Science.gov

Sample records for alcohol pva gel

  1. HEA-PVA gel system for UVA radiation dose measurement.

    PubMed

    Zhang, Wei; Yang, Liming; Fang, Sijia; Chen, Jie

    2016-10-01

    Acrylic monomer is known to be sensitive to ultraviolet radiation (UVR) through photoinitiator. Upon irradiation, the acrylic monomers formed stable polymer through free radical polymerization, hence its appearance will change from colorless and transparent to colored and non-transparent. Furthermore, the degree of changes was based on the UVR dose, and those optical changes could be detected by UV-vis spectrophotometer at the fixed wavelength of 550nm. In this study, we used 2-hydroxyethyl acrylate (HEA) as acrylic monomer, which mixed with polyvinyl alcohol (PVA), and finally obtained a three-dimensional hydrogel material through cross-linking by glutaraldehyde (GA). After doping with photoinitiator-Bis(2,6-difluoro-3-(1-hydropyrro-1-yl)-phenyl) titanocene (784), the gel material was sensitive to UV-A radiation (400-315nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. The behavior of different formulations' dose response sensitivity, detector linearity, diffusion, stability after UVA radiation were investigated. The results showed that when the dosage range of UVA radiation was 0-560J/cm(2), the gel had a great sensitivity and the linearity was found to be closed to 1. After UVA radiation, the gel also had a very good optical stability. In addition to this, when irradiated with high dose UVA, the gel could maintain a low diffusion. PMID:27543762

  2. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  3. A polyvinyl alcohol-coated silica gel stationary phase for hydrophilic interaction chromatography.

    PubMed

    Ji, Shunli; Zheng, Yang; Zhang, Feifang; Liang, Xinmiao; Yang, Bingcheng

    2015-09-21

    Multiple layers of polyvinyl alcohol (PVA) coating are generated onto silica gel by thermal immobilization to form a stationary phase applied for hydrophilic interaction liquid chromatography (HILIC). It offers an easy way to manipulate the thickness of PVA coating and the obtained stationary phase demonstrated high efficiency and high chemical stability. PMID:26280030

  4. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  5. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  6. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  7. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  8. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. PMID:26397234

  9. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days.

  10. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    PubMed

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  11. Crystal structures and magnetic properties of magnetite (Fe3O4)/Polyvinyl alcohol (PVA) ribbon

    NASA Astrophysics Data System (ADS)

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-01

    Ribbon of magnetite (Fe3O4)/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe3O4 sample and ribbon Fe3O4/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe3O4 more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  12. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  13. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration.

  14. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration. PMID:27236842

  15. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    NASA Astrophysics Data System (ADS)

    Lahariya, Vikas

    2016-05-01

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blend crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.

  16. High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator

    NASA Astrophysics Data System (ADS)

    Ma, Guofu; Li, Jiajia; Sun, Kanjun; Peng, Hui; Mu, Jingjing; Lei, Ziqiang

    2014-06-01

    A gel polymer PVA-KOH-K3[Fe(CN)6] is prepared by potassium hydroxide and potassium ferricyanide doped polyvinyl alcohol, and a solid-state supercapacitor is assembled using the gel polymer as electrolyte and separator, activated carbons as electrode. The gel polymer exhibits flexible, high ionic conductivity and wide potential properties. The electrochemical properties of the supercapacitor are investigated using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy techniques. The electrode specific capacitance of the supercapacitor can be as high as 430.95 F g-1, and after 1000 cycles at a current density of 1 A g-1 it still remains higher than 380 F g-1. The energy density and power density of the supercapacitor reach 57.94 Wh kg-1 and 59.84 kW kg-1, respectively. These novel flexible gel polymers are desirable for applications in supercapacitor devices.

  17. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors.

    PubMed

    Wang, Gongming; Lu, Xihong; Ling, Yichuan; Zhai, Teng; Wang, Hanyu; Tong, Yexiang; Li, Yat

    2012-11-27

    Here we report a new strategy to improve the electrochemical stability of vanadium oxide electrodes for pseudocapacitors. Vanadium oxides are known to suffer from severe capacitance loss during charging/discharging cycling, due to chemical dissolution and ion intercalation/deintercalation-induced material pulverization. We demonstrate that these two issues can be addressed by using a neutral pH LiCl/PVA gel electrolyte. The function of the gel electrolyte is twofold: (i) it reduces the chemical dissolution of amphoteric vanadium oxides by minimizing water content and providing a neutral pH medium and (ii) it serves as a matrix to maintain the vanadium oxide nanowire network structure. Vanadium oxide nanowire pseudocapacitors with gel electrolyte exhibit excellent capacitance retention rates of more than 85% after cycling for 5000 cycles, without sacrificing the electrochemical performance of vanadium oxides.

  18. Study of parallel oriented electrospun polyvinyl alcohol (PVA) nanofibers using modified electrospinning method

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Ula, Nur Mufidatul; Jahidah, Khannah; Kusumasari, Ervanggis Minggar; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Parallel orientedpolyvinyl alcohol (PVA) nanofibershasbeen successfully prepared by using modified electrospinning method. This method uses two pairs of copper (Cu) electrodes which are set apart at a certain distance and applied voltage of 15 kV. The concentrations of PVA were varied from 11%, 13%, 15%, 17%, and 19%. The width of gap collector were varied from 5 mm, 10 mm, 15 mm, and 20 mm. The diameter of nanofibers increase as increasing concentration of PVA. As the width of gap collector increase, first diameter of nanofibers decrease and reach a minimum value at 355 ± 7nm in 15 mm of gap, then the diameters increase again. We also calculated the alignment parameter (S) for given aligned nanofiber. The result showed that alignment parameters (S) were on values around 0,9-1.

  19. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres.

    PubMed

    Damasceno, Raquel; Roggia, Isabel; Pereira, Claudio; de Sá, Enilson

    2013-11-01

    The electrospinning technique of rhizobia immobilization in nanofibres is an innovative and promising alternative for reducing the harmful effects of environmental stress on bacteria strains in a possible inoculant nanotechnology product for use in agriculture. The use of polyvinyl alcohol (PVA) shows up as an effective polymer in cell encapsulation because of its physical characteristics, such as viscosity and power of scattering. The aim of these studies has been to evaluate the survival of rhizobia incorporated in PVA nanofibres, which were applied to soybean seed and then subjected to different storage times and exposure to fungicide. The maintenance of the symbiotic characteristics of the incorporated bacterial strains was also evaluated, noting the formation of nodules in the soybean seedlings. No significant differences in the cell survival at 0 h and after 24 h of storage were observed. After 48 h, a significant difference in the bacterial cell concentration of the seeds affixed with PVA nanofibres was observed. Exposure to the fungicide decreased the viability of the bacteria strains even when coated with the nanofibres. A larger number of nodules formed in soybean seedlings from seeds inoculated with rhizobia incorporated in PVA nanofibres than from seeds inoculated with rhizobia without PVA. Thus, the electrospinning technique is a great alternative to the usual protector inoculants because of its unprecedented capacity to control the release of bacteria. PMID:24206353

  20. [Sequential MRI and CT monitoring in cryosurgery--an experimental study in polyvinyl alcohol gel phantom].

    PubMed

    Isoda, H

    1989-09-25

    The purpose of this investigation is to detect a cryolesion by MRI and CT during cryosurgery. A fundamental study was performed to demonstrate MR and CT images of polyvinyl alcohol (PVA) gel, which was used as a phantom for MRI, under the condition of low temperature. MRI was performed on a 0.1 Tesla system (ASAHI MR Mark-J). As the temperature lowered, the unfrozen PVA gel showed decreases in T1 and T2, and an increase in signal intensity on the low flip (LF) angle images, which were obtained using 60 degrees of flip angle, Tr of 100 msec, Te of 18 msec with gradient echo acquisition method. The frozen PVA gel showed no signal intensity on the LF images and zero in T1 and T2. On the other hand, the CT images revealed the frozen area of the PVA gel as a hypodense area. From the facts described above, it may be concluded that MRI and CT will be able to detect cryolesions during cryosurgery.

  1. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads.

    PubMed

    Cheng, Ying; Lin, HongYan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2012-09-01

    The strain, Burkholderia vietnamiensis C09V was immobilized on PVA-alginate-kaolin gel beads as a biomaterial to improve the degradation of crystal violet from aqueous solution. The results show that 98.6% (30 mg L(-1)) crystal violet was removed from aqueous solution using immobilized cells on PVA-alginate-kaolin gel beads, while 94.0% crystal violet was removed by free cells after degradation at the pH 5 and 30°C for 30 h. Kinetics studies show that the pseudo-second-order kinetics well described the adsorption of crystal violet on the PVA-alginate-kaolin beads. Biodegradation of crystal violet on immobilized cells was fitted well by first-order reaction kinetics, indicating that CV was adsorbed onto kaolin and followed their degradation by immobilized cells onto the the PVA-alginate-kaolin beads. Characterization with SEM shows that cells attached well to the surface of PVA-alginate-kaolin beads, leading to improved crystal violet transfer from aqueous solution to immobilized cells. In addition, UV-vis show that the absorption peak at 588 nm was reduced by the degraded N-bond linkages, as well as the formation of degrading products were observed by Fourier transform infrared (FTIR). These results suggest that crystal violet was biodegraded to N,N-dimethylaminophenol and Michler's Ketone prior to these intermediates being further degraded. PMID:22789742

  2. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads.

    PubMed

    Cheng, Ying; Lin, HongYan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2012-09-01

    The strain, Burkholderia vietnamiensis C09V was immobilized on PVA-alginate-kaolin gel beads as a biomaterial to improve the degradation of crystal violet from aqueous solution. The results show that 98.6% (30 mg L(-1)) crystal violet was removed from aqueous solution using immobilized cells on PVA-alginate-kaolin gel beads, while 94.0% crystal violet was removed by free cells after degradation at the pH 5 and 30°C for 30 h. Kinetics studies show that the pseudo-second-order kinetics well described the adsorption of crystal violet on the PVA-alginate-kaolin beads. Biodegradation of crystal violet on immobilized cells was fitted well by first-order reaction kinetics, indicating that CV was adsorbed onto kaolin and followed their degradation by immobilized cells onto the the PVA-alginate-kaolin beads. Characterization with SEM shows that cells attached well to the surface of PVA-alginate-kaolin beads, leading to improved crystal violet transfer from aqueous solution to immobilized cells. In addition, UV-vis show that the absorption peak at 588 nm was reduced by the degraded N-bond linkages, as well as the formation of degrading products were observed by Fourier transform infrared (FTIR). These results suggest that crystal violet was biodegraded to N,N-dimethylaminophenol and Michler's Ketone prior to these intermediates being further degraded.

  3. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  4. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    SciTech Connect

    Prabhudesai, S. A. Mitra, S.; Mukhopadhyay, R.; Lawrence, Mathias B.; Desa, J. A. E.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  5. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  6. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan.

    PubMed

    Sung, Jung Hoon; Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Giu; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-06-15

    The purpose of this study was to develop a minocycline-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and chitosan using the freeze-thawing method. Their gel properties, in vitro protein adsorption, release, in vivo wound healing effect and histopathology were then evaluated. Chitosan decreased the gel fraction, maximum strength and thermal stability of PVA hydrogel, while it increased the swelling ability, water vapour transmission rate, elasticity and porosity of PVA hydrogel. Incorporation of minocycline (0.25%) did not affect the gel properties, and chitosan hardly affected drug release and protein adsorption. Furthermore, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug was more swellable, flexible and elastic than PVA alone because of relatively weak cross-linking interaction of chitosan with PVA. In wound healing test, this minocycline-loaded PVA-chitosan hydrogel showed faster healing of the wound made in rat dorsum than the conventional product or the control (sterile gauze) due to antifungal activity of chitosan. In particular, from the histological examination, the healing effect of minocycline-loaded hydrogel was greater than that of the drug-loaded hydrogel, indicating the potential healing effect of minocycline. Thus, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug is a potential wound dressing with excellent forming and enhanced wound healing.

  7. Treatment of high-strength ethylene glycol waste water in an expanded granular sludge blanket reactor: use of PVA-gel beads as a biocarrier.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    Industrial-scale use of polyvinyl alcohol (PVA)-gel beads as biocarriers is still not being implemented due to the lack of understanding regarding the optimal operational parameters. In this study, the parameters for organic loading rate (OLR), alkalinity, recycle rate, and addition of trace elements were investigated in an expanded granular sludge blanket reactor (EGSB) treating high-strength ethylene glycol wastewater (EG) with PVA-gel beads as biocarrier. Stable chemical oxygen demand (COD) removal efficiencies of 95 % or greater were achieved, and continuous treatment was demonstrated with appropriate parameters being an OLR of 15 kg COD/m(3)/day, NaHCO3 added at 400 mg/L, a recycle rate of 15 L/h, and no addition of trace elements addition. A biogas production yield rate of 0.24 m(3)/kg COD was achieved in this study. A large number of long rod-shaped bacteria (Methanosaeta), were found with low acetate concentration in the EGSB reactor. PMID:27386305

  8. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane. PMID:22325932

  9. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  10. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis.

    PubMed

    Jiang, Hongjun; Campbell, Gord; Boughner, Derek; Wan, Wan-Kei; Quantz, Mackenzie

    2004-05-01

    Although current artificial heart valves are life sustaining medical devices, improvements are still necessary to address deficiencies. Bioprosthetic valves have a compromised fatigue life, while mechanical valves have better durability but are prone to thromboembolic complications. A novel, one-piece, tricuspid valve, consisting of leaflets, stent and sewing ring, made entirely from the hydrogel, polyvinyl alcohol cryogel (PVA-C), has been developed and demonstrated. This valve has three thin leaflets attached to a cylindrical stent. In order to approximate the complex shape of the surface of the natural heart valve leaflets, two different geometries have been proposed: revolution about an axis of a hyperboloid shape and revolution about an axis of an arc subtending (joining) two straight lines. The parameters of both geometries were examined based on a compromise between avoiding sharp curvature of leaflets and minimization of the central opening of the valve when closed. The revolution of an arc subtending two straight lines was selected as the preferred geometry since it has the benefit of a smaller central opening when the value of the maximum curvature for the leaflets is the same for each valve geometry. A cavity mold has been designed and constructed to form the PVA-C heart valve. The three leaflets were formed and integrated into the stent and sewing ring in a single process. Prototype heart valves were manufactured in the mold from a solution of PVA and water, by controlled freezing and thawing cycles. PMID:15121052

  11. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads.

    PubMed

    Ali, Muhammad; Oshiki, Mamoru; Rathnayake, Lashitha; Ishii, Satoshi; Satoh, Hisashi; Okabe, Satoshi

    2015-08-01

    Rapid start-up of anaerobic ammonium oxidation (anammox) process in up-flow column reactors was successfully achieved by immobilizing minimal quantity of biomass in polyvinyl alcohol (PVA)-sodium alginate (SA) gel beads. The changes in the reactor performance (i.e., nitrogen removal rate; NRR) were monitored with time. The results demonstrate that the reactor containing the immobilized biomass concentration of 0.33 g-VSS L(-1) achieved NRR of 10.8 kg-N m(-3) d(-1) after 35-day operation, whereas the reactor containing the granular biomass of 2.5 g-VSS L(-1) could achieve only NRR of 3.5 kg-N m(-3) d(-1). This indicates that the gel immobilization method requires much lower seeding biomass for start-up of anammox reactor. To explain the better performance of the immobilized biomass, the biological and physicochemical properties of the immobilized biomass were characterized and compared with the naturally aggregated granular biomass. Effective diffusion coefficient (De) in the immobilized biomass was directly determined by microelectrodes and found to be three times higher than one in the granular biomass. High anammox activity (i.e., NH4(+) and NO2(-) consumption rates) was evenly detected throughout the gel beads by microelectrodes due to faster and deeper substrate transport. In contrast, anammox activity was localized in the outer layers of the granular biomass, indicating that the inner biomass could not contribute to the nitrogen removal. This difference was in good agreement with the spatial distribution of microbes analysed by fluorescence in situ hybridization (FISH). Based on these results, PVA-SA gel immobilization is an efficient strategy to initiate anammox reactors with minimal quantity of anammox biomass.

  12. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  13. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  14. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation.

    PubMed

    Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Gju; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-09-01

    To develop a gentamicin-loaded wound dressing, cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and dextran using the freezing-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength, and thermal property were investigated. In vitro protein adsorption test, in vivo wound healing test, and histopathology were performed. Dextran decreased the gel fraction, maximum strength, and thermal stability of hydrogels. However, it increased the swelling ability, water vapor transmission rate, elasticity, porosity, and protein adsorption. The drug gave a little positive effect on the gel properties of hydrogels. The gentamicin-loaded wound dressing composed of 2.5% PVA, 1.13% dextran, and 0.1% drug was more swellable, flexible, and elastic than that with only PVA because of its cross-linking interaction with PVA. In particular, it could provide an adequate level of moisture and build up the exudates on the wound area. From the in vivo wound healing and histological results, this gentamicin-loaded wound dressing enhanced the healing effect more compared to conventional product because of the potential healing effect of gentamicin. Thus, this gentamicin-loaded wound dressing would be used as a potential wound dressing with excellent forming and improved healing effect in wound care.

  15. Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fenton reaction.

    PubMed

    Bossmann, S H; Oliveros, E; Göb, S; Kantor, M; Göppert, A; Lei, L; Yue, P L; Braun, A M

    2001-01-01

    The reaction mechanism of the oxidative degradation of polyvinyl alcohol (PVA) by the photochemically enhanced Fenton reaction was studied using a homogeneous (Fe2+(aq) + H2O2) and a heterogeneous reaction system (iron(III)-exchanged zeolite Y+ H2O2). In the homogeneous Fenton system, efficient degradation was observed in a batch reactor, equipped with a medium pressure mercury arc in a Pyrex envelope and employing 80% of the stoichiometric amount of H2O2 required for the total oxidation of PVA and a concentration ratio as low as I mole of iron(II) sulfate per 20 moles of PVA sub-units (C2H40). Model PVA polymers of three different molecular weights (15,000, 49,000 and 100,000 g mol(-1)) were found to follow identical degradation patterns. Strong experimental evidence supports the formation of supermacromolecules (MW: 1-5 x 10(6) g/mol) consisting of oxidized PVA and trapped iron(III) at an early reaction stage. Low molecular weight intermediates, such as oxalic acid, formic acid or formaldehyde were not found during PVA degradation in the homogeneous Fenton system, and we may deduce that the manifold of degradation reactions is mainly taking place within the super-macromolecules from which CO2 is directly released. However, in the heterogeneous Fenton system, the reaction behavior was found to be distinctly different: a decrease of the molecular weights of all three tested monodisperse PVA samples was observed by the broadening of the GPC-traces during irradiation, and oxalic acid was formed. The results lead to the mechanistic hypothesis that during the heterogeneous Fenton process, the cleavage of the PVA-chains may occur at random positions, the reactive centres being located inside the iron(III)-doped zeolite Y photocatalysts.

  16. In vitro study of ultrasound radiation force-driven twinkling sign using PVA-H gel and glass beads tissue-mimicking phantom.

    PubMed

    Liu, Lei; Funamoto, Kenichi; Ozawa, Kei; Ohta, Makoto; Hayase, Toshiyuki; Ogasawara, Masafumi

    2013-07-01

    The twinkling sign observed in ultrasound coded-excitation imaging (e.g., GE B-Flow) has been reported in previous research as a potential phenomenon to detect micro calcification in soft tissue. However, the mechanism of the twinkling sign has not been clearly understood yet. We conducted an in vitro experiment to clarify the mechanism of the twinkling sign by measuring a soft tissue-mimicking phantom with ultrasonic and optical devices. A soft tissue-mimicking phantom was made of poly(vinyl alcohol) hydro (PVA-H) gel and 200-μm-diameter glass beads. We applied ultrasound to the phantom using medical ultrasound diagnostic equipment to observe the twinkling sign of glass beads. Optical imaging with a laser sheet and a high-speed camera was performed to capture the scatter lights of the glass beads with and without ultrasound radiation. The scatter lights from the glass beads were quantified and analyzed to evaluate their oscillations driven by the ultrasound radiation force. The twinkling sign from the glass beads embedded in the PVA-H gel soft tissue phantom was observed in ultrasound B-Flow color imaging. The intensity and oscillation of the scattered lights from the glass beads showed significant difference between the cases with and without ultrasound radiation. The results showed a close relationship between the occurrence of the twinkling sign and the variations of the scatter lights of glass beads, indicating that ultrasound radiation force-driven micro oscillation causes the twinkling sign of micro calcification in soft tissue.

  17. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  18. Ferromagnetism in LaMnO3 Nanoparticles Prepared by Sol-Gel Method Combined with Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Tola, Pardi S.; Kim, D. H.; Liu, Chunli; Phan, T. L.; Lee, B. W.

    2016-07-01

    This work presents the synthesis of rhombohedral LaMnO3 nanoparticles (NPs) by using a sol-gel method with the assistance of polyvinyl alcohol (PVA), followed with annealing at 700°C for 2 h in air. By changing the PVA amount from 0 ml to 15 ml, we have synthesized LaMnO3 NPs so that their ferromagnetic-paramagnetic phase-transition temperature ( T C) can be tuned in the range between 228 K and 305 K. At 15 K, saturation magnetization ( M s) and coercivity ( H c) values are tunable in the ranges of 32-52 emu/g and 200-258 Oe, respectively, if varying PVA amount from 0 ml to 15 ml. X-ray photoelectron analyses revealed a large amount of La deficiency and oxygen excess in the NPs, particularly for the NPs synthesized with the presence of PVA at a suitable amount (≤10 ml). This leads to a coexistence of Mn3+ and Mn4+ ions, and changes the geometrical structure of nanocrystalline LaMnO3 NPs, as confirmed by x-ray absorption data. We believe that the variation of PVA changed the concentration ratio of Mn3+/Mn4+, enriching a magnetic-phase diagram of LaMnO3 nanoparticles.

  19. Alcohol hand gel--a potential fire hazard.

    PubMed

    O'Leary, Fionnuala M; Price, Gareth J

    2011-01-01

    Alcohol hand gel and wipes are the common method of disinfecting the hands of healthcare workers and working surfaces in clinical settings. We present a case of a 40-year-old health care support worker who was referred acutely to our burns unit following flame burns in association with alcohol gel use. Fortunately she was able to extinguish the flames without sustaining a significant thermal injury however this case highlights the potential danger associated with alcohol gel use, especially with smokers. With the ever increasing use of alcohol hand gel, not only in healthcare settings but also in the general population there needs to be clearer warnings regarding the potential for ignition after use. Alcohol hand gel and wipes are the common method of disinfecting the hands of healthcare workers and working surfaces in clinical settings. Most trusts have strict policies regarding mandatory sanitisation of hands before and after patient contact. This is most easily achieved by the use of alcohol gel due to its ease of use and quick drying properties. As a result alcohol hand disinfectant is available is a variety of formats including foam, gel and wipes. It is also now widely available for use to the general public.

  20. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  1. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules.

  2. Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1997-04-01

    PVA films have been used as mold releases, strippable coatings, binders for photopolymers and when sensitized with metals and/or dyes they have been used as photoresists, volume HOEs, multiplexed holographic optical memory and real time non destructive holographic testing. The list goes on and includes Slime and birth control. In holography, DC-PVA is a real time photoanisotropic recording material useful for phase conjugation experiments and also a stable long term storage medium needing no processing other than heat. Now we add the capability of greatly increasing the versatility of PVA by boosting the index modulation by almost two orders of magnitude. We can add broadband display and HOE applications that were not possible before. Simple two or three step liquid processing is all that is required to make the index modulation grow.

  3. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol-gel method.

    PubMed

    Kaygili, Omer; Keser, Serhat; Al Orainy, R H; Ates, Tankut; Yakuphanoglu, Fahrettin

    2014-02-01

    The synthesis and characterization of sol-gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF.

  4. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe2O4 were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5-6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe2O4 as the main phase and Co3O4 as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (Mmax) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field (iHc) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the iHc value changes from 83 Oe to 493 Oe. The mechanism of changes in Mmax and iHc values has been explained.

  5. Quantitative evaluation of a smart material: PVA-borate gelation and the gel`s response to diols

    SciTech Connect

    Wise, E.T.; Weber, S.G.

    1993-12-31

    Smart materials that respond to chemical stimuli are important building blocks for the next generation of intelligent systems. The authors are developing a quantitative understanding to describe polymer solution behavior for polymers that can undergo noncovalent crosslinking (in solution). The polymer system known to school children as {open_quotes}Slime{close_quotes} is such a system, thus, the authors have chosen to study this system in some detail. Slime consists of a solution of borax that span a range of concentrations have been prepared. The viscosity of the solutions has been measured at 30C. At high (0.25 M in diol) polymer cocentration and high borate concentration (around 2 mM) the solution forms a homogenous gel. At low polymer concentration (0.15 M) and high borate concentration there is a phase separation. The authors have modeled the formation of the gel using a combination of chemical equilibria, to define how many borate crosslinks that are, and entanglement theory, to determine the viscosity of the crosslinked polymer. The theory correctly predicts the compositions that yield gels, but the predicted viscosity is too low.

  6. Effect of Polyvinyl Alcohol (PVA) Containing Artemether in Treatment of Cutaneous Leishmaniasis Caused by Leishmania major in BALB/c Mice

    PubMed Central

    Ebrahimisadr, Parisa; Ghaffarifar, Fatemeh; Hassan, Zuhir Mohammad; Sirousazar, Mohammad; Mohammadnejad, Fatemeh

    2014-01-01

    Background: Polyvinyl alcohol (PVA) is one of the well-known polymers, which has been used in numerous biomedical applications because of its good biocompatibility. Objectives: Due to problems made by the therapeutics already used for leishmaniasis, the aim of this study was to evaluate the effect of PVA containing artemether in treating cutaneous leishmaniasis in BALB/c mice. Materials and Methods: Aqueous solution of PVA was prepared by mixing with Double Distilled Water. After preparation of PVA, 4.33 mg of each drug (main drug artemether and control drug 14% glucantime) was added to 100 g of prepared PVA-honey solution. The solution was incubated at 37°C and the release of artemether was evaluated by measuring absorbance at 260 nm wave length. In this study for treatment of mice lesion, we used PVA containing artemether and glucantime and this method was compared with ointment treatment. Results: Mean diameters of lesions in mice treated with artemether were smaller than the control group and the differences were significant (P < 0.05). The mean lesion size of mice treated with PVA containing artemether in comparison with the group treated with ointment of artemether were smaller and the differences were significant (P < 0.05). Conclusions: PVA containing artemether is a new method for treatment of cutaneous leishmaniasis and according to the obtained results, artemether is an appropriate and effective drug, especially when used with PVA as a lesion dressing; thus we suggest that this method can be applied for the treatment of cutaneous leishmaniasis. PMID:25147717

  7. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  8. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-06-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I-V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  9. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    PubMed

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.

  10. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    PubMed

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems. PMID:27054722

  11. ERG electrode in pediatric patients: comparison of DTL fiber, PVA-gel, and non-corneal skin electrodes.

    PubMed

    Coupland, S G; Janaky, M

    1989-04-01

    Hard contact lens electrodes have been the type most frequently used in pediatric electroretinography but they are not well-tolerated by patients. The Dawson Trick Litzkow fiber electrode is better tolerated but it is fragile and difficult to sterilize. A new electrode made from anomalous polyvinyl alcohol gel is inexpensive, has stable electrical recording properties, and can be discarded after use. Dermal electrodes have been used for electroretinogram recording for some time; however, there are few reports that directly compare their performance against standard contact lens assemblies. We compared the DTL and the polyvinyl gel electrodes in the same group of subjects and investigated their recording characteristics along with non corneal skin electrodes placed on the infraorbital ridge. Signal-averaged electroretinogram were obtained under both scotopic and photopic stimulation conditions and the implicit time and amplitudes of the a- and b-waves were determined. Overall, dermal recordings generally had shorter implicit times and lower amplitudes than with the fiber or gel electrodes. The dermal electrodes were best tolerated and outlasted the corneal in repeated use. Since amplitude characteristics of the dermal electrodes were generally about 50% of that obtained with corneal electrodes, we feel that under standardized conditions they are acceptable for most clinical recording situations in infants and young children.

  12. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings.

    PubMed

    Fan, Lihong; Yang, Huan; Yang, Jing; Peng, Min; Hu, Jin

    2016-08-01

    Chitosan (CS)/gelatin (Gel)/polyvinyl alcohol (PVA) hydrogels were prepared by the gamma irradiation method for usage in wound dressing applications. Chitosan and gelatin solution was mixed with poly(vinyl alcohol) (PVA) solution at different weight ratios of CS/Gel of 1:3, 1:2, 1:1, 2:1 and 3:1. The hydrogels irradiated at 40kGy. The structure of the hydrogels was characterized by using FT-IR and SEM. The CS/Gel/PVA hydrogels were characterized for physical properties and blood clotting activity. The tensile strength of CS/Gel/PVA hydrogel enhanced than on the basis of the Gel/PVA hydrogel. The highest tensile strength reached the 2.2Mpa. All hydrogels have shown a good coagulation effect. It takes only 5min for the BCI index to reached 0.032 only 5min when the weight ratio of CS/Gel was 1:1. It means that the hemostatic effect of hydrogels were optimal. And the hydrogrls also showed good pH-sensitivity, swelling ability and water evaporation rate. Therefore, this hydrogel showed a promising potential to be applied as wound dressing. PMID:27112893

  13. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.

