. This is the first report on the capability of sorghum alcoholic extracts to cause cytotoxicity and chemosensitize ovarian cancer cells in vitro. PMID:27406291

  10. Broadband tuning in a passively Q-switched erbium doped fiber laser (EDFL) via multiwall carbon nanotubes/polyvinyl alcohol (MWCNT/PVA) saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Hassan, S. N. M.; Ahmad, F.; Zulkifli, M. Z.; Harun, S. W.

    2016-04-01

    An MWCNT/PVA-based Q-switched erbium-doped fiber laser (EDFL) that uses a tunable bandpass filter (TBPF) as the wavelength tuning and filtering mechanism to achieve a broadband tuning range is proposed and demonstrated. The tuning range of the generated Q-switched pulses covered a wide wavelength range of 50 nm, which spanned from 1519 nm to 1569 nm and corresponded to the S- and C-band regions. In addition, the lasing and Q-switching operations had low thresholds of 8.9 mW and 22.4 mW respectively. The highest pulse energy of 52.13 nJ was obtained at an output wavelength of 1569 nm, with a corresponding repetition rate of 26.53 kHz and pulse width of 6.10 μs, at the maximum power of 114.8 mW.

  11. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, Qingguo; Zhou, Xue; Zeng, Jinxia; Wang, Jizeng

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the sbnd Cdbnd O group at 1701 cm-1, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  12. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Adoption of State blood alcohol... DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies to... established by statute a blood alcohol concentration level for purposes of determining whether a person...

  13. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Adoption of State blood alcohol... DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies to... established by statute a blood alcohol concentration level for purposes of determining whether a person...

  14. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution.

    PubMed

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-12-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied. PMID:27644240

  15. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-09-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (Δ H°) and entropy (Δ S°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  16. Performance of composite Nafion/PVA membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mollá, Sergio; Compañ, Vicente

    2011-03-01

    This work has been focused on the characterization of the methanol permeability and fuel cell performance of composite Nafion/PVA membranes in function of their thickness, which ranged from 19 to 97 μm. The composite membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The resistance to methanol permeation of the Nafion/PVA membranes shows a linear variation with the thickness. The separation between apparent and true permeability permits to give an estimated value of 4.0 × 10-7 cm2 s-1 for the intrinsic or true permeability of the bulk phase at the composite membranes. The incorporation of PVA nanofibers causes a remarkable reduction of one order of magnitude in the methanol permeability as compared with pristine Nafion® membranes. The DMFC performances of membrane-electrode assemblies prepared from Nafion/PVA and pristine Nafion® membranes were tested at 45, 70 and 95 °C under various methanol concentrations, i.e., 1, 2 and 3 M. The nanocomposite membranes with thicknesses of 19 μm and 47 μm reached power densities of 211 mW cm-2 and 184 mW cm-2 at 95 °C and 2 M methanol concentration. These results are comparable to those found for Nafion® membranes with similar thickness at the same conditions, which were 210 mW cm-2 and 204 mW cm-2 respectively. Due to the lower amount of Nafion® polymer present within the composite membranes, it is suggested a high degree of utilization of Nafion® as proton conductive material within the Nafion/PVA membranes, and therefore, significant savings in the consumed amount of Nafion® are potentially able to be achieved. In addition, the reinforcement effect caused by the PVA nanofibers offers the possibility of preparing membranes with very low thickness and good mechanical properties, while on the other hand, pristine Nafion® membranes are unpractical below a thickness of 50 μm.

  17. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  18. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin.

  19. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  20. Retardation Measurements of Infrared PVA Wave plate

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Z, H.; W, D.; D, Y.; Z, Z.; S, J.

    The wave plate made of Polyvinyl Alcohol PVA plastic film has several advantages such as its lower cost and insensitivity to temperature and incidence angle so it has been used in the Solar Multi-Channel Telescope SMCT in China But the important parameter retardations of PVA wave plates in the near infrared wavelength have never been provided In this paper a convenient and high precise instrument to get the retardations of discrete wavelengths or a continuous function of wavelength in near infrared is developed In this method the retardations of wave plates have been determined through calculating the maximum and minimum of light intensity The instrument error has been shown Additionally we can get the continuous direction of wavelength retardations in the ultraviolet visible or infrared spectral in another way

  1. Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sui, Chunhong; Li, Chao; Guo, Xiaohong; Cheng, Tiexin; Gao, Yukun; Zhou, Guangdong; Gong, Jian; Du, Jianshi

    2012-07-01

    Regarding poly(vinyl alcohol)/silicotungstic acid (PVA/H4SiW12O40) gel as precursor, the silver nanoparticles (NPs) were selectively deposited on the surface of the PVA/H4SiW12O40 nanofibers by using electrospinning and photoreduction methods. X-ray photoelectron spectroscopy, Fourier transformation infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy were used to affirm the structure and formation of tri-component nanohybrids. Field environmental scanning electron microscope and transmission electron microscopy indicate that the average diameter of silver NPs was changed from 25 nm to 50 nm, with decreasing the relative concentration of SiW12 in the as-electrospun nanofibers. The nanocomposites exhibit excellent photocatalytic activity in degradation of Rhodamine B. This result arises from the synergistic effects and the large specific surface areas of Ag/PVA/H4SiW12O40 tri-component nanohybrids.

  2. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Adoption of State blood alcohol... SECURITY VESSEL OPERATING REGULATIONS OPERATING A VESSEL WHILE UNDER THE INFLUENCE OF ALCOHOL OR A DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies...

  3. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Adoption of State blood alcohol... SECURITY VESSEL OPERATING REGULATIONS OPERATING A VESSEL WHILE UNDER THE INFLUENCE OF ALCOHOL OR A DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies...

  4. 33 CFR 95.025 - Adoption of State blood alcohol concentration levels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Adoption of State blood alcohol... SECURITY VESSEL OPERATING REGULATIONS OPERATING A VESSEL WHILE UNDER THE INFLUENCE OF ALCOHOL OR A DANGEROUS DRUG § 95.025 Adoption of State blood alcohol concentration levels. (a) This section applies...

  5. Holographic characterization of DYE-PVA films studied at 442 nm for optical elements fabrication

    NASA Astrophysics Data System (ADS)

    Couture, Jean J.

    1991-12-01

    The present work is an experimental study of the speed of hologram recording in dichromated polyvinyl alcohol films (DC-PVA) and DYE-DC-PVA films. Real-time recordings give high diffraction efficiency and low signal-to-noise ratio holograms without any chemical development. The dyes studied here are MALACHITE GREEN, EOSIN Y, and ROSE BENGAL introduced in DC-PVA films having a thickness of 60 - 62 micrometers . The best of these DYE-DC-PVA systems is a good candidate for holographic optical elements fabrication.

  6. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016.

  7. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016. PMID:26224170

  8. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    PubMed

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  9. [Study on hydrophilicity and degradability of polyvinyl alcohol/polylactic acid blend film].

    PubMed

    Wang, Hualin; Sheng, Mingang; Zhai, Linfeng; Li, Yanhong

    2008-02-01

    Based on casting and solvent evaporation method, the degradable PLA/PVA blend film was prepared with polylactic acid (PLA) and polyvinyl alcohol (PVA) as raw material. The moisture absorbability, water absorbability and degradability of the polylactic acid/polyvinyl alcohol (PLA/PVA) blend film were studied; also the degradation mechanism of blend film was investigated. The results showed that the moisture absorption and water absorption of blend film decreased as the concentration of PLA increased. The degradation process of blend film in the normal saline is conducted by stepwise. At the forepart, the degradation of PLA played an important role, while PVA was the main degradation substance later. The solvent acidity could catalyze the degradation of PLA, and degradation of PLA was always turning from noncrystalline region to crystalline region. PVA had abilities to accelerate the degradation of PLA by increasing the hydrophilicity of the blend film and by breaking the crystallinity of PLA. Therefore, the hydrophilicity and degradability of PLA/PVA blend film can be controlled in a certain range by adjusting the proportion of PLA and PVA. PMID:18435276

  10. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly (vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on m...

  11. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    PubMed

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells.

  12. High Alcohol Concentration Products Associated With Poverty and State Alcohol Policies

    PubMed Central

    Thombs, Dennis L.; Wagenaar, Alexander C.; Xuan, Ziming; Aryal, Subhash

    2015-01-01

    Objectives. We examined the associations among zip code demographics, the state alcohol policy environment, and the retail outlet availability of multiple fruit-flavored alcoholic drinks in a can (MFAC). Methods. In a nationally representative sample of zip codes (n = 872), we merged data from 4 sources: publicly available marketing information from 2 major MFAC producers, the US Census Bureau, state alcohol regulatory agencies, and recent research on state alcohol policies. We used zero-inflated negative binomial regression models to examine MFAC outlet availability in the United States. Results. More than 98% of MFAC outlets were off-premises alcohol establishments. After we controlled for population size and the number of licensed on- and off-premises alcohol outlets within zip codes, more families below the poverty line and weaker state alcohol control policies were associated with greater MFAC outlet availability. Conclusions. Economic conditions and alcohol policy environment appeared to be related to MFAC outlet availability, after adjusting for the general availability of alcohol. Research is needed to determine whether MFACs are disproportionately contributing to alcohol-related harm in socially and economically disadvantaged communities. Policies to better regulate the off-premises sale of alcohol are needed. PMID:26180984

  13. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  14. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  15. A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit[7]uril, gelatin and polyvinyl alcohol.

    PubMed

    Oun, Rabbab; Plumb, Jane A; Wheate, Nial J

    2014-05-01

    The anticancer drug cisplatin was encapsulated within the cucurbit[7]uril macrocycle to form the host-guest complex: cisplatin@CB[7]. This was then incorporated into gelatin and 0-4% w/v polyvinyl alcohol (PVA)-based hydrogels as slow release drug delivery vehicles. The hydrogels demonstrated predicable swelling and disintegration dependent on the PVA concentration. The hydrogel with the highest PVA content was slower to swell and release drug compared with lower concentrations of PVA. The effect of the hydrogel PVA concentration on in vitro cytotoxicity was examined using A2780/CP70 ovarian cancer cells. Over the 24h drug exposure time used, hydrogels containing 4% PVA showed a 20% decrease in viable cells compared to the control, whereas hydrogels containing 0% and 2% PVA induced an 80% and 45% inhibition of cell growth, respectively. There was no measurable difference in the in vitro cytotoxicity of free cisplatin and cisplatin@CB[7] containing hydrogels. Finally, the in vivo effectiveness of a 2%-PVA hydrogel implanted under the skin of nude mice bearing A2780/CP70 xenografts showed that low dose hydrogels containing cisplatin@CB[7] (30 μg equivalent of drug) was just as effective as an intraperitoneal high dose administration of free cisplatin (150 μg) at inhibiting tumour growth.

  16. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation. PMID:27570286

  17. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation.

  18. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application.

    PubMed

    Bai, Xue; Gu, Haixin; Chen, Wei; Shi, Hanchang; Yang, Bei; Huang, Xin; Zhang, Qi

    2014-07-01

    Poly(vinyl alcohol) (PVA) microspheres were prepared by inverse suspension crosslinked method, with glutaraldehyde as a crosslinking agent. PVA microspheres activated with aldehyde groups were employed for Trametes versicolor laccase immobilization. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the activated PVA microspheres and PVA microspheres with immobilized laccase (Lac/PVA microspheres), which show that laccase was successfully immobilized on the PVA microspheres. The optimum pH and temperature coupling conditions for the immobilized laccase were determined to be 3.3 and 30 °C, respectively. Residual activity was also investigated by soaking the immobilized laccase in organic solvents at different concentrations, proving it chemically stable. Immobilized laccase exhibited good storage stability at 4 °C. The enzyme biosensor showed good performance in 2,2-azinobis(3-ethylthiazoline-6-sulfonate) and bisphenol A, with concentration ranges of 2 to 8 mM and 0.05 to 0.25 mM, respectively. Therefore, PVA microspheres may have high potential as support for enzyme thermistor applications.

  19. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  20. Prenatal alcohol exposure reduces mandibular calcium and phosphorus concentrations in newborn rats.

    PubMed

    Carvalho, Isabel C S; Martinelli, Carolina da S M; Milhan, Noala V M; Marchini, Adriana M P da S; Dutra, Tamires P; de Souza, Daniela M; da Rocha, Rosilene F

    2016-01-01

    Previous studies suggest that prenatal alcohol exposure affects fetal bone development, including bone quality. This study evaluated the chemical composition of mandibles from newborn rats after maternal 20% alcohol consumption before and throughout gestation. Nine rats were initially distributed into three groups: an Alcohol group, Pair-fed group, and Control group. The groups were fed prespecified diets for 8 weeks before and the 3 weeks during pregnancy. At age 5 days, eight newborns from each group were euthanized (total, n = 24). Using energy dispersive spectrometry, we evaluated samples of mandibles from newborns to identify changes in bone mineralization, specifically Ca and P concentrations. Ca and P concentrations were lower in the Alcohol group than in the Control and Pair-fed groups (P = 0.003 and P = 0.001, respectively). In summary, alcohol exposure before and throughout gestation reduces mandibular Ca and P concentrations in newborn rats. (J Oral Sci 58, 439-444, 2016). PMID:27665985

  1. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kim, Si-Seup; Kee, Chang-Doo; Shen, Yun-De; Oh, Il-Kwon

    2014-07-01

    A novel electroactive biopolymer actuator was developed based on a cross-linked ionic networking membrane of TEMPO-oxidized bacterial cellulose nanofibers (TOCNs) and polyvinyl alcohol (PVA). Ionic liquids were added to develop an air-working artificial muscle and to enhance the performance of the PVA-TOCN actuator. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers were deposited on the top and bottom surfaces of the PVA-TOCN membrane via a simple dipping and drying method. The electroactive PVA-TOCN actuator under both step and harmonic electrical inputs shows much larger tip displacements and faster bending deformation than the pure TOCN actuator. The cross-linking reaction between PVA and TOCN was observed in the Fourier transform-near-infrared (FT-IR) spectrum of the PVA-TOCN networking membrane. Scanning electron microscopy (SEM), x-ray diffusion (XRD), thermogravimetric analysis (TGA) and tensile and ion conductivity testing results for the PVA-TOCN membrane were compared with those of pristine TOCN. Most important, the PVA-TOCN actuator shows much larger bending deformation under even extremely low input voltages, and this could be attributed to the cross-linking mechanism and the greater flexibility resulting from the synergistic effects between PVA and TOCN.

  2. Estimation of Alcohol Concentration of Red Wine Based on Cole-Cole Plot

    NASA Astrophysics Data System (ADS)

    Watanabe, Kota; Taka, Yoshinori; Fujiwara, Osamu

    To evaluate the quality of wine, we previously measured the complex relative permittivity of wine in the frequency range from 10 MHz to 6 GHz with a network analyzer, and suggested a possibility that the maturity and alcohol concentration of wine can simultaneously be estimated from the Cole-Cole plot. Although the absolute accuracy has not been examined yet, this method will enable one to estimate the alcohol concentration of alcoholic beverages without any distillation equipment simply. In this study, to investigate the estimation accuracy of the alcohol concentration of wine by its Cole-Cole plots, we measured the complex relative permittivity of pure water and diluted ethanol solution from 100 MHz to 40 GHz, and obtained the dependence of the Cole-Cole plot parameters on alcohol concentration and temperature. By using these results as calibration data, we estimated the alcohol concentration of red wine from the Cole-Cole plots, which was compared with the measured one based on a distillation method. As a result, we have confirmed that the estimated alcohol concentration of red wine agrees with the measured results in an absolute error by less than 1 %.

  3. Determination of mechanical and hydraulic properties of PVA hydrogels.

    PubMed

    Kazimierska-Drobny, Katarzyna; El Fray, Miroslawa; Kaczmarek, Mariusz

    2015-03-01

    In this paper the identification of mechanical and hydraulic parameters of poly(vinyl alcohol) (PVA) hydrogels is described. The identification method follows the solution of inverse problem using experimental data from the unconfined compression test and the poroelastic creep model. The sensitivity analysis of the model shows significant dependence of the creep curves on investigated parameters. The hydrogels containing 22% PVA and 25% PVA were tested giving: the drained Youngs modulus of 0.71 and 0.9MPa; the drained Poisson's ratio of 0.18 and 0.31; and the permeability of 3.64·10(-15) and 3.29·10(15)m(4)/Ns, respectively. The values of undrained Youngs modulus were determined by measuring short period deformation of samples in the unconfined tests. A discussion on obtained results is presented.

  4. The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials

    NASA Astrophysics Data System (ADS)

    Kamani, K. K.; Madhu, B. J.; Nethravathi, M.; Ashwini, S. T.

    2013-06-01

    In the recent years the greatest attention has been paid to determine the conductivity of different concentration solutions conducting polymers exhibit a wide range of novel electrochemical and chemical properties that has led to their use in a diverse array of applications including sensors PVA is fully degradable and dissolves quickly. PVA biodegradation is believed to be due to a random chain cleavage process. PVA molecular matrix and KC1 solutions were prepared with distilled water as solvent. The saturated solutions electric conductivity, pH values reveals the increase of ionic concentrations with increase of dopant weight fractions. Dielectric properties and UV visible studies of PVA and KC1 polymer complex experimental observations suggest the variations in the ionic nature electrolyte. Material. We are reporting the conducting properties of the PVA and KC1 polymer matrix and electrical nature of the PVA complex structure as electrolyte.

  5. Preparation and Characterization of Palm Leaf Incorporated Polyvinyl Alcohol Bio Composites

    NASA Astrophysics Data System (ADS)

    Patel, Arunendra Kumar; Bajpai, Rakesh; Keller, J. M.; Saha, Abhijit

    2011-12-01

    The Bio Composites of palm leaf (PL) incorporated polyvinyl alcohol (PVA) has been prepared using solution cast technique. Structural and microhardness properties of pure PVA and PL filled PVA Bio Composites has been determined by using FTIR and Vicker's indentation techniquque respectively. The FTIR analysis reveals the presence of PL moieties in PVA, which indicates the good compatibility between PL and PVA. The values of microhardness increases in all composition of PL incorporated PVA films as compared to the pure PVA. This increment in the microhardness is attributed to the excellent binding of PL into PVA.

  6. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles.

    PubMed

    He, Dian; Hu, Bo; Yao, Qiao-Feng; Wang, Kan; Yu, Shu-Hong

    2009-12-22

    A new and facile way to synthesize a free-standing and flexible surface-enhanced Raman scattering (SERS) substrate has been successfully developed, where high SERS-active Ag dimers or aligned aggregates are assembled within poly(vinyl alcohol) (PVA) nanofibers with chain-like arrays via electrospinning technique. The aggregation state of the obtained Ag nanoparticle dimers or larger, which are formed in a concentrated PVA solution, makes a significant contribution to the high sensitivity of SERS to 4-mercaptobenzoic acid (4-MBA) molecules with an enhancement factor (EF) of 10(9). The superiority of enhancement ability of this Ag/PVA nanofiber mat is also shown in the comparison to other substrates. Furthermore, the Ag/PVA nanofiber mat would keep a good reproducibility under a low concentration of 4-MBA molecule (10(-6) M) detection with the average RSD values of the major Raman peak less than 0.07. The temporal stability of the substrate has also been demonstrated. This disposable, easy handled, flexible free-standing substrate integrated the advantages including the superiority of high sensitivity, reproducibility, stability, large-scale, and low-cost production compared with other conventional SERS substrates, implying that it is a perfect choice for practical SERS detection application.

  7. 49 CFR 219.611 - Test result indicating prohibited alcohol concentration; procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concentration; procedures. 219.611 Section 219.611 Transportation Other Regulations Relating to Transportation... concentration; procedures. Procedures for administrative handling by the railroad in the event an employee's confirmation test indicates an alcohol concentration of .04 or greater are set forth in § 219.104....

  8. 49 CFR 219.611 - Test result indicating prohibited alcohol concentration; procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... concentration; procedures. 219.611 Section 219.611 Transportation Other Regulations Relating to Transportation... concentration; procedures. Procedures for administrative handling by the railroad in the event an employee's confirmation test indicates an alcohol concentration of .04 or greater are set forth in § 219.104....

  9. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  10. [Experimental study on different concentration alcohol humidifying oxygen supply improving hypoxia caused by pulmonary edema].

    PubMed

    Jiang, X W; Gao, M Z; Liang, J H

    1996-07-01

    In order to research the best alcoholic concentration in the humidifying bottle when pneumonedema oxygen inhalation, 32 rabbits, divided into 4 groups, are replicated into pneumonedema models using method of rapid transfusion, and given oxygen inhalation with 20%, 50%, 70%, and 90% alcohol as humidifying agent (shortly called alcoholic oxygen). The results are as follows: using 20% alcohol as humidifying agent, the increasing amplitude of blood PaO2 is 147.30% (P < 0.001), the injury to the pulmonary bronchial mucosa and the wall of pulmonary alveoli is slight; using 50% alcohol, the increasing amplitude of blood PaO2 is 39.46% (P < 0.001), the injury to the parts mentioned above exacerbates and bronchiole cavity mucosa has moderate bleeding; using 70% alcohol, the increasing amplitude of blood PaO2 is 21.97% (P < 0.05), pneumorrhagia occurs; using 90% alcohol, the increasing amplitude of blood PaO2 is 94.46% (P < 0.01), a great number of blood cells aggregate inside the pulmonary alveoli and the bronchiole. This study proves that choosing 20% alcohol as humidifying agent has the best result, and as well, the explanation of the mechanism of alcohol suppressing foam, meaning being able to decrease only the surface tension of the foam inside the pulmonary alveoli, is incomprehensive, and the nature of the material itself forming foam has decisive function.

  11. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  12. Ethyl glucuronide concentrations in hair: a controlled alcohol-dosing study in healthy volunteers.

    PubMed

    L Crunelle, Cleo; Cappelle, Delphine; Yegles, Michel; De Doncker, Mireille; Michielsen, Peter; Dom, Geert; van Nuijs, Alexander L N; Maudens, Kristof E; Covaci, Adrian; Neels, Hugo

    2016-03-01

    Ethyl glucuronide (EtG) is a minor phase II metabolite of alcohol that accumulates in hair. It has been established as a sensitive marker to assess the retrospective consumption of alcohol over recent months using a cut-off of ≥7 pg/mg hair to assess repeated alcohol consumption. The primary aim was to assess whether amounts of alcohol consumed correlated with EtG concentrations in hair. Additionally, we investigated whether the current applied cut-off value of 7 pg/mg hair was adequate to assess the regular consumption of low-to-moderate amounts of alcohol. A prospective controlled alcohol-dosing study in 30 healthy individuals matched on age and gender. Individuals were instructed to drink no alcohol (N = 10), 100 g alcohol per week (N = 10) or 150 g alcohol per week (N = 10) for 12 consecutive weeks, before and after which hair was collected. Throughout the study, compliance to daily alcohol consumption was assessed by analyzing urine EtG three times weekly. Participants in the non-drinking group had median EtG concentrations of 0.5 pg/mg hair (interquartile range (IQR) 1.7 pg/mg; range < 0.21-4.5 pg/mg). Participants consuming 100 and 150 g alcohol per week showed median EtG concentrations of 5.6 pg/mg hair (IQR 4.7 pg/mg; range 2.0-9.8 pg/mg) and 11.3 pg/mg hair (IQR 5.0 pg/mg; range 7.7-38.9 pg/mg), respectively. Hair EtG concentrations between the three study groups differed significantly from one another (p < 0.001). Hair EtG concentrations can be used to differentiate between repeated (low-to-moderate) amounts of alcohol consumed over a long time period. For the assessment of repeated alcohol use, we propose that the current cut-off of 7 pg/mg could be re-evaluated. PMID:26549114

  13. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  14. Measurement of low breath-alcohol concentrations: laboratory studies and field experience.

    PubMed

    Dubowski, K M; Essary, N A

    1999-10-01

    Recent federal rules and traffic law changes impose breath-alcohol thresholds of 0.02 and 0.04 g/210 L upon some classes of motor vehicle operators, such as juveniles and commercial vehicle operators. In federally regulated alcohol testing in the workplace, removal of covered workers from safety-sensitive duties, and other adverse actions, also occur at breath-alcohol concentrations (BrACs) of 0.02 and 0.04 g/210 L. We therefore studied performance of vapor-alcohol and breath-alcohol measurement at low alcohol concentrations in the laboratory and in the field, with current-generation evidential analyzers. We report here chiefly our field experience with evidential breath-alcohol testing of drinking drivers on paired breath samples using 62 Intoxilyzer 5000-D analyzers, for BrACs of 0-0.059 g/210 L. The data from 62 law enforcement breath-alcohol testing sites were collected and pooled, with BrACs recorded to three decimal places, and otherwise carried out under the standard Oklahoma evidential breath-alcohol testing protocol. For 2105 pooled simulator control tests at 0.06-0.13 g/210 L the mean +/- SD of the differences between target and result were -0.001 +/- 0.0035 g/210 L and 0.003 +/- 0.0023 g/210 L for signed and absolute differences, respectively (spans -0.016-0.010, 0.000-0.016). For 2078 paired duplicate breath-alcohol measurements with the Intoxilyzer 5000-D, the mean +/- SD difference (BrAC1-BrAC2) were 0.002 +/- 0.0026 (span 0-0.020 g/210 L). Variability of breath-alcohol measurements was related inversely to the alcohol concentration. Ninety-nine percent prediction limits for paired BrAC measurements correspond to a 0.020 g/210 L maximum absolute difference, meeting the NSC/CAOD recommendation that paired breath-alcohol analysis results within 0.02 g/210 L shall be deemed to be in acceptable agreement. We conclude that the field system for breath-alcohol analysis studied by us can and does perform reliably and accurately at low BrACs.

  15. Comparison of breath-alcohol screening test results with venous blood alcohol concentration in suspected drunken drivers.

    PubMed

    Kriikku, Pirkko; Wilhelm, Lars; Jenckel, Stefan; Rintatalo, Janne; Hurme, Jukka; Kramer, Jan; Jones, A Wayne; Ojanperä, Ilkka

    2014-06-01

    Hand-held electronic breath-alcohol analyzers are widely used by police authorities in their efforts to detect drunken drivers and to improve road-traffic safety. Over a three month period, the results of roadside breath-alcohol tests of drivers apprehended in Finland were compared with venous blood alcohol concentration (BAC). The mean (median) time between sampling blood and breath was 0.71h (0.58h) with a range from 0 to 6h. Some hand-held instruments gave results as the concentration of alcohol in breath and were converted into BAC assuming a blood-breath alcohol ratio (BBR) of 2260. The mean venous BAC (1.82g/kg) in traffic offenders was higher than the result predicted by the hand-held breath analyzers (1.72g/kg). In 1875 roadside tests, the relationship between venous BAC (x) and BrAC (y) was defined by the regression equation y=0.18+0.85x. The coefficients show both a constant bias (y-intercept 0.18g/kg) and a proportional bias (slope=0.85). The residual standard deviation (SD), an indicator of random variation, was ±0.40g/kg. After BAC results were corrected for the time elapsed between sampling blood and breath, the y-intercept decreased to 0.10g/kg and 0.004g/kg, respectively, when low (0.1g/kg/h) and high (0.25g/kg/h) rates of alcohol elimination were used. The proportional bias of 0.85 shows that the breath-alcohol test result reads lower than the actual BAC by 15% on average. This suggests that the BBR of 2260 used for calibration should be increased by about 15% to give closer agreement between BAC and BrAC. Because of the large random variation (SD±0.40g/kg), there is considerable uncertainty if and when results from the roadside screening test are used to estimate venous BAC. The roadside breath-alcohol screening instruments worked well for the purpose of selecting drivers above the statutory limit of 0.50g/kg.

  16. Microstructure characteristics of concrete incorporating metakaolin and PVA fibers and influence on the compressive strength

    NASA Astrophysics Data System (ADS)

    Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2015-07-01

    In this paper, microstructure of concrete is investigated using metakaolin (MK) as cement replacing material and Polyvinyl Alcohol (PVA) fibers. Total ten (10) mixes of concrete are examined by varying PVA fiber aspect ratio. It was found that MK refines the pore structure, improves interfacial transition zone (ITZ) due to its pozzolanic effects, reduces portlandite (Ca(OH)2) content and bridges the gap between matrix and aggregates due to finer particle size. Due to improvement in ITZ, the compressive strength was improved. There was no indication of Ca(OH)2 around the PVA fibers in the presence of MK and the interface between the fiber and matrix was observed very narrow.

  17. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  18. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  19. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  20. PVA/K2Ti6O13 synthetic composite for dielectric applications

    NASA Astrophysics Data System (ADS)

    Pandey, Mayank; Joshi, Girish M.; Khutia, Moumita; Rao, N. Madhusudhana; Kaleemulla, S.; Ramesh Kumar, C.; Cuberes, M. Teresa

    2016-05-01

    We demonstrated the preparation of polyvinyl alcohol (PVA) /Potassium titanate (K2Ti6O13) synthetic composite by solution blending. The loading of K2Ti6O13 well dispersed in PVA and improved electrical performance. The dielectric constant and loss as a function of temperature were recorded under frequency (200Hz-1 kHz). The real dielectric constant value obtained is (ɛ=1000) feasible for various electronic and non-conventional energy applications.

  1. A new fabrication route for PVA/graphene platelets composites with enhanced functionalities

    NASA Astrophysics Data System (ADS)

    Lavecchia, Teresa; Tamburri, Emanuela; Angjellari, Mariglen; Savi, Damiano; Terranova, Maria Letizia

    2016-05-01

    This work deals with the synthesis and characterization of composites made of poly(vinyl alcohol) (PVA) and oxidized graphene platelets obtained from an ad hoc treatment of graphite. The composite is produced by a modified solution mixing procedure in which the in situ crosslinking of PVA with maleic anhydride has been carried out in the presence of the carbon filler. A complete characterization of the material is presented carried out by SEM, DTGA, Raman spectroscopy and I-V characteristics analysis.

  2. Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO(3) nano-perovskites hybrid films.

    PubMed

    Marino, Salvatore; Joshi, Girish M; Lusuardi, Angelo; Cuberes, M Teresa

    2014-07-01

    Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) have been applied to the characterization of composite samples formed by SrTiO3 (STO) nanoparticles (NPs) and polyvinyl alcohol (PVA). The morphological features of the STO NPs were much better resolved using UFM than contact-mode AFM topography. For high STO concentrations the individual STO NPs formed nanoclusters, which gathered in microaggregates. The STO aggregates, covered by PVA, exhibited no AFM frictional contrast, but were clearly distinguished from the PVA matrix using UFM. Similar aggregation was observed for NPs in the composite samples and for NPs deposited on top of a flat silicon substrate from milliQ water solution in the absence of polymer. In the hybrid films, most STO nanoparticles typically presented a lower UFM contrast than the PVA matrix, even though stiffer sample regions such as STO should give rise to a higher UFM contrast. STO NPs with intermediate contrast were characterized by an UFM halo of lower contrast at the PVA/STO interface. The results may be explained by considering that ultrasound is effectively damped on the nanometer scale at PVA/STO interfaces. According to our data, the nanoscale ultrasonic response at the PVA/STO interface plays a fundamental role in the UFM image contrast.

  3. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.