    2016-01-01

    An innovative method has been used to reduce the bandgap of poly(vinyl alcohol) (PVA) polymer by addition of a nontoxic, inexpensive, and environmentally friendly material. The resulting materials are small-bandgap polymers, hence opening new frontiers in green chemistry. The doped PVA films showed a wide range of light absorption of the solar spectrum from 200 nm to above 800 nm. Nonsharp absorption behavior versus wavelength was observed for the samples. The refractive index exhibited a wide range of dispersion. Shift of the absorption edge from 6.2 eV to 1.5 eV was observed. The energy bandgap of PVA was diminished to 1.85 eV upon addition of black tea extract solution, lying in the range of small-bandgap polymers. Increase of the optical dielectric constant was observed with increasing tea solution addition. The results indicate that small-bandgap PVA with good film-forming ability could be useful in terms of cost-performance tradeoff, solving problems of short lifetime, cost, and flexibility associated with conjugated polymers. The decrease of the Urbach energy upon addition of black tea extract solution indicates modification of PVA from a disordered to ordered material. X-ray diffraction results confirm an increase of the crystalline fraction in the doped samples.

  14. Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction.

    PubMed

    da Silva, Rogério Cesar; Zuin, Vânia Gomes; Yariwake, Janete Harumi; Eberlin, Marcos Nogueira; Augusto, Fabio

    2007-10-01

    An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption. PMID:17902108

  15. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA).

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2011-05-01

    Use of ultrasound can yield polymer degradation as reflected by a significant reduction in the intrinsic viscosity or the molecular weight. The ultrasonic degradation of two water soluble polymers viz. carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) has been studied in the present work. The effect of different operating parameters such as time of irradiation, immersion depth of horn and solution concentration has been investigated initially using laboratory scale operation followed by intensification studies using different additives such as air, sodium chloride and surfactant. Effect of scale of operation has been investigated with experiments in the available different capacity reactors with an objective of recommending a suitable type of configuration for large scale operation. The experimental results show that the viscosity of polymer solution decreased with an increase in the ultrasonic irradiation time and approached a limiting value. Use of additives such as air, sodium chloride and surfactant helps in increasing the extent of viscosity reduction. At higher frequency operation the viscosity reduction has been found to be negligible possibly attributed to less contribution of the physical effects. The viscosity reduction in the case of ultrasonic horn has been observed to be more as compared to other large capacity reactors. Kinetic analysis of the polymer degradation process has also been performed. The present work has enabled us to understand the role of the different operating parameters in deciding the extent of viscosity reduction in polymer systems and also the controlling effects of low frequency high power ultrasound with experiments on different scales of operation.

  16. Surface resistivity temperature dependence measures of commercial, multiwall carbon nanotubes (MWCNT), or silver nano-particle doped polyvinylidene difluoride (PVDF) and polyvinyl alcohol (PVA) films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Egarievwe, Stephen; Kukhtareva, Tatiana; Polius, Jemilia; Janen, Afef; Corda, John

    2014-10-01

    The detection of infrared radiation (IR) with pure and doped Polyvinylidene difluoride (PVDF) films has been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made from Polyvinyl Alcohol (PVA) have received considerable attention in recent years. The investigation of surface resistivities of both such films, to this point, has received far less consideration in comparison to pyroelectric effects. In this research, we report temperature dependent surface resistivity measurements of commercial, and of multiwall carbon nanotubes (MWCNT), or Ag-nanoparticle doped PVA films. Without any variation in the temperature range from 22°C to 40°C with controlled humidity, we found that the surface resistivity decreases initially, reaches a minimum, but rises steadily as the temperature continues to increase. This research was conducted with the combined instrumentation of the Keithley Model 6517 Electrometer and Keithley Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films. With the objective to quantify the suitability of PVDF and PVA films as IR detector materials, when using the surface resistivity phenomenon, instead of or in addition to the pyroelectricity, surface resistivity measurements are reported when considering bolometry. We find the surface resistivity of PVDF films to be in the range, which extends beyond the upper limit of our Keithley electrometer, but our measurements on PVA films were readily implemented.

  17. Sol-gel synthesis and characterization of nanocrystalline (Bi0.5Na0.5)TiO3 powders from the poly vinyl alcohol evaporation route

    NASA Astrophysics Data System (ADS)

    Haitao, Liu; xiaohui, Wang; Longtu, Li

    2009-09-01

    Nanocrystalline pure perovskite phase bismuth sodium titanate (Bi0.5Na0.5)TiO3(BNT) powders have been prepared by a sol-gel method from the poly vinyl alcohol evaporation route, bismuth nitrate [Bi(NO3)3], tetra-butyl titanate [Ti(OC4H9)4] and sodium acetate(CH3COONa) were used as raw materials and poly vinyl alcohol(PVA) as the sol-gel forming solvent. Stoichiometric amounts of the individual raw materials were thoroughly mixed in accordance with the BNT composition to form the stock solution. The pH of the stock was adjusted to 1-3 by adding acetate. Aqueous solution of PVA[10%(w/v)] was then added to the cationic mixture with thorough stirring. The weight ratio of the cationic mixture to the PVA aqueous solution was maintained at 2:1. The resulting viscous liquid was then heated over a hot crucible up to form a fluffy dry gel. The fluffy dry gels were calcined at different temperatures and times and then cooled to room temperature naturally. The X-ray powder diffraction(XRD) patterns of the heat-treated powders were obtained using a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation and nickel filter. Scanning electron microscope (SEM) studies of the NBT powders were performed using a JSM-6700F electron microscope. Phase-pure BNT powders were obtained at 550°C for 2-2.5h which is relatively lower calcination temperature than other reports. The BNT powders consists of phase-pure perovskite nanocrystals with an average size of 100-200nm.

  18. Moisturizing alcohol hand gels for surgical hand preparation.

    PubMed

    Jones, R D; Jampani, H; Mulberry, G; Rizer, R L

    2000-03-01

    With the use of novel formulary technology, unique moisturizing hand gels have been developed that offer significant advantages in perioperative and other health care settings. These advantages include the time-saving capabilities of a waterless formulation, the persistence and effectiveness of a surgical scrub, and the moisturization and protective properties of a lotion. Extensive laboratory and clinical studies, involving in vivo antimicrobial activity against resident and transient flora, skin moisturization on normal and dry skin, and compatibility with latex gloves, have supported these advantages. Nondrying alcohol hand gels can be used for antiseptic hand washing, hand scrubs between procedures (i.e., reentry scrubs), brushless surgical scrubs, moisturizers, and glove-donning aids.

  19. Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions.

    PubMed

    Zhang, Yun; Kogelnig, Daniel; Morgenbesser, Cornelia; Stojanovic, Anja; Jirsa, Franz; Lichtscheidl-Schultz, Irene; Krachler, Regina; Li, Yanfeng; Keppler, Bernhard K

    2011-11-30

    The coarse PVA-alginate matrix gel beads entrapping the micro-droplets of the ionic liquid tricaprylylmethylammonium 2-(methylthio) benzoate ([A336][MTBA]) as novel solid-phase extractants were prepared for the removal of mercury (II) from aqueous media. The ionic liquid [A336][MTBA] immobilized PVA-alginate beads (PVA/IL) have been characterized by FTIR, SEM and TGA. The influence of the uptake conditions was investigated including aqueous pH, PVA/IL dosage, the content of [A336][MTBA] and initial Hg (II) concentration; maximum Hg (II) ion adsorption capacity obtained was 49.89 (± 0.11)mgg(-1) at pH 5.8 with adsorptive removal of approximately 99.98%. The selectivity of the PVA/IL beads towards Hg (II), Pb (II) and Cu (II) ions tested was Hg>Pb>Cu. The rate kinetic study was found to follow second-order and the applicability of Langmuir, Freundlich and Tempkin adsorption isotherm model were tested as well. The results of the study showed that PVA/IL beads could be efficiently used as novel extractants for the removal of divalent mercury from aqueous solutions under comparatively easy operation conditions.

  20. Dynamic and static fluctuations in polymer gels studied by neutron spin-echo

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.

    2006-11-01

    We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.

  1. Determining the electrical mechanism of the surface resistivity property of doped polyvinyl alcohol (PVA) and the pyroelectric property of polyvinylidene difluoride (PVDF) thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Janen, Afef; Guggilla, Padmaja; Polius, Jemelia; Douglas, Jade; Curley, Michael

    2015-08-01

    Previously, we have reported measurements of the temperature-dependent surface resistivity of pure and multi-walled carbon nanotubes doped Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C, with a humidity-controlled environment, we found the surface resistivity to decrease initially but to rise steadily as the temperature continued to increase. Correspondingly, we have measured the temperature-dependent pyroelectric coefficient of doped polyvinylidene difluoride (PVDF) thin films, very well. While the physical mechanism of the pyroelectric phenomenon in PVDF thin films is quite well known, the surface resistivity behavior of PVA thin films is not so well known. Here, we address this concern by reporting the electrical mechanistic phenomena that contribute to surface resistivity of pure and doped PVA thin films, and give preliminary surface resistivity detectivity and other relevant quality factors for infrared (IR) and motion sensors. Regarding the pyroelectric effect of doped PVDF thin films, we give materials Figures-of-Merit based on our measurements. In addition, pyroelectric and surface resistivity infrared fundamentals, IR sensor uniqueness, and innovative techniques are presented.

  2. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  3. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  4. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering. PMID:26369028

  5. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  6. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-12-01

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements. PMID:25329452

  7. Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, Shobhna; Sengwa, R. J.

    2016-05-01

    Complex dielectric function, electric modulus, ac conductivity and impedance spectra of PVA-SiO2 nanocomposite films have been investigated in the frequency range of 20 Hz to 1 MHz and temperature range from 30 °C to 60 °C. Real part of dielectric function of the nanocomposites slowly decreases with increase of frequency and it shows a non-linear increase with the increase of temperature. An anomalous variation is observed in dielectric and electrical functions with increase of SiO2 concentrations in the PVA matrix. The ac conductivity of these materials increases whereas impedance values decrease linearly by five orders of magnitude with increase of frequency from 20 Hz to 1 MHz. Dielectric loss values of these films are found minimum at intermediate frequency region, and it increases at low and high frequency regions confirming the presence of multiple relaxation processes. The contributions of interfacial polarization effect and dipolar ordering in dielectric properties of these materials have been explored, and their technological applications as nanodielectrics have been discussed. The XRD patterns reveal that the interactions between PVA and SiO2 disturb the dipolar ordering resulting decrease of crystallinity of the PVA in the nanocomposites.

  8. Tailoring red-green-blue emission from Er3+, Eu3+ and Tb3+ doped Y2O3 nanocrystals produced via PVA-assisted sol-gel route

    NASA Astrophysics Data System (ADS)

    Sobral, G. A.; Gomes, M. A.; Avila, J. F. M.; Rodrigues, J. J.; Macedo, Z. S.; Hickmann, J. M.; Alencar, M. A. R. C.

    2016-11-01

    Y2O3 luminescent nanoparticles were synthesized via PVA-assisted sol-gel method and their structural and optical properties were investigated. Effects of rare earth (Er3+, Eu3+ and Tb3+) doping on luminescence properties of the produced nanophosphors have been investigated under NIR (800 nm) and UV (240-300 nm) excitation. Intense infrared to red and green emissions were observed and a weak blue upconverted luminescence was also detected. Moreover, it was observed that changing the doping ions, the color emitted by the samples could be modified and different combinations of UV excitation and doping produced effective white light emissions. The obtained results demonstrate that PVA-assisted sol-gel is an effective methodology for the synthesis of rare-earth doped Y2O3 nanophosphors.

  9. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  10. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  11. VALIDATION OF AN EPA METHOD FOR THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS USING A POLYVINYL ALCOHOL GEL RESIN.

    EPA Science Inventory

    This paper summarizes the key points of a joint study between the EPA and Metrohm-Peak, Inc., on the use of polyvinyl alcohol [PVA] columns for the ion chromatographic determination of percholorate in aqueous leachates or solutions of fertilizers. A series of fertilizer samples ...

  12. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  13. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  14. Interface porcelain tile/PVA modified mortar: a novel nanostructure approach.

    PubMed

    Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander

    2009-02-01

    In ceramic tile systems, the overall result of adherence between porcelain tiles and polymer modified mortars could be explained based on the nano-order structure that is developed at the interface. Based on pull-off tests, Scanning Electron Microscopy images, and Small Angle X-ray Scattering experiments a nanostructured approach for interface tile/PVA modified mortar was built. The increase of adhesion between tile and mortar due to poly(vinyl alcohol), PVA, addition can be explained by the formation of a hybrid ceramic-polymer-ceramic interface by hydrogen bonds between PVA hydroxyl groups and silanol from tile surface and water from nanostructured C-S-H gel interlayer.

  15. Preparation of sol-gel polyethylene glycol-polydimethylsiloxane-poly(vinyl alcohol)-coated sorptive bar for the determination of organic sulfur compounds in water.

    PubMed

    Yu, Chunhe; Li, Xuan; Hu, Bin

    2008-08-15

    A novel headspace sorptive extraction (HSSE) using a glass bar coated with carbowax (polyethylene glycol)-polydimethylsiloxane-poly(vinyl alcohol) (CW/PDMS/PVA) prepared by sol-gel technology method was proposed for the determination of volatile organic sulfur compounds (VOSs) in water. After the extraction, the sorptive bar was desorbed with 60 microL of ethanol and 30 microL of the extract was analysed by large volume injection (LVI) into a gas chromatography-flame photometric detector (GC-FPD). The parameters affecting the headspace sorptive extraction of VOSs such as extraction and desorption time, extraction temperature, stirring speed, desorption solvent, headspace phase ratio, salt and pH were carefully investigated and the optimized experimental conditions were established. The limits of detection (LODs) for the studied VOSs ranged from 0.04 to 4.8 microg/L with the relative standard deviations (RSDs) ranging from 4.5 to 10.2% (n=6). The reproducibility for the preparation of CW/PDMS/PVA-coated sorptive bar ranged from 3.2 to 9.2% in one batch, and from 2.8 to 18.5% in batch-to-batch, and more than 50 extractions can be achieved without apparent loss. The proposed method was compared with polydimethylsiloxane-HSSE and carboxen/PDMS-headspace-solid phase microextraction (CAR/PDMS-HS-SPME) under their optimum conditions, CW/PDMS/PVA-HSSE shows the highest adsorption capacity (larger surface area and more active sites), the highest sensitivity (about 10 times) and the best polarity matching for VOSs. PMID:18603256

  16. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  17. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    SciTech Connect

    Smith, S. T. Masters, K.-S.; Hosokawa, K.; Blinco, J. P.; Trapp, J. V.; Crowe, S. B.; Kairn, T.

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2} h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.

  18. Preparation of novel silica-coated alginate gel beads for efficient encapsulation of yeast alcohol dehydrogenase.

    PubMed

    Xu, Song-Wei; Lu, Yang; Li, Jian; Zhang, Yu-Fei; Jiang, Zhong-Yi

    2007-01-01

    Biomimetic formation has undoubtedly inspired the preparation of novel organic-inorganic hybrid composites. In this study, silica-coated alginate gel beads were prepared by coating the surface of alginate gel beads with silica film derived from tetramethoxysilane (TMOS). The composition and structure of the silica film were characterized by FT-IR and SEM equipped with EDX. The swelling behavior of silica-coated alginate gel beads was studied to be more stable against swelling than that of alginate gel beads. The results showed that silica-coated alginate gel beads exhibited appropriate diffusion property. The effective diffusion coefficient (D(e)) of NADH in silica-coated alginate beads was 1.76 x 10(-10) m2/s, while the effective diffusion coefficient in alginate beads was 1.84 x 10(-10) m2/s. The model enzyme yeast alcohol dehydrogenase (YADH) was encapsulated in silica-coated alginate and pure alginate beads, respectively. Enzyme leakage of YADH in alginate gel beads was determined to be 32%, while the enzyme leakage in silica-coated alginate gel beads was as low as 11%. Furthermore, the relative activity of YADH in alginate gel beads decreased almost to zero after 10 recycles, while the relative activity of YADH in silica-coated alginate gel beads was 81.3%. The recycling stability of YADH in silica-coated alginate gel beads was found to be increased significantly mainly due to the effective inhibition of enzyme leakage by compact silica film.

  19. Illumination Dependent Admittance Characteristics of Au/Zinc Acetate Doped Polyvinyl Alcohol (PVA:Zn)/n-Si Schottky Barrier Diodes (SBDs)

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, I.; Aydemir, U.; Altındal, Ş.; Tunç, T.

    2011-12-01

    This study presents the effect of illumination on main electrical parameters of Schottky barrier diode (SBD). The admittance (capacitance-voltage (C-V) and conductance-voltage (G/ω-V)) characteristics of Au/Zinc acetate doped polyvinyl alcohol (PVA:Zn)/n-Si SBD were investigated in dark and under various illumination intensities. Experimental results demonstrate that the C-V plots give a peak due to the illumination induced interface states or electron-hole pairs at metal/semiconductor (M/S) interface. The C-2-V plots were also drawn to determine main electrical parameters such as doping concentration (ND), depletion layer width (WD) and barrier height (ΦB(C-V)) of device. In addition, the voltage dependence Rs values were obtained from C-V and G/ω-V data by using Nicollian and Brews method. In order to obtain the real diode capacitance and conductance, the high frequency (1 MHz) Cm and Gm/w values were corrected for the effect of series resistance. All these observations confirm that both C-V and G/w-V characteristics were strongly affected by illumination.

  20. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume.

  1. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume. PMID:21457992

  2. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant. PMID:26744941

  3. Healthy Hands: Use of Alcohol Gel as an Adjunct to Handwashing in Elementary School Children

    ERIC Educational Resources Information Center

    Morton, Jennifer L.; Schultz, Alyce A.

    2004-01-01

    Elementary school-age children are particularly vulnerable to infections. While handwashing is the best method of preventing infections, many elementary schools are housed in buildings that have barriers to effective hand hygiene. The purpose of this study was to determine the effectiveness of an alcohol gel as an adjunct to handwashing in…

  4. Formulation and evaluation of once-a-day transdermal gels of diclofenac diethylamine.

    PubMed

    Baboota, S; Shakeel, F; Kohli, K

    2006-03-01

    The present study was undertaken to prepare and evaluate transdermal gels of diclofenac diethylamine (DDEA) containing penetration enhancers such as olesan oil and dimethyl sulfoxide (DMSO). Transdermal gels were prepared using different polymers such as carbopol-940, polyvinyl alcohol (PVA), hydroxy propyl methyl cellulose-K(4) M, hydroxy propyl cellulose-M, and sodium carboxy methyl cellulose. The formulated gels were subjected to physicochemical studies, in vitro release studies and in vitro skin permeations studies and were evaluated for drug content, viscosity, extrudability, spreadability, and pH. The in vitro release studies of prepared gels were performed using specially designed Fites cell and in vitro skin permeation studies were performed using keshary-chien diffusion cell through rat skin. Selected formulations were evaluated for their antiinflammatory activity using the carrageenan-induced paw edema in rats. The carbopol-940 and PVA gels containing 10% DMSO showed best in vitro skin permeation of DDEA. In vivo study for the selected formulation showed a sustained reduction in inflammation in the carrageenan induced paw edema in rats. The efficacies of carbopol-940 and PVA gels were also compared with that of the marketed Voveran gel,(R) and it was found that carbopol and PVA gels produced better results than the Voveran gel. (c) 2006 Prous Science. All rights reserved.

  5. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    SciTech Connect

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-07-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  6. Heat of immersion of silica gel in normal alkanes and alcohols

    SciTech Connect

    Dubinin, M.M.; Isirikyan, A.A.; Nikolaev, K.M.; Polyakov, N.S.; Tatarinova, L.I.

    1986-12-20

    In order to differentiate phenomena on a smooth surface from those related to surface curvature, they must, strictly speaking, study these phenomena separately on completely nonporous and porous adsorbents of the same chemical nature. However, it is virtually impossible to obtain a completely nonporous adsorbent with a sufficiently developed surface. Thus, a permissible compromise for solving this problem lies in the selection of a porous adsorbent such that, on one hand, the effect of surface curvature is excluded due to wide pores and, on the other hand, reliable quantitative data for the properties of this surface with virtually zero curvature are obtained due to the development of the surface. For these purposes, they used a modification of their previous method and obtained silica gel (SG) with a developed surface s = 218 m/sup 2//g and broad pores D/sub max/ = 20 nm. They found that mesoporous silica gel with 20 nm pore diameter may be taken as a practical model of nonporous amorphous silica, according to the liquid immersion heats. The heats of wetting of the hydrated amorphous silica surface by normal aliphatic alcohols and hydrocarbons are independent of the number of carbon atoms in the molecules and are 220 and 65 mJ/m/sup 2/, respectively. The interphase (liquid-solid) surface layer or normal alcohol molecules on silica gel is a Langmuir palisade with the OH alcohol groups directed toward the silica surface.

  7. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  8. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  9. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  10. Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

    PubMed

    Young, Cara; Rozario, Kester; Serra, Christophe; Poole-Warren, Laura; Martens, Penny

    2013-01-01

    Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.

  11. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  12. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  13. Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sui, Chunhong; Li, Chao; Guo, Xiaohong; Cheng, Tiexin; Gao, Yukun; Zhou, Guangdong; Gong, Jian; Du, Jianshi

    2012-07-01

    Regarding poly(vinyl alcohol)/silicotungstic acid (PVA/H4SiW12O40) gel as precursor, the silver nanoparticles (NPs) were selectively deposited on the surface of the PVA/H4SiW12O40 nanofibers by using electrospinning and photoreduction methods. X-ray photoelectron spectroscopy, Fourier transformation infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy were used to affirm the structure and formation of tri-component nanohybrids. Field environmental scanning electron microscope and transmission electron microscopy indicate that the average diameter of silver NPs was changed from 25 nm to 50 nm, with decreasing the relative concentration of SiW12 in the as-electrospun nanofibers. The nanocomposites exhibit excellent photocatalytic activity in degradation of Rhodamine B. This result arises from the synergistic effects and the large specific surface areas of Ag/PVA/H4SiW12O40 tri-component nanohybrids.

  14. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Alghunaim, Naziha Suliman

    Nanocomposite films of polyvinyl alcohol (PVA) containing constant ratio of both single and multi-wall carbon nanotubes had been obtained by dispersion techniques and were investigated by different techniques. The infrared spectrum confirmed that SWNTs and MWNTs have been covalently related OH and Csbnd C bonds within PVA. The X-ray diffraction indicated lower crystallinity after the addition of carbon nanotubes (CNTs) due to interaction between CNTs and PVA. Transmission electron microscope (TEM) illustrated that SWNTs and MWNTs have been dispersed into PVA polymeric matrix and it wrapped with PVA. The properties of PVA were enhanced by the presence of CNTs. TEM images show uniform distribution of CNTs within PVA and a few broken revealing that CNTs broke aside as opposed to being pulled out from fracture surface which suggests an interfacial bonding between CNTs and PVA. Maximum value of AC conductivity was recorded at higher frequencies. The behavior of both dielectric constant (ɛ‧) and dielectric loss (ɛ″) were decreased when frequency increased related to dipole direction within PVA films to orient toward the applied field. At higher frequencies, the decreasing trend seems nearly stable as compared with lower frequencies related to difficulty of dipole rotation.

  15. Effect of sodium carboxymethylcellulose and fucidic acid on the gel characterization of polyvinylalcohol-based wound dressing.

    PubMed

    Lim, Soo-Jeong; Lee, Jeong Hoon; Piao, Ming Guan; Lee, Mi-Kyung; Oh, Dong Hoon; Hwang, Du Hyung; Quan, Qi Zhe; Yong, Chul Soon; Choi, Han-Gon

    2010-07-01

    The purpose of this study was to investigate the effect of sodium carboxymethylcellulose (Na-CMC) and fucidic acid on the gel characterization for the development of sodium fucidate-loaded wound dressing. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (Na-CMC) using the freeze-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength and thermal property were investigated. In vitro protein adsorption test and release were performed. Na-CMC decreased the gel fraction and tensile strength of the hydrogels, but increased the swelling ability, water vapor transmission rate, elasticity and porosity of hydrogels. Thus, the wound dressing developed with PVA and Na-CMC was more swellable, flexible and elastic than that with only PVA because of its cross-linking interaction with PVA. However, the drug had a negative effect on the gel properties of hydrogels but there were no significant differences. In particular, the hydrogel composed of 2.5% PVA, 1.125% Na-CMC and 0.2% drug might give an adequate level of moisture and build up the exudates on the wound area. Thus, this sodium fucidate-loaded hydrogel could be a potential candidate for wound dressing with excellent forming.

  16. Elution behavior of oligomers on a polyvinyl alcohol gel column with chloroform, methanol, and their mixtures

    SciTech Connect

    Mori, S. )

    1988-01-01

    Elution phenomena of size exclusion chromatography (SEC) plus superimposed adsorption effects for oligostyrenes, epoxy resins, methylated melamine-formaldehyde resin prepolymers, p-cresol-formaldehyde resin prepolymers, and phenol-formaldehyde resin prepolymers were investigated. SEC and superimposed adsorption effects could be elucidated from a concept of solubility parameter. Minimum retention volumes of these obligomers were obtained with the mobile phases of chloroform/methanol, 80/20 or 60/40 (v/v), and separation was expected to be mostly performed by SEC. The solubility parameter of polyvinyl alcohol gels was estimated to be between 21 and 23 from the above results. Elution for normal phase chromatography was in the order of increasing molecular weight and that for reversed-phase chromatography was in the order of decreasing molecular weight. These are reversed phenomena to those for low-molecular weigh compounds. Solubility of sample solutes to mobile phase must be considered. Methanol mobile phase-polyvinyl alcohol gel system might be exception.

  17. Time-resolving analysis of cryotropic gelation of water/poly(vinyl alcohol) solutions via small-angle neutron scattering.

    PubMed

    Auriemma, Finizia; De Rosa, Claudio; Ricciardi, Rosa; Lo Celso, Fabrizio; Triolo, Roberto; Pipich, Vitaly

    2008-01-24

    The structural transformations occurring in initially homogeneous aqueous solutions of poly(vinyl alcohol) (PVA) through application of freezing (-13 degrees C) and thawing (20 degrees C) cycles is investigated by time resolving small-angle neutron scattering (SANS). These measurements indicate that formation of gels of complex hierarchical structure arises from occurrence of different elementary processes, involving different length and time scales. The fastest process that could be detected by our measurements during the first cryotropic treatment consists of the crystallization of the solvent. However, solvent crystallization is incomplete, and an unfrozen liquid microphase more concentrated in PVA than the initial solution is also formed. Crystallization of PVA takes place inside the unfrozen liquid microphase and is slowed down because of formation of a microgel fraction. Water crystallization takes place in the early 10 min of the treatment of the solution at subzero temperatures, and although below 0 degrees C the PVA solutions used for preparation of cryogels should be below the spinodal curve, occurrence of liquid-liquid phase separation could not be detected in our experiments. Upon thawing, ice crystals melt, and transparent gels are obtained that become opaque in approximately 200 min, due to a slow and progressive increase of the size of microheterogeneities (dilute and dense regions) imprinted during the fast freezing by the crystallization of water. During the permanence of these gels at room temperature (for hours), the presence of a high content of water (higher than 85% by mass) prevents further crystallization of PVA. Crystallization of PVA, in turn, is resumed by freezing the gels at subzero temperatures, after water crystallization and consequent formation of an unfrozen microphase. The kinetic parameters of PVA crystallization during the permanence of these gels at subzero temperatures are the same shown by PVA during the first freezing step

  18. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    NASA Astrophysics Data System (ADS)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  19. Broadband tuning in a passively Q-switched erbium doped fiber laser (EDFL) via multiwall carbon nanotubes/polyvinyl alcohol (MWCNT/PVA) saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Hassan, S. N. M.; Ahmad, F.; Zulkifli, M. Z.; Harun, S. W.

    2016-04-01

    An MWCNT/PVA-based Q-switched erbium-doped fiber laser (EDFL) that uses a tunable bandpass filter (TBPF) as the wavelength tuning and filtering mechanism to achieve a broadband tuning range is proposed and demonstrated. The tuning range of the generated Q-switched pulses covered a wide wavelength range of 50 nm, which spanned from 1519 nm to 1569 nm and corresponded to the S- and C-band regions. In addition, the lasing and Q-switching operations had low thresholds of 8.9 mW and 22.4 mW respectively. The highest pulse energy of 52.13 nJ was obtained at an output wavelength of 1569 nm, with a corresponding repetition rate of 26.53 kHz and pulse width of 6.10 μs, at the maximum power of 114.8 mW.

  20. Efficacy of alcohol gel for removal of methicillin-resistant Staphylococcus aureus from hands of colonized patients.

    PubMed

    Sunkesula, Venkata; Kundrapu, Sirisha; Macinga, David R; Donskey, Curtis J

    2015-02-01

    Of 82 patients with methicillin-resistant Staphylococcus aureus (MRSA) colonization, 67 (82%) had positive hand cultures for MRSA. A single application of alcohol gel (2 mL) consistently reduced the burden of MRSA on hands. However, incomplete removal of MRSA was common, particularly in those with a high baseline level of recovery. PMID:25633009

  1. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method.

    PubMed

    Pereira, M M; Jones, J R; Orefice, R L; Hench, L L

    2005-11-01

    A new class of materials based on inorganic and organic species combined at a nanoscale level has received large attention recently. In this work the idea of producing hybrid materials with controllable properties is applied to obtain foams to be used as scaffolds for tissue engineering. Hybrids were synthesized by reacting poly(vinyl alcohol) in acidic solution with tetraethylorthosilicate. The inorganic phase was also modified by incorporating a calcium compound. Hydrated calcium chloride was used as precursor. A surfactant was added and a foam was produced by vigorous agitation, which was cast just before the gel point. Hydrofluoric acid solution was added in order to catalyze the gelation. The foamed hybrids were aged at 40 degrees C and vacuum dried at 40 degrees C. The hybrid foams were analyzed by Scanning Electron Microscopy, Mercury Porosimetry, Nitrogen Adsorption, X-ray Diffraction and Infra-red Spectroscopy. The mechanical behavior was evaluated by compression tests. The foams obtained had a high porosity varying from 60 to 90% and the macropore diameter ranged from 30 to 500 microm. The modal macropore diameter varied with the inorganic phase composition and with the polymer content in the hybrid. The surface area and mesopore volume decreased as polymer concentration increased in the hybrids. The strain at fracture of the hybrid foams was substantially greater than pure gel-glass foams. PMID:16388385

  2. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, Qingguo; Zhou, Xue; Zeng, Jinxia; Wang, Jizeng

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the sbnd Cdbnd O group at 1701 cm-1, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  3. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  4. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  5. Bioadhesive film formed from a novel organic-inorganic hybrid gel for transdermal drug delivery system.

    PubMed

    Guo, Ruiwei; Du, Xiaoyan; Zhang, Rui; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2011-11-01

    A novel organic-inorganic hybrid film-forming agent for TDDS was developed by a modified poly(vinyl alcohol) (PVA) gel using γ-(glycidyloxypropyl)trimethoxysilane (GPTMS) as an inorganic-modifying agent, poly(N-vinyl pyrrolidone) (PVP) as a tackifier and glycerol (GLY) as a plasticizer. The prepared gels can be applied to the skin by a coating method and in situ form very thin and transparent films with good performance, comfortable feel and cosmetic attractiveness. The key properties of the bioadhesive films produced from the hybrid gels were investigated and the results showed that the incorporation of appropriate GPTMS (GPTMS/(PVA+GPTMS) in the range of 20-30%) into the PVA matrix not only can significantly enhance mechanical strength and skin adhesion properties of the resultant film, but also can decrease the crystalline regions of PVA and hence facilitate the diffusion of water vapor and drug. Furthermore, the investigations into in vivo skin irritation suggested the films caused non-irritation to skin after topical application for 120 h. In conclusion, the bioadhesive films formed from organic-inorganic hybrid gels possessed very good qualities for application on the skin and may provide a promising formulation for TDDS, especially when the patient acceptability from an aesthetic perspective of the dosage form is a prime consideration. PMID:21723945

  6. The Dynamic Reinforcement of Polyvinyl Alcohol (PVA) as a Result of Non-equilibrium State of Polymer Supermolecular Structures and their Confinement in Nanofibers

    NASA Astrophysics Data System (ADS)

    Zussman, Eyal; Shaked, Emil; Arinstein, Arkadi

    2009-03-01

    The results of mechanical testing of PVA -based electrospun nanofibers and bulk in static and dynamic modes are presented. An increase in the elastic moduli resulting from sample deformation was observed in both the bulk and as-spun fibers. This increase occurs when the deformation rate exceeds a critical value and can be attributed to the non-equilibrium dynamics of the supermolecular structures of the polymer matrix. That is, the evolution of these supermolecular structures results in an observably extended relaxation time. It is noted that the rate of the modulus increase of the nanofibers is nearly double that of the bulk fibers' rate. This difference can be explained by confinement influence on the polymer matrix of the nanofibers. In addition, the tests revealed that the, Tg, of the nanofiber is noticeably higher than that of bulk specimen. Reinforcing the nanofibrs by cellulose whiskers showing that the dependence of the effective modulus on the whisker concentration has an initial increase that changes to a decrease when the whisker concentration exceeds 2 %. Such behavior can be explained in the framework of an aggregation concept -- when the cluster size reaches that of the fiber diameter (cluster confinement), the whisker distribution becomes inhomogeneous and results in a measurable weakening of the composite.

  7. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate.

  8. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution.

    PubMed

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-12-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied. PMID:27644240

  9. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-09-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (Δ H°) and entropy (Δ S°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  10. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  11. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  12. Anisotropic Poly(Vinyl Alcohol) Hydrogel: Connection Between Structure and Bulk Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen; Hutter, Jeffrey; Millon, Leonardo; Wan, Wankei; Nieh, Mu-Ping

    2009-03-01

    Poly(vinyl alcohol) (PVA) hydrogels are formed from PVA solution by creation of physical cross-links during freeze/thaw cycling. By choosing a suitable freeze/thaw protocol and applying a strain during thermal processing, gels with permanent, anisotropic bulk mechanical properties matching those of cardiovascular tissues can be made, making them useful for applications ranging from artificial heart valves to vascular grafts. We have performed small- and ultra small-angle neutron scattering (SANS and USANS) measurements covering length scales from 2 nm to 10 μm, and modeled the structure as interconnected PVA blobs of size 20 to 50 nm arranged in fractal aggregates extending to at least 10 μm. Here, we discuss the relationship between the microstructure and bulk mechanical properties. Strength increases with the number of thermal cycles due to reinforcement of the small-scale gel phase, while anisotropy is due to elongation of the much larger fractal aggregates.

  13. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.

    2016-01-01

    This review article summarizes results on the synthesis of the magnetic materials including modified nickel ferrite (Ni0.9Co0.1Cu0.1Fe1.9O4-δ), yttrium iron garnet (Y3Fe5O12), lanthanum-containing manganites (MxLa1-xMnO3 (M=Pb, Ba or Sr; x=0.3-0.35)), and multiferroics (BiFeO3 and BiFe0.5Mn0.5O3) from polyvinyl alcohol-based gels. It is shown that the ammonium nitrate accelerates destruction of organic components of xerogels and thus Ni0.9Co0.1Cu0.1Fe1.9O4-δ and BiFeO3 can be prepared at record low temperatures (100 and 250 °C, respectively) which are 200-300 °C lower compared to the process where air is used as an oxidizing agent. As for the synthesis of Y3Fe5O12, MxLa1-xMnO3 and BiFe0.5Mn0.5O3, the presence of NH4NO3 favors formation of foreign phases, which ultimately complicate reaction mechanisms and lead to the higher temperature to synthesize target products. Developed methods provide nanoscale magnetic and multiferroic materials with an average particle size of ∼20-50 nm.

  14. Retardation Measurements of Infrared PVA Wave plate

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Z, H.; W, D.; D, Y.; Z, Z.; S, J.

    The wave plate made of Polyvinyl Alcohol PVA plastic film has several advantages such as its lower cost and insensitivity to temperature and incidence angle so it has been used in the Solar Multi-Channel Telescope SMCT in China But the important parameter retardations of PVA wave plates in the near infrared wavelength have never been provided In this paper a convenient and high precise instrument to get the retardations of discrete wavelengths or a continuous function of wavelength in near infrared is developed In this method the retardations of wave plates have been determined through calculating the maximum and minimum of light intensity The instrument error has been shown Additionally we can get the continuous direction of wavelength retardations in the ultraviolet visible or infrared spectral in another way

  15. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-01

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  16. Holographic characterization of DYE-PVA films studied at 442 nm for optical elements fabrication

    NASA Astrophysics Data System (ADS)

    Couture, Jean J.

    1991-12-01

    The present work is an experimental study of the speed of hologram recording in dichromated polyvinyl alcohol films (DC-PVA) and DYE-DC-PVA films. Real-time recordings give high diffraction efficiency and low signal-to-noise ratio holograms without any chemical development. The dyes studied here are MALACHITE GREEN, EOSIN Y, and ROSE BENGAL introduced in DC-PVA films having a thickness of 60 - 62 micrometers . The best of these DYE-DC-PVA systems is a good candidate for holographic optical elements fabrication.

  17. Characterizing p-channel thin film transistors using ZnO/hydrated polyvinyl alcohol as the conducting channel

    SciTech Connect

    Liau, Leo Chau-Kuang Hsu, Tzu-Hsien; Lo, Pei-Hsuan

    2014-08-11

    We report the characteristics of p-channel thin film transistors (p-TFTs) with ZnO/hydrated polyvinyl alcohol (PVA) (ZnO/PVA) conducting channels. The metal-oxide-semiconductor structure of the p-TFTs was composed of indium tin oxide (ITO)/SiO{sub 2}/ZnO/PVA layers. The TFT was assembled using PVA gel, which was glued to ITO substrates patterned to form source and drain electrodes. The ZnO/PVA composite film acted as an effective conducting film because of the chemisorption reaction at the film interface where free electrons can be generated. The formation of the conducting channel was also affected by V{sub G} applied to the TFT. The ZnO/PVA-based TFTs demonstrated p-channel transistor performance, shown by current-voltage (I-V) data analysis. The electrical parameters of the device were evaluated, including the on/off ratio (∼10{sup 3}), threshold voltage (V{sub th}, −1 V), and subthreshold swing (−2.2 V/dec). The PVA/ZnO-based p-TFTs were fabricated using simple and cost-effective approaches instead of doping methods.

  18. The effect of saccharic alcohols on rheological parameters of dental anti-inflammatory gels and on pharmaceutical availability of sodium ibuprofen.

    PubMed

    Kołodziejska, Justyna

    2006-01-01

    A prescription of model dental anti-inflammatory gels has been worked out on the base of cellulose derivatives with the content of saccharic alcohols: xylitol and sorbitol. The effect of saccharic alcohol on rheological parameters (extensibility and viscosity) of the produced gels was tested. Taking into account application, the most beneficial results of rheological tests were obtained for gels containing in their prescription both xylitol and sorbitol in the quantity ratio 1:1. These gels are characterised by high extensibility, low viscosity and low value of yield stress. Theoretical diffusion coefficient of sodium ibuprofen calculated on the basis of viscosity measurements points to the highest pharmaceutical availability of therapeutic agent from model gels with xylitol and sorbitol. The above has been confirmed by in vitro studies of the sodium ibuprofen kinetics of release from gel to the dialysis fluid. PMID:17514876

  19. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    PubMed

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells.

  20. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  1. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  2. Spectral studies of Donepezil release from streched PVA polymer films

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen-Beatrice; Stoica, Iuliana; Closca, Valentina; Dorohoi, Dana-Ortansa

    2013-07-01

    The focus of this research is to obtain poly vinyl alcohol (PVA) polymer foils containing Donepezil in different concentration, in order to be used in controlled drug release as a palliative treatment of mild to moderate Alzheimer's disease. The influence of polymeric foil stretching degree on drug release was analyzed using spectral measurements.

  3. A double network gel as low cost and easy recycle adsorbent: Highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater.

    PubMed

    Chu, Lin; Liu, Chengbin; Zhou, Guiyin; Xu, Rui; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2015-12-30

    A high strength of polyving alcohol/polyacrylic acid double network gel (PVA/PAA gel) adsorbent was successfully prepared by a simple two-step method in this study. The gel adsorbent possessed the advantages of low cost and high adsorptivity for heavy metals in solution. The maximum uptake capacities of PVA/PAA gel were 194.99 mg/g for Pb(II) and 115.88 mg/g for Cd(II) inferred from the Langmuir model at 303 K. At the concentration levels of Pb(II)<150 mg/L and Cd(II)<100mg/L, the Pb(II) and Cd(II) could be completely adsorbed, showing a great potential of removing heavy metals from wastewater. Simultaneously, the PVA/PAA gel adsorbent exhibited an excellent reusability. Even in the fifth cycle, the removal efficiencies of both Pb(II) and Cd(II) remained nearly 100%. Significantly, the gel adsorbent displayed a satisfactory performance of removing heavy metals in actual industrial effluent. The results reveal that the double network gel can be considered as a potential candidate for practical application.

  4. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kim, Si-Seup; Kee, Chang-Doo; Shen, Yun-De; Oh, Il-Kwon

    2014-07-01

    A novel electroactive biopolymer actuator was developed based on a cross-linked ionic networking membrane of TEMPO-oxidized bacterial cellulose nanofibers (TOCNs) and polyvinyl alcohol (PVA). Ionic liquids were added to develop an air-working artificial muscle and to enhance the performance of the PVA-TOCN actuator. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers were deposited on the top and bottom surfaces of the PVA-TOCN membrane via a simple dipping and drying method. The electroactive PVA-TOCN actuator under both step and harmonic electrical inputs shows much larger tip displacements and faster bending deformation than the pure TOCN actuator. The cross-linking reaction between PVA and TOCN was observed in the Fourier transform-near-infrared (FT-IR) spectrum of the PVA-TOCN networking membrane. Scanning electron microscopy (SEM), x-ray diffusion (XRD), thermogravimetric analysis (TGA) and tensile and ion conductivity testing results for the PVA-TOCN membrane were compared with those of pristine TOCN. Most important, the PVA-TOCN actuator shows much larger bending deformation under even extremely low input voltages, and this could be attributed to the cross-linking mechanism and the greater flexibility resulting from the synergistic effects between PVA and TOCN.

  5. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies.

    PubMed

    Alexandre, Nuno; Ribeiro, Jorge; Gärtner, Andrea; Pereira, Tiago; Amorim, Irina; Fragoso, João; Lopes, Ascensão; Fernandes, João; Costa, Elísio; Santos-Silva, Alice; Rodrigues, Miguel; Santos, José Domingos; Maurício, Ana Colette; Luís, Ana Lúcia

    2014-12-01

    Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.

  6. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  7. Determination of mechanical and hydraulic properties of PVA hydrogels.

    PubMed

    Kazimierska-Drobny, Katarzyna; El Fray, Miroslawa; Kaczmarek, Mariusz

    2015-03-01

    In this paper the identification of mechanical and hydraulic parameters of poly(vinyl alcohol) (PVA) hydrogels is described. The identification method follows the solution of inverse problem using experimental data from the unconfined compression test and the poroelastic creep model. The sensitivity analysis of the model shows significant dependence of the creep curves on investigated parameters. The hydrogels containing 22% PVA and 25% PVA were tested giving: the drained Youngs modulus of 0.71 and 0.9MPa; the drained Poisson's ratio of 0.18 and 0.31; and the permeability of 3.64·10(-15) and 3.29·10(15)m(4)/Ns, respectively. The values of undrained Youngs modulus were determined by measuring short period deformation of samples in the unconfined tests. A discussion on obtained results is presented.

  8. Amniotic membrane extract-loaded double-layered wound dressing: evaluation of gel properties and wound healing.

    PubMed

    Choi, Yeung Keun; Din, Fakhar Ud; Kim, Dong Wuk; Kim, Yong-Il; Kim, Jong Oh; Ku, Sae Kwang; Ra, Jeong-Chan; Huh, Jae-Wook; Lee, Jangik I; Sohn, Dong Hwan; Yong, Chul Soon; Choi, Han-Gon

    2014-07-01

    The conservative single-layered wound dressing system is decomposed when mixed in polyvinyl alcohol (PVA) solution, which means it cannot be used with a temperature-sensitive drug. The goal of this investigation was to make an amniotic membrane extract (AME)-loaded double-layered wound dressing with an improved healing result compared to the conservative single-layered wound dressing systems. The double-layered wound dressing was developed with PVA/sodium alginate using a freeze-melting technique; one layer was PVA layer and the other was the drug-loaded sodium alginate layer. Its gel properties were assessed compared to single-layered wound dressings. Moreover, in vivo wound-healing effects and histopathology were calculated compared to commercial products. The double-layered wound dressing gave a similar gel fraction and Young's module as single-layered wound bandages developed with only PVA, and a similar inflammation ability and WVTR as single-layered wound dressings developed with PVA and sodium alginate. Our data indicate that these double-layered wound bandages were just as swellable, but more elastic and stronger than single-layered wound dressings comprised of the same polymers and quantities, possibly giving an acceptable level of moisture and accumulation of exudates in the wound zone. Compared to the commercial product, the double-layered wound dressing comprising 6.7% PVA, 0.5% sodium alginate and 0.01% AME significantly enhanced the wound-healing effect in the wound-healing test. Histological investigations showed that superior full-thickness wound-healing effects compared to the commercial product. Therefore, the double-layered wound dressing would be an outstanding wound-dressing system with improved wound healing and good gel property.

  9. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. PMID:27612814

  10. Preparation and Characterization of Palm Leaf Incorporated Polyvinyl Alcohol Bio Composites

    NASA Astrophysics Data System (ADS)

    Patel, Arunendra Kumar; Bajpai, Rakesh; Keller, J. M.; Saha, Abhijit

    2011-12-01

    The Bio Composites of palm leaf (PL) incorporated polyvinyl alcohol (PVA) has been prepared using solution cast technique. Structural and microhardness properties of pure PVA and PL filled PVA Bio Composites has been determined by using FTIR and Vicker's indentation techniquque respectively. The FTIR analysis reveals the presence of PL moieties in PVA, which indicates the good compatibility between PL and PVA. The values of microhardness increases in all composition of PL incorporated PVA films as compared to the pure PVA. This increment in the microhardness is attributed to the excellent binding of PL into PVA.

  11. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  12. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  13. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. PMID:27267574

  14. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA.

  15. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA(PEG) for the controlled release of biopharmaceuticals for bone infections.

    PubMed

    Wan, Taoyu; Stylios, George K; Giannoudi, Marilena; Giannoudis, Peter V

    2015-12-01

    The capability for sustained and gradual release of pharmaceuticals is a major requirement in the development of a guided antimicrobial bacterial control system for clinical applications. In this study, PVA gels with varying constituents that were manufactured via a refreeze/thawing route, were found to have excellent potential for antimicrobial delivery for bone infections. Cefuroxime Sodium with poly(ethylene glycol) was incorporated into 2 delivery systems poly(e-caprolactone) (PCL) and hydroxyapatite (HA), by a modified emulsion process. Our results indicate that the Cefuroxime Sodium released from poly(e-caprolactone) in PVA was tailored to a sustained release over more than 45 days, while the release from hydroxyapatite PVA reach burst maximum after 20 days. These PVA hydrogel-systems were also capable of controlled and sustained release of other biopharmaceuticals. PMID:26747917

  16. Microstructure characteristics of concrete incorporating metakaolin and PVA fibers and influence on the compressive strength

    NASA Astrophysics Data System (ADS)

    Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2015-07-01

    In this paper, microstructure of concrete is investigated using metakaolin (MK) as cement replacing material and Polyvinyl Alcohol (PVA) fibers. Total ten (10) mixes of concrete are examined by varying PVA fiber aspect ratio. It was found that MK refines the pore structure, improves interfacial transition zone (ITZ) due to its pozzolanic effects, reduces portlandite (Ca(OH)2) content and bridges the gap between matrix and aggregates due to finer particle size. Due to improvement in ITZ, the compressive strength was improved. There was no indication of Ca(OH)2 around the PVA fibers in the presence of MK and the interface between the fiber and matrix was observed very narrow.

  17. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  18. PVA/K2Ti6O13 synthetic composite for dielectric applications

    NASA Astrophysics Data System (ADS)

    Pandey, Mayank; Joshi, Girish M.; Khutia, Moumita; Rao, N. Madhusudhana; Kaleemulla, S.; Ramesh Kumar, C.; Cuberes, M. Teresa

    2016-05-01

    We demonstrated the preparation of polyvinyl alcohol (PVA) /Potassium titanate (K2Ti6O13) synthetic composite by solution blending. The loading of K2Ti6O13 well dispersed in PVA and improved electrical performance. The dielectric constant and loss as a function of temperature were recorded under frequency (200Hz-1 kHz). The real dielectric constant value obtained is (ɛ=1000) feasible for various electronic and non-conventional energy applications.

  19. A new fabrication route for PVA/graphene platelets composites with enhanced functionalities

    NASA Astrophysics Data System (ADS)

    Lavecchia, Teresa; Tamburri, Emanuela; Angjellari, Mariglen; Savi, Damiano; Terranova, Maria Letizia

    2016-05-01

    This work deals with the synthesis and characterization of composites made of poly(vinyl alcohol) (PVA) and oxidized graphene platelets obtained from an ad hoc treatment of graphite. The composite is produced by a modified solution mixing procedure in which the in situ crosslinking of PVA with maleic anhydride has been carried out in the presence of the carbon filler. A complete characterization of the material is presented carried out by SEM, DTGA, Raman spectroscopy and I-V characteristics analysis.

  20. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

    PubMed

    Karthika, Prasannan; Rajalakshmi, Natarajan; Dhathathreyan, Kaveripatnam S

    2013-11-11

    A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g(-1) and an energy density value of 37 W h kg(-1) are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g(-1) and energy density of 37 W h kg(-1) . This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors. PMID:24155269

  1. Synchrotron X-ray investigations into the lamellar gel phase formed in pharmaceutical creams prepared with cetrimide and fatty alcohols.

    PubMed

    Eccleston, G M; Behan-Martin, M K; Jones, G R; Towns-Andrews, E

    2000-08-10

    Semisolid liquid paraffin-in-water emulsions (aqueous creams) prepared from cetrimide/fatty alcohol mixed emulsifiers, and ternary systems formed by dispersing the mixed emulsifier in controlled percentages of water were examined as they aged using a combination of low and high angle X-ray diffraction measurements (Daresbury Laboratory Synchrotron Radiation Source). The results were correlated with the rheological properties measured in earlier studies. The cationic emulsifying wax showed phenomenal swelling in water. The reflection that incorporates interlamellar water increased continuously from 74 A at 28% water to over 500 A at 93% water. The trend was not influenced by the method of incorporation of the components and swollen lamellar phase was also identified in the corresponding emulsion. The swelling, which was due to electrostatic repulsion, was suppressed by salt and was reduced when the surfactant counterion was changed from Br(-) to Cl(-). Changes in rheological properties on storage and in the presence of salt were correlated with changes in water layer thickness. High angle diffraction confirmed that the hydrocarbon bilayers were in the hexagonal alpha-crystalline mode of packing. Ternary systems and creams prepared from pure alcohols, although initially semisolid, were rheologically unstable and broke down. Low angle X-ray study into the kinetics of structure breakdown showed that the swollen lamellar gel phase formed initially swells even further on storage before separating. PMID:10967435

  2. Synchrotron X-ray investigations into the lamellar gel phase formed in pharmaceutical creams prepared with cetrimide and fatty alcohols.

    PubMed

    Eccleston, G M; Behan-Martin, M K; Jones, G R; Towns-Andrews, E

    2000-08-10

    Semisolid liquid paraffin-in-water emulsions (aqueous creams) prepared from cetrimide/fatty alcohol mixed emulsifiers, and ternary systems formed by dispersing the mixed emulsifier in controlled percentages of water were examined as they aged using a combination of low and high angle X-ray diffraction measurements (Daresbury Laboratory Synchrotron Radiation Source). The results were correlated with the rheological properties measured in earlier studies. The cationic emulsifying wax showed phenomenal swelling in water. The reflection that incorporates interlamellar water increased continuously from 74 A at 28% water to over 500 A at 93% water. The trend was not influenced by the method of incorporation of the components and swollen lamellar phase was also identified in the corresponding emulsion. The swelling, which was due to electrostatic repulsion, was suppressed by salt and was reduced when the surfactant counterion was changed from Br(-) to Cl(-). Changes in rheological properties on storage and in the presence of salt were correlated with changes in water layer thickness. High angle diffraction confirmed that the hydrocarbon bilayers were in the hexagonal alpha-crystalline mode of packing. Ternary systems and creams prepared from pure alcohols, although initially semisolid, were rheologically unstable and broke down. Low angle X-ray study into the kinetics of structure breakdown showed that the swollen lamellar gel phase formed initially swells even further on storage before separating.

  3. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    PubMed

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. PMID:27236420

  4. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    NASA Astrophysics Data System (ADS)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  5. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2012-10-01

    Hydrogels are a cross-linked network of polymers swollen with liquid and have the potential to be used as a synthetic replacement for local defects in load bearing tissues such as articular cartilage. Hydrogels display viscoelastic time dependent behavior, therefore experimental analysis of stresses at the surface and within the gel is difficult to perform. A three-dimensional model of a hydrogel was developed in the commercial finite element software ABAQUS™, implementing a poro-viscoelastic constitutive model along with a contact-dependent flow state and friction conditions. Water content measurements, sliding, and indentation experiments were performed on neat polyvinyl alcohol (PVA), and on low friction boundary lubricant functionalized (BLF-PVA) hydrogels, both manufactured by freeze-thaw processes. Modulus results from the indentation experiments and coefficient of friction values from the sliding experiments were used as material property inputs to the model, while water content was used to calculate initial flow conditions. Tangential force and normal displacement data from a three-dimensional simulation of sliding were compared with the experiments. The tangential force patterns indicated important similarities with the fabricated hydrogels that included an initially high force value due to time dependent deformation followed by a decrease in a stabile value. A similar trend was observed with the normal displacement. These comparisons rendered the model suitable as a representation and were used to analyze the development and propagation of stresses in the immediate surface region. The results showed that in a three-dimensional stress field during sliding, the maximum stress shifted to the surface and rotated closer to the leading edge of contact. This occurred because the stress field becomes dominated by an amplified compressive stress at the leading edge due to the biphasic viscoelastic response of the material during sliding. Also, the complex multi

  6. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  7. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  8. A polyvinyl alcohol-functionalized sorbent for extraction and determination of aminoglycoside antibiotics in honey.

    PubMed

    Wang, Yuan; Ji, Shunli; Zhang, Feng; Zhang, Feifang; Yang, Bingcheng; Liang, Xinmiao

    2015-07-17

    A novel highly hydrophilic sorbent simply prepared by coating polyvinyl alcohol (PVA) onto silica gel was used for extraction and determination of aminoglycoside antibiotics (AAs). The fabricated PVA coating is aimed to effectively protect core silica gel inside and offers good hydrophilic property. In combination of hydrophilic interaction chromatography tandem mass spectrometry, the performance of the sorbent was evaluated by selecting four model AAs (dihydrostreptomycin, streptomycin, kanamycin, spectinomycin). The sorbent was found to have effective adsorption ability to hydrophilic AAs, which was superior or comparable to those of commercial ones. Good recoveries (84-112%) of model AAs spiked in honey were obtained with good precision (<12.4%) and the limit of quantitation for the proposed method was in the range of 7.8-19.4ng/mL.

  9. A polyvinyl alcohol-functionalized sorbent for extraction and determination of aminoglycoside antibiotics in honey.

    PubMed

    Wang, Yuan; Ji, Shunli; Zhang, Feng; Zhang, Feifang; Yang, Bingcheng; Liang, Xinmiao

    2015-07-17

    A novel highly hydrophilic sorbent simply prepared by coating polyvinyl alcohol (PVA) onto silica gel was used for extraction and determination of aminoglycoside antibiotics (AAs). The fabricated PVA coating is aimed to effectively protect core silica gel inside and offers good hydrophilic property. In combination of hydrophilic interaction chromatography tandem mass spectrometry, the performance of the sorbent was evaluated by selecting four model AAs (dihydrostreptomycin, streptomycin, kanamycin, spectinomycin). The sorbent was found to have effective adsorption ability to hydrophilic AAs, which was superior or comparable to those of commercial ones. Good recoveries (84-112%) of model AAs spiked in honey were obtained with good precision (<12.4%) and the limit of quantitation for the proposed method was in the range of 7.8-19.4ng/mL. PMID:26047525

  10. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.

    PubMed

    Hakalahti, Minna; Salminen, Arto; Seppälä, Jukka; Tammelin, Tekla; Hänninen, Tuomas

    2015-08-01

    TEMPO/NaClO2 oxidized cellulosic nanofibrils (TCNF) were covalently bonded with poly(vinyl alcohol) (PVA) to render water stable films. Pure TCNF films and TCNF-PVA films in dry state showed similar humidity dependent behavior in the elastic region. However, in wet films PVA had a significant effect on stability and mechanical characteristics of the films. When soaked in water, pure TCNF films exhibited strong swelling behavior and poor wet strength, whereas covalently bridged TCNF-PVA composite films remained intact and could easily be handled even after 24h of soaking. Wet tensile strength of the films was considerably enhanced with only 10 wt% PVA addition. At 25% PVA concentration wet tensile strengths were decreased and films were more yielding. This behavior is attributed to the ability of PVA to reinforce and plasticize TCNF-based films. The developed approach is a simple and straightforward method to produce TCNF films that are stable in wet conditions.

  11. Hemocompatibility of Poly(vinyl alcohol)-Gelatin Core-Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation.

    PubMed

    Merkle, Valerie M; Martin, Daniel; Hutchinson, Marcus; Tran, Phat L; Behrens, Alana; Hossainy, Samir; Sheriff, Jawaad; Bluestein, Danny; Wu, Xiaoyi; Slepian, Marvin J

    2015-04-22

    In this study, we evaluate coaxial electrospun nanofibers with gelatin in the shell and poly(vinyl alcohol) (PVA) in the core as a potential vascular material by determining fiber surface roughness, as well as human platelet deposition and activation under varying conditions. PVA scaffolds had the highest surface roughness (Ra=65.5±6.8 nm) but the lowest platelet deposition (34.2±5.8 platelets) in comparison to gelatin nanofibers (Ra=36.8±3.0 nm and 168.9±29.8 platelets) and coaxial nanofibers (1 Gel:1 PVA coaxial, Ra=24.0±1.5 nm and 150.2±17.4 platelets. 3 Gel:1 PVA coaxial, Ra=37.1±2.8 nm and 167.8±15.4 platelets). Therefore, the chemical structure of the gelatin nanofibers dominated surface roughness in platelet deposition. Due to their increased stiffness, the coaxial nanofibers had the highest platelet activation rate, rate of thrombin formation, in comparison to gelatin and PVA fibers. Our studies indicate that mechanical stiffness is a dominating factor for platelet deposition and activation, followed by biochemical signals, and lastly surface roughness. Overall, these coaxial nanofibers are an appealing material for vascular applications by supporting cellular growth while minimizing platelet deposition and activation. PMID:25815434

  12. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  13. Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Hassen, A.; El Sayed, A. M.; Morsi, W. M.; El-Sayed, S.