    PubMed

    Hu, Huawen; Xin, John H; Hu, Hong; Chan, Allan; He, Liang

    2013-01-01

    In this study, a commercial chitosan cross-linked with glutaraldehyde (GA-chitosan) having the autofluorescent property was effectively blended with a poly (vinyl alcohol) (PVA) matrix, in the formation of a transparent and fluorescent blend film. The fluorescent efficiency of the film was enhanced with red-shifted emission band by increasing the concentrations of the GA-chitosan and decreasing the PVA crystallinity. It was found that the incorporation of silica nanoparticles could further decrease the PVA crystallinity, enhance the fluorescent efficiency, and largely redshift the emission band, as compared with the neat GA-chitosan-PVA blend film. This fluorescent property could be finely tuned by careful doping of the silica nanoparticles and change of the PVA crystallinity. These phenomena could be reasonably explained by high extent of isolation of the fluorophores, increase of the stiffness of the fluorescent conjugated planar structure, and further decrease of the PVA crystallinity. In addition, the introduction of the nano-silica could improve the water and heat resistances of the GA-chitosan-PVA based silica nanocomposites. PMID:23044137

  4. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    PubMed

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. PMID:27236420

  5. How Alcohol Chain-Length and Concentration Modulate Hydrogen Bond Formation in a Lipid Bilayer

    PubMed Central

    Dickey, Allison N.; Faller, Roland

    2007-01-01

    Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration. PMID:17218462

  6. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  7. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  8. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate.

  9. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  10. Determining concentrations of 2-bromoallyl alcohol and dibromopropene in ground water using quantitative methods

    USGS Publications Warehouse

    Panshin, Sandra Y.

    1997-01-01

    A method for determining levels of 2-bromoallyl alcohol and 2,3-dibromopropene from ground-water samples using liquid/liquid extraction followed by gas chromatography/mass spectrometry is described. Analytes were extracted from the water using three aliquots of dichloromethane. The aliquots were combined and reduced in volume by rotary evaporation followed by evaporation using a nitrogen stream. The extracts were analyzed by capillary-column gas chromatography/mass spectrometry in the full-scan mode. Estimated method detection limits were 30 nanograms per liter for 2-bromoallyl alcohol and 10 nanograms per liter for 2,3-dibromopropene. Recoveries were determined by spiking three matrices at two concentration levels (0.540 and 5.40 micrograms per liter for 2-bromoallyl alcohol; and 0.534 and 5.34micro-grams per liter for dibromopropene). For seven replicates of each matrix at the high concentration level, the mean percent recoveries ranged from 43.9 to 64.9 percent for 2-bromoallyl alcohol, and from 87.5 to 99.3 percent for dibromopropene. At the low concentration level, the mean percent recoveries ranged from 43.8 to 95.2 percent for 2-bromoallyl alcohol, and from 71.3 to 84.9 percent for dibromopropene.

  11. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  12. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension.

  13. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension. PMID:19466778

  14. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  15. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  16. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-12-01

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements. PMID:25329452

  17. Effects of Blood-Alcohol Concentration (BAC) Feedback on BAC Estimates Over Time

    ERIC Educational Resources Information Center

    Bullers, Susan; Ennis, Melissa

    2006-01-01

    This study examines the effects of self-tested blood alcohol concentration (BAC) feedback, from personal hand-held breathalyzers, on the accuracy of BAC estimation. Using an e-mail prompted web-based questionnaire, 19 participants were asked to report both BAC estimates and subsequently measured BAC levels over the course of 27 days. Results from…

  18. Drinking behaviours and blood alcohol concentration in four European drinking environments: a cross-sectional study

    PubMed Central

    2011-01-01

    Background Reducing harm in drinking environments is a growing priority for European alcohol policy yet few studies have explored nightlife drinking behaviours. This study examines alcohol consumption and blood alcohol concentration (BAC) in drinking environments in four European cities. Methods A short questionnaire was implemented among 838 drinkers aged 16-35 in drinking environments in four European cities, in the Netherlands, Slovenia, Spain and the UK. Questions included self-reported alcohol use before interview and expected consumption over the remainder of the night. Breathalyser tests were used to measured breath alcohol concentration (converted to BAC) at interview. Results Most participants in the Dutch (56.2%), Spanish (59.6%) and British (61.4%) samples had preloaded (cf Slovenia 34.8%). In those drinking < 3 h at interview, there were no differences in BAC by gender or nationality. In UK participants, BAC increased significantly in those who had been drinking longer, reaching 0.13% (median) in females and 0.17% in males drinking > 5 h. In other nationalities, BAC increases were less pronounced or absent. High BAC (> 0.08%) was associated with being male, aged > 19, British and having consumed spirits. In all cities most participants intended to drink enough alcohol to constitute binge drinking. Conclusions Different models of drinking behaviour are seen in different nightlife settings. Here, the UK sample was typified by continued increases in inebriation compared with steady, more moderate intoxication elsewhere. With the former being associated with higher health risks, European alcohol policy must work to deter this form of nightlife. PMID:22151744

  19. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  20. Accounting for Sex-Related Differences in the Estimation of Breath Alcohol Concentrations using Transdermal Alcohol Monitoring

    PubMed Central

    Hill-Kapturczak, Nathalie; Roache, John D.; Liang, Yuanyuan; Karns, Tara E.; Cates, Sharon E.; Dougherty, Donald M.

    2014-01-01

    Rationale Previously we reported methods to estimate peak breath alcohol concentrations (BrAC) from transdermal alcohol concentrations (TAC) under conditions where alcohol consumption was controlled to produce similar BrAC levels in both sexes. Objective This study characterized differences in the relationship between BrAC and TAC as a function of sex, and developed a model to predict peak BrAC that accounts for known sex differences in peak BrAC. Methods TAC and BrAC were monitored during the consumption of a varying number of beers on different days. Both men (n = 11) and women (n = 10) consumed 1, 2, 3, 4, and 5 beers at the same rate in a two-hour period. Sex and sex-related variables were considered for inclusion in a multilevel-model to develop an equation to estimate peak BrAC levels from TAC. Results While peak BrAC levels were significantly higher in women than men, sex differences were not significant in observed TAC levels. This lack of correspondence was evidenced by significant sex differences in the relationship between peak TAC and peak BrAC. The best model to estimate peak BrAC accounted for sex-related differences by including peak TAC, time-to-peak TAC, and sex. This model was further validated using previously collected data. Conclusions The relationship between peak TAC and actual peak BrAC differs between men and women, and these differences can be accounted for in a statistical model to better estimate peak BrAC. Further studies are required to extend these estimates of peak BrAC to the outpatient environment where naturalistic drinking occurs. PMID:24923985

  1. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA

    NASA Astrophysics Data System (ADS)

    Goumri, Meryem; Venturini, Jany Wéry; Bakour, Anass; Khenfouch, Mohammed; Baitoul, Mimouna

    2016-03-01

    The attractive optoelectronic properties of graphene are universally known. Also, their combination with polymer matrix added an exciting physical investigation. In the present work, nanocomposites based on poly (vinyl alcohol) (PVA) with low graphene oxide (GO) and partially reduced graphene oxide (PRGO) loadings (0.5, 1 and 2 wt%) were successfully prepared by a simple and environmentally friendly process using aqueous solution in both acidic (pH 4) and neutral media (pH 7)and optimized sonication time, in order to tailor the optical/electronic properties of the GO/PRGO nanosheets. FT-IR and Raman scattering spectroscopy reveal a strong interfacial interaction by hydrogen bonding between the two components. Steady-state photoluminescence results showed a pH-dependent fluorescence of these nanocomposites, and a significant luminescence over a wide range of the visible wavelengths was achieved at a concentration of 1 wt% GO and PRGO loading. A quenching of the PL started at 2 wt% suggesting the possibility of tuning the luminescence properties of GO/PRGO-based composites with PVA.

  2. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  3. Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system.

    PubMed

    Fathollahipour, Shahrzad; Abouei Mehrizi, Ali; Ghaee, Azadeh; Koosha, Mojtaba

    2015-12-01

    Nanofibrous core-sheath nanocomposite dual drug delivery system based on poly(vinyl alcohol) (PVA)/chitosan/lidocaine hydrochloride loaded with gelatin nanoparticles were successfully prepared by the electrospinning method. Gelatin nanoparticles were prepared by nanoprecipitation and were then loaded with erythromycin antibiotic agent with the average particle size of ∼175 nm. The morphology of gelatin nanoparticles observed by field emission scanning electron microscopy (FE-SEM) was shown to be optimal at the concentration of 1.25 wt % of gelatin in aqueous phase by addition of 20 µL of glutaraldehyde 5% as the crosslinking agent. The nanoparticles were also characterized by dynamic light scattering, zeta potential measurement, and Fourier transform infrared spectroscopy (FTIR). The best bead free morphology for the PVA/chitosan nanofibrous mats were obtained at the solution weight ratio of 96/4. The nanofibrous mats were analyzed by swelling studies, FTIR and antibacterial tests. In vitro dual release profile of the core-sheath nanofibers was also studied within 72 h and showed the release efficiency equal to 84.69 and 75.13% for lidocaine hydrochloride and erythromycin, respectively. According to release exponent n, the release of lidocaine hydrochloride from the sheath part of the matrix is quasi-Fickian diffusion mechanism, while the release of erythromycin is based on anomalous or non-Fickian mechanisms.

  4. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; Ghazanfari, L.

    2012-12-01

    Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1-1.2) pa s at constant shear rate of 20 s-1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s-1 to 150 s-1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.

  5. Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.

    2016-07-01

    In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391–406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.

  6. Micro structural studies of PVA doped with metal oxide nanocomposites films

    SciTech Connect

    Kumar, N. B. Rithin; Crasta, Vincent Viju, F.; Praveen, B. M.; Shreeprakash, B.

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  7. The Role of Immigrant Concentration Within and Beyond Residential Neighborhoods in Adolescent Alcohol Use.

    PubMed

    Jackson, Aubrey L; Browning, Christopher R; Krivo, Lauren J; Kwan, Mei-Po; Washington, Heather M

    2016-01-01

    Neighborhoods are salient contexts for youth that shape adolescent development partly through informal social controls on their behavior. This research examines how immigrant concentration within and beyond the residential neighborhood influences adolescent alcohol use. Residential neighborhood immigrant concentration may lead to a cohesive, enclave-like community that protects against adolescent alcohol use. But heterogeneity in the immigrant concentrations characterizing the places residents visit as they engage in routine activities outside of the neighborhood where they live may weaken the social control benefits of the social ties and shared cultural orientations present in enclave communities. This study investigates whether the protective influence of residential neighborhood immigrant concentration on adolescent alcohol consumption diminishes when youth live in communities where residents collectively are exposed to areas with more diverse immigrant concentrations. This study tests this contention by analyzing survey and geographic routine activity space data from the Los Angeles Family and Neighborhood Survey, and the 2000 census. The sample includes 793 adolescents (48.7% female, 16.5% foreign-born Latino, 42.5% US-born Latino, 11.0% black, 30% white/other) between the ages of 12 and 17 who live in 65 neighborhoods in Los Angeles County. Immigrant concentration among these neighborhoods derives primarily from Latin America. The results from multilevel models show that immigrant concentration protects against adolescent alcohol use only when there is low neighborhood-level diversity of exposures to immigrant concentration among the contexts residents visit outside of their residential neighborhood. This research highlights the importance of considering the effects of aggregate exposures to non-home contexts on adolescent wellbeing.

  8. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  9. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  10. [Value of blood alcohol concentration in the assessment of legal responsibility].

    PubMed

    Miltner, E; Schmidt, G; Six, A

    1990-07-01

    We analysed the files of an Amts- and Landgericht from the years 1982/83. Among about 4000 cases we found 148 condemnations, in which sections 20/21 StGB were discussed. Each offence included 207 variables. 63 cases were left to be evaluated: 10 cases with section 20, 43 cases with section 21, 10 cases with refused section 21. Most of the delinquents lived alone, drank much alcohol very often, were socially unadaptable, previously convicted, unemployed and little qualified. Due to lack of findings of facts and diverging testimonies of psychic findings we found no significant correlation between level of blood alcohol concentration, psychic findings and degree of decreased condemnability.

  11. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  12. Enhanced Mechanical Properties in PVA/SWNT Composite Fibers

    NASA Astrophysics Data System (ADS)

    Sampson, William; Dalton, Alan

    2005-03-01

    Composite fibers of polyvinyl alcohol (PVA) and HiPco Single Walled Carbon Nanotubes (SWNT) have been developed at The University of Texas at Dallas that show greatly enhanced mechanical properties, with typical strengths of 1.8GPa and toughness in excess of that of spider silk, making these the toughest known fibers to date. However, the exact interactions leading to the enhanced mechanical properties are not as yet fully understood. We have used a series of Raman and DSC experiments to discover the nature of the strength-enhancing interactions in these composite materials. The results lead to the conclusion that the bulk of the improvements are due to SWNT-nucleated PVA crystallinity, with the SWNTs playing less of a direct role than we originally thought.

  13. Optical Properties of Neodymium Oxide Nanoparticle-Doped Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Keikhaei, Mansoureh; Motevalizadeh, Leili; Attaran-Kakhki, Ebrahim

    2016-04-01

    The structural and optical characteristics of polyvinyl alcohol (PVA) doped with different concentration of Nd2O3 nanoparticles to use an active media for polymer laser were studied. The PVA polymer was considered as the host and Nd2O3 nanoparticles as the active element. The media as a thin film was prepared using spin coating technique. Structural properties of layers were investigated by X-ray diffraction (XRD) pattern and atomic force microscope (AFM) technique. The effect of the concentrations of the neodymium source on the optical properties of Nd2O3/PVA thin films was investigated through UV-Vis absorption spectroscopy and their optical band gap was evaluated. Also, the FTIR and fluorescence spectra of the samples were detected. The fluorescence spectra of films showed that the maximum wavelength occurred at 568nm with no significant shift.

  14. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  15. Alcohol and single-cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash

    SciTech Connect

    Mahmoud, M.M.; Kosikowski, F.V.

    1982-01-01

    Five Kluyveromyces yeasts were grown in concentrated whey permeates under aerobic and anaerobic conditions to produce single-cell protein and ethanol. K. fragilis NRRL Y2415 produced the highest yield of alcohol, 9.1%, and K. bulgaricus ATCC 1605 gave the highest yield of biomass, 13.5 mg/mL. High ash, apparently through Na and K effects, inhibited production of biomass and alcohol. A 0.77% ash was optimum. Lactose utilization was more rapid under aerobic than anaerobic conditions. (NH/sub 4/)/sub 2/SO/sub 4/ and urea supplementation were without effect on yeast growth or were slightly inhibitory. A 1% peptone inclusion gave the highest biomass yield with minimum alcohol production.

  16. Estimation of blood alcohol concentration by horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2010-06-01

    Numerous methods like distillation followed by iodometric titrations, gas chromatograph (GC)-flame ionization detector, gas chromatograph-mass spectrophotometer, GC-Headspace, Breath analyzer, and biosensors including alcohol dehydrogenase (enzymatic) have been used to determine blood alcohol concentration (BAC). In the present study, horizontal attenuated total reflectance-Fourier transform infrared spectroscopy had been used to determine BAC in whole blood. The asymmetric stretching frequency of C-C-O group of ethanol in water (1,045 cm(-1)) had been used to calculate BAC using Beer's Law. A seven-point calibration curve of ethanol was drawn in the concentration range 24-790 mg dL(-1). The curve showed good linearity over the concentration range used (r(2)=0.999, standard deviation=0.0023). The method is accurate, reproducible, rapid, simple, and nondestructive in nature. PMID:20541351

  17. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    PubMed

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. PMID:27474641

  18. Low blood alcohol concentrations and driving impairment. A review of experimental studies and international legislation.

    PubMed

    Ferrara, S D; Zancaner, S; Giorgetti, R

    1994-01-01

    While noting that there is no international scientific or legislative uniformity in blood alcohol concentration (BAC) levels admissible for driving motor vehicles, the authors analyse problems concerning the effects of low levels of ethyl alcohol on driving ability. A summary of the international literature on this subject reveals: the existence of contrasting assumptions, with scientific evidence clearly demonstrating altered psychomotor functions; the need to adopt sufficiently complex psychometric tests to reveal the effects of low BACs; the need to improve standardization of experimental studies on man-machine interaction; the need to investigate the following areas: tolerance to alcohol; low BACs with inexperienced, infrequent drinkers and chronic, heavy drinkers; hangover effects; alcohol-gender-age interactions, and specific effects on young drivers; alcohol-drug combinations. The analysis of legislation and enforcement policies also reveals the need for: re-evaluation of the international legal BAC threshold and standardization of procedures for ascertaining the degree of driving disability; further scientific research to compare and evaluate selected legislative initiatives currently in place in most states; to identify the best strategies and procedures to detect and arrest impaired drivers; to determine the optimum random testing rate to maximize deterrent effects in the workplace at minimal cost; to design innovative and comprehensive approaches to rehabilitation programs needed for subgroups of offenders and of workers; to study the effectiveness of new legislations and policies. PMID:8038109

  19. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.

    PubMed

    Yang, Ming; Lai, Samuel K; Yu, Tao; Wang, Ying-Ying; Happe, Christina; Zhong, Weixi; Zhang, Michael; Anonuevo, Abraham; Fridley, Colleen; Hung, Amy; Fu, Jie; Hanes, Justin

    2014-10-28

    Therapeutic nanoparticles must rapidly penetrate the mucus secretions lining the surfaces of the respiratory, gastrointestinal and cervicovaginal tracts to efficiently reach the underlying tissues. Whereas most polymeric nanoparticles are highly mucoadhesive, we previously discovered that a dense layer of low MW polyethylene glycol (PEG) conferred a sufficiently hydrophilic and uncharged surface to effectively minimize mucin-nanoparticle adhesive interactions, allowing well-coated particles to rapidly diffuse through human mucus. Here, we sought to investigate the influence of surface coating by polyvinyl alcohol (PVA), a relatively hydrophilic and uncharged polymer routinely used as a surfactant to formulate drug carriers, on the transport of nanoparticles in fresh human cervicovaginal mucus. We found that PVA-coated polystyrene (PS) particles were immobilized, with speeds at least 4000-fold lower in mucus than in water, regardless of the PVA molecular weight or incubation concentration tested. Nanoparticles composed of poly(lactide-co-glycolide) (PLGA) or diblock copolymers of PEG-PLGA were similarly immobilized when coated with PVA (slowed 29,000- and 2500-fold, respectively). PVA coatings could not be adequately removed upon washing, and the residual PVA prevented sufficient coating with Pluronic F127 capable of reducing particle mucoadhesion. In contrast to PVA-coated particles, the similar sized PEG-coated formulations were slowed only ~6- to 10-fold in mucus compared to in water. Our results suggest that incorporating PVA in the particle formulation process may lead to the formation of mucoadhesive particles for many nanoparticulate systems. Thus, alternative methods for particle formulation, based on novel surfactants or changes in the formulation process, should be identified and developed in order to produce mucus-penetrating particles for mucosal applications.

  20. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability.

  1. Polyvinyl alcohol {gamma}-ray grafted nylon 4 membrane for pervaporation and evapomeation

    SciTech Connect

    Lai, J.Y.; Chen, R.Y.; Lee, K.R

    1993-05-01

    Nylon 4, which possesses high mechanical strength and good affinity for water, can be considered as a liquid separation membrane. To improve the hydrophilicity of a Nylon 4 membrane for pervaporation and evapomeation processes, and to overcome the hydrolysis of polyvinyl alcohol (PVA), this study attempts to prepare a PVA-g-Nylon 4 membrane by {gamma}-ray irradiation grafting of vinyl acetate (VAc) onto Nylon 4 membrane, followed by hydrolysis treatment. The effects of down-stream pressure, irradiation dose, VAc monomer concentration, degree of grafting, feed composition, and size of alcohols on the separation of water-alcohol mixtures were studied. The surface properties of the prepared membrane were characterized by FTIR, ESCA, and a contact angle meter. A separation factor of 13.8 and a permeation rate of 0.352 kg/m{sup 2}-h can be obtained for a PVA-g-Nylon 4 membrane with a degree of grafting of 21.2% for a 90-wt% ethanol feed concentration. Compared to the pervaporation process, the evapomeation process has a significantly increased separation factor with a decreased permeation rate for the same PVA-g-Nylon 4 membrane. 24 refs., 9 figs., 4 tabs.

  2. Best-practices approach to determination of blood alcohol concentration (BAC) at specific time points: Combination of ante-mortem alcohol pharmacokinetic modeling and post-mortem alcohol generation and transport considerations.

    PubMed

    Cowan, Dallas M; Maskrey, Joshua R; Fung, Ernest S; Woods, Tyler A; Stabryla, Lisa M; Scott, Paul K; Finley, Brent L

    2016-07-01

    Alcohol concentrations in biological matrices offer information regarding an individual's intoxication level at a given time. In forensic cases, the alcohol concentration in the blood (BAC) at the time of death is sometimes used interchangeably with the BAC measured post-mortem, without consideration for alcohol concentration changes in the body after death. However, post-mortem factors must be taken into account for accurate forensic determination of BAC prior to death to avoid incorrect conclusions. The main objective of this work was to describe best practices for relating ante-mortem and post-mortem alcohol concentrations, using a combination of modeling, empirical data and other qualitative considerations. The Widmark modeling approach is a best practices method for superimposing multiple alcohol doses ingested at various times with alcohol elimination rate adjustments based on individual body factors. We combined the selected ante-mortem model with a suggestion for an approach used to roughly estimate changes in BAC post-mortem, and then analyzed the available data on post-mortem alcohol production in human bodies and potential markers for alcohol production through decomposition and putrefaction. Hypothetical cases provide best practice approaches as an example for determining alcohol concentration in biological matrices ante-mortem, as well as potential issues encountered with quantitative post-mortem approaches. This study provides information for standardizing BAC determination in forensic toxicology, while minimizing real world case uncertainties.

  3. [Plasma lipid concentration in smoking and nonsmoking male adults treated from alcohol addiction].

    PubMed

    Słodczyk, Ewa; Szołtysek-Bołdys, Izabela; Kozar-Konieczna, Aleksandra; Goniewicz, Jerzy; Ptak, Małgorzata; Olszowy, Zofia; Kośmider, Leon; Goniewicz, Maciej Łukasz; Sobczak, Andrzej

    2013-01-01

    Alcohol drinking and tobacco smoking affect plasma lipid levels and are both independent risk factors of cardiovascular diseases. Alcohol and nicotine addictions are more common among man than women in Poland. The aim of the study was to evaluate changes in plasma lipid levels after cessation of heavy drinking in smoking and nonsmoking Polish male adults. Subjects were recruited from individuals who participated in an inpatient addiction program following alcohol detoxification. We recruited 119 male adults: 48 non-smokers in age between 31 and 60 years (mean 48.7 +/- 8.8) and 71 smokers in age between 30 and 60 years (mean 46.1 +/- 7.8). Each subjects provided three blood samples: at baseline, after 3 weeks, and after 6 weeks of treatment. Plasma samples were analyzed for lipids by manual precipitation and automatic enzymatic methods. Changes in plasma lipid concentrations were analyzed using two-way analysis of variances with repeated measures with smoking status as between subjects factor and time post alcohol cessation as within-subject factors. All analyses were adjusted for age, and BMI. We found that plasma levels of HDL decreased in smoking and nonsmoking subjects by 30% and 24%, respectively (p < 0.001). In smoking subjects, plasma levels of triglycerides and LDL increased significantly after 6 weeks post cessation of heavy drinking cessation by 17% and 16%, respectively (p = 0.001). We also found that total cholesterol levels remained high in smoking subjects, but decreased significantly by 7% (p = 0.022) in nonsmoking subjects after 6 weeks post cessation of heavy drinking. We concluded that cigarette smoking increased LDL and inhibited the decline in plasma cholesterol among subjects addicted to alcohol following cessation of heavy drinking. Alcohol addiction therapy should be complemented with smoking cessation to prevent increase in cardiovascular risk.

  4. Blood (Breath) Alcohol Concentration Rates of College Football Fans on Game Day

    ERIC Educational Resources Information Center

    Glassman, Tavis; Braun, Robert; Reindl, Diana M.; Whewell, Aubrey

    2011-01-01

    The purpose of this study was to determine the Blood (breath) Alcohol Concentration (BrAC) rates of college football fans on game day. Researchers employed a time-series study design, collecting data at home football games at a large university in the Midwest. Participants included 536 individuals (64.4% male) ages 18-83 (M = 28.44, SD = 12.32).…

  5. [A method to estimate one's own blood alcohol concentration when the ministerial tables are not avaible].

    PubMed

    Dosi, G; Taggi, F; Macchia, T

    2009-01-01

    To reduce the prevalence of driving under the influence, tables allowing to estimate one's own blood alcohol concentration (BAC) by type and quantity of alcoholic drinks intake have been enacted by decree in Italy. Such tables, based on a modified Widmark's formula, are now put up in all public concerns serving alcoholic beverages. Aim of this initiative is to try to get subjects which consume alcoholics and then will drive a vehicle take in account their own estimated BAC and, on this base, put into effect, if needed, suitable actions (to avoid or to limit a further consumption, to wait more time before driving, to leave driving a sober subject). Nevertheless, many occasions exist in which these tables are not available. To allow anybody to rough estimate his own BAC in these cases too, a proper method has been developed. Briefly, the weight (in grams) of consumed alcohol has to be divided by half her own weight, if female drunk on an empty stomach (by the 90% of her own weight, if she drunk on a full stomach); by 70% of his own weight, if male drunk on an empty stomach (by 120% of his own weight, if he drunk in a full stomach). Consistency between BAC values estimated by the proposed method and those shown in the ministerial tables is very narrow: they differ in a few hundredth of grams/liter. Unlike the ministerial tables, the proposed method needs to compute the grams of ingested alcohol. This maybe involves some difficulties that, nevertheless, can be overcome easily. In our opinion, the skillfulness in computing the grams of assumed alcohol is of great significance since it provides the subject with a strong signal not only in road safety terms, but also in health terms. The ministerial tables and the proposed method should be part of teaching to issue the driving licence and to recovery of driving licence taken away points. In broad terms, the school should teach youngs to calculate alcohol quantities assumed by drink to acquaint them with the risks paving

  6. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  7. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival.

  8. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival. PMID:26413523

  9. Effects of PVA-coated nanoparticles on human T helper cell activity.

    PubMed

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. PMID:26774940

  10. A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer.

    PubMed

    Son, H S; Hong, Y S; Park, W M; Yu, M A; Lee, C H

    2009-03-01

    To estimate true Brix and alcoholic strength of must and wines without distillation, a novel approach using a refractometer and a hydrometer was developed. Initial Brix (I.B.), apparent refractometer Brix (A.R.), and apparent hydrometer Brix (A.H.) of must were measured by refractometer and hydrometer, respectively. Alcohol content (A) was determined with a hydrometer after distillation and true Brix (T.B.) was measured in distilled wines using a refractometer. Strong proportional correlations among A.R., A.H., T.B., and A in sugar solutions containing varying alcohol concentrations were observed in preliminary experiments. Similar proportional relationships among the parameters were also observed in must, which is a far more complex system than the sugar solution. To estimate T.B. and A of must during alcoholic fermentation, a total of 6 planar equations were empirically derived from the relationships among the experimental parameters. The empirical equations were then tested to estimate T.B. and A in 17 wine products, and resulted in good estimations of both quality factors. This novel approach was rapid, easy, and practical for use in routine analyses or for monitoring quality of must during fermentation and final wine products in a winery and/or laboratory.

  11. The drunk utilitarian: blood alcohol concentration predicts utilitarian responses in moral dilemmas.

    PubMed

    Duke, Aaron A; Bègue, Laurent

    2015-01-01

    The hypothetical moral dilemma known as the trolley problem has become a methodological cornerstone in the psychological study of moral reasoning and yet, there remains considerable debate as to the meaning of utilitarian responding in these scenarios. It is unclear whether utilitarian responding results primarily from increased deliberative reasoning capacity or from decreased aversion to harming others. In order to clarify this question, we conducted two field studies to examine the effects of alcohol intoxication on utilitarian responding. Alcohol holds promise in clarifying the above debate because it impairs both social cognition (i.e., empathy) and higher-order executive functioning. Hence, the direction of the association between alcohol and utilitarian vs. non-utilitarian responding should inform the relative importance of both deliberative and social processing systems in influencing utilitarian preference. In two field studies with a combined sample of 103 men and women recruited at two bars in Grenoble, France, participants were presented with a moral dilemma assessing their willingness to sacrifice one life to save five others. Participants' blood alcohol concentrations were found to positively correlate with utilitarian preferences (r=.31, p<.001) suggesting a stronger role for impaired social cognition than intact deliberative reasoning in predicting utilitarian responses in the trolley dilemma. Implications for Greene's dual-process model of moral reasoning are discussed.

  12. A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer.

    PubMed

    Son, H S; Hong, Y S; Park, W M; Yu, M A; Lee, C H

    2009-03-01

    To estimate true Brix and alcoholic strength of must and wines without distillation, a novel approach using a refractometer and a hydrometer was developed. Initial Brix (I.B.), apparent refractometer Brix (A.R.), and apparent hydrometer Brix (A.H.) of must were measured by refractometer and hydrometer, respectively. Alcohol content (A) was determined with a hydrometer after distillation and true Brix (T.B.) was measured in distilled wines using a refractometer. Strong proportional correlations among A.R., A.H., T.B., and A in sugar solutions containing varying alcohol concentrations were observed in preliminary experiments. Similar proportional relationships among the parameters were also observed in must, which is a far more complex system than the sugar solution. To estimate T.B. and A of must during alcoholic fermentation, a total of 6 planar equations were empirically derived from the relationships among the experimental parameters. The empirical equations were then tested to estimate T.B. and A in 17 wine products, and resulted in good estimations of both quality factors. This novel approach was rapid, easy, and practical for use in routine analyses or for monitoring quality of must during fermentation and final wine products in a winery and/or laboratory. PMID:19323723

  13. Livestock Air Treatment Using PVA-Coated Powdered Activated Carbon Biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ideal biofilter media provide surface for attachment of microorganisms responsible for removing air-born contaminants while facilitating passage of air. This study evaluated the efficacy of polyvinyl alcohol (PVA)-coated powdered activated carbon particles as a biofiltration medium. This material e...

  14. A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    PubMed Central

    Karadelis, John N.; Lin, Yougui

    2015-01-01

    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6]. PMID:26306313

  15. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. PMID:26257347

  16. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  17. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery.

  18. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery. PMID:25307127

  19. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings.

    PubMed

    Fan, Lihong; Yang, Huan; Yang, Jing; Peng, Min; Hu, Jin

    2016-08-01

    Chitosan (CS)/gelatin (Gel)/polyvinyl alcohol (PVA) hydrogels were prepared by the gamma irradiation method for usage in wound dressing applications. Chitosan and gelatin solution was mixed with poly(vinyl alcohol) (PVA) solution at different weight ratios of CS/Gel of 1:3, 1:2, 1:1, 2:1 and 3:1. The hydrogels irradiated at 40kGy. The structure of the hydrogels was characterized by using FT-IR and SEM. The CS/Gel/PVA hydrogels were characterized for physical properties and blood clotting activity. The tensile strength of CS/Gel/PVA hydrogel enhanced than on the basis of the Gel/PVA hydrogel. The highest tensile strength reached the 2.2Mpa. All hydrogels have shown a good coagulation effect. It takes only 5min for the BCI index to reached 0.032 only 5min when the weight ratio of CS/Gel was 1:1. It means that the hemostatic effect of hydrogels were optimal. And the hydrogrls also showed good pH-sensitivity, swelling ability and water evaporation rate. Therefore, this hydrogel showed a promising potential to be applied as wound dressing. PMID:27112893

  20. The Gelation of Poly(Vinyl Alcohol) with Na2B4O7 10H2O: Killing Slime

    NASA Astrophysics Data System (ADS)

    McLaughlin, K. W.; Wyffels, N. K.; Jentz, A. B.; Keenan, M. V.

    1997-01-01

    The gelation of poly(vinyl alcohol), PVA, with sodium tetraborate decahydrate (borax) to produce "slime" is a popular chemistry demonstration (1). Since the borate serves to cross-link the PVA, the degree of cross-linking can be varied by changing the borate concentration (2). One way of changing the concentration of borate available to hold the PVA chains together is to "disable" the borate by protonation with a strong acid (3, 4). The titration of slime with sulfuric acid (eq 1) allows students to examine the relationship between cross-linking, viscosity, and the onset of gelation. This modification to a popular chemistry demonstration produces an interesting chemistry laboratory experiment designed to introduce students to the relationship between molecular structure and the bulk properties of macromolecules.

  1. Effect of different breath alcohol concentrations on driving performance in horizontal curves.

    PubMed

    Zhang, Xingjian; Zhao, Xiaohua; Du, Hongji; Ma, Jianming; Rong, Jian

    2014-11-01

    Driving under the influence of alcohol on curved roadway segments has a higher risk than driving on straight segments. To explore the effect of different breath alcohol concentration (BrAC) levels on driving performance in roadway curves, a driving simulation experiment was designed to collect 25 participants' driving performance parameters (i.e., speed and lane position) under the influence of 4 BrAC levels (0.00%, 0.03%, 0.06% and 0.09%) on 6 types of roadway curves (3 radii×2 turning directions). Driving performance data for 22 participants were collected successfully. Then the average and standard deviation of the two parameters were analyzed, considering the entire curve and different sections of the curve, respectively. The results show that the speed throughout curves is higher when drinking and driving than during sober driving. The significant interaction between alcohol and radius exists in the middle and tangent segments after a curve exit, indicating that a small radius can reduce speed at high BrAC levels. The significant impairment of alcohol on the stability of speed occurs mainly in the curve section between the point of curve (PC) and point of tangent (PT), with no impairment noted in tangent sections. The stability of speed is significantly worsened at higher BrAC levels. Alcohol and radius have interactive effects on the standard deviation of speed in the entry segment of curves, indicating that the small radius amplifies the instability of speed at high BrAC levels. For lateral movement, drivers tend to travel on the right side of the lane when drinking and driving, mainly in the approach and middle segments of curves. Higher BrAC levels worsen the stability of lateral movement in every segment of the curve, regardless of its radius and turning direction. The results are expected to provide reference for detecting the drinking and driving state.

  2. Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hak; Song, Hyeong Yong; Hyun, Kyu

    2016-05-01

    In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I 3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity ( I 3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [ Q 0( ϕ)/ Q 0(0)]/[ G*( ϕ)/ G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.

  3. Time-resolving analysis of cryotropic gelation of water/poly(vinyl alcohol) solutions via small-angle neutron scattering.

    PubMed

    Auriemma, Finizia; De Rosa, Claudio; Ricciardi, Rosa; Lo Celso, Fabrizio; Triolo, Roberto; Pipich, Vitaly

    2008-01-24

    The structural transformations occurring in initially homogeneous aqueous solutions of poly(vinyl alcohol) (PVA) through application of freezing (-13 degrees C) and thawing (20 degrees C) cycles is investigated by time resolving small-angle neutron scattering (SANS). These measurements indicate that formation of gels of complex hierarchical structure arises from occurrence of different elementary processes, involving different length and time scales. The fastest process that could be detected by our measurements during the first cryotropic treatment consists of the crystallization of the solvent. However, solvent crystallization is incomplete, and an unfrozen liquid microphase more concentrated in PVA than the initial solution is also formed. Crystallization of PVA takes place inside the unfrozen liquid microphase and is slowed down because of formation of a microgel fraction. Water crystallization takes place in the early 10 min of the treatment of the solution at subzero temperatures, and although below 0 degrees C the PVA solutions used for preparation of cryogels should be below the spinodal curve, occurrence of liquid-liquid phase separation could not be detected in our experiments. Upon thawing, ice crystals melt, and transparent gels are obtained that become opaque in approximately 200 min, due to a slow and progressive increase of the size of microheterogeneities (dilute and dense regions) imprinted during the fast freezing by the crystallization of water. During the permanence of these gels at room temperature (for hours), the presence of a high content of water (higher than 85% by mass) prevents further crystallization of PVA. Crystallization of PVA, in turn, is resumed by freezing the gels at subzero temperatures, after water crystallization and consequent formation of an unfrozen microphase. The kinetic parameters of PVA crystallization during the permanence of these gels at subzero temperatures are the same shown by PVA during the first freezing step

  4. Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction.

    PubMed

    da Silva, Rogério Cesar; Zuin, Vânia Gomes; Yariwake, Janete Harumi; Eberlin, Marcos Nogueira; Augusto, Fabio

    2007-10-01

    An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption. PMID:17902108

  5. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    PubMed Central

    Sheha, Eslam M.; Nasr, Mona M.; El-Mansy, Mabrouk K.

    2014-01-01

    A solid polymer electrolyte system based on poly(vinyl alcohol) (PVA) and poly(3,4-Etylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) complexed with magnesium bromide (MgBr2) salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2) at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties. PMID:26199746

  6. The influence of γ-rays irradiation on the structure and crystallinity of heteropoly acid doped PVA

    NASA Astrophysics Data System (ADS)

    Mahmoud, Waleed E.; Al-Ghamdi, A. A.; Kadi, Mohammad W.

    2012-06-01

    This contribution represents the manufacturing of a hybrid organic-inorganic proton conducting compound, which involves the introduction of heteropoly acid (HPA) of different concentrations into poly-vinyl alcohol (PVA). These compounds were irradiated by γ-rays at different doses of 10, 20, 30, and 40 kGy. The unirradiated and irradiated compounds were characterized by XRD and DSC. The XRD results showed that the crystallinity and d-spacing were strongly influenced by the amount of HPA and irradiation doses. The DSC results showed that the melting point was decreased as a result of HPA concentration and irradiation doses. The degree of crystallinity calculated from XRD is in good agreement with that calculated from DSC. The activation energy of the Unirradiated and irradiated compounds was calculated using the Flynn-Wall-Ozawa model.

  7. Interactions between mecamylamine and alcohol in Long-Evans rats: flash-evoked potentials, body temperature, behavior, and blood alcohol concentration.

    PubMed

    Hetzler, Bruce E; Bauer, Alison M

    2013-06-01

    experimentally naïve adult male Holtzman albino and Long-Evans hooded rats were given (ip) either alcohol or mecamylamine plus alcohol. Tail vein samples were taken 30 min later. For both rat strains, blood alcohol concentration in the mecamylamine pretreatment group was significantly less at this time interval by about 50-60 mg/dL, suggesting a mechanism whereby mecamylamine can mitigate some of the acute effects of alcohol (e.g., on VC components N39 and P46).

  8. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 1: influence of polymer concentration on physical and in vitro characteristics.

    PubMed

    Salama, Rania; Hoe, Susan; Chan, Hak-Kim; Traini, Daniela; Young, Paul M

    2008-06-01

    A series of co-spray dried microparticles containing di-sodium cromoglycate (DSCG) and polyvinyl alcohol (PVA - 0%, 30%, 50%, 70% and 90% w/w, respectively), were prepared as potential controlled release (CR) viscous/gelling vehicles for drug delivery to the respiratory tract. The microparticles were characterised in terms of particle size, crystal structure, density, surface morphology, moisture sorption, surface energy and in vitro aerosolisation efficiency. The co-spray dried particles were amorphous in nature and had spherical geometry. High-resolution atomic force microscopy analysis of the surfaces of the DSCG/PVA suggested no significant differences in roughness between microparticles containing 30-90% w/w PVA (ANOVA, p<0.05), while no specific trend in either size or density was observed with respect to PVA concentration. In comparison, a linear decrease in the relative moisture sorption (R2=0.997) and concurrent increase in total surface free energy (R2=0.870) were observed as PVA concentration was increased. Furthermore a linear increase in the aerosolisation efficiency, measured by inertial impaction, was observed as PVA concentration was increased (R2=0.993). In addition, the increase in aerosolisation efficiency showed good correlation with equilibrium moisture content (R2=0.974) and surface energy measurement (R2=0.905). These relationships can be attributed to the complex interplay of particle forces at the contiguous interfaces in this particulate system.

  9. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  10. Triglyceride concentration and waist circumference influence alcohol-related plasminogen activator inhibitor-1 activity increase in black South Africans.

    PubMed

    Pieters, Marlien; de Lange, Zelda; Hoekstra, Tiny; Ellis, Suria M; Kruger, Annamarie

    2010-12-01

    We investigated the association between alcohol consumption and plasminogen activator inhibitor-1 activity (PAI-1act) and fibrinogen concentration in a black South African population presenting with lower PAI-1act and higher fibrinogen than what is typically observed in white populations. We, furthermore, wanted to investigate the effect of urbanization, sex, central obesity, increased triglycerides, 4G/5G polymorphism (PAI-1 only) and BMI on the association of alcohol with PAI-1act and fibrinogen. Data from 2010 apparently healthy, randomly collected black South African volunteers from the Prospective Urban and Rural Epidemiological (PURE) study were cross-sectionally analyzed. Alcohol consumption was recorded using quantitative food frequency questionnaires and fasting blood samples were collected for biochemical analysis including PAI-1act and fibrinogen. Heavy alcohol consumption is associated with significantly increased PAI-1act, in the total population as well as in the women separately, and tended to be so in men. This alcohol-related PAI-1act increase was observed in volunteers with increased triglycerides and central obesity but not in volunteers with normal levels and waist circumference. Urbanization, the 4G/5G polymorphism and BMI did not affect the association of alcohol with PAI-1act. Moderate alcohol consumption is associated with decreased fibrinogen concentration. Sex and level of urbanization did not affect the association of alcohol with fibrinogen. Fibrinogen decreased in normal and overweight volunteers but not in obese and centrally obese volunteers following moderate alcohol consumption. Triglyceride levels and waist circumference influence alcohol-related PAI-1act increase potentially through modulating adipocyte and triglyceride-induced PAI-1 production. Obesity prevented alcohol-related fibrinogen decrease possibly by counteracting the anti-inflammatory effect of moderate alcohol consumption.

  11. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Saleem, Salwan A.

    2016-11-01

    Polymer nanocomposite films based on poly(vinyl alcohol) (PVA) containing copper sulfide nanoparticles (CuS) were prepared using in situ chemical reduction and casting techniques. The synthesized nanocomposites were analyzed using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope, and ultraviolet-visible spectroscopy. The XRD pattern reveals that the CuS nanoparticles incorporated in the PVA showed a crystalline nature. The observed FTIR band shifts indicate the intermolecular interaction between the CuS nanoparticles and the PVA matrix. The absorbance of nanocomposite samples increased with increasing CuS concentration. The optical band gap energy was estimated using Tauc's formula and it decreased with increasing dopant concentration. The conductivity and dielectric behavior of the samples were studied over the frequency range of 300 Hz to 1 MHz in the temperature range of 30-110°C. The ac conductivity was found to increase with the increase of dopant concentration as well as frequency. Moreover, the variation of frequency exponent ( s) indicated that the conduction mechanism was the correlated barrier hopping model. The experimental results reveal that the optical and electrical performance of PVA can be enhanced dramatically by the addition of a small amount of CuS nanoparticles. This improved properties of the PVA/CuS nanocomposite suggest uses in optoelectronic devices.

  12. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Saleem, Salwan A.

    2016-07-01

    Polymer nanocomposite films based on poly(vinyl alcohol) (PVA) containing copper sulfide nanoparticles (CuS) were prepared using in situ chemical reduction and casting techniques. The synthesized nanocomposites were analyzed using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope, and ultraviolet-visible spectroscopy. The XRD pattern reveals that the CuS nanoparticles incorporated in the PVA showed a crystalline nature. The observed FTIR band shifts indicate the intermolecular interaction between the CuS nanoparticles and the PVA matrix. The absorbance of nanocomposite samples increased with increasing CuS concentration. The optical band gap energy was estimated using Tauc's formula and it decreased with increasing dopant concentration. The conductivity and dielectric behavior of the samples were studied over the frequency range of 300 Hz to 1 MHz in the temperature range of 30-110°C. The ac conductivity was found to increase with the increase of dopant concentration as well as frequency. Moreover, the variation of frequency exponent (s) indicated that the conduction mechanism was the correlated barrier hopping model. The experimental results reveal that the optical and electrical performance of PVA can be enhanced dramatically by the addition of a small amount of CuS nanoparticles. This improved properties of the PVA/CuS nanocomposite suggest uses in optoelectronic devices.

  13. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  14. Spectroscopic investigation of PVA-TIO2 membranes gamma irradiated

    NASA Astrophysics Data System (ADS)

    Todica, Mihai; Udrescu, Luciana; Damian, Grigore; Astilean, Simion

    2013-07-01

    The modifications of the PVA-TiO2 membranes exposed to gamma radiations were investigated by ESR and XRD methods. The ESR spectra show the appearance of a strong signal associated with the breaking of the polymeric chain and the appearance of the unpaired electrons. The mechanism is influenced by the concentration of TiO2. The modification of local order of the polymeric chains after irradiation is confirmed by XRD method.

  15. A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption.

    PubMed

    Higley, J D; Suomi, S J; Linnoila, M

    1996-06-01

    Developmental, biochemical, and behavioral concomitants of excessive alcohol consumption were investigated using a nonhuman primate model. The variables of interest were: (1) interindividual stability of cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) from infancy to adulthood, (2) effect of parental deprivation early in life on adult CSF 5-HIAA concentrations; (3) correlations between CSF 5-HIAA and 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations and alcohol consumption; and (4) correlation between the frequency of competent social behaviors and alcohol consumption. Twenty-nine rhesus macaques were reared for their first 6 months either with their mothers or without adults in peer-only conditions. At 6 and 50 months of age, each subject underwent a series of four, 4-day social separations. Cisternal CSF was sampled before and during the first and last separations; concomitantly, observational data were collected on social dominance behavior in the home-cage. When they reached 50 months of age, the monkeys were provided free access to a palatable alcohol solution daily for 1-hr periods before, during, and after the social separations. Before and after the 50-month separations, data were collected on all types of social behavior in the home-cage. Results showed that peer-reared subjects consumed more alcohol than mother-reared subjects during baseline conditions. Mother-reared subjects, however, increased their rates of consumption to equal peer-reared subjects' rates of consumption during the conditions of a social separation stressor. Peer-reared subjects also exhibited lower CSF 5-HIAA concentrations in infancy and adulthood than their mother-reared counterparts. With rearing condition held constant, interindividual differences in CSF 5-HIAA, MHPG, and homovanillic acid were stable from infancy to adulthood, and high rates of alcohol were consumed by the young adult monkeys with low CSF 5-HIAA and MHPG concentrations, particularly when the CSF

  16. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S Hajir; Joghataei, M T

    2013-12-01

    Gum tragacanth (GT) is one of the most widely used natural gums which has found applications in many areas because of its attractive features such as biodegradability, nontoxic nature, natural availability, higher resistance to microbial attacks and long shelf-life properties. GT and poly(vinyl alcohol) (PVA) were dissolved in deionized water in different ratios i.e., 0/100, 30/70, 60/40, 50/50, 40/60, 70/30, 0/100 mass ratio of GT/PVA. Nanofibers were produced from these solutions using electrospinning technique. The effect of different electrospinning parameters such as extrusion rate of polymer solutions, solution concentration, electrode spacing distance and applied voltage on the morphology of nanofibers was examined. The antibacterial activity of nanofibers and GT solution against Staphylococcus aureus and Pseudomonas aeruginosa was examined and these nanofibers showed good antibacterial property against Gram-negative bacteria. FTIR data showed that these two polymers may be having hydrogen bonding interactions. DSC data revealed that the exothermic peak at about 194°C for PVA shifted to a lower temperature in GT/PVA blend. Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. MTT assay was carried out on the GT/PVA nanofiber to investigate the proliferation rate of fibroblast cells on the scaffolds.

  17. Analysis of isothiazolinone preservatives in polyvinyl alcohol cooling towels used in Japan.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2014-09-19

    Recently, cases of contact dermatitis that were related to the use of polyvinyl alcohol (PVA) cooling towels containing isothiazolinone preservatives were reported in Japan. The aim of this investigation was to analyze the concentrations of five different isothiazolinone compounds present in PVA towels and to assess the effectiveness of washing in removing the preservatives from new towels prior to being used for the first time. Twenty-seven PVA towels were used in this study. Two groups (i.e., laboratory-simulation and volunteer) of washing experiments were conducted to evaluate the effect of washing procedures. Qualitative and quantitative analyses were performed by LC/MS/MS, which detected 2-methyl-4-isothiazolin-3-one (MI) and 5-chloro-2-methyl-4-isothaizolin-3-one (CMI) in 23 samples (MI: 0.29-154 μg g-wet(-1), CMI: 2.2-467 μg g-wet(-1)), 2-n-octyl-4-isothiazolin-3-one (OIT) in one sample (478 μg g-wet(-1)). The compounds 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (2Cl-OIT) and 1,2-benzisothiazolin-3-one (BIT) were not detected in all samples. We confirmed the presence of residual MI, CMI, and OIT in the washed towels, and the residual-to-original content ratio of OIT was higher than that of MI and CMI in PVA towels, due to the higher hydrophobicity of OIT than MI and CMI. A concern has been raised about the occurrence of contact dermatitis being caused by the use of PVA towels. It is suggested that a detailed description of isothiazolinone preservatives in PVA towels and an effective washing procedure for the removal of these preservatives should be provided by the manufacturer. Further, alternative non-sensitizing preservatives might be considered for the manufacture of PVA cooling towels in the future.

  18. Whole-Pattern Fitting and Positron Annihilation Studies of Magnetic PVA/α-Fe2O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Ningaraju, S.; Ravikumar, H. B.; Somashekar, R.; Nagabhushana, B. M.

    2016-06-01

    A low-temperature solution combustion method was used to synthesize α-Fe2O3 nanoparticles. Magnetic polyvinyl alcohol (PVA)/α-Fe2O3/NaCl nanocomposites were prepared by solvent cast method. The Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) results are in confirmation with X-ray diffraction (XRD) results indicating the formation of nanocomposites. The microcrystalline parameters, crystallite size ( ), lattice strain ( g in %), stacking faults ( α d ), and twin faults ( β) of prepared polymer nanocomposites were evaluated by whole-pattern fitting technique. The refinement was carried out using the computed microstructural parameters in which the twin faults and stacking faults did not vary much and statistical deviation was less than 5 %. Positron annihilation lifetime spectroscopy (PALS) was used for microstructural characterization. PALS results show that the ortho-positronium (o-Ps) lifetime (τ3) increases gradually as a function of nanoparticle concentration and about 219 ps increase observed from1.50 to1.71 ns at 3 wt%. This indicates the increase of free volume hole size ( V f ) from 54.47 to 72.18 Å3. The o-Ps intensities ( I 3) decrease indicating the inhibition of o-Ps formation upon incorporation of nanoparticles into PVA. The increase in I 2 values suggests the increased annihilation at the interface region. Positron lifetime parameters, viz., o-Ps lifetime, and its intensities indicate the effect of quenching and inhibition upon incorporation of metal oxide nanoparticles and inorganic salt into PVA.

  19. Effect of alcohol on the properties of micellar systems. Part 1. Critical micellization concentration, micelle molecular weight and ionization degree

    SciTech Connect

    Zana, R.; Yiv, S.; Strazielle, C.; Lianos, P.

    1981-03-01

    Additions of alcohols of medium chain length (butanol to hexanol) to micellar solutions result in a decrease of critical micelle concentration and micelle molecular weight, and an increase of the micelle ionization degree. Moreover, the micelle molecular weight (or surfactant aggregation number) at a given alcohol concentration increases with the surfactant concentration and may reach values larger than in the absence of alcohol. Striking differences have been found in the changes of molecular weight of TTAB micelles in H/sub 2/O-pentanol mixtures in the presence of 0.1 M KBr and in the absence of salt. These various results have been explained by considering the effect of the micelle solubilized alcohol on the micelle surface charge density and on the dielectric constant of the palisade layer. 48 references.

  20. [Diuretics and their potential effect on breath-alcohol concentration--a case report].

    PubMed

    Schmitt, Georg; Skopp, Gisela

    2015-01-01

    Many objections were raised to breath-alcohol analysis upon its introduction in the field of traffic law enforcement in Germany, but in the meantime this issue has become less relevant in forensic routine work. In the present case, the defending lawyer claimed that the ethanol concentration in the blood and hence in the breath of his client, which was 0.35 mg/l according to the Dräger Alcotest 7110® Evidential and thus above the legal limit of 0.25 mg/l, had been changed by diuretics taken 4 hours before the breath alcohol test, viz. 10 mg of torasemide, a loop diuretic, and 50 mg of spironolactone, a competitive aldosterone antagonist. According to the literature, the maximum urinary output in healthy subjects within the first 4 hours after 10 mg torasemide was 1450 ml. In patients suffering from heart failure, the urinary volume was reduced by a factor of 2.5-3; after chronic intake of torasemide, water loss did not differ from placebo. Spironolactone, which acts on the distal tubule, has little effect on urinary output. In a publication, the loss of water in excess within 24 hours was 90 ml. Co-administration of 100 mg spironolactone and 20 mg furosemide, which roughly compares to 10 mg torasemide, resulted in a mean urinary volume of 1566 ml within the first 4 hours. In terms of the reported case and provided that no compensatory fluid had been taken, a purely theoretical maximum shift of 0.007 mg/ may occur in the breath-alcohol concentration due to the smaller distribution volume even considering maximum urinary excretion values. On the other hand, already mild levels of dehydration may be associated with negative symptoms affecting driving ability. PMID:26427279

  1. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration.

  2. Interface porcelain tile/PVA modified mortar: a novel nanostructure approach.

    PubMed

    Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander

    2009-02-01

    In ceramic tile systems, the overall result of adherence between porcelain tiles and polymer modified mortars could be explained based on the nano-order structure that is developed at the interface. Based on pull-off tests, Scanning Electron Microscopy images, and Small Angle X-ray Scattering experiments a nanostructured approach for interface tile/PVA modified mortar was built. The increase of adhesion between tile and mortar due to poly(vinyl alcohol), PVA, addition can be explained by the formation of a hybrid ceramic-polymer-ceramic interface by hydrogen bonds between PVA hydroxyl groups and silanol from tile surface and water from nanostructured C-S-H gel interlayer.

  3. Crystal growth of ZnO bulk by CVT method using PVA

    NASA Astrophysics Data System (ADS)

    Udono, H.; Sumi, Y.; Yamada, S.; Kikuma, I.

    2008-04-01

    Seeded crystal growth of Zinc oxide (ZnO) by the closed ampoule chemical vapor transport (CVT) is carried out using polyvinyl alcohol (PVA) as a transport agent. Under the conditions of TS=1100 °C, Δ T=10 K and the amount of PVA=0.13-0.91 mg/cm 3, single-crystalline ZnO was grown continuously on the ZnO seed-crystal, of which the surface was (0 0 0 1) Zn-face. The grown crystals had well-marked growth facets belonged to {1 0 1¯0} and {1 0 1¯ 1} faces. The color of the crystals was changed from pale yellow to dark orange-red depending on the amount of PVA. Typical electron density and the Hall mobility of the crystals were 1×10 17 cm -3 and 2×10 2 cm 2/V s at 300 K, respectively.

  4. Effects of concurrent access to multiple ethanol concentrations and repeated deprivations on alcohol intake of high-alcohol-drinking (HAD) rats.

    PubMed

    Rodd, Zachary A; Bell, Richard L; Kuc, Kelly A; Murphy, James M; Lumeng, Lawrence; McBride, William J

    2009-04-01

    High-alcohol-drinking rats, given access to 10% ethanol, expressed an alcohol deprivation effect (ADE) only after multiple deprivations. In alcohol-preferring (P) rats, concurrent access to multiple ethanol concentrations combined with repeated cycles of EtOH access and deprivation produced excessive ethanol drinking. The current study was undertaken to examine the effects of repeated alcohol deprivations with concurrent access to multiple concentrations of ethanol on ethanol intake of HAD replicate lines of rats. HAD-1 and HAD-2 rats received access to 10, 20 and 30% (v/v) ethanol for 6 weeks. Rats from each replicate line were assigned to: (1) a non-deprived group; (2) a group initially deprived of ethanol for 2 weeks; or (3) a group initially deprived for 8 weeks. Following the restoration of the ethanol solutions, cycle of 2 weeks of ethanol exposure and 2 weeks of alcohol deprivation was repeated three times for a total of four deprivations. Following the initial ethanol deprivation period, deprived groups significantly increased ethanol intakes during the initial 24-hour re-exposure period. Multiple deprivations increased ethanol intakes, shifted preference to higher ethanol concentrations and prolonged the duration of the elevated ethanol intakes for up to 5 days. In addition, repeated deprivations increased ethanol intake in the first 2-hour re-exposure period as high as 5-7 g/kg (which are equivalent to amounts consumed in 24 hours by HAD rats), and produced blood ethanol levels in excess of 150 mg%. The results indicate that HAD rats exhibit 'loss-of-control' of alcohol drinking with repeated deprivations when multiple ethanol concentrations are available.

  5. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  6. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  7. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    PubMed

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads.

  8. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites.

    PubMed

    Li, Yunxi; Wang, Chunhui; Li, Hailong; Wang, Xiaoyi; Han, Junhe; Huang, Mingju

    2015-11-20

    Al2O3 nanoparticles modified with different chemical reagents, prepared by using three chemical dispersants [high definition (HD), sodium dodecyl benzene sulfonate, and cetyl trimethyl ammonium chloride], were doped into photopolymer films in a polyvinyl alcohol/acrylamide (PVA/AA) system, respectively. A 647 nm Ar-Kr laser was used to expose and study the holographic properties of the samples. The research shows that doping Al2O3 nanoparticles into PVA/AA photopolymer film leads to different levels of improvement of the holographic characteristics. The diffraction efficiency of the sample can be raised to 93.8%, the maximum refractive index modulation increased to 2.28×10(-3), the shrinkage can be depressed to 0.8%, and the Bragg mismatch is 0.04°, while the concentration of 10 nm Al2O3 nanoparticles modified by HD dispersant is 1.02×10(-3)  mol·L(-1). PMID:26836540

  9. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  10. Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B

    NASA Astrophysics Data System (ADS)

    Yang, Haigang; Zhang, Jianling; Song, Yuanqing; Xu, Shoubin; Jiang, Long; Dan, Yi

    2015-01-01

    In this article, a novel visible light (VL) active photo-catalyst, calcinated-poly (vinyl alcohol) (C-PVA)/TiO2 composites, was prepared by calcinating the films on glass substrates obtained from TiO2 sol and initially thermally treated PVA solution. The results showed that the C-PVA with conjugated C=C bonds was doped onto the surface of TiO2 and expanded the photo-response from ultraviolet spectrum of the TiO2 to VL spectrum of the composites; meanwhile, the photo-luminescence of C-PVA was quenched by TiO2, indicating charge transfer between C-PVA and TiO2. The C-PVA/TiO2 composites showed improved adsorption and photo-catalytic performances toward rhodamine B (RhB) compared to TiO2. When the mass feed ratio (P/T) of polymer (P) to TiO2 (T) increased from 1:10 to 1:2, the equilibrium adsorption ratio of C-PVA/TiO2 composites toward RhB continuously increased from 8.2 to 21.6%; while the VL photo-degradation ratio of RhB increased at first, achieving maximum value (92.2%) at P/T = 1:6, and then decreased consecutively. SEM images showed that there were lots of aggregates of TiO2 and C-PVA on the surface of the composites. Moreover, the morphologies of those aggregates were related to the value of P/T, and the dispersion of TiO2 in the C-PVA matrix was best while P/T = 1:6. The photo-catalytic activity of C-PVA/TiO2 composites was closely correlated to aggregate states of C-PVA and TiO2, while the adsorption performance was contributed to the exposed C-PVA on the surface of C-PVA/TiO2 composites.

  11. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    PubMed

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging.

  12. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  13. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  14. Effects of O2 plasma treatment of PDMS on the deposition of electrospun PVA nanofibers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    A new polymeric nanofiber-alignment technique with the selective deposition of the nanofibers using oxygen (O2) plasma treatment on a base material for the electrospinning was introduced. Generally, without any pretreatments, electrospun fibers are deposited randomly on the collector. In this work, we focused on the O2 plasma treatment of the surface of the base material to modify the surface morphology and to add polar groups to the surface. O2 plasma-treated and untreated surface of poly (dimethylsiloxane) (PDMS) was prepared by masking a part of PDMS film by another PDMS film. The polyvinyl alcohol (PVA) fibers were then deposited onto the PDMS film. The surface structure of the PDMS film with PVA nanofibers was analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. Only a few PVA nanofibers were deposited randomly on the untreated area of the PDMS film, while a number of PVA nanofibers were selectively deposited onto the O2 plasma-treated area. Intriguingly, PVA nanofibers were neatly aligned along the border of the untreated and the treated areas. The contact angle of the plasma-treated surface of PDMS decreased from 105 to 22 degree and the atomic ratio of O/Si was 1.7 times higher than that of the untreated PDMS.

  15. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  16. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  17. SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2016-02-01

    The polyvinyl alcohol-silver (PVA/Ag) nanocomposites were prepared by in-situ chemical reduction method. The appearance of surface plasmon resonance (SPR) in the absorption spectrum of PVA/Ag nanocomposite films around 425 nm, confirmed the presence of Ag in the form of nanoparticles in host PVA matrix. In order to study the effect of swift heavy ions (SHI) irradiation on the optical and structural properties of these nanocomposites, the prepared films were irradiated to 90 MeV O6+ ion beam at two different fluence of 3 × 1010 and 1 × 1011 ions/cm2. The optical energy gap is found to be reduced from 4.57 eV (for PVA/Ag nanocomposite without irradiation) to 3.05 eV after irradiation at fluence of 1 × 1011 ions/cm2. The decline in the transmission of PVA/Ag nanocomposites in ultraviolet region, as a result of SHI irradiation, leads to their possible application in UV blocking devices. The induced structural re-arrangements, as a result of SHI irradiation, were revealed through the FTIR & Raman spectroscopy and found to be in strong association with the changes in optical behavior of these nanocomposites.

  18. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  19. Blood alcohol concentration at 0.06 and 0.10% causes a complex multifaceted deterioration of body movement control.

    PubMed

    Modig, Fredrik; Fransson, Per-Anders; Magnusson, Måns; Patel, Mitesh

    2012-02-01

    Alcohol-related falls are recognized as a major contributor to the occurrence of traumatic brain injury. The control of upright standing balance is complex and composes of contributions from several partly independent mechanisms such as appropriate information from multiple sensory systems and correct feedback and feed forward movement control. Analysis of multisegmented body movement offers a rarely used option for detecting the fine motor problems associated with alcohol intoxication. The study aims were to investigate whether (1) alcohol intoxication at 0.06 and 0.10% blood alcohol concentration (BAC) affected the body movements under unperturbed and perturbed standing; and (2) alcohol affected the ability for sensorimotor adaptation. Body movements were recorded in 25 participants (13 women and 12 men, mean age 25.1 years) at five locations (ankle, knee, hip, shoulder, and head) during quiet standing and during balance perturbations from pseudorandom pulses of calf muscle vibration over 200s with eyes closed or open. Tests were performed at 0.00, 0.06, and 0.10% BAC. The study revealed several significant findings: (1) an alcohol dose-specific effect; (2) a direction-specific stability decrease from alcohol intoxication; (3) a movement pattern change related to the level of alcohol intoxication during unperturbed standing and perturbed standing; (4) a sensorimotor adaptation deterioration with increased alcohol intoxication; and (5) that vision provided a weaker contribution to postural control during alcohol intoxication. Hence, alcohol intoxication at 0.06 and 0.10% BAC causes a complex multifaceted deterioration of human postural control.