    2012-11-01

    Nano-sized chromium oxide (Cr2O3) was synthesized by sol-gel method and mixed with polyvinyl alcohol (PVA) to produce nanocomposite films. Scanning electron microscopy (SEM) was used to observe the morphology and dispersion of Cr2O3 on the surface of the PVA films. X-ray diffraction (XRD) was performed on nano-sized Cr2O3, pure PVA, and Cr2O3/PVA composites. Based on the results of both XRD and high-resolution transmission electron microscopy (HR-TEM), the average particle size of the Cr2O3 was ≈ 46 nm. Differential scanning calorimetry (DSC) showed that the thermal stability and degree of crystallinity of the PVA were reinforced by the addition of Cr2O3 nanoparticles. The absorbance and extinction coefficients of the composites were studied in the UV-vis range and compared with those of pure PVA. The optical energy band gap, Eg, was calculated. Dielectric constant, ɛ', dielectric loss modulus, M″, and ac conductivity, σac, of all samples were measured within temperature and frequency ranges of 300-468 K and 10 kHz-2 MHz, respectively. According to the frequency and temperature dependence of the dielectric loss modulus, M″, the observed α-relaxation peak was due to the micro-Brownian motion of the polymer main chains. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work were discussed and compared with those of previous studies of PVA composites.

  14. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  15. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  16. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension.

  17. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension. PMID:19466778

  18. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  19. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  20. An investigation of the structural changes occurring in a cetostearyl alcohol/cetrimide/water gel after prolonged low temperature (4 degrees C) storage.

    PubMed

    Patel, H K; Rowe, R C; McMahon, J; Stewart, R F

    1985-12-01

    Structural changes in a ternary gel prepared using the mixed emulsifier system of cetrimide and cetostearyl alcohol after prolonged low temperature (4 degrees C) storage have been studied using freeze-etch transmission electron microscopy and other techniques. The system changed from an opaque smooth gel of high viscosity, low conductivity and low free water, to a pearlescent milky lotion of low viscosity, high conductivity and high free water. Subsequent equilibration of the thinned system to room temperature (25 degrees C) over 48 h produced an opaque granular gel of similar consistency, but slightly higher conductivity and higher free water than the initial sample. Microscopical examination by both differential interference contrast and freeze-etch electron microscopy showed the system changed from one consisting of a liquid crystalline network localized around cetostearyl alcohol particles, to a system consisting of large waxy plates coexisting with some residual liquid crystalline network. A supportive mechanism for the thinning of the ternary gel at prolonged low temperature storage has been inferred by comparing data with that produced by other workers studying the fusion of phospholipid membranes considered to be morphologically similar to the liquid crystalline network observed in this ternary gel.

  1. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing

    PubMed Central

    M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012

  2. Micro structural studies of PVA doped with metal oxide nanocomposites films

    SciTech Connect

    Kumar, N. B. Rithin; Crasta, Vincent Viju, F.; Praveen, B. M.; Shreeprakash, B.

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  3. Fabrication and photocatalytic performance of electrospun PVA/silk/TiO2 nanocomposite textile

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chan, Shun-Hsiang; Lin, Ting-Han

    2015-02-01

    Many organic/inorganic nanocomposites have been fabricated into fibrous materials using electrospinning techniques, because electrospinning processes have many attractive advantages and the ability to produce relatively large-scale continuous films. In this study, the polyvinyl alcohol (PVA)/silk/titanium dioxide (TiO2) nanocomposite self-cleaning textiles were successfully produced using electrospinning technique. After optimizing electrospinning conditions, we successfully obtained the PVA/silk/TiO2 nanocomposite fibers with average diameter of ˜220 nm and TiO2 concentration can be as high as 18.0 wt.%. For the case of the PVA/silk/TiO2 nanocomposite textile, the color of brilliant green coated on the textile surface changed from the initial green color to colorless after ultraviolet (UV) irradiation. Because of its worthy photocatalytic performance, the developed PVA/silk/TiO2 nanocomposite materials in this study will be beneficial for the design and fabrication of multifunctional fibers and textiles.

  4. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  5. Alkali recovery using PVA/SiO2 cation exchange membranes with different -COOH contents.

    PubMed

    Hao, Jianwen; Gong, Ming; Wu, Yonghui; Wu, Cuiming; Luo, Jingyi; Xu, Tongwen

    2013-01-15

    By changing -COOH content in poly(acrylic acid-co-methacryloxypropyl trimethoxy silane (poly(AA-co-γ-MPS)), a series of PVA/SiO(2) cation exchange membranes are prepared from sol-gel process of poly(AA-co-γ-MPS) in presence of poly(vinyl alcohol) (PVA). The membranes have the initial decomposition temperature (IDT) values of 236-274 °C. The tensile strength (TS) ranges from 17.4 MPa to 44.4 MPa. The dimensional stability in length (DS-length) is in the range of 10%-25%, and the DS-area is in the range of 21%-56% in 65 °C water. The water content (W(R)) ranges from 61.2% to 81.7%, the ion exchange capacity (IEC) ranges from 1.69 mmol/g to 1.90 mmol/g. Effects of -COOH content on diffusion dialysis (DD) performance also are investigated for their potential applications. The membranes are tested for recovering NaOH from the mixture of NaOH/Na(2)WO(4) at 25 - 45 °C. The dialysis coefficients of NaOH (U(OH)) are in the range of 0.006-0.032 m/h, which are higher than those of the previous membranes (U(OH): 0.0015 m/h, at 25 °C). The selectivity (S) can reach up to 36.2. The DD performances have been correlated with the membrane structure, especially the continuous arrangement of -COOH in poly(AA-co-γ-MPS) chain.

  6. Enhanced Mechanical Properties in PVA/SWNT Composite Fibers

    NASA Astrophysics Data System (ADS)

    Sampson, William; Dalton, Alan

    2005-03-01

    Composite fibers of polyvinyl alcohol (PVA) and HiPco Single Walled Carbon Nanotubes (SWNT) have been developed at The University of Texas at Dallas that show greatly enhanced mechanical properties, with typical strengths of 1.8GPa and toughness in excess of that of spider silk, making these the toughest known fibers to date. However, the exact interactions leading to the enhanced mechanical properties are not as yet fully understood. We have used a series of Raman and DSC experiments to discover the nature of the strength-enhancing interactions in these composite materials. The results lead to the conclusion that the bulk of the improvements are due to SWNT-nucleated PVA crystallinity, with the SWNTs playing less of a direct role than we originally thought.

  7. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  8. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    PubMed

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. PMID:27474641

  9. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  10. Magnetic properties and magnetocaloric effect of LaMnO3 nanoparticles prepared by using the sol-gel method

    NASA Astrophysics Data System (ADS)

    Tola, P. S.; Kim, D. H.; Phan, T. L.; Liu, Chunli; Lee, B. W.

    2016-07-01

    We synthesized LaMnO3 nanoparticles (NPs) with an average particle size of ~25 nm by using a sol-gel method with polyvinyl alcohol (PVA). X-ray diffraction studies revealed that the samples exhibited a rhombohedral single phase. The Curie temperature ( T C) of the ferromagneticparamagnetic (FM-PM) phase transition increased from 218 K for PVA = 0 ml to 287 K for PVA = 5 ml. Concurrently, the magnetic properties of the sample prepared with PVA were improved remarkably. This was ascribed to the presence of excess oxygen which increased the Mn4+/Mn3+ ratio and the FM interactions in the NPs. Particularly, we found that the samples underwent a second-order magnetic phase transition at the T C. At H = 10 kOe, although their maximum magnetic-entropy change (Δ S m ) was small, 0.2 ~ 0.3 J/kg K, the linewidths of the |Δ S m ( T)| curves were remarkably large, 50 ~ 70 K, leading to a quite large relative cooling power of ~17 J/kg.

  11. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival.

  12. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival. PMID:26413523

  13. Effects of PVA-coated nanoparticles on human T helper cell activity.

    PubMed

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. PMID:26774940

  14. Livestock Air Treatment Using PVA-Coated Powdered Activated Carbon Biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ideal biofilter media provide surface for attachment of microorganisms responsible for removing air-born contaminants while facilitating passage of air. This study evaluated the efficacy of polyvinyl alcohol (PVA)-coated powdered activated carbon particles as a biofiltration medium. This material e...

  15. A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    PubMed Central

    Karadelis, John N.; Lin, Yougui

    2015-01-01

    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6]. PMID:26306313

  16. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. PMID:26257347

  17. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  18. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  19. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  20. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery.

  1. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery. PMID:25307127

  2. Comparative study for separation of aquatic humic substances by capillary zone electrophoresis using uncoated, polymer coated and gel-filled capillaries.

    PubMed

    Peuravuori, Juhani; Lepane, Viia; Lehtonen, Tero; Pihlaja, Kalevi

    2004-01-01

    Several comparative capillary zone electrophoresis (CZE) experiments were carried out by means of uncoated, polyvinyl alcohol (PVA) and polyacrylamide (PAA) coated silica open tubular capillaries and gel-filled capillaries (linear non-cross-linked polyacrylamide, PAGE, by a pre-coated PAA capillary) using different kinds of background electrolytes (BGEs) and organic modifiers for characterization of aquatic dissolved humic matter (DHM). Organic compounds, such as acetic acid, acetate buffer, methanol, ethylene glycol, acetonitrile, dimethylsulphoxide, 5 M urea and sodium dodecyl sulphate (SDS) were tested as sample modifiers to improve the separative power. The fractionation mode by a PVA coated open tubular capillary using 40 mM phosphate buffer at pH 6.8 and 5 M urea-water as the sample modifier turned out to be fairly practical as well as its PAA homologue. Linear non-cross-linked PAGE with 10% gel concentration and 5 M urea-water as the sample modifier using 40 mM phosphate buffer at pH 6.8 produced the most reliable results as to the adaptation of physical gels, especially if the interactions of humic solutes with the gel matrix are not critical. The addition of SDS in the linear PAGE gel increased the interaction of humic solutes with the gel matrix but also improved the separative power and strengthened the chaotropic effect of the urea modifier.

  3. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea.

  4. Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels.

    PubMed

    Lim, Khoon S; Ramaswamy, Yogambha; Roberts, Justine J; Alves, Marie-Helene; Poole-Warren, Laura A; Martens, Penny J

    2015-10-01

    A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d. PMID:26097045

  5. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  6. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  7. Fabrication, biocompatibility, and tissue engineering substrate analysis of polyvinyl alcohol-gelatin core-shell electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Merkle, Valerie Marie

    Cardiovascular disease is the leading cause of death in the United States with approximately 49% of the cardiovascular related deaths attributed to coronary heart disease (CHD). CHD is the accumulation of plaque resulting in the narrowing of the vessel lumen and a decrease in blood flow to the downstream heart muscle. In order to restore blood flow, arterial by-pass procedures can be undertaken. However, the patient's own arteries/veins may not be suitable for use as a vessel replacement, and synthetic grafts lack the compliancy and durability needed for these small diameter locations (< 5 mm). Therefore, the goal of this research is to develop a nanofibrous material that can be used in vascular applications such as this. In this study, we fabricate coaxial electrospun nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core using 1 Gelatin: 1 PVA and 3 Gelatin: 1 PVA mass ratios. Gelatin, derived from collagen, is highly bioactive while PVA, a synthetic polymer, has appealing mechanical properties. Therefore, by combining these materials in a core-shell structure, we hypothesize that the resulting nanofibers will have enhanced mechanical properties, cellular growth and migration, as well as minimal platelet deposition and activation compared to scaffolds composed solely of gelatin or PVA. First, the coaxial scaffolds exhibited an enhanced Young's modulus and ultimate strength compared to scaffolds composed of PVA or gelatin alone. Endothelial cells had high proliferation and migration on the coaxial electrospun scaffolds with higher migration seen on the stiffer, coaxial scaffolds. The smooth muscle cells had less proliferation and lower migration rates on the coaxial scaffolds than the endothelial cells. Using a modified prothrombinase assay, the coaxial scaffolds had minimal platelet activation. Lastly, when pre-seeding the coaxial scaffolds with endothelial cells or smooth muscle cells, the platelet deposition decreased in comparison to

  8. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration.

  9. Crystal growth of ZnO bulk by CVT method using PVA

    NASA Astrophysics Data System (ADS)

    Udono, H.; Sumi, Y.; Yamada, S.; Kikuma, I.

    2008-04-01

    Seeded crystal growth of Zinc oxide (ZnO) by the closed ampoule chemical vapor transport (CVT) is carried out using polyvinyl alcohol (PVA) as a transport agent. Under the conditions of TS=1100 °C, Δ T=10 K and the amount of PVA=0.13-0.91 mg/cm 3, single-crystalline ZnO was grown continuously on the ZnO seed-crystal, of which the surface was (0 0 0 1) Zn-face. The grown crystals had well-marked growth facets belonged to {1 0 1¯0} and {1 0 1¯ 1} faces. The color of the crystals was changed from pale yellow to dark orange-red depending on the amount of PVA. Typical electron density and the Hall mobility of the crystals were 1×10 17 cm -3 and 2×10 2 cm 2/V s at 300 K, respectively.

  10. Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B

    NASA Astrophysics Data System (ADS)

    Yang, Haigang; Zhang, Jianling; Song, Yuanqing; Xu, Shoubin; Jiang, Long; Dan, Yi

    2015-01-01

    In this article, a novel visible light (VL) active photo-catalyst, calcinated-poly (vinyl alcohol) (C-PVA)/TiO2 composites, was prepared by calcinating the films on glass substrates obtained from TiO2 sol and initially thermally treated PVA solution. The results showed that the C-PVA with conjugated C=C bonds was doped onto the surface of TiO2 and expanded the photo-response from ultraviolet spectrum of the TiO2 to VL spectrum of the composites; meanwhile, the photo-luminescence of C-PVA was quenched by TiO2, indicating charge transfer between C-PVA and TiO2. The C-PVA/TiO2 composites showed improved adsorption and photo-catalytic performances toward rhodamine B (RhB) compared to TiO2. When the mass feed ratio (P/T) of polymer (P) to TiO2 (T) increased from 1:10 to 1:2, the equilibrium adsorption ratio of C-PVA/TiO2 composites toward RhB continuously increased from 8.2 to 21.6%; while the VL photo-degradation ratio of RhB increased at first, achieving maximum value (92.2%) at P/T = 1:6, and then decreased consecutively. SEM images showed that there were lots of aggregates of TiO2 and C-PVA on the surface of the composites. Moreover, the morphologies of those aggregates were related to the value of P/T, and the dispersion of TiO2 in the C-PVA matrix was best while P/T = 1:6. The photo-catalytic activity of C-PVA/TiO2 composites was closely correlated to aggregate states of C-PVA and TiO2, while the adsorption performance was contributed to the exposed C-PVA on the surface of C-PVA/TiO2 composites.

  11. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    PubMed

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging.

  12. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  13. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  14. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  15. Effects of O2 plasma treatment of PDMS on the deposition of electrospun PVA nanofibers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    A new polymeric nanofiber-alignment technique with the selective deposition of the nanofibers using oxygen (O2) plasma treatment on a base material for the electrospinning was introduced. Generally, without any pretreatments, electrospun fibers are deposited randomly on the collector. In this work, we focused on the O2 plasma treatment of the surface of the base material to modify the surface morphology and to add polar groups to the surface. O2 plasma-treated and untreated surface of poly (dimethylsiloxane) (PDMS) was prepared by masking a part of PDMS film by another PDMS film. The polyvinyl alcohol (PVA) fibers were then deposited onto the PDMS film. The surface structure of the PDMS film with PVA nanofibers was analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. Only a few PVA nanofibers were deposited randomly on the untreated area of the PDMS film, while a number of PVA nanofibers were selectively deposited onto the O2 plasma-treated area. Intriguingly, PVA nanofibers were neatly aligned along the border of the untreated and the treated areas. The contact angle of the plasma-treated surface of PDMS decreased from 105 to 22 degree and the atomic ratio of O/Si was 1.7 times higher than that of the untreated PDMS.

  16. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  17. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  18. SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2016-02-01

    The polyvinyl alcohol-silver (PVA/Ag) nanocomposites were prepared by in-situ chemical reduction method. The appearance of surface plasmon resonance (SPR) in the absorption spectrum of PVA/Ag nanocomposite films around 425 nm, confirmed the presence of Ag in the form of nanoparticles in host PVA matrix. In order to study the effect of swift heavy ions (SHI) irradiation on the optical and structural properties of these nanocomposites, the prepared films were irradiated to 90 MeV O6+ ion beam at two different fluence of 3 × 1010 and 1 × 1011 ions/cm2. The optical energy gap is found to be reduced from 4.57 eV (for PVA/Ag nanocomposite without irradiation) to 3.05 eV after irradiation at fluence of 1 × 1011 ions/cm2. The decline in the transmission of PVA/Ag nanocomposites in ultraviolet region, as a result of SHI irradiation, leads to their possible application in UV blocking devices. The induced structural re-arrangements, as a result of SHI irradiation, were revealed through the FTIR & Raman spectroscopy and found to be in strong association with the changes in optical behavior of these nanocomposites.

  19. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  20. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  1. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  2. Electrical properties of starch-PVA biodegradable polymer blend

    NASA Astrophysics Data System (ADS)

    Chatterjee, B.; Kulshrestha, N.; Gupta, P. N.

    2015-02-01

    Solid polymer electrolyte films were prepared by adding different contents of potassium chloride (KCl) in a polymer matrix composed of two versatile biodegradable polymers: starch and polyvinyl alcohol (PVA), using the solution cast method. The complexation of the added salt (KCl) with the polymer matrix was confirmed from an x-ray diffraction study (XRD). The evolution of a smooth and uniform morphology with the increasing content of KCl was confirmed from scanning electron microscopy (SEM). The transference number measurement established ions as the dominant charge carriers in the system. The maximum ionic conductivity ˜5.44 × 10-5 S cm-1 at ambient conditions was obtained for the film with 1.5 wt% of KCl using complex impedance spectroscopy. The ionic conductivity and dielectric constant increased with the salt content, thus affirming the amplification in the number of charge carriers. The noteworthy aspect of the investigation is the observation of appreciable ionic conductivity at a relatively low salt content. Low values of activation energy obtained from temperature-dependent ionic conductivity could be favorable from the point of view of the application. Electric modulus studies confirmed the absence of electrode polarization effects in the polymer electrolyte films. The scaling of the electric modulus shows a distribution of relaxation times in the polymer electrolyte films. The study unveils the efficiency of the starch-PVA blend, with glycerol and citric acid as additives, as a hopeful material for preparing biodegradable solid polymer electrolyte films.

  3. UV irradiated PVA-Ag nanocomposites for optical applications

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2015-07-01

    The present paper is focused on the in-situ prepared Poly (vinyl alcohol)-Silver (PVA-Ag) nanocomposites and tailoring their optical properties by means of UV irradiation in such a way that these can be used for anti-reflective coatings and bandpass filters. The reflectance from these irradiated nanocomposites has been found to decrease leading to the increase in refractive index (RI), with increasing UV exposure time, in the entire visible region. Decrease in optical energy gap of PVA film from 4.92 to 4.57 eV on doping with Ag nanoparticles has been observed which reduces further to 4.1 eV on exposure to UV radiations for 300 min. This decrease in optical energy gap can be correlated to the formation of charge transfer complexes within the base polymer network on embedding Ag nanoparticles, which further enhances with increasing exposure time. Such complexes may also be responsible for increased molecular density of the composite films which corresponds to decrease in reflectance corroborating the observed results.

  4. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications

    PubMed Central

    Coletta, D.J.; Lozano, D.; Rocha-Oliveira, A.A.; Mortarino, P.; Bumaguin, G.E.; Vitelli, E.; Vena, R.; Missana, L.; Jammal, M. V.; Portal-Núñez, S.; Pereira, M.; Esbrit, P.; Feldman, S.

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds PMID:24772196

  5. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications.

    PubMed

    Coletta, D J; Lozano, D; Rocha-Oliveira, A A; Mortarino, P; Bumaguin, G E; Vitelli, E; Vena, R; Missana, L; Jammal, M V; Portal-Núñez, S; Pereira, M; Esbrit, P; Feldman, S

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds.

  6. Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications.

    PubMed

    Coletta, D J; Lozano, D; Rocha-Oliveira, A A; Mortarino, P; Bumaguin, G E; Vitelli, E; Vena, R; Missana, L; Jammal, M V; Portal-Núñez, S; Pereira, M; Esbrit, P; Feldman, S

    2014-01-01

    Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds. PMID:24772196

  7. Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge.

    PubMed

    Doria-Serrano, M C; Ruiz-Treviño, F A; Rios-Arciga, C; Hernández-Esparza, M; Santiago, P

    2001-01-01

    Hydrogels based on poly(vinyl alcohol), PVA, and calcium alginate were prepared by a freezing and thawing cycle process and characterized, in terms of the role of the polymer mixture percentage and the number of treatment cycles, on their weight swelling ratio, WSR, gel fraction, and activated sludge entrapment and immobilization. The results show that the morphology of these hydrogels is highly dependent on the PVA-Ca alginate ratio of 5 wt % total polymer content in the initial aqueous solution and that the number of entrapped microorganisms which survive the freezing-thawing procedure is independent of this ratio. For 80/20 PVA-Ca alginate hydrogels, results also show that for up to three freezing and thawing cycles, the WSR, which is in average 24, is not severely affected by the number of the cycles. For the hydrogels with three cycles, the calculated gel fraction for the composite hydrogel is 0.99. Immobilized microorganisms from sedimented activated sludge, constituted by bacteria and fungi, die in high numbers during the freezing and thawing treatment. However, with a proper time of incubation with glucose as carbon source, the population of bacteria is recovered and mainly proliferate inside the hydrogel, attached on top of the fibril network formed by the polymers, while fungi are recovered predominantly on the surface of the spheres.

  8. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification. PMID:25806418

  9. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification.

  10. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study

    PubMed Central

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511

  11. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  12. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  13. Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase.

    PubMed

    Martínez, Yanina N; Cavello, Ivana; Cavalitto, Sebastián; Illanes, Andres; Castro, Guillermo R

    2014-05-01

    Polyvinyl alcohol-pectin (PVA-P) films containing enrofloxacin and keratinase were developed to treat wounds and scars produced by burns and skin injuries. However, in order to prevent enzyme inactivation at the interface between the patch and the scars, crosslinked enzyme aggregates (CLEAs) from a crude extract of keratinase produced by Paecilomyces lilacinus (LPSC#876) were synthesized by precipitation with acetone and crosslinking with glutaraldehyde. Soluble vs. CLEA keratinase (K-CLEA) activities were tested in 59% (v/v) hydrophobic (isobutanol and n-hexane) and hydrophilic (acetone and dimethylsulfoxide) solvents mixtures. K-CLEA activity was 1.4, 1.7 and 6.6 times higher in acetone, n-hexane and isobutanol than the soluble enzyme at 37 °C after 1 h of incubation, respectively. K-CLEA showed at least 45% of enzyme residual activity in the 40-65 °C range, meanwhile the soluble biocatalyst was fully inactivated at 65 °C after 1h incubation. Also, the soluble enzyme was completely inactivated after 12 h at pH 7.4 and 45 °C, even though K-CLEA retained full activity. The soluble keratinase was completely inactivated at 37 °C after storage in buffer solution (pH 7.4) for 2 months, meanwhile K-CLEAs kept 51% of their activity. K-CLEA loaded into polyvinyl alcohol (PVA) and PVA-P cryogels showed six times lower release rate compared to the soluble keratinase at skin pH (5.5). Small angle X-ray scattering (SAXS) analysis showed that K-CLEA bound to pectin rather than to PVA in the PVA-P matrix.

  14. ZnS/PVA nanocomposites for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  15. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    PubMed

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.

  16. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    NASA Astrophysics Data System (ADS)

    Vogel, Nancy Amanda

    Nanomaterials bridge the gap between bulk materials and molecular structures and are known for their unique material properties and highly functional nature which make them attractive for a variety of potential applications, from energy storage and pollution sensors to agricultural and biomedical products. These potential applications, coupled with advances in nanotechnology, have generated considerable interest in nanostructure research. The work presented in this dissertation focuses on two such nanostructures, electrospun nanofibers and nanodiamond particles, with an overarching goal of tailoring the material behavior for a desired outcome. Our first research theme focuses on realizing the full potential of chitosan electrospinning by understanding the mechanism that enables fiber formation through cyclodextrin complexation as a function of solution properties, solvent types, and cyclodextrin content. We demonstrate that cyclodextrin addition not only enables chitosan fiber formation, but also extends the composition and solvent window for nanofiber synthesis while introducing a variety of mat topologies, including three-dimensional, self-supporting mats. These fiber formation improvements cannot be fully explained by conventional electrospinning parameters, but instead seem to be related to the molecular interactions between chitosan and cyclodextrin. Our second research theme entails the modification of highly water soluble, poly(vinyl alcohol) (PVA) nanofibers dissolution properties via atomic layer deposition (ALD) post treatments. In this work, we demonstrate that applying different thicknesses of aluminum oxide nano-coatings can improve the stability of PVA nanofibers in high humidity conditions and significantly decrease the solubility of electrospun PVA mats in water, from seconds to multiple weeks. Controlling mat dissolution allows for the unique opportunity to modulate small molecule, such as drug, release from nanofibers without altering the core

  17. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Huang, Hao-Ting; Huang, Chen-Yu; Hu, Keng-Shiang; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-01

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe3O4 nanoparticles would be released and delivered to cells.

  18. Effect of PVA concentration on bond modifications in PVA-PMMA blend films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Sharma, A.; Bisen, R.; Shripathi, T.

    2016-05-01

    The optical properties of poly (methylmethacrylate) (PMMA) polymer are found to be modified when PVA molecules are added in the matrix of PMMA and vice versa making a blend. The concentrations studied were kept low to preserve the original properties of the host. It was seen that PMMA well protects its bonds and dominated the optical properties, while the properties of PVA are comparatively easier to modify when small amount of PMMA is inserted in PVA matrix. The results are interpreted in terms of bond modifications as seen from FTIR and absorption measurements and are useful in understanding the transparency and bandgap of the blend films.

  19. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  20. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  1. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes.

  2. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  3. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    NASA Astrophysics Data System (ADS)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  4. Ionic conductivity studies in crystalline PVA/NaAlg polymer blend electrolyte doped with alkali salt KCl

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish

    2014-04-01

    Potassium Chloride (KCl) doped poly(vinyl alcohol) (PVA)/sodium alginate (NaAlg) in 60:40 wt% polymer blend electrolytes were prepared by solution casting method. The complexation of KCl with host PVA/NaAlg blend is confirmed by FTIR and UV-Vis spectra. The XRD studies show that the crystallinity of the prepared blends increases with increase in doping. The dc conductivity increases with increase in dopant concentration. Temperature dependent dc conductivity shows an Arrhenius behavior. The dielectric properties show that both the dielectric constant and dielectric loss increases with increase in KCl doping concentration and decreases with frequency. The cole-cole plots show a decrease in bulk resistance, indicates the increase in ac conductivity, due to increase in charge carrier mobility. The doping of KCl enhances the mechanical properties of PVA/NaAlg, such as Young's modulus, tensile strength, stiffness.

  5. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-08-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension ( L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization.

  6. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene.

    PubMed

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-Ul-Haq; Khan, Ahmad Nawaz

    2016-12-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization. PMID:27558496

  7. Preparation and photochromic properties of ultra-fine H3PW11MoO40/PVA fibre mats

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Cheng; Gong, Jian; Pan, Yan; Cui, Xiu-Jun; Shao, Chang-Lu; Guo, Yi-Hang; Wen, Shang-Bin; Qu, Lun-Yu

    2004-07-01

    Novel photochromic materials, H3PW11MoO40/Poly (vinyl alcohol) (PVA) ultra-fine fibre mats containing different weight percentages of H3PW11MoO40, have been prepared from different H3PW11MoO40/PVA solutions by an electrospinning technique. IR spectroscopy, wide-angle x-ray diffraction, and scanning electron microscope spectroscopy are used to characterize the fibre mats. Results of viscosity and conductivity measurements of the solutions indicate that lower viscosity and higher conductivity favour the formation of thin fibres without beads. When irradiated with ultraviolet light (313.2 nm), the colour of the fibre mats changes from white to blue, and the mats show reversible photochromism. IR and ESR spectra of the irradiated fibre mats indicate a conceivable photochromic mechanism, i.e. MoVI is reduced under ultraviolet irradiation. Meanwhile, PVA is oxidized to unsaturated ketone or aldehyde.

  8. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  9. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  10. Structural, electrical and magnetic properties of Ni2+ substituted cobalt nanoferrite using sol-gel method

    NASA Astrophysics Data System (ADS)

    Blessington Selvadurai, A. Paul; Gazzali, P. M. Md.; Murugasen, C.; Pazhanivelu, V.; Murugaraj, R.; Chandrasekaran, G.

    2013-02-01

    Ni doped cobalt ferrite of chemical formula Ni(1-x)CoxFe2O4 with x values = 1, 0.5, 0 were prepared by using Poly Vinyl Alcohol (PVA) sol-gel method. The prepared samples were heat treated at 450°C for an hour and grounded to form fine powder. XRD of the powder sample confirms the formation of spinel ferrite phase. SEM and EDAX spectrum reveals the surface and chemical composition of the sample. FTIR spectra of the samples show the stretching vibration of the tetrahedral (ν1) and octahedral (ν2) bands of Fe-O bonds appearing at 600cm-1 and 424cm-1 respectively. Room temperature magnetic and electrical studies were done using VSM and LCZ meter to analyze their property respectively.