  20. Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Hosni, H. M.; Saleh, H. H.; Ghazy, O. A.

    2016-05-01

    In situ preparation of polyvinyl alcohol (PVA) films doped with cadmium sulfide (CdS) nanoparticles was conducted by gamma radiation. The films were characterized in terms of photoluminescence and electrical conductivity. The photoluminescence results indicated the existence of two emission peaks around 470 and 530 nm, which are due to electron-hole recombination of CdS nanoparticles and surface trapped emission due to the PVA capping, respectively. DC electrical conductivity ( σ DC) measurement in the temperature range from 303 up to 373 K reveals an increase in its value with increasing both Cd2+ ion molar concentration and irradiation dose. AC electrical conductivity ( σ AC) measurement over the same temperature range at an applied field frequency of 10, 100, 500 and 1000 kHz shows an increase behavior with increasing temperature, frequency, Cd2+ ion molar concentration and irradiation dose. Dielectric constant ( ɛ 1) exhibits an increase with temperature, whereas it shows reduced values with increasing frequency, Cd2+ ion molar concentration and irradiation dose. Also, the dielectric loss tangent (tan δ) follows an increasing trend with increasing temperature, Cd2+ ion molar concentration and irradiation dose while it has an opposite trend with increasing frequency. The CdS/PVA nanocomposite films behavior could be explained on the basis of formation of charge-transfer complexes (CTCs) by the CdS nanoparticles doped into the PVA matrix and the role of radiation in enhancing the charge carrier mobility of such CTCs.

  1. [Autochthonous yeasts isolated in Tenerife wines and their influence on ethyl acetate and higher alcohol concentrations analyzed by gas chromatography].

    PubMed

    Salvadores, M P; Díaz, M E; Cardell, E

    1993-12-01

    A taxonomic study of yeasts present on Tenerife wines, (Tacoronte-Acentejo Specific Denomination) has been carried out. Nine species of the genera: Saccharomyces, Torulaspora, Brettanomyces, Kluyveromyces, Debaryomyces, Saccharomycodes, Hansenula, Pichia and Candida have been isolated. Parallely we analysed volatile compounds of the wines such as ethyl acetate, methanol, isobutanol and amylic alcohols by gas chromatography. Appreciable quantities of ethyl acetate were detected due to the low fermentative power of species such as Candida glabrata and Debaryomyces hansenii. The greatest concentration of amylic alcohols were found in wines containing yeast with high alcohol producing power like Saccharomyces cerevisiae.

  2. Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents.

    PubMed

    Uzal, Niğmet; Jaworska, Agnieszka; Miśkiewicz, Agnieszka; Zakrzewska-Trznadel, Grażyna; Cojocaru, Corneliu

    2011-10-15

    The paper presents the results of the studies of UF-complexation process applied for the removal of Co(2+) ions from water solutions. As binding agents for cobalt ions, the PVA polymer (M(w)=10,000) and its sulfonated form, synthesized in the laboratory, have been used. The method of experimental design and response surface methodology have been employed to find out the optimal conditions for the complexation process and to evaluate the interaction between the input variables, i.e., initial cobalt concentration, pH and amount of the polymer used, expressed as a polymer/Co(2+) ratio r. The data collected by the designed experiments showed that sulfonation of polymer has improved significantly the binding ability of PVA. The optimal conditions of cobalt ions complexation established by response surface model for non-sulfonated PVA polymer have been found to be as follows: the initial concentration of Co(2+)=5.70 mg L(-1), the ratio between polymer and metal ions, r=8.58 and pH=5.93. The removal efficiency of Co(2+) in these conditions was 31.81%. For sulfonated PVA polymer, the optimal conditions determined are as follows: initial concentration of [Co(2+)](0)=10 mg L(-1), r=1.2 and pH=6.5. For these conditions, a removal efficiency of 99.98% has been determined. The experiments showed that Co(2+) removal ability of sulfonated PVA was much higher than its non-sulfonated precursor. Although the polymer concentrations used in the tests with sulfonated PVA were approximately ten times lower than the non-sulfonated one, the removal efficiency of cobalt ions was significantly higher.

  3. Serum Concentrations of Selected Heavy Metals in Patients with Alcoholic Liver Cirrhosis from the Lublin Region in Eastern Poland

    PubMed Central

    Prystupa, Andrzej; Błażewicz, Anna; Kiciński, Paweł; Sak, Jarosław J.; Niedziałek, Jarosław; Załuska, Wojciech

    2016-01-01

    According to the WHO report, alcohol is the third most significant health risk factor for the global population. There are contrary reports about heavy metals concentrations in patients with alcoholic liver cirrhosis. The aim of this study was to investigate serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis living in the eastern part of Poland according to cirrhosis stage. The participants came from various hospitals of the Lublin region were enrolled. The study group included 46 male and 16 female patients. The control group consisted of 18 healthy individuals without liver disease. High Performance Ion Chromatography was used to determine the concentrations of metal ions (Cd, Zn, Cu, Ni, Co, Mn, and Pb) in serum samples. The concentrations of copper, zinc, nickel, and cobalt were found to be significantly lower in patients with alcoholic liver cirrhosis compared to the control group. The serum concentration of cadmium was significantly higher in patients with advanced alcoholic liver cirrhosis compared to the control group. We hypothesize that disorders of metabolism of heavy metals seem to be the outcome of impaired digestion and absorption, which are common in cirrhosis, improper diet, environmental and occupational exposure. PMID:27304961

  4. 49 CFR 219.611 - Test result indicating prohibited alcohol concentration; procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Test result indicating prohibited alcohol... (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.611 Test result indicating prohibited...

  5. 49 CFR 219.611 - Test result indicating prohibited alcohol concentration; procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Test result indicating prohibited alcohol... (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.611 Test result indicating prohibited...

  6. 49 CFR 219.611 - Test result indicating prohibited alcohol concentration; procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Test result indicating prohibited alcohol... (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.611 Test result indicating prohibited...

  7. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.

    PubMed

    Wang, Hai-Yan; Inada, Takaaki; Funakoshi, Kunio; Lu, Shu-Shen

    2009-08-01

    Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.

  8. Plasma concentrations of carbohydrates and sugar alcohols in term newborns after milk feeding.

    PubMed

    Brown, Laura D; Cavalli, Claudio; Harwood, Jeri E F; Casadei, Annachiara; Teng, Cecilia C; Traggiai, Cristina; Serra, Giovanni; Bevilacqua, Giulio; Battaglia, Frederick C

    2008-08-01

    Nonglucose carbohydrates such as galactose, mannose, and inositol play a clinically important role in fetal and neonatal nutrition, though little is known about their metabolism in the neonate. The aim of this study was to determine whether postprandial changes in plasma carbohydrate and sugar alcohol concentrations are affected by clinical variables such as postnatal age (PNA), milk type, feeding volume, or feeding duration in term newborns. Neonates (n = 26) taking intermittent enteral feedings were enrolled. Blood samples were obtained at baseline (immediately before the start of a feeding) and at 2-3 subsequent time points up to 110 min. Postprandial rise was only observed for plasma glucose concentrations [Glu] and plasma galactose concentrations [Gal] and clinical variables did not predict this change. Despite equimolar delivery in milk, the median of [Glu] rise minus [Gal] rise from baseline to second postprandial plasma sample was 674 microM (-38, 3333 microM; p < 0.0001), reflecting efficient hepatic first-pass metabolism of galactose. A significant PNA effect on [Gal] was observed such that for each day PNA there was an 18% decrease in [Gal] (p = 0.03). [Gal] are a function of PNA, suggesting maintenance of a significant ductus venosus shunt in term infants.

  9. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.

  10. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.

    PubMed

    Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun

    2016-03-15

    In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices. PMID:26794756

  11. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.

    PubMed

    Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun

    2016-03-15

    In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices.

  12. Ferromagnetism in LaMnO3 Nanoparticles Prepared by Sol-Gel Method Combined with Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Tola, Pardi S.; Kim, D. H.; Liu, Chunli; Phan, T. L.; Lee, B. W.

    2016-07-01

    This work presents the synthesis of rhombohedral LaMnO3 nanoparticles (NPs) by using a sol-gel method with the assistance of polyvinyl alcohol (PVA), followed with annealing at 700°C for 2 h in air. By changing the PVA amount from 0 ml to 15 ml, we have synthesized LaMnO3 NPs so that their ferromagnetic-paramagnetic phase-transition temperature ( T C) can be tuned in the range between 228 K and 305 K. At 15 K, saturation magnetization ( M s) and coercivity ( H c) values are tunable in the ranges of 32-52 emu/g and 200-258 Oe, respectively, if varying PVA amount from 0 ml to 15 ml. X-ray photoelectron analyses revealed a large amount of La deficiency and oxygen excess in the NPs, particularly for the NPs synthesized with the presence of PVA at a suitable amount (≤10 ml). This leads to a coexistence of Mn3+ and Mn4+ ions, and changes the geometrical structure of nanocrystalline LaMnO3 NPs, as confirmed by x-ray absorption data. We believe that the variation of PVA changed the concentration ratio of Mn3+/Mn4+, enriching a magnetic-phase diagram of LaMnO3 nanoparticles.

  13. Facile preparation of TiO2-polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Filippo, Emanuela; Carlucci, Claudia; Capodilupo, Agostina Lina; Perulli, Patrizia; Conciauro, Francesca; Corrente, Giuseppina Anna; Gigli, Giuseppe; Ciccarella, Giuseppe

    2015-03-01

    Hybrid inorganic/organic core/shell nanoparticles were prepared through a two step synthesis procedure. In the first step, pure anatase TiO2 nanoparticles were synthesized though a rapid microwave assisted non-aqueous route. Then, the obtained titania nanoparticles were coated with polyvinyl alcohol (PVA) using a simple solution method followed by relatively low temperature treatment. The PVA-coated titania nanoparticles samples were prepared at different TiO2-PVA weight ratio and they were characterized using X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and Brunauer-Emmett-Teller (BET) analysis. Photocatalytic performance was also evaluated for all samples and the results indicated that TiO2:PVA weight ratio was a key factor to obtain an improvement of the photocatalytic activity with respect to bare TiO2 nanoparticles, since PVA concentration influenced the surface area and the aggregation of nanoparticles and the thickness of the coating layer. This inexpensive system provides a simple, quick and effective approach which allows to obtain core/shell hybrid nanostructures.

  14. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    PubMed

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol. PMID:26675839

  15. [Study on PVA-alginate co-immobilization of Xanthomonas ampelina TS206].

    PubMed

    Chen, Qingsen; Liu, Jian

    2003-08-01

    Ice nucleation activity and anti-leaking capability are both important technical parameters in INA (Ice nucleation active bactetia) bacteria immobilization which can be adopted on freezing concentrate. Both PVA and alginate are good medium for immobilization. They can be used on co-immobilization of ice nucleation-active bacteria (Xanthomonas ampelinaTS206). The results showed that quantity of embedding affects ice nucleation activity greatly. The order of importance to comprehensive scores of technical standard should be concentration of Sodium alginate > Boric acid > PVA > CaCl2. The optimized concentration are PVA 8%, sodium alginate 1%, CaCl2 1.1% and boric acid 5%. A conclusion can be draw that ice nucleation activity increases with the number of beads and shows little pertinency with the time of immobilization, whereas anti-leaking capability can be influenced faintly by the number of beads and the time of immobilization. PMID:16276925

  16. Electrical properties of starch-PVA biodegradable polymer blend

    NASA Astrophysics Data System (ADS)

    Chatterjee, B.; Kulshrestha, N.; Gupta, P. N.

    2015-02-01

    Solid polymer electrolyte films were prepared by adding different contents of potassium chloride (KCl) in a polymer matrix composed of two versatile biodegradable polymers: starch and polyvinyl alcohol (PVA), using the solution cast method. The complexation of the added salt (KCl) with the polymer matrix was confirmed from an x-ray diffraction study (XRD). The evolution of a smooth and uniform morphology with the increasing content of KCl was confirmed from scanning electron microscopy (SEM). The transference number measurement established ions as the dominant charge carriers in the system. The maximum ionic conductivity ˜5.44 × 10-5 S cm-1 at ambient conditions was obtained for the film with 1.5 wt% of KCl using complex impedance spectroscopy. The ionic conductivity and dielectric constant increased with the salt content, thus affirming the amplification in the number of charge carriers. The noteworthy aspect of the investigation is the observation of appreciable ionic conductivity at a relatively low salt content. Low values of activation energy obtained from temperature-dependent ionic conductivity could be favorable from the point of view of the application. Electric modulus studies confirmed the absence of electrode polarization effects in the polymer electrolyte films. The scaling of the electric modulus shows a distribution of relaxation times in the polymer electrolyte films. The study unveils the efficiency of the starch-PVA blend, with glycerol and citric acid as additives, as a hopeful material for preparing biodegradable solid polymer electrolyte films.

  17. UV irradiated PVA-Ag nanocomposites for optical applications

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2015-07-01

    The present paper is focused on the in-situ prepared Poly (vinyl alcohol)-Silver (PVA-Ag) nanocomposites and tailoring their optical properties by means of UV irradiation in such a way that these can be used for anti-reflective coatings and bandpass filters. The reflectance from these irradiated nanocomposites has been found to decrease leading to the increase in refractive index (RI), with increasing UV exposure time, in the entire visible region. Decrease in optical energy gap of PVA film from 4.92 to 4.57 eV on doping with Ag nanoparticles has been observed which reduces further to 4.1 eV on exposure to UV radiations for 300 min. This decrease in optical energy gap can be correlated to the formation of charge transfer complexes within the base polymer network on embedding Ag nanoparticles, which further enhances with increasing exposure time. Such complexes may also be responsible for increased molecular density of the composite films which corresponds to decrease in reflectance corroborating the observed results.

  18. 49 CFR 655.48 - Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... concentration of 0.02 or greater but less than 0.04. 655.48 Section 655.48 Transportation Other Regulations... Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04. If an... alcohol test indicating an alcohol concentration of 0.02 or greater but less than 0.04, the employer...

  19. 49 CFR 655.48 - Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concentration of 0.02 or greater but less than 0.04. 655.48 Section 655.48 Transportation Other Regulations... Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04. If an... alcohol test indicating an alcohol concentration of 0.02 or greater but less than 0.04, the employer...

  20. 49 CFR 655.48 - Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... concentration of 0.02 or greater but less than 0.04. 655.48 Section 655.48 Transportation Other Regulations... Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04. If an... alcohol test indicating an alcohol concentration of 0.02 or greater but less than 0.04, the employer...

  1. 49 CFR 655.48 - Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... concentration of 0.02 or greater but less than 0.04. 655.48 Section 655.48 Transportation Other Regulations... Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04. If an... alcohol test indicating an alcohol concentration of 0.02 or greater but less than 0.04, the employer...

  2. 49 CFR 655.48 - Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... concentration of 0.02 or greater but less than 0.04. 655.48 Section 655.48 Transportation Other Regulations... Retesting of covered employees with an alcohol concentration of 0.02 or greater but less than 0.04. If an... alcohol test indicating an alcohol concentration of 0.02 or greater but less than 0.04, the employer...

  3. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification. PMID:25806418

  4. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification.

  5. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    SciTech Connect

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Mali, S.S.; Hong, C.K.; Pawar, S.H.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamic light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.

  6. Altered hepatic retinyl ester concentration and acyl composition in response to alcohol consumption.

    PubMed

    Clugston, Robin D; Jiang, Hongfeng; Lee, Man Xia; Berk, Paul D; Goldberg, Ira J; Huang, Li-Shin; Blaner, William S

    2013-07-01

    Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease. PMID:24046868

  7. Altered hepatic retinyl ester concentration and acyl composition in response to alcohol consumption.

    PubMed

    Clugston, Robin D; Jiang, Hongfeng; Lee, Man Xia; Berk, Paul D; Goldberg, Ira J; Huang, Li-Shin; Blaner, William S

    2012-07-01

    Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption. A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease. PMID:23583843

  8. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  9. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  10. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.

    PubMed

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L(-1) sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications.

  11. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.

    PubMed

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L(-1) sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  12. A study into blood alcohol concentration in fatal accidents among vulnerable road users in a tertiary care hospital Sri Lanka.

    PubMed

    Edirisinghe, Anuruddhi Samanthika; Kitulwatte, Indira Deepthi; Senarathne, Udara Dilrukshi

    2015-01-01

    Reckless driving behaviour associated with alcohol has been well known. In Sri Lanka, research on blood alcohol concentration (BAC) in road fatalities is scares. Thus, we studied the BAC in vulnerable road users (VRUs) encountered in medico-legal autopsies. A retrospective descriptive study based on case records of VRU fatalities from 2005 to 2012 referred for a tertiary care unit for post-mortem examination was conducted. A pro-forma was developed to extract data from the post-mortem blood alcohol reports. Data were analysed using percentages and p-values. There were 119 cases from the 328 autopsies to investigate blood alcohol tests. A total of 51% (n = 61) out of 119 had BAC above 80 mg/100 ml and mean level was 103 mg/100 ml. 2/3 of pedestrians had a BAC above 80 mg/100 ml with a mean level of 139 mg/dl. The highest mean blood alcohol (158 mg/dl) was reported from three-wheeler users. Majority of cases with more than 80 mg/100 ml BAC was reported in the age group of 40-60 years, while 40% of the elderly too had a BAC above 80 mg/100 ml. The comparison between pedestrians having above 80 mg/100 ml of BAC with that of other VRUs (active road users) showed a significant statistical difference (p = 0.017). The study results suggest that alcohol influence among pedestrians represent a significant risk factor for fatal road traffic accidents. PMID:24341667

  13. Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase.

    PubMed

    Martínez, Yanina N; Cavello, Ivana; Cavalitto, Sebastián; Illanes, Andres; Castro, Guillermo R

    2014-05-01

    Polyvinyl alcohol-pectin (PVA-P) films containing enrofloxacin and keratinase were developed to treat wounds and scars produced by burns and skin injuries. However, in order to prevent enzyme inactivation at the interface between the patch and the scars, crosslinked enzyme aggregates (CLEAs) from a crude extract of keratinase produced by Paecilomyces lilacinus (LPSC#876) were synthesized by precipitation with acetone and crosslinking with glutaraldehyde. Soluble vs. CLEA keratinase (K-CLEA) activities were tested in 59% (v/v) hydrophobic (isobutanol and n-hexane) and hydrophilic (acetone and dimethylsulfoxide) solvents mixtures. K-CLEA activity was 1.4, 1.7 and 6.6 times higher in acetone, n-hexane and isobutanol than the soluble enzyme at 37 °C after 1 h of incubation, respectively. K-CLEA showed at least 45% of enzyme residual activity in the 40-65 °C range, meanwhile the soluble biocatalyst was fully inactivated at 65 °C after 1h incubation. Also, the soluble enzyme was completely inactivated after 12 h at pH 7.4 and 45 °C, even though K-CLEA retained full activity. The soluble keratinase was completely inactivated at 37 °C after storage in buffer solution (pH 7.4) for 2 months, meanwhile K-CLEAs kept 51% of their activity. K-CLEA loaded into polyvinyl alcohol (PVA) and PVA-P cryogels showed six times lower release rate compared to the soluble keratinase at skin pH (5.5). Small angle X-ray scattering (SAXS) analysis showed that K-CLEA bound to pectin rather than to PVA in the PVA-P matrix.

  14. ZnS/PVA nanocomposites for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  15. Biomarkers of recent drinking, retrograde extrapolation of blood-alcohol concentration and plasma-to-blood distribution ratio in a case of driving under the influence of alcohol.

    PubMed

    Jones, Alan Wayne

    2011-07-01

    This case report describes the police investigation of a road-traffic accident involving a collision at night (01.00 am) between a car and a truck in which a passenger in the car was killed. The driver of the truck was found responsible for the crash although a roadside breath-alcohol test was negative (<0.1 mg/L breath or 20 mg/100 mL blood). Because of injuries sustained in the crash, the female driver of the car was not breath-tested at the time but was transported to a local hospital for emergency treatment. After swabbing the skin with isopropanol an indwelling catheter was inserted at 01.40 am. A blood sample was taken at 02.10 am and the plasma portion contained 8 mmol/L ethanol according to analysis at the hospital clinical laboratory using a gas chromatographic method. Another blood sample was taken at 05.45 am for analysis of ethanol at a forensic toxicology laboratory, although the result was negative (<10 mg/100 mL). The police authorities wanted an explanation for the discrepancy between the clinical and forensic laboratory results and inquired whether the driver of the car was above the legal alcohol limit (>20 mg/100 mL) at the time of the crash. The scientific basis for converting a plasma-ethanol concentration into a blood-ethanol concentration and back extrapolation of the driver's blood-alcohol concentration (BAC) is explained. The risk of contaminating a blood sample by swabbing the skin with isopropanol is discussed along with the use of alcohol biomarkers (ethyl glucuronide and ethyl sulphate) as evidence of recent drinking. PMID:21663869

  16. A Simple Technique of Liquid Purity Analysis and Its Application to Analysis of Water Concentration in Alcohol-Water Mixtures

    NASA Astrophysics Data System (ADS)

    de, Dilip; Aziz de, Abdul

    2012-10-01

    The change of activation energy of a liquid molecule and hence its viscosity coefficient with addition of contaminants to the original liquid gives rise to a new technology for analysis of purity of the liquid. We discovered that concentration of certain contaminants such as water in alcohol or vice versa can be uniquely and accurately determined in a short time (about 10-15 minutes) using a simple and yet innovative technique that only requires measurement of time of flow of the impure liquid (say, water-alcohol mixture) and distilled water through a simple viscometer. We determined the increase of activation energy of alcohol molecules with increase of water concentration for ethyl and methyl alcohol. Our detailed investigation on the alcohol-water mixtures along with discussion on possible future potential application of the simple and very reliable inexpensive technique for liquid purity analysis is presented. We compared our present method with other methods on the accuracies, problems and reliability of impurity analysis in liquids. We also discuss a part of the quantum theory of viscosity of liquid mixtures that is in the developmental stage.

  17. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. PMID:27469095

  18. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  19. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Huang, Hao-Ting; Huang, Chen-Yu; Hu, Keng-Shiang; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-01

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe3O4 nanoparticles would be released and delivered to cells.

  20. Impact of alcohol on vestibular function in relation to the legal limit of 0.25 mg/l breath alcohol concentration.

    PubMed

    Chiang, Hou-Hsien; Young, Yi-Ho

    2007-01-01

    The aim of this study was to investigate the effect of alcohol on sacculocollic and vestibulo-ocular reflex systems, when the breath alcohol concentration (BrAC) is close to the legal limit of 0.25 mg/l. Twenty healthy male volunteers underwent vestibular evoked myogenic potential and caloric coupled with visual suppression tests. These tests were conducted prior to imbibing alcohol at a dosage of 0.5 g/kg to achieve a peak BrAC of around 0.25 mg/l. Once the peak BrAC was reached, these tests were performed again. Predosing and postdosing analytical results were compared, as were those with BrAC levels > or = 0.25 mg/l and <0.25 mg/l. After ingesting alcohol, 36 ears (90%) showed vestibular evoked myogenic potential responses, with a significantly increased latency of peak p13. The mean slow-phase velocity of caloric nystagmus in 40 ears after dosing was significantly reduced, and that with BrAC > or =0.25 mg/l was significantly less than that with BrAC <0.25 mg/l. Likewise, the visual suppression index decreased considerably after alcohol ingestion. In conclusion, from the perspective of vestibular function, the 0.25-mg/l BrAC limit gains clinical significance, because the vestibulo-ocular reflex performance deteriorates further, when the BrAC exceeds 0.25 mg/l. However, impaired performance of sacculocollic reflex and vestibulocerebellar interaction has occurred, when the BrAC was <0.25 mg/l, suggesting that a lower legal threshold is appropriate.

  1. Impact of lowering the legal blood alcohol concentration limit to 0.03 on male, female and teenage drivers involved alcohol-related crashes in Japan.

    PubMed

    Desapriya, E; Shimizu, S; Pike, I; Subzwari, S; Scime, G

    2007-09-01

    In June of 2002, a revision to part of the Road Traffic Act drastically increased the penalties for drinking and driving offences in Japan. Most notably, the legal blood alcohol concentration (BAC) limit for driving was lowered from 0.05 mg/ml to 0.03 mg/ml. The rationale for the new lower BAC limit was predicated on the assumption that drinking drivers will comply with the new, lower limit by reducing the amount of alcohol they consume prior to driving, thereby lowering their risk of crash involvement. This, in turn, would lead to fewer alcohol-related crashes. A key limitation of previous lower BAC evaluation research in determining the effectiveness of lower legal BAC limit policies is the assumption of population homogeneity in responding to the laws. The present analysis is unique in this perspective and focuses on the evaluation of the impact of BAC limit reduction on different segments of the population. The chief objective of this research is to quantify the extent to which lowering the legal limit of BAC has reduced male, female and teenager involvement in motor vehicle crashes in Japan since 2002. Most notably, the introduction of reduced BAC limit legislation resulted in a statistically significant decrease in the number of alcohol-impaired drivers on the road in Japan, indicating responsiveness to the legal change among adults and teenagers. In addition, this preliminary assessment appears to indicate that the implementation of 0.03 BAC laws and other associated activities are associated with statistically significant reductions in alcohol-involved motor vehicle crashes. In comparison, the rates of total crashes showed no statistically significant decline nor increase in the period following the introduction of the BAC law, indicating that the lower BAC limit only had an effect on alcohol-related crashes in Japan. The evidence suggests that the lower BAC legal limit and perceived risk of detection are the two most important factors resulting in a

  2. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  3. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  4. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  5. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  6. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  7. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes.

  8. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  9. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  10. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  11. Significant effects of sodium acetate, an impurity present in poly(vinyl alcohol) solution on the radiolytic formation of silver nanoparticle

    NASA Astrophysics Data System (ADS)

    Shin, Junhwa; Kim, Yunhye; Lee, Kiwon; Lim, Youn Mook; Nho, Young Chang

    2008-07-01

    A silver nanoparticle (AgNPs) stabilizer, polyvinyl alcohol (PVA) generally contains a relatively large amount of sodium acetate (NaOAc) as an impurity (up to several weight percentages) as a result of a base-catalyzed hydrolysis of poly(vinyl acetate) (PVAc). In this study, the effects of NaOAc on the radiolytic formation of AgNPs in PVA solutions were studied by using UV/vis spectroscopy. Several AgNPs were prepared by γ-ray irradiation using 60Co source at various doses in the presence of various amounts of NaOAc. The UV data of the AgNPs observed at around 410 nm show that more AgNPs are generally produced as the NaOAc concentration in the PVA solution increases. Furthermore, no significant absorption band of the AgNPs was observed when the purified PVA containing a very small amount of NaOAc (less than 3×10 -4 M) was applied with 1×10 -3 M AgNO 3 up to 10 kGy. These results reveal that NaOAc present as an impurity in PVA, plays an important role in the radiolytic formation of AgNPs.

  12. Can the Blood Alcohol Concentration Be a Predictor for Increased Hospital Complications in Trauma Patients Involved in Motor Vehicle Crashes?

    PubMed Central

    Kapur, Jaime H; Rajamanickam, Victoria; Fleming, Michael F

    2010-01-01

    The goal of this report is to assess the relationship of varying levels of blood alcohol concentration (BAC) and hospital complications in patients admitted after motor vehicle crashes. Data for the study was collected by a retrospective review of the University of Wisconsin Hospital trauma registry between 1999 and 2007 using the National Trauma Registry of the American College of Surgeons (NTRACS). Of 3729 patients, 2210 (59%) had a negative BAC, 338 (9%) <100 mg/dL, 538 (14%) 100–199 mg/dL, and 643 (17%) >200 mg/dL. Forty-six percent of patients had one or more hospital related complications. The odds ratio (OR) for the occurrence of alcohol withdrawal in the three alcohol groups compared to the no alcohol group was 12.02 (CI 7.0–20.7), 16.81 (CI 10.4–27.2), and 30.96 (CI 19.5–49.2) as BAC increased with a clear dose response effect. While there were no significant differences in the frequency of the total hospital events following trauma across the four groups, rates of infections, coagulopathies, central nervous system events and renal complications were lower in the high BAC group. Prospective studies are needed to more precisely estimate the frequency of hospital complications in patients with alcohol use disorders and in persons intoxicated at the time of the motor vehicle accident. The study supports the use of routine BAC to predict patients at high risk for alcohol withdrawal and the early initiation of alcohol detoxification. PMID:20617025

  13. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  14. A lipoprotein lipase gene polymorphism interacts with consumption of alcohol and unsaturated fat to modulate serum HDL-cholesterol concentrations.

    PubMed

    Baik, Inkyung; Lee, Seungku; Kim, Seong Hwan; Shin, Chol

    2013-10-01

    There are limited data from prospective studies regarding interactions between lipoprotein lipase gene (LPL) and lifestyle factors in association with HDL-cholesterol (HDL-C) concentrations, a biomarker of coronary heart disease risk. Our prospective cohort study investigated the interactive effects of a common LPL polymorphism and lifestyle factors, including obesity, smoking, alcohol consumption, physical activity, and dietary intake, on follow-up measurements of HDL-C and triglyceride (TG) concentrations. A total of 5314 Korean men and women aged 40-69 y participated in the study. Serum HDL-C and TG concentrations were measured in all participants at baseline and 6-y follow-up examinations. On the basis of genome-wide association data for HDL-C and TG concentrations, we selected the most significant polymorphism (rs10503669), which was in high linkage disequilibrium with the serine 447 stop (S447×) mutation (D' = 0.99) of LPL. We found that carrying the T allele reflecting the LPL ×447 allele was positively associated with follow-up measurement of HDL-C concentrations (P < 0.001). In the linear regression model adjusted for baseline HDL-C concentration and potential risk factors, we observed interactive effects of the polymorphism and consumption of alcohol (P-interaction < 0.01) and unsaturated fat (P-interaction < 0.05) on follow-up measurement of HDL-C concentrations. We also observed interactive effects of the polymorphism and body mass index (P-interaction < 0.01) on follow-up measurement of TG concentrations after adjusting for the baseline level and potential risk factors. Our findings suggest that carriers of the LPL ×447 allele benefit from moderate alcohol consumption and a diet high in unsaturated fat to minimize reduction of blood HDL-C concentrations and that obese persons who do not carry the LPL ×447 allele need to control body weight to prevent hypertriglyceridemia.

  15. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  16. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-08-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension ( L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization.

  17. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene.

    PubMed

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-Ul-Haq; Khan, Ahmad Nawaz

    2016-12-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization. PMID:27558496

  18. Preparation and photochromic properties of ultra-fine H3PW11MoO40/PVA fibre mats

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Cheng; Gong, Jian; Pan, Yan; Cui, Xiu-Jun; Shao, Chang-Lu; Guo, Yi-Hang; Wen, Shang-Bin; Qu, Lun-Yu

    2004-07-01

    Novel photochromic materials, H3PW11MoO40/Poly (vinyl alcohol) (PVA) ultra-fine fibre mats containing different weight percentages of H3PW11MoO40, have been prepared from different H3PW11MoO40/PVA solutions by an electrospinning technique. IR spectroscopy, wide-angle x-ray diffraction, and scanning electron microscope spectroscopy are used to characterize the fibre mats. Results of viscosity and conductivity measurements of the solutions indicate that lower viscosity and higher conductivity favour the formation of thin fibres without beads. When irradiated with ultraviolet light (313.2 nm), the colour of the fibre mats changes from white to blue, and the mats show reversible photochromism. IR and ESR spectra of the irradiated fibre mats indicate a conceivable photochromic mechanism, i.e. MoVI is reduced under ultraviolet irradiation. Meanwhile, PVA is oxidized to unsaturated ketone or aldehyde.

  19. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  20. Treatment of high-strength ethylene glycol waste water in an expanded granular sludge blanket reactor: use of PVA-gel beads as a biocarrier.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    Industrial-scale use of polyvinyl alcohol (PVA)-gel beads as biocarriers is still not being implemented due to the lack of understanding regarding the optimal operational parameters. In this study, the parameters for organic loading rate (OLR), alkalinity, recycle rate, and addition of trace elements were investigated in an expanded granular sludge blanket reactor (EGSB) treating high-strength ethylene glycol wastewater (EG) with PVA-gel beads as biocarrier. Stable chemical oxygen demand (COD) removal efficiencies of 95 % or greater were achieved, and continuous treatment was demonstrated with appropriate parameters being an OLR of 15 kg COD/m(3)/day, NaHCO3 added at 400 mg/L, a recycle rate of 15 L/h, and no addition of trace elements addition. A biogas production yield rate of 0.24 m(3)/kg COD was achieved in this study. A large number of long rod-shaped bacteria (Methanosaeta), were found with low acetate concentration in the EGSB reactor. PMID:27386305

  1. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  2. Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis.

    PubMed

    Childs, Bradford C; Bohlscheid, Jeffri C; Edwards, Charles G

    2015-04-01

    The level of yeast assimilable nitrogen (YAN) supplementation required for Saccharomyces cerevisiae to complete fermentation of high sugar musts in addition to the impact of non-metabolized nitrogen on post-alcoholic spoilage by Brettanomyces bruxellensis was studied. A 2 × 3 factorial design was employed using a synthetic grape juice medium with YAN (150 or 250 mg N/L) and equal proportions of glucose/fructose (230, 250, or 270 g/L) as variables. S. cerevisiae ECA5 (low nitrogen requirement) or Uvaferm 228 (high nitrogen requirement) were inoculated at 10(5) cfu/mL while B. bruxellensis E1 or B2 were added once alcoholic fermentation ceased. Regardless of YAN concentration, musts that contained 230 or 250 g/L glucose/fructose at either nitrogen level attained dryness (mean = 0.32 g/L fructose) while those containing 270 g/L generally did not (mean = 2.5 g/L fructose). Higher concentrations of YAN present in musts yielded wines with higher amounts of α-amino acids and ammonium but very little (≤ 6 mg N/L) was needed by B. bruxellensis to attain populations ≥ 10(7) cfu/mL. While adding nitrogen to high sugar musts does not necessarily ensure completion of alcoholic fermentation, residual YAN did not affect B. bruxellensis growth as much as ethanol concentration.

  3. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions.

  4. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions. PMID:27311109

  5. Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga

    2016-06-01

    Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.

  6. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  7. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  8. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results.

  9. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  10. Cationic-modified PVA as a dry strength additive for rice straw fibers.

    PubMed

    Fatehi, P; Tutus, A; Xiao, H

    2009-01-01

    Extensive research has shown that non-wood fibers are able to be substituted for wood fibers. The major shortcoming of non-fibers is their high silica content that causes some operational problems in mills, and hence silica should be kept in pulps. By keeping silica in pulps, however, the mechanical properties of papers are reduced, and a dry strength additive may be required. In this study, cationic polyvinyl alcohols (C-PVA) with two different molecular weights were prepared, and employed as dry strength additives. The adsorption of polymers on rice straw fibers obtained via soda-air-anthraquinone (AQ) pulping under various conditions was investigated thoroughly. Convincing results demonstrated that high molecular weight polymers performed more efficiently on dry strength enhancements of papers, while they adsorbed less than lower molecular weight polymers on fibers. However, the stiffness of fibers was increased to a larger extent by applying a higher molecular weight C-PVA. PMID:18774707

  11. Controlling the Optical Creation of Gold Nanoparticles in a PVA Matrix by Direct Laser Writing

    NASA Astrophysics Data System (ADS)

    Ritacco, T.; Ricciardi, L.; La Deda, M.; Giocondo, M.

    2016-02-01

    We report about the study on the physical features of gold nano-particles (GNPs) created by 2-photons photo-reduction Direct Laser Writing in a Poly-Vinyl Alcohol (PVA) matrix doped with HAuCl4. We drop cast a film of the PVA+ HAuCl4 onto a glass substrate, in which we create 1D gratings made by stripes of GNPs with a single laser sweep. We show that the stripe width increases with the laser power and the exposure time. We also analyse the influence of the exposure time over the created nano-particles size distribution and density and we show that by suitably adjusting the exposure time it is possible to maximize the frequency of a given diameter. By comparing the experimental results with a polymerization "voxel" model, we are able to evaluate the effective cross section for 2- photons absorption of our material.

  12. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  13. A fiber Fabry-Perot interferometer based on a PVA coating for humidity measurement

    NASA Astrophysics Data System (ADS)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Sun, Hao; Zhang, Jing; Bai, Zhengyuan; Du, Yanying; Feng, Dingyi; Wang, Yupeng; Hu, Manli; Feng, Zhongyao

    2013-01-01

    A fiber Fabry-Perot interferometer (FPI) for humidity measurement based on a Polyvinyl alcohol (PVA) film is proposed and experimentally demonstrated. This FPI is fabricated by coating a PVA film on the ending face of a Single-mode fiber (SMF) to form a Fabry-Perot cavity. A well-confined interference spectrum with a free spectra range (FSR) of 15 nm is obtained. Several saturated salt solutions are employed to obtain the different humidity environments in the inclosed containers, of which the relative humidity values range from 7% RH to 91.2% RH. The proposed FPI sensor is sensitive to the humidity change, and a sensitivity of 0.07 nm/(1%) is obtained. Therefore, the characteristics of compact size, low cost and simple fabrication identify it a good candidate for environment monitoring application.

  14. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results. PMID:23911522

  15. Relationships between blood lead concentration and aminolevulinic acid dehydratase in alcoholics and workers industrially exposed to lead

    SciTech Connect

    Bortoli, A.; Fazzin, G.; Marin, V.; Trabuio, G.; Zotti, S.

    1986-07-01

    Blood lead concentration (Pb-B), aminolevulinic acid dehydratase (ALAD), and gamma-GT were measured in 265 workers industrially exposed to lead and in 184 patients with liver disease resulting from alcohol consumption. The first group was divided according to alcohol use, i.e., nondrinkers, moderate drinkers, and heavy drinkers. The second group was divided according to the following criteria: hepatopatic without cirrhosis, hepatopatic with compensated cirrhosis, and hepatopatic with decompensated cirrhosis. Heavy drinkers who were industrially exposed had the highest Pb-B (40.4 +/- 14.6 micrograms/dl) and the lowest ALAD (22.2 +/- 9.1 U/L). The correlations between Pb-B and ALAD show no significant change with the increase of Pb-B. In the alcoholic group, 76 patients with alcoholic liver disease without cirrhosis had the highest Pb-B (40.3-9.1 micrograms/dl) and ALAD the lowest (18.6 +/- 7.7 U/L). The negative correlation between Pb-B and log ALAD disappeared completely in individuals with Pb-B that exceeded 50 micrograms/dl, independent from the seriousness of illness.

  16. Effects of different concentrations of sugarcane alcohol on food intake and nutritional status of male and female periadolescent rats.

    PubMed

    Gonçalves de Orange, Luciana; Bion, Francisca Martins; Rolim de Lima, Cybelle

    2009-03-01

    The present study evaluated the effects of food and alcohol intake on the nutritional and metabolic status of male and female periadolescent rats submitted to single (15%) and multiple (10%, 20%, 30%) concentrations of hydroalcoholic solutions of sugar-based alcohol associated with a feed mixture. Thirty-six periadolescent Wistar rats were used and randomly arranged into three groups: Group A (control; 0% ethanol; six males and six females), Group B (15% ethanol; six males and six females), and Group C (10%, 20%, and 30% ethanol; six males and six females). Food consumption, body weight, water intake (mL), ethanol intake (g/kg/day), ethanol preference in relation to water and different concentrations, and serum biochemical dosages (glucose, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, very low-density lipoprotein fraction, triglycerides, cholesterol/HDL [CT/HDL], albumin) were analyzed. Males from Group C ingested more feed than females, which consumed reducing amounts throughout the weeks studied. Males also had heavier body weight, which increased throughout the experimental period. The animals ingested more water (females ingested more than males) in the first experimental week. Group C had a higher ethanol intake and greater preference for ethanol over water in both genders than Group B, which decreased over the subsequent weeks. Serum glucose was lower in Group A, whereas the CT/HDL ratio was lower in Group C. These findings allow the conclusion that nutritional and metabolic impact resulting from alcohol intake is different between genders and between the different forms in which the drug is offered. It is important to warn the population about the concentrations of alcohol intake, which may influence the growth and development of adolescents, thereby compromising their quality of life.

  17. Determination of safety margins for whole blood concentrations of alcohol and nineteen drugs in driving under the influence cases.

    PubMed

    Kristoffersen, Lena; Strand, Dag Helge; Liane, Veronica Horpestad; Vindenes, Vigdis; Tvete, Ingunn Fride; Aldrin, Magne

    2016-02-01

    Legislative limits for driving under the influence of 20 non-alcohol drugs were introduced in Norway in February 2012. Per se limits corresponding to blood alcohol concentrations (BAC) of 0.2g/kg were established for 20 psychoactive drugs, and limits for graded sanctions corresponding to BACs of 0.5 and 1.2g/kg were determined for 13 of these drugs. This new legislation made it possible for the courts to make sentences based on the analytical results, similar to the situation for alcohol. To ensure that the reported concentration is as least as high as the true concentration, with a 99% safety level, safety margins had to be calculated for each of the substances. Diazepam, tetrahydrocannabinol (THC) and alcohol were used as model substances to establish a new model for estimating the safety margins. The model was compared with a previous used model established several years ago, by a similar yet much simpler model, and they were found to be in agreement. The measurement uncertainties depend on the standard batch used, the work list and the measurements' replicate. A Bayesian modelling approach was used to determine the parameters in the model, using a dataset of 4700 diazepam positive specimens and 5400 THC positive specimens. Different safety margins were considered for low and high concentration levels of diazepam (≤2μM (0.6mg/L) and >2μM) and THC (≤0.01μM (0.003mg/L) and >0.01μM). The safety margins were for diazepam 19.5% (≤2μM) and 34% (>2μM), for THC 19.5% (≤0.01μM) and 24.9% (>0.01μM). Concentration dependent safety margins for BAC were based on a dataset of 29500 alcohol positive specimens, and were in the range 10.4% (0.1g/kg) to 4.0% (4.0g/kg) at a 99% safety level. A simplified approach was used to establish safety margins for the compounds amphetamine, MDMA, methamphetamine, alprazolam, phenazepam, flunitrazepam, clonazepam, nitrazepam, oxazepam, buprenorphine, GHB, methadone, ketamine, cocaine, morphine, zolpidem and zopiclone. The

  18. Determination of safety margins for whole blood concentrations of alcohol and nineteen drugs in driving under the influence cases.

    PubMed

    Kristoffersen, Lena; Strand, Dag Helge; Liane, Veronica Horpestad; Vindenes, Vigdis; Tvete, Ingunn Fride; Aldrin, Magne

    2016-02-01

    Legislative limits for driving under the influence of 20 non-alcohol drugs were introduced in Norway in February 2012. Per se limits corresponding to blood alcohol concentrations (BAC) of 0.2g/kg were established for 20 psychoactive drugs, and limits for graded sanctions corresponding to BACs of 0.5 and 1.2g/kg were determined for 13 of these drugs. This new legislation made it possible for the courts to make sentences based on the analytical results, similar to the situation for alcohol. To ensure that the reported concentration is as least as high as the true concentration, with a 99% safety level, safety margins had to be calculated for each of the substances. Diazepam, tetrahydrocannabinol (THC) and alcohol were used as model substances to establish a new model for estimating the safety margins. The model was compared with a previous used model established several years ago, by a similar yet much simpler model, and they were found to be in agreement. The measurement uncertainties depend on the standard batch used, the work list and the measurements' replicate. A Bayesian modelling approach was used to determine the parameters in the model, using a dataset of 4700 diazepam positive specimens and 5400 THC positive specimens. Different safety margins were considered for low and high concentration levels of diazepam (≤2μM (0.6mg/L) and >2μM) and THC (≤0.01μM (0.003mg/L) and >0.01μM). The safety margins were for diazepam 19.5% (≤2μM) and 34% (>2μM), for THC 19.5% (≤0.01μM) and 24.9% (>0.01μM). Concentration dependent safety margins for BAC were based on a dataset of 29500 alcohol positive specimens, and were in the range 10.4% (0.1g/kg) to 4.0% (4.0g/kg) at a 99% safety level. A simplified approach was used to establish safety margins for the compounds amphetamine, MDMA, methamphetamine, alprazolam, phenazepam, flunitrazepam, clonazepam, nitrazepam, oxazepam, buprenorphine, GHB, methadone, ketamine, cocaine, morphine, zolpidem and zopiclone. The

  19. Effect of poly(vinyl alcohol-co-vinyl acetate) copolymer blockiness on the dynamic interfacial tension and dilational viscoelasticity of polymer-anionic surfactant complex at the water-1-chlorobutane interface.

    PubMed

    Atanase, Leonard Ionut; Bistac, Sophie; Riess, Gérard

    2015-04-01

    Poly(vinyl alcohol-co-vinyl acetate) (PVA) copolymers obtained by partial hydrolysis of poly(vinyl acetate) (PVAc) are of practical importance for many applications, including emulsion and suspension polymerization processes. Their molecular characteristics have a major influence on the colloidal and interfacial properties. The most significant characteristics are represented by the average degree of hydrolysis D̅H̅, average degree of polymerization D̅P̅w̅ but also by the average acetate sequence length n(VAc)(0) which designates the so-called blockiness. Colloidal aggregates were observed in the aqueous PVA solutions having a D̅H̅ value of 73 mol%. The volume fraction of these aggregates at a given D̅H̅ value is directly correlated to the blockiness. Three PVA samples with identical D̅H̅ and D̅P̅w̅ but different blockiness were examined. By pendant drop and oscillating pendant drop techniques it was shown that the PVA sample having the lowest blockiness and thus the lowest volume fraction of colloidal aggregates has lower interfacial tension and elastic modulus E' values. On the contrary, the corresponding values are highest for PVA sample of higher blockiness. In the presence of sodium dodecyl sulfate (SDS), the colloidal aggregates are disaggregated by complex formation due to the hydrophobic-hydrophobic interactions. The PVA-SDS complex acts as a partial polyelectrolyte that induces the stretching of the chains and thus a reduction of the interface thickness. In this case, the interfacial tension and the elastic modulus both increase with increasing SDS concentration for all three PVA samples and the most significant effect was noticed for the most "blocky" copolymer sample.

  20. Concentrations, Distribution and Persistence of Fluorotelomer Alcohols in Sludge-Applied Soils near Decatur, Alabama, USA

    EPA Science Inventory

    Soil samples were collected for fluorotelomer alcohol (FTOH) analyses from six fields to which sludge had been applied and one “background” field that had not received sludge. Ten analytes in soil extracts were quantified using GC/MS. Sludge-applied fields had surface soil FTOH c...

  1. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Ghosh, Animesh

    2013-04-15

    A novel interpenetrating polymer network (IPN) microspheres of locust bean gum (LBG) and poly (vinyl alcohol) (PVA) was developed for oral controlled release of buflomedil hydrochloride (BH) by emulsion crosslinking method using glutaraldehyde as crosslinker. The effects of gum-polymer ratio, concentration of crosslinker and internal phase viscosity were evaluated thoroughly. Drug entrapment efficiency, particle size distribution, swelling property and in vitro release characteristics with kinetic modelling of microspheres were evaluated. The microspheres were characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), solid state C(13) NMR, X-ray diffraction study (XRD) and differential scanning colorimetry (DSC). The microspheres showed control release property without showing any incompatibility in IPN device. Hence, IPN microspheres of LBG and PVA can be used as a potential carrier for controlled oral delivery of highly water soluble drugs like BH.

  2. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration.

  3. Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate.

    PubMed

    Kim, Jong Oh; Choi, Jun Young; Park, Jung Kil; Kim, Jeong Hoon; Jin, Sung Giu; Chang, Sun Woo; Li, Dong Xun; Hwang, Ma-Ro; Woo, Jong Soo; Kim, Jung-Ae; Lyoo, Won Seok; Yong, Chul Soon; Choi, Han-Gon

    2008-12-01

    To develop a clindamycin-loaded wound dressing, cross-linked hydrogel films were prepared using freeze-thawing method with various mixtures of polyvinyl alcohol (PVA) and sodium alginate (SA). The physicochemical properties such as swelling ratio, tensile strength and elongation of hydrogels were evaluated. The drug release from this clindamycin-loaded hydrogel, in vitro protein adsorption test and in vivo wound healing observations in rats were then performed. Increased SA concentration decreased the gelation %, maximum strength and break elongation, but it resulted into an increment in the swelling ability, elasticity and thermal stability of hydrogel film. However, SA had insignificant effect on the release of clindamycin. This hydrogel improved the healing rate of artificial wounds in rats. Thus, a clindamycin-loaded wound dressing with PVA and SA hydrogel should be a candidate for wound care.

  4. Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects.

    PubMed

    Ng, Kenneth W; Torzilli, Peter A; Warren, Russell F; Maher, Suzanne A

    2014-02-01

    Focal cartilage defects reduce the ability of articular cartilage to resist mechanical loading and provide lubrication during joint motion. The limitations in current surgical treatments have motivated the use of biocompatible scaffolds as a future treatment option. Here we describe a second generation macroporous, polyvinyl alcohol (PVA) scaffold with independently tunable morphological and mechanical properties. The compressive moduli of the PVA scaffold increased with increasing polymer concentration and applied compressive strain, with values in the range for human articular cartilage (HA  > 1000 kPa, EY  > 500 kPa). Scaffolds also possessed strain-dependent permeability and Poisson's ratio. The interconnected macroporous network was found to facilitate chondrocyte seeding and proliferation through the scaffold over one week in culture. Overall, these promising characteristics demonstrate the potential of this macroporous scaffold for future studies in focal cartilage defect repair.

  5. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial.

    PubMed

    Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique

    2013-11-11

    A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.

  6. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration. PMID:27236842

  7. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  8. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  9. The synthesis of high molecular weight partially hydrolysed poly(vinyl alcohol) grades suitable for nanoparticle fabrication.

    PubMed

    Chana, Jasminder; Forbes, Ben; Jones, Stuart Allen

    2008-11-01

    Poly(vinyl alcohol) (PVA) is a highly versatile synthetic polymer that is formed by full or partial hydrolysis of poly(vinyl acetate) (PVAc). A wide range of PVA partially hydrolysed grades are commercially available, but the amphiphilic grades of the polymer (30-60% hydrolysis), which probably the most interesting in terms of drug delivery, are not readily available. As a consequence few studies have assessed the application of low hydrolysis PVA polymers to form nanocarriers. The aims of this study were to synthesise amphiphilic grades of PVA on a laboratory scale, analyse their chemical properties and determine whether these grades could be used to form nanoparticles. PVA 30%, PVA 40%, PVA 50% and PVA 60% were synthesised via direct saponification of PVAc. All grades of PVA synthesised had degrees of hydrolysis close to those predicted from the stoichiometry of the saponification reaction. The PVA grades displayed <1.5% batch to batch variability (n=3) in terms of percentage hydrolysis, demonstrating the manufacture process was both reproducible and predictable. Analysis of the polymer characteristics using 13C nuclear magnetic resonance and differential scanning calorimetry revealed that all PVA grades contained block distributions (i.e., eta <1) of vinyl alcohol monomers (eta ranged from 0.33-0.45) with a high probability of adjacency calculated for the hydroxylated units (P(OH) ranged 0.926-0.931). All the grades of PVA formed nanoparticles using a precipitation technique with a trend towards smaller particle size with increasing degree of PVA hydrolysis; PVA 30% resulted in significantly larger nanoparticles (225 nm) compared to PVA 40-60% (137-174 nm).

  10. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro.

    PubMed

    Czarnobaj, Joanna; Bagnall, Keith M; Bamforth, J Steven; Milos, Nadine C

    2014-05-01

    Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected.

  11. Polyvinyl alcohol and amino acids as substitutes for bovine serum albumin in culture media for mouse preimplantation embryos.

    PubMed

    Biggers, J D; Summers, M C; McGinnis, L K

    1997-01-01

    The effect of replacing bovine serum albumin (BSA) in a simple defined medium (KSOM) with polyvinyl alcohol (PVA) and/or amino acids on the percentages of mouse zygotes that develop to at least the blastocyst stage and that hatch at least partially or completely is reported. Blastocysts could form when BSA was replaced with only PVA, but at a moderately reduced rate; however, partial hatching, and hence complete hatching, were severely impaired when BSA was replaced with only PVA. The substitution of BSA with amino acids alone resulted in a high rate of blastocyst formation and moderate impairment of hatching. The addition of PVA to BSA-free KSOM supplemented with amino acids had no extra effect. BSA had significant effects when added to BSA-free KSOM supplemented with amino acids. The BSA caused a significant increase in the rate of partial hatching, and may even have had a small effect on the rate of blastocyst formation. The results also showed that glucose, at a high concentration of 5.56 mM, does not inhibit the development of mouse zygotes to hatched blastocysts when cultured in KSOM supplemented with amino acids. PMID:9286737

  12. Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-05-01

    This research work reports the synthesis and optical properties of CdSe/PVA polymer nanocomposite (PNC's) prepared by wet chemical co-precipitation method. The transmission spectra obtained from UV-Vis-NIR spectrophotometer has been investigated to determine the optical properties of PNC's. Absorption spectra give the information about energy band gap (Eg) and type of transition. Refractive index (n), extinction coefficient (k) was calculated using well known Swanepoel method. Wemple-Di Domenico model (WDD) has been used to calculate dispersion energy (Ed) and oscillator energy (E0). Boling formula is used to calculate nonlinear refractive index (n2) of CdSe/PVA nanocomposite.

  13. Justification for use of a single trichrome stain as the sole means for routine detection of intestinal parasites in concentrated stool specimens.

    PubMed

    Kellogg, J A; Elder, C J

    1999-03-01

    Of 12,321 stool samples analyzed over a 6-year interval, 870 (7.1%) were positive for a total of 1,019 parasites, of which 1,011 (99.2%) were found in trichrome-stained smears of unconcentrated specimens while only 479 (47.0%) were detected in iodine-stained smears of concentrated samples. Stool specimens were next analyzed by trichrome staining of both unconcentrated and concentrated specimens preserved in either mercury-polyvinyl alcohol (PVA) or cupric PVA. Of 2,198 specimens, 171 (7.8%) were positive for a total of 208 parasites, 192 (92.3%) and 204 (98.1%) of which were found in the unconcentrated and concentrated specimens, respectively (P < 0.05). In our patient population, examination of a single trichrome-stained smear of a concentrated stool specimen is a cost-effective alternative to routinely analyzing both concentrated and unconcentrated specimens for parasites.

  14. Justification for Use of a Single Trichrome Stain as the Sole Means for Routine Detection of Intestinal Parasites in Concentrated Stool Specimens

    PubMed Central

    Kellogg, James A.; Elder, Carol J.

    1999-01-01

    Of 12,321 stool samples analyzed over a 6-year interval, 870 (7.1%) were positive for a total of 1,019 parasites, of which 1,011 (99.2%) were found in trichrome-stained smears of unconcentrated specimens while only 479 (47.0%) were detected in iodine-stained smears of concentrated samples. Stool specimens were next analyzed by trichrome staining of both unconcentrated and concentrated specimens preserved in either mercury-polyvinyl alcohol (PVA) or cupric PVA. Of 2,198 specimens, 171 (7.8%) were positive for a total of 208 parasites, 192 (92.3%) and 204 (98.1%) of which were found in the unconcentrated and concentrated specimens, respectively (P < 0.05). In our patient population, examination of a single trichrome-stained smear of a concentrated stool specimen is a cost-effective alternative to routinely analyzing both concentrated and unconcentrated specimens for parasites. PMID:9986870

  15. Cytochrome P450 CYP 2E1 induction during chronic alcohol exposure occurs by a two-step mechanism associated with blood alcohol concentrations in rats.

    PubMed

    Ronis, M J; Huang, J; Crouch, J; Mercado, C; Irby, D; Valentine, C R; Lumpkin, C K; Ingelman-Sundberg, M; Badger, T M

    1993-02-01

    Intragastric infusion of ethanol to male rats as part of a system of total enteral nutrition allows chronic ethanol treatment without the nutritional and feeding problems associated with traditional liquid diets. Even though ethanol was infused at a constant rate 24 h a day, blood alcohol concentrations were observed to cycle over a 5- to 7-day period from values less than 10 mg/dl to greater than 400 mg/dl. Examination of the hepatic microsomal mono-oxygenase system in animals chronically treated with ethanol using this model revealed variable induction of cytochrome P450 CYP 2E1, the principal component of the microsomal ethanol oxidizing system. Correlations were observed between urine alcohol concentrations (UACs) and 1) the level of expression of CYP 2E1 mRNA in Northern blot analysis, 2) the level of CYP 2E1 apoprotein in Western blot analysis and, 3) microsomal p-nitrophenol (PNP) hydroxylation. The data from ethanol-treated animals were expressed as low UAC group (UACs < 200 mg/dl) and a high UAC group (UACs > 300 mg/dl) and compared to total enteral nutrition controls. In the low UAC group, a 6- to 7-fold induction in microsomal PNP hydroxylase (a CYP 2E1-dependent activity) was accompanied by a 4- to 5-fold increase in CYP 2E1 apoprotein, but no increase in CYP 2E1 mRNA levels. In contrast, in the high UAC group, induction of PNP hydroxylase was 15- to 16-fold, induction of CYP 2E1 apoprotein was 12- to 13-fold and CYP 2E1 mRNA was elevated 5- to 6-fold.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films.

    PubMed

    Jiang, Xiancai; Jiang, Ting; Gan, Lingling; Zhang, Xiaofei; Dai, Hua; Zhang, Xi

    2012-11-01

    Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.

  17. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.

    PubMed

    Merkle, Valerie M; Zeng, Like; Slepian, Marvin J; Wu, Xiaoyi

    2014-04-01

    Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.

  18. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  19. Spectroscopic analysis of PVA/CMC: NiCuZnFe2O4 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, G., Thejas Urs; Somashekarappa, H.; Somashekar, R.

    2015-06-01

    Nickel copper zinc ferrite nanoparticle doped PVA/CMC nanocomposites are synthesized by solution casting method. Wide angle X-ray scattering technique has been used to characterize these nanocomposites. Using Williamson-Hall plot we have determined the microcrystalline parameters like crystallite size and lattice strain for theses samples for various concentration of nanoparticles. We find significant changes in the microstructural parameters with the concentration of nanoparticles. The prepared films are analyzed using FTIR.

  20. Functional data analysis of experimental parameters obtained in PVA doped CdCl2 polymer composites

    NASA Astrophysics Data System (ADS)

    Prakash, M. B. Nanda; Urs, Gopal Krishne; Somashekar, R.

    2016-05-01

    Using solution casting method, PVA based polymer composites films with various concentrations of CdCl2 were prepared. Prepared polymer composites films were investigated using XRD. Crystallite size for different concentrations of CdCl2 are computed here using Williamson and Hall plot (WH plot), an in-house program developed by us. To correlate between two independent physical parameters size and conductivity, we have chosen functional data analysis to estimate the maxima and minima in these polymer composites systems.

  1. Preparation and Characterisation of Pva Doped with Beta Alanine

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, R.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Pure PVA has been doped with different amount of β - alanine. Film has been prepared by Solution Casting Technique using water as a solvent. The Complex formation between the PVA and β - alanine has been confirmed by FTIR. The Pure PVA conductivity is in the order 10-10 Scm-1 at ambient temperature. The conductivity has been found to increase to the order 10-6 when doped with 10% β - alanine. In this paper characterization of a PVA doped with β-ala has been studied using XRD, FTIR, AC impedance analysis and the results are reported.

  2. Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface.

    PubMed

    Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence

    2016-09-27

    Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet. PMID:27506399

  3. Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface.

    PubMed

    Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence

    2016-09-27

    Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.

  4. ZnO-PVA nanocomposite films for low threshold optical limiting applications

    SciTech Connect

    Viswanath, Varsha; Beenakumari, C.; Muneera, C. I.

    2014-10-15

    Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages (<1.2 wt%) of ZnO in PVA (∼0.625×10{sup −3}M to 7×10{sup −3}M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayed by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ{sup (3)}|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices.

  5. ZnO-PVA nanocomposite films for low threshold optical limiting applications

    NASA Astrophysics Data System (ADS)

    Viswanath, Varsha; Beenakumari, C.; Muneera, C. I.

    2014-10-01

    Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages (<1.2 wt%) of ZnO in PVA (˜0.625×10-3M to 7×10-3M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayed by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ(3)|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices.

  6. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    NASA Astrophysics Data System (ADS)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  7. Preparation of ferric ion crosslinked acrylamide grafted poly (vinyl alcohol)/sodium alginate microspheres and application in controlled release of anticancer drug 5-fluorouracil.

    PubMed

    Şanlı, Oya; Olukman, Merve

    2014-05-01

    Ionically crosslinked microspheres of acrylamide (AAm) grafted poly (vinyl alcohol) (PVA)/sodium alginate (NaAlg) were prepared by crosslinking with FeCl3 and 5-fluorouracil (5-FU), which is an anticancer drug and was successfully encapsulated into the microspheres. The graft copolymer (PVA-g-PAAm) was characterized by using Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The prepared microspheres were characterized by FTIR and scanning electron microscopy (SEM). Microspheres were also characterized by particle diameter, equilibrium swelling values and release profiles. The release studies were carried out at three pH values 1.2, 6.8 and 7.4, respectively, each for 2 h. The effects of preparation conditions as PVA-g-PAAm/NaAlg ratio, drug/polymer ratio, crosslinker concentration and exposure time to FeCl3 on the release of 5-FU were investigated for 6 h at 37 °C. The highest 5-FU release was found to be as 99.57% (w/w) at the end of 6 h for PVA-g-PAAm/NaAlg ratio of 1:4 (w/w), drug/polymer ratio of 1:8 (w/w), crosslinker concentration of 0.05 M and exposure time of 10 min. The release results were also supported by the swelling measurements of the microspheres. Release kinetics was described by Fickian and non-Fickian approaches.

  8. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Feng, Mingjun; Zhang, Deqing; Su, Yongbo; Cai, Chenbo; Si, Minzhen

    2013-04-01

    Surface-enhanced Raman spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Recently, SERS has been increasingly employed in the study of biological macromolecules, from DNA and peptides to whole proteins, and cells. However, visible laser sources usually employed in SERS detections always lead to photochemical reactions as well as intensive fluorescence emission from the biological samples. A way to avoid these questions is the employment of near infrared (NIR) laser excitation; thus, it demands the appropriate designs of NIR-SERS substrates in order to obtain the maximum enhancement of the Raman signals from biological analytes. In this work, we demonstrate the fabrication of a new NIR-SERS substrate of polyvinyl alcohol (PVA) coating Ag nanofilms (PVA-coating Ag nanofilm) using a simple and low-cost microwave strategy. The experimental data show that, the plasmon resonance band of the PVA-coating Ag nanofilm is in the region of 400-900 nm, and the maximum center is at ∼780 nm, which matches well with the 785 nm laser excitation employed in this work. With the NIR-SERS detections of hematin and hemoglobin molecules adsorbed on this PVA-coating Ag nanofilm, one can see that the NIR-SERS activity and spectroscopy reproducibility of this NIR-SERS substrate are all perfect. By using of the tested molecule of hematin, the PVA-coating Ag nanofilm shows a high enhancement factor (EF) of ∼107. As the fabrication process of this NIR-SERS substrate is very simple and inexpensive, this method may be used in large-scale preparation of SERS substrates that have been widely applied in Raman analysis. Especially, this PVA-coating Ag nanofilm can also be served as a novel NIR-SERS substrate in biochemical analysis due to its good NIR characteristics.