  11. An exponential chemorheological model for viscosity dependence on degree-of-cure of a polyfurfuryl alcohol resin during the post-gel curing stage

    NASA Astrophysics Data System (ADS)

    Domínguez, JC; Oliet, M.; Alonso, M. V.; Rodriguez, F.; Madsen, B.

    2016-07-01

    In the present study, the chemorheological behavior of a bio-based polyfurfuryl alcohol (PFA) resin has been determined by rheological isothermal tests at different curing temperatures for the post-gel curing stage of the resin, using three different amounts of catalyst (2, 4 and 6 wt %). Instead of modeling the evolution of the complex viscosity using a widely used chemorheological model such as the Arrhenius model for each tested temperature, the change of the complex viscosity as a function of the degree-of-cure was predicted using a new exponential type model. In this model, the logarithm of the normalized degree-of-cure is used to predict the behavior of the logarithm of the normalized complex viscosity. The model shows good quality of fitting with the experimental data for 4 and 6 wt % amounts of catalyst. For the 2 wt % amount of catalyst, scattered data leads to a slightly lower quality of fitting. Altogether, it is demonstrated that the new exponential model is a good alternative to conventional chemorheological models due to its simplicity and suitability.

  12. Performance of composite Nafion/PVA membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mollá, Sergio; Compañ, Vicente

    2011-03-01

    This work has been focused on the characterization of the methanol permeability and fuel cell performance of composite Nafion/PVA membranes in function of their thickness, which ranged from 19 to 97 μm. The composite membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The resistance to methanol permeation of the Nafion/PVA membranes shows a linear variation with the thickness. The separation between apparent and true permeability permits to give an estimated value of 4.0 × 10-7 cm2 s-1 for the intrinsic or true permeability of the bulk phase at the composite membranes. The incorporation of PVA nanofibers causes a remarkable reduction of one order of magnitude in the methanol permeability as compared with pristine Nafion® membranes. The DMFC performances of membrane-electrode assemblies prepared from Nafion/PVA and pristine Nafion® membranes were tested at 45, 70 and 95 °C under various methanol concentrations, i.e., 1, 2 and 3 M. The nanocomposite membranes with thicknesses of 19 μm and 47 μm reached power densities of 211 mW cm-2 and 184 mW cm-2 at 95 °C and 2 M methanol concentration. These results are comparable to those found for Nafion® membranes with similar thickness at the same conditions, which were 210 mW cm-2 and 204 mW cm-2 respectively. Due to the lower amount of Nafion® polymer present within the composite membranes, it is suggested a high degree of utilization of Nafion® as proton conductive material within the Nafion/PVA membranes, and therefore, significant savings in the consumed amount of Nafion® are potentially able to be achieved. In addition, the reinforcement effect caused by the PVA nanofibers offers the possibility of preparing membranes with very low thickness and good mechanical properties, while on the other hand, pristine Nafion® membranes are unpractical below a thickness of 50 μm.

  13. Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga

    2016-06-01

    Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.

  14. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  15. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  16. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results.

  17. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  18. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  19. Cationic-modified PVA as a dry strength additive for rice straw fibers.

    PubMed

    Fatehi, P; Tutus, A; Xiao, H

    2009-01-01

    Extensive research has shown that non-wood fibers are able to be substituted for wood fibers. The major shortcoming of non-fibers is their high silica content that causes some operational problems in mills, and hence silica should be kept in pulps. By keeping silica in pulps, however, the mechanical properties of papers are reduced, and a dry strength additive may be required. In this study, cationic polyvinyl alcohols (C-PVA) with two different molecular weights were prepared, and employed as dry strength additives. The adsorption of polymers on rice straw fibers obtained via soda-air-anthraquinone (AQ) pulping under various conditions was investigated thoroughly. Convincing results demonstrated that high molecular weight polymers performed more efficiently on dry strength enhancements of papers, while they adsorbed less than lower molecular weight polymers on fibers. However, the stiffness of fibers was increased to a larger extent by applying a higher molecular weight C-PVA. PMID:18774707

  20. Controlling the Optical Creation of Gold Nanoparticles in a PVA Matrix by Direct Laser Writing

    NASA Astrophysics Data System (ADS)

    Ritacco, T.; Ricciardi, L.; La Deda, M.; Giocondo, M.

    2016-02-01

    We report about the study on the physical features of gold nano-particles (GNPs) created by 2-photons photo-reduction Direct Laser Writing in a Poly-Vinyl Alcohol (PVA) matrix doped with HAuCl4. We drop cast a film of the PVA+ HAuCl4 onto a glass substrate, in which we create 1D gratings made by stripes of GNPs with a single laser sweep. We show that the stripe width increases with the laser power and the exposure time. We also analyse the influence of the exposure time over the created nano-particles size distribution and density and we show that by suitably adjusting the exposure time it is possible to maximize the frequency of a given diameter. By comparing the experimental results with a polymerization "voxel" model, we are able to evaluate the effective cross section for 2- photons absorption of our material.

  1. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  2. A fiber Fabry-Perot interferometer based on a PVA coating for humidity measurement

    NASA Astrophysics Data System (ADS)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Sun, Hao; Zhang, Jing; Bai, Zhengyuan; Du, Yanying; Feng, Dingyi; Wang, Yupeng; Hu, Manli; Feng, Zhongyao

    2013-01-01

    A fiber Fabry-Perot interferometer (FPI) for humidity measurement based on a Polyvinyl alcohol (PVA) film is proposed and experimentally demonstrated. This FPI is fabricated by coating a PVA film on the ending face of a Single-mode fiber (SMF) to form a Fabry-Perot cavity. A well-confined interference spectrum with a free spectra range (FSR) of 15 nm is obtained. Several saturated salt solutions are employed to obtain the different humidity environments in the inclosed containers, of which the relative humidity values range from 7% RH to 91.2% RH. The proposed FPI sensor is sensitive to the humidity change, and a sensitivity of 0.07 nm/(1%) is obtained. Therefore, the characteristics of compact size, low cost and simple fabrication identify it a good candidate for environment monitoring application.

  3. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results. PMID:23911522

  4. Adsorption of pH-responsive amphiphilic copolymer micelles and gel on membrane surface as an approach for antifouling coating

    NASA Astrophysics Data System (ADS)

    Muppalla, Ravikumar; Rana, Harpalsinh H.; Devi, Sadhna; Jewrajka, Suresh K.

    2013-03-01

    A new approach for the surface modification of polymer membranes prepared by phase inversion technique for antifouling properties is reported. Direct deposition of poly(2-dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate)-b-poly(2-dimethylaminoethyl methacrylate) (PDMA-b-PMMA-b-PDMA) copolymer micelles (core-shell) and gel formed from mixture of polyvinyl alcohol (PVA) and PDMA-b-PMMA-b-PDMA on the polysulfone (PSf-virgin) ultrafiltration membrane surface successfully provides modified membranes with improved antifouling properties and pH-responsive behaviour during both water and protein filtrations. Successful deposition and adsorption of such type of micelle and gel particles on the membrane surface was assessed by combination of SEM, AFM, contact angle, ATR-IR, and zeta potential measurements. The micelle and gel particles preferentially remained on the membranes surface due to their bigger size than the pores on the skin layer and also due to adsorption on the membrane surface by hydrophobic interaction. The modified membranes exhibited much higher rejection of macromolecules and almost steady trend in flux compared to corresponding virgin membranes during filtration operation. The major advantage of this protocol is that the deposited micelles and gel remained on the membrane surface even after filtration and storage of the membrane in water and the modified membranes retained similar performance. The effect of all the micelles and gel components on the membrane performance has been elucidated.

  5. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  6. The synthesis of high molecular weight partially hydrolysed poly(vinyl alcohol) grades suitable for nanoparticle fabrication.

    PubMed

    Chana, Jasminder; Forbes, Ben; Jones, Stuart Allen

    2008-11-01

    Poly(vinyl alcohol) (PVA) is a highly versatile synthetic polymer that is formed by full or partial hydrolysis of poly(vinyl acetate) (PVAc). A wide range of PVA partially hydrolysed grades are commercially available, but the amphiphilic grades of the polymer (30-60% hydrolysis), which probably the most interesting in terms of drug delivery, are not readily available. As a consequence few studies have assessed the application of low hydrolysis PVA polymers to form nanocarriers. The aims of this study were to synthesise amphiphilic grades of PVA on a laboratory scale, analyse their chemical properties and determine whether these grades could be used to form nanoparticles. PVA 30%, PVA 40%, PVA 50% and PVA 60% were synthesised via direct saponification of PVAc. All grades of PVA synthesised had degrees of hydrolysis close to those predicted from the stoichiometry of the saponification reaction. The PVA grades displayed <1.5% batch to batch variability (n=3) in terms of percentage hydrolysis, demonstrating the manufacture process was both reproducible and predictable. Analysis of the polymer characteristics using 13C nuclear magnetic resonance and differential scanning calorimetry revealed that all PVA grades contained block distributions (i.e., eta <1) of vinyl alcohol monomers (eta ranged from 0.33-0.45) with a high probability of adjacency calculated for the hydroxylated units (P(OH) ranged 0.926-0.931). All the grades of PVA formed nanoparticles using a precipitation technique with a trend towards smaller particle size with increasing degree of PVA hydrolysis; PVA 30% resulted in significantly larger nanoparticles (225 nm) compared to PVA 40-60% (137-174 nm).

  7. Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-05-01

    This research work reports the synthesis and optical properties of CdSe/PVA polymer nanocomposite (PNC's) prepared by wet chemical co-precipitation method. The transmission spectra obtained from UV-Vis-NIR spectrophotometer has been investigated to determine the optical properties of PNC's. Absorption spectra give the information about energy band gap (Eg) and type of transition. Refractive index (n), extinction coefficient (k) was calculated using well known Swanepoel method. Wemple-Di Domenico model (WDD) has been used to calculate dispersion energy (Ed) and oscillator energy (E0). Boling formula is used to calculate nonlinear refractive index (n2) of CdSe/PVA nanocomposite.

  8. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films.

    PubMed

    Jiang, Xiancai; Jiang, Ting; Gan, Lingling; Zhang, Xiaofei; Dai, Hua; Zhang, Xi

    2012-11-01

    Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.

  9. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.

    PubMed

    Merkle, Valerie M; Zeng, Like; Slepian, Marvin J; Wu, Xiaoyi

    2014-04-01

    Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.

  10. Vaginal absorption of polyvinyl alcohol in Fischer 344 rats.

    PubMed

    Sanders, J M; Matthews, H B

    1990-03-01

    Polyvinyl alcohol (PVA) is a polymer with a wide range of molecular weights and uses. Recently, low molecular weight formulations of PVA have been used as components of contraceptive products designed for intravaginal administration in human females. Previous studies in animals have determined that little or no absorption of PVA occurs from the gastrointestinal (GI) tract. However, there is some concern that PVA of lower molecular weights might be absorbed across membranes of the reproductive tract. Consequently, this work has investigated the absorption of low molecular weight PVA across biological membranes of the reproductive and GI tracts of Fischer 344 rats. Oral administration of ten consecutive daily doses of 14C PVA resulted in little apparent absorption of the dose from the GI tract. In contrast, intravaginal administration of 14C PVA resulted in increasing concentrations of PVA-derived radioactivity in major tissues following one, three or ten daily doses of the estimated human dose of 3 mg/kg. PVA-derived radioactivity was concentrated mainly in the liver, reaching a peak greater than 1750 ng equivalents/g tissue 24 hours following ten daily doses. Over 300 ng equivalents/g tissue were still present in the liver 30 days following the last dose.

  11. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  12. Preparation and Characterisation of Pva Doped with Beta Alanine

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, R.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Pure PVA has been doped with different amount of β - alanine. Film has been prepared by Solution Casting Technique using water as a solvent. The Complex formation between the PVA and β - alanine has been confirmed by FTIR. The Pure PVA conductivity is in the order 10-10 Scm-1 at ambient temperature. The conductivity has been found to increase to the order 10-6 when doped with 10% β - alanine. In this paper characterization of a PVA doped with β-ala has been studied using XRD, FTIR, AC impedance analysis and the results are reported.

  13. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Feng, Mingjun; Zhang, Deqing; Su, Yongbo; Cai, Chenbo; Si, Minzhen

    2013-04-01

    Surface-enhanced Raman spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Recently, SERS has been increasingly employed in the study of biological macromolecules, from DNA and peptides to whole proteins, and cells. However, visible laser sources usually employed in SERS detections always lead to photochemical reactions as well as intensive fluorescence emission from the biological samples. A way to avoid these questions is the employment of near infrared (NIR) laser excitation; thus, it demands the appropriate designs of NIR-SERS substrates in order to obtain the maximum enhancement of the Raman signals from biological analytes. In this work, we demonstrate the fabrication of a new NIR-SERS substrate of polyvinyl alcohol (PVA) coating Ag nanofilms (PVA-coating Ag nanofilm) using a simple and low-cost microwave strategy. The experimental data show that, the plasmon resonance band of the PVA-coating Ag nanofilm is in the region of 400-900 nm, and the maximum center is at ∼780 nm, which matches well with the 785 nm laser excitation employed in this work. With the NIR-SERS detections of hematin and hemoglobin molecules adsorbed on this PVA-coating Ag nanofilm, one can see that the NIR-SERS activity and spectroscopy reproducibility of this NIR-SERS substrate are all perfect. By using of the tested molecule of hematin, the PVA-coating Ag nanofilm shows a high enhancement factor (EF) of ∼107. As the fabrication process of this NIR-SERS substrate is very simple and inexpensive, this method may be used in large-scale preparation of SERS substrates that have been widely applied in Raman analysis. Especially, this PVA-coating Ag nanofilm can also be served as a novel NIR-SERS substrate in biochemical analysis due to its good NIR characteristics.

  14. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli.

    PubMed

    Zhang, Fei; Wu, Juan; Kang, Ding; Zhang, Hongbin

    2013-01-01

    Novel nanocomposite hydrogels composed of hyaluronan (HA), poly(vinyl alcohol) (PVA) and silver nanoparticles were prepared by several cycles of freezing and thawing. The nanocomposite was then characterised using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD) and scanning electron microscopy (SEM). The complex hydrogels consisted of semi-interpenetrating network structures, with PVA microcrystallines as junction zones. By increasing the HA content, the crystallinity and melting temperature of the complex hydrogels decreased, whereas the glass transition temperatures of these materials increased because of the steric hindrance of HA and the occurrence of intermolecular interactions through hydrogen bonding between HA and PVA in the complex hydrogels. Swelling studies showed that in comparison with the swelling properties of the cryogels from PVA alone, those of the complex hydrogels can be significantly improved and presented in a pH-sensitive manner. In addition, silver nanoparticles were synthesised through UV-initiated photoreduction with HA functioning as a reducing agent and stabiliser. The silver nanoparticles were then incorporated in situ into the HA/PVA complex hydrogel matrix. The size and morphology of the as-prepared Ag nanoparticles were investigated through ultraviolet-visible light spectroscopy, transmission electron microscopy, XRD and thermogravimetric analysis. The experimental results indicated that silver nanoparticles 20-50 nm in size were uniformly dispersed in the hydrogel matrix. The antibacterial effects of the HA/PVA/Ag nanocomposite hydrogel against Escherichia coli were evaluated. The results show that this nanocomposite hydrogel possesses high antibacterial property and has a potential application as a wound dressing material. PMID:23829455

  15. Enhancement of PVA-degrading enzyme production by the application of pH control strategy.

    PubMed

    Li, Min; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2012-02-01

    In batch culture for Poly(vinyl alcohol) (PVA)-degrading enzyme (PVAase) production by a mixed culture, higher pH (pH 7.5) was favorable for PVAase production at the prophase of cultivation, but lower pH (pH 7.0) was favorable at the anaphase. This situation was caused by the fact that the optimum pH for different key enzymes [PVA dehydrogenase (PVADH) and oxidized PVA hydrolase (OPH)] production is various. The activity and average specific production rate of PVADH reached the highest values at constant pH 7.5, whereas those of OPH appeared at pH 7.0. A two-stage pH control strategy was therefore developed and compared for its potential in improving PVAase production. By using this strategy, the maximal PVAase activity reached 2.05 U/ml, which increased by 15.2% and 24.2% over the fermentation at constant pH 7.5 and 7.0.

  16. Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Pujari, P. K.; Poojary, Boja; Somashekar, R.

    2014-10-01

    Poly(vinyl alcohol) (PVA)/Sodium alginate (NaAlg) blend films with 60:40 wt% were prepared by solution casting method and subjected to UV irradiation for different intervals of time. The optical, mechanical and morphological properties of the blend films were modified after UV irradiation. The FTIR and FT-Raman results show the chemical interaction between PVA and NaAlg. The UV-vis absorption peak at 278 nm shifts slightly towards longer wavelength and the absorption increases with irradiation time, indicate the increase in crosslinking network. The XRD results show an increase in amorphous nature with increase in UV irradiation time. The DSC/TGA results show a single glass transition temperature (Tg), which confirm that the blends are completely miscible and thermally stable up to 250 °C. The Young's modulus, tensile strength and stiffness of the blend films increase with increase in UV irradiation time. The SEM images confirm that the surface of 48 h UV irradiated PVA:NaAlg blend is more photo-resistant than unirradiated blend.

  17. Optical Absorption Behavior of co (ii) Ion Doped Pva Assisted CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    CdSe is an important II-VI, n-type direct band gap semiconductor with wide band gap (bulk band gap of 2.6 eV) and an attractive host for the development of doped nanoparticles. Poly vinyl alcohol (PVA) is used as a capping agent to stabilize the CdSe nanoparticles. The optical properties of Co (II) ion doped PVA capped CdSe nanoparticles grown at room temperature are studied in the wavelength region of 200-1400 nm. The spectrum of Co (II) ion doped PVA capped CdSe nanoparticles exhibit five bands at 1185, 620, 602, 548 and 465 nm (8437, 16125, 16607, 18243 and 21499 cm-1). The bands observed at 1185, 548 and 465 nm are correspond to the three spin allowed transitions 4T1g (F) → 4T2g (F), 4T1g (F) → 4A2g (F) and 4T1g (F) → 4T1g (P) respectively. The other bands observed at 602 nm and 620 nm are assigned to spin forbidden transitions 4T1g (F) → 2T2g (G), 4T1g (F) → 2T1g (G). The small value of the Urbach energy indicates greater stability of the prepared sample.

  18. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. PMID:26572421

  19. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. PMID:27027727

  20. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

    PubMed

    Kanimozhi, K; Khaleel Basha, S; Sugantha Kumari, V

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. PMID:26838875

  1. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  2. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  3. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  4. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    SciTech Connect

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  5. A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility.

    PubMed

    Leone, Gemma; Consumi, Marco; Greco, Giuseppe; Bonechi, Claudia; Lamponi, Stefania; Rossi, Claudio; Magnani, Agnese

    2011-05-01

    To overcome opacification and absence of accommodation of human lens substitutes a new poly(vinyl alcohol) (PVA)/poly(N-vinyl-2- pyrrolidinone) (PVP) based hydrogel (PPS31075) was realised. The Infrared Spectroscopy and the mechanical spectra confirmed the successful occurrence of crosslinking reaction. The rheological analysis pointed out a behavior comparable with that of young human lens in terms of complex shear modulus and accommodation capability. Further analysis in terms of optical properties, water content measurements, diffusion coefficient, cytotoxicity, and human capsular cell adhesion confirmed the applicability of such a hydrogel as potential human lens substitute.

  6. Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan.

    PubMed

    Zhang, Dan; Yu, Guanghua; Long, Zhu; Yang, Guihua; Wang, Bin

    2016-04-20

    Phenylboronic acid-derivatized chitosan (chitosan-PBA) were prepared by grafting small molecules bearing phenylboronic acid groups onto chitosan with N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) as a coupling reagent pair. Self-assembly multilayer thin films of chitosan-PBA and poly(vinyl alcohol) were subsequently produced under pH control on supporting surfaces, either a silicon wafer or polystyrene latex particles. The driving force of the self-assembly was the ester formation of phenylboronic acid containing polymers with PVA, which can be "turned off" by simple pH control. PMID:26876848

  7. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads.

    PubMed

    Bonine, Bárbara M; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

  8. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  9. Bioactivity of permselective PVA hydrogels with mixed ECM analogues.

    PubMed

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2015-12-01

    The presentation of multiple biological cues, which simulate the natural in vivo cell environment within artificial implants, has recently been identified as crucial for achieving complex cellular functions. The incorporation of two or more biological cues within a largely synthetic network can provide a simplified model of multifunctional ECM presentation to encapsulated cells. Therefore, the aim of this study was to examine the effects of simultaneously and covalently incorporating two dissimilar biological molecules, heparin and gelatin, within a PVA hydrogel. PVA was functionalized with 7 and 20 methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogels. Both heparin and gelatin were covalently incorporated into PVA at an equal ratio resulting in a final PVA:heparin:gelatin composition of 19:0.5:0.5. The combination of both heparin and gelatin within a PVA network has proven to be stable over time without compromising the PVA base characteristics including its permselectivity to different proteins. Most importantly, this combination of ECM analogues supplemented PVA with the dual functionalities of promoting cellular adhesion and sequestering growth factors essential for cellular proliferation. Multi-functional PVA hydrogels with synthetically controlled network characteristics and permselectivity show potential in various biomedical applications including artificial cell implants.

  10. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  11. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film

    NASA Astrophysics Data System (ADS)

    Abdel-Baset, T. A.; Hassen, A.

    2016-10-01

    A film of 0.98 polyvinyl alcohol (PVA)/0.02 Polyacrylonitrile (PAN) has been prepared using casting method. The dielectric properties were measured as function of temperature and frequency. The dielectric permittivity of PVA is considerably enhanced by doping with PAN. Different relaxation processes have been recognized within the studied ranges of temperature and frequency. The frequency temperature superposition (FTS) is well verified. Frequency and temperature dependence of Ac conductivity, σac, were studied. The conduction mechanism of pure PVA and PVA doped with PAN are discussed. The activation energy either for relaxation or conduction was calculated. Comparison with similar polymeric materials is discussed.

  12. Immobilization of tripeptide growth factor glycyl-L-histidyl-L-lysine on poly(vinylalcohol)-quarternized stilbazole (PVA-SbQ) and its use as a ligand for hepatocyte attachment.

    PubMed

    Kawase, M; Miura, N; Kurikawa, N; Masuda, K; Higashiyama, S; Yagi, K; Mizoguchi, T

    1999-09-01

    A tripeptide growth factor, glycyl-L-histidyl-L-lysine (GHK), was immobilized on the surface of poly(vinylalcohol)-quarternized stilbazole (PVA-SbQ) gel. The photoreactive substance, 4-(3-trifluoromethylazirino)benzoyl-N-hydroxysuccinimide (TDBA-OSu), was employed to link the gel and ligand GHK. The density of immobilized GHK was 70 nmol/cm2. Isolated rat hepatocytes were inoculated on the GHK-immobilized PVA-SbQ gel and cultured for 5 d. About 24 h after inoculation, hepatocytes started to aggregate and formed multicellular spheroids while almost no cells attached to GHK-non-immobilized PVA-SbQ gel. The formed spheroids attached firmly to the surface of PVA-SbQ gel for 5 d. GHK was, thus, shown to be an effective ligand for hepatocyte attachment. Dodecamethylenediamine was used to extend the length between the gel surface and GHK. Extension of the length significantly increased the number of attached hepatocytes. PMID:10513632

  13. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  14. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  15. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity. PMID:26275118

  16. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity.

  17. Lignosulfonate as reinforcement in polyvinyl alcohol film: Mechanical properties and interaction analysis.

    PubMed

    Ye, De-zhan; Jiang, Li; Hu, Xiao-qin; Zhang, Ming-hua; Zhang, Xi

    2016-02-01

    Recently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrated the possibility of using eucalyptus lignosulfonate calcium (HLS) particles as reinforcement in polyvinyl alcohol (PVA) matrix. 41% and 384.7% improvement of pure PVA tensile strength and Young's modulus were achieved with incorporation of 5 wt% HLS. The above results were ascribed to specific intermolecular interactions between HLS and PVA, suggested by the increasing PVA glass transition and crystalline relaxations temperature, depression of melting point with HLS incorporation. Moreover, this interaction was quantitatively determined by q value of -62.4±10.0 in Kwei equation. Additionally, the remarkable red shift of wavenumber corresponding to hydroxyl group also indicated the formation of strong hydrogen bond in HLS/PVA blend. SEM characterization confirmed that HLS/PVA blends are at least miscible.

  18. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    PubMed

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-01

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA.

  19. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  20. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.

    PubMed

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe3O4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing-thawing technique and subsequent with K(+) solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions.

  1. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  2. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  3. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  4. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-05-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.

  5. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres.

    PubMed

    Nie, Lei; Zhang, Guohua; Hou, Ruixia; Xu, Haiping; Li, Yaping; Fu, Jun

    2015-01-01

    Poly(vinyl alcohol) (PVA) hydrogels have been candidate materials for cartilage tissue engineering. However, the cell non-adhesive nature of PVA hydrogels has been a limit. In this paper, the cell adhesion and growth on PVA hydrogels were promoted by compositing with transform growth factor-β1 (TGF-β1) loaded porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres. The porous microspheres were fabricated by a modified double emulsion method with bovine serum albumin (BSA) as porogen. The average pore size of microspheres was manipulated by changing the BSA/PLGA ratio. Such controllable porous structures effectively influenced the encapsulation efficiency (Eencaps) and release profile of TGF-β1. By compositing PVA hydrogels with such TGF-β1-loaded PLGA microspheres, chondrocyte adhesion and proliferation were significantly promoted in a controllable manner, as confirmed by fluorescent imaging and quantitative CCK-8 assay. That is, the chondrocyte proliferation was favored by using PLGA microspheres with high Eencaps of TGF-β1 or by increasing the PLGA microsphere content in the hydrogels. These results demonstrated a facile method to improve the cell adhesion and growth on the intrinsically cell non-adhesive PVA hydrogels, which may find applications in cartilage substitution.

  6. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  7. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  9. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  10. A physiological perspective for utility or futility of alcohol-based hand rub gel against nausea-vomiting: is it P-6 acupoint or transnasal aroma?

    PubMed

    Gupta, Deepak; Mazumdar, Ashish; Stellini, Michael

    2014-09-01

    Nausea-vomiting is a common and unpleasant phenomenon with numerous underlying mechanisms and pathways that are not always well elucidated. In clinical practice, refractory nausea-vomiting is encountered in several settings. Antiemetic medications may reduce these symptoms but are not always effective in all patients. In the absence of a well-defined optimal strategy for management of nausea-vomiting, the search for better approaches to treat this distressing symptom continues. One of the alternative treatment approaches is a compounded formulation called ABHR gel that is comprised of multiple antiemetic medications and has been shown to be useful for symptomatic relief in some patients with refractory nausea-vomiting. It has been suggested that alternative mechanisms should be explored to explain the perceived efficacy of ABHR gel, because transdermal absorption leading to nil-to-minimal or subtherapeutic blood concentrations of active ingredients does not explain the role of ABHR gel in the treatment of nausea-vomiting. In the current paper, we discuss possible mechanisms that may explain ABHR transdermal gel's efficacy. Compounded ABHR transdermal gel formulation's efficacy in antagonizing nausea-vomiting that has been recently questioned may be explained by alternative mechanisms mediated through the P-6 acupoint stimulation and facial-nasal, cooling-related counterstimulation.

  11. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  12. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin.

  13. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Song, Kunlin; Cheng, H N; Wu, Qinglin

    2016-11-20

    The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems. PMID:27561516

  14. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  15. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-01-01

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA. PMID:26703542

  16. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Beigzadeh, Borhan

    2014-02-01

    This study proposes the quasi-linear viscoelastic (QLV) model to characterize the time dependent mechanical behavior of poly(vinyl alcohol) (PVA) sponges. The PVA sponges have implications in many viscoelastic soft tissues, including cartilage, liver, and kidney as an implant. However, a critical barrier to the use of the PVA sponge as tissue replacement material is a lack of sufficient study on its viscoelastic mechanical properties. In this study, the nonlinear mechanical behavior of a fabricated PVA sponge is investigated experimentally and computationally using relaxation and stress failure tests as well as finite element (FE) modeling. Hyperelastic strain energy density functions, such as Yeoh and Neo-Hookean, are used to capture the mechanical behavior of PVA sponge at ramp part, and viscoelastic model is used to describe the viscose behavior at hold part. Hyperelastic material constants are obtained and their general prediction ability is verified using FE simulations of PVA tensile experiments. The results of relaxation and stress failure tests revealed that Yeoh material model can define the mechanical behavior of PVA sponge properly compared with Neo-Hookean one. FE modeling results are also affirmed the appropriateness of Yeoh model to characterize the mechanical behavior of PVA sponge. Thus, the Yeoh model can be used in future biomechanical simulations of the spongy biomaterials. These results can be utilized to understand the viscoelastic behavior of PVA sponges and has implications for tissue engineering as scaffold.

  17. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-12-19

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  18. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr(VI).