  9. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli.

    PubMed

    Zhang, Fei; Wu, Juan; Kang, Ding; Zhang, Hongbin

    2013-01-01

    Novel nanocomposite hydrogels composed of hyaluronan (HA), poly(vinyl alcohol) (PVA) and silver nanoparticles were prepared by several cycles of freezing and thawing. The nanocomposite was then characterised using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD) and scanning electron microscopy (SEM). The complex hydrogels consisted of semi-interpenetrating network structures, with PVA microcrystallines as junction zones. By increasing the HA content, the crystallinity and melting temperature of the complex hydrogels decreased, whereas the glass transition temperatures of these materials increased because of the steric hindrance of HA and the occurrence of intermolecular interactions through hydrogen bonding between HA and PVA in the complex hydrogels. Swelling studies showed that in comparison with the swelling properties of the cryogels from PVA alone, those of the complex hydrogels can be significantly improved and presented in a pH-sensitive manner. In addition, silver nanoparticles were synthesised through UV-initiated photoreduction with HA functioning as a reducing agent and stabiliser. The silver nanoparticles were then incorporated in situ into the HA/PVA complex hydrogel matrix. The size and morphology of the as-prepared Ag nanoparticles were investigated through ultraviolet-visible light spectroscopy, transmission electron microscopy, XRD and thermogravimetric analysis. The experimental results indicated that silver nanoparticles 20-50 nm in size were uniformly dispersed in the hydrogel matrix. The antibacterial effects of the HA/PVA/Ag nanocomposite hydrogel against Escherichia coli were evaluated. The results show that this nanocomposite hydrogel possesses high antibacterial property and has a potential application as a wound dressing material. PMID:23829455

  10. Driving performance on the descending limb of blood alcohol concentration (BAC) in undergraduate students: a pilot study.

    PubMed

    Tremblay, Mathieu; Gallant, François; Lavallière, Martin; Chiasson, Martine; Silvey, Dustin; Behm, David; Albert, Wayne J; Johnson, Michel J

    2015-01-01

    Young drivers are overrepresented in collisions resulting in fatalities. It is not uncommon for young drivers to socially binge drink and decide to drive a vehicle a few hours after consumption. To better understand the risks that may be associated with this behaviour, the present study has examined the effects of a social drinking bout followed by a simulated drive in undergraduate students on the descending limb of their BAC (blood alcohol concentration) curve. Two groups of eight undergraduate students (n = 16) took part in this study. Participants in the alcohol group were assessed before drinking, then at moderate and low BAC as well as 24 hours post-acute consumption. This group consumed an average of 5.3 ± 1.4 (mean ± SD) drinks in an hour in a social context and were then submitted to a driving and a predicted crash risk assessment. The control group was assessed at the same time points without alcohol intake or social context.; at 8 a.m., noon, 3 p.m. and 8 a.m. the next morning. These multiple time points were used to measure any potential learning effects from the assessment tools (i.e. driving simulator and useful field of view test (UFOV)). Diminished driving performance at moderate BAC was observed with no increases in predicted crash risk. Moderate correlations between driving variables were observed. No association exists between driving variables and UFOV variables. The control group improved measures of selective attention after the third assessment. No learning effect was observed from multiple sessions with the driving simulator. Our results show that a moderate BAC, although legal, increases the risky behaviour. Effects of alcohol expectancy could have been displayed by the experimental group. UFOV measures and predicted crash risk categories were not sensitive enough to predict crash risk for young drivers, even when intoxicated.

  11. Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures.

    PubMed

    Helland, Arne; Lydersen, Stian; Lervåg, Lone-Eirin; Jenssen, Gunnar D; Mørland, Jørg; Slørdal, Lars

    2016-09-01

    Simulator sickness is a major obstacle to the use of driving simulators for research, training and driver assessment purposes. The purpose of the present study was to investigate the possible influence of simulator sickness on driving performance measures such as standard deviation of lateral position (SDLP), and the effect of alcohol or repeated simulator exposure on the degree of simulator sickness. Twenty healthy male volunteers underwent three simulated driving trials of 1h's duration with a curvy rural road scenario, and rated their degree of simulator sickness after each trial. Subjects drove sober and with blood alcohol concentrations (BAC) of approx. 0.5g/L and 0.9g/L in a randomized order. Simulator sickness score (SSS) did not influence the primary outcome measure SDLP. Higher SSS significantly predicted lower average speed and frequency of steering wheel reversals. These effects seemed to be mitigated by alcohol. Higher BAC significantly predicted lower SSS, suggesting that alcohol inebriation alleviates simulator sickness. The negative relation between the number of previous exposures to the simulator and SSS was not statistically significant, but is consistent with habituation to the sickness-inducing effects, as shown in other studies. Overall, the results suggest no influence of simulator sickness on SDLP or several other driving performance measures. However, simulator sickness seems to cause test subjects to drive more carefully, with lower average speed and fewer steering wheel reversals, hampering the interpretation of these outcomes as measures of driving impairment and safety. BAC and repeated simulator exposures may act as confounding variables by influencing the degree of simulator sickness in experimental studies. PMID:27322638

  12. Enhancement of PVA-degrading enzyme production by the application of pH control strategy.

    PubMed

    Li, Min; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2012-02-01

    In batch culture for Poly(vinyl alcohol) (PVA)-degrading enzyme (PVAase) production by a mixed culture, higher pH (pH 7.5) was favorable for PVAase production at the prophase of cultivation, but lower pH (pH 7.0) was favorable at the anaphase. This situation was caused by the fact that the optimum pH for different key enzymes [PVA dehydrogenase (PVADH) and oxidized PVA hydrolase (OPH)] production is various. The activity and average specific production rate of PVADH reached the highest values at constant pH 7.5, whereas those of OPH appeared at pH 7.0. A two-stage pH control strategy was therefore developed and compared for its potential in improving PVAase production. By using this strategy, the maximal PVAase activity reached 2.05 U/ml, which increased by 15.2% and 24.2% over the fermentation at constant pH 7.5 and 7.0.

  13. Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Pujari, P. K.; Poojary, Boja; Somashekar, R.

    2014-10-01

    Poly(vinyl alcohol) (PVA)/Sodium alginate (NaAlg) blend films with 60:40 wt% were prepared by solution casting method and subjected to UV irradiation for different intervals of time. The optical, mechanical and morphological properties of the blend films were modified after UV irradiation. The FTIR and FT-Raman results show the chemical interaction between PVA and NaAlg. The UV-vis absorption peak at 278 nm shifts slightly towards longer wavelength and the absorption increases with irradiation time, indicate the increase in crosslinking network. The XRD results show an increase in amorphous nature with increase in UV irradiation time. The DSC/TGA results show a single glass transition temperature (Tg), which confirm that the blends are completely miscible and thermally stable up to 250 °C. The Young's modulus, tensile strength and stiffness of the blend films increase with increase in UV irradiation time. The SEM images confirm that the surface of 48 h UV irradiated PVA:NaAlg blend is more photo-resistant than unirradiated blend.

  14. Optical Absorption Behavior of co (ii) Ion Doped Pva Assisted CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    CdSe is an important II-VI, n-type direct band gap semiconductor with wide band gap (bulk band gap of 2.6 eV) and an attractive host for the development of doped nanoparticles. Poly vinyl alcohol (PVA) is used as a capping agent to stabilize the CdSe nanoparticles. The optical properties of Co (II) ion doped PVA capped CdSe nanoparticles grown at room temperature are studied in the wavelength region of 200-1400 nm. The spectrum of Co (II) ion doped PVA capped CdSe nanoparticles exhibit five bands at 1185, 620, 602, 548 and 465 nm (8437, 16125, 16607, 18243 and 21499 cm-1). The bands observed at 1185, 548 and 465 nm are correspond to the three spin allowed transitions 4T1g (F) → 4T2g (F), 4T1g (F) → 4A2g (F) and 4T1g (F) → 4T1g (P) respectively. The other bands observed at 602 nm and 620 nm are assigned to spin forbidden transitions 4T1g (F) → 2T2g (G), 4T1g (F) → 2T1g (G). The small value of the Urbach energy indicates greater stability of the prepared sample.

  15. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. PMID:26572421

  16. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. PMID:27027727

  17. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

    PubMed

    Kanimozhi, K; Khaleel Basha, S; Sugantha Kumari, V

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. PMID:26838875

  18. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  19. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  20. A polyvinyl alcohol-coated silica gel stationary phase for hydrophilic interaction chromatography.

    PubMed

    Ji, Shunli; Zheng, Yang; Zhang, Feifang; Liang, Xinmiao; Yang, Bingcheng

    2015-09-21

    Multiple layers of polyvinyl alcohol (PVA) coating are generated onto silica gel by thermal immobilization to form a stationary phase applied for hydrophilic interaction liquid chromatography (HILIC). It offers an easy way to manipulate the thickness of PVA coating and the obtained stationary phase demonstrated high efficiency and high chemical stability. PMID:26280030

  1. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  2. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    SciTech Connect

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  3. A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility.

    PubMed

    Leone, Gemma; Consumi, Marco; Greco, Giuseppe; Bonechi, Claudia; Lamponi, Stefania; Rossi, Claudio; Magnani, Agnese

    2011-05-01

    To overcome opacification and absence of accommodation of human lens substitutes a new poly(vinyl alcohol) (PVA)/poly(N-vinyl-2- pyrrolidinone) (PVP) based hydrogel (PPS31075) was realised. The Infrared Spectroscopy and the mechanical spectra confirmed the successful occurrence of crosslinking reaction. The rheological analysis pointed out a behavior comparable with that of young human lens in terms of complex shear modulus and accommodation capability. Further analysis in terms of optical properties, water content measurements, diffusion coefficient, cytotoxicity, and human capsular cell adhesion confirmed the applicability of such a hydrogel as potential human lens substitute.

  4. Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan.

    PubMed

    Zhang, Dan; Yu, Guanghua; Long, Zhu; Yang, Guihua; Wang, Bin

    2016-04-20

    Phenylboronic acid-derivatized chitosan (chitosan-PBA) were prepared by grafting small molecules bearing phenylboronic acid groups onto chitosan with N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) as a coupling reagent pair. Self-assembly multilayer thin films of chitosan-PBA and poly(vinyl alcohol) were subsequently produced under pH control on supporting surfaces, either a silicon wafer or polystyrene latex particles. The driving force of the self-assembly was the ester formation of phenylboronic acid containing polymers with PVA, which can be "turned off" by simple pH control. PMID:26876848

  5. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads.

    PubMed

    Bonine, Bárbara M; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

  6. Effect of ethylene carbonate as a plasticizer on CuI/PVA nanocomposite: Structure, optical and electrical properties

    PubMed Central

    Mohamed, Shaimaa A.; Al-Ghamdi, A.A.; Sharma, G.D.; El Mansy, M.K.

    2013-01-01

    Layers of ethylene carbonate (EC) modified CuI/PVA polymer composites were prepared by growth of CuI nano-particles in an aqueous solution of PVA followed by casting at room temperature. The structural, thermal, optical, electrical and di-electrical characterization of polymer composites was investigated using different techniques. These investigations confirm the growth of CuI nano-particles and reduction of PVA crystallinity by increasing ethylene carbonate concentration. These results show that energy band gap and bulk conductivity increase while activation energy reduces with the increase of EC concentration in the composite. Moreover, the variation of the dielectric permittivity and dielectric loss with EC content are found to obey Debye dispersion relations. PMID:25685474

  7. HEA-PVA gel system for UVA radiation dose measurement.

    PubMed

    Zhang, Wei; Yang, Liming; Fang, Sijia; Chen, Jie

    2016-10-01

    Acrylic monomer is known to be sensitive to ultraviolet radiation (UVR) through photoinitiator. Upon irradiation, the acrylic monomers formed stable polymer through free radical polymerization, hence its appearance will change from colorless and transparent to colored and non-transparent. Furthermore, the degree of changes was based on the UVR dose, and those optical changes could be detected by UV-vis spectrophotometer at the fixed wavelength of 550nm. In this study, we used 2-hydroxyethyl acrylate (HEA) as acrylic monomer, which mixed with polyvinyl alcohol (PVA), and finally obtained a three-dimensional hydrogel material through cross-linking by glutaraldehyde (GA). After doping with photoinitiator-Bis(2,6-difluoro-3-(1-hydropyrro-1-yl)-phenyl) titanocene (784), the gel material was sensitive to UV-A radiation (400-315nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. The behavior of different formulations' dose response sensitivity, detector linearity, diffusion, stability after UVA radiation were investigated. The results showed that when the dosage range of UVA radiation was 0-560J/cm(2), the gel had a great sensitivity and the linearity was found to be closed to 1. After UVA radiation, the gel also had a very good optical stability. In addition to this, when irradiated with high dose UVA, the gel could maintain a low diffusion. PMID:27543762

  8. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-10-01

    The effect of increasing honey concentrations from 10% to 30% within the Honey (H)/polyvinyl alcohol (P)/chitosan (CS) nanofibers was investigated. Changes in the electrospun nanofiber diameters, crystallinity, thermal behavior, porosity and antibacterial activity have been assessed using SEM, XRD, DSC, TGA, mercury porosimeter and viable cell count technique. The HPCS nanofibers were cross-linked and tested for their swelling abilities and degradation behavior. The mean diameter of HPCS nanofibers increased from 284±97nm to 464±185nm upon increasing the honey concentration from 10% to 30%. Irrespective the honey concentrations, the nanofibers have demonstrated enhanced porosity. Increasing the honey concentration resulted in a reduction in the swelling of the 1h cross-linked HPCS nanofibers containing 10% and 30% H from 520% to 100%; respectively. Degradation after 30days was reduced in the 3h cross-linked HPCS nanofibers compared to the non-crosslinked HPCS nanofibers. Enhanced antibacterial activity was achieved against both Staphylococcus aureus and Escherichia coli upon increasing the honey concentration. Changing the honey concentration and the extent of nanofiber crosslinking can be used to adjust different parameters of the HPCS nanofibers to suit their applications in wound healing and tissue engineering.

  9. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-10-01

    The effect of increasing honey concentrations from 10% to 30% within the Honey (H)/polyvinyl alcohol (P)/chitosan (CS) nanofibers was investigated. Changes in the electrospun nanofiber diameters, crystallinity, thermal behavior, porosity and antibacterial activity have been assessed using SEM, XRD, DSC, TGA, mercury porosimeter and viable cell count technique. The HPCS nanofibers were cross-linked and tested for their swelling abilities and degradation behavior. The mean diameter of HPCS nanofibers increased from 284±97nm to 464±185nm upon increasing the honey concentration from 10% to 30%. Irrespective the honey concentrations, the nanofibers have demonstrated enhanced porosity. Increasing the honey concentration resulted in a reduction in the swelling of the 1h cross-linked HPCS nanofibers containing 10% and 30% H from 520% to 100%; respectively. Degradation after 30days was reduced in the 3h cross-linked HPCS nanofibers compared to the non-crosslinked HPCS nanofibers. Enhanced antibacterial activity was achieved against both Staphylococcus aureus and Escherichia coli upon increasing the honey concentration. Changing the honey concentration and the extent of nanofiber crosslinking can be used to adjust different parameters of the HPCS nanofibers to suit their applications in wound healing and tissue engineering. PMID:27287123

  10. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    PubMed

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  11. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation.

    PubMed

    Jia, Dongxu; Yang, Yu; Peng, Zhengcong; Zhang, Dongxu; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-03-01

    Poly(vinyl alcohol) dehydrogenase (PVADH, EC 1.1.99.23) is an enzyme which has potential application in textile industry to degrade the poly(vinyl alcohol) (PVA) in waste water. Previously, a 1,965-bp fragment encoding a PVADH from Sphingopyxis sp. 113P3 was synthesized based on the replacement of the rare codons in Escherichia coli (E. coli). In this work, the deduced mature PVADH (mPVADH) gene of 1,887 bp was amplified by polymerase chain reaction (PCR) and inserted into the site between NcoI and HindIII in pET-32a(+). The constructed recombinant plasmid was transformed into E. coli Rosetta (DE3). In shake flask, the fusion protein of thioredoxin (Trx)-mPVADH was expressed precisely; however, Trx-mPVADH was found to accumulate mainly as inclusion bodies. After isolating, dissolving in buffer containing urea, purification, dialysis renaturation, and digesting with recombinant enterokinase/His (rEK/His), the bioactive mPVADH fragments were obtained with protein concentration of 0.56 g/L and enzymatic activity of 194 U/mL. The K m and V max values for PVA 1799 were 2.33 mg/mL and 15.7 nmol/(min·mg protein), respectively. (1)H-NMR and infrared (IR) spectrum demonstrated that its biological function was oxidizing hydroxyl groups of PVA 1799 to form diketone, and PVA 1799 could be degraded completely by successive treatment with mPVADH and oxidized PVA hydrolase (OPH).

  12. Bioactivity of permselective PVA hydrogels with mixed ECM analogues.

    PubMed

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2015-12-01

    The presentation of multiple biological cues, which simulate the natural in vivo cell environment within artificial implants, has recently been identified as crucial for achieving complex cellular functions. The incorporation of two or more biological cues within a largely synthetic network can provide a simplified model of multifunctional ECM presentation to encapsulated cells. Therefore, the aim of this study was to examine the effects of simultaneously and covalently incorporating two dissimilar biological molecules, heparin and gelatin, within a PVA hydrogel. PVA was functionalized with 7 and 20 methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogels. Both heparin and gelatin were covalently incorporated into PVA at an equal ratio resulting in a final PVA:heparin:gelatin composition of 19:0.5:0.5. The combination of both heparin and gelatin within a PVA network has proven to be stable over time without compromising the PVA base characteristics including its permselectivity to different proteins. Most importantly, this combination of ECM analogues supplemented PVA with the dual functionalities of promoting cellular adhesion and sequestering growth factors essential for cellular proliferation. Multi-functional PVA hydrogels with synthetically controlled network characteristics and permselectivity show potential in various biomedical applications including artificial cell implants.

  13. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  14. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film

    NASA Astrophysics Data System (ADS)

    Abdel-Baset, T. A.; Hassen, A.

    2016-10-01

    A film of 0.98 polyvinyl alcohol (PVA)/0.02 Polyacrylonitrile (PAN) has been prepared using casting method. The dielectric properties were measured as function of temperature and frequency. The dielectric permittivity of PVA is considerably enhanced by doping with PAN. Different relaxation processes have been recognized within the studied ranges of temperature and frequency. The frequency temperature superposition (FTS) is well verified. Frequency and temperature dependence of Ac conductivity, σac, were studied. The conduction mechanism of pure PVA and PVA doped with PAN are discussed. The activation energy either for relaxation or conduction was calculated. Comparison with similar polymeric materials is discussed.

  15. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  16. Study of enhanced red emission from Sm(Sal) 3Phen ternary complexes in Poly Vinyl Alcohol film

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Dwivedi, Y.; Rai, S. B.

    2010-09-01

    In the present work, dinuclear complexes of salicylic acid (Sal) and 1,10-phenanthroline (Phen) were synthesized with different concentrations of Samarium ion (Sm 3+) in Poly Vinyl Alcohol (PVA) polymer films and their structural and spectroscopic properties were investigated. Judd-Ofelt theory has been employed to estimate the several radiative parameters for SmCl 3 and Sm(Sal) 3Phen complex in PVA polymer film which are in fairly agreement between the experimental and the theoretical values supporting the J-O theory. Photoluminescence properties of the complex have been studied on 355 nm and 400 nm excitations in steady state as well as in time domain. On the basis of the UV-Vis absorption, FT-IR absorption, excitation, emission spectra and decay curves, spectroscopic properties of these films were studied and the photophysics involved was explained in terms of energy transfer and the RE encapsulation effect.

  17. Polyvinyl Alcohol Hydrogel Irradiated and Acetalized for Osteochondral Defect Repair: Mechanical, Chemical, and Histological Evaluation after Implantation in Rat Knees

    PubMed Central

    Batista, N. A.; Rodrigues, A. A.; Bavaresco, V. P.; Mariolani, J. R. L.; Belangero, W. D.

    2012-01-01

    Polyvinyl Alcohol (PVA) hydrogel plugs were implanted in artificial osteochondral defects on the trochlear groove of rat knees. After 0, 3, 6, 12, and 24 weeks of followup, samples containing the implants were mechanically evaluated by creep indentation test, chemically, and histologically by optical microscopy. The mechanical test pointed towards an increase of the implant creep modulus and the chemical analysis exhibited an increasing concentration of calcium and phosphorus within the implants over time. Optical microscopy showed no foreign body reaction and revealed formation, differentiation, and maintenance of new tissue at the defect/implant interface. The absence of implant wear indicated that the natural articular lubrication process was not disturbed by the implant. The performance of the irradiated and acetalized PVA was considered satisfactory for the proposed application. PMID:23197982

  18. Dielectric and electric conductivity studies of PVA (Mowiol 10-98) doped with MWCNTs and WO3 nanocomposites films

    NASA Astrophysics Data System (ADS)

    Rithin Kumar, N. B.; Crasta, Vincent; Praveen, B. M.

    2016-05-01

    In this article, we report the doping of MWCNTs and WO3 nanoparticles into the PVA matrix for fabricating a novel class of PVA nanocomposite using solvent casting method. The behavioral effect of these embedded nanoparticles in PVA matrix for different doping concentrations on microstructural, dielectric and electric properties are analyzed for possible device applications. The formation of nanocomposites and their microstructural variations for different doping concentration were inspected by x-ray diffraction studies. As the doping concentration increases from x = 0 to 7.5 wt%, the DC conductivity rises from 1.0528 × 10-11 to 3.7764 × 10-9 S cm-1 and beyond the dopant concentration x > 7.5 wt% the DC conductivity was found to decrease. The frequency dependent dielectric constant decreases with an increase in dopant concentration. The values of electric modulus, AC conductivity and polarization relaxation time extracted from dielectric data spectacles an enhancement behavior in conducting property of PVA nanocomposites with increasing concentration up to x = 7.5 wt% and above x > 7.5 wt% the values found decreasing. The information regarding the surface morphology and chemical configuration of the nanocomposites are determined by using atomic force microscope (AFM), scanning electron microscope (SEM) and energy dispersive analysis of x-rays (EDS) techniques.

  19. Electrical and optical properties of ferric doped PVA-PVP-PPy composite films

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Ranganath, M. R.; Lobo, Blaise

    2013-02-01

    The analysis of experimental optical spectra & electrical properties of PVA-PVP-PPy composite films is discussed in this paper. The optical parameters like activation energy of optical transitions and the optical band gap for direct and indirect allowed transitions were determined for PVA-PVP-PPy composite films doped with different concentrations of ferric chloride. The optical band gap showed best fit for indirect allowed transitions, and there is a decrease in the optical band gap with increase in concentration of ferric chloride. The DC electrical properties of these films indicated agreement with Mott's Variable Range Hopping Model in three dimensions. The width of the forbidden band gap was determined from the Arrhenius relation after experimentally studying in-situ, the variation of DC electrical conductivity with temperature.

  20. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity. PMID:26275118

  1. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity.

  2. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes.

    PubMed

    Lubambo, A F; Ono, L; Drago, V; Mattoso, N; Varalda, J; Sierakowski, M-R; Sakakibara, C N; Freitas, R A; Saul, C K

    2015-12-10

    Polyvinyl Alcohol (PVA)/guar gum (GG) membranes with different loads of paramagnetic iron oxide Fe3O4 nanoparticles were successfully electrospun using both non-alkaline and alkaline stock solutions. The nanoparticle homogeneity distribution was clearly enhanced in fibers obtained from alkaline stock solutions. This is mainly due to the interaction between GG and the metallic ion, which also leads to further dispersion of remained uncoated nanoparticles in the mixture. It was also noticed that GG favors nanoparticle stability in the mixture and contributes to nanoparticle encapsulation. X-ray results showed that all membranes were semi-crystalline. FTIR-ATR spectra showed that Fe-O absorption band intensity improved with increasing nanoparticle load, reaching saturation at 3.5mg/ml Fe3O4 concentration under alkaline conditions. VSM analyses showed that the nanoparticles are paramagnetic and were successfully incorporated by the fibers. In vitro biocompatibility tests using L929 cells indicates adequate levels of cytotoxicity and cell adhesion/proliferation assays for both membranes obtained from non-alkaline and alkaline stock solutions. Therefore, they have potential for biomedical applications as biodegradable wound dressing. PMID:26428185

  3. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes.

    PubMed

    Lubambo, A F; Ono, L; Drago, V; Mattoso, N; Varalda, J; Sierakowski, M-R; Sakakibara, C N; Freitas, R A; Saul, C K

    2015-12-10

    Polyvinyl Alcohol (PVA)/guar gum (GG) membranes with different loads of paramagnetic iron oxide Fe3O4 nanoparticles were successfully electrospun using both non-alkaline and alkaline stock solutions. The nanoparticle homogeneity distribution was clearly enhanced in fibers obtained from alkaline stock solutions. This is mainly due to the interaction between GG and the metallic ion, which also leads to further dispersion of remained uncoated nanoparticles in the mixture. It was also noticed that GG favors nanoparticle stability in the mixture and contributes to nanoparticle encapsulation. X-ray results showed that all membranes were semi-crystalline. FTIR-ATR spectra showed that Fe-O absorption band intensity improved with increasing nanoparticle load, reaching saturation at 3.5mg/ml Fe3O4 concentration under alkaline conditions. VSM analyses showed that the nanoparticles are paramagnetic and were successfully incorporated by the fibers. In vitro biocompatibility tests using L929 cells indicates adequate levels of cytotoxicity and cell adhesion/proliferation assays for both membranes obtained from non-alkaline and alkaline stock solutions. Therefore, they have potential for biomedical applications as biodegradable wound dressing.

  4. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application.

    PubMed

    Fu, Ruoqiu; Li, Chenwen; Yu, Caiping; Xie, Hong; Shi, Sanjun; Li, Zhuoheng; Wang, Qing; Lu, Laichun

    2016-01-01

    This study reports on the performance of sodium alginate (SA)/poly(vinyl alcohol) (PVA)/moxifloxacin hydrochloride (MH) nanofibrous membranes (NFM) capable of providing antibacterial agent delivery for wound-dressing applications. The aim of this work was to prepare antibacterial NFM with good permeability properties by employing PVA and SA as carriers. A group of 12% PVA/2% SA solutions blended in various ratios (8:2, 7:3, 6:4, 5:5 and 4:6, v/v) and containing 0.5, 1, 2 or 4 wt% MH were studied for electrospinning into nanoscale fibermats. The optimum ratio found to form smooth fibers with uniform fibrous features was 6:4. The drug release behavior of the electrospun, the antibacterial effects on Pseudomonas aeruginosa and Staphylococcus aureus and the animal wound dressing capabilities were also investigated. As much as 80% of the MH was released from the electrospun after 10 h of incubation at 37 °C. In addition, the NFM with 0.5 MH exhibited less activity, whereas those with higher concentrations of MH exhibited greater antibacterial effect. Furthermore, the MH-loaded electrospun accelerated the rate of wound dressing compared to other groups. The results of the in vitro and in vivo experiments suggest that MH/PVA/SA nanofibers might be an interesting bioactive wound dressing for clinical applications.

  5. Lignosulfonate as reinforcement in polyvinyl alcohol film: Mechanical properties and interaction analysis.

    PubMed

    Ye, De-zhan; Jiang, Li; Hu, Xiao-qin; Zhang, Ming-hua; Zhang, Xi

    2016-02-01

    Recently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrated the possibility of using eucalyptus lignosulfonate calcium (HLS) particles as reinforcement in polyvinyl alcohol (PVA) matrix. 41% and 384.7% improvement of pure PVA tensile strength and Young's modulus were achieved with incorporation of 5 wt% HLS. The above results were ascribed to specific intermolecular interactions between HLS and PVA, suggested by the increasing PVA glass transition and crystalline relaxations temperature, depression of melting point with HLS incorporation. Moreover, this interaction was quantitatively determined by q value of -62.4±10.0 in Kwei equation. Additionally, the remarkable red shift of wavenumber corresponding to hydroxyl group also indicated the formation of strong hydrogen bond in HLS/PVA blend. SEM characterization confirmed that HLS/PVA blends are at least miscible.

  6. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  7. Biodegradation of high concentration of nitrobenzene by Pseudomonas corrugata embedded in peat-phosphate esterified polyvinyl alcohol.

    PubMed

    Liu, Na; Li, Hai-Jun; Shi, Yue-E; Zhu, Bo-Lin; Gao, Song

    2013-10-01

    Efficiency on biodegradation of high concentration of nitrobenzene (NB) by peat-phosphate esterified polyvinyl alcohol-embedded NB-degrading bacteria Pseudomonas corrugata was conducted compared to free bacteria cells. Its biodegradation kinetics, reuse ability, degradation effect in the absence of the essential element needed for the growth of bacteria and degradation efficiency of the raw water from the contaminated site were also invested. Results show that the degradation rate when the concentration of NB was at 600, 750, and 900 mg/L reached 91.02, 83.23, and 55.9 %, which was higher than that observed in free bacteria at the same concentration levels. Biodegradation kinetics of the material could be well described by first- and zero-order kinetics when the concentration of NB was at 300, 450 mg/L and 600, 750, 900 mg/L, respectively. Stable degradation activity (stayed at a level of approximately 70 %) was displayed during the 11th repeat-batch experiment. The affect of absence of phosphorus in the medium can be abated ascribed to the addition of peat, which contributes with organic matter and other elements such as nitrogen and phosphorus necessary to maintain metabolically active the microorganisms. Effective biodegradation of the raw water from the experimental site revealed that the material can be a potential candidate for treating NB-contaminated wastewater in the practical setting. PMID:23576015

  8. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    PubMed

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-01

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA.

  9. Tryptophan in Alcoholism Treatment I:  Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. Methods: Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring blood acetaldehyde following ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: ALDH activity was significantly inhibited by all three metabolites by doses as small as 1 mg/kg body wt. Blood acetaldehyde accumulation after ethanol administration was strongly elevated by KA and 3-HK and to a lesser extent by 3-HAA. All three metabolites induced aversion to alcohol in rats and decreased alcohol preference in mice. Conclusions: The above kynurenine metabolites of tryptophan induce aversion to alcohol by inhibiting ALDH activity. An intellectual property covering the use of 3-HK and 3-HAA and derivatives thereof in the treatment of alcoholism by aversion awaits further development. PMID:21896552

  10. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  11. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.

    PubMed

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe3O4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing-thawing technique and subsequent with K(+) solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions.

  12. Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal.

    PubMed

    Mishra, Sandeep K; Kannan, S

    2014-12-01

    Mechanical properties of orthopedic implants play important role in the regeneration and cell growth of the diseased body part. The present investigation was aimed at the development of a biocompatible, biodegradable and mechanically stable coating of chitosan (CS)-polyvinyl alcohol (PVA) polymer composite on Titanium (Ti) metal by employing a simple methodology at ambient conditions. The PVA to CS concentrations were maintained in fixed ratios of 1:4 weight/weight (w/w) for the development of all the coatings on Ti metal. Four different concentrations of the polymers ranging in the order of 5%, 10%, 15% and 20% weight/volume (w/v) solution of CS were selected in an aim to test their efficacy on mechanical stability. The results obtained from the analysis confirmed considerable improvement in mechanical properties of the composite polymer film comprising CS and PVA on Ti metal with the four different concentrations showing variable elastic modulus and hardness. The difference in mechanical properties of both dehydrated and hydrated coatings demonstrates the effective and efficient shielding of high mechanical properties of Ti metal in physiological conditions. The scratch tests performed on the coated specimens also indicated a good adhesion of the polymer on the Ti metal surface.