    PubMed

    Luo, Lei; Cai, Weiquan; Zhou, Jiabin; Li, Yuanzhi

    2016-11-15

    A novel boehmite/PVA composite membrane (BPCM) with remarkably enhanced adsorption performance towards Cr(VI) was successfully synthesized from Al(NO3)3·9H2O using HAc as the peptizing agent via a facile sol-gel method. The physicochemical properties of the BPCM, the boehmite powder (BP) without PVA and a commercial boehmite powder (CBP) were comparatively characterized by XRD, TGA-DSC, FT-IR and XPS. Batch adsorption experiments showed that the adsorption performance of the BPCM is much better than those of BP and CBP. Its adsorption process was well described by the pseudo-second-order kinetic model, and its equilibrium data fit the Langmuir isotherm well with a maximum adsorption capacity of 36.41mgg(-1). Its interference adsorption experiment in presence of coexisting anions showed that SO4(2-) and HPO4(2-) have greater effect than those of the Cl(-), F(-), C2O4(2-) and HCO3(-). A three step action mechanism including adsorption of Cr(VI) anions, complexation between Cr(VI) anions and the functional groups on the surface of BPCM, and the reduction of Cr(VI) to Cr(III) was proposed to illustrate the adsorption process. This efficient film could be easily separated after adsorption, exhibiting great potential for the removal of Cr(VI) from aqueous solution, and other fields of environmental remediation. PMID:27450337

  19. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  20. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats.

    PubMed

    Amin, Mohamed A; Abdel-Raheem, Ihab T

    2014-08-01

    Diabetes is one of the leading causes of impaired wound healing. The objective of this study was to develop a bee venom-loaded wound dressing with an enhanced healing and anti-inflammatory effects to be examined in diabetic rats. Different preparations of polyvinyl alcohol (PVA), chitosan (Chit) hydrogel matrix-based wound dressing containing bee venom (BV) were developed using freeze-thawing method. The mechanical properties such as gel fraction, swelling ratio, tensile strength, percentage of elongation and surface pH were determined. The pharmacological activities including wound healing and anti-inflammatory effects in addition to primary skin irritation and microbial penetration tests were evaluated. Moreover, hydroxyproline, glutathione and IL-6 levels were measured in the wound tissues of diabetic rats. The bee venom-loaded wound dressing composed of 10 % PVA, 0.6 % Chit and 4 % BV was more swellable, flexible and elastic than other formulations. Pharmacologically, the bee venom-loaded wound dressing that has the same previous composition showed accelerated healing of wounds made in diabetic rats compared to the control. Moreover, this bee venom-loaded wound dressing exhibited anti-inflammatory effect that is comparable to that of diclofenac gel, the standard anti-inflammatory drug. Simultaneously, wound tissues covered with this preparation displayed higher hydroxyproline and glutathione levels and lower IL-6 levels compared to control. Thus, the bee venom-loaded hydrogel composed of 10 % PVA, 0.6 % Chit and 4 % BV is a promising wound dressing with excellent forming and enhanced wound healing as well as anti-inflammatory activities. PMID:24293065

  1. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials.

  2. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA

    NASA Astrophysics Data System (ADS)

    Goumri, Meryem; Venturini, Jany Wéry; Bakour, Anass; Khenfouch, Mohammed; Baitoul, Mimouna

    2016-03-01

    The attractive optoelectronic properties of graphene are universally known. Also, their combination with polymer matrix added an exciting physical investigation. In the present work, nanocomposites based on poly (vinyl alcohol) (PVA) with low graphene oxide (GO) and partially reduced graphene oxide (PRGO) loadings (0.5, 1 and 2 wt%) were successfully prepared by a simple and environmentally friendly process using aqueous solution in both acidic (pH 4) and neutral media (pH 7)and optimized sonication time, in order to tailor the optical/electronic properties of the GO/PRGO nanosheets. FT-IR and Raman scattering spectroscopy reveal a strong interfacial interaction by hydrogen bonding between the two components. Steady-state photoluminescence results showed a pH-dependent fluorescence of these nanocomposites, and a significant luminescence over a wide range of the visible wavelengths was achieved at a concentration of 1 wt% GO and PRGO loading. A quenching of the PL started at 2 wt% suggesting the possibility of tuning the luminescence properties of GO/PRGO-based composites with PVA.

  3. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  4. Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system.

    PubMed

    Fathollahipour, Shahrzad; Abouei Mehrizi, Ali; Ghaee, Azadeh; Koosha, Mojtaba

    2015-12-01

    Nanofibrous core-sheath nanocomposite dual drug delivery system based on poly(vinyl alcohol) (PVA)/chitosan/lidocaine hydrochloride loaded with gelatin nanoparticles were successfully prepared by the electrospinning method. Gelatin nanoparticles were prepared by nanoprecipitation and were then loaded with erythromycin antibiotic agent with the average particle size of ∼175 nm. The morphology of gelatin nanoparticles observed by field emission scanning electron microscopy (FE-SEM) was shown to be optimal at the concentration of 1.25 wt % of gelatin in aqueous phase by addition of 20 µL of glutaraldehyde 5% as the crosslinking agent. The nanoparticles were also characterized by dynamic light scattering, zeta potential measurement, and Fourier transform infrared spectroscopy (FTIR). The best bead free morphology for the PVA/chitosan nanofibrous mats were obtained at the solution weight ratio of 96/4. The nanofibrous mats were analyzed by swelling studies, FTIR and antibacterial tests. In vitro dual release profile of the core-sheath nanofibers was also studied within 72 h and showed the release efficiency equal to 84.69 and 75.13% for lidocaine hydrochloride and erythromycin, respectively. According to release exponent n, the release of lidocaine hydrochloride from the sheath part of the matrix is quasi-Fickian diffusion mechanism, while the release of erythromycin is based on anomalous or non-Fickian mechanisms.

  5. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    PubMed

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement.

  6. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; Ghazanfari, L.

    2012-12-01

    Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1-1.2) pa s at constant shear rate of 20 s-1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s-1 to 150 s-1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.

  7. Investigations on Pva:. NH4F: ZrO2 Composite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Radha, K. P.; Selvasekarapandian, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    Composite polymer electrolytes have been prepared using Poly (vinyl alcohol), ammonium fluoride, nanofiller ZrO2 by solution casting technique. The amorphous nature of the composite polymer electrolyte has been confirmed by XRD analysis. FTIR analysis confirms the complex formation among the polymer, salt and nanofiller. The maximum ionic conductivity for 85 PVA:15 NH4F has been found to be 6.9 × 10-6 Scm-1 at ambient temperature. In the present work, the addition of 2 mol% nanofilller ZrO2 to the electrolyte 85PVA:15NH4F enhances the conductivity to 3.4 × 10-5 Scm-1. The temperature dependence of the conductivity of composite polymer electrolytes obeys Arrhenius relation. In the modulus spectra, there is a long tail at low frequencies which is an evidence for large capacitance associated with the electrodes. In the high frequency region, ∈'(ω) value saturates and giving rise to the dielectric constant of the material.

  8. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    NASA Astrophysics Data System (ADS)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  9. Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.

    2016-07-01

    In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391–406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.

  10. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.

    PubMed

    Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I

    2014-01-01

    The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies.

  11. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  12. A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane.

    PubMed

    Esmaeili, Akbar; Beni, Ali Aghababai

    2014-09-15

    In this research, a novel fixed-bed reactor was designed with a nanofiber membrane composed of a polyvinyl alcohol (PVA)/chitosan nanofiber blend prepared using an electrospinning technique. The applied voltage, tip-collector distance, and solution flow rate of the electrospinning process were 18 kV, 14.5 cm, and 0.5 mL h(-1), respectively. Brunauer-Emmett-Teller (BET) theory, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize and analyze the nanofiber membranes. Homogeneous electrospun nanofibers with an average diameter of 99.47 nm and surface area of 214.12 m(2)g(-1) were obtained. Adsorption experiments were carried out in a batch system to investigate the effect of different adsorption parameters such as pH, adsorbent dose, biomass dose, contact time, and temperature. The kinetic data, obtained at the optimal pH of 6, were analyzed by pseudo first-order and pseudo second-order kinetic models. Three isotherm models and thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were applied to describe the equilibrium data of the metal ions adsorbed onto the PVA/chitosan nanofiber membrane.

  13. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  14. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  15. [Methods and applications of population viability analysis (PVA): a review].

    PubMed

    Tian, Yu; Wu, Jian-Guo; Kou, Xiao-Jun; Wang, Tian-Ming; Smith, Andrew T; Ge, Jian-Ping

    2011-01-01

    With the accelerating human consumption of natural resources, the problems associated with endangered species caused by habitat loss and fragmentation have become greater and more urgent than ever. Conceptually associated with the theories of island biogeography, population viability analysis (PVA) has been one of the most important approaches in studying and protecting endangered species, and this methodology has occupied a central place in conservation biology and ecology in the past several decades. PVA has been widely used and proven effective in many cases, but its predictive ability and accuracy are still in question. Also, its application needs expand. To overcome some of the problems, we believe that PVA needs to incorporate some principles and methods from other fields, particularly landscape ecology and sustainability science. Integrating landscape pattern and socioeconomic factors into PVA will make the approach theoretically more comprehensive and practically more useful. Here, we reviewed the history, basic conception, research methods, and modeling applications and their accuracies of PVA, and proposed the perspective in this field. PMID:21548317

  16. Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films.

    PubMed

    Karimi, Nazanin; Kunwar, Puskal; Hassinen, Jukka; Ras, Robin H A; Toivonen, Juha

    2016-08-01

    Direct laser writing has been utilized to fabricate highly photostable fluorescent nanocluster microstructures in an organic polymer poly(methacrylic acid), where the carboxyl functional group is reported to play a vital role in nanocluster stabilization. In this Letter, we demonstrate that not only the polymer containing the carboxyl functional group, but also the polymer comprising the hydroxyl group, namely polyvinyl alcohol (PVA), can act as an appropriate stabilizer matrix for laser-induced synthesis and patterning of silver nanoclusters. The as-formed nanoclusters in the PVA film exhibit broadband emission and photostability comparable to the nanoclusters formed in the poly(methacrylic acid) polymer. As PVA is a widely used, nontoxic, biocompatible and biodegradable polymer, the technique of patterning fluorescent nanoclusters in PVA thin films is expected to find numerous applications in fields like fluorescence imaging, biolabeling, and sensing. PMID:27472635

  17. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite.

    PubMed

    Leitão, Alexandre F; Gupta, Swati; Silva, João Pedro; Reviakine, Ilya; Gama, Miguel

    2013-11-01

    Bacterial cellulose (BC) has been suggested to be a suitable biomaterial for the development of cardiovascular grafts. The combination of BC with polyvinyl alcohol (PVA) results in nanocomposites with improved properties. Surprisingly, there are very few studies on the BC-blood interaction. This is the focus of this paper. We present the first thorough assessment of the hemocompatibility of the BC/PVA nanocomposite. Whole blood clotting time, plasma recalcification, Factor XII activation, platelet adhesion and activation, hemolytic index and complement activation are all determined. The platelet activation profiles on BC and BC/PVA surfaces are comprehensively characterized. BC and BC/PVA outperformed ePTFE--used as a point of comparison--thus evidencing their suitability for cardiovascular applications.

  18. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-01

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications.

  19. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  20. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  1. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  2. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  3. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  4. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor.

    PubMed

    Moreno-Cortez, Iván E; Romero-García, Jorge; González-González, Virgilio; García-Gutierrez, Domingo I; Garza-Navarro, Marco A; Cruz-Silva, Rodolfo

    2015-01-01

    In this paper, papain enzyme (E.C. 3.4.22.2, 1.6 U/mg) was successfully immobilized in poly(vinyl alcohol) (PVA) nanofibers prepared by electrospinning. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy (SEM) and the diameter distribution was in the range of 80 to 170 nm. The presence of the enzyme within the PVA nanofibers was confirmed by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS) analyses. The maximum catalytic activity was reached when the enzyme loading was 13%. The immobilization of papain in the nanofiber membrane was achieved by chemical crosslinking with a glutaraldehyde vapor treatment (GAvt). The catalytic activity of the immobilized papain was 88% with respect to the free enzyme. The crosslinking time by GAvt to immobilize the enzyme onto the nanofiber mat was 24h, and the enzyme retained its catalytic activity after six cycles. The crosslinked samples maintained 40% of their initial activity after being stored for 14 days. PVA electrospun nanofibers are excellent matrices for the immobilization of enzymes due to their high surface area and their nanoporous structure.

  5. Diffraction efficiency improvement in high spatial frequency holographic gratings stored in PVA/AA photopolymers: several ACPA concentrations

    NASA Astrophysics Data System (ADS)

    Fernandez, Elena; Fuentes, Rosa; Ortuño, Manuel; Beléndez, Augusto; Pascual, Inmaculada

    2015-01-01

    High spatial frequency in holographic gratings is difficult to obtain due to limitations of the recording material. In this paper, the results obtained after storing holographic transmission gratings with a spatial frequency of 2656 lines/mm in a material based on polyvinyl alcohol and acrylamide (PVA/AA) are presented. A chain transfer agent, 4, 4‧-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the composition of the material to improve the response of the material at a high spatial frequency. Different concentrations of ACPA were used in order to find the optimal concentration giving maximum diffraction efficiency for high spatial frequencies.

  6. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  7. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials.

  8. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    SciTech Connect

    Ger, Tzong-Rong; Huang, Hao-Ting; Hu, Keng-Shiang; Huang, Chen-Yu; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-07

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe{sub 3}O{sub 4} nanoparticles would be released and delivered to cells.

  9. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  10. FABRICATION OF A NEW TYPE OF DOUBLE SHELL TARGET HAVING A PVA INNER LAYER

    SciTech Connect

    STEINMAN,D.A; WALLACE,R; GRANT,S.E; HOPPE,M.L; SMITH,JR.J.N

    2003-06-01

    OAK-B135 The General Atomics Target Fabrication team was tasked in FY03, under its ICF Target Support contract, to make a new type of double-shell target. its specifications called for the outer shell to have an inner lining of PVA (poly(vinyl alcohol)) that would keep the xenon gas fill from occupying the target wall. The inner shell consisted of a glass shell coated with 2000 {angstrom} of silver and filled with 9 atm of deuterium. Furthermore, the delivery deadline was less than seven weeks away. This paper describes the fielding of this double-shell target, made possible through the combined efforts of Lawrence Livermore National Laboratory and General Atomics target fabrication specialists.

  11. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    PubMed Central

    Bonine, Bárbara M.; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O.

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. PMID:24818012

  12. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    SciTech Connect

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  13. Spectroscopic properties of (PVA+ZnO):Mn2+ polymer films

    NASA Astrophysics Data System (ADS)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-01

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn2+ ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn2+ ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn2+ ion in d5 and the site symmetry around Mn2+ ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  14. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa. PMID:22939352

  15. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa.

  16. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation

    PubMed Central

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies. PMID:24957172

  17. An intensive study on the optical, rheological, and electrokinetic properties of polyvinyl alcohol-capped nanogold

    NASA Astrophysics Data System (ADS)

    Behera, Manoranjan

    2015-05-01

    Low-temperature-assisted wet chemical synthesis of nanogold (NG) using gold hydroxide, a new precursor salt in the presence of a macroscopic ligand poly(vinyl alcohol) PVA in water in the form of nanofluid, is reported for the first time in this article. In the absorption spectra, the surface Plasmon resonance absorption band in the range of 520-545 nm signifies the formation of NG via a controlled Au3+ + 3e → Au reaction grafted in small assemblies with polymer. Absorption maximum increases nonlinearly with Au-contents up to 100 µM Au in Au-PVA charge-transfer complex. Marked enhancement in the peak intensity of some of the vibration bands of PVA polymer such as C-H stretching, C=O stretching, CH2 bending, and C-C in-plane bending in the presence of NG reveals an interfacial interaction between NG and oxidized PVA via C=O group. Execution of shear thinning behavior regardless of the Au-content strongly suggests that crosslinking exists between NG and PVA in Au-PVA rheo-optical nanofluids. Hydrodynamic diameter and polydispersity index draw a nonlinear path with the Au doping with 30.0 g/L PVA in water over a wide region of 5-100 μM Au covered in this study. Enhancement in the zetapotential of Au-PVA nanofluid over bare PVA in water is ascribed to buildup of nonbonding electrons of "-C=O" moieties from the oxidized PVA on the NG surface. Displaying of lattice fringes in the microscopic image of core-shell Au-PVA nanostructure confirms that crystalline nature of NG core with inter planar spacing 0.235 nm corresponds to Au (111) plane.

  18. Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation.

    PubMed

    Marcilli, Raphael H M; de Oliveira, Marcelo G

    2014-04-01

    Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

  19. An experimental study for syndiotactic polyvinyl alcohol spheres as an embolic agent: can it maintain spherical shape in vivo?

    PubMed

    Chun, Ho Jong; Lee, Hae Giu; Lyoo, Won Seok; Lee, Ji Youl; Kim, Jina

    2014-01-01

    Syndiotactic polyvinyl alcohol (PVA) had been developed to overcome the drawbacks of atactic PVA spheres that deform easily, which can lead to non-target embolization. This study was performed to evaluate the in vivo stability of spherical shape of the syndiotactic PVA spheres. Selective arteriography and transarterial embolization (TAE) were performed in the main renal arteries of eight New Zealand white rabbits using syndiotactic PVA sphere that consisted of syndiotactic PVA skin and a copolymer core of vinyl acetate/vinyl pivalate. The size of the syndiotactic PVA spheres used for the TAE was 212-355 μm. The rabbits were sacrificed 12-14 days after TAE. Gross and microscopic examinations of each kidney were performed. The microscopic examination showed infarction of all embolized kidneys. Syndiotactic PVA spheres were seen uniformly within the arterial lumen and appeared as round ring-like structures without any deformity. The syndiotactic PVA spheres exclusively occupied the arterial lumen. As a conclusion, syndiotactic PVA spheres maintained their spherical shape without significant deformation in this in vivo short-term experimental study. Further investigation is necessary for evaluation of detailed effects of physical stability in tumor embolization.

  20. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles.

    PubMed

    He, Dian; Hu, Bo; Yao, Qiao-Feng; Wang, Kan; Yu, Shu-Hong

    2009-12-22

    A new and facile way to synthesize a free-standing and flexible surface-enhanced Raman scattering (SERS) substrate has been successfully developed, where high SERS-active Ag dimers or aligned aggregates are assembled within poly(vinyl alcohol) (PVA) nanofibers with chain-like arrays via electrospinning technique. The aggregation state of the obtained Ag nanoparticle dimers or larger, which are formed in a concentrated PVA solution, makes a significant contribution to the high sensitivity of SERS to 4-mercaptobenzoic acid (4-MBA) molecules with an enhancement factor (EF) of 10(9). The superiority of enhancement ability of this Ag/PVA nanofiber mat is also shown in the comparison to other substrates. Furthermore, the Ag/PVA nanofiber mat would keep a good reproducibility under a low concentration of 4-MBA molecule (10(-6) M) detection with the average RSD values of the major Raman peak less than 0.07. The temporal stability of the substrate has also been demonstrated. This disposable, easy handled, flexible free-standing substrate integrated the advantages including the superiority of high sensitivity, reproducibility, stability, large-scale, and low-cost production compared with other conventional SERS substrates, implying that it is a perfect choice for practical SERS detection application.

  1. Electrospun tungsten oxide NPs/PVA nanofibers: A study on the morphology and Kramers-Kronig analysis of infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Chenari, Hossein Mahmoudi; Kangarlou, Haleh

    2016-10-01

    The major objective of this work is focused on the preparation and characterization of poly (vinyl alcohol) (PVA) embedding tungsten oxide nanoparticles based on electrospinning technique. A surfactant (CTAB) was introduced to incorporate tungsten oxide nanoparticles into the PVA nanofibers homogeneously. To prepare a viscous solution of PVA nanofiber containing tungsten oxide nanoparticles, the distance between the tip of the needle and the surface of the foil was chosen as 10 and 15 cm. The tungsten oxide NPs/PVA composite nanofibers have been characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and reflectance spectrum in the wave length range of 200-1200 nm. Fiber diameters decrease with increasing of tip-to-collector distance from 10 to 15 cm. The average diameters were estimated about 165±30 nm and 145±30 nm from scanning electron microscopy at 10 and 15 cm, respectively. The optical properties of the electrospun nanofibers were examined by the Kramers-Kronig model. The optical results show that tungsten oxide nanopowder show almost five times higher conductivity, lower absorbance and zero band gap energy.

  2. Graphene-poly(vinyl alcohol) composites: Fabrication, adsorption and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Chang, Peter R.; Zheng, Pengwu; Ma, Xiaofei

    2014-09-01

    Porous composites of graphene oxide (GO)-poly(vinyl alcohol) (PVA) were fabricated using a process of aqueous suspension precursor freezing, solvent exchange, and ethanol drying. When frozen, ice crystals formed leaving a porous structure, composed of randomly oriented GO sheets consolidated by PVA. The yellow GO-PVA composite could be reduced with glucose to obtain a black porous RGO (PRGO). XRD revealed that PVA enlarged the GO interlay spacing in the GO-PVA composite, and that RGO sheets were highly disordered in single or several layers in PRGO. GO-PVA and PRGO exhibited ultralight densities of 10.52 and 11.42 mg/cm3, respectively. GO-PVA adsorbed greater quantities of water, ethanol, and soybean oil than PRGO. The methylene blue (MB) adsorption pattern for both materials was also investigated. The kinetic adsorption and isotherm data fit the pseudo second-order and the Langmuir models, respectively. The maximum adsorption capacity according to the Langmuir isotherm model was 571.4 mg/g for GO-PVA. The electrochemical properties of PRGO were estimated using cyclic voltammetry, electrochemical impedance spectrometry, and chronopotentiometry. The PRGO electrode exhibited large capacitance (82.8 F/g) and small internal resistance (0.52 Ω).

  3. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  4. Comparison of properties of poly(vinyl alcohol) nanocomposites containing two different clays.

    PubMed

    Chang, Jin-Hae; Ham, Miran; Kim, Jeong-Cheol

    2014-11-01

    Morphologies, thermo-optical properties, and gas barriers of poly(vinyl alcohol) (PVA) hybrid films containing two different clays are compared. Saponite (SPT) and hydrophilic bentonite (BTT) were used as the reinforcing filler in the fabrication of PVA hybrid films, which were synthesized from aqueous solutions and were solvent-cast at room temperature under vacuum, yielding 20-31-μm-thick PVA hybrid films with varying clay contents. The addition of small amounts of clay is sufficient to improve the thermal properties and gas barriers of PVA hybrid films. Even polymers with a low clay content (3-10 wt%) were found to exhibit much higher transition temperature values than pure PVA. The addition of BTT was more effective than the addition of SPT for improving the thermal properties and gas barrier in the PVA matrix. The PVA hybrid films containing 5 wt% SPT were equibiaxially stretched, with stretching ratios ranging from 150% to 250%. Clay dispersion, morphology, optical transparency, and gas permeability were then examined as a function of the equibiaxial stretching ratio. PVA hybrid films with a stretching ratio of ≥ 150% displayed homogeneously dispersed clay within the polymer matrix and exfoliated nanocomposites.

  5. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016.

  6. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016. PMID:26224170

  7. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.

    PubMed

    Hajji, Sawssen; Chaker, Achraf; Jridi, Mourad; Maalej, Hana; Jellouli, Kemel; Boufi, Sami; Nasri, Moncef

    2016-08-01

    The development and characterization of biodegradable blend films based on chitosan and poly (vinyl alcohol) for possible use in a variety of biological activities are reported. Fourier transform infrared spectroscopy (FTIR) spectra of chitosan-poly (vinyl alcohol) (Ch/PVA) films showed characteristics peaks shifting to a lower frequency range due to hydrogen bonding between -OH of PVA and -NH2 of chitosan. The chitosan and PVA polymers presented good compatibility. The morphology study of chitosan and composite films showed a compact and homogenous structure. The tensile strength and elongation at break increased with PVA content. In fact, the highest tensile strength and elongation at break (53.58 MPa and 454 %) occurs with pure PVA film. The results showed that PVA incorporation in the blends contributes to increase the intermolecular interactions, thus improving the mechanical properties. In addition, the prepared films demonstrated high antioxidant activities monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, reducing power, and β-carotene bleaching activity. Nevertheless, PVA addition reduced antioxidant and antibacterial activities against Gram-positive and Gram-negative bacteria tested. PMID:27106077

  8. [Study on hydrophilicity and degradability of polyvinyl alcohol/polylactic acid blend film].

    PubMed

    Wang, Hualin; Sheng, Mingang; Zhai, Linfeng; Li, Yanhong

    2008-02-01

    Based on casting and solvent evaporation method, the degradable PLA/PVA blend film was prepared with polylactic acid (PLA) and polyvinyl alcohol (PVA) as raw material. The moisture absorbability, water absorbability and degradability of the polylactic acid/polyvinyl alcohol (PLA/PVA) blend film were studied; also the degradation mechanism of blend film was investigated. The results showed that the moisture absorption and water absorption of blend film decreased as the concentration of PLA increased. The degradation process of blend film in the normal saline is conducted by stepwise. At the forepart, the degradation of PLA played an important role, while PVA was the main degradation substance later. The solvent acidity could catalyze the degradation of PLA, and degradation of PLA was always turning from noncrystalline region to crystalline region. PVA had abilities to accelerate the degradation of PLA by increasing the hydrophilicity of the blend film and by breaking the crystallinity of PLA. Therefore, the hydrophilicity and degradability of PLA/PVA blend film can be controlled in a certain range by adjusting the proportion of PLA and PVA. PMID:18435276

  9. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  10. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  11. Synthesis of Nanocomposites of Polyvinyl Alcohol with Silver Nanoparticles and Their Use

    NASA Astrophysics Data System (ADS)

    Bhat, N. V.; Karmakar, N. S.; Kothari, D. C.

    2013-08-01

    Composites of polyvinyl alcohol (PVA) containing silver nanoparticles were prepared using in situ synthesis of nanoparticles. Structure and properties of these composites were investigated using UV-Vis spectroscopy, XRD, DSC, SEM and AFM. The studies show that PVA can reduce the AgNO3 to yield silver nanoparticles and in the process forms bonds with PVA chains. The anti-bacterial properties of these films were studied by qualitative as well as quantitative methods which gave the values of 98% for gram positive and 89% for gram negative bacteria.

  12. 78 FR 20890 - Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... established in the Antidumping Duty Order: Polyvinyl Alcohol From Taiwan, 76 FR 13982 (March 15, 2011). These... the antidumping duty order on polyvinyl alcohol (PVA) from Taiwan. The period of review (POR) is... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  13. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  14. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  15. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  16. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly (vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on m...

  17. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  18. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  19. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  20. Rainfastness of Poly(vinyl alcohol) Deposits on Vicia faba Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain.

    PubMed

    Symonds, Brett L; Thomson, Niall R; Lindsay, Christopher I; Khutoryanskiy, Vitaliy V

    2016-06-01

    Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants. PMID:27070864

  1. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration

    NASA Astrophysics Data System (ADS)

    Kudo, Kushi; Ishida, Junichi; Syuu, Gika; Sekine, Yurina; Ikeda-Fukazawa, Tomoko

    2014-01-01

    To investigate the mechanism of structural changes of water and polymer networks with drying and swelling, we measured the Raman spectra of a physically cross-linked poly(vinyl alcohol) (PVA) hydrogel synthesized using the freezing-thawing method. The results show that the vibrational frequencies of the O-H and C-H stretching modes decrease with dehydration. The frequency shifts observed are attributed to reduction of free water inside the polymer network. The C-H bonds elongate as the water density decreases, and the average length of the O-H bonds increases with increasing proportion of bound water to the total amount of water. On the basis of the dependence of the frequency shifts on the PVA concentration of the original solution, it was found that the structure of the polymer network in the reswollen hydrogel becomes inhomogeneous due to shrinkage of the polymer network with drying. Furthermore, to investigate the effects of the cross-linking structure on the drying process, these results were compared with those of a chemically cross-linked PVA hydrogel synthesized using glutaraldehyde as a cross-linker. The result shows that the vibrational frequency of the O-H stretching mode for the chemically cross-linked hydrogel increases with dehydration, whereas that of the C-H stretching mode decreases. The opposite trend observed in the O-H stretching mode between the physically and chemically cross-linked hydrogels is due to the difference in the shrinkage rate of the polymer network. Because the rate of shrinking is slow compared with that of dehydration in the chemically cross-linked hydrogel, water density in the polymer network decreases. For the physically cross-linked hydrogel, the polymer network structure can be easily shrunken, and the average strength of hydrogen bonds increases with dehydration. The results show that the structures of the polymer network and water change with the gel preparation process, cross-linking method, and drying and reswelling

  2. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    PubMed

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity. PMID:27154257

  3. Stick-slip instability for viscous fingering in a gel

    NASA Astrophysics Data System (ADS)

    Puff, N.; Debrégeas, G.; di Meglio, J.-M.; Higgins, D.; Bonn, D.; Wagner, C.

    2002-05-01

    The growth dynamics of an air finger injected in a visco-elastic gel (a PVA/borax aqueous solution) is studied in a linear Hele-Shaw cell. Besides the standard Saffman-Taylor instability, we observe—with increasing finger velocities—the existence of two new regimes: (a) a stick-slip regime for which the finger tip velocity oscillates between 2 different values, producing local pinching of the finger at regular intervals; (b) a "tadpole" regime where a fracture-type propagation is observed. A scaling argument is proposed to interpret the dependence of the stick-slip frequency with the measured rheological properties of the gel.

  4. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  5. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  6. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    NASA Astrophysics Data System (ADS)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical

  7. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  8. Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol).

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-09-01

    An environmentally friendly and inexpensive substitute to the widely used poly(vinyl alcohol) (PVA) has been developed from soy proteins for textile warp sizing. Textile processing is the major source of industrial water pollution across the world, and sizing and desizing operations account for nearly 30 % of the water consumed in a textile plant. PVA is one of the most common sizing agents used for synthetic fibers and their blends due to PVA's easy water solubility and ability to provide desired sizing performance. However, PVA does not degrade and is a major contributor to pollution in textile effluent treatment plants. Although considerable efforts have been made to replace PVA with biodegradable sizing materials, the performance properties provided by PVA on synthetic fibers and their blends have been unmatched so far. Soy proteins are inexpensive, biodegradable, and have been widely studied for potential use in food packaging, as resins and adhesives. In this research, the potential of using soy proteins as textile sizing agents to replace PVA was studied. Polyester and polyester/cotton rovings, yarns, and fabrics sized with soy protein showed a considerably better improvement in strength and abrasion resistance compared to commercially available PVA-based size. Soy protein size had a 5-day biochemical oxygen demand /chemical oxygen demand ratio of 0.57 compared to 0.01 for PVA indicating that soy protein sizes were easily biodegradable in activated sludge. The total and ammonia nitrogen released from the proteins also did not adversely impact the biodegradability. Good sizing performance and easy biodegradability demonstrate that soy protein-based sizes have potential to replace PVA-based sizes leading to substantial benefits to the textile industry and the environment. PMID:23536274

  9. Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction.

    PubMed

    Fathi, Ezzatollah; Nassiri, Seyed Mahdi; Atyabi, Nahid; Ahmadi, Seyed Hossein; Imani, Mohammad; Farahzadi, Raheleh; Rabbani, Shahram; Akhlaghpour, Shahram; Sahebjam, Mohammad; Taheri, Mohammad

    2013-09-01

    Hydrogels are currently used as interesting constructs for the delivery of proteins. In this study, a novel polyvinyl alcohol-dextran (PVA-Dex) blend hydrogel was used for controlled delivery of basic-fibroblast growth factor (bFGF). These biocompatible constructs were sutured to the epicardium as patches on the heart surface to provide slow release of bFGF to the infarcted site in an ovine model of myocardial infarction (MI). Eighteen sheep were randomly divided into three groups (n = 6 each), including group I (control without any patch and bFGF), group II (patch without bFGF) and group III (patch incorporating 100 µg bFGF). They were subjected to coronary artery ligation after lateral thoracotomy, and then in groups II and III the patches were implanted 20-30 min after MI. Cardiac function was assessed by both echocardiography and magnetic resonance imaging (MRI) 2 months after implantation. Then the animals were sacrificed and the hearts subjected to histopathological examination, immunohistochemistry and electron microscopy. Heart lysates were subject to protein expression analysis through western blotting. The results showed that sustained release of bFGF using PVA-Dex blend hydrogel strongly stimulated angiogenesis and increased wall thickness index in the infarcted myocardium. The patch also significantly attenuated the increase in left ventricular end-systolic diameter, but it did not improve cardiac function within 2 months of myocardial infarction. In conclusion, PVA-Dex gel incorporating bFGF can be used as a sustained release construct for therapeutic angiogenesis in ischaemic heart disease.

  10. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    PubMed

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions.

  11. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  12. Preparation of a Nanoscaled Poly(vinyl alcohol)/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery.

    PubMed

    Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio

    2011-01-01

    Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  13. [Preparation of polyvinyl alcohol film inlaid with silk fibroin peptide nano-scale particles and evaluation of its function to promote cell growth].

    PubMed

    Chen, Zhongmin; Hao, Xuefei; Fan, Kai

    2010-12-01

    Nano-scale particles of silk fibroin peptide (SFP) were prepared from discarded materials of cocoon or filature by dissolving and enzymolysis. Polyvinyl Alcohol films inlaid with silk fibroin peptide nano-scale particles (SFP in PVA) were prepared by blending nano-SFP and PVA in water according to different blending ratios. The films' characteristics and their promoting cell growth functions were investigated. Silk fibroin fiber was dissolved in 60% NaSCN solution, and was decomposed with alpha-Chymotrypsin, Trypsin and Neutral, respectively. The uniformity of size of SFP nano-particles prepared by Neutral was better and appeared about 80-150 nm. (SFP in PVA) films were characterized by infrared spectroscopy (IR) measurement which demonstrated the combination of SFP and PVA. Scanning electron microscopy revealed the PVA films already inlaid with SFP micro-segment. The surface and form stability in water of the (SFP in PVA) films with blending ratios of 10/90, 20/80, 30/70 and 40/60 were observed. And the results showed that SFP/PVA film with the blending ratio of 30/70 has smoother surface and better stability in water. The Chinese hamster ovary (CHO) cells were cultured, and the promoting cell growth function of (SFP in PVA) films was assessed by MTT colorimetric assay. These findings indicate that SFP/PVA (30/70) film has excellent function of promoting cell growth.

  14. Spectroscopic investigation of PVA-TIO2 membranes gamma irradiated

    NASA Astrophysics Data System (ADS)

    Todica, Mihai; Udrescu, Luciana; Damian, Grigore; Astilean, Simion

    2013-07-01

    The modifications of the PVA-TiO2 membranes exposed to gamma radiations were investigated by ESR and XRD methods. The ESR spectra show the appearance of a strong signal associated with the breaking of the polymeric chain and the appearance of the unpaired electrons. The mechanism is influenced by the concentration of TiO2. The modification of local order of the polymeric chains after irradiation is confirmed by XRD method.

  15. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation. PMID:27570286

  16. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  17. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation.

  18. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  19. Demonstration of the Coagulation and Diffusion of Homemade Slime Prepared under Acidic Conditions without Borate

    ERIC Educational Resources Information Center

    Isokawa, Naho; Fueda, Kazuki; Miyagawa, Korin; Kanno, Kenichi

    2015-01-01

    Poly(vinyl alcohol) (PVA) precipitates in many kinds of aqueous salt solutions. While sodium sulfate, a coagulant for PVA fiber, precipitates PVA to yield a white rigid gel, coagulation of PVA with aluminum sulfate, a coagulant for water treatment, yields a slime-like viscoelastic fluid. One type of homemade slime is prepared under basic…

  20. Whole-Pattern Fitting and Positron Annihilation Studies of Magnetic PVA/α-Fe2O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Ningaraju, S.; Ravikumar, H. B.; Somashekar, R.; Nagabhushana, B. M.

    2016-06-01

    A low-temperature solution combustion method was used to synthesize α-Fe2O3 nanoparticles. Magnetic polyvinyl alcohol (PVA)/α-Fe2O3/NaCl nanocomposites were prepared by solvent cast method. The Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) results are in confirmation with X-ray diffraction (XRD) results indicating the formation of nanocomposites. The microcrystalline parameters, crystallite size ( ), lattice strain ( g in %), stacking faults ( α d ), and twin faults ( β) of prepared polymer nanocomposites were evaluated by whole-pattern fitting technique. The refinement was carried out using the computed microstructural parameters in which the twin faults and stacking faults did not vary much and statistical deviation was less than 5 %. Positron annihilation lifetime spectroscopy (PALS) was used for microstructural characterization. PALS results show that the ortho-positronium (o-Ps) lifetime (τ3) increases gradually as a function of nanoparticle concentration and about 219 ps increase observed from1.50 to1.71 ns at 3 wt%. This indicates the increase of free volume hole size ( V f ) from 54.47 to 72.18 Å3. The o-Ps intensities ( I 3) decrease indicating the inhibition of o-Ps formation upon incorporation of nanoparticles into PVA. The increase in I 2 values suggests the increased annihilation at the interface region. Positron lifetime parameters, viz., o-Ps lifetime, and its intensities indicate the effect of quenching and inhibition upon incorporation of metal oxide nanoparticles and inorganic salt into PVA.

  1. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    PubMed

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  2. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  3. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application.

    PubMed

    Bai, Xue; Gu, Haixin; Chen, Wei; Shi, Hanchang; Yang, Bei; Huang, Xin; Zhang, Qi

    2014-07-01

    Poly(vinyl alcohol) (PVA) microspheres were prepared by inverse suspension crosslinked method, with glutaraldehyde as a crosslinking agent. PVA microspheres activated with aldehyde groups were employed for Trametes versicolor laccase immobilization. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the activated PVA microspheres and PVA microspheres with immobilized laccase (Lac/PVA microspheres), which show that laccase was successfully immobilized on the PVA microspheres. The optimum pH and temperature coupling conditions for the immobilized laccase were determined to be 3.3 and 30 °C, respectively. Residual activity was also investigated by soaking the immobilized laccase in organic solvents at different concentrations, proving it chemically stable. Immobilized laccase exhibited good storage stability at 4 °C. The enzyme biosensor showed good performance in 2,2-azinobis(3-ethylthiazoline-6-sulfonate) and bisphenol A, with concentration ranges of 2 to 8 mM and 0.05 to 0.25 mM, respectively. Therefore, PVA microspheres may have high potential as support for enzyme thermistor applications.

  4. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44 ± 14.99 and 958.35 ± 155.27 μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. PMID:26965199

  5. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films.

    PubMed

    Hanafy, Taha A

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ε', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σ(ac), of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La(3+), Gd(3+), and Er(3+) ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into α(a) and α(c). This splitting is due to the segmental motion in the amorphous (α(a)) and crystalline (α(c)) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  6. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Oster, Jürgen; Parker, Jeffrey; à Brassard, Lothar

    2001-01-01

    The versatile application of polyvinyl-alcohol-based magnetic M-PVA beads is demonstrated in the separation of genomic DNA, sequence specific nucleic acid purification, and binding of bacteria for subsequent DNA extraction and detection. It is shown that nucleic acids can be obtained in high yield and purity using M-PVA beads, making sample preparation efficient, fast and highly adaptable for automation processes.

  7. The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials

    NASA Astrophysics Data System (ADS)

    Kamani, K. K.; Madhu, B. J.; Nethravathi, M.; Ashwini, S. T.

    2013-06-01

    In the recent years the greatest attention has been paid to determine the conductivity of different concentration solutions conducting polymers exhibit a wide range of novel electrochemical and chemical properties that has led to their use in a diverse array of applications including sensors PVA is fully degradable and dissolves quickly. PVA biodegradation is believed to be due to a random chain cleavage process. PVA molecular matrix and KC1 solutions were prepared with distilled water as solvent. The saturated solutions electric conductivity, pH values reveals the increase of ionic concentrations with increase of dopant weight fractions. Dielectric properties and UV visible studies of PVA and KC1 polymer complex experimental observations suggest the variations in the ionic nature electrolyte. Material. We are reporting the conducting properties of the PVA and KC1 polymer matrix and electrical nature of the PVA complex structure as electrolyte.

  8. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  9. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  10. Evaluation and modeling of thermal kinetic degradation for PVA doped PbS quantum dot

    SciTech Connect

    Mahmoud, Waleed E.; Al-Heniti, S.H.

    2011-09-15

    Highlights: {yields} Synthesis of PVA doped PbS quantum dots. {yields} Data fitting using integral and differential thermal kinetic models for calculating activation energy. {yields} Prediction of thermal degradation using iso-conversion model. -- Abstract: The kinetic analysis of the thermogravimetric curves for the thermal decomposition processes of PVA/PbS was performed. The samples were heated in nitrogen, with three different heating rates: 10, 20 and 30 {sup o}C min{sup -1}. Various forms of non-isothermal methods of analysis for determining the kinetic parameters were used. The differential and integral models were used to calculate the activation energies. Comparing with pure PVA, the results showed that the maximum activation energy of thermal degradation is achieved for PVA/PbS nanocomposite. Isoconversion model is used for predicting the thermal degradation acceleration. The results showed that the acceleration of thermal degradation for pure PVA was faster than PVA/PbS nanocomposite.

  11. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  12. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  13. Heat resistance poly(vinyl alcohol) hydrogel

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Makuuchi, K.; Darwis, D.; Iriawan, T.; Razzak, M. T.; Rosiak, Janusz M.

    1995-08-01

    Six methods were used to evaluate the heat resistance of poly(vinyl alcohol) (PVA) hydrogel prepared by a combination of electron beam irradiation and acetalization of PVA. The physical properties of the hydrogel depended on the degree of acetilization which was affected by content of water in PVA sheet of acetalization in formaldehyde solution at 60°C. It was found that the optimum water content was 20-30%. The acetalized PVA sheet gave maximum tensile strength in electron beams irradiation at 100 kGy. The tensile strength of the hydrogel film increased to 20 MPa from 14 MPa by the irradiation. Heat resistance of the hydrogel was evaluated by measuring the mechanical properties after sterilization in a steam autoclave at 121°C for 90 min. The tensile strength decreased to 10 MPa whereas the elongation at break increased to 300%. The tackiness of the hydrogel was improved by radiation grafting of acrylic acid. Wholesomeness of the hydrogel as a wound dressing was evaluated by attaching to a burn or wound of the back skin of marmots. Advantages of the hydrogel over a gauze dressing were homogeneous adhesion to the affected parts, easy removal without damage to renewed skin and slightly faster rate of reconstruction of the injured skin.

  14. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.

    PubMed

    Xu, Xu; Yang, Yi-Qin; Xing, Ying-Ying; Yang, Jiu-Fang; Wang, Shi-Fa

    2013-11-01

    Novel polyvinyl alcohol (PVA) blend membranes containing cellulose nanocrystals (CNs) and silver nanoparticles (AgNPs) were prepared via a simple method. CNs were prepared by sulfuric acid treatment of microcrystalline cellulose. AgNO3 aqueous solution mixed with the CNs aqueous suspension and was reduced by NaBH4 at room temperature. Purified CNs/AgNPs nanocomposites as functional fillers mixed with polyvinyl alcohol to prepare blend membrane. The morphology, mechanical properties, and antibacterial activities of PVA/CNs/AgNPs composite films were investigated. The PVA/CNs/AgNPs composite films were stable and homogeneous. The tensile strength of PVA was increased from 57.02 MPa to 81.21 MPa when filled with CNs/AgNPs. Antibacterial ratio of PVA/CNs/AgNPs composite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was 96.9% and 88.2%, respectively. The CNs/AgNPs nanocomposites could be applied as bi-functional nanofillers within PVA to improve the mechanical properties and antibacterial activities. PMID:24053842

  15. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.

    PubMed

    Xu, Xu; Yang, Yi-Qin; Xing, Ying-Ying; Yang, Jiu-Fang; Wang, Shi-Fa

    2013-11-01

    Novel polyvinyl alcohol (PVA) blend membranes containing cellulose nanocrystals (CNs) and silver nanoparticles (AgNPs) were prepared via a simple method. CNs were prepared by sulfuric acid treatment of microcrystalline cellulose. AgNO3 aqueous solution mixed with the CNs aqueous suspension and was reduced by NaBH4 at room temperature. Purified CNs/AgNPs nanocomposites as functional fillers mixed with polyvinyl alcohol to prepare blend membrane. The morphology, mechanical properties, and antibacterial activities of PVA/CNs/AgNPs composite films were investigated. The PVA/CNs/AgNPs composite films were stable and homogeneous. The tensile strength of PVA was increased from 57.02 MPa to 81.21 MPa when filled with CNs/AgNPs. Antibacterial ratio of PVA/CNs/AgNPs composite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was 96.9% and 88.2%, respectively. The CNs/AgNPs nanocomposites could be applied as bi-functional nanofillers within PVA to improve the mechanical properties and antibacterial activities.

  16. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes

    PubMed Central

    Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.

    2015-01-01

    Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197

  17. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications.

  18. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  19. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    NASA Astrophysics Data System (ADS)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  20. Synthesis of coprecipitated strontium hexaferrite nanoparticles in the presence of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Hashemi, B.; Yousefi, M. H.

    2011-12-01

    Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.

  1. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications. PMID:26478388

  2. Soft X-ray induced modifications of PVA-based microbubbles in aqueous environment: a microspectroscopy study.

    PubMed

    Tzvetkov, George; Fernandes, Paulo; Wenzel, Stephan; Fery, Andreas; Paradossi, Gaio; Fink, Rainer H

    2009-02-21

    We use scanning-transmission X-ray microspectroscopy (STXM) for in situ characterization of the physicochemical changes in air-filled poly(vinyl alcohol) (PVA) based microbubbles upon soft X-ray irradiation. The microbubbles were illuminated directly in aqueous suspension with 520 eV X-rays and a continuous shrinkage of the particles with an illumination time/radiation dose was observed. Utilizing the intrinsic absorption properties of the species and the high spatial resolution of the STXM, the modifications of the particles' structure were simultaneously recognized. A thorough characterization of the microbubble volume, membrane thickness and absorption coefficient was performed by quantitative fitting of the radial transmittance profiles of the targeted microbubbles. Apart from the observed volume contraction, there was no significant change in the shell thickness. The chemical changes in the membranes were clarified via C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was revealed that the observed structural alterations go along with a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds.

  3. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (PVA's chemical stability, photolithography can be performed directly on the polymer electrolyte, which allows for the deposition of a patterned, metal gate directly on the electrolyte, as well as the ability to pattern the electrolyte itself. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  4. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    PubMed

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads.

  5. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites.

    PubMed

    Li, Yunxi; Wang, Chunhui; Li, Hailong; Wang, Xiaoyi; Han, Junhe; Huang, Mingju

    2015-11-20

    Al2O3 nanoparticles modified with different chemical reagents, prepared by using three chemical dispersants [high definition (HD), sodium dodecyl benzene sulfonate, and cetyl trimethyl ammonium chloride], were doped into photopolymer films in a polyvinyl alcohol/acrylamide (PVA/AA) system, respectively. A 647 nm Ar-Kr laser was used to expose and study the holographic properties of the samples. The research shows that doping Al2O3 nanoparticles into PVA/AA photopolymer film leads to different levels of improvement of the holographic characteristics. The diffraction efficiency of the sample can be raised to 93.8%, the maximum refractive index modulation increased to 2.28×10(-3), the shrinkage can be depressed to 0.8%, and the Bragg mismatch is 0.04°, while the concentration of 10 nm Al2O3 nanoparticles modified by HD dispersant is 1.02×10(-3)  mol·L(-1). PMID:26836540

  6. Studies on photo- and thermal stability of PVA-encapsulated Mn-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Venkataramana, Savadana; Ramanaiah, K.; Sarcar, M. M. M.

    2016-04-01

    In this study, an aqueous-based synthesis route has been developed to prepare highly luminescent polyvinyl alcohol (PVA)-capped manganese-doped ZnS quantum dots (QDs). The QDs showed markedly blue shift in their optical absorbance, indicating strong quantum size effect and the average diameter of the QDs calculated ~3 nm. The QDs showed high-intensity Mn2+-related orange luminescence at 585 nm with a very low-intensity peak at 430 nm for the surface defect states. X-ray powder diffraction, transmission electron microscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the doped QDs. Studies on the thermal and photochemical stability of the photoluminescence properties are carried out, which showed that after 5 h of photoexcitation and 30 min of 70 °C treatments, the nanoparticles retain almost 40 % of their initial quantum yield. Our systematic investigation shows that these PVA-capped Mn:ZnS QDs may be used as fluorescent labels in biological applications.

  7. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  8. Performance enhancement of poly(3-hexylthiophene-2,5-diyl) based field effect transistors through surfactant treatment of the poly(vinyl alcohol) gate insulator surface.

    PubMed

    Nawaz, Ali; Cruz-Cruz, Isidro; Rodrigues, Rafael; Hümmelgen, Ivo A

    2015-10-28

    We report on the improvement of field effect transistors based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as a channel semiconductor and crosslinked poly(vinyl alcohol) (cr-PVA) as a gate insulator, through the treatment of the cr-PVA film surface before P3HT deposition. We treated the cr-PVA either with hydrochloric acid (HCl) or with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), aiming at the passivation of the hole traps at the cr-PVA/P3HT interface. The treatment with HCl leads to an excessive increase in the transistor leakage current and unstable electrical characteristics, despite implying an increase in the gate capacitance. The treatment with CTAB leads to transistors with ca. 50% higher specific capacitance and a tenfold increase in the charge carrier field-effect mobility, when compared to devices based on untreated cr-PVA.

  9. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Mukherji, Soumyo; Mukherji, Suparna

    2012-09-01

    Hydrogels are water-insoluble crosslinked hydrophilic networks capable of retaining a large amount of water. The present work aimed to develop a novel chitosan-PVA-based hydrogel which could behave both as a nanoreactor and an immobilizing matrix for silver nanoparticles (AgNPs) with promising antibacterial applications. The hydrogel containing AgNPs were prepared by repeated freeze-thaw treatment using varying amounts of the crosslinker, followed by in situ reduction with sodium borohydride as a reducing agent. Characterization studies established that the hydrogel provides a controlled and uniform distribution of nanoparticles within the polymeric network without addition of any further stabilizer. The average particle size was found to be 13 nm with size distribution from 8 to 21 nm as per HR-TEM studies. Swelling studies confirmed that higher amount of crosslinker and silver incorporation inside the gel matrices significantly enhanced the porosity and chain entanglement of the polymeric species of the hydrogel, respectively. The AgNP-hydrogel exhibited good antibacterial activity and was found to cause significant reduction in microbial growth ( Escherichia coli) in 12 h while such activity was not observed for the hydrogel without AgNPs.

  10. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions. PMID:19836882

  11. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  12. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Idris, Ani; Irfan, Muhammad; Kurniawan, Denni; Yusof, Noordin Mohd; Nasiri, Rozita

    2015-09-01

    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.

  13. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient.

  14. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient. PMID:25965457

  15. Gel electrophoresis in a polyvinylalcohol coated fused silica capillary for purity assessment of modified and secondary-structured oligo- and polyribonucleotides

    PubMed Central

    Barciszewska, Martyna; Sucha, Agnieszka; Bałabańska, Sandra; Chmielewski, Marcin K.

    2016-01-01

    Application of a polyvinylalcohol-coated (PVA-coated) capillary in capillary gel electrophoresis (CGE) enables the selective separation of oligoribonucleotides and their modifications at high resolution. Quality assessment of shorter oligomers of small interfering RNA (siRNA) is of key importance for ribonucleic acid (RNA) technology which is increasingly being applied in medical applications. CGE is a technique of choice for calculation of chemically synthesized RNAs and their modifications which are frequently obtained as a mixture including shorter oligoribonucleotides. The use of CGE with a PVA-coated capillary to analyze siRNA mixtures presents an alternative to conventionally employed techniques. Here, we present study on identification of the length and purity of RNA mixture ingredients by using PVA-coated capillaries. Also, we demonstrate the use of PVA-coated capillaries to identify and separate phosphorylated siRNAs and secondary structures (e.g. siRNA duplexes). PMID:26777121

  16. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    PubMed Central

    Sheha, Eslam M.; Nasr, Mona M.; El-Mansy, Mabrouk K.

    2014-01-01

    A solid polymer electrolyte system based on poly(vinyl alcohol) (PVA) and poly(3,4-Etylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) complexed with magnesium bromide (MgBr2) salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2) at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties. PMID:26199746

  17. The influence of γ-rays irradiation on the structure and crystallinity of heteropoly acid doped PVA

    NASA Astrophysics Data System (ADS)

    Mahmoud, Waleed E.; Al-Ghamdi, A. A.; Kadi, Mohammad W.

    2012-06-01

    This contribution represents the manufacturing of a hybrid organic-inorganic proton conducting compound, which involves the introduction of heteropoly acid (HPA) of different concentrations into poly-vinyl alcohol (PVA). These compounds were irradiated by γ-rays at different doses of 10, 20, 30, and 40 kGy. The unirradiated and irradiated compounds were characterized by XRD and DSC. The XRD results showed that the crystallinity and d-spacing were strongly influenced by the amount of HPA and irradiation doses. The DSC results showed that the melting point was decreased as a result of HPA concentration and irradiation doses. The degree of crystallinity calculated from XRD is in good agreement with that calculated from DSC. The activation energy of the Unirradiated and irradiated compounds was calculated using the Flynn-Wall-Ozawa model.

  18. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  19. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  20. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  1. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  2. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  3. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    SciTech Connect

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Mali, S.S.; Hong, C.K.; Pawar, S.H.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamic light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.

  4. A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit[7]uril, gelatin and polyvinyl alcohol.

    PubMed

    Oun, Rabbab; Plumb, Jane A; Wheate, Nial J

    2014-05-01

    The anticancer drug cisplatin was encapsulated within the cucurbit[7]uril macrocycle to form the host-guest complex: cisplatin@CB[7]. This was then incorporated into gelatin and 0-4% w/v polyvinyl alcohol (PVA)-based hydrogels as slow release drug delivery vehicles. The hydrogels demonstrated predicable swelling and disintegration dependent on the PVA concentration. The hydrogel with the highest PVA content was slower to swell and release drug compared with lower concentrations of PVA. The effect of the hydrogel PVA concentration on in vitro cytotoxicity was examined using A2780/CP70 ovarian cancer cells. Over the 24h drug exposure time used, hydrogels containing 4% PVA showed a 20% decrease in viable cells compared to the control, whereas hydrogels containing 0% and 2% PVA induced an 80% and 45% inhibition of cell growth, respectively. There was no measurable difference in the in vitro cytotoxicity of free cisplatin and cisplatin@CB[7] containing hydrogels. Finally, the in vivo effectiveness of a 2%-PVA hydrogel implanted under the skin of nude mice bearing A2780/CP70 xenografts showed that low dose hydrogels containing cisplatin@CB[7] (30 μg equivalent of drug) was just as effective as an intraperitoneal high dose administration of free cisplatin (150 μg) at inhibiting tumour growth.

  5. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  6. Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Pandiyarajan, T.; Mangalaraja, R. V.

    2016-01-01

    ZnO:PVA nanocomposite films were prepared and their fluorescence and time resolved photoluminescence properties were discussed. X-ray diffraction and infrared spectroscopy results confirmed the ZnO:PVA interaction. Optical absorption spectra showed two bands at 280 and 367 nm which were ascribed to PVA and excitonic absorption band, respectively. Fluorescence spectra showed that the blue emission of ZnO was enhanced about tenfold through chemical interface electron transfer. The electron transfer from ZnO to PVA and its decay dynamics were experimentally analyzed through time resolved fluorescence measurements. The study revealed that the excited electrons found pathway through PVA to ground state which was slower than the pure ZnO nanoparticles.

  7. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  8. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Nagy, L.; Kukovecz, Á.; Kónya, Z.

    2014-07-01

    Multiwalled carbon nanotubes were synthesized by chemical vapor deposition over an Fe-Co/alumina catalyst. Nanotubes were then oxidized and grafted with polyvinyl alcohol (PVA). The obtained nanostructure was characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM, TEM and TGA methods. FTIR confirmed the presence of the characteristic peaks of the anticipated ester group. The formation of polymer nanocomposites based on polyvinyl alcohol and multiwalled carbon nanotubes was confirmed by SEM and TEM. High resolution electron micrographs revealed that the primary binding sites for PVA grafting are the sidewall defects of the nanotubes. The novelty of this work is the use of the Fischer esterification reaction for creating the permanent link between the nanotubes and the PVA matrix.

  9. Imaging and thermal studies of wheat gluten/poly(vinyl alcohol) and wheat gluten/thiolated poly(vinyl alcohol) blends.

    PubMed

    Dong, Jing; Dicharry, Rebecca; Waxman, Eleanor; Parnas, Richard S; Asandei, Alexandru D

    2008-02-01

    The morphology of wheat protein (WG) blends with polyvinyl alcohol (PVA) and respectively with thiolated polyvinyl alcohol (TPVA) was investigated by atomic force (AFM) and transmission electron microscopy (TEM) as well as by modulated dynamic scanning calorimetry (MDSC). Thiolated additives based on PVA and other substrates were previously presented as effective means of improving the strength and toughness of compression molded native WG bars via disulfide-sulfhydryl exchange reactions. Consistent with our earlier results, AFM and TEM imaging clearly indicate that the addition of just a few mole percent of thiol to PVA was sufficient to dramatically change its compatibility with wheat protein. Thus, TPVA is much more compatible with WG and phase separates into much smaller domains than in the case of PVA, although there are still two phases in the blend: one WG-rich phase and another TPVA-rich phase. The WG/TPVA blend has phase domains ranging in size from 0.01 to 0.1 microm, which are roughly 10 times smaller than those of the WG/PVA blend. MDSC further illustrates the compatibilization of the protein with TPVA via the dependence of the transition temperatures on composition.

  10. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  11. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement.

    PubMed

    Katta, Jayanth K; Marcolongo, Michele; Lowman, Anthony; Mansmann, Kevin A

    2007-11-01

    Many hydrogels have been proposed as articular cartilage replacements as an alternative to partial or total joint replacements. In the current study, poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) hydrogels were investigated as potential cartilage replacements by investigating their in vitro wear and friction characteristics in a pin-on-disk setup. A three-factor variable-level experiment was designed to study the wear and friction characteristics of PVA/PVP hydrogels. The three different factors studied were (a) polymer content of PVA/PVP hydrogels, (b) load, and (c) effect of lubricant. Twelve tests were conducted, with each lasting 100,000 cycles against Co-Cr pins. The average coefficient of friction for synovial fluid lubrication was a low 0.035 compared with 0.1 for bovine serum lubrication. Frictional behavior of PVA/PVP hydrogels did not follow Amonton's law of friction. Wear of the hydrogels was quantified by measuring their dry masses before and after the tests. Higher polymer content significantly reduced the wear of hydrogel samples with 15% PVA/PVP samples, showing an average dry polymer loss of 4.74% compared with 6.05% for 10% PVA/PVP samples. A trend change was observed in both the friction and wear characteristics of PVA/PVP hydrogels at 125 N load, suggesting a transition in the lubricating mechanism at the pin-hydrogel interface at the critical 125 N load.

  12. Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO(3) nano-perovskites hybrid films.

    PubMed

    Marino, Salvatore; Joshi, Girish M; Lusuardi, Angelo; Cuberes, M Teresa

    2014-07-01

    Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) have been applied to the characterization of composite samples formed by SrTiO3 (STO) nanoparticles (NPs) and polyvinyl alcohol (PVA). The morphological features of the STO NPs were much better resolved using UFM than contact-mode AFM topography. For high STO concentrations the individual STO NPs formed nanoclusters, which gathered in microaggregates. The STO aggregates, covered by PVA, exhibited no AFM frictional contrast, but were clearly distinguished from the PVA matrix using UFM. Similar aggregation was observed for NPs in the composite samples and for NPs deposited on top of a flat silicon substrate from milliQ water solution in the absence of polymer. In the hybrid films, most STO nanoparticles typically presented a lower UFM contrast than the PVA matrix, even though stiffer sample regions such as STO should give rise to a higher UFM contrast. STO NPs with intermediate contrast were characterized by an UFM halo of lower contrast at the PVA/STO interface. The results may be explained by considering that ultrasound is effectively damped on the nanometer scale at PVA/STO interfaces. According to our data, the nanoscale ultrasonic response at the PVA/STO interface plays a fundamental role in the UFM image contrast.

  13. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes

    NASA Astrophysics Data System (ADS)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2016-02-01

    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  14. Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing.

    PubMed

    Schanuel, Fernanda Seabra; Raggio Santos, Karen Slis; Monte-Alto-Costa, Andréa; de Oliveira, Marcelo G

    2015-06-01

    Nitric oxide (NO) releasing biomaterials represent a potential strategy for use as active wound dressings capable of accelerating wound healing. Topical NO-releasing poly(vinyl alcohol) (PVA) films and Pluronic F127 hydrogels (F127) have already exhibited effective skin vasodilation and wound healing actions. In this study, we functionalized PVA films with SNO groups via esterification with a mixture of mercaptosucinic acid (MSA) and thiolactic acid (TLA) followed by S-nitrosation of the SH moieties. These films were combined with an underlying layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-PPO-PEO (Pluronic F127) hydrogel and used for the topical treatment of skin lesions in an animal model. The mixed esterification of PVA with MSA and TLA led to chemically crosslinked PVA-SNO films with a high swelling capacity capable of spontaneously releasing NO. Real time NO-release measurements revealed that the hydrogel layer reduces the initial NO burst from the PVA-SNO films. We demonstrate that the combination of PVA-SNO films with F127 hydrogel accelerates wound contraction, decreases wound gap and cellular density and accelerates the inflammatory phase of the lesion. These results were reflected in an increase in myofibroblastic differentiation and collagen type III expression in the cicatricial tissue. Therefore, PVA-SNO films combined with F127 hydrogel may represent a new approach for active wound dressings capable of accelerating wound healing. PMID:25907598

  15. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.

    PubMed

    Hu, Huawen; Xin, John H; Hu, Hong; Chan, Allan; He, Liang

    2013-01-01

    In this study, a commercial chitosan cross-linked with glutaraldehyde (GA-chitosan) having the autofluorescent property was effectively blended with a poly (vinyl alcohol) (PVA) matrix, in the formation of a transparent and fluorescent blend film. The fluorescent efficiency of the film was enhanced with red-shifted emission band by increasing the concentrations of the GA-chitosan and decreasing the PVA crystallinity. It was found that the incorporation of silica nanoparticles could further decrease the PVA crystallinity, enhance the fluorescent efficiency, and largely redshift the emission band, as compared with the neat GA-chitosan-PVA blend film. This fluorescent property could be finely tuned by careful doping of the silica nanoparticles and change of the PVA crystallinity. These phenomena could be reasonably explained by high extent of isolation of the fluorophores, increase of the stiffness of the fluorescent conjugated planar structure, and further decrease of the PVA crystallinity. In addition, the introduction of the nano-silica could improve the water and heat resistances of the GA-chitosan-PVA based silica nanocomposites. PMID:23044137

  16. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production. PMID:24355619

  17. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro.

    PubMed

    Xu, Fenglan; Li, Yubao; Deng, Yingpin; Xiong, Jie

    2008-01-01

    A nano-hydroxyapatite/poly(vinyl alcohol) (n-HA/PVA) composite hydrogel was employed as artificial cornea fringe to improve biocompatibility for the firm fixation between material and surrounding host tissues. The morphology and swelling behavior, as well as mechanical strength of the fringes were characterized. The results showed that the n-HA/PVA fringes had interconnective porous structure, high water content and good mechanical properties. With the aid of cell culture observed by inverted microscopy, scanning electron microscopy (SEM) and MTT test, it was concluded that PVA hydrogel modified with n-HA can improve biocompatibility and has no negative effects on the corneal fibroblasts in vitro. These findings indicate that the porous n-HA/PVA fringe can allow invasion and proliferation of cells, and can function as a fringe for artificial cornea.

  18. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production.

  19. Hydrogen Bonding Based Layer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Mensire, Remy; Cohen, Robert; Rubner, Michael

    2012-02-01

    Multilayer thin films that consist of poly(vinyl alcohol) (PVA) and weak polyacids such as poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were prepared by hydrogen bonding interactions. Both the degree of hydrolysis and molecular weight of PVA were investigated in terms of their influence on growth behavior and pH stability. Multilayer films containing PVA and PAA could be assembled successfully only by using partially hydrolyzed PVA and low pH solutions. By comparing films containing PAA with those containing a more strongly interacting partner, PMAA, it was shown that the extent of PVA hydrolysis becomes significant only when weak hydrogen bonding pairs such as PVA and PAA were used. pH-triggered dissolution experiments demonstrated that the degree of hydrolysis can be used as an additional parameter by which to tune the pH stability of the film. Also, the presence of an abundance of free hydroxyl and carboxylic acid groups in the multilayer allowed enhanced pH stability to be obtained by thermal and chemical methods as well as numerous opportunities for post-assembly functionalization.

  20. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  1. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design.

  2. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    PubMed

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  3. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study

    PubMed Central

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag+ was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130–192 nm. The diameters of the AgNPs were in the range of 15–22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing. PMID:24204142

  4. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study.

    PubMed

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag(+) was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130-192 nm. The diameters of the AgNPs were in the range of 15-22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing.

  5. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-09-01

    There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load.

  6. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite.

  7. Poly(vinyl alcohol)/silica nanocomposites: morphology and thermal degradation kinetics.

    PubMed

    Peng, Zheng; Kong, Ling Xue; Li, Si-Dong; Spiridonov, Pavel

    2006-12-01

    The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 < or =5 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host. PMID:17256356

  8. Significant enhancement of the superconducting properties of MgB2 by polyvinyl alcohol additives

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Lu, L.; Dou, S. X.

    2008-08-01

    We report a systematic study of the effects of polymer addition on the lattice parameters, microstructure and superconducting properties of MgB2. Polyvinyl alcohol [-C2H4O-]n (PVA) as a typical polymer was used as an additive to MgB2. It was found that PVA additions have the following features: (1) the polymer can have a very low oxygen (O) content or even none at all, and PVA has a low O content (C:O = 2:1), which reduces the impurities brought into MgB2 from the doping, and (2) PVA decomposes at a temperature of 400-650 °C, which means that the reaction occurs in the same temperature range as MgB2 formation, providing highly reactive C, which homogeneously substitutes for B at this low-temperature range. The above considerations significantly enhance the critical current, Jc, the irreversibility field, Hirr, and the upper critical field, Hc2, of MgB2 compared to un-doped samples or those doped with other carbon sources. In this work, suitable PVA doping levels improved both the connectivity and flux pinning, so that the Jc of PVA-doped MgB2 was improved over the whole field range.

  9. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  10. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  11. Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels.

    PubMed

    Mohamed, Riham R; Abu Elella, Mahmoud H; Sabaa, Magdy W

    2015-09-01

    Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios – 1.0 and 5.0% – have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.

  12. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  13. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering. PMID:24259496

  14. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  15. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase and lignocellulosic fibres, derived from sugarcane bagasse, apple and orange waste were moulded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a bio...

  16. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  17. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  18. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  19. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lee, Ying-Jeng; Yang, Jen Ming

    A novel composite polymer electrolyte membrane composed of a PVA polymer host and montmorillonite (MMT) ceramic fillers (2-20 wt.%), was prepared by a solution casting method. The characteristic properties of the PVA/MMT composite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and micro-Raman spectroscopy, and the AC impedance method. The PVA/MMT composite polymer membrane showed good thermal and mechanical properties and high ionic conductivity. The highest ionic conductivity of the PVA/10 wt.%MMT composite polymer membrane was 0.0368 S cm -1 at 30 °C. The methanol permeability (P) values were 3-4 × 10 -6 cm 2 s -1, which was lower than that of Nafion 117 membrane of 5.8 × 10 -6 cm 2 s -1. It was revealed that the addition of MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT composite membranes; which can be accomplished by a simple blend method. The maximum peak power density of the DMFC with the PtRu anode based on Ti-mesh in a 2 M H 2SO 4 + 2 M CH 3OH solution was 6.77 mW cm -2 at ambient pressure and temperature. As a result, the PVA/MMT composite polymer appears to be a good candidate for the DMFC applications.

  20. Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hak; Song, Hyeong Yong; Hyun, Kyu

    2016-05-01

    In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I 3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity ( I 3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [ Q 0( ϕ)/ Q 0(0)]/[ G*( ϕ)/ G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.

  1. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  2. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis.

    PubMed

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis.

  3. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  4. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery.

  5. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.

    PubMed

    Yang, Ming; Lai, Samuel K; Yu, Tao; Wang, Ying-Ying; Happe, Christina; Zhong, Weixi; Zhang, Michael; Anonuevo, Abraham; Fridley, Colleen; Hung, Amy; Fu, Jie; Hanes, Justin

    2014-10-28

    Therapeutic nanoparticles must rapidly penetrate the mucus secretions lining the surfaces of the respiratory, gastrointestinal and cervicovaginal tracts to efficiently reach the underlying tissues. Whereas most polymeric nanoparticles are highly mucoadhesive, we previously discovered that a dense layer of low MW polyethylene glycol (PEG) conferred a sufficiently hydrophilic and uncharged surface to effectively minimize mucin-nanoparticle adhesive interactions, allowing well-coated particles to rapidly diffuse through human mucus. Here, we sought to investigate the influence of surface coating by polyvinyl alcohol (PVA), a relatively hydrophilic and uncharged polymer routinely used as a surfactant to formulate drug carriers, on the transport of nanoparticles in fresh human cervicovaginal mucus. We found that PVA-coated polystyrene (PS) particles were immobilized, with speeds at least 4000-fold lower in mucus than in water, regardless of the PVA molecular weight or incubation concentration tested. Nanoparticles composed of poly(lactide-co-glycolide) (PLGA) or diblock copolymers of PEG-PLGA were similarly immobilized when coated with PVA (slowed 29,000- and 2500-fold, respectively). PVA coatings could not be adequately removed upon washing, and the residual PVA prevented sufficient coating with Pluronic F127 capable of reducing particle mucoadhesion. In contrast to PVA-coated particles, the similar sized PEG-coated formulations were slowed only ~6- to 10-fold in mucus compared to in water. Our results suggest that incorporating PVA in the particle formulation process may lead to the formation of mucoadhesive particles for many nanoparticulate systems. Thus, alternative methods for particle formulation, based on novel surfactants or changes in the formulation process, should be identified and developed in order to produce mucus-penetrating particles for mucosal applications.

  6. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    PubMed Central

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  7. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability.

  8. Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Liu, Genqi; Zhang, Cheng; Liao, Jiae

    2013-01-01

    A strong electrolyte hydrogel was prepared by modifying poly (vinyl alcohol) hydrogel with sulfoacetic acid (SA-PVA). Its swelling properties, mechanical properties, and electroresponsive behavior in Na2SO4 solutions were studied. The results indicated that the water take-up ability of the hydrogel decreased with the increasing ionic strength of Na2SO4 solution. The Young’s modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water are 1.247 MPa, 187% and 2.2 MPa, respectively. The hydrogel swollen in a Na2SO4 solution bent towards the cathode under non-contact dc electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. There is a critical ionic strength of 0.03 at which the maximum equilibrium strain of the hydrogel occurs. Also the bending behavior of hydrogel was not affected by the pH changes. By altering the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. On this basis, a gel-worm was designed. Under a cyclically varying electric field (the period was 8 s, and the voltage ranged from -10 to 10 V), the walking speed was up to 15 cm min-1 in Na2SO4 solution with an ionic strength of 0.03.

  9. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-10-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30-130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5-52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30-90%, as

  10. DBS investigation on films of cobalt chloride doped PVA-PVP blend

    NASA Astrophysics Data System (ADS)

    Hammannavar, Preeti B.; Baraker, Basavarajeshwari M.; Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise

    2015-06-01

    Films of Cobalt Chloride (CoCl2) doped polyvinylalcohol(PVA)- polyvinylpyrrolidone(PVP) blend (doped from 0.5 wt% up to 28 wt%) were prepared by solution casting, and characterized by XRD, DSC, UV-Visible Spectrometry TGA, FTIR and electrical measurements. In this paper, the results of Doppler Broadening Spectroscopy (DBS) in CoCl2 doped PVA-PVP blend is discussed. An increase in crystallinity of PVA-PVP blend, is observed, on doping it with CoCl2. The DBS results are complemented by XRD and DSC scans.

  11. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications. PMID:26105548

  12. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  13. Electrical conductivity of polyvinyl alcohol-multiwall carbon nanotubes composites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2013-06-01

    The dc and ac conductivity of polyvinyl alcohol (PVA)-multiwalled carbon nanotube (MWNT) nanocomposites prepared by solution casting were investigated by employing dielectric relaxation spectroscopy in broad frequency range (0.1 Hz-10 MHz) at room temperature as a function of the conductive weight fraction (p) ranging from 0 to 2wt.%. The frequency dependence of the measured conductivity obeys the universal dynamic response (UDR); a dc plateau followed, by the power law above a critical frequency (fc).

  14. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions.

  15. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions. PMID:27311109

  16. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mahanta, Narahari; Valiyaveettil, Suresh

    2011-11-01

    Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of the surface functionalities, the fibers showed unique ability to adsorb nanoparticles. The extraction studies revealed that the amine and thiol modified PVA NFs showed 90% extraction efficiency for both silver and gold nanoparticles. The thiol and amine functionalized PVA NFs showed maximum adsorption capacities (Qt) towards Au NPs, which were around 79-84 mg g-1. Similarly for Ag NP extraction, amine functionalized PVA NFs showed a value for Qt at 56 mg g-1. Our results highlight that functionalized nanofibers have high extraction efficiency for dissolved nanoparticles in water and can be used for removal of the nanocontaminants from the aqueous environment.Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of

  17. Low biosorption of PVA coated engineered magnetic nanoparticles in granular sludge assessed by magnetic susceptibility.

    PubMed

    Herrling, Maria P; Fetsch, Katharina L; Delay, Markus; Blauert, Florian; Wagner, Michael; Franzreb, Matthias; Horn, Harald; Lackner, Susanne

    2015-12-15

    When engineered nanoparticles (ENP) enter into wastewater treatment plants (WWTP) their removal from the water phase is driven by the interactions with the biomass in the biological treatment step. While studies focus on the interactions with activated flocculent sludge, investigations on the detailed distribution of ENP in other types of biomass, such as granulated sludge, are needed to assess their potential environmental pollution. This study employed engineered magnetic nanoparticles (EMNP) coated with polyvinyl alcohol (PVA) as model nanoparticles to trace their fate in granular sludge from WWT. For the first time, magnetic susceptibility was used as a simple approach for the in-situ quantification of EMNP with a high precision (error <2%). Compared to other analytical methods, the magnetic susceptibility requires no sample preparation and enabled direct quantification of EMNP in both the aqueous phase and the granular sludge. In batch experiments granular sludge was exposed to EMNP suspensions for 18 h. The results revealed that the removal of EMNP from the water phase (5-35%) and biosorption in the granular sludge were rather low. Less than 2.4% of the initially added EMNP were associated with the biomass. Loosely bounded to the granular sludge, desorption of EMNP occurred. Consequently, the removal of EMNP was mainly driven by physical co-sedimentation with the biomass instead of sorption processes. A mass balance elucidated that the majority of EMNP were stabilized by particulate organic matter in the water phase and can therefore likely be transported further. The magnetic susceptibility enabled tracing EMNP in complex matrices and thus improves the understanding of the general distribution of ENP in technical as well as environmental systems. PMID:26282738

  18. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I.

    PubMed

    Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L

    2013-09-12

    PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption.

  19. Myths about drinking alcohol

    MedlinePlus

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  20. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    NASA Astrophysics Data System (ADS)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  1. Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents.

    PubMed

    Uzal, Niğmet; Jaworska, Agnieszka; Miśkiewicz, Agnieszka; Zakrzewska-Trznadel, Grażyna; Cojocaru, Corneliu

    2011-10-15

    The paper presents the results of the studies of UF-complexation process applied for the removal of Co(2+) ions from water solutions. As binding agents for cobalt ions, the PVA polymer (M(w)=10,000) and its sulfonated form, synthesized in the laboratory, have been used. The method of experimental design and response surface methodology have been employed to find out the optimal conditions for the complexation process and to evaluate the interaction between the input variables, i.e., initial cobalt concentration, pH and amount of the polymer used, expressed as a polymer/Co(2+) ratio r. The data collected by the designed experiments showed that sulfonation of polymer has improved significantly the binding ability of PVA. The optimal conditions of cobalt ions complexation established by response surface model for non-sulfonated PVA polymer have been found to be as follows: the initial concentration of Co(2+)=5.70 mg L(-1), the ratio between polymer and metal ions, r=8.58 and pH=5.93. The removal efficiency of Co(2+) in these conditions was 31.81%. For sulfonated PVA polymer, the optimal conditions determined are as follows: initial concentration of [Co(2+)](0)=10 mg L(-1), r=1.2 and pH=6.5. For these conditions, a removal efficiency of 99.98% has been determined. The experiments showed that Co(2+) removal ability of sulfonated PVA was much higher than its non-sulfonated precursor. Although the polymer concentrations used in the tests with sulfonated PVA were approximately ten times lower than the non-sulfonated one, the removal efficiency of cobalt ions was significantly higher.

  2. Antifouling properties of tough gels against barnacles in a long-term marine environment experiment.

    PubMed

    Murosaki, T; Noguchi, T; Hashimoto, K; Kakugo, A; Kurokawa, T; Saito, J; Chen, Y M; Furukawa, H; Gong, J P

    2009-10-01

    In the marine environment, the antifouling (AF) properties of various kinds of hydrogels against sessile marine organisms (algae, sea squirts, barnacles) were tested in a long-term experiment. The results demonstrate that most hydrogels can endure at least 2 months in the marine environment. In particular, mechanically tough PAMPS/PAAm DN and PVA gels exhibited AF activity against marine sessile organisms, especially barnacles, for as long as 330 days. The AF ability of hydrogels toward barnacles is explained in terms of an 'easy-release' mechanism in which the high water content and the elastic modulus of the gel are two important parameters.

  3. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  4. Poly(vinyl alcohol)/Liquid Crystal Composite Films with Low Driving Voltage

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1994-12-01

    A poly(vinyl alcohol) (PVA)/liquid crystal (LC) composite film with a low driving voltage of 6 Vrms, a low hysteresis of less than 0.2 Vrms, and a fast response time of 11 ms at the operating voltage of 6 Vrms was formed from the emulsion composed of a mixture of water with methanol (WM-mixture), PVA, LC, and a photocrosslinkable mixture of nonaoxyethylenediacrylate (9EG-A) with perfluorooctylethylacrylate (FA-108). It was found in the composite film that the liquid crystal droplets, surrounded by a thin layer of the photocured polymer, were deformed as well as disordered, which enhanced light scattering.

  5. Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Robi, P S; Srinivasan, A

    2016-01-01

    Cross-linked polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) composite nanofibrous membranes have been prepared by electrospinning. Mechanical properties of the membranes improved significantly with PVP addition. PVP improved hydrophilicity and sustainable degradation of the membranes. Biocompatibility of the membranes was assessed by in vitro culture of native skin cells (L929 fibroblast and HaCaT keratinocytes). Tests showed sustained release of the antibiotic ciprofloxacin hydrochloride monohydrate by the membranes. Further, zone of inhibition study against Staphylococcus aureus growth demonstrated protective action against external pathogenic microbes. These studies show these simple PVA-PVP nanofibrous membranes are promising interactive antibiotic-eluting wound dressing materials.

  6. A relative humidity sensing probe based on etched thin-core fiber coated with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Yang, Zaihang; Zhou, Libin; Liu, Nan; Gang, Tingting; Qiao, Xueguang; Hu, Manli

    2015-12-01

    A relative humidity (RH) sensing probe based on etched thin-core fiber (TCF) coated with polyvinyl alcohol (PVA) is proposed and experimentally demonstrated.This sensor is constructed by splicing a section of TCF with a single mode fiber (SMF), then part of the TCF's cladding is etched by hydrofluoric acid solution and finally the tip of TCF is coated with PVA. Experimental results demonstrate that this sensor can measure the ambient RH by demodulating the power variation of reflection spectrum. The power demodulation method make this sensor can ignore the temperature cross-sensitivity and have an extensive application prospect.

  7. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  8. Evaluation of molecular mass and tacticity of polyvinyl alcohol by non-equilibrium capillary electrophoresis of equilibrium mixtures of a polymer and a dye.

    PubMed

    Carrasco-Correa, Enrique Javier; Beneito-Cambra, Miriam; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo

    2011-04-22

    Non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) has been used to characterize polyvinyl alcohol (PVA). Commercial PVA samples with different molecular masses, from M(w)=15 up to 205 kDa, were used. According to the (13)C NMR spectra, the samples also differed in tacticity (stereoregularity). Mixtures of PVA and the anionic azo-dye Congo Red (CR) were injected in the presence of a borate buffer. The electropherograms gave a band and a peak due to the residual PVA-CR complex and the excess dye, respectively, plus a superimposed exponential decay due to the partial dissociation of the complex during migration. The stoichiometry of the PVA-CR complex, q=[monomer]/[dye], reached a maximum, q(sat), which depended on both M(w) and tacticity of PVA. Thus, q(sat) decreased from a molar ratio of ca. 4.9 to 3.6 at increasing M(w) values, this variation also being largely dependent on tacticity. A similar dependence of the electrophoretic mobility of the complex on both M(w) and tacticity was also observed. A possible explanation, based on the formation of a stack of CR ions inside the PVA-CR complex, was proposed and discussed. Finally, at increasing M(w) values, the stability constant of the complex increased slightly, and the pseudo-first order dissociation rate of the complex decreased, this later parameter also showing a dependence on both M(w) and tacticity.

  9. Characteristics of nano-sized yttria powder synthesized by a polyvinyl alcohol solution route at low temperature.

    PubMed

    Lee, Sang-Jin; Jung, Choong-Hwan

    2012-01-01

    Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).

  10. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles. PMID:26123816

  11. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles.

  12. Polyvinyl alcohol {gamma}-ray grafted nylon 4 membrane for pervaporation and evapomeation

    SciTech Connect

    Lai, J.Y.; Chen, R.Y.; Lee, K.R

    1993-05-01

    Nylon 4, which possesses high mechanical strength and good affinity for water, can be considered as a liquid separation membrane. To improve the hydrophilicity of a Nylon 4 membrane for pervaporation and evapomeation processes, and to overcome the hydrolysis of polyvinyl alcohol (PVA), this study attempts to prepare a PVA-g-Nylon 4 membrane by {gamma}-ray irradiation grafting of vinyl acetate (VAc) onto Nylon 4 membrane, followed by hydrolysis treatment. The effects of down-stream pressure, irradiation dose, VAc monomer concentration, degree of grafting, feed composition, and size of alcohols on the separation of water-alcohol mixtures were studied. The surface properties of the prepared membrane were characterized by FTIR, ESCA, and a contact angle meter. A separation factor of 13.8 and a permeation rate of 0.352 kg/m{sup 2}-h can be obtained for a PVA-g-Nylon 4 membrane with a degree of grafting of 21.2% for a 90-wt% ethanol feed concentration. Compared to the pervaporation process, the evapomeation process has a significantly increased separation factor with a decreased permeation rate for the same PVA-g-Nylon 4 membrane. 24 refs., 9 figs., 4 tabs.

  13. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  14. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  15. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  16. Hemocompatibility of Polyvinyl Alcohol-Gelatin Core-Shell Electrospun Nanofibers: A Novel Scaffold for Modulating Platelet Deposition and Activation

    PubMed Central

    Merkle, Valerie M.; Martin, Daniel; Hutchinson, Marcus; Tran, Phat L.; Behrens, Alana; Hossainy, Samir; Bluestein, Danny; Wu, Xiaoyi; Slepian, Marvin J.

    2015-01-01

    In this study, we evaluate coaxial electrospun nanofibers with gelatin in the shell and polyvinyl (PVA) in the core as a potential vascular material by determining fiber surface roughness, as well as human platelet deposition and activation under varying conditions. PVA scaffolds had the highest surface roughness (Ra = 65.5 ± 6.8 nm) but the lowest platelet deposition (34.2 ± 5.8 platelets) in comparison to gelatin nanofibers (Ra = 36.8 ± 3.0 nm & 168.9 ± 29.8 platelets) and coaxial nanofibers (1 Gel: 1 PVA coaxial – Ra = 24.0 ± 1.5 nm & 150.2 ± 17.4 platelets; 3 Gel: 1 PVA coaxial – Ra = 37.1 ± 2.8 nm & 167.8 ± 15.4 platelets). Therefore, the chemical structure of the gelatin nanofibers dominated surface roughness in platelet deposition. Due to their increased stiffness, the coaxial nanofibers had the highest platelet activation rate – rate of thrombin formation, in comparison to gelatin and PVA fibers. Our studies indicate that mechanical stiffness is a dominating factor for platelet deposition and activation, followed by biochemical moieties, and lastly surface roughness. Overall, these coaxial nanofibers are an appealing material for vascular applications by supporting cellular growth while minimizing platelet deposition and activation. PMID:25815434

  17. Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHEW), Chevy Chase, MD. National Clearinghouse for Mental Health Information.

    This concise survey presents some of the highlights of modern research on drinking and alcoholism, as based on technical articles published in the scientific literature and the views expressed by leading authorities in the field. Contents include discussions about: (1) the nature and scope of the problem; (2) the chemical composition of alcoholic…

  18. Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol.

    PubMed

    Harazono, Koichi; Nakamura, Kazunori

    2005-03-01

    We tried to decolorize mixtures of four reactive textile dyes, including azo and anthraquinone dyes, by a white-rot basidiomycete Phanerochaete sordida. P. sordida decolorized dye mixtures (200 mg l-1 each) by 90% within 48 h in nitrogen-limited glucose-ammonium media. Decolorization of dye mixtures needed Mn2+ and Tween 80 in the media. Manganese peroxidase (MnP) played a major role in dye decolorization by P. sordida. Decolorization of dye mixtures by P. sordida was partially inhibited by polyvinyl alcohol (PVA) that wastewaters from textile industries often contain. This was caused by an inhibitory effect of PVA on the decolorization of Reactive Red 120 (RR120) with MnP reaction system. Second addition of Tween 80 to the reaction mixtures in the presence of PVA improved the decolorization of RR120. These results suggest that PVA could interfere with lipid peroxidation or subsequent attack to the dye.

  19. Magnetic Relaxation Switch Detecting Boric Acid or Borate Ester through One-Pot Synthesized Poly(vinyl alcohol) Functionalized Nanomagnetic Iron Oxide.

    PubMed

    Zhang, Guilong; Lu, Shiyao; Qian, Junchao; Zhong, Kai; Yao, Jianming; Cai, Dongqing; Cheng, Zhiliang; Wu, Zhengyan

    2015-08-01

    We developed a highly efficient magnetic relaxation switch (MRS) system based on poly(vinyl alcohol) functionalized nanomagnetic iron oxide (PVA@NMIO) particles for the detection of boric acid or borate ester (BA/BE). It was found that the addition of BA/BE induced the aggregation of PVA@NMIO particles, resulting in a measurable change in the T2 relaxation time in magnetic resonance measurements. The main mechanism was proposed that the electron-deficient boron atoms of BA/BE caused the aggregation of PVA@NMIO particles through covalent binding to the hydroxyl groups of PVA. This novel detection system displayed excellent selectivity, high sensitivity, and rapid detection for BA/BE. Thus, this system may provide a great application prospect for detection of BA/BE.

  20. Biocompatible/Degradable Silk Fibroin:Poly(Vinyl Alcohol)-Blended Dielectric Layer Towards High-Performance Organic Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Zhuang, Xinming; Huang, Wei; Yang, Xin; Han, Shijiao; Li, Lu; Yu, Junsheng

    2016-10-01

    Biocompatible silk fibroin (SF):poly(vinyl alcohol) (PVA) blends were prepared as the dielectric layers of organic field-effect transistors (OFETs). Compared with those with pure SF dielectric layer, an optimal threshold voltage of ~0 V, high on/off ratio of ~104, and enhanced field-effect mobility of 0.22 cm2/Vs of OFETs were obtained by carefully controlling the weight ratio of SF:PVA blends to 7:5. Through the morphology characterization of dielectrics and organic semiconductors by utilizing atom force microscopy and electrical characterization of the devices, the performance improvement of OFETs with SF:PVA hybrid gate dielectric layers were attributed to the smooth and homogeneous morphology of blend dielectrics. Furthermore, due to lower charge carrier trap density, the OFETs based on SF:PVA-blended dielectric exhibited a higher bias stability than those based on pure SF dielectric.