  13. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration.

    PubMed

    Mahalingam, Suntharavathanan; Xu, Zewen; Edirisinghe, Mohan

    2015-09-15

    In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.

  14. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration.

    PubMed

    Mahalingam, Suntharavathanan; Xu, Zewen; Edirisinghe, Mohan

    2015-09-15

    In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles. PMID:26307462

  15. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  16. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  17. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-05-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.

  18. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation

    PubMed Central

    Kouchak, Maryam; Ameri, Abdolghani; Naseri, Basireh; Kargar Boldaji, Sara

    2014-01-01

    Objective(s): The aim of this study was to insert nitrofurazone in a chitosan membrane to be used as a wound dressing. Materials and Methods: Several blend films using chitosan (Cs) and polyvinyl alcohol (PVA), containing nitrofurazone were prepared by means of casting/solvent evaporating technique. Different characteristics such as mechanical properties, water vapor transmission rate (WVTR), oxygen permeability (OP), swelling ability (SW), differential scanning calorimetric (DSC), drug release profiles and antibacterial activity of the films were investigated. Results: The results showed that nitrofurazone decreased tensile strength, OP and SW of Cs films, while increased WVTR. Addition of PVA at any concentration improved mechanical properties, reduced WVTR, and increased OP and SW of nitrofurazone-loaded Cs films. The latter films showed higher activity against Pseudomonas aeruginosa than drug-free chitosan films. Conclusion: The presence of PVA improves many properties of Cs-nitrofurazone films and makes them more desirable as dressing material for burn wounds. Although nitrofurazone alone is ineffective against P. aeruginosa, it is able to increase antibacterial effect of chitosan in composite films. PMID:24592302

  19. Effect of sonication on the mechanical properties of poly (vinyl alcohol)/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Truong, Van-Tan; Tsang, Kelly M. C.; Keough, Shannon J.; St John, Nigel A.

    2006-12-01

    Several sonication procedures were performed on multi-walled carbon nanotubes (MWNTs) in water by varying the length of time, the output power and the type of sonicating horn. Depending on the sonicating conditions, the multi-walled carbon nanotubes (MWNTs) could be well or poorly exfoliated and dispersed. Poly (vinyl alcohol) (PVA) and MNWT (0.5 wt%) composites were cast from the PVA/MWNT aqueous mixture. Enhancement of the mechanical properties of the composites was related to two factors: (1) crystallinity formed at the PVA and MWNT interface and (2) the size of nanotube agglomerates. The poorly dispersed solution produced nanotube agglomerates with the size of 50-100 μm that did not induce crystallization at the polymer/nanotube interface. They became stress concentrators reducing the Young's modulus and the tensile strength. Optimized sonication procedures resulted in well-dispersed nanotube agglomerates of submicron dimensions efficiently enhancing the mechanical properties. As centrifugation facilitated the removal of large agglomerates, noticeable enhancement of mechanical properties of the composites was achieved.

  20. Evaluation of polyvinyl alcohol composite membranes containing collagen and bone particles.

    PubMed

    Hameed, Nishar; Glattauer, Veronica; Ramshaw, John A M

    2015-08-01

    Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

  1. Subchronic toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Buesen, Roland; Mellert, Werner; Groeters, Sibylle; van Ravenzwaay, Bennard

    2013-07-01

    The safety of polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in a 13-week oral toxicity study in rats and in a 9-month oral toxicity study in dogs. Wistar rats were administered 600, 3000, or 15,000 ppm PEG-PVA grafted copolymer in their drinking water whereas beagle dogs were fed 3000, 10,000, or 30,000 ppm PEG-PVA grafted copolymer in the diet. There were no mortalities, no adverse clinical signs, no toxicologically adverse effects on body weight or body weight gain, feed consumption, hematological, clinical chemistry or urinary parameters, or histopathology in either species. In rats, no treatment-related effects were observed in the functional observational battery (FOB) or related measurements of motor activity. Increased water consumption observed in rats at the highest dose was the only test substance-induced effect noted. The no-observed-adverse-effect level (NOAEL) was the highest concentration tested in both species: 15,000 ppm in rats (corresponding to a daily intake of 1611 mg/kg bw for males and 2191 mg/kg bw for females) and 30,000 ppm in dogs (corresponding to a mean daily intake of 783 mg/kg bw for males and 811 mg/kg bw for females).

  2. Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser.

    PubMed

    Ahmad, H; Ismail, M F; Hassan, S N M; Ahmad, F; Zulkifli, M Z; Harun, S W

    2014-10-20

    In this work, we demonstrated a compact Q-switched erbium-doped fiber laser capable of generating high-energy pulses using a newly developed multiwall carbon nanotube (CNT) polyvinyl alcohol (PVA) thin film based saturable absorber. Q-switched pulse operation is obtained by sandwiching the thin film between two fiber ferrules forming a saturable absorber. A saturable absorber with 1.25 wt. % of PVA concentration shows a consistency in generating pulsed laser with a good range of tunable repetition rate, shortest pulse width, and produces a high pulse energy and peak power. The pulse train generated has a maximum repetition rate of 29.9 kHz with a corresponding pulse width of 3.49 μs as a function of maximum pump power of 32.15 mW. The maximum average output power of the Q-switched fiber laser system is 1.49 mW, which translates to a pulse energy of 49.8 nJ. The proposed method of multiwall CNT/PVA thin film fabrication is low in cost and involves uncomplicated processes. PMID:25402790

  3. A polyvinyl alcohol/ p-sulfonate phenolic resin composite proton conducting membrane

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Shun; Lin, Fan-Yen; Chen, Chih-Yuan; Chu, Peter P.

    Membranes composed of poly(vinyl alcohol) (PVA) and a proton source polymer, sulfonated phenolic resin (s-Ph) displayed good proton conductivity of the order of 10 -2 S cm -1 at ambient temperatures. Upon cross-linking above 110 °C, covalent links between the sulfonate groups of the phenolic resin and the hydroxyl groups of the PVA were established. Although this sacrificed certain sulfonate groups, the conductivity value was still preserved at the 10 -2 S cm -1 level. In sharp contrast to Nafion, the current membrane (both before and after cross-linking) was also effective in reducing the methanol uptake where the swelling ratio decreased with increase of methanol concentration. Although both the methanol permeation and the proton conductivity were lower compared to Nafion, the conductivity/permeability ratio of 0.97 for the PVA/s-Ph is higher than that determined for Nafion. The results suggested the effectiveness of proton transport in the polymer-complex structure and the possibility that a high proton conductivity can be realized with less water.

  4. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres.

    PubMed

    Nie, Lei; Zhang, Guohua; Hou, Ruixia; Xu, Haiping; Li, Yaping; Fu, Jun

    2015-01-01

    Poly(vinyl alcohol) (PVA) hydrogels have been candidate materials for cartilage tissue engineering. However, the cell non-adhesive nature of PVA hydrogels has been a limit. In this paper, the cell adhesion and growth on PVA hydrogels were promoted by compositing with transform growth factor-β1 (TGF-β1) loaded porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres. The porous microspheres were fabricated by a modified double emulsion method with bovine serum albumin (BSA) as porogen. The average pore size of microspheres was manipulated by changing the BSA/PLGA ratio. Such controllable porous structures effectively influenced the encapsulation efficiency (Eencaps) and release profile of TGF-β1. By compositing PVA hydrogels with such TGF-β1-loaded PLGA microspheres, chondrocyte adhesion and proliferation were significantly promoted in a controllable manner, as confirmed by fluorescent imaging and quantitative CCK-8 assay. That is, the chondrocyte proliferation was favored by using PLGA microspheres with high Eencaps of TGF-β1 or by increasing the PLGA microsphere content in the hydrogels. These results demonstrated a facile method to improve the cell adhesion and growth on the intrinsically cell non-adhesive PVA hydrogels, which may find applications in cartilage substitution.

  5. Enhancement of micro structural properties of PVA doped with MWCNT’s and metal oxide nanocomposites films

    SciTech Connect

    Kumar N B, Rithin; Crasta, Vincent; Praveen, B. M.; B, Shreeprakash

    2015-06-24

    WO{sub 3} nanoparticles were prepared by using precipitation method and the multiwall Carbon nanotubes (MWCNT’s) were functionalized to make Carboxylated MWCNTs. Further, prepared WO{sub 3} and carboxylated MWCNT were doped into PVA matrix by coagulation technique and PVA nanocomposites were prepared by simple solvent casting technique. The films were characterized by XRD, FTIR spectroscopy and AFM. FTIR spectroscopy reveals the intensity of absorption of radiation at 3624.55 cm{sup −1} corresponds to the OH group of PVA. It changes in accordance with dopant concentration causing inter/intra molecular hydrogen bonding between the dopants and PVA back bone which leads to the complex formation. XRD data explores the crystalline nature of the film. It is found that for doping concentration x= 7.5 wt% the percentage crystallinity and crystallite size increases whereas micro structural strain and dislocation density decreases. An atomic force microscopy topographic analysis proves that the doped particles have an average size less than 15 nm, as confirmed by XRD data. It was found that roughness of the sample varies with dopant concentration causing variation in crystallinity.

  6. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads.

    PubMed

    Ali, Muhammad; Oshiki, Mamoru; Rathnayake, Lashitha; Ishii, Satoshi; Satoh, Hisashi; Okabe, Satoshi

    2015-08-01

    Rapid start-up of anaerobic ammonium oxidation (anammox) process in up-flow column reactors was successfully achieved by immobilizing minimal quantity of biomass in polyvinyl alcohol (PVA)-sodium alginate (SA) gel beads. The changes in the reactor performance (i.e., nitrogen removal rate; NRR) were monitored with time. The results demonstrate that the reactor containing the immobilized biomass concentration of 0.33 g-VSS L(-1) achieved NRR of 10.8 kg-N m(-3) d(-1) after 35-day operation, whereas the reactor containing the granular biomass of 2.5 g-VSS L(-1) could achieve only NRR of 3.5 kg-N m(-3) d(-1). This indicates that the gel immobilization method requires much lower seeding biomass for start-up of anammox reactor. To explain the better performance of the immobilized biomass, the biological and physicochemical properties of the immobilized biomass were characterized and compared with the naturally aggregated granular biomass. Effective diffusion coefficient (De) in the immobilized biomass was directly determined by microelectrodes and found to be three times higher than one in the granular biomass. High anammox activity (i.e., NH4(+) and NO2(-) consumption rates) was evenly detected throughout the gel beads by microelectrodes due to faster and deeper substrate transport. In contrast, anammox activity was localized in the outer layers of the granular biomass, indicating that the inner biomass could not contribute to the nitrogen removal. This difference was in good agreement with the spatial distribution of microbes analysed by fluorescence in situ hybridization (FISH). Based on these results, PVA-SA gel immobilization is an efficient strategy to initiate anammox reactors with minimal quantity of anammox biomass.

  7. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  8. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  9. The effectiveness of a 0.05 blood alcohol concentration (BAC) limit for driving in the United States

    PubMed Central

    Fell, James C.; Voas, Robert B.

    2015-01-01

    The National Transportation Safety Board recently recommended that states establish a per se blood alcohol concentration (BAC) limit of 0.05 or lower for all drivers who are not already required to adhere to lower BAC limits in a national effort to reduce alcohol-impaired driving. There is strong evidence for adopting this recommendation. A comprehensive review of the literature on BAC limits was conducted. The research indicates that virtually all drivers are impaired regarding at least some driving performance measures at a 0.05 BAC. The risk of being involved in a crash increases significantly at 0.05 BAC and above. The relative risk of being killed in a single-vehicle crash with BACs of 0.05–0.079 is 7–21 times higher than for drivers at 0.00 BAC. Lowering the BAC limit from 0.08 to 0.05 has been a proven effective countermeasure in numerous countries around the world. Most Americans do not believe a person should drive after having two or three drinks in 2 hours. It takes at least four drinks for the average 170-pound male to exceed 0.05 BAC in 2 hours (three drinks for the 137-pound female). Most industrialized nations have established a 0.05 BAC limit or lower for driving. Progress in reducing the proportion of drivers in fatal crashes with illegal BACs has stalled over the past 15 years. Lowering the BAC limit for driving from the current 0.08 to 0.05 has substantial potential to reduce the number of people who drink and drive in the United States and get involved in fatal crashes. PMID:24898061

  10. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters

    PubMed Central

    Yang, J.Y.; Kwak, H.S.; Choi, J.S.; Ahn, H.K.; Oh, Y.J.; Velázquez-Armenta, E.Y.; Nava-Ocampo, A.A.

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  11. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters.

    PubMed

    Yang, J Y; Kwak, H S; Han, J Y; Choi, J S; Ahn, H K; Oh, Y J; Velázquez-Armenta, E Y; Nava-Ocampo, A A

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  12. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters.

    PubMed

    Yang, J Y; Kwak, H S; Han, J Y; Choi, J S; Ahn, H K; Oh, Y J; Velázquez-Armenta, E Y; Nava-Ocampo, A A

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week.

  13. [Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice].

    PubMed

    Sumi, H; Yatagai, C; Wada, H; Yoshida, E; Maruyama, M

    1995-04-01

    Effects of Bacillus natto-fermented product (BIOZYME) on blood alcohol and aldehyde concentrations after drinking whisky (corresponding to 30-65 ml ethanol) were studied in 21 healthy volunteers. When 100 ml of BIOZYME was orally administrated to the volunteers before drinking whisky, the time delay of both blood factors to attain maximum concentrations were observed. The maximum decrease in blood alcohol and aldehyde concentrations were about 23% and 45% (p < 0.005), respectively, at 1 hr after drinking whisky. The aldehyde lowering effect of BIOZYME was continued for at least 4 hr after whisky drinking. Concentration of the breath alcohol was also sharply decreased by BIOZYME administration. The breath alcohol concentration in the administered group (0.18 +/- 0.11 mg/l) was found to be lowered about 44% than that of the control group (0.32 +/- 0.11 mg/l) (p < 0.0005, n = 21), at 1 hr after drinking whisky. In acute toxicity experiments of aldehyde in mice (12 mmol AcH/mg), BIOZYME showed the survival effect as with alpha-D-Ala (134% increase of the living, at 40 min after i.p. administration) (p < 0.005, n = 22). These findings reveal the Bacillus natto produced BIOZYME as a reasonable, safety and useful anti-hangover agent.

  14. Influence of human saliva on odorant concentrations. 2. aldehydes, alcohols, 3-alkyl-2-methoxypyrazines, methoxyphenols, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone.

    PubMed

    Buettner, Andrea

    2002-11-20

    The influence of human whole saliva on selected alcohols, aldehydes, 3-alkyl-2-methoxypyrazines, and phenols in food-relevant concentrations was investigated. At pH 7.5-8 it was found that the alcohols, methoxyphenols, methoxypyrazines, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone remained unmodified by saliva, whereas aldehydes were reduced to their corresponding alcohols. Generally, the processes were found to be dependent on the salivary activity of the panelists as well as on the concentration of the applied odorants. Reduction of the aldehydes did not occur after thermal treatment of the saliva. These investigations are aimed at finding an explanation for longer lasting aftertaste in humans, as it is induced by some odor-active compounds after the consumption of food materials.

  15. Aggressive crime, alcohol and drug use, and concentrated poverty in 24 U.S. urban areas.

    PubMed

    Valdez, Avelardo; Kaplan, Charles D; Curtis, Russell L

    2007-01-01

    The nexus between substance use and aggressive crime involves a complex interrelationship among mediating individual and community-level variables. Using multilevel logistic regression models, we investigate how community-level concentration of poverty variables mediate the predictive relationships among individual level social attachment variables and substance use on aggressive crime in a large national sample of male arrestees (N = 20,602) drawn from 24 U.S. urban areas. The findings support our hypothesis that individual social attachments to marriage and the labor force (education and employment) are the principal individual-level pathway mediating the substance abuse/aggression nexus. In the random intercept model, 3.17% of the variation not explained by the individual-level predictor variables is attributable to community-level variation in urban area female-headed households and households receiving welfare. This confirms our hypothesis that social structural conditions of an urban environment differentially expose persons to conditions that predict being arrested for an aggressive crime. Our findings tend to counter the cultural theorists who argue for an indigenous culture of violence in inner-city ghettos and barrios.

  16. Aggressive Crime, Alcohol and Drug Use, and Concentrated Poverty in 24 U.S. Urban Areas

    PubMed Central

    Valdez, Avelardo; Kaplan, Charles D.; Curtis, Russell L.

    2010-01-01

    The nexus between substance use and aggressive crime involves a complex interrelationship among mediating individual and community-level variables. Using multilevel logistic regression models, we investigate how community-level concentration of poverty variables mediate the predictive relationships among individual level social attachment variables and substance use on aggressive crime in a large national sample of male arrestees (N = 20,602) drawn from 24 U.S. urban areas. The findings support our hypothesis that individual social attachments to marriage and the labor force (education and employment) are the principal individual-level pathway mediating the substance abuse/aggression nexus. In the random intercept model, 3.17% of the variation not explained by the individual-level predictor variables is attributable to community-level variation in urban area female-headed households and households receiving welfare. This confirms our hypothesis that social structural conditions of an urban environment differentially expose persons to conditions that predict being arrested for an aggressive crime. Our findings tend to counter the cultural theorists who argue for an indigenous culture of violence in inner-city ghettos and barrios. PMID:17668345

  17. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  18. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-01-01

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA. PMID:26703542

  19. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Beigzadeh, Borhan

    2014-02-01

    This study proposes the quasi-linear viscoelastic (QLV) model to characterize the time dependent mechanical behavior of poly(vinyl alcohol) (PVA) sponges. The PVA sponges have implications in many viscoelastic soft tissues, including cartilage, liver, and kidney as an implant. However, a critical barrier to the use of the PVA sponge as tissue replacement material is a lack of sufficient study on its viscoelastic mechanical properties. In this study, the nonlinear mechanical behavior of a fabricated PVA sponge is investigated experimentally and computationally using relaxation and stress failure tests as well as finite element (FE) modeling. Hyperelastic strain energy density functions, such as Yeoh and Neo-Hookean, are used to capture the mechanical behavior of PVA sponge at ramp part, and viscoelastic model is used to describe the viscose behavior at hold part. Hyperelastic material constants are obtained and their general prediction ability is verified using FE simulations of PVA tensile experiments. The results of relaxation and stress failure tests revealed that Yeoh material model can define the mechanical behavior of PVA sponge properly compared with Neo-Hookean one. FE modeling results are also affirmed the appropriateness of Yeoh model to characterize the mechanical behavior of PVA sponge. Thus, the Yeoh model can be used in future biomechanical simulations of the spongy biomaterials. These results can be utilized to understand the viscoelastic behavior of PVA sponges and has implications for tissue engineering as scaffold.

  20. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-12-19

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  1. Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

    PubMed

    Young, Cara; Rozario, Kester; Serra, Christophe; Poole-Warren, Laura; Martens, Penny

    2013-01-01

    Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.

  2. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  3. The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana

    PubMed Central

    Hung, Richard; Lee, Samantha; Bennett, Joan W.

    2014-01-01

    “Mushroom alcohol,” or 1-octen-3-ol, is a common fungal volatile organic compound (VOC) that has been studied for its flavor properties, its effects on fungal spore germination, mushroom development, and as a signaling agent for insects. Far less is known about its effects on plants. We exposed Arabidopsis thaliana seeds, under conditions conducive to germination, to high (10 and 100 mg/1) and low concentrations (1, 2, and 3 mg/1) of racemic, S, and R forms of 1-octen-3-ol for 3 days. In addition, 1-, 2-, 3-, and 4-week-old A. thaliana plants also were exposed to 1 mg/1 of the compounds for the same period of time. Seedling formation was retarded with all tested levels of exposure to 1-octen-3-ol for both enantiomers and the racemer, while 95% of unexposed control seeds germinated to seedling within 3 days. There was a dose-dependent response in the reduction of seedling formation between 1 mg/1 and 3 mg/1 of exposure. When exposed seeds were removed from the VOC, nearly all resumed germination. Young plants exposed to 1 mg/1 of the R and S enantiomers of 1-octen-3-ol exhibited a mild inhibition of growth and chlorophyll production at 2 and 3 weeks but not at 4 weeks. PMID:24999439

  4. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol.

    PubMed

    Ericson, Mia; Chau, Peipei; Adermark, Louise; Söderpalm, Bo

    2013-01-01

    Alcohol misuse and addiction is a worldwide problem causing enormous individual suffering as well as financial costs for the society. To develop pharmacological means to reduce suffering, we need to understand the mechanisms underlying the effects of ethanol in the brain. Ethanol is known to increase extracellular levels of both dopamine and taurine in the nucleus accumbens (nAc), a part of the brain reward system, but the two events have not been connected. In previous studies we have demonstrated that glycine receptors in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region. By means of in vivo microdialysis in freely moving rats we here demonstrate that the endogenous glycine receptor ligand taurine mimics ethanol in activating the brain reward system. Furthermore, administration of systemic ethanol diluted in an isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline solution was investigated with respect to extracellular levels of taurine and dopamine in the nAc. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations of both taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine elevating effect of systemic ethanol also when given in a hypertonic solution. We conclude that the elevations of taurine and dopamine in the nAc are closely related and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also -provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration and that taurine is a prominent participant in activating the brain reward system.

  5. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials.

  6. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    PubMed

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement.

  7. Investigations on Pva:. NH4F: ZrO2 Composite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Radha, K. P.; Selvasekarapandian, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    Composite polymer electrolytes have been prepared using Poly (vinyl alcohol), ammonium fluoride, nanofiller ZrO2 by solution casting technique. The amorphous nature of the composite polymer electrolyte has been confirmed by XRD analysis. FTIR analysis confirms the complex formation among the polymer, salt and nanofiller. The maximum ionic conductivity for 85 PVA:15 NH4F has been found to be 6.9 × 10-6 Scm-1 at ambient temperature. In the present work, the addition of 2 mol% nanofilller ZrO2 to the electrolyte 85PVA:15NH4F enhances the conductivity to 3.4 × 10-5 Scm-1. The temperature dependence of the conductivity of composite polymer electrolytes obeys Arrhenius relation. In the modulus spectra, there is a long tail at low frequencies which is an evidence for large capacitance associated with the electrodes. In the high frequency region, ∈'(ω) value saturates and giving rise to the dielectric constant of the material.

  8. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    NASA Astrophysics Data System (ADS)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  9. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.

    PubMed

    Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I

    2014-01-01

    The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies.

  10. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  11. A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane.

    PubMed

    Esmaeili, Akbar; Beni, Ali Aghababai

    2014-09-15

    In this research, a novel fixed-bed reactor was designed with a nanofiber membrane composed of a polyvinyl alcohol (PVA)/chitosan nanofiber blend prepared using an electrospinning technique. The applied voltage, tip-collector distance, and solution flow rate of the electrospinning process were 18 kV, 14.5 cm, and 0.5 mL h(-1), respectively. Brunauer-Emmett-Teller (BET) theory, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize and analyze the nanofiber membranes. Homogeneous electrospun nanofibers with an average diameter of 99.47 nm and surface area of 214.12 m(2)g(-1) were obtained. Adsorption experiments were carried out in a batch system to investigate the effect of different adsorption parameters such as pH, adsorbent dose, biomass dose, contact time, and temperature. The kinetic data, obtained at the optimal pH of 6, were analyzed by pseudo first-order and pseudo second-order kinetic models. Three isotherm models and thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were applied to describe the equilibrium data of the metal ions adsorbed onto the PVA/chitosan nanofiber membrane.

  12. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  13. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  14. Controlled release of theophylline from poly(vinyl alcohol) hydrogels/porous silicon nanostructured systems

    NASA Astrophysics Data System (ADS)

    Cervantes-Rincón, N.; Medellín-Rodríguez, F. J.; Escobar-Barrios, V. A.; Palestino, G.

    2013-03-01

    In this research, hybrid hydrogels of poly (vinyl alcohol)/ porous silicon (PSi)/theophylline were synthesized by the freezing and thawing method. We evaluated the influence of the synthesis parameters of the poly (vinyl alcohol) (PVA) hydrogels in relation to their ability to swell and drug released. The parameters studied (using an experimental design developed in Minitab 16) were the polymer concentration, the freezing temperature and the number of freezing/thawing (f/t) cycles. Nanostructured porous silicon particles (NsPSi) and theophylline were added within the polymer matrix to increase the drug charge and the polymer mechanical strength. The hybrid hydrogels were characterized by Infrared Spectroscopy Fourier Transform (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC), drug delivery kinetics were engineered according to the desired drug release schedule.

  15. [Methods and applications of population viability analysis (PVA): a review].

    PubMed

    Tian, Yu; Wu, Jian-Guo; Kou, Xiao-Jun; Wang, Tian-Ming; Smith, Andrew T; Ge, Jian-Ping

    2011-01-01

    With the accelerating human consumption of natural resources, the problems associated with endangered species caused by habitat loss and fragmentation have become greater and more urgent than ever. Conceptually associated with the theories of island biogeography, population viability analysis (PVA) has been one of the most important approaches in studying and protecting endangered species, and this methodology has occupied a central place in conservation biology and ecology in the past several decades. PVA has been widely used and proven effective in many cases, but its predictive ability and accuracy are still in question. Also, its application needs expand. To overcome some of the problems, we believe that PVA needs to incorporate some principles and methods from other fields, particularly landscape ecology and sustainability science. Integrating landscape pattern and socioeconomic factors into PVA will make the approach theoretically more comprehensive and practically more useful. Here, we reviewed the history, basic conception, research methods, and modeling applications and their accuracies of PVA, and proposed the perspective in this field. PMID:21548317

  16. Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films.

    PubMed

    Karimi, Nazanin; Kunwar, Puskal; Hassinen, Jukka; Ras, Robin H A; Toivonen, Juha

    2016-08-01

    Direct laser writing has been utilized to fabricate highly photostable fluorescent nanocluster microstructures in an organic polymer poly(methacrylic acid), where the carboxyl functional group is reported to play a vital role in nanocluster stabilization. In this Letter, we demonstrate that not only the polymer containing the carboxyl functional group, but also the polymer comprising the hydroxyl group, namely polyvinyl alcohol (PVA), can act as an appropriate stabilizer matrix for laser-induced synthesis and patterning of silver nanoclusters. The as-formed nanoclusters in the PVA film exhibit broadband emission and photostability comparable to the nanoclusters formed in the poly(methacrylic acid) polymer. As PVA is a widely used, nontoxic, biocompatible and biodegradable polymer, the technique of patterning fluorescent nanoclusters in PVA thin films is expected to find numerous applications in fields like fluorescence imaging, biolabeling, and sensing. PMID:27472635

  17. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite.

    PubMed

    Leitão, Alexandre F; Gupta, Swati; Silva, João Pedro; Reviakine, Ilya; Gama, Miguel

    2013-11-01

    Bacterial cellulose (BC) has been suggested to be a suitable biomaterial for the development of cardiovascular grafts. The combination of BC with polyvinyl alcohol (PVA) results in nanocomposites with improved properties. Surprisingly, there are very few studies on the BC-blood interaction. This is the focus of this paper. We present the first thorough assessment of the hemocompatibility of the BC/PVA nanocomposite. Whole blood clotting time, plasma recalcification, Factor XII activation, platelet adhesion and activation, hemolytic index and complement activation are all determined. The platelet activation profiles on BC and BC/PVA surfaces are comprehensively characterized. BC and BC/PVA outperformed ePTFE--used as a point of comparison--thus evidencing their suitability for cardiovascular applications.

  18. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-01

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications.

  19. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  20. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  1. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  2. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  3. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  4. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor.

    PubMed

    Moreno-Cortez, Iván E; Romero-García, Jorge; González-González, Virgilio; García-Gutierrez, Domingo I; Garza-Navarro, Marco A; Cruz-Silva, Rodolfo

    2015-01-01

    In this paper, papain enzyme (E.C. 3.4.22.2, 1.6 U/mg) was successfully immobilized in poly(vinyl alcohol) (PVA) nanofibers prepared by electrospinning. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy (SEM) and the diameter distribution was in the range of 80 to 170 nm. The presence of the enzyme within the PVA nanofibers was confirmed by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS) analyses. The maximum catalytic activity was reached when the enzyme loading was 13%. The immobilization of papain in the nanofiber membrane was achieved by chemical crosslinking with a glutaraldehyde vapor treatment (GAvt). The catalytic activity of the immobilized papain was 88% with respect to the free enzyme. The crosslinking time by GAvt to immobilize the enzyme onto the nanofiber mat was 24h, and the enzyme retained its catalytic activity after six cycles. The crosslinked samples maintained 40% of their initial activity after being stored for 14 days. PVA electrospun nanofibers are excellent matrices for the immobilization of enzymes due to their high surface area and their nanoporous structure.

  5. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  6. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials.

  7. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    SciTech Connect

    Ger, Tzong-Rong; Huang, Hao-Ting; Hu, Keng-Shiang; Huang, Chen-Yu; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-07

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe{sub 3}O{sub 4} nanoparticles would be released and delivered to cells.

  8. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  9. FABRICATION OF A NEW TYPE OF DOUBLE SHELL TARGET HAVING A PVA INNER LAYER

    SciTech Connect

    STEINMAN,D.A; WALLACE,R; GRANT,S.E; HOPPE,M.L; SMITH,JR.J.N

    2003-06-01

    OAK-B135 The General Atomics Target Fabrication team was tasked in FY03, under its ICF Target Support contract, to make a new type of double-shell target. its specifications called for the outer shell to have an inner lining of PVA (poly(vinyl alcohol)) that would keep the xenon gas fill from occupying the target wall. The inner shell consisted of a glass shell coated with 2000 {angstrom} of silver and filled with 9 atm of deuterium. Furthermore, the delivery deadline was less than seven weeks away. This paper describes the fielding of this double-shell target, made possible through the combined efforts of Lawrence Livermore National Laboratory and General Atomics target fabrication specialists.

  10. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    PubMed Central

    Bonine, Bárbara M.; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O.

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. PMID:24818012

  11. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    SciTech Connect

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  12. Spectroscopic properties of (PVA+ZnO):Mn2+ polymer films

    NASA Astrophysics Data System (ADS)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-01

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn2+ ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn2+ ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn2+ ion in d5 and the site symmetry around Mn2+ ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  13. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa. PMID:22939352

  14. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa.

  15. [Preparation of PVA-SA-PHB-AC composite carrier and m-cresol biodegradation by immobilized Lysinibacillus cresolivorans].

    PubMed

    Li, Ting; Ren, Yuan; Wei, Chao-Hai

    2013-07-01

    Due to the effects of outer environment and concentration limit on the biodegradation of m-cresol, a carrier with adsorption ability was synthesized. A PVA-SA-PHB-AC composite membrane was prepared by adding SA, PHB and AC into PVA immobilization carrier using the combination of freezing-thawing and boric acid methods. A highly-effective m-cresol-degrading strain Lysinibacillus cresolivorans was entrapped in it and the effects of structural properties such as micro-structure, stability and diffusion coefficient on m-cresol biodegradation were investigated. The results showed that PVA-SA-PHB-AC composite membrane had uniform pore opening, of which the average pore size, specific surface area, m-cresol adsorption capacity and diffusion coefficient was 33.68 nm, 15.30 m2 x g(-1), 3.86 mg x g(-1) and 5.62 x 10(-8) m2 x min(-1), respectively. It could be reused for more than two months, m-Cresol removal by immobilized L. cresolivorans was the coupling of adsorption and biodegradation, and the removal rate was jointly determined by mass-transfer rate and biodegradation rate. When the initial concentration of m-cresol was lower than 350 mg x L(-1), the mass-transfer rate of PVA-SA-PHB-AC was smaller than the biodegradation rate. The m-cresol removal rate depended on the mass-transfer rate, when the concentration was higher than 380 mg x L(-1), it was determined by the biodegradation rate. The addition of adsorbent could decrease the mass transfer coefficient in the carrier, while the higher concentration of substrate could be tolerated and the efficient biodegradation could be achieved in a wider range of concentrations. The biodegradation of m-cresol by immobilized microorganism showed that the modified carrier increased the reaction kinetics in a range of initial concentrations.

  16. Influence of drugs of abuse and alcohol upon patients admitted to acute psychiatric wards: physician's assessment compared to blood drug concentrations.

    PubMed

    Mordal, Jon; Medhus, Sigrid; Holm, Bjørn; Mørland, Jørg; Bramness, Jørgen G

    2013-06-01

    In acute psychiatric services, rapid and accurate detection of psychoactive substance intake may be required for appropriate diagnosis and intervention. The aim of this study was to investigate the relationship between (a) drug influence as assessed by physicians and (b) blood drug concentrations among patients admitted to acute psychiatric wards. We also explored the possible effects of age, sex, and psychotic symptoms on physician's assessment of drug influence. In a cross-sectional study, the sample comprised 271 consecutive admissions from 2 acute psychiatric wards. At admission, the physician on call performed an overall judgment of drug influence. Psychotic symptoms were assessed with the positive subscale of the Positive and Negative Syndrome Scale. Blood samples were screened for a wide range of psychoactive substances, and quantitative results were used to calculate blood drug concentration scores. Patients were judged as being under the influence of drugs and/or alcohol in 28% of the 271 admissions. Psychoactive substances were detected in 56% of the blood samples. Altogether, 15 different substances were found; up to 8 substances were found in samples from 1 patient. Markedly elevated blood drug concentration scores were estimated for 15% of the patients. Physician's assessment was positively related to the blood drug concentration scores (r = 0.52; P < 0.001), to symptoms of excitement, and to the detection of alcohol, cannabis, and amphetamines. The study demonstrates the major impact of alcohol and drugs in acute psychiatric settings and illustrates the challenging nature of the initial clinical assessment.

  17. Alcohol and motorcycle fatalities.

    PubMed Central

    Baker, S P; Fisher, R S

    1977-01-01

    A series of 99 fatal motorcycle crashes in Maryland was studied retrospectively, using police and medical examiner records. Blood alcohol concentrations were determined for 62 motorcycle drivers; measurable amounts of alcohol were found in two-thirds (41), and one-half (31) had illegally high concentrations of 100 mg/100 ml or more. The police report mentioned alcohol in only 9 instances. High blood alcohol concentrations were found most commonly among drivers age 20-34. PMID:842762

  18. Electrorheological characterization of dispersions in silicone oil of encapsulated liquid crystal 4-n-penthyl-4‧-cyanobiphenyl in polyvinyl alcohol and in silica

    NASA Astrophysics Data System (ADS)

    Brehm, T.; Pereira, G.; Leal, C. R.; Gonçalves, C.; Borges, J. P.; Cidade, M. T.

    2015-03-01

    The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4‧-cyanobiphenyl (5CB) encapsulated in polyvinyl alcohol (PVA) and nano/microspheres of 5CB encapsulated in silica. We will present the viscosity curves under the application of an electric field ranging between 0 and 3 kV mm-1. The ER effect was observed for the suspensions of 5CB/PVA but not in the case of 5CB/silica. For the case of the suspensions of 5CB/PVA, the effect of the viscosity of the continuum phase and the concentration of the dispersed phase was analysed, showing that the enhancement of the viscosity of the suspension increases with the concentration, as expected, however the continuum phase viscosity has no significant effect, at least in the investigated viscosity range.

  19. Spectroscopic studies of PVA/Gly:Na2SO4 polymer composites

    NASA Astrophysics Data System (ADS)

    G, Thejas Urs; T, Ananda H.; Mahadevaiah, Somashekar, R.

    2015-06-01

    As a continued work on investigating a good conducting polymer, Sodium sulphate doped PVA polymer composites were prepared by solution casting method and subjected to various analytical measurements such as FT-IR spectroscopy, UV/Visible absorbance and Wide angle X-ray scattering technique. The changes observed in the structure of these polymer composites for various concentrations are computed by the results obtained from all above techniques are reported and related with the structure property. The Microstructural parameters of these polymer composites are evaluated using in-house programs.

  20. Efficacy of hand rubs with a low alcohol concentration listed as effective by a national hospital hygiene society in Europe

    PubMed Central

    2013-01-01

    Background Some national hospital hygiene societies in Europe such as the French society for hospital hygiene (SFHH) have positive lists of disinfectants. Few hand disinfectants with a rather low concentration of ethanol are listed by one society as effective for hygienic hand disinfection with 3 mL in 30 s including a virucidal activity in 30 s or 60 s, but published data allow having doubts. We have therefore evaluated the efficacy of three commonly used hand disinfectants according to EN 1500 and EN 14476. Methods Products 1 (Aniosgel 85 NPC) and 2 (Aniosrub 85 NPC) were based on 70% ethanol, product 3 (ClinoGel derma+) on 60% ethanol and 15% isopropanol (all w/w). They were tested in 3 laboratories according to EN 1500. Three mL were applied for 30 s and compared to the reference treatment of 2 × 3 mL applications of isopropanol 60% (v/v), on hands artificially contaminated with Escherichia coli. Each laboratory used a cross-over design against the reference alcohol with 15 or 20 volunteers. The virucidal activity of the products was evaluated (EN 14476) in one laboratory against adenovirus and poliovirus in different concentrations (80%, 90%, 97%), with different organic loads (none; clean conditions; phosphate-buffered saline) for up to 3 min. Results Product 1 revealed a mean log10-reduction of 3.87 ± 0.79 (laboratory 1) and 4.38 ± 0.87 (laboratory 2) which was significantly lower compared to the reference procedure (4.62 ± 0.89 and 5.00 ± 0.87). In laboratory 3 product 1 was inferior to the reference disinfection (4.06 ± 0.86 versus 4.99 ± 0.90). Product 2 revealed similar results. Product 3 fulfilled the requirements in one laboratory but failed in the two other. None of the three products was able to reduce viral infectivity of both adenovirus and poliovirus by 4 log10 steps in 3 min according to EN 14476. Conclusions Efficacy data mentioned in a positive list published by a society for hospital hygiene should still be regarded with caution

  1. Fatty acid ethyl ester concentrations in hair and self-reported alcohol consumption in 644 cases from different origin.

    PubMed

    Süsse, Silke; Selavka, Carl M; Mieczkowski, Tom; Pragst, Fritz

    2010-03-20

    For diagnosis of chronic alcohol abuse, fatty acid ethyl esters (FAEE) were determined in hair samples from 644 individuals, mainly parents from child protection cases. The analysis for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate was performed according to a validated procedure consisting of external degreasing by two times washing with n-heptane, extraction with a mixture of dimethylsulfoxide and n-heptane, separation and evaporation of the n-heptane layer, headspace solid phase microextraction of the residue after addition of phosphate buffer pH 7.6 and gas chromatography-mass spectrometry using deuterated internal standards. For interpretation, the sum of the concentrations of the four esters C(FAEE) was used with the cut-off's 0.5 ng/mg for the proximal scalp hair segment 0-3 cm or less and 1.0 ng/mg for scalp hair samples with a length between 3 and 6 cm and for body hair. C(FAEE) ranged from 0.11 to 31 ng/mg (mean 1.77 ng/mg, median 0.82 ng/mg). The mean concentration ratio between the 4 esters was 8:45:38:9. 298 cases had C(FAEE) above the cut-off's. Self-reported drinking data were obtained in 553 of the cases in the categories abstinent (156 cases), moderate drinking (252 cases) and excessive drinking (145 cases). Median and box-plot data clearly demonstrate differentiation of these ingestor sub-populations by C(FAEE). However, in the abstinent and moderate groups the consumption was frequently underreported (37 and 110 cases positive) whereas in the group self-reported excessive drinking 32 cases were negative. Comparison of C(FAEE) with carbohydrate-deficient transferrin (CDT) in 139 cases and gamma-glutamyltransferase (GGT) in 136 cases showed a good agreement in CDT- and GGT positive cases (27/28 and 32/41) but a large portion of the negative CDT- and GGT-results with positive hair test (44/100 and 48/95) which is explained mainly by the much shorter time window of CDT and GGT. No significant correlation was found between persons

  2. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation

    PubMed Central

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies. PMID:24957172

  3. An intensive study on the optical, rheological, and electrokinetic properties of polyvinyl alcohol-capped nanogold

    NASA Astrophysics Data System (ADS)

    Behera, Manoranjan

    2015-05-01

    Low-temperature-assisted wet chemical synthesis of nanogold (NG) using gold hydroxide, a new precursor salt in the presence of a macroscopic ligand poly(vinyl alcohol) PVA in water in the form of nanofluid, is reported for the first time in this article. In the absorption spectra, the surface Plasmon resonance absorption band in the range of 520-545 nm signifies the formation of NG via a controlled Au3+ + 3e → Au reaction grafted in small assemblies with polymer. Absorption maximum increases nonlinearly with Au-contents up to 100 µM Au in Au-PVA charge-transfer complex. Marked enhancement in the peak intensity of some of the vibration bands of PVA polymer such as C-H stretching, C=O stretching, CH2 bending, and C-C in-plane bending in the presence of NG reveals an interfacial interaction between NG and oxidized PVA via C=O group. Execution of shear thinning behavior regardless of the Au-content strongly suggests that crosslinking exists between NG and PVA in Au-PVA rheo-optical nanofluids. Hydrodynamic diameter and polydispersity index draw a nonlinear path with the Au doping with 30.0 g/L PVA in water over a wide region of 5-100 μM Au covered in this study. Enhancement in the zetapotential of Au-PVA nanofluid over bare PVA in water is ascribed to buildup of nonbonding electrons of "-C=O" moieties from the oxidized PVA on the NG surface. Displaying of lattice fringes in the microscopic image of core-shell Au-PVA nanostructure confirms that crystalline nature of NG core with inter planar spacing 0.235 nm corresponds to Au (111) plane.

  4. Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation.

    PubMed

    Marcilli, Raphael H M; de Oliveira, Marcelo G

    2014-04-01

    Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

  5. Pre-concentration of trace elements in short chain alcohols using different commercial cation exchange resins prior to inductively coupled plasma-optical emission spectrometric detection.

    PubMed

    Nomngongo, Philiswa N; Catherine Ngila, J; Kamau, Joseph N; Msagati, Titus A M; Marjanovic, Ljiljana; Moodley, Brenda

    2013-07-17

    Chelex-100, Dowex 50W-x8 and Dowex MAC-3 exchange resins were investigated for separation and pre-concentration of trace amounts of Cd, Cr, Cu, Fe, Mn, Pb, Ti and Zn in alcohols with respect to retention and desorption characteristics. Dowex 50W-x8 was found to be the best sorbent with percentages recoveries >95%. In addition, Chelex-100 appeared to be suitable for the pre-concentration of Cu, Fe and Zn, whereas Dowex MAC-3 was selective for Cu and Fe. Therefore, Dowex 50W-x8 was used for further investigations. The relative standard deviations <4% (n=20), limits of detection and quantification were 0.1-1.2 μg L(-1) and 0.3-1.5 μg L(-1), respectively. The SPE method was validated against a certified reference material and the results were in agreement with certified values. The accuracy of the optimized method was verified by the recovery test in the spiked alcohol samples. The accuracy and spike recovery test for different metal ions were in the range 98-102% and 95-105%, respectively. The optimized method was applied to the separation and pre-concentration of metal ions in different commercial alcohol samples.

  6. An experimental study for syndiotactic polyvinyl alcohol spheres as an embolic agent: can it maintain spherical shape in vivo?

    PubMed

    Chun, Ho Jong; Lee, Hae Giu; Lyoo, Won Seok; Lee, Ji Youl; Kim, Jina

    2014-01-01

    Syndiotactic polyvinyl alcohol (PVA) had been developed to overcome the drawbacks of atactic PVA spheres that deform easily, which can lead to non-target embolization. This study was performed to evaluate the in vivo stability of spherical shape of the syndiotactic PVA spheres. Selective arteriography and transarterial embolization (TAE) were performed in the main renal arteries of eight New Zealand white rabbits using syndiotactic PVA sphere that consisted of syndiotactic PVA skin and a copolymer core of vinyl acetate/vinyl pivalate. The size of the syndiotactic PVA spheres used for the TAE was 212-355 μm. The rabbits were sacrificed 12-14 days after TAE. Gross and microscopic examinations of each kidney were performed. The microscopic examination showed infarction of all embolized kidneys. Syndiotactic PVA spheres were seen uniformly within the arterial lumen and appeared as round ring-like structures without any deformity. The syndiotactic PVA spheres exclusively occupied the arterial lumen. As a conclusion, syndiotactic PVA spheres maintained their spherical shape without significant deformation in this in vivo short-term experimental study. Further investigation is necessary for evaluation of detailed effects of physical stability in tumor embolization.

  7. Electrospun tungsten oxide NPs/PVA nanofibers: A study on the morphology and Kramers-Kronig analysis of infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Chenari, Hossein Mahmoudi; Kangarlou, Haleh

    2016-10-01

    The major objective of this work is focused on the preparation and characterization of poly (vinyl alcohol) (PVA) embedding tungsten oxide nanoparticles based on electrospinning technique. A surfactant (CTAB) was introduced to incorporate tungsten oxide nanoparticles into the PVA nanofibers homogeneously. To prepare a viscous solution of PVA nanofiber containing tungsten oxide nanoparticles, the distance between the tip of the needle and the surface of the foil was chosen as 10 and 15 cm. The tungsten oxide NPs/PVA composite nanofibers have been characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and reflectance spectrum in the wave length range of 200-1200 nm. Fiber diameters decrease with increasing of tip-to-collector distance from 10 to 15 cm. The average diameters were estimated about 165±30 nm and 145±30 nm from scanning electron microscopy at 10 and 15 cm, respectively. The optical properties of the electrospun nanofibers were examined by the Kramers-Kronig model. The optical results show that tungsten oxide nanopowder show almost five times higher conductivity, lower absorbance and zero band gap energy.

  8. Graphene-poly(vinyl alcohol) composites: Fabrication, adsorption and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Chang, Peter R.; Zheng, Pengwu; Ma, Xiaofei

    2014-09-01

    Porous composites of graphene oxide (GO)-poly(vinyl alcohol) (PVA) were fabricated using a process of aqueous suspension precursor freezing, solvent exchange, and ethanol drying. When frozen, ice crystals formed leaving a porous structure, composed of randomly oriented GO sheets consolidated by PVA. The yellow GO-PVA composite could be reduced with glucose to obtain a black porous RGO (PRGO). XRD revealed that PVA enlarged the GO interlay spacing in the GO-PVA composite, and that RGO sheets were highly disordered in single or several layers in PRGO. GO-PVA and PRGO exhibited ultralight densities of 10.52 and 11.42 mg/cm3, respectively. GO-PVA adsorbed greater quantities of water, ethanol, and soybean oil than PRGO. The methylene blue (MB) adsorption pattern for both materials was also investigated. The kinetic adsorption and isotherm data fit the pseudo second-order and the Langmuir models, respectively. The maximum adsorption capacity according to the Langmuir isotherm model was 571.4 mg/g for GO-PVA. The electrochemical properties of PRGO were estimated using cyclic voltammetry, electrochemical impedance spectrometry, and chronopotentiometry. The PRGO electrode exhibited large capacitance (82.8 F/g) and small internal resistance (0.52 Ω).

  9. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  10. Comparison of properties of poly(vinyl alcohol) nanocomposites containing two different clays.

    PubMed

    Chang, Jin-Hae; Ham, Miran; Kim, Jeong-Cheol

    2014-11-01

    Morphologies, thermo-optical properties, and gas barriers of poly(vinyl alcohol) (PVA) hybrid films containing two different clays are compared. Saponite (SPT) and hydrophilic bentonite (BTT) were used as the reinforcing filler in the fabrication of PVA hybrid films, which were synthesized from aqueous solutions and were solvent-cast at room temperature under vacuum, yielding 20-31-μm-thick PVA hybrid films with varying clay contents. The addition of small amounts of clay is sufficient to improve the thermal properties and gas barriers of PVA hybrid films. Even polymers with a low clay content (3-10 wt%) were found to exhibit much higher transition temperature values than pure PVA. The addition of BTT was more effective than the addition of SPT for improving the thermal properties and gas barrier in the PVA matrix. The PVA hybrid films containing 5 wt% SPT were equibiaxially stretched, with stretching ratios ranging from 150% to 250%. Clay dispersion, morphology, optical transparency, and gas permeability were then examined as a function of the equibiaxial stretching ratio. PVA hybrid films with a stretching ratio of ≥ 150% displayed homogeneously dispersed clay within the polymer matrix and exfoliated nanocomposites.

  11. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering. PMID:26369028

  12. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.

    PubMed

    Hajji, Sawssen; Chaker, Achraf; Jridi, Mourad; Maalej, Hana; Jellouli, Kemel; Boufi, Sami; Nasri, Moncef

    2016-08-01

    The development and characterization of biodegradable blend films based on chitosan and poly (vinyl alcohol) for possible use in a variety of biological activities are reported. Fourier transform infrared spectroscopy (FTIR) spectra of chitosan-poly (vinyl alcohol) (Ch/PVA) films showed characteristics peaks shifting to a lower frequency range due to hydrogen bonding between -OH of PVA and -NH2 of chitosan. The chitosan and PVA polymers presented good compatibility. The morphology study of chitosan and composite films showed a compact and homogenous structure. The tensile strength and elongation at break increased with PVA content. In fact, the highest tensile strength and elongation at break (53.58 MPa and 454 %) occurs with pure PVA film. The results showed that PVA incorporation in the blends contributes to increase the intermolecular interactions, thus improving the mechanical properties. In addition, the prepared films demonstrated high antioxidant activities monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, reducing power, and β-carotene bleaching activity. Nevertheless, PVA addition reduced antioxidant and antibacterial activities against Gram-positive and Gram-negative bacteria tested. PMID:27106077

  13. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  14. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  15. Synthesis of Nanocomposites of Polyvinyl Alcohol with Silver Nanoparticles and Their Use

    NASA Astrophysics Data System (ADS)

    Bhat, N. V.; Karmakar, N. S.; Kothari, D. C.

    2013-08-01

    Composites of polyvinyl alcohol (PVA) containing silver nanoparticles were prepared using in situ synthesis of nanoparticles. Structure and properties of these composites were investigated using UV-Vis spectroscopy, XRD, DSC, SEM and AFM. The studies show that PVA can reduce the AgNO3 to yield silver nanoparticles and in the process forms bonds with PVA chains. The anti-bacterial properties of these films were studied by qualitative as well as quantitative methods which gave the values of 98% for gram positive and 89% for gram negative bacteria.

  16. Nonlinear optical characterization of the Ag nanoparticles doped in polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Ghanipour, Mahshad; Dorranian, Davoud

    2015-06-01

    The effect of silver nanoparticles doped in polyvinyl alcohol (PVA) on the nonlinear optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different concentrations of silver nanoparticles. Nonlinear optical properties of doped polymer films are studied experimentally employing Z-scan techniques. Experiments are performed using the second harmonic of a continuous Nd-Yag laser beam at 532 nm wavelength and 45 mW power. The effect of nonlinear refractive index of samples is obtained by measuring the profile of propagated beam through the samples and their nonlinear refractive index is found to be negative. The nonlinear absorption coefficient is calculated using open aperture Z-scan data while its nonlinear refractive index is measured using the closed aperture Z-scan data, leads to measuring the third order susceptibility |χ(3)|. Real and imaginary parts of the third-order nonlinear optical susceptibility |χ(3)| are decrease with increasing the concentration of Ag nanoparticles in the films. The values of thermo-optic coefficient are determined at different concentrations of silver nanoparticles for samples.

  17. Fatty acid ethyl ester concentrations in hair and self-reported alcohol consumption in 644 cases from different origin.

    PubMed

    Süsse, Silke; Selavka, Carl M; Mieczkowski, Tom; Pragst, Fritz

    2010-03-20

    For diagnosis of chronic alcohol abuse, fatty acid ethyl esters (FAEE) were determined in hair samples from 644 individuals, mainly parents from child protection cases. The analysis for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate was performed according to a validated procedure consisting of external degreasing by two times washing with n-heptane, extraction with a mixture of dimethylsulfoxide and n-heptane, separation and evaporation of the n-heptane layer, headspace solid phase microextraction of the residue after addition of phosphate buffer pH 7.6 and gas chromatography-mass spectrometry using deuterated internal standards. For interpretation, the sum of the concentrations of the four esters C(FAEE) was used with the cut-off's 0.5 ng/mg for the proximal scalp hair segment 0-3 cm or less and 1.0 ng/mg for scalp hair samples with a length between 3 and 6 cm and for body hair. C(FAEE) ranged from 0.11 to 31 ng/mg (mean 1.77 ng/mg, median 0.82 ng/mg). The mean concentration ratio between the 4 esters was 8:45:38:9. 298 cases had C(FAEE) above the cut-off's. Self-reported drinking data were obtained in 553 of the cases in the categories abstinent (156 cases), moderate drinking (252 cases) and excessive drinking (145 cases). Median and box-plot data clearly demonstrate differentiation of these ingestor sub-populations by C(FAEE). However, in the abstinent and moderate groups the consumption was frequently underreported (37 and 110 cases positive) whereas in the group self-reported excessive drinking 32 cases were negative. Comparison of C(FAEE) with carbohydrate-deficient transferrin (CDT) in 139 cases and gamma-glutamyltransferase (GGT) in 136 cases showed a good agreement in CDT- and GGT positive cases (27/28 and 32/41) but a large portion of the negative CDT- and GGT-results with positive hair test (44/100 and 48/95) which is explained mainly by the much shorter time window of CDT and GGT. No significant correlation was found between persons

  18. 78 FR 20890 - Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... established in the Antidumping Duty Order: Polyvinyl Alcohol From Taiwan, 76 FR 13982 (March 15, 2011). These... the antidumping duty order on polyvinyl alcohol (PVA) from Taiwan. The period of review (POR) is... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  19. An Innovative Technique of Liquid Purity Analysis and Its Application to Analysis of Water Concentration in Alcohol-Water Mixtures and Studies on Change of Activation Energies of the Mixtures

    NASA Astrophysics Data System (ADS)

    de, Dilip; Aziz Dikko, Abdul

    2012-10-01

    The activation energy of a liquid molecule and hence its viscosity coefficient changes with addition of contaminants to the original liquid. This forms the basis of a new technology for analysis of purity of the liquid. We discovered that concentration of certain contaminants such as water in alcohol or vice versa can be uniquely and accurately determined in a short time (about 10-15 minutes) using a simple and yet innovative technique that only requires measurement of time of flow of the impure liquid (say, water-alcohol mixture) and distilled water through a simple viscometer designed and constructed for this purpose. We find that the viscosity coefficient μ of alcohol increased almost linearly with water concentration at a rate that depends on the type of alcohol and water concentration. We determined the increase of activation energy of alcohol molecules with increase of water concentration. This increase also depends on type of alcohol. Our detailed investigation on alcohol-water mixtures for both ethyl and methyl alcohol along with discussion on possible future potential application of such a simple, yet very reliable inexpensive technique for liquid purity analysis is presented. A comparison is made of our present method with other methods on the accuracies, problems and reliability of impurity analysis in liquids. A part of the quantum theory of viscosity of liquid mixtures that is in the developmental stage in order to explain some of the observed properties is presented.

  20. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    PubMed

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  1. Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals.

    PubMed

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Elrasheedy, Asmaa

    2016-01-01

    This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce(3+) ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications. PMID:27571083

  2. Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals

    PubMed Central

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Elrasheedy, Asmaa

    2016-01-01

    This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce3+ ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications. PMID:27571083

  3. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  4. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  5. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2012-10-01

    Hydrogels are a cross-linked network of polymers swollen with liquid and have the potential to be used as a synthetic replacement for local defects in load bearing tissues such as articular cartilage. Hydrogels display viscoelastic time dependent behavior, therefore experimental analysis of stresses at the surface and within the gel is difficult to perform. A three-dimensional model of a hydrogel was developed in the commercial finite element software ABAQUS™, implementing a poro-viscoelastic constitutive model along with a contact-dependent flow state and friction conditions. Water content measurements, sliding, and indentation experiments were performed on neat polyvinyl alcohol (PVA), and on low friction boundary lubricant functionalized (BLF-PVA) hydrogels, both manufactured by freeze-thaw processes. Modulus results from the indentation experiments and coefficient of friction values from the sliding experiments were used as material property inputs to the model, while water content was used to calculate initial flow conditions. Tangential force and normal displacement data from a three-dimensional simulation of sliding were compared with the experiments. The tangential force patterns indicated important similarities with the fabricated hydrogels that included an initially high force value due to time dependent deformation followed by a decrease in a stabile value. A similar trend was observed with the normal displacement. These comparisons rendered the model suitable as a representation and were used to analyze the development and propagation of stresses in the immediate surface region. The results showed that in a three-dimensional stress field during sliding, the maximum stress shifted to the surface and rotated closer to the leading edge of contact. This occurred because the stress field becomes dominated by an amplified compressive stress at the leading edge due to the biphasic viscoelastic response of the material during sliding. Also, the complex multi

  6. PLT and DBAR Investigations on MPDMAPP Doped PVA/PVP Blend

    NASA Astrophysics Data System (ADS)

    Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish; Hebbar, Vidyashree; H, Chandrappa

    2015-06-01

    Poly(vinylalcohol) (PVA)/Poly(vinylpyrrolidone) (PVP) blend films, doped with chalcone derivative (1-(4-methylphenyl)-3-(4-N,N,dimethylaminophenyl)-2-propen-1-one) (MPDMAPP) from 0.025 wt% up to 1 wt% were prepared using solution casting technique. The o-Ps lifetime τ3 is found to change little, from 1.61 ns at 0.025 wt% dopant concentration to 1.63 ns at 0.5 wt% dopant level, but drops to 1.4 ns at 1 wt% dopant concentration, indicating the onset of phase separation. The S-parameter of DBAR was found to be linearly related to the ortho-Positronium(o-Ps) intensity I3. The S-parameter drops significantly from 0.1 wt% up to 1 wt% doping concentration. This is supported by the XRD scans.

  7. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  8. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  9. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  10. Rainfastness of Poly(vinyl alcohol) Deposits on Vicia faba Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain.

    PubMed

    Symonds, Brett L; Thomson, Niall R; Lindsay, Christopher I; Khutoryanskiy, Vitaliy V

    2016-06-01

    Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants. PMID:27070864

  11. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  12. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  13. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    PubMed

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity. PMID:27154257

  14. The relative risk of involvement in fatal crashes as a function of race/ethnicity and blood alcohol concentration

    PubMed Central

    Torres, Pedro; Romano, Eduardo; Voas, Robert B.; de la Rosa, Mario; Lacey, John H.

    2014-01-01

    Introduction The literature presents a puzzling picture of Latinos being overrepresented in alcohol-related crashes, but not in noncrash drinking and driving. This report examines if, like other demographic variables in which some groups are at a higher crash risk than others (e.g., young drivers), different racial/ethnic groups face different crash risks Method This study compares blood-alcohol information from the 2006–2007 U.S. Fatality Analysis Reporting System (FARS) with control data from the 2007 U.S. National Roadside Survey. Logistic regression, including a dual interaction between BAC and race/ethnicity, was used to estimate crash risk at different BAC levels. Results It was found that, although Hispanic and African-American drivers were less likely to be involved in single-vehicle crashes than their White counterparts, all drivers face similar BAC relative crash risk regardless of their group membership. The overrepresentation of Latino drivers in alcohol-related crashes could be explained by differences in patterns of consumption, driving exposure, lack of awareness of driving rules, and/or socioeconomics. PMID:24529097

  15. Melanin-concentrating hormone expression in the rat hypothalamus is not affected in an experiment of prenatal alcohol exposure.

    PubMed

    Chometton, Sandrine; Franchi-Bernard, Gabrielle; Houdayer, Christophe; Mariot, Amandine; Poncet, Fabrice; Fellmann, Dominique; Risold, Pierre-Yves

    2014-08-01

    Alcohol consumption during pregnancy can cause a "fetal alcoholic syndrome" (FAS) in the progeny. This syndrome is characterized by important brain defects often associated to a decreased expression of the morphogenic protein sonic hedgehog (Shh). The goal of this study was to verify if a FAS could modify the differentiation of hypothalamic neurons producing MCH. Indeed, the expression of this peptide and neurons producing it are dependent of a Shh controlled genetic cascade in the embryo. To address this question, female rats received a 15% ethanol solution to drink during pregnancy and lactation. Higher abortion rate and smaller pups at birth confirmed that descendants were affected by this experimental condition. MCH expression was analyzed by RT-qPCR and immunohistochemistry in embryos taken at E11 and E13, or in pups and young adults born from control and alcoholic mothers. MCH expression level, number of MCH neurons or ratio of MCH sub-populations were not modified by our experimental conditions. However, Shh expression was significantly lover at E11 and we also observed that hindbrain serotonergic neurons were affected as reported in the literature. These findings as well as other data from the literature suggest that protective mechanisms are involved to maintain peptide expressions and differentiation of some specific neuron populations in the ventral diencephalon in surviving embryos exposed to ethanol during pregnancy. PMID:25093909

  16. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  17. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  18. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli.

    PubMed

    Yang, Yu; Zhang, Dongxu; Liu, Song; Jia, Dongxu; Du, Guocheng; Chen, Jian

    2012-01-01

    Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.

  19. Alkali recovery using PVA/SiO2 cation exchange membranes with different -COOH contents.

    PubMed

    Hao, Jianwen; Gong, Ming; Wu, Yonghui; Wu, Cuiming; Luo, Jingyi; Xu, Tongwen

    2013-01-15

    By changing -COOH content in poly(acrylic acid-co-methacryloxypropyl trimethoxy silane (poly(AA-co-γ-MPS)), a series of PVA/SiO(2) cation exchange membranes are prepared from sol-gel process of poly(AA-co-γ-MPS) in presence of poly(vinyl alcohol) (PVA). The membranes have the initial decomposition temperature (IDT) values of 236-274 °C. The tensile strength (TS) ranges from 17.4 MPa to 44.4 MPa. The dimensional stability in length (DS-length) is in the range of 10%-25%, and the DS-area is in the range of 21%-56% in 65 °C water. The water content (W(R)) ranges from 61.2% to 81.7%, the ion exchange capacity (IEC) ranges from 1.69 mmol/g to 1.90 mmol/g. Effects of -COOH content on diffusion dialysis (DD) performance also are investigated for their potential applications. The membranes are tested for recovering NaOH from the mixture of NaOH/Na(2)WO(4) at 25 - 45 °C. The dialysis coefficients of NaOH (U(OH)) are in the range of 0.006-0.032 m/h, which are higher than those of the previous membranes (U(OH): 0.0015 m/h, at 25 °C). The selectivity (S) can reach up to 36.2. The DD performances have been correlated with the membrane structure, especially the continuous arrangement of -COOH in poly(AA-co-γ-MPS) chain.

  20. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    NASA Astrophysics Data System (ADS)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical