Science.gov

Sample records for alcohol pva membranes

  1. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  2. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  3. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification. PMID:25806418

  4. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface.

    PubMed

    Qin, Aiwen; Li, Xiang; Zhao, Xinzhen; Liu, Dapeng; He, Chunju

    2015-04-29

    A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification.

  5. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  6. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  7. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the use of polyvinyl alcohol (PVA) cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by a freezing-thawing procedure at -8 oC. On average, pellets contained 11.8 mg TSS/g-pellet of enriched anamm...

  8. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane. PMID:22325932

  9. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  10. Performance of composite Nafion/PVA membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mollá, Sergio; Compañ, Vicente

    2011-03-01

    This work has been focused on the characterization of the methanol permeability and fuel cell performance of composite Nafion/PVA membranes in function of their thickness, which ranged from 19 to 97 μm. The composite membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The resistance to methanol permeation of the Nafion/PVA membranes shows a linear variation with the thickness. The separation between apparent and true permeability permits to give an estimated value of 4.0 × 10-7 cm2 s-1 for the intrinsic or true permeability of the bulk phase at the composite membranes. The incorporation of PVA nanofibers causes a remarkable reduction of one order of magnitude in the methanol permeability as compared with pristine Nafion® membranes. The DMFC performances of membrane-electrode assemblies prepared from Nafion/PVA and pristine Nafion® membranes were tested at 45, 70 and 95 °C under various methanol concentrations, i.e., 1, 2 and 3 M. The nanocomposite membranes with thicknesses of 19 μm and 47 μm reached power densities of 211 mW cm-2 and 184 mW cm-2 at 95 °C and 2 M methanol concentration. These results are comparable to those found for Nafion® membranes with similar thickness at the same conditions, which were 210 mW cm-2 and 204 mW cm-2 respectively. Due to the lower amount of Nafion® polymer present within the composite membranes, it is suggested a high degree of utilization of Nafion® as proton conductive material within the Nafion/PVA membranes, and therefore, significant savings in the consumed amount of Nafion® are potentially able to be achieved. In addition, the reinforcement effect caused by the PVA nanofibers offers the possibility of preparing membranes with very low thickness and good mechanical properties, while on the other hand, pristine Nafion® membranes are unpractical below a thickness of 50 μm.

  11. Spectroscopic investigation of PVA-TIO2 membranes gamma irradiated

    NASA Astrophysics Data System (ADS)

    Todica, Mihai; Udrescu, Luciana; Damian, Grigore; Astilean, Simion

    2013-07-01

    The modifications of the PVA-TiO2 membranes exposed to gamma radiations were investigated by ESR and XRD methods. The ESR spectra show the appearance of a strong signal associated with the breaking of the polymeric chain and the appearance of the unpaired electrons. The mechanism is influenced by the concentration of TiO2. The modification of local order of the polymeric chains after irradiation is confirmed by XRD method.

  12. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Huang, Hao-Ting; Huang, Chen-Yu; Hu, Keng-Shiang; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-01

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe3O4 nanoparticles would be released and delivered to cells.

  13. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  14. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity. PMID:26275118

  15. Immobilization of Firefly Luciferase on PVA-co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP.

    PubMed

    Wang, Wenwen; Zhao, Qinghua; Luo, Mengying; Li, Mufang; Wang, Dong; Wang, Yuedan; Liu, Qiongzhen

    2015-09-16

    The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates. The poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers membrane has abundant active hydroxyl groups on the surface. The PVA-co-PE nanofibers membrane was first activated by cyanuric chloride with triazinyl group. Then the activated PVA-co-PE nanofibers membrane was subsequently reacted with 1,3-propanediamine and biotin. The firefly luciferase was immobilized onto the surface of 1,3-propanediamine- and biotin-functionalized membranes. The surface chemical structure and morphologies of nanofibers membranes were characterized by FTIR-ATR spectra and SEM. The hydrophilicity of membranes was tested by water contact angle measurements. The detection of fluorescence intensity displayed that the firefly-luciferase-immobilized PVA-co-PE nanofibers membranes indicated high catalytic activity and efficiency. Especially, the firefly-luciferase-immobilized nanofiber membrane which was functionalized by biotin can be a promising candidate as biosensor for bioluminescent detection of ATP because of its high detection sensitivity.

  16. Crystal structures and magnetic properties of magnetite (Fe3O4)/Polyvinyl alcohol (PVA) ribbon

    NASA Astrophysics Data System (ADS)

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-01

    Ribbon of magnetite (Fe3O4)/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe3O4 sample and ribbon Fe3O4/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe3O4 more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  17. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  18. A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane.

    PubMed

    Esmaeili, Akbar; Beni, Ali Aghababai

    2014-09-15

    In this research, a novel fixed-bed reactor was designed with a nanofiber membrane composed of a polyvinyl alcohol (PVA)/chitosan nanofiber blend prepared using an electrospinning technique. The applied voltage, tip-collector distance, and solution flow rate of the electrospinning process were 18 kV, 14.5 cm, and 0.5 mL h(-1), respectively. Brunauer-Emmett-Teller (BET) theory, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize and analyze the nanofiber membranes. Homogeneous electrospun nanofibers with an average diameter of 99.47 nm and surface area of 214.12 m(2)g(-1) were obtained. Adsorption experiments were carried out in a batch system to investigate the effect of different adsorption parameters such as pH, adsorbent dose, biomass dose, contact time, and temperature. The kinetic data, obtained at the optimal pH of 6, were analyzed by pseudo first-order and pseudo second-order kinetic models. Three isotherm models and thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were applied to describe the equilibrium data of the metal ions adsorbed onto the PVA/chitosan nanofiber membrane.

  19. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  20. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lee, Ying-Jeng; Yang, Jen Ming

    A novel composite polymer electrolyte membrane composed of a PVA polymer host and montmorillonite (MMT) ceramic fillers (2-20 wt.%), was prepared by a solution casting method. The characteristic properties of the PVA/MMT composite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and micro-Raman spectroscopy, and the AC impedance method. The PVA/MMT composite polymer membrane showed good thermal and mechanical properties and high ionic conductivity. The highest ionic conductivity of the PVA/10 wt.%MMT composite polymer membrane was 0.0368 S cm -1 at 30 °C. The methanol permeability (P) values were 3-4 × 10 -6 cm 2 s -1, which was lower than that of Nafion 117 membrane of 5.8 × 10 -6 cm 2 s -1. It was revealed that the addition of MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT composite membranes; which can be accomplished by a simple blend method. The maximum peak power density of the DMFC with the PtRu anode based on Ti-mesh in a 2 M H 2SO 4 + 2 M CH 3OH solution was 6.77 mW cm -2 at ambient pressure and temperature. As a result, the PVA/MMT composite polymer appears to be a good candidate for the DMFC applications.

  1. Alkali recovery using PVA/SiO2 cation exchange membranes with different -COOH contents.

    PubMed

    Hao, Jianwen; Gong, Ming; Wu, Yonghui; Wu, Cuiming; Luo, Jingyi; Xu, Tongwen

    2013-01-15

    By changing -COOH content in poly(acrylic acid-co-methacryloxypropyl trimethoxy silane (poly(AA-co-γ-MPS)), a series of PVA/SiO(2) cation exchange membranes are prepared from sol-gel process of poly(AA-co-γ-MPS) in presence of poly(vinyl alcohol) (PVA). The membranes have the initial decomposition temperature (IDT) values of 236-274 °C. The tensile strength (TS) ranges from 17.4 MPa to 44.4 MPa. The dimensional stability in length (DS-length) is in the range of 10%-25%, and the DS-area is in the range of 21%-56% in 65 °C water. The water content (W(R)) ranges from 61.2% to 81.7%, the ion exchange capacity (IEC) ranges from 1.69 mmol/g to 1.90 mmol/g. Effects of -COOH content on diffusion dialysis (DD) performance also are investigated for their potential applications. The membranes are tested for recovering NaOH from the mixture of NaOH/Na(2)WO(4) at 25 - 45 °C. The dialysis coefficients of NaOH (U(OH)) are in the range of 0.006-0.032 m/h, which are higher than those of the previous membranes (U(OH): 0.0015 m/h, at 25 °C). The selectivity (S) can reach up to 36.2. The DD performances have been correlated with the membrane structure, especially the continuous arrangement of -COOH in poly(AA-co-γ-MPS) chain.

  2. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering. PMID:26369028

  3. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  4. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal. PMID:26411526

  5. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal.

  6. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    NASA Astrophysics Data System (ADS)

    Lahariya, Vikas

    2016-05-01

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blend crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.

  7. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    SciTech Connect

    Ger, Tzong-Rong; Huang, Hao-Ting; Hu, Keng-Shiang; Huang, Chen-Yu; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-07

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe{sub 3}O{sub 4} nanoparticles would be released and delivered to cells.

  8. Study of parallel oriented electrospun polyvinyl alcohol (PVA) nanofibers using modified electrospinning method

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Ula, Nur Mufidatul; Jahidah, Khannah; Kusumasari, Ervanggis Minggar; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Parallel orientedpolyvinyl alcohol (PVA) nanofibershasbeen successfully prepared by using modified electrospinning method. This method uses two pairs of copper (Cu) electrodes which are set apart at a certain distance and applied voltage of 15 kV. The concentrations of PVA were varied from 11%, 13%, 15%, 17%, and 19%. The width of gap collector were varied from 5 mm, 10 mm, 15 mm, and 20 mm. The diameter of nanofibers increase as increasing concentration of PVA. As the width of gap collector increase, first diameter of nanofibers decrease and reach a minimum value at 355 ± 7nm in 15 mm of gap, then the diameters increase again. We also calculated the alignment parameter (S) for given aligned nanofiber. The result showed that alignment parameters (S) were on values around 0,9-1.

  9. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres.

    PubMed

    Damasceno, Raquel; Roggia, Isabel; Pereira, Claudio; de Sá, Enilson

    2013-11-01

    The electrospinning technique of rhizobia immobilization in nanofibres is an innovative and promising alternative for reducing the harmful effects of environmental stress on bacteria strains in a possible inoculant nanotechnology product for use in agriculture. The use of polyvinyl alcohol (PVA) shows up as an effective polymer in cell encapsulation because of its physical characteristics, such as viscosity and power of scattering. The aim of these studies has been to evaluate the survival of rhizobia incorporated in PVA nanofibres, which were applied to soybean seed and then subjected to different storage times and exposure to fungicide. The maintenance of the symbiotic characteristics of the incorporated bacterial strains was also evaluated, noting the formation of nodules in the soybean seedlings. No significant differences in the cell survival at 0 h and after 24 h of storage were observed. After 48 h, a significant difference in the bacterial cell concentration of the seeds affixed with PVA nanofibres was observed. Exposure to the fungicide decreased the viability of the bacteria strains even when coated with the nanofibres. A larger number of nodules formed in soybean seedlings from seeds inoculated with rhizobia incorporated in PVA nanofibres than from seeds inoculated with rhizobia without PVA. Thus, the electrospinning technique is a great alternative to the usual protector inoculants because of its unprecedented capacity to control the release of bacteria. PMID:24206353

  10. Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Robi, P S; Srinivasan, A

    2016-01-01

    Cross-linked polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) composite nanofibrous membranes have been prepared by electrospinning. Mechanical properties of the membranes improved significantly with PVP addition. PVP improved hydrophilicity and sustainable degradation of the membranes. Biocompatibility of the membranes was assessed by in vitro culture of native skin cells (L929 fibroblast and HaCaT keratinocytes). Tests showed sustained release of the antibiotic ciprofloxacin hydrochloride monohydrate by the membranes. Further, zone of inhibition study against Staphylococcus aureus growth demonstrated protective action against external pathogenic microbes. These studies show these simple PVA-PVP nanofibrous membranes are promising interactive antibiotic-eluting wound dressing materials.

  11. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions. PMID:19836882

  12. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor.

    PubMed

    Moreno-Cortez, Iván E; Romero-García, Jorge; González-González, Virgilio; García-Gutierrez, Domingo I; Garza-Navarro, Marco A; Cruz-Silva, Rodolfo

    2015-01-01

    In this paper, papain enzyme (E.C. 3.4.22.2, 1.6 U/mg) was successfully immobilized in poly(vinyl alcohol) (PVA) nanofibers prepared by electrospinning. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy (SEM) and the diameter distribution was in the range of 80 to 170 nm. The presence of the enzyme within the PVA nanofibers was confirmed by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS) analyses. The maximum catalytic activity was reached when the enzyme loading was 13%. The immobilization of papain in the nanofiber membrane was achieved by chemical crosslinking with a glutaraldehyde vapor treatment (GAvt). The catalytic activity of the immobilized papain was 88% with respect to the free enzyme. The crosslinking time by GAvt to immobilize the enzyme onto the nanofiber mat was 24h, and the enzyme retained its catalytic activity after six cycles. The crosslinked samples maintained 40% of their initial activity after being stored for 14 days. PVA electrospun nanofibers are excellent matrices for the immobilization of enzymes due to their high surface area and their nanoporous structure.

  13. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  14. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    SciTech Connect

    Prabhudesai, S. A. Mitra, S.; Mukhopadhyay, R.; Lawrence, Mathias B.; Desa, J. A. E.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  15. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  16. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions.

  17. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-09-15

    Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions. PMID:27311109

  18. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis.

    PubMed

    Jiang, Hongjun; Campbell, Gord; Boughner, Derek; Wan, Wan-Kei; Quantz, Mackenzie

    2004-05-01

    Although current artificial heart valves are life sustaining medical devices, improvements are still necessary to address deficiencies. Bioprosthetic valves have a compromised fatigue life, while mechanical valves have better durability but are prone to thromboembolic complications. A novel, one-piece, tricuspid valve, consisting of leaflets, stent and sewing ring, made entirely from the hydrogel, polyvinyl alcohol cryogel (PVA-C), has been developed and demonstrated. This valve has three thin leaflets attached to a cylindrical stent. In order to approximate the complex shape of the surface of the natural heart valve leaflets, two different geometries have been proposed: revolution about an axis of a hyperboloid shape and revolution about an axis of an arc subtending (joining) two straight lines. The parameters of both geometries were examined based on a compromise between avoiding sharp curvature of leaflets and minimization of the central opening of the valve when closed. The revolution of an arc subtending two straight lines was selected as the preferred geometry since it has the benefit of a smaller central opening when the value of the maximum curvature for the leaflets is the same for each valve geometry. A cavity mold has been designed and constructed to form the PVA-C heart valve. The three leaflets were formed and integrated into the stent and sewing ring in a single process. Prototype heart valves were manufactured in the mold from a solution of PVA and water, by controlled freezing and thawing cycles. PMID:15121052

  19. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation

    PubMed Central

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies. PMID:24957172

  20. Polyvinyl alcohol {gamma}-ray grafted nylon 4 membrane for pervaporation and evapomeation

    SciTech Connect

    Lai, J.Y.; Chen, R.Y.; Lee, K.R

    1993-05-01

    Nylon 4, which possesses high mechanical strength and good affinity for water, can be considered as a liquid separation membrane. To improve the hydrophilicity of a Nylon 4 membrane for pervaporation and evapomeation processes, and to overcome the hydrolysis of polyvinyl alcohol (PVA), this study attempts to prepare a PVA-g-Nylon 4 membrane by {gamma}-ray irradiation grafting of vinyl acetate (VAc) onto Nylon 4 membrane, followed by hydrolysis treatment. The effects of down-stream pressure, irradiation dose, VAc monomer concentration, degree of grafting, feed composition, and size of alcohols on the separation of water-alcohol mixtures were studied. The surface properties of the prepared membrane were characterized by FTIR, ESCA, and a contact angle meter. A separation factor of 13.8 and a permeation rate of 0.352 kg/m{sup 2}-h can be obtained for a PVA-g-Nylon 4 membrane with a degree of grafting of 21.2% for a 90-wt% ethanol feed concentration. Compared to the pervaporation process, the evapomeation process has a significantly increased separation factor with a decreased permeation rate for the same PVA-g-Nylon 4 membrane. 24 refs., 9 figs., 4 tabs.

  1. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  2. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. PMID:27612814

  3. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.

    PubMed

    Xu, Xu; Yang, Yi-Qin; Xing, Ying-Ying; Yang, Jiu-Fang; Wang, Shi-Fa

    2013-11-01

    Novel polyvinyl alcohol (PVA) blend membranes containing cellulose nanocrystals (CNs) and silver nanoparticles (AgNPs) were prepared via a simple method. CNs were prepared by sulfuric acid treatment of microcrystalline cellulose. AgNO3 aqueous solution mixed with the CNs aqueous suspension and was reduced by NaBH4 at room temperature. Purified CNs/AgNPs nanocomposites as functional fillers mixed with polyvinyl alcohol to prepare blend membrane. The morphology, mechanical properties, and antibacterial activities of PVA/CNs/AgNPs composite films were investigated. The PVA/CNs/AgNPs composite films were stable and homogeneous. The tensile strength of PVA was increased from 57.02 MPa to 81.21 MPa when filled with CNs/AgNPs. Antibacterial ratio of PVA/CNs/AgNPs composite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was 96.9% and 88.2%, respectively. The CNs/AgNPs nanocomposites could be applied as bi-functional nanofillers within PVA to improve the mechanical properties and antibacterial activities. PMID:24053842

  4. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.

    PubMed

    Xu, Xu; Yang, Yi-Qin; Xing, Ying-Ying; Yang, Jiu-Fang; Wang, Shi-Fa

    2013-11-01

    Novel polyvinyl alcohol (PVA) blend membranes containing cellulose nanocrystals (CNs) and silver nanoparticles (AgNPs) were prepared via a simple method. CNs were prepared by sulfuric acid treatment of microcrystalline cellulose. AgNO3 aqueous solution mixed with the CNs aqueous suspension and was reduced by NaBH4 at room temperature. Purified CNs/AgNPs nanocomposites as functional fillers mixed with polyvinyl alcohol to prepare blend membrane. The morphology, mechanical properties, and antibacterial activities of PVA/CNs/AgNPs composite films were investigated. The PVA/CNs/AgNPs composite films were stable and homogeneous. The tensile strength of PVA was increased from 57.02 MPa to 81.21 MPa when filled with CNs/AgNPs. Antibacterial ratio of PVA/CNs/AgNPs composite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was 96.9% and 88.2%, respectively. The CNs/AgNPs nanocomposites could be applied as bi-functional nanofillers within PVA to improve the mechanical properties and antibacterial activities.

  5. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  6. Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fenton reaction.

    PubMed

    Bossmann, S H; Oliveros, E; Göb, S; Kantor, M; Göppert, A; Lei, L; Yue, P L; Braun, A M

    2001-01-01

    The reaction mechanism of the oxidative degradation of polyvinyl alcohol (PVA) by the photochemically enhanced Fenton reaction was studied using a homogeneous (Fe2+(aq) + H2O2) and a heterogeneous reaction system (iron(III)-exchanged zeolite Y+ H2O2). In the homogeneous Fenton system, efficient degradation was observed in a batch reactor, equipped with a medium pressure mercury arc in a Pyrex envelope and employing 80% of the stoichiometric amount of H2O2 required for the total oxidation of PVA and a concentration ratio as low as I mole of iron(II) sulfate per 20 moles of PVA sub-units (C2H40). Model PVA polymers of three different molecular weights (15,000, 49,000 and 100,000 g mol(-1)) were found to follow identical degradation patterns. Strong experimental evidence supports the formation of supermacromolecules (MW: 1-5 x 10(6) g/mol) consisting of oxidized PVA and trapped iron(III) at an early reaction stage. Low molecular weight intermediates, such as oxalic acid, formic acid or formaldehyde were not found during PVA degradation in the homogeneous Fenton system, and we may deduce that the manifold of degradation reactions is mainly taking place within the super-macromolecules from which CO2 is directly released. However, in the heterogeneous Fenton system, the reaction behavior was found to be distinctly different: a decrease of the molecular weights of all three tested monodisperse PVA samples was observed by the broadening of the GPC-traces during irradiation, and oxalic acid was formed. The results lead to the mechanistic hypothesis that during the heterogeneous Fenton process, the cleavage of the PVA-chains may occur at random positions, the reactive centres being located inside the iron(III)-doped zeolite Y photocatalysts.

  7. Poly/vinyl alcohol/ membranes for reverse osmosis

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.

  8. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes.

    PubMed

    Lubambo, A F; Ono, L; Drago, V; Mattoso, N; Varalda, J; Sierakowski, M-R; Sakakibara, C N; Freitas, R A; Saul, C K

    2015-12-10

    Polyvinyl Alcohol (PVA)/guar gum (GG) membranes with different loads of paramagnetic iron oxide Fe3O4 nanoparticles were successfully electrospun using both non-alkaline and alkaline stock solutions. The nanoparticle homogeneity distribution was clearly enhanced in fibers obtained from alkaline stock solutions. This is mainly due to the interaction between GG and the metallic ion, which also leads to further dispersion of remained uncoated nanoparticles in the mixture. It was also noticed that GG favors nanoparticle stability in the mixture and contributes to nanoparticle encapsulation. X-ray results showed that all membranes were semi-crystalline. FTIR-ATR spectra showed that Fe-O absorption band intensity improved with increasing nanoparticle load, reaching saturation at 3.5mg/ml Fe3O4 concentration under alkaline conditions. VSM analyses showed that the nanoparticles are paramagnetic and were successfully incorporated by the fibers. In vitro biocompatibility tests using L929 cells indicates adequate levels of cytotoxicity and cell adhesion/proliferation assays for both membranes obtained from non-alkaline and alkaline stock solutions. Therefore, they have potential for biomedical applications as biodegradable wound dressing. PMID:26428185

  9. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes.

    PubMed

    Lubambo, A F; Ono, L; Drago, V; Mattoso, N; Varalda, J; Sierakowski, M-R; Sakakibara, C N; Freitas, R A; Saul, C K

    2015-12-10

    Polyvinyl Alcohol (PVA)/guar gum (GG) membranes with different loads of paramagnetic iron oxide Fe3O4 nanoparticles were successfully electrospun using both non-alkaline and alkaline stock solutions. The nanoparticle homogeneity distribution was clearly enhanced in fibers obtained from alkaline stock solutions. This is mainly due to the interaction between GG and the metallic ion, which also leads to further dispersion of remained uncoated nanoparticles in the mixture. It was also noticed that GG favors nanoparticle stability in the mixture and contributes to nanoparticle encapsulation. X-ray results showed that all membranes were semi-crystalline. FTIR-ATR spectra showed that Fe-O absorption band intensity improved with increasing nanoparticle load, reaching saturation at 3.5mg/ml Fe3O4 concentration under alkaline conditions. VSM analyses showed that the nanoparticles are paramagnetic and were successfully incorporated by the fibers. In vitro biocompatibility tests using L929 cells indicates adequate levels of cytotoxicity and cell adhesion/proliferation assays for both membranes obtained from non-alkaline and alkaline stock solutions. Therefore, they have potential for biomedical applications as biodegradable wound dressing.

  10. Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3 x H2O nanocrystals/PVA membrane.

    PubMed

    Li, Rui; Hu, Fengping; Bao, Qiaoliang; Bao, Shujuan; Qiao, Yan; Yu, Shucong; Guo, Jun; Li, Chang Ming

    2010-02-01

    For the first time, a multilayered WO(3) x H(2)O/PVA membrane on bacteriorhodopsin (bR) is constructed to significantly enhance the photoelectric response of bR by the spillover effect of WO(3) x H(2)O nanocrystals, providing great potential in its important applications in bioelectronics and proton exchange membrane fuel cells.

  11. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  12. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr(VI).

    PubMed

    Luo, Lei; Cai, Weiquan; Zhou, Jiabin; Li, Yuanzhi

    2016-11-15

    A novel boehmite/PVA composite membrane (BPCM) with remarkably enhanced adsorption performance towards Cr(VI) was successfully synthesized from Al(NO3)3·9H2O using HAc as the peptizing agent via a facile sol-gel method. The physicochemical properties of the BPCM, the boehmite powder (BP) without PVA and a commercial boehmite powder (CBP) were comparatively characterized by XRD, TGA-DSC, FT-IR and XPS. Batch adsorption experiments showed that the adsorption performance of the BPCM is much better than those of BP and CBP. Its adsorption process was well described by the pseudo-second-order kinetic model, and its equilibrium data fit the Langmuir isotherm well with a maximum adsorption capacity of 36.41mgg(-1). Its interference adsorption experiment in presence of coexisting anions showed that SO4(2-) and HPO4(2-) have greater effect than those of the Cl(-), F(-), C2O4(2-) and HCO3(-). A three step action mechanism including adsorption of Cr(VI) anions, complexation between Cr(VI) anions and the functional groups on the surface of BPCM, and the reduction of Cr(VI) to Cr(III) was proposed to illustrate the adsorption process. This efficient film could be easily separated after adsorption, exhibiting great potential for the removal of Cr(VI) from aqueous solution, and other fields of environmental remediation. PMID:27450337

  13. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  14. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    NASA Astrophysics Data System (ADS)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-08-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  15. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  16. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  17. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules.

  18. Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1997-04-01

    PVA films have been used as mold releases, strippable coatings, binders for photopolymers and when sensitized with metals and/or dyes they have been used as photoresists, volume HOEs, multiplexed holographic optical memory and real time non destructive holographic testing. The list goes on and includes Slime and birth control. In holography, DC-PVA is a real time photoanisotropic recording material useful for phase conjugation experiments and also a stable long term storage medium needing no processing other than heat. Now we add the capability of greatly increasing the versatility of PVA by boosting the index modulation by almost two orders of magnitude. We can add broadband display and HOE applications that were not possible before. Simple two or three step liquid processing is all that is required to make the index modulation grow.

  19. Catalytic poly(vinyl alcohol) functionalized membranes obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Silva, A. G.; Pinto, J. V.; Ramos, A. M.; Vital, J.; Ferreira, L. M.

    2012-09-01

    Polymeric catalytic membranes bearing sulfonic acid functions have been prepared by mutual gamma irradiation at a 60Co source, of poly(vinyl alcohol) (PVA) membranes and methanesulfonic acid. The effect of various synthesis conditions on membranes' physical-chemical properties and catalytic activity in the esterification reaction between acetic acid and isoamyl alcohol to obtain isoamyl acetate (banana flavor), was evaluated. The membranes were characterized by ATR-FTIR, TPP, AFM and SEM. Water contact angle determinations were also performed. The obtained results showed that within the range of conditions studied the increase in sulfonic acid groups' content is accompanied by an enhancement in the membranes catalytic activity, while the increase in absorbed dose leads to a decrease in catalytic activity.

  20. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe2O4 were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5-6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe2O4 as the main phase and Co3O4 as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (Mmax) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field (iHc) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the iHc value changes from 83 Oe to 493 Oe. The mechanism of changes in Mmax and iHc values has been explained.

  1. Effect of Polyvinyl Alcohol (PVA) Containing Artemether in Treatment of Cutaneous Leishmaniasis Caused by Leishmania major in BALB/c Mice

    PubMed Central

    Ebrahimisadr, Parisa; Ghaffarifar, Fatemeh; Hassan, Zuhir Mohammad; Sirousazar, Mohammad; Mohammadnejad, Fatemeh

    2014-01-01

    Background: Polyvinyl alcohol (PVA) is one of the well-known polymers, which has been used in numerous biomedical applications because of its good biocompatibility. Objectives: Due to problems made by the therapeutics already used for leishmaniasis, the aim of this study was to evaluate the effect of PVA containing artemether in treating cutaneous leishmaniasis in BALB/c mice. Materials and Methods: Aqueous solution of PVA was prepared by mixing with Double Distilled Water. After preparation of PVA, 4.33 mg of each drug (main drug artemether and control drug 14% glucantime) was added to 100 g of prepared PVA-honey solution. The solution was incubated at 37°C and the release of artemether was evaluated by measuring absorbance at 260 nm wave length. In this study for treatment of mice lesion, we used PVA containing artemether and glucantime and this method was compared with ointment treatment. Results: Mean diameters of lesions in mice treated with artemether were smaller than the control group and the differences were significant (P < 0.05). The mean lesion size of mice treated with PVA containing artemether in comparison with the group treated with ointment of artemether were smaller and the differences were significant (P < 0.05). Conclusions: PVA containing artemether is a new method for treatment of cutaneous leishmaniasis and according to the obtained results, artemether is an appropriate and effective drug, especially when used with PVA as a lesion dressing; thus we suggest that this method can be applied for the treatment of cutaneous leishmaniasis. PMID:25147717

  2. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-En; Lin, Chi-Wen; Hwang, Bing-Joe

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO 3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 × 10 -2 S cm -1 at room temperature from one of the synthesized membranes, higher than that of the Nafion ® membrane. Methanol permeability of the synthesized membranes measures about 1 × 10 -7 cm 2 S -1, about one order of magnitude lower than that of the Nafion ® membrane.

  3. Reverse osmosis performance of modified polyvinyl alcohol thin-film composite membranes

    SciTech Connect

    Lang, K.; Chowdhury, G.; Matsuura, T.; Sourirajan, S. )

    1994-08-01

    Membrane separation characteristics in the nanofiltration (NF) and reverse osmosis (RO) regions of the filtration spectrum are governed by a complex combination of both steric hindrance and surface force interactions. NF and RO membranes having surface charges show unusual selectivity behavior not predicted on the basis of physical pore size alone. Hence, practical characterizations should employ techniques to gain insight on membrane function. In this work, the separation characteristics of an anionically charged modified polyvinyl alcohol (PVA) thin-film composite membrane under different operating pressures were investigated. A qualitative measurement of the surface force interactions between solutes and membrane polymer was conducted using liquid chromatography technique. An attempt was also made to study the chlorine resistance of the composite membrane.

  4. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kim, Si-Seup; Kee, Chang-Doo; Shen, Yun-De; Oh, Il-Kwon

    2014-07-01

    A novel electroactive biopolymer actuator was developed based on a cross-linked ionic networking membrane of TEMPO-oxidized bacterial cellulose nanofibers (TOCNs) and polyvinyl alcohol (PVA). Ionic liquids were added to develop an air-working artificial muscle and to enhance the performance of the PVA-TOCN actuator. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers were deposited on the top and bottom surfaces of the PVA-TOCN membrane via a simple dipping and drying method. The electroactive PVA-TOCN actuator under both step and harmonic electrical inputs shows much larger tip displacements and faster bending deformation than the pure TOCN actuator. The cross-linking reaction between PVA and TOCN was observed in the Fourier transform-near-infrared (FT-IR) spectrum of the PVA-TOCN networking membrane. Scanning electron microscopy (SEM), x-ray diffusion (XRD), thermogravimetric analysis (TGA) and tensile and ion conductivity testing results for the PVA-TOCN membrane were compared with those of pristine TOCN. Most important, the PVA-TOCN actuator shows much larger bending deformation under even extremely low input voltages, and this could be attributed to the cross-linking mechanism and the greater flexibility resulting from the synergistic effects between PVA and TOCN.

  5. Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor.

    PubMed

    Feng, Quan; Zhao, Yong; Wei, Anfang; Li, Changlong; Wei, Qufu; Fong, Hao

    2014-09-01

    In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 μmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.

  6. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  7. Evaluation of polyvinyl alcohol composite membranes containing collagen and bone particles.

    PubMed

    Hameed, Nishar; Glattauer, Veronica; Ramshaw, John A M

    2015-08-01

    Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

  8. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  9. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA(PEG) for the controlled release of biopharmaceuticals for bone infections.

    PubMed

    Wan, Taoyu; Stylios, George K; Giannoudi, Marilena; Giannoudis, Peter V

    2015-12-01

    The capability for sustained and gradual release of pharmaceuticals is a major requirement in the development of a guided antimicrobial bacterial control system for clinical applications. In this study, PVA gels with varying constituents that were manufactured via a refreeze/thawing route, were found to have excellent potential for antimicrobial delivery for bone infections. Cefuroxime Sodium with poly(ethylene glycol) was incorporated into 2 delivery systems poly(e-caprolactone) (PCL) and hydroxyapatite (HA), by a modified emulsion process. Our results indicate that the Cefuroxime Sodium released from poly(e-caprolactone) in PVA was tailored to a sustained release over more than 45 days, while the release from hydroxyapatite PVA reach burst maximum after 20 days. These PVA hydrogel-systems were also capable of controlled and sustained release of other biopharmaceuticals. PMID:26747917

  10. ESR and XRD investigation of effects induced by gamma radiation on PVA-TiO2 membranes

    NASA Astrophysics Data System (ADS)

    Todica, Mihai; Stefan, Traian; Trandafir, Diana; Simon, Simion

    2013-07-01

    The effects of gamma radiation on the local structure of PVA membranes containing TiO2 were investigated by ESR and XRD methods. An intense ESR signal is observed after irradiation at 16 KGy dose. This signal appears only for irradiated samples and it is associated with the breaking of the polymeric chain, followed by local reorganization of the polymeric segments and the apparition of the unpaired electrons and free radicals. The intensity of the signal decreases with the concentration of TiO2, indicating a shielding effect of the dopand. That the modification of local order of the polymeric chains has been modified after irradiation is confirmed by XRD method.

  11. Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes.

    PubMed

    Ibrahim, Maha M; Koschella, Andreas; Kadry, Ghada; Heinze, Thomas

    2013-06-01

    Cellulose was isolated from rice straw and converted to carboxymethyl cellulose (CMC). Both polymers were crosslinked with poly(vinyl alcholo) (PVA). The physical properties of the resulting membranes were characterized by FT-IR, TGA, DSC and SEM. The cellulose and CMC were first prepared from bleached rice straw pulp. The infrared spectroscopy of the resulting polymer membranes indicated a decrease in the absorbance of the OH group at 3300-3400 cm(-1), which is due to bond formation with either the cellulose or CMC with the PVA. The thermal stability of PVA/cellulose and PVA/CMC membranes was lower than PVA membrane. The surface of the resulting polymer membranes showed smooth surface in case of the PVA/CMC membrane and rough surface in case of the PVA/cellulose membrane. Desalination test, using 0.2% NaCl, showed that pure PVA membranes had no effect while membranes containing either cellulose or CMC as filler were able to decrease the content of the NaCl from the solution by 25% and 15%, respectively. Transport properties, including water and chloroform vapor were studied. The moisture transport was reduced by the presence of both cellulose and CMC. Moreover, the membranes containing cellulose and CMC showed significantly reduced flux compared to the pure PVA. The water sorption, solubility and soaking period at different pH solutions were also studied and showed that the presence of both cellulose and CMC influences the properties.

  12. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.

    2016-01-01

    An innovative method has been used to reduce the bandgap of poly(vinyl alcohol) (PVA) polymer by addition of a nontoxic, inexpensive, and environmentally friendly material. The resulting materials are small-bandgap polymers, hence opening new frontiers in green chemistry. The doped PVA films showed a wide range of light absorption of the solar spectrum from 200 nm to above 800 nm. Nonsharp absorption behavior versus wavelength was observed for the samples. The refractive index exhibited a wide range of dispersion. Shift of the absorption edge from 6.2 eV to 1.5 eV was observed. The energy bandgap of PVA was diminished to 1.85 eV upon addition of black tea extract solution, lying in the range of small-bandgap polymers. Increase of the optical dielectric constant was observed with increasing tea solution addition. The results indicate that small-bandgap PVA with good film-forming ability could be useful in terms of cost-performance tradeoff, solving problems of short lifetime, cost, and flexibility associated with conjugated polymers. The decrease of the Urbach energy upon addition of black tea extract solution indicates modification of PVA from a disordered to ordered material. X-ray diffraction results confirm an increase of the crystalline fraction in the doped samples.

  13. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate.

    PubMed

    Kuila, Sunil Baran; Ray, Samit Kumar

    2014-01-30

    Pervaporation membranes were made by solution blending of polyvinyl alcohol (PVA) and sodium alginate (SA). Accordingly, five different blends with PVA:SA weight ratio of 75:25, 50:50, 25:75, 20:80 and 10:90 designated as PS1, PS2, PS3, PS4 and PS5, respectively, were prepared. Each of these blends was crosslinked with 2, 4 and 6 wt% glutaraldehyde and the resulting fifteen (5 × 3) membranes were used for pervaporative separation of 90 wt% dioxane in water. The membranes made from PS4 and PS5 were not stable during pervaporation experiments. Among the stable membranes PS3 membrane crosslinked with 2 wt% glutaraldehyde showed the best results for flux and selectivity. Thus, it was filled with nano size sodium montmorillonite filler and used for separation of dioxane-water mixtures over the entire concentration range of 80-99.5 wt% dioxane in water. The membranes were also characterized by mechanical properties, FTIR, SEM, DTA-TGA and XRD.

  14. A polyvinyl alcohol/ p-sulfonate phenolic resin composite proton conducting membrane

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Shun; Lin, Fan-Yen; Chen, Chih-Yuan; Chu, Peter P.

    Membranes composed of poly(vinyl alcohol) (PVA) and a proton source polymer, sulfonated phenolic resin (s-Ph) displayed good proton conductivity of the order of 10 -2 S cm -1 at ambient temperatures. Upon cross-linking above 110 °C, covalent links between the sulfonate groups of the phenolic resin and the hydroxyl groups of the PVA were established. Although this sacrificed certain sulfonate groups, the conductivity value was still preserved at the 10 -2 S cm -1 level. In sharp contrast to Nafion, the current membrane (both before and after cross-linking) was also effective in reducing the methanol uptake where the swelling ratio decreased with increase of methanol concentration. Although both the methanol permeation and the proton conductivity were lower compared to Nafion, the conductivity/permeability ratio of 0.97 for the PVA/s-Ph is higher than that determined for Nafion. The results suggested the effectiveness of proton transport in the polymer-complex structure and the possibility that a high proton conductivity can be realized with less water.

  15. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA).

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2011-05-01

    Use of ultrasound can yield polymer degradation as reflected by a significant reduction in the intrinsic viscosity or the molecular weight. The ultrasonic degradation of two water soluble polymers viz. carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) has been studied in the present work. The effect of different operating parameters such as time of irradiation, immersion depth of horn and solution concentration has been investigated initially using laboratory scale operation followed by intensification studies using different additives such as air, sodium chloride and surfactant. Effect of scale of operation has been investigated with experiments in the available different capacity reactors with an objective of recommending a suitable type of configuration for large scale operation. The experimental results show that the viscosity of polymer solution decreased with an increase in the ultrasonic irradiation time and approached a limiting value. Use of additives such as air, sodium chloride and surfactant helps in increasing the extent of viscosity reduction. At higher frequency operation the viscosity reduction has been found to be negligible possibly attributed to less contribution of the physical effects. The viscosity reduction in the case of ultrasonic horn has been observed to be more as compared to other large capacity reactors. Kinetic analysis of the polymer degradation process has also been performed. The present work has enabled us to understand the role of the different operating parameters in deciding the extent of viscosity reduction in polymer systems and also the controlling effects of low frequency high power ultrasound with experiments on different scales of operation.

  16. Surface resistivity temperature dependence measures of commercial, multiwall carbon nanotubes (MWCNT), or silver nano-particle doped polyvinylidene difluoride (PVDF) and polyvinyl alcohol (PVA) films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Egarievwe, Stephen; Kukhtareva, Tatiana; Polius, Jemilia; Janen, Afef; Corda, John

    2014-10-01

    The detection of infrared radiation (IR) with pure and doped Polyvinylidene difluoride (PVDF) films has been well documented using the mechanism of pyroelectricity. Alternatively, the electrical properties of films made from Polyvinyl Alcohol (PVA) have received considerable attention in recent years. The investigation of surface resistivities of both such films, to this point, has received far less consideration in comparison to pyroelectric effects. In this research, we report temperature dependent surface resistivity measurements of commercial, and of multiwall carbon nanotubes (MWCNT), or Ag-nanoparticle doped PVA films. Without any variation in the temperature range from 22°C to 40°C with controlled humidity, we found that the surface resistivity decreases initially, reaches a minimum, but rises steadily as the temperature continues to increase. This research was conducted with the combined instrumentation of the Keithley Model 6517 Electrometer and Keithley Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films. With the objective to quantify the suitability of PVDF and PVA films as IR detector materials, when using the surface resistivity phenomenon, instead of or in addition to the pyroelectricity, surface resistivity measurements are reported when considering bolometry. We find the surface resistivity of PVDF films to be in the range, which extends beyond the upper limit of our Keithley electrometer, but our measurements on PVA films were readily implemented.

  17. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  18. Influence of poly(ethylene glycol) as pore-generator on morphology and performance of chitosan/poly(vinyl alcohol) membrane adsorbents

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Madaeni, S. S.

    2014-01-01

    Macroporous chitosan/poly(vinyl alcohol) membrane adsorbents were synthesized by solvent evaporation in the presence of poly(ethylene glycol) which was utilized as porogen. The membranes were applied for Cu(II) ion adsorption from water. SEM, AFM and wettability analyses were performed for membrane characterization. Insertion of poly(ethylene glycol) generated macrovoids in the dense structure of CS/PVA membranes through particulate leaching out mechanism. According to the static adsorption tests, the uptake capacity of the porous membranes is elevated (˜26 mg/g) compared to that of the dense membranes (˜10 mg/g). This phenomenon is attributed to the increase in the density of active sites, water affinity and surface roughness as a result of the porogen effects. The approachability of the ions to the active sites was also affected by these important parameters. Both size and density of the macrovoids increased with increasing PEG content from nil to 5 wt%. Fragility of the resultant porous structures prohibited synthesizing CS/PVA membranes with higher porogen contents. Desorption tests showed that the porous membranes were better regenerated in comparison to the dense membranes using Na2EDTA as eluant. Generally, the results suggested that the CS/PVA membranes, comprising PEG as pore-generator agent, are potential candidates for adsorption and elimination of Cu(II) ions from water.

  19. Determining the electrical mechanism of the surface resistivity property of doped polyvinyl alcohol (PVA) and the pyroelectric property of polyvinylidene difluoride (PVDF) thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Janen, Afef; Guggilla, Padmaja; Polius, Jemelia; Douglas, Jade; Curley, Michael

    2015-08-01

    Previously, we have reported measurements of the temperature-dependent surface resistivity of pure and multi-walled carbon nanotubes doped Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C, with a humidity-controlled environment, we found the surface resistivity to decrease initially but to rise steadily as the temperature continued to increase. Correspondingly, we have measured the temperature-dependent pyroelectric coefficient of doped polyvinylidene difluoride (PVDF) thin films, very well. While the physical mechanism of the pyroelectric phenomenon in PVDF thin films is quite well known, the surface resistivity behavior of PVA thin films is not so well known. Here, we address this concern by reporting the electrical mechanistic phenomena that contribute to surface resistivity of pure and doped PVA thin films, and give preliminary surface resistivity detectivity and other relevant quality factors for infrared (IR) and motion sensors. Regarding the pyroelectric effect of doped PVDF thin films, we give materials Figures-of-Merit based on our measurements. In addition, pyroelectric and surface resistivity infrared fundamentals, IR sensor uniqueness, and innovative techniques are presented.

  20. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  1. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  2. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  3. Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, Shobhna; Sengwa, R. J.

    2016-05-01

    Complex dielectric function, electric modulus, ac conductivity and impedance spectra of PVA-SiO2 nanocomposite films have been investigated in the frequency range of 20 Hz to 1 MHz and temperature range from 30 °C to 60 °C. Real part of dielectric function of the nanocomposites slowly decreases with increase of frequency and it shows a non-linear increase with the increase of temperature. An anomalous variation is observed in dielectric and electrical functions with increase of SiO2 concentrations in the PVA matrix. The ac conductivity of these materials increases whereas impedance values decrease linearly by five orders of magnitude with increase of frequency from 20 Hz to 1 MHz. Dielectric loss values of these films are found minimum at intermediate frequency region, and it increases at low and high frequency regions confirming the presence of multiple relaxation processes. The contributions of interfacial polarization effect and dipolar ordering in dielectric properties of these materials have been explored, and their technological applications as nanodielectrics have been discussed. The XRD patterns reveal that the interactions between PVA and SiO2 disturb the dipolar ordering resulting decrease of crystallinity of the PVA in the nanocomposites.

  4. Role of single-walled carbon nanotubes on ester hydrolysis and topography of electrospun bovine serum albumin/poly(vinyl alcohol) membranes.

    PubMed

    Ford, Ericka N J; Suthiwangcharoen, Nisaraporn; D'Angelo, Paola A; Nagarajan, Ramanathan

    2014-07-23

    Electrospun membranes were studied for the chemical deactivation of threat agents by means of enzymatic proteins. Protein loading and the surface chemistry of hybrid nanofibers influenced the efficacy by which embedded enzymes could digest the substrate of interest. Bovine serum albumin (BSA), selected as a model protein, was electrospun into biologically active fibers of poly(vinyl alcohol), PVA. Single-walled carbon nanotubes (SWNTs) were blended within these mixtures to promote protein assembly during the process of electrospinning and subsequently the ester hydrolysis of the substrates. The SWNT incorporation was shown to influence the topography of PVA/BSA nanofibers and enzymatic activity against paraoxon, a simulant for organophosphate agents and a phosphorus analogue of p-nitrophenyl acetate (PNA). The esterase activity of BSA against PNA was uncompromised upon its inclusion within nanofibrous membranes because similar amounts of PNA were hydrolyzed by BSA in solution and the electrospun BSA. However, the availability of BSA along the fiber surface was shown to affect the ester hydrolysis of paraoxon. Atomic force microscopy images of nanofibers implicated the surface migration of BSA during the electrospinning of SWNT filled dispersions, especially as greater weight fractions of protein were added to the spinning mixtures. In turn, the PVA/SWNT/BSA nanofibers outperformed the nanotube free PVA/BSA membranes in terms of paraoxon digestion. The results support the development of electrospun polymer nanofiber platforms, modulated by SWNTs for enzyme catalytic applications relevant to soldier protective ensembles. PMID:25007411

  5. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  6. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  7. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  8. Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: A case study on decontamination of organic arsenic in aqueous solutions.

    PubMed

    Zhao, Dandan; Yu, Yang; Wang, Chenghong; Chen, J Paul

    2016-09-01

    Organic arsenic in waters has been a global concern in drinking water due to its higher toxicity to humans. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinylidene fluoride (PVDF) membrane was applied to remove organic arsenic from water. The impregnation of zirconium ions within the modified membrane was attributed to the coordination reactions among the zirconium ions, ether and hydroxyl groups. The synthesized membrane worked better at the acidic conditions and achieved the optimal uptake for both monomethylarsonic (MMA) and dimethylarsinic (DMA) at pH 2.0. The adsorption isotherm study demonstrated that the adsorption of both organic arsenic species was controlled by the mono-layer adsorption process; the maximum adsorption capacities for MMA and DMA were 73.04 and 37.53mg/g at pH 2, and 29.78 and 19.03mg/g at pH 7.0, respectively. The presence of humic acid had a negligible impact on the uptake of organic arsenic, whereas varying impacts on the arsenic adsorption were observed due to the presence of coexisting anions such as fluoride, phosphate, carbonate and silicate. A single piece of membrane with a surface area of only 12.56cm(2) could treat 7.5-L MMA and 4.1-L DMA solution with an influent concentration of about 100μg/L to meet the WHO and USEPA standard of 10μg/L. Based on the XPS analyses, the ion exchange reaction between chloride ions on the membrane surface and organic arsenic species was responsible for the removal of both MMA and DMA. PMID:27267042

  9. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application.

    PubMed

    Fu, Ruoqiu; Li, Chenwen; Yu, Caiping; Xie, Hong; Shi, Sanjun; Li, Zhuoheng; Wang, Qing; Lu, Laichun

    2016-01-01

    This study reports on the performance of sodium alginate (SA)/poly(vinyl alcohol) (PVA)/moxifloxacin hydrochloride (MH) nanofibrous membranes (NFM) capable of providing antibacterial agent delivery for wound-dressing applications. The aim of this work was to prepare antibacterial NFM with good permeability properties by employing PVA and SA as carriers. A group of 12% PVA/2% SA solutions blended in various ratios (8:2, 7:3, 6:4, 5:5 and 4:6, v/v) and containing 0.5, 1, 2 or 4 wt% MH were studied for electrospinning into nanoscale fibermats. The optimum ratio found to form smooth fibers with uniform fibrous features was 6:4. The drug release behavior of the electrospun, the antibacterial effects on Pseudomonas aeruginosa and Staphylococcus aureus and the animal wound dressing capabilities were also investigated. As much as 80% of the MH was released from the electrospun after 10 h of incubation at 37 °C. In addition, the NFM with 0.5 MH exhibited less activity, whereas those with higher concentrations of MH exhibited greater antibacterial effect. Furthermore, the MH-loaded electrospun accelerated the rate of wound dressing compared to other groups. The results of the in vitro and in vivo experiments suggest that MH/PVA/SA nanofibers might be an interesting bioactive wound dressing for clinical applications.

  10. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    NASA Astrophysics Data System (ADS)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  11. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea.

  12. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mahanta, Narahari; Valiyaveettil, Suresh

    2011-11-01

    Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of the surface functionalities, the fibers showed unique ability to adsorb nanoparticles. The extraction studies revealed that the amine and thiol modified PVA NFs showed 90% extraction efficiency for both silver and gold nanoparticles. The thiol and amine functionalized PVA NFs showed maximum adsorption capacities (Qt) towards Au NPs, which were around 79-84 mg g-1. Similarly for Ag NP extraction, amine functionalized PVA NFs showed a value for Qt at 56 mg g-1. Our results highlight that functionalized nanofibers have high extraction efficiency for dissolved nanoparticles in water and can be used for removal of the nanocontaminants from the aqueous environment.Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of

  13. Illumination Dependent Admittance Characteristics of Au/Zinc Acetate Doped Polyvinyl Alcohol (PVA:Zn)/n-Si Schottky Barrier Diodes (SBDs)

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, I.; Aydemir, U.; Altındal, Ş.; Tunç, T.

    2011-12-01

    This study presents the effect of illumination on main electrical parameters of Schottky barrier diode (SBD). The admittance (capacitance-voltage (C-V) and conductance-voltage (G/ω-V)) characteristics of Au/Zinc acetate doped polyvinyl alcohol (PVA:Zn)/n-Si SBD were investigated in dark and under various illumination intensities. Experimental results demonstrate that the C-V plots give a peak due to the illumination induced interface states or electron-hole pairs at metal/semiconductor (M/S) interface. The C-2-V plots were also drawn to determine main electrical parameters such as doping concentration (ND), depletion layer width (WD) and barrier height (ΦB(C-V)) of device. In addition, the voltage dependence Rs values were obtained from C-V and G/ω-V data by using Nicollian and Brews method. In order to obtain the real diode capacitance and conductance, the high frequency (1 MHz) Cm and Gm/w values were corrected for the effect of series resistance. All these observations confirm that both C-V and G/w-V characteristics were strongly affected by illumination.

  14. Vaginal absorption of polyvinyl alcohol in Fischer 344 rats.

    PubMed

    Sanders, J M; Matthews, H B

    1990-03-01

    Polyvinyl alcohol (PVA) is a polymer with a wide range of molecular weights and uses. Recently, low molecular weight formulations of PVA have been used as components of contraceptive products designed for intravaginal administration in human females. Previous studies in animals have determined that little or no absorption of PVA occurs from the gastrointestinal (GI) tract. However, there is some concern that PVA of lower molecular weights might be absorbed across membranes of the reproductive tract. Consequently, this work has investigated the absorption of low molecular weight PVA across biological membranes of the reproductive and GI tracts of Fischer 344 rats. Oral administration of ten consecutive daily doses of 14C PVA resulted in little apparent absorption of the dose from the GI tract. In contrast, intravaginal administration of 14C PVA resulted in increasing concentrations of PVA-derived radioactivity in major tissues following one, three or ten daily doses of the estimated human dose of 3 mg/kg. PVA-derived radioactivity was concentrated mainly in the liver, reaching a peak greater than 1750 ng equivalents/g tissue 24 hours following ten daily doses. Over 300 ng equivalents/g tissue were still present in the liver 30 days following the last dose.

  15. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chuang, L. C.; Kannan, A. M.; Lin, C. W.

    A series of hydrocarbon membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and poly(vinyl pyrrolidone) (PVP) were synthesized and characterized for direct methanol fuel cell (DMFC) applications. Fourier transform infrared (FT-IR) spectra confirm a semi-interpenetrating (SIPN) structure based on a cross-linked PVA/SSA network and penetrating PVP molecular chains. A SIPN membrane with 20% PVP (SIPN-20) exhibits a proton conductivity value comparable to Nafion ® 115 (1.0 × 10 -2 S cm -1 for SIPN-20 and 1.4 × 10 -2 S cm -1 for Nafion ® 115). Specifically, SIPN membranes reveal excellent methanol resistance for both sorption and transport properties. The methanol self-diffusion coefficient through a SIPN-20 membrane conducted by pulsed field-gradient nuclear magnetic resonance (PFG-NMR) technology measures 7.67 × 10 -7 cm 2 s -1, which is about one order of magnitude lower than that of Nafion ® 115. The methanol permeability of SIPN-20 membrane is 5.57 × 10 -8 cm 2 s -1, which is about one and a half order of magnitude lower than Nafion ® 115. The methanol transport behaviors of SIPN-20 and Nafion ® 115 membranes correlate well with their sorption characteristics. Methanol uptake in a SIPN-20 membrane is only half that of Nafion ® 115. An extended study shows that a membrane-electrode assembly (MEA) made of SIPN-20 membrane exhibits a power density comparable to Nafion ® 115 with a significantly higher open current voltage. Accordingly, SIPN membranes with a suitable PVP content are considered good methanol barriers, and suitable for DMFC applications.

  16. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  17. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes.

    PubMed

    Rifici, Simona; D'Angelo, Giovanna; Crupi, Cristina; Branca, Caterina; Conti Nibali, Valeria; Corsaro, Carmelo; Wanderlingh, Ulderico

    2016-02-25

    The effects of hexanol and octanol on the lateral mobility of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayer are investigated by means of pulsed-gradient stimulated-echo NMR spectroscopy. Three distinct diffusions are identified for the DMPC/alcohol systems. They are ascribed to the water, the alcohol, and the lipid. We find that the presence of alcohols promotes the lipid diffusion process both in the liquid and in the interdigitated phases. Furthermore, using the Arrhenius approach, the activation energies are calculated. An explanation in terms of a free volume model, that takes into account also the observed increase of the activation energy in both phases, is proposed. The results obtained here are compared with those presented in our previous work on 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) in order to examine the dependence of the lipid translational diffusion process upon the membrane acyl chain length. A peculiar influence of alcohols on different membranes is found.

  18. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  19. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-06-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I-V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  20. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    NASA Astrophysics Data System (ADS)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  1. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  2. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis

    NASA Astrophysics Data System (ADS)

    Caprarescu, Simona; Radu, Anita-Laura; Purcar, Violeta; Ianchis, Raluca; Sarbu, Andrei; Ghiurea, Marius; Nicolae, Cristian; Modrogan, Cristina; Vaireanu, Danut-Ionel; Périchaud, Alain; Ebrasu, Daniela-Ion

    2015-02-01

    The present paper was aimed at studying the possibility of zinc (Zn) removal from the wastewater discharged from zinc electroplating processes. In order to save industrial and environmental resources, the concentrated solution could be reused after electrodialysis process. A mini-electrodialysis system with three cylindrical compartments and different membranes containing various resins (Purolite A500 and Hypersol-Macronet MN500) was employed, which can be further applied for the treatment of synthetic effluent which contained zinc ions. The electrodialysis system was operated at constant voltage using different concentrations of synthetic solutions of zinc ions, without and with electrolyte recirculation for 1.5 h. The pH and conductivity of solutions were measured before and after the electrodialysis process occurs. Also the removal ratio (Rr) and mass flow (J) of zinc ions, energy consumption (EC) and current efficiency (CE) were determined. It was found that electrodialysis treatment generated a very low conductivity solution, enabling its reuse as rinse water. According to the obtained results when using a membrane pair with higher ion exchange capacity (IEC) the removal ratio is improved (over 80%). The physico-chemical, structural and mechanical properties of prepared membranes were registered, before and after electrodialysis process takes place, by means of complementary analytical techniques, namely, ion-exchange capacity, water content and thickness measurements. Furthermore analysis were also carried out by Fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscopy (ESEM), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS).

  3. Alcohol fermentation of sweet potato. Membrane reactor in enzymatic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-06-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.

  4. Alcohol fermentation of sweet potato. Membrane reactor in enzymic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-01-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.

  5. A novel membrane-less direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  6. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    PubMed

    Padil, Vinod Vellora Thekkae; Černík, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles.

  7. [THE ROLE OF BIOLOGICAL MEMBRANES IN DIFFERENTIAL DIAGNOSTICS OF SALMONELLA AND ACUTE ALCOHOL GASTROENTERITIS].

    PubMed

    Makarov, V K; Makarov, P V

    2015-01-01

    We evaluated the influence of Salmonella infection and alcohol on biological membranes from the content of serum phospholipid fraction known to be a component ofenterocyte membranes. Any change of membrane phospholipid content leads to a change of their blood level. The study included 50 patients with acute alcohol gastroenteritis, 50 ones with salmonella gastroenteritis, and 50 healthy subjects. Both salmonellosis and alcohol caused differently directed changes in biological membranes. The mechanism of diarrhea in patients with salmonella and acute alcohol gastroenteritis is different. Diarrhea associated with alcohol gastroenteritis is due to enhanced viscosity of biomembranes that decreases in salmonella gastroenteritis. It suggests different approaches to the treatment of these conditions. The membrane destruction coefficient below 2 is an additional proof of alcoholic etiology of gastroenteritis whereas its value above 3 confirms the involvement of salmonellosis in pathogenesis of gastroenteritis.

  8. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Alghunaim, Naziha Suliman

    Nanocomposite films of polyvinyl alcohol (PVA) containing constant ratio of both single and multi-wall carbon nanotubes had been obtained by dispersion techniques and were investigated by different techniques. The infrared spectrum confirmed that SWNTs and MWNTs have been covalently related OH and Csbnd C bonds within PVA. The X-ray diffraction indicated lower crystallinity after the addition of carbon nanotubes (CNTs) due to interaction between CNTs and PVA. Transmission electron microscope (TEM) illustrated that SWNTs and MWNTs have been dispersed into PVA polymeric matrix and it wrapped with PVA. The properties of PVA were enhanced by the presence of CNTs. TEM images show uniform distribution of CNTs within PVA and a few broken revealing that CNTs broke aside as opposed to being pulled out from fracture surface which suggests an interfacial bonding between CNTs and PVA. Maximum value of AC conductivity was recorded at higher frequencies. The behavior of both dielectric constant (ɛ‧) and dielectric loss (ɛ″) were decreased when frequency increased related to dipole direction within PVA films to orient toward the applied field. At higher frequencies, the decreasing trend seems nearly stable as compared with lower frequencies related to difficulty of dipole rotation.

  9. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

    PubMed

    Kanimozhi, K; Khaleel Basha, S; Sugantha Kumari, V

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. PMID:26838875

  10. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  11. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions.

  12. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions. PMID:27174848

  13. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    NASA Astrophysics Data System (ADS)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  14. Broadband tuning in a passively Q-switched erbium doped fiber laser (EDFL) via multiwall carbon nanotubes/polyvinyl alcohol (MWCNT/PVA) saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Hassan, S. N. M.; Ahmad, F.; Zulkifli, M. Z.; Harun, S. W.

    2016-04-01

    An MWCNT/PVA-based Q-switched erbium-doped fiber laser (EDFL) that uses a tunable bandpass filter (TBPF) as the wavelength tuning and filtering mechanism to achieve a broadband tuning range is proposed and demonstrated. The tuning range of the generated Q-switched pulses covered a wide wavelength range of 50 nm, which spanned from 1519 nm to 1569 nm and corresponded to the S- and C-band regions. In addition, the lasing and Q-switching operations had low thresholds of 8.9 mW and 22.4 mW respectively. The highest pulse energy of 52.13 nJ was obtained at an output wavelength of 1569 nm, with a corresponding repetition rate of 26.53 kHz and pulse width of 6.10 μs, at the maximum power of 114.8 mW.

  15. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, Qingguo; Zhou, Xue; Zeng, Jinxia; Wang, Jizeng

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the sbnd Cdbnd O group at 1701 cm-1, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  16. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes.

    PubMed

    Wang, Dong; Xu, Weilin; Sun, Gang; Chiou, Bor-Sen

    2011-08-01

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial properties. The covalent attachments of the NDAM as side chains onto the PVA-co-PE polymer backbones were confirmed. The effects of initiator concentrations and ethylene contents in PVA-co-PE polymers on grafting of NDAM were studied. The chain scissions of PVA-co-PE polymers during reactive extrusion were investigated by monitoring changes in the melt torque and FTIR spectra. The NDAM grafted PVA-co-PE polymers were successfully fabricated into hydrophilic nanofibers and nanofibrous membranes with sufficient surface exposure of the grafted NDAM. The hydrophilicity of the PVA-co-PE polymers and the large specific surface area offered by the nanofiber membranes significantly facilitated the chlorine activation process, enhanced the active chlorine contents of the grafted PVA-co-PE nanofiber membranes, and therefore led to their superior antibacterial properties. PMID:21749066

  17. The Dynamic Reinforcement of Polyvinyl Alcohol (PVA) as a Result of Non-equilibrium State of Polymer Supermolecular Structures and their Confinement in Nanofibers

    NASA Astrophysics Data System (ADS)

    Zussman, Eyal; Shaked, Emil; Arinstein, Arkadi

    2009-03-01

    The results of mechanical testing of PVA -based electrospun nanofibers and bulk in static and dynamic modes are presented. An increase in the elastic moduli resulting from sample deformation was observed in both the bulk and as-spun fibers. This increase occurs when the deformation rate exceeds a critical value and can be attributed to the non-equilibrium dynamics of the supermolecular structures of the polymer matrix. That is, the evolution of these supermolecular structures results in an observably extended relaxation time. It is noted that the rate of the modulus increase of the nanofibers is nearly double that of the bulk fibers' rate. This difference can be explained by confinement influence on the polymer matrix of the nanofibers. In addition, the tests revealed that the, Tg, of the nanofiber is noticeably higher than that of bulk specimen. Reinforcing the nanofibrs by cellulose whiskers showing that the dependence of the effective modulus on the whisker concentration has an initial increase that changes to a decrease when the whisker concentration exceeds 2 %. Such behavior can be explained in the framework of an aggregation concept -- when the cluster size reaches that of the fiber diameter (cluster confinement), the whisker distribution becomes inhomogeneous and results in a measurable weakening of the composite.

  18. Alterations in erythrocyte membrane fluidity and Na+/K+ -ATPase activity in chronic alcoholics.

    PubMed

    Maturu, Paramahamsa; Vaddi, Damodara Reddy; Pannuru, Padmavathi; Nallanchakravarthula, Varadacharyulu

    2010-06-01

    Ethanol disorders biological membranes causing perturbations in the bilayer and also by altering the physicochemical properties of membrane lipids. But, chronic alcohol consumption also increases nitric oxide (NO) production. There was no systemic study was done related to alcohol-induced production of NO and consequent formation of peroxynitrite mediated changes in biophysical and biochemical properties, structure, composition, integrity and function of erythrocyte membranes in chronic alcoholics. Hence, keeping all these conditions in mind the present study was undertaken to investigate the role of over produced nitric oxide on red cell membrane physicochemical properties in chronic alcoholics. Human male volunteers aged 44 +/- 6 years with similar dietary habits were divided into two groups, namely nonalcoholic controls and chronic alcoholics (~125 g of alcohol at least five times per week for the past 10-12 years). Elevated nitrite and nitrate levels in plasma and lysate, changes in erythrocyte membrane individual phospholipid composition, increased lipid peroxidation, protein carbonyls, cholesterol and phospholipids ratio (C/P ratio) and anisotropic value (gamma) with decreased sulfhydryl groups and Na(+)/K(+)-ATPase activity in alcoholics was evident from this study. RBC lysate NO was positively correlated with C/P ratio (r = 0.547) and anisotropic (gamma) value (r = 0.428), Na(+)/K(+)-ATPase activity was negatively correlated with RBC lysate NO (r = -0.372) and anisotropic (gamma) value (r = -0.624) in alcoholics. Alcohol-induced overproduction of nitric oxide reacts with superoxide radicals to produce peroxynitrite, which appears to be responsible for changes in erythrocyte membrane lipids and the activity of Na(+)/K(+)-ATPase.

  19. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution.

    PubMed

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-12-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied. PMID:27644240

  20. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-09-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (Δ H°) and entropy (Δ S°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  1. Retardation Measurements of Infrared PVA Wave plate

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Z, H.; W, D.; D, Y.; Z, Z.; S, J.

    The wave plate made of Polyvinyl Alcohol PVA plastic film has several advantages such as its lower cost and insensitivity to temperature and incidence angle so it has been used in the Solar Multi-Channel Telescope SMCT in China But the important parameter retardations of PVA wave plates in the near infrared wavelength have never been provided In this paper a convenient and high precise instrument to get the retardations of discrete wavelengths or a continuous function of wavelength in near infrared is developed In this method the retardations of wave plates have been determined through calculating the maximum and minimum of light intensity The instrument error has been shown Additionally we can get the continuous direction of wavelength retardations in the ultraviolet visible or infrared spectral in another way

  2. A therapeutic TDS patch of Metformin from a HPMC-PVA blend studied with a biological membrane of fish-swim bladder: An approach for dermal application in NIDDM.

    PubMed

    Shaheen, Sharif Mohammad; Jahan, Lubna; Ferdaus, Rahat

    2015-09-01

    In order to introduce an easily applicable, removable, painless and long-term drug delivery system for non-insulin dependent diabetes mellitus (NIDDM), hydroxyl propyl methyl cellulose with polyvinyl alcohol (HPMC-PVA) blend patches of metormin HCl were evaluated in vitro and in vivo. A suitable patch of metformin 800 mg with HPMC-PVA blend were used, following a three cycle freeze-thaw technique. Drug release kinetic profiles were performed in both patch and swim bladder. Albino mice were artificially generated as NIDDM mice by alloxan insertion i.p and after then treated with the therapeutic patch. Blood glucose was estimated by commercially available glucose kit based on glucose oxidase method. Drug release parameters from the patch and swim bladder were typical non-Fickian diffusion and both have the same kinetic constant, revealing its possible diffusion through stratum corneum. Hypoglycemia was observed in treatment of normal mice with TDDS of metformin HCl within 4 hours i.e. 25 ± 2.13 mg/dl and within 16 hours in diabetic rats blood glucose level returned to normal level i.e. from 360 ± 3.3 mg/dl (NIDDM level) to 105 ± 2.5 mg/dl (Normal level). The TDS-patch has got the same kinetic simulation with that of swim-bladder, which might be a prediction for in vivo application. Here metformin was delivered to diabetic mice and has got significant anti-diabetic effect can be considered as a kind of patch for NIDDM just like wearing and taking off a hand watch because hypoglycaemia can be removed by just taking off the patch.

  3. A therapeutic TDS patch of Metformin from a HPMC-PVA blend studied with a biological membrane of fish-swim bladder: An approach for dermal application in NIDDM.

    PubMed

    Shaheen, Sharif Mohammad; Jahan, Lubna; Ferdaus, Rahat

    2015-09-01

    In order to introduce an easily applicable, removable, painless and long-term drug delivery system for non-insulin dependent diabetes mellitus (NIDDM), hydroxyl propyl methyl cellulose with polyvinyl alcohol (HPMC-PVA) blend patches of metormin HCl were evaluated in vitro and in vivo. A suitable patch of metformin 800 mg with HPMC-PVA blend were used, following a three cycle freeze-thaw technique. Drug release kinetic profiles were performed in both patch and swim bladder. Albino mice were artificially generated as NIDDM mice by alloxan insertion i.p and after then treated with the therapeutic patch. Blood glucose was estimated by commercially available glucose kit based on glucose oxidase method. Drug release parameters from the patch and swim bladder were typical non-Fickian diffusion and both have the same kinetic constant, revealing its possible diffusion through stratum corneum. Hypoglycemia was observed in treatment of normal mice with TDDS of metformin HCl within 4 hours i.e. 25 ± 2.13 mg/dl and within 16 hours in diabetic rats blood glucose level returned to normal level i.e. from 360 ± 3.3 mg/dl (NIDDM level) to 105 ± 2.5 mg/dl (Normal level). The TDS-patch has got the same kinetic simulation with that of swim-bladder, which might be a prediction for in vivo application. Here metformin was delivered to diabetic mice and has got significant anti-diabetic effect can be considered as a kind of patch for NIDDM just like wearing and taking off a hand watch because hypoglycaemia can be removed by just taking off the patch. PMID:26408881

  4. Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes.

    PubMed

    Almeida, L M; Vaz, W L; Stümpel, J; Madeira, V M

    1986-08-26

    Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane, differential scanning calorimetry, and X-ray diffraction were used to assess the effect of ethanol, 1-butanol, and 1-hexanol on the bilayer organization in model membranes, sarcoplasmic reticulum (SR) lipids and native SR membranes. These alcohols have fluidizing effects on membranes and lower the main transition temperature of dimyristoylphosphatidylcholine (DMPC), but only 1-hexanol alters the cooperativity of the phase transition and significantly increases the thickness of DMPC bilayers. The interaction of the three alcohols with the SR Ca2+ pump was also investigated. Hydrolysis of ATP and coupled Ca2+ uptake are differently sensitive to the three alcohols. Whereas ethanol and 1-butanol inhibited the Ca2+ uptake, 1-hexanol stimulated it. Nevertheless, the energetic efficiency of the pump (Ca2+/ATP) is not significantly affected by ethanol or 1-hexanol, but uncoupling was observed with 1-butanol at high concentrations. The different effects of alcohols on the activity of SR membranes rule out an unitary mechanism of action on the basis of fluidity changes induced in the lipid bilayer. Depending on the chain length, the alcohols interact with the SR membranes in different domains, perturbing differently the Ca2+-pump activity.

  5. Holographic characterization of DYE-PVA films studied at 442 nm for optical elements fabrication

    NASA Astrophysics Data System (ADS)

    Couture, Jean J.

    1991-12-01

    The present work is an experimental study of the speed of hologram recording in dichromated polyvinyl alcohol films (DC-PVA) and DYE-DC-PVA films. Real-time recordings give high diffraction efficiency and low signal-to-noise ratio holograms without any chemical development. The dyes studied here are MALACHITE GREEN, EOSIN Y, and ROSE BENGAL introduced in DC-PVA films having a thickness of 60 - 62 micrometers . The best of these DYE-DC-PVA systems is a good candidate for holographic optical elements fabrication.

  6. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  7. A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance.

    PubMed

    Deng, Yu-Heng; Chen, Jung-Tsai; Chang, Chia-Hao; Liao, Kuo-Sung; Tung, Kuo-Lun; Price, William E; Yamauchi, Yusuke; Wu, Kevin C-W

    2016-10-01

    Despite much progress in the development of mixed matrix membranes (MMMs) for many advanced applications, the synthesis of MMMs without particle agglomeration or phase separation at high nanofiller loadings is still challenging. In this work, we synthesized nanoporous zeolitic imidazole framework (ZIF-8) nanoparticles with a particle size of 60 nm and a pore size of 0.34 nm in water and directly added them into an aqueous solution of the organic polymer poly(vinyl alcohol) (PVA) without an intermediate drying process. This approach led to a high-quality PVA/ZIF-8 MMM with enhanced performance in ethanol dehydration by pervaporation. The permeability of this MMM is three times higher than that of pristine PVA, and the separation factor is nearly nine times larger than that of pristine PVA. The significantly improved separation performance was attributed to the increase in the fractional free volume in the membranes. PMID:27619343

  8. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    PubMed

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells.

  9. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies.

    PubMed

    Alexandre, Nuno; Ribeiro, Jorge; Gärtner, Andrea; Pereira, Tiago; Amorim, Irina; Fragoso, João; Lopes, Ascensão; Fernandes, João; Costa, Elísio; Santos-Silva, Alice; Rodrigues, Miguel; Santos, José Domingos; Maurício, Ana Colette; Luís, Ana Lúcia

    2014-12-01

    Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.

  10. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  11. Spectral studies of Donepezil release from streched PVA polymer films

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen-Beatrice; Stoica, Iuliana; Closca, Valentina; Dorohoi, Dana-Ortansa

    2013-07-01

    The focus of this research is to obtain poly vinyl alcohol (PVA) polymer foils containing Donepezil in different concentration, in order to be used in controlled drug release as a palliative treatment of mild to moderate Alzheimer's disease. The influence of polymeric foil stretching degree on drug release was analyzed using spectral measurements.

  12. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes.

    PubMed

    Liu, Xin; Lin, Tong; Fang, Jian; Yao, Gang; Zhao, Hongqiong; Dodson, Michael; Wang, Xungai

    2010-08-01

    In this work, nanofibre membranes have been produced from polyvinyl alcohol (PVA), polycaprolactone (PCL), polyacrylonitrile (PAN), poly (vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), and polymer blend of PAN and polyurethane (PEU) using an electrospinning technique, and wound healing performance of the as-spun nanofibre membranes was examined in vivo using female Sprague-Dawley rats. To understand the nutrition effect, a wool protein was coated on PVA and PCL nanofibres and incorporated into PVA nanofibres via coelectrospinning of a PVA solution containing the wool protein. Silver nanoparticles were also applied to PVA nanofibres to improve antibacterial activity. It was found that the wound healing performance is mainly influenced by the porosity, air permeability, and surface wettability of the nanofibre membranes. A nanofibre membrane with good hydrophilicity and high porosity considerably facilitates the healing of wound especially at the early healing stage. However, the fiber diameter and antibacterial activity have little effect on the wound healing efficiency. As pores in nanofibre membranes are typically smaller than that of conventional cotton gauze, the nanofibre membrane should be able to decontaminate and prevent exogenous infections via sieve effect. This work provides basic understanding of material structure-property relationship for further design of efficient nanofibre-based wound dressing materials. PMID:20186775

  13. Synthesis of silicalite-poly(furfuryl alcohol) composite membranes for oxygen enrichment from air

    PubMed Central

    2011-01-01

    Silicalite-poly(furfuryl alcohol) [PFA] composite membranes were prepared by solution casting of silicalite-furfuryl alcohol [FA] suspension on a porous polysulfone substrate and subsequent in situ polymerization of FA. X-ray diffraction, nitrogen sorption, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to characterize silicalite nanocrystals and silicalite-PFA composite membranes. The silicalite-PFA composite membrane with 20 wt.% silicalite loading exhibits good oxygen/nitrogen selectivity (4.15) and high oxygen permeability (1,132.6 Barrers) at 50°C. Silicalite-PFA composite membranes are promising for the production of oxygen-enriched air for various applications. PMID:22209012

  14. Effect of wheatgrass on membrane fatty acid composition during hepatotoxicity induced by alcohol and heated PUFA.

    PubMed

    Durairaj, Varalakshmi; Shakya, Garima; Pajaniradje, Sankar; Rajagopalan, Rukkumani

    2014-06-01

    Alcoholism is a broad term used for problems related to alcohol, medically considered as disease, specifically an addictive illness, abuse, and dependence. It is the major cause of liver disease in western countries. Alcoholic liver disease encompasses the hepatic alterations leading to fatty liver, hepatitis, and fibrosis or cirrhosis. Fried food items prepared with repeatedly heated polyunsaturated fatty acid (PUFA) exacerbate the disturbances induced by alcohol. The use of herbs to treat diseases is almost universal. Wheatgrass (WG) is used as a supplemental nutrition because of its unique curative properties. As it has antioxidant property, it prevents cancer, diabetes, and acts as liver cleanser. The present study was undertaken to evaluate the efficacy of WG on preserving membrane integrity in liver damage induced by alcohol and heated PUFA (ΔPUFA).The rats were divided into four groups. The animals in group 1 served as normal (standard diet), group 2 served as hepatotoxic (alcohol + ΔPUFA), group 3 served as treated (alcohol + ΔPUFA + WG), and group 4 served as WG control. The compositions of membrane fatty acid, total phospholipids, phospholipase A, C (PLA and PLC) were analyzed in liver to evaluate the effects of WG. Changes in fatty acid composition, decrease in phospholipids levels, and increase in PLA, PLC were observed in the diseased group. Restoration effect was seen in WG-treated rats. Histopathological observations were in correlation with the biochemical parameters. From the results obtained, we conclude that WG effectively protects the liver against alcohol and ΔPUFA-induced changes in fatty acid composition and preserves membrane integrity. PMID:24706101

  15. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia.

    PubMed

    Machta, Benjamin B; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L C; Gray, Erin M; Miller, Ann L; Brooks, Nicholas J; Veatch, Sarah L

    2016-08-01

    Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia. PMID:27508437

  16. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin B.; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L. C.; Gray, Erin M.; Miller, Ann L.; Brooks, Nicholas J.; Veatch, Sarah L.

    2016-08-01

    Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that $\\Delta T_c$ predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.

  17. DEHYDRATION OF ALCOHOLS VIA PREVAPORATION USING A NOVEL HYDROPHILIC MEMBRANE

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a suitable membrane system with high flux and high selectivity plays a criti...

  18. DEHYDRATION OF ALCOHOLS VIA PERVAPORATION USING A NOVEL HYDROHILIC MEMBRANE

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a suitable membrane system with high flux and high selectivity plays a criti...

  19. Determination of mechanical and hydraulic properties of PVA hydrogels.

    PubMed

    Kazimierska-Drobny, Katarzyna; El Fray, Miroslawa; Kaczmarek, Mariusz

    2015-03-01

    In this paper the identification of mechanical and hydraulic parameters of poly(vinyl alcohol) (PVA) hydrogels is described. The identification method follows the solution of inverse problem using experimental data from the unconfined compression test and the poroelastic creep model. The sensitivity analysis of the model shows significant dependence of the creep curves on investigated parameters. The hydrogels containing 22% PVA and 25% PVA were tested giving: the drained Youngs modulus of 0.71 and 0.9MPa; the drained Poisson's ratio of 0.18 and 0.31; and the permeability of 3.64·10(-15) and 3.29·10(15)m(4)/Ns, respectively. The values of undrained Youngs modulus were determined by measuring short period deformation of samples in the unconfined tests. A discussion on obtained results is presented.

  20. Preparation and Characterization of Palm Leaf Incorporated Polyvinyl Alcohol Bio Composites

    NASA Astrophysics Data System (ADS)

    Patel, Arunendra Kumar; Bajpai, Rakesh; Keller, J. M.; Saha, Abhijit

    2011-12-01

    The Bio Composites of palm leaf (PL) incorporated polyvinyl alcohol (PVA) has been prepared using solution cast technique. Structural and microhardness properties of pure PVA and PL filled PVA Bio Composites has been determined by using FTIR and Vicker's indentation techniquque respectively. The FTIR analysis reveals the presence of PL moieties in PVA, which indicates the good compatibility between PL and PVA. The values of microhardness increases in all composition of PL incorporated PVA films as compared to the pure PVA. This increment in the microhardness is attributed to the excellent binding of PL into PVA.

  1. The self-diffusion of water and saturated aliphatic alcohols in cation-exchange membranes

    NASA Astrophysics Data System (ADS)

    Volkov, V. I.; Kotov, V. V.; Netesova, G. A.

    2008-07-01

    The self-diffusion of water, methanol, ethanol, isopropanol, and butanol in membranes based on polyethylene and sulfonated copolymer of styrene and divinylbenzene (MK-100) and membranes based on sulfo-containing aromatic polyamides (PA) and a copolymer of 1,2,4,5-benzenetetracarboxylic acid with 4,4'-diaminodiphenyl oxide (PAK) was investigated by the pulsed magnetic field gradient NMR technique. In MK-100 sulfo cation-exchange membranes and PAK carboxylic membranes, two types of sorbate molecules with translational mobilities differing by an order of magnitude were observed. It was established that, in these membranes, the major diffusant portion was transferred trough transport channels formed by functional groups of membranes, counterions, and diffusant molecules (ionogenic channels). The conclusion was drawn that, in PA membranes, water and alcohol molecules were distributed uniformly and carbonyl croups of the polymeric matrix participated in the formation of transport channels. Relations between the structure of membranes, the character of diffusant-polymeric matrix interaction, and the translational mobility of sorbate molecules were found.

  2. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  3. Free-standing gallium nitride membrane-based sensor for the impedimetric detection of alcohols

    NASA Astrophysics Data System (ADS)

    Alifragis, Y.; Roussos, G.; Pantazis, A. K.; Konstantinidis, G.; Chaniotakis, N.

    2016-02-01

    We report on the fabrication and characterization of single-crystal Gallium Nitride (GaN) membrane organic gas sensor. The sensing device is based on the highly stable free-standing III-nitride membrane, and it is probed using non-destructive impedance spectroscopy. Monitoring the effect of a series of polar organic molecules on the electrochemical impedance spectrum of the sensing membrane in the frequency range of 1 mHz to 0.1 MHz at room temperature, we concluded that the sensor is highly sensitive to alcohols, in the gas phase, with selectivity that depends on the molecular weight and vapor pressure of the molecules. The highly robust and stable GaN crystalline membrane and the ability to test these sensors using impedance spectroscopy and electrochemical probing techniques suggest that single crystal GaN-based sensors can find a wide range of applications in harsh and extreme environments.

  4. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  5. Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane.

    PubMed

    Khan, Mohammad Mujahid Ali; Rafiuddin; Inamuddin

    2013-05-01

    The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl

  6. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  7. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. PMID:27267574

  8. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    PubMed

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA.

  9. Microstructure characteristics of concrete incorporating metakaolin and PVA fibers and influence on the compressive strength

    NASA Astrophysics Data System (ADS)

    Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2015-07-01

    In this paper, microstructure of concrete is investigated using metakaolin (MK) as cement replacing material and Polyvinyl Alcohol (PVA) fibers. Total ten (10) mixes of concrete are examined by varying PVA fiber aspect ratio. It was found that MK refines the pore structure, improves interfacial transition zone (ITZ) due to its pozzolanic effects, reduces portlandite (Ca(OH)2) content and bridges the gap between matrix and aggregates due to finer particle size. Due to improvement in ITZ, the compressive strength was improved. There was no indication of Ca(OH)2 around the PVA fibers in the presence of MK and the interface between the fiber and matrix was observed very narrow.

  10. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  11. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis.

    PubMed

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis.

  12. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  13. PVA/K2Ti6O13 synthetic composite for dielectric applications

    NASA Astrophysics Data System (ADS)

    Pandey, Mayank; Joshi, Girish M.; Khutia, Moumita; Rao, N. Madhusudhana; Kaleemulla, S.; Ramesh Kumar, C.; Cuberes, M. Teresa

    2016-05-01

    We demonstrated the preparation of polyvinyl alcohol (PVA) /Potassium titanate (K2Ti6O13) synthetic composite by solution blending. The loading of K2Ti6O13 well dispersed in PVA and improved electrical performance. The dielectric constant and loss as a function of temperature were recorded under frequency (200Hz-1 kHz). The real dielectric constant value obtained is (ɛ=1000) feasible for various electronic and non-conventional energy applications.

  14. A new fabrication route for PVA/graphene platelets composites with enhanced functionalities

    NASA Astrophysics Data System (ADS)

    Lavecchia, Teresa; Tamburri, Emanuela; Angjellari, Mariglen; Savi, Damiano; Terranova, Maria Letizia

    2016-05-01

    This work deals with the synthesis and characterization of composites made of poly(vinyl alcohol) (PVA) and oxidized graphene platelets obtained from an ad hoc treatment of graphite. The composite is produced by a modified solution mixing procedure in which the in situ crosslinking of PVA with maleic anhydride has been carried out in the presence of the carbon filler. A complete characterization of the material is presented carried out by SEM, DTGA, Raman spectroscopy and I-V characteristics analysis.

  15. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  16. Role of phospholipids in destabilization of lysosomal membranes in chronic alcohol poisoning

    SciTech Connect

    Tadevosyan, Y.V.; Batikyan, T.B.; Gevorkyan, G.A.; Karagezyan, K.G.

    1986-04-01

    The aim of this investigation was to study changes in the phospholipids (PL) spectrum and possible activity of membrane-bound phospholipase A/sub 2/ in lysosomal membranes from albino rat liver under conditions of the normally metabolizing tissue and during long-term alcohol poisoning. Changes in stability of the lysosomal membranes were determined by measuring nonsedimented acid phosphatase (AP) activity. The substance 1-acyl-2-(1-/sup 14/C)-oleoyl-phosphatidyl-choline (/sup 14/C-PCh) was synthesized by an enzymic method. Phospholipase A/sub 2/ activity was determined in an incubation medium of Tris-Maleate buffer containing 20 nanomoles (/sup 14/C)-PCH, 8 mM CaC1/sub 2/, and about 100 micrograms protein.

  17. Chronic alcohol consumption augments loss of sialic acid residues and alters erythrocyte membrane charge in type II diabetic patients.

    PubMed

    Degirmenci, Serkan; Akalin, Aysen; Kartkaya, Kazim; Kanbak, Güngör

    2008-01-01

    In this study, the effects of alcohol consumption on erythrocyte membrane properties in type 2 diabetic patients were investigated. Therefore, we measured total and lipid-bound sialic acid (LSA) levels, sialidase activities, and erythrocyte membrane negative charge. Three groups, including control group (n = 20), alcohol-consuming diabetic patients group (n = 14), and diabetic patients without alcohol consumption group (n = 42), were created. Plasma total sialic acid (TSA) levels of the alcohol-consuming diabetic group were elevated as compared to the healthy control and diabetic group (p < 0.001 and p < 0.01, respectively). TSA levels of the diabetic group were significantly elevated as compared to the healthy control group (p > 0.001). Plasma LSA levels of the alcohol-consuming diabetic group were higher than that in the healthy control and diabetic group (p < 0.05 and p < 0.05, respectively). LSA levels of the diabetic group were found to be high as compared to the healthy control group (p < 0.05). Plasma sialidase activities of the alcohol-consuming diabetic group and diabetic group were significantly elevated as compared to the healthy control group (p < 0.05 and p < 0.05, respectively). Sialidase activities of the alcohol-consuming diabetic group were elevated as compared to the diabetic group, but this was not statistically significant (p > 0.05). Erythrocyte membrane negativity levels of the alcohol-consuming diabetic group and diabetic group were significantly decreased (p < 0.001 and p < 0.001, respectively) as compared to the healthy control group. Erythrocyte membrane negativity levels of the alcohol-consuming diabetic group were decreased as compared to the diabetic group, but this was not statistically significant (p > 0.05). In conclusion, our results indicate that chronic alcohol consumption may augment membrane alterations in type 2 diabetic patients.

  18. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    PubMed

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. PMID:27236420

  19. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  20. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  1. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume.

  2. Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite.

    PubMed

    Sandeman, Susan R; Gun'ko, Vladimir M; Bakalinska, Olga M; Howell, Carol A; Zheng, Yishan; Kartel, Mykola T; Phillips, Gary J; Mikhalovsky, Sergey V

    2011-06-15

    The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume. PMID:21457992

  3. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.

    PubMed

    Hakalahti, Minna; Salminen, Arto; Seppälä, Jukka; Tammelin, Tekla; Hänninen, Tuomas

    2015-08-01

    TEMPO/NaClO2 oxidized cellulosic nanofibrils (TCNF) were covalently bonded with poly(vinyl alcohol) (PVA) to render water stable films. Pure TCNF films and TCNF-PVA films in dry state showed similar humidity dependent behavior in the elastic region. However, in wet films PVA had a significant effect on stability and mechanical characteristics of the films. When soaked in water, pure TCNF films exhibited strong swelling behavior and poor wet strength, whereas covalently bridged TCNF-PVA composite films remained intact and could easily be handled even after 24h of soaking. Wet tensile strength of the films was considerably enhanced with only 10 wt% PVA addition. At 25% PVA concentration wet tensile strengths were decreased and films were more yielding. This behavior is attributed to the ability of PVA to reinforce and plasticize TCNF-based films. The developed approach is a simple and straightforward method to produce TCNF films that are stable in wet conditions.

  4. Soft X-ray induced modifications of PVA-based microbubbles in aqueous environment: a microspectroscopy study.

    PubMed

    Tzvetkov, George; Fernandes, Paulo; Wenzel, Stephan; Fery, Andreas; Paradossi, Gaio; Fink, Rainer H

    2009-02-21

    We use scanning-transmission X-ray microspectroscopy (STXM) for in situ characterization of the physicochemical changes in air-filled poly(vinyl alcohol) (PVA) based microbubbles upon soft X-ray irradiation. The microbubbles were illuminated directly in aqueous suspension with 520 eV X-rays and a continuous shrinkage of the particles with an illumination time/radiation dose was observed. Utilizing the intrinsic absorption properties of the species and the high spatial resolution of the STXM, the modifications of the particles' structure were simultaneously recognized. A thorough characterization of the microbubble volume, membrane thickness and absorption coefficient was performed by quantitative fitting of the radial transmittance profiles of the targeted microbubbles. Apart from the observed volume contraction, there was no significant change in the shell thickness. The chemical changes in the membranes were clarified via C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was revealed that the observed structural alterations go along with a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds.

  5. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  6. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension.

  7. Drying of the silica/PVA suspension: effect of suspension microstructure.

    PubMed

    Kim, Sunhyung; Sung, Jun Hee; Ahn, Kyung Hyun; Lee, Seung Jong

    2009-06-01

    The particle/polymer/solvent suspension system shows complicated microstructure. When the suspension system experiences an industrial process such as coating and drying, the system experiences microstructural change. In this study, we investigated the microstructural change during the drying of a silica/polyvinyl alcohol (PVA) suspension, with an emphasis on suspension stability. We controlled the amount of PVA adsorption on the silica surface by adjusting the pH (1.5, 3.6, and 9) of the silica/PVA suspension. The amount of adsorption was measured to increase with decreasing pH, and the degree of flocculation in the silica/PVA suspension became stronger with decreasing pH. However, through the measurement of stress development during drying and the observation of film microstructure after drying, we found that the more strongly flocculated suspension became a more disperse, close-packed film after drying. By evaluating the potential energy, we could suggest the role of adsorbed polymers in structural change during the drying of the silica/PVA suspension. As pH decreases, the adsorbed polymers could bridge the particles and lead to a flocculated suspension before drying. As the solvent evaporates during drying, the adsorbed polymers introduce steric repulsion between approaching particles, leading to a change from flocculated to dispersed microstructure. This implies that the required silica/PVA film performance and the microstructure of the silica/PVA suspension can be tailored through controlling the polymer adsorption in suspension. PMID:19466778

  8. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  9. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  10. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-12-01

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements. PMID:25329452

  11. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  12. Micro structural studies of PVA doped with metal oxide nanocomposites films

    SciTech Connect

    Kumar, N. B. Rithin; Crasta, Vincent Viju, F.; Praveen, B. M.; Shreeprakash, B.

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  13. Fabrication and photocatalytic performance of electrospun PVA/silk/TiO2 nanocomposite textile

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chan, Shun-Hsiang; Lin, Ting-Han

    2015-02-01

    Many organic/inorganic nanocomposites have been fabricated into fibrous materials using electrospinning techniques, because electrospinning processes have many attractive advantages and the ability to produce relatively large-scale continuous films. In this study, the polyvinyl alcohol (PVA)/silk/titanium dioxide (TiO2) nanocomposite self-cleaning textiles were successfully produced using electrospinning technique. After optimizing electrospinning conditions, we successfully obtained the PVA/silk/TiO2 nanocomposite fibers with average diameter of ˜220 nm and TiO2 concentration can be as high as 18.0 wt.%. For the case of the PVA/silk/TiO2 nanocomposite textile, the color of brilliant green coated on the textile surface changed from the initial green color to colorless after ultraviolet (UV) irradiation. Because of its worthy photocatalytic performance, the developed PVA/silk/TiO2 nanocomposite materials in this study will be beneficial for the design and fabrication of multifunctional fibers and textiles.

  14. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  15. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  16. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  17. Enhanced Mechanical Properties in PVA/SWNT Composite Fibers

    NASA Astrophysics Data System (ADS)

    Sampson, William; Dalton, Alan

    2005-03-01

    Composite fibers of polyvinyl alcohol (PVA) and HiPco Single Walled Carbon Nanotubes (SWNT) have been developed at The University of Texas at Dallas that show greatly enhanced mechanical properties, with typical strengths of 1.8GPa and toughness in excess of that of spider silk, making these the toughest known fibers to date. However, the exact interactions leading to the enhanced mechanical properties are not as yet fully understood. We have used a series of Raman and DSC experiments to discover the nature of the strength-enhancing interactions in these composite materials. The results lead to the conclusion that the bulk of the improvements are due to SWNT-nucleated PVA crystallinity, with the SWNTs playing less of a direct role than we originally thought.

  18. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  19. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    PubMed

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. PMID:27474641

  20. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  1. Stimulation of mono-ADP ribosylation in rat liver plasma membranes after long-term alcohol intake.

    PubMed

    Nomura, F; Noda, M

    1993-10-01

    ADP ribosylation is considered one of the important covalent modifications of cellular proteins catalyzed by ADP ribosyltransferase, which transfers ADP ribose moiety of NAD to an acceptor protein. Because a growing body of evidence has suggested significant biological roles for mono-ADP ribosylations in transmembrane signal transduction and other cell metabolism, how alcohol intake alters them is of interest. Cholera toxin and pertussis toxin have been widely used as probes to investigate the roles of GTP-binding proteins (G-proteins) in the transduction of hormonal and sensory signals. We first tested effects of long-term alcohol intake on these toxin-catalyzed ADP ribosylations of G-proteins in rat liver plasma membranes. Treatment of rat liver plasma membrane with [32P]NAD and thiol-preactivated cholera toxin resulted in the labeling of a 44-kD band, most likely an alpha-subunit of the stimulatory GTP-binding protein, the extent of which was much greater in alcohol-fed rats than in pair-fed controls. Analogous experiments with pertussis toxin also demonstrated enhancement of toxin-catalyzed ADP ribosylation of the inhibitory GTP-binding protein after long-term alcohol intake. More interesting was that long-term alcohol intake remarkably stimulated endogenous mono-ADP ribosylation of a 58-kD protein in a GTP-dependent manner. In vitro, ethanol (50 mmol/L) or a single load of ethanol (3 gm/kg) did not stimulate the reaction. Thus long-term alcohol intake stimulated both toxin-catalyzed and endogenous mono-ADP ribosylations of proteins in rat liver plasma membranes. Pursuit of alcohol interaction with mono-ADP ribosylation may provide an interesting approach to the study of alcohol's effects on the liver.

  2. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  3. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival.

  4. Transarterial Embolization for Hepatocellular Carcinoma: A Comparison between Nonspherical PVA and Microspheres.

    PubMed

    Scaffaro, Leandro Armani; Kruel, Cleber Dario Pinto; Stella, Steffan Frosi; Gravina, Gabriela Leal; Machado Filho, Geraldo; Borges de Almeida, Carlos Podalirio; Pinto, Luiz Cezar Pontes Fonseca; Alvares-da-Silva, Mario Reis; Kruel, Cleber Rosito Pinto

    2015-01-01

    Transarterial chemoembolization (TACE) and transarterial embolization (TAE) have improved the survival rates of patients with unresectable hepatocellular carcinoma (HCC); however, the optimal TACE/TAE embolic agent has not yet been identified. The aim of this study was to compare the effect of two different embolic agents such as microspheres (ME) and polyvinyl alcohol (PVA) on survival, tumor response, and complications in patients with HCC submitted to transarterial embolization (TAE). Eighty HCC patients who underwent TAE between June 2008 and December 2012 at a single center were retrospectively studied. A total of 48 and 32 patients were treated with PVA and ME, respectively. There were no significant differences in survival (P = 0.679) or tumoral response (P = 0.369) between groups (PVA or ME). Overall survival rates at 12, 18, 24, 36, and 48 months were 97.9, 88.8, 78.9, 53.4, and 21.4% in the PVA-TAE group and 100, 92.9, 76.6, 58.8, and 58% in the ME-TAE group (P = 0.734). Patients submitted to TAE with ME presented postembolization syndrome more frequently when compared with the PVA group (P = 0.02). According to our cohort, the choice of ME or PVA as embolizing agent had no significant impact on overall survival. PMID:26413523

  5. Effects of PVA-coated nanoparticles on human T helper cell activity.

    PubMed

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. PMID:26774940

  6. Livestock Air Treatment Using PVA-Coated Powdered Activated Carbon Biofilter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ideal biofilter media provide surface for attachment of microorganisms responsible for removing air-born contaminants while facilitating passage of air. This study evaluated the efficacy of polyvinyl alcohol (PVA)-coated powdered activated carbon particles as a biofiltration medium. This material e...

  7. A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    PubMed Central

    Karadelis, John N.; Lin, Yougui

    2015-01-01

    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6]. PMID:26306313

  8. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater. PMID:26257347

  9. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    PubMed

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  10. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA. PMID:23323416

  11. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  12. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  13. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery.

  14. Comparative bio-safety and in vivo evaluation of native or modified locust bean gum-PVA IPN microspheres.

    PubMed

    Kaity, Santanu; Ghosh, Animesh

    2015-01-01

    Strategically developed natural polymer-based controlled release multiparticulate drug delivery systems have gained special interest for “spatial placement” and “temporal delivery” of drug molecules. In our earlier study, locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (LBG-PVA IPN), carboxymethylated locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (CMLBG-PVA IPN) and acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network (Am-g-LBG-PVA IPN) were prepared and characterized. The present study deals with accelerating stability testing, comparative bio-safety and single dose in vivo pharmacokinetic study of all three IPN microspheres for controlled oral delivery of buflomedil hydrochloride (BH). From the stability study, it was observed that the particles were stable throughout the study period. From toxicity and biodegradability study it was proved that the microspheres were safe for internal use and complied with bio-safety criterion. From the in vivo pharmacokinetic study in rabbits, it was observed that the CMLBG-PVA IPN microspheres possessed almost similar Tmax value with BH oral suspension. However, in comparison between the LBG-PVA and Am-g-LBG-PVA IPN microspheres, the later showed well controlled release property than the first in biological condition. Thus, this type of delivery system might be useful to achieve the lofty goals of the controlled release drug delivery. PMID:25307127

  15. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings.

    PubMed

    Fan, Lihong; Yang, Huan; Yang, Jing; Peng, Min; Hu, Jin

    2016-08-01

    Chitosan (CS)/gelatin (Gel)/polyvinyl alcohol (PVA) hydrogels were prepared by the gamma irradiation method for usage in wound dressing applications. Chitosan and gelatin solution was mixed with poly(vinyl alcohol) (PVA) solution at different weight ratios of CS/Gel of 1:3, 1:2, 1:1, 2:1 and 3:1. The hydrogels irradiated at 40kGy. The structure of the hydrogels was characterized by using FT-IR and SEM. The CS/Gel/PVA hydrogels were characterized for physical properties and blood clotting activity. The tensile strength of CS/Gel/PVA hydrogel enhanced than on the basis of the Gel/PVA hydrogel. The highest tensile strength reached the 2.2Mpa. All hydrogels have shown a good coagulation effect. It takes only 5min for the BCI index to reached 0.032 only 5min when the weight ratio of CS/Gel was 1:1. It means that the hemostatic effect of hydrogels were optimal. And the hydrogrls also showed good pH-sensitivity, swelling ability and water evaporation rate. Therefore, this hydrogel showed a promising potential to be applied as wound dressing. PMID:27112893

  16. Nanoarrays of tethered lipid bilayer rafts on poly(vinyl alcohol) hydrogels.

    PubMed

    Lee, Bong Kuk; Lee, Hea Yeon; Kim, Pilnam; Suh, Kahp Y; Kawai, Tomoji

    2009-01-01

    Lipid rafts are cholesterol- and sphingolipid-rich domains that function as platforms for signal transduction and other cellular processes. Tethered lipid bilayers have been proposed as a promising model to describe the structure and function of cell membranes. We report a nano(submicro) array of tethered lipid bilayer raft membranes (tLBRMs) comprising a biosensing platform. Poly(vinyl alcohol) (PVA) hydrogel was directly patterned onto a solid substrate, using ultraviolet-nanoimprint lithography (UV-NIL), as an inert barrier to prevent biofouling. The robust structures of the nanopatterned PVA hydrogel were stable for up to three weeks in phosphate-buffered saline solution despite significant swelling (100% in height) by hydration. The PVA hydrogel strongly restricted the adhesion of vesicles, resulting in an array of highly selective hydrogel nanowells. tLBRMs were not formed by direct vesicle fusion, although raft vesicles containing poly(ethylene glycol) lipopolymer were selectively immobilized on gold substrates patterned with PVA hydrogel. The deposition of tLBRM nano(submicro) arrays was accomplished by a mixed, self-assembled monolayer-assisted vesicle fusion method. The monolayer was composed of a mixture of 2-mercaptoethanol and poly(ethylene glycol) lipopolymer, which promoted vesicle rupture. These results suggest that the fabrication of inert nanostructures and the site-selective modification of solid surfaces to induce vesicle rupture may be essential in the construction of tLBRM nano(submicro) arrays using stepwise self-assembly.

  17. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  18. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  19. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  20. Influence of hydrogen on the dehydrogenation of isopropyl alcohol in the presence of a palladium membrane catalyst

    SciTech Connect

    Mikhalenko, N.N.; Gryazova, V.M.; Khrapova, E.V.

    1986-08-01

    An investigation is made of the influence of hydrogen on the dehydrogenation of isopropyl alcohol on palladium foil. It is shown that the degree of isopropanol conversion to acetone is an extreme function of the quantity of hydrogen in the reaction zone. We establish that at the experimental temperature absorption of hydrogen by the palladium foil is observed. An almost periodic change in the degree of isopropyl alcohol conversion is observed, which may be related to changes of hydrogen concentration at the surface and in the catalyst membrane layer near to the surface.

  1. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration.

  2. Interface porcelain tile/PVA modified mortar: a novel nanostructure approach.

    PubMed

    Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander

    2009-02-01

    In ceramic tile systems, the overall result of adherence between porcelain tiles and polymer modified mortars could be explained based on the nano-order structure that is developed at the interface. Based on pull-off tests, Scanning Electron Microscopy images, and Small Angle X-ray Scattering experiments a nanostructured approach for interface tile/PVA modified mortar was built. The increase of adhesion between tile and mortar due to poly(vinyl alcohol), PVA, addition can be explained by the formation of a hybrid ceramic-polymer-ceramic interface by hydrogen bonds between PVA hydroxyl groups and silanol from tile surface and water from nanostructured C-S-H gel interlayer.

  3. Crystal growth of ZnO bulk by CVT method using PVA

    NASA Astrophysics Data System (ADS)

    Udono, H.; Sumi, Y.; Yamada, S.; Kikuma, I.

    2008-04-01

    Seeded crystal growth of Zinc oxide (ZnO) by the closed ampoule chemical vapor transport (CVT) is carried out using polyvinyl alcohol (PVA) as a transport agent. Under the conditions of TS=1100 °C, Δ T=10 K and the amount of PVA=0.13-0.91 mg/cm 3, single-crystalline ZnO was grown continuously on the ZnO seed-crystal, of which the surface was (0 0 0 1) Zn-face. The grown crystals had well-marked growth facets belonged to {1 0 1¯0} and {1 0 1¯ 1} faces. The color of the crystals was changed from pale yellow to dark orange-red depending on the amount of PVA. Typical electron density and the Hall mobility of the crystals were 1×10 17 cm -3 and 2×10 2 cm 2/V s at 300 K, respectively.

  4. Had a drink last night? How alcohol interacts with biological membranes

    NASA Astrophysics Data System (ADS)

    Karttunen, Mikko; Patra, Michael; Salonen, Emppu; Terama, Emma; Vattulainen, Ilpo; Faller, Roland; Lee, Bryan; Holopainen, Juha

    2006-03-01

    We have performed extensive 100 ns molecular dynamics simulations to study the effect of methanol and ethanol on two different lipid bilayer systems (POPC and DPPC) in the fluid phase at 323 K [1,2]. We studied both structural changes induced by the alcohols and the dynamics of the system. It turned out that ethanol was able to penetrate the membranes whereas methanol was not able to do so. In particular, ethanol prefers to be accommodated in the vicinity of the lipid headgroup region. We also determined the dependence of lipid chain ordering on ethanol concentration and quite surprisingly found that to be non-monotonous. We explain that in terms of modified surface tension [2]. Finally, we determined lifetime of hydrogen bonds to be about 1 ns and found that be in excellent agreement with NMR results. [1] B.W. Lee, et al, Fluid Phase Equilibria 225, 63-68 (2004) [2] M. Patra et al, Biophys. J., in press 2005

  5. Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B

    NASA Astrophysics Data System (ADS)

    Yang, Haigang; Zhang, Jianling; Song, Yuanqing; Xu, Shoubin; Jiang, Long; Dan, Yi

    2015-01-01

    In this article, a novel visible light (VL) active photo-catalyst, calcinated-poly (vinyl alcohol) (C-PVA)/TiO2 composites, was prepared by calcinating the films on glass substrates obtained from TiO2 sol and initially thermally treated PVA solution. The results showed that the C-PVA with conjugated C=C bonds was doped onto the surface of TiO2 and expanded the photo-response from ultraviolet spectrum of the TiO2 to VL spectrum of the composites; meanwhile, the photo-luminescence of C-PVA was quenched by TiO2, indicating charge transfer between C-PVA and TiO2. The C-PVA/TiO2 composites showed improved adsorption and photo-catalytic performances toward rhodamine B (RhB) compared to TiO2. When the mass feed ratio (P/T) of polymer (P) to TiO2 (T) increased from 1:10 to 1:2, the equilibrium adsorption ratio of C-PVA/TiO2 composites toward RhB continuously increased from 8.2 to 21.6%; while the VL photo-degradation ratio of RhB increased at first, achieving maximum value (92.2%) at P/T = 1:6, and then decreased consecutively. SEM images showed that there were lots of aggregates of TiO2 and C-PVA on the surface of the composites. Moreover, the morphologies of those aggregates were related to the value of P/T, and the dispersion of TiO2 in the C-PVA matrix was best while P/T = 1:6. The photo-catalytic activity of C-PVA/TiO2 composites was closely correlated to aggregate states of C-PVA and TiO2, while the adsorption performance was contributed to the exposed C-PVA on the surface of C-PVA/TiO2 composites.

  6. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    PubMed

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging.

  7. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  8. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  9. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  10. Effects of O2 plasma treatment of PDMS on the deposition of electrospun PVA nanofibers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    A new polymeric nanofiber-alignment technique with the selective deposition of the nanofibers using oxygen (O2) plasma treatment on a base material for the electrospinning was introduced. Generally, without any pretreatments, electrospun fibers are deposited randomly on the collector. In this work, we focused on the O2 plasma treatment of the surface of the base material to modify the surface morphology and to add polar groups to the surface. O2 plasma-treated and untreated surface of poly (dimethylsiloxane) (PDMS) was prepared by masking a part of PDMS film by another PDMS film. The polyvinyl alcohol (PVA) fibers were then deposited onto the PDMS film. The surface structure of the PDMS film with PVA nanofibers was analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. Only a few PVA nanofibers were deposited randomly on the untreated area of the PDMS film, while a number of PVA nanofibers were selectively deposited onto the O2 plasma-treated area. Intriguingly, PVA nanofibers were neatly aligned along the border of the untreated and the treated areas. The contact angle of the plasma-treated surface of PDMS decreased from 105 to 22 degree and the atomic ratio of O/Si was 1.7 times higher than that of the untreated PDMS.

  11. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  12. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    PubMed

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications. PMID:26037704

  13. SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2016-02-01

    The polyvinyl alcohol-silver (PVA/Ag) nanocomposites were prepared by in-situ chemical reduction method. The appearance of surface plasmon resonance (SPR) in the absorption spectrum of PVA/Ag nanocomposite films around 425 nm, confirmed the presence of Ag in the form of nanoparticles in host PVA matrix. In order to study the effect of swift heavy ions (SHI) irradiation on the optical and structural properties of these nanocomposites, the prepared films were irradiated to 90 MeV O6+ ion beam at two different fluence of 3 × 1010 and 1 × 1011 ions/cm2. The optical energy gap is found to be reduced from 4.57 eV (for PVA/Ag nanocomposite without irradiation) to 3.05 eV after irradiation at fluence of 1 × 1011 ions/cm2. The decline in the transmission of PVA/Ag nanocomposites in ultraviolet region, as a result of SHI irradiation, leads to their possible application in UV blocking devices. The induced structural re-arrangements, as a result of SHI irradiation, were revealed through the FTIR & Raman spectroscopy and found to be in strong association with the changes in optical behavior of these nanocomposites.

  14. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  15. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity.

    PubMed

    Gao, Botao; Konno, Tomohiro; Ishihara, Kazuhiko

    2015-01-01

    We propose a spinning-assisted layer-by-layer method for simple fabrication of a multilayered polymer hydrogel membrane that contains living cells. Hydrogel formation occurred based on the spontaneous cross-linking reaction between two polymers in aqueous solution. A water-soluble 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups (PMBV) and poly(vinyl alcohol) (PVA) were used as polymers for hydrogel membrane formation. Changing the number of hydrogel membrane layers, polymer concentration, spinning rate, and processing time for diffusion-dependent gelation of PMBV and PVA facilitated the regulation of the multilayered polymer hydrogel membrane thickness and morphology. We concluded that a multilayered polymer hydrogel membrane prepared using 5.0 wt% PMBV and 5.0 wt% PVA at a spinning rate of 2000 rpm was suitable for precise spatial control of cells in single layers. This multilayered polymer hydrogel membrane was used to prepare a single cell-laden layer to minimize barriers to the diffusion of bioactive compounds while preserving the three-dimensional (3-D) context. The pharmaceutical effects of one of the anticancer agents, paclitaxel, on a human cervical cancer line, HeLa cells, were evaluated in vitro, and the usability of this culture model was demonstrated. PMID:26374190

  16. Adaptive changes in fatty acid profile of erythrocyte membrane in relation to plasma and red cell metabolic changes in chronic alcoholic men.

    PubMed

    Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2012-07-01

    Chronic alcohol consumption is a major reason for several human diseases, and alcoholism has been associated with a variety of societal problems. Changes in fatty acid metabolism in alcoholics and its effects leading to membrane damage are largely unknown. Therefore, we aimed to investigate the fatty acid composition of erythrocyte membrane phospholipids in relation with plasma lipid profile and other plasma metabolites in chronic alcoholics in comparison with controls. We systematically measured the levels of glucose, lactate and pyruvate in the blood and free amino acids, free fatty acids, mucoproteins and glycolipids, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL) cholesterol and triglycerides (TG) in plasma of chronic alcoholics and controls. Furthermore, we measured fatty acid composition by gas chromatographic analysis. The fatty acid composition clearly revealed certain changes in chronic alcoholic erythrocyte membrane, chiefly increments in C16:0 and a decrease in C22:4 and C22:6 fatty acids besides the presence of unidentified fatty acids, probably C-24 or C-26 fatty acids. In addition, a significant increase in blood lactate, decrease in blood pyruvate and increased levels of free amino acids and free fatty acids, mucoproteins, VLDL cholesterol, TG and HDL-C in chronic alcoholics were observed with no significant change in plasma TC, LDL-C and glycolipids when compared with controls. Alcohol-induced alterations in plasma and erythrocyte membranes of chronic alcoholics in the present study might be an adaptive response to counteract the deleterious effects of alcohol. The implications of our findings warrant further investigation and needs further in-depth study to explore the mechanisms of alcohol-induced membrane changes.

  17. Fabrication and characterization of hybrid nanofibers from poly(vinyl alcohol), milk protein and metal carbonates.

    PubMed

    Mahanta, Narahari; Teow, Yiwei; Valiyaveettil, Suresh

    2012-08-01

    Porous three dimensional nanofibrous membranes were fabricated from poly(vinyl alcohol) (PVA), milk protein and inorganic salts such as calcium carbonate (CaCO3) or magnesium carbonate (MgCO3). Microscopic investigations showed that the fibers have smooth morphology with an average diameter of 300-500 nm and a surface area of 5.29 m2g(-1). Thermal analysis of the composite nanofibers showed a decrease in glass transition temperature as compared to PVA nanofiber. Incorporation of CaCO3 and MgCO3 into the nanofiber matrix was confirmed by energy dispersive spectroscopy and X-ray diffraction analysis. The cytocompatibility of electrospun composite nanofiber sheets was evaluated using human lung fibroblasts (IMR-90). There was an increase in cell attachment and cell density on milk protein incorporated to PVA-CaCO3 and PVA-MgCO3 fibers within a week of cell seeding. The cytocompatibility and increase in cell adhesion property of the hybrid nanofiber may provide significant advantages for such materials in biomedical applications. PMID:22962721

  18. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  19. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  20. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water.

    PubMed

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M; Iyuke, Sunny E

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%.

  1. Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes

    NASA Astrophysics Data System (ADS)

    Pakzad, A.; Simonsen, J.; Yassar, R. S.

    2012-03-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)-poly(acrylic acid) (PAA)-cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content.

  2. Electrical properties of starch-PVA biodegradable polymer blend

    NASA Astrophysics Data System (ADS)

    Chatterjee, B.; Kulshrestha, N.; Gupta, P. N.

    2015-02-01

    Solid polymer electrolyte films were prepared by adding different contents of potassium chloride (KCl) in a polymer matrix composed of two versatile biodegradable polymers: starch and polyvinyl alcohol (PVA), using the solution cast method. The complexation of the added salt (KCl) with the polymer matrix was confirmed from an x-ray diffraction study (XRD). The evolution of a smooth and uniform morphology with the increasing content of KCl was confirmed from scanning electron microscopy (SEM). The transference number measurement established ions as the dominant charge carriers in the system. The maximum ionic conductivity ˜5.44 × 10-5 S cm-1 at ambient conditions was obtained for the film with 1.5 wt% of KCl using complex impedance spectroscopy. The ionic conductivity and dielectric constant increased with the salt content, thus affirming the amplification in the number of charge carriers. The noteworthy aspect of the investigation is the observation of appreciable ionic conductivity at a relatively low salt content. Low values of activation energy obtained from temperature-dependent ionic conductivity could be favorable from the point of view of the application. Electric modulus studies confirmed the absence of electrode polarization effects in the polymer electrolyte films. The scaling of the electric modulus shows a distribution of relaxation times in the polymer electrolyte films. The study unveils the efficiency of the starch-PVA blend, with glycerol and citric acid as additives, as a hopeful material for preparing biodegradable solid polymer electrolyte films.

  3. UV irradiated PVA-Ag nanocomposites for optical applications

    NASA Astrophysics Data System (ADS)

    Chahal, Rishi Pal; Mahendia, Suman; Tomar, A. K.; Kumar, Shyam

    2015-07-01

    The present paper is focused on the in-situ prepared Poly (vinyl alcohol)-Silver (PVA-Ag) nanocomposites and tailoring their optical properties by means of UV irradiation in such a way that these can be used for anti-reflective coatings and bandpass filters. The reflectance from these irradiated nanocomposites has been found to decrease leading to the increase in refractive index (RI), with increasing UV exposure time, in the entire visible region. Decrease in optical energy gap of PVA film from 4.92 to 4.57 eV on doping with Ag nanoparticles has been observed which reduces further to 4.1 eV on exposure to UV radiations for 300 min. This decrease in optical energy gap can be correlated to the formation of charge transfer complexes within the base polymer network on embedding Ag nanoparticles, which further enhances with increasing exposure time. Such complexes may also be responsible for increased molecular density of the composite films which corresponds to decrease in reflectance corroborating the observed results.

  4. [Various indicators of the lipid composition of erythrocyte membranes in healthy persons and in chronic alcoholics in the northeastern part of the USSR].

    PubMed

    Lapinskiĭ, A G; Etlis, M M

    1988-01-01

    Some indices of red blood cell membranes lipid composition were studied in normal subjects and alcohol abusers inhabitants of the North-East of the USSR. Increased lipid peroxidation in newcomers was explained by a greater unsaturation level of membrane fatty acids and exhausted lipid antioxidants. Decreased peroxidation in subjects inhabiting the region for over 15 years, native-borns and chronic alcohol abusers could be accounted for by an increase in membrane cholesterol content. The data suggest that lipid peroxidation is a common mechanism of these events.

  5. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study

    PubMed Central

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511

  6. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  7. Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase.

    PubMed

    Martínez, Yanina N; Cavello, Ivana; Cavalitto, Sebastián; Illanes, Andres; Castro, Guillermo R

    2014-05-01

    Polyvinyl alcohol-pectin (PVA-P) films containing enrofloxacin and keratinase were developed to treat wounds and scars produced by burns and skin injuries. However, in order to prevent enzyme inactivation at the interface between the patch and the scars, crosslinked enzyme aggregates (CLEAs) from a crude extract of keratinase produced by Paecilomyces lilacinus (LPSC#876) were synthesized by precipitation with acetone and crosslinking with glutaraldehyde. Soluble vs. CLEA keratinase (K-CLEA) activities were tested in 59% (v/v) hydrophobic (isobutanol and n-hexane) and hydrophilic (acetone and dimethylsulfoxide) solvents mixtures. K-CLEA activity was 1.4, 1.7 and 6.6 times higher in acetone, n-hexane and isobutanol than the soluble enzyme at 37 °C after 1 h of incubation, respectively. K-CLEA showed at least 45% of enzyme residual activity in the 40-65 °C range, meanwhile the soluble biocatalyst was fully inactivated at 65 °C after 1h incubation. Also, the soluble enzyme was completely inactivated after 12 h at pH 7.4 and 45 °C, even though K-CLEA retained full activity. The soluble keratinase was completely inactivated at 37 °C after storage in buffer solution (pH 7.4) for 2 months, meanwhile K-CLEAs kept 51% of their activity. K-CLEA loaded into polyvinyl alcohol (PVA) and PVA-P cryogels showed six times lower release rate compared to the soluble keratinase at skin pH (5.5). Small angle X-ray scattering (SAXS) analysis showed that K-CLEA bound to pectin rather than to PVA in the PVA-P matrix.

  8. ZnS/PVA nanocomposites for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  9. Effect of Alcohol on Interaction of Model Biological Membrane with Steroids

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Mura, Manuela; Famili, Marjan; Zhou, Yuhua; Zvelindovsky, Andrei

    2014-03-01

    The effect of alcohol in the lipid bilayer changes the gel-phase structure of the lipid bilayer. Interactions between the alcohol molecules and the lipid bilayer were investigated using molecular dynamics. Alcohols such as ethanol and methanol are often used in drug delivery application. Ethanol is used to dissolve hydrophobic steroidal drugs such as Beclamethasone dipropionate, Fluticasone propionate and Prednisone. All the systems considered were equilibrated at 310K and ran for 100ns in the presence of dimyristoylphosphatidylcholine (DMPC) lipid bilayer. In addition the simulations were performed to investigate the behaviour of anti-asthma drugs such as Beclamethasone dipropionate in the water environment and 2.5% of ethanol.

  10. Effect of PVA concentration on bond modifications in PVA-PMMA blend films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Sharma, A.; Bisen, R.; Shripathi, T.

    2016-05-01

    The optical properties of poly (methylmethacrylate) (PMMA) polymer are found to be modified when PVA molecules are added in the matrix of PMMA and vice versa making a blend. The concentrations studied were kept low to preserve the original properties of the host. It was seen that PMMA well protects its bonds and dominated the optical properties, while the properties of PVA are comparatively easier to modify when small amount of PMMA is inserted in PVA matrix. The results are interpreted in terms of bond modifications as seen from FTIR and absorption measurements and are useful in understanding the transparency and bandgap of the blend films.

  11. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  12. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  13. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes.

  14. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  15. The effect of process parameters on the pervaporation of alcohols through organophilic membranes

    SciTech Connect

    Hickey, P.J.; Juricic, F.P.; Slater, C.S. )

    1992-06-01

    Several organophilic membranes were utilized to selectively permeate ethanol, n-butanol, and t-butanol from dilute aqueous mixtures using pervaporization (PV). Poly(1-(trimethylsilyl)-1-propyne) (PTMSP) membranes were utilized to investigate the effect of temperature, pressure, and start-up/transient time on the separation of aqueous ethanol mixtures. Results indicate optimal ethanol selectivity and flux at the lowest permeate-side pressure. Increased temperature significantly enhanced the productivity of PTMSP, but extended operation of the PTMSP membranes at high temperatures resulted in flux degradation. Two other hydrophobic membranes, poly(dimethyl siloxane) (PDMS) and a poly(methoxy siloxane) (PMS) composite, were used to separate n-butanol and t-butanol from dilute aqueous mixtures. The effect of feed concentration of the flux and selectivity was investigated. Both membranes were found to be more permeable to n-butanol than t-butanol. The PDMS membrane was found to be more effective than PMS membrane in terms of flux and selectivity. The effect of membrane thickness on water permeation and on organic selectivity was also studied using the PDMS membrane.

  16. Pregnancy Following Uterine Artery Embolization with Polyvinyl Alcohol Particles for Patients with Uterine Fibroid or Adenomyosis

    SciTech Connect

    Kim, Man Deuk Kim, Nahk Keun; Kim, Hee Jin; Lee, Mee Hwa

    2005-06-15

    Purpose:To determine whether uterine fibroid embolization (UFE) with polyvinyl alcohol (PVA) particles affects fertility in women desiring future pregnancy.Methods:Of 288 patients managed with UFE with PVA particles for uterine myoma or adenomyosis between 1998 and 2001, 94 patients were enrolled in this study. The age range of participants was 20-40 years. The data were collected through review of medical records and telephone interviews. Mean duration of follow-up duration was 35 months (range 22-60 months). Patients using contraception and single women were excluded, and the chance of infertility caused by possible spousal infertility or other factors was disregarded. Contrast-enhanced magnetic resonance imaging was performed in all patients before and after UFE, and the size of PVA particles used was 255-700 {mu}m.Results:Among 94 patients who underwent UFE with PVA, 74 were on contraceptives, 6 had been single until the point of interview, and 8 were lost to follow-up. Of the remaining 6 patients who desired future pregnancy, 5 (83%) succeeded in becoming pregnant (1 patient became pregnant twice). Of a total of 8 pregnancies, 6 were planned pregnancies and 2 occurred after contraception failed. Five deliveries were vaginal, and 2 were by elective cesarean. Artificial abortion was performed in 1 case of unplanned pregnancy. There was 1 case of premature rupture of membrane (PROM) followed by preterm labor and delivery of an infant who was small-for-gestational-age. After UFE, mean volume reduction rates of the uterus and fibroid were 36.6% (range 0 to 62.6%) and 69.3% (range 36.3% to 93.3%), respectively.Conclusion:Although the absolute number of cases was small, UFE with PVA particles ultimately did not affect fertility in the women who underwent the procedure.

  17. Application of membrane processes to alcohol-water separation: Improving the energy efficiency of biofuel production

    EPA Science Inventory

    Pervaporation • Membrane-based separation process • Not filtration Separation based on solution-diffusion transport through non-porous or “molecularly-porous” membrane Permeate is a vapor • Permeate contains only volatile compounds • Able to separate mixtures of mis...

  18. Amniotic membrane extract-loaded double-layered wound dressing: evaluation of gel properties and wound healing.

    PubMed

    Choi, Yeung Keun; Din, Fakhar Ud; Kim, Dong Wuk; Kim, Yong-Il; Kim, Jong Oh; Ku, Sae Kwang; Ra, Jeong-Chan; Huh, Jae-Wook; Lee, Jangik I; Sohn, Dong Hwan; Yong, Chul Soon; Choi, Han-Gon

    2014-07-01

    The conservative single-layered wound dressing system is decomposed when mixed in polyvinyl alcohol (PVA) solution, which means it cannot be used with a temperature-sensitive drug. The goal of this investigation was to make an amniotic membrane extract (AME)-loaded double-layered wound dressing with an improved healing result compared to the conservative single-layered wound dressing systems. The double-layered wound dressing was developed with PVA/sodium alginate using a freeze-melting technique; one layer was PVA layer and the other was the drug-loaded sodium alginate layer. Its gel properties were assessed compared to single-layered wound dressings. Moreover, in vivo wound-healing effects and histopathology were calculated compared to commercial products. The double-layered wound dressing gave a similar gel fraction and Young's module as single-layered wound bandages developed with only PVA, and a similar inflammation ability and WVTR as single-layered wound dressings developed with PVA and sodium alginate. Our data indicate that these double-layered wound bandages were just as swellable, but more elastic and stronger than single-layered wound dressings comprised of the same polymers and quantities, possibly giving an acceptable level of moisture and accumulation of exudates in the wound zone. Compared to the commercial product, the double-layered wound dressing comprising 6.7% PVA, 0.5% sodium alginate and 0.01% AME significantly enhanced the wound-healing effect in the wound-healing test. Histological investigations showed that superior full-thickness wound-healing effects compared to the commercial product. Therefore, the double-layered wound dressing would be an outstanding wound-dressing system with improved wound healing and good gel property.

  19. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  20. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    NASA Astrophysics Data System (ADS)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  1. Membrane research subtask, alcohol-fuels program. Annual progress report, FY 1982

    SciTech Connect

    Schissel, P.

    1983-04-01

    A first step toward the evaluation of membranes is to separate ethanol/water mixtures over a range of feed composition, temperature, and pressure. This has been accomplished for an initial set of commercially available membranes using reverse osmosis and pervaporation. Two membrane types (UOP, Inc. RC100 and FilmTec FT30) have performed well. Under reverse osmosis conditions the trends of product fluxes and separation factors are similar for the two types; however, FT30 is somewhat better in both categories. The flux and separation factors decrease rapidly as the wt % ethanol is increased, and water is always selectively permeated. Fluxes remain at an acceptable level over a wide concentration range; however, the separation factor becomes unacceptably low as the effects of osmotic pressure become predominant (15 to 30 wt % ethanol). This report discusses several methods that can overcome the limitations imposed by osmotic pressure. The present results are compared to published work where polyetheramide and particularly polyacrylamide membranes are identified as excellent performers. Pervaporation apparatus was designed, fabricated, installed, and used to test the membrane set. The vacuum system design was conservative to ensure the maintenance of low, down-stream pressures as required for pervaporation. The RC100 and FT30 membranes also performed well during pervaporation. Each membrane was tested over virtually the complete concentration range, and at both ends of the concentration range each membrane passed the least abundant component preferentially. These results contrast to the reverse osmosis results for these membranes where at low ethanol concentrations water is passed preferentially. The difference in behavior under reverse osmosis and pervaporation conditions disagrees with theoretical implications of one presentation using the solution-diffusion model to compare reverse osmosis and pervaporation.

  2. Kinetics of esterification of acidified oil with different alcohols by a cation ion-exchange resin/polyethersulfone hybrid catalytic membrane.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Qiu, Yanli; Zhao, Zengdian

    2012-05-01

    Hybrid catalytic membranes consisting of cation ion-exchange resin particles (CERP) and polyethersulfone (PES) were prepared by immersion phase inversion and used as heterogeneous catalysts for the esterification of acidified oil with methanol, ethanol, propanol and butanol. The membranes were characterized by ion exchange capacity and swelling degree tests. The membranes were annealed at different temperatures to improve catalytic activity and membranes annealed at 393 K had the highest catalytic activity. Butanol allowed the highest free fatty acids (FFAs) conversion of 95.28% since it has better miscibility than the other alcohols which strengthened mass and heat transfer. Furthermore, pseudo-homogeneous kinetic models of the esterification of acidified oil with the four alcohols were established according to the experimental data. The kinetic models can well predict the FFA conversion. PMID:22424925

  3. Ionic conductivity studies in crystalline PVA/NaAlg polymer blend electrolyte doped with alkali salt KCl

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish

    2014-04-01

    Potassium Chloride (KCl) doped poly(vinyl alcohol) (PVA)/sodium alginate (NaAlg) in 60:40 wt% polymer blend electrolytes were prepared by solution casting method. The complexation of KCl with host PVA/NaAlg blend is confirmed by FTIR and UV-Vis spectra. The XRD studies show that the crystallinity of the prepared blends increases with increase in doping. The dc conductivity increases with increase in dopant concentration. Temperature dependent dc conductivity shows an Arrhenius behavior. The dielectric properties show that both the dielectric constant and dielectric loss increases with increase in KCl doping concentration and decreases with frequency. The cole-cole plots show a decrease in bulk resistance, indicates the increase in ac conductivity, due to increase in charge carrier mobility. The doping of KCl enhances the mechanical properties of PVA/NaAlg, such as Young's modulus, tensile strength, stiffness.

  4. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-08-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension ( L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization.

  5. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene.

    PubMed

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-Ul-Haq; Khan, Ahmad Nawaz

    2016-12-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization. PMID:27558496

  6. Preparation and photochromic properties of ultra-fine H3PW11MoO40/PVA fibre mats

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Cheng; Gong, Jian; Pan, Yan; Cui, Xiu-Jun; Shao, Chang-Lu; Guo, Yi-Hang; Wen, Shang-Bin; Qu, Lun-Yu

    2004-07-01

    Novel photochromic materials, H3PW11MoO40/Poly (vinyl alcohol) (PVA) ultra-fine fibre mats containing different weight percentages of H3PW11MoO40, have been prepared from different H3PW11MoO40/PVA solutions by an electrospinning technique. IR spectroscopy, wide-angle x-ray diffraction, and scanning electron microscope spectroscopy are used to characterize the fibre mats. Results of viscosity and conductivity measurements of the solutions indicate that lower viscosity and higher conductivity favour the formation of thin fibres without beads. When irradiated with ultraviolet light (313.2 nm), the colour of the fibre mats changes from white to blue, and the mats show reversible photochromism. IR and ESR spectra of the irradiated fibre mats indicate a conceivable photochromic mechanism, i.e. MoVI is reduced under ultraviolet irradiation. Meanwhile, PVA is oxidized to unsaturated ketone or aldehyde.

  7. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  8. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  9. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  10. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  11. Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga

    2016-06-01

    Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.

  12. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  13. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  14. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results.

  15. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  16. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  17. Cationic-modified PVA as a dry strength additive for rice straw fibers.

    PubMed

    Fatehi, P; Tutus, A; Xiao, H

    2009-01-01

    Extensive research has shown that non-wood fibers are able to be substituted for wood fibers. The major shortcoming of non-fibers is their high silica content that causes some operational problems in mills, and hence silica should be kept in pulps. By keeping silica in pulps, however, the mechanical properties of papers are reduced, and a dry strength additive may be required. In this study, cationic polyvinyl alcohols (C-PVA) with two different molecular weights were prepared, and employed as dry strength additives. The adsorption of polymers on rice straw fibers obtained via soda-air-anthraquinone (AQ) pulping under various conditions was investigated thoroughly. Convincing results demonstrated that high molecular weight polymers performed more efficiently on dry strength enhancements of papers, while they adsorbed less than lower molecular weight polymers on fibers. However, the stiffness of fibers was increased to a larger extent by applying a higher molecular weight C-PVA. PMID:18774707

  18. Controlling the Optical Creation of Gold Nanoparticles in a PVA Matrix by Direct Laser Writing

    NASA Astrophysics Data System (ADS)

    Ritacco, T.; Ricciardi, L.; La Deda, M.; Giocondo, M.

    2016-02-01

    We report about the study on the physical features of gold nano-particles (GNPs) created by 2-photons photo-reduction Direct Laser Writing in a Poly-Vinyl Alcohol (PVA) matrix doped with HAuCl4. We drop cast a film of the PVA+ HAuCl4 onto a glass substrate, in which we create 1D gratings made by stripes of GNPs with a single laser sweep. We show that the stripe width increases with the laser power and the exposure time. We also analyse the influence of the exposure time over the created nano-particles size distribution and density and we show that by suitably adjusting the exposure time it is possible to maximize the frequency of a given diameter. By comparing the experimental results with a polymerization "voxel" model, we are able to evaluate the effective cross section for 2- photons absorption of our material.

  19. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  20. A fiber Fabry-Perot interferometer based on a PVA coating for humidity measurement

    NASA Astrophysics Data System (ADS)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Sun, Hao; Zhang, Jing; Bai, Zhengyuan; Du, Yanying; Feng, Dingyi; Wang, Yupeng; Hu, Manli; Feng, Zhongyao

    2013-01-01

    A fiber Fabry-Perot interferometer (FPI) for humidity measurement based on a Polyvinyl alcohol (PVA) film is proposed and experimentally demonstrated. This FPI is fabricated by coating a PVA film on the ending face of a Single-mode fiber (SMF) to form a Fabry-Perot cavity. A well-confined interference spectrum with a free spectra range (FSR) of 15 nm is obtained. Several saturated salt solutions are employed to obtain the different humidity environments in the inclosed containers, of which the relative humidity values range from 7% RH to 91.2% RH. The proposed FPI sensor is sensitive to the humidity change, and a sensitivity of 0.07 nm/(1%) is obtained. Therefore, the characteristics of compact size, low cost and simple fabrication identify it a good candidate for environment monitoring application.

  1. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II.

    PubMed

    Fortunati, E; Luzi, F; Puglia, D; Terenzi, A; Vercellino, M; Visai, L; Santulli, C; Torre, L; Kenny, J M

    2013-09-12

    Cellulose nanocrystals (CNC) extracted from three different sources, namely flax, phormium, and commercial microcrystalline cellulose (MCC) have been used in a polyvinyl alcohol (PVA) matrix to produce anti-bacterial films using two different amounts of silver nanoparticles (0.1 wt% and 0.5 wt%). In general, CNC confer an effect of reinforcement to PVA film, the best values of stiffness being offered by composites produced using phormium fibres, whilst for strength those produced using flax are slightly superior. This was obtained without inducing any particular modification in transition temperatures and in the thermal degradation patterns. As regards antibacterial properties, systems with CNC from flax proved slightly better than those with CNC from phormium and substantially better than those including commercial MCC. Dynamic mechanical thermal analysis (DMTA) has only been performed on the ternary composite containing 0.1 wt% Ag, which yielded higher values of Young's modulus, and as a whole confirmed the above results. PMID:23911522

  2. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    PubMed

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells.

  3. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes

    EPA Science Inventory

    Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...

  4. Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol).

    PubMed

    Bano, Ijaz; Ghauri, Muhammad Afzal; Yasin, Tariq; Huang, Qingrong; Palaparthi, Annie D'Souza

    2014-04-01

    Naturally available chitosan (CHI), of high molecular weight, results in reduced efficiency of these polymers for antibacterial activity. In this regard, irradiation is a widely used method for achieving reduction in molecular weight of polymers, which may improve some of its characteristics. Chitosan was extracted from crab shells and degraded by gamma radiations. Effect of radiation dose on chitosan was analyzed by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the irradiated chitosan was blended with poly(vinyl alcohol) (PVA) and crosslinked with tetraethylorthosilicate (TEOS) into membranes. The membranes were found to be smooth, transparent and macroporous in structure, exhibiting high tensile strength (TS: 27-47 MPa) and elongation at break (EB: 292.6-407.3%). The effect of molecular weight of chitosan and chitosan blends on antibacterial activity was determined. Irradiated low molecular weight chitosan and membranes showed strong antibacterial activity against Escherichia coli and Bacillus subtilis.

  5. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  6. The synthesis of high molecular weight partially hydrolysed poly(vinyl alcohol) grades suitable for nanoparticle fabrication.

    PubMed

    Chana, Jasminder; Forbes, Ben; Jones, Stuart Allen

    2008-11-01

    Poly(vinyl alcohol) (PVA) is a highly versatile synthetic polymer that is formed by full or partial hydrolysis of poly(vinyl acetate) (PVAc). A wide range of PVA partially hydrolysed grades are commercially available, but the amphiphilic grades of the polymer (30-60% hydrolysis), which probably the most interesting in terms of drug delivery, are not readily available. As a consequence few studies have assessed the application of low hydrolysis PVA polymers to form nanocarriers. The aims of this study were to synthesise amphiphilic grades of PVA on a laboratory scale, analyse their chemical properties and determine whether these grades could be used to form nanoparticles. PVA 30%, PVA 40%, PVA 50% and PVA 60% were synthesised via direct saponification of PVAc. All grades of PVA synthesised had degrees of hydrolysis close to those predicted from the stoichiometry of the saponification reaction. The PVA grades displayed <1.5% batch to batch variability (n=3) in terms of percentage hydrolysis, demonstrating the manufacture process was both reproducible and predictable. Analysis of the polymer characteristics using 13C nuclear magnetic resonance and differential scanning calorimetry revealed that all PVA grades contained block distributions (i.e., eta <1) of vinyl alcohol monomers (eta ranged from 0.33-0.45) with a high probability of adjacency calculated for the hydroxylated units (P(OH) ranged 0.926-0.931). All the grades of PVA formed nanoparticles using a precipitation technique with a trend towards smaller particle size with increasing degree of PVA hydrolysis; PVA 30% resulted in significantly larger nanoparticles (225 nm) compared to PVA 40-60% (137-174 nm).

  7. Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-05-01

    This research work reports the synthesis and optical properties of CdSe/PVA polymer nanocomposite (PNC's) prepared by wet chemical co-precipitation method. The transmission spectra obtained from UV-Vis-NIR spectrophotometer has been investigated to determine the optical properties of PNC's. Absorption spectra give the information about energy band gap (Eg) and type of transition. Refractive index (n), extinction coefficient (k) was calculated using well known Swanepoel method. Wemple-Di Domenico model (WDD) has been used to calculate dispersion energy (Ed) and oscillator energy (E0). Boling formula is used to calculate nonlinear refractive index (n2) of CdSe/PVA nanocomposite.

  8. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation

    PubMed Central

    Kouchak, Maryam; Ameri, Abdolghani; Naseri, Basireh; Kargar Boldaji, Sara

    2014-01-01

    Objective(s): The aim of this study was to insert nitrofurazone in a chitosan membrane to be used as a wound dressing. Materials and Methods: Several blend films using chitosan (Cs) and polyvinyl alcohol (PVA), containing nitrofurazone were prepared by means of casting/solvent evaporating technique. Different characteristics such as mechanical properties, water vapor transmission rate (WVTR), oxygen permeability (OP), swelling ability (SW), differential scanning calorimetric (DSC), drug release profiles and antibacterial activity of the films were investigated. Results: The results showed that nitrofurazone decreased tensile strength, OP and SW of Cs films, while increased WVTR. Addition of PVA at any concentration improved mechanical properties, reduced WVTR, and increased OP and SW of nitrofurazone-loaded Cs films. The latter films showed higher activity against Pseudomonas aeruginosa than drug-free chitosan films. Conclusion: The presence of PVA improves many properties of Cs-nitrofurazone films and makes them more desirable as dressing material for burn wounds. Although nitrofurazone alone is ineffective against P. aeruginosa, it is able to increase antibacterial effect of chitosan in composite films. PMID:24592302

  9. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films.

    PubMed

    Jiang, Xiancai; Jiang, Ting; Gan, Lingling; Zhang, Xiaofei; Dai, Hua; Zhang, Xi

    2012-11-01

    Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.

  10. Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol.

    PubMed

    Merkle, Valerie M; Zeng, Like; Slepian, Marvin J; Wu, Xiaoyi

    2014-04-01

    Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.

  11. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  12. Preparation and Characterisation of Pva Doped with Beta Alanine

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, R.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Pure PVA has been doped with different amount of β - alanine. Film has been prepared by Solution Casting Technique using water as a solvent. The Complex formation between the PVA and β - alanine has been confirmed by FTIR. The Pure PVA conductivity is in the order 10-10 Scm-1 at ambient temperature. The conductivity has been found to increase to the order 10-6 when doped with 10% β - alanine. In this paper characterization of a PVA doped with β-ala has been studied using XRD, FTIR, AC impedance analysis and the results are reported.

  13. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Feng, Mingjun; Zhang, Deqing; Su, Yongbo; Cai, Chenbo; Si, Minzhen

    2013-04-01

    Surface-enhanced Raman spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Recently, SERS has been increasingly employed in the study of biological macromolecules, from DNA and peptides to whole proteins, and cells. However, visible laser sources usually employed in SERS detections always lead to photochemical reactions as well as intensive fluorescence emission from the biological samples. A way to avoid these questions is the employment of near infrared (NIR) laser excitation; thus, it demands the appropriate designs of NIR-SERS substrates in order to obtain the maximum enhancement of the Raman signals from biological analytes. In this work, we demonstrate the fabrication of a new NIR-SERS substrate of polyvinyl alcohol (PVA) coating Ag nanofilms (PVA-coating Ag nanofilm) using a simple and low-cost microwave strategy. The experimental data show that, the plasmon resonance band of the PVA-coating Ag nanofilm is in the region of 400-900 nm, and the maximum center is at ∼780 nm, which matches well with the 785 nm laser excitation employed in this work. With the NIR-SERS detections of hematin and hemoglobin molecules adsorbed on this PVA-coating Ag nanofilm, one can see that the NIR-SERS activity and spectroscopy reproducibility of this NIR-SERS substrate are all perfect. By using of the tested molecule of hematin, the PVA-coating Ag nanofilm shows a high enhancement factor (EF) of ∼107. As the fabrication process of this NIR-SERS substrate is very simple and inexpensive, this method may be used in large-scale preparation of SERS substrates that have been widely applied in Raman analysis. Especially, this PVA-coating Ag nanofilm can also be served as a novel NIR-SERS substrate in biochemical analysis due to its good NIR characteristics.

  14. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli.

    PubMed

    Zhang, Fei; Wu, Juan; Kang, Ding; Zhang, Hongbin

    2013-01-01

    Novel nanocomposite hydrogels composed of hyaluronan (HA), poly(vinyl alcohol) (PVA) and silver nanoparticles were prepared by several cycles of freezing and thawing. The nanocomposite was then characterised using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD) and scanning electron microscopy (SEM). The complex hydrogels consisted of semi-interpenetrating network structures, with PVA microcrystallines as junction zones. By increasing the HA content, the crystallinity and melting temperature of the complex hydrogels decreased, whereas the glass transition temperatures of these materials increased because of the steric hindrance of HA and the occurrence of intermolecular interactions through hydrogen bonding between HA and PVA in the complex hydrogels. Swelling studies showed that in comparison with the swelling properties of the cryogels from PVA alone, those of the complex hydrogels can be significantly improved and presented in a pH-sensitive manner. In addition, silver nanoparticles were synthesised through UV-initiated photoreduction with HA functioning as a reducing agent and stabiliser. The silver nanoparticles were then incorporated in situ into the HA/PVA complex hydrogel matrix. The size and morphology of the as-prepared Ag nanoparticles were investigated through ultraviolet-visible light spectroscopy, transmission electron microscopy, XRD and thermogravimetric analysis. The experimental results indicated that silver nanoparticles 20-50 nm in size were uniformly dispersed in the hydrogel matrix. The antibacterial effects of the HA/PVA/Ag nanocomposite hydrogel against Escherichia coli were evaluated. The results show that this nanocomposite hydrogel possesses high antibacterial property and has a potential application as a wound dressing material. PMID:23829455

  15. Enhancement of PVA-degrading enzyme production by the application of pH control strategy.

    PubMed

    Li, Min; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2012-02-01

    In batch culture for Poly(vinyl alcohol) (PVA)-degrading enzyme (PVAase) production by a mixed culture, higher pH (pH 7.5) was favorable for PVAase production at the prophase of cultivation, but lower pH (pH 7.0) was favorable at the anaphase. This situation was caused by the fact that the optimum pH for different key enzymes [PVA dehydrogenase (PVADH) and oxidized PVA hydrolase (OPH)] production is various. The activity and average specific production rate of PVADH reached the highest values at constant pH 7.5, whereas those of OPH appeared at pH 7.0. A two-stage pH control strategy was therefore developed and compared for its potential in improving PVAase production. By using this strategy, the maximal PVAase activity reached 2.05 U/ml, which increased by 15.2% and 24.2% over the fermentation at constant pH 7.5 and 7.0.

  16. Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Pujari, P. K.; Poojary, Boja; Somashekar, R.

    2014-10-01

    Poly(vinyl alcohol) (PVA)/Sodium alginate (NaAlg) blend films with 60:40 wt% were prepared by solution casting method and subjected to UV irradiation for different intervals of time. The optical, mechanical and morphological properties of the blend films were modified after UV irradiation. The FTIR and FT-Raman results show the chemical interaction between PVA and NaAlg. The UV-vis absorption peak at 278 nm shifts slightly towards longer wavelength and the absorption increases with irradiation time, indicate the increase in crosslinking network. The XRD results show an increase in amorphous nature with increase in UV irradiation time. The DSC/TGA results show a single glass transition temperature (Tg), which confirm that the blends are completely miscible and thermally stable up to 250 °C. The Young's modulus, tensile strength and stiffness of the blend films increase with increase in UV irradiation time. The SEM images confirm that the surface of 48 h UV irradiated PVA:NaAlg blend is more photo-resistant than unirradiated blend.

  17. Optical Absorption Behavior of co (ii) Ion Doped Pva Assisted CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    CdSe is an important II-VI, n-type direct band gap semiconductor with wide band gap (bulk band gap of 2.6 eV) and an attractive host for the development of doped nanoparticles. Poly vinyl alcohol (PVA) is used as a capping agent to stabilize the CdSe nanoparticles. The optical properties of Co (II) ion doped PVA capped CdSe nanoparticles grown at room temperature are studied in the wavelength region of 200-1400 nm. The spectrum of Co (II) ion doped PVA capped CdSe nanoparticles exhibit five bands at 1185, 620, 602, 548 and 465 nm (8437, 16125, 16607, 18243 and 21499 cm-1). The bands observed at 1185, 548 and 465 nm are correspond to the three spin allowed transitions 4T1g (F) → 4T2g (F), 4T1g (F) → 4A2g (F) and 4T1g (F) → 4T1g (P) respectively. The other bands observed at 602 nm and 620 nm are assigned to spin forbidden transitions 4T1g (F) → 2T2g (G), 4T1g (F) → 2T1g (G). The small value of the Urbach energy indicates greater stability of the prepared sample.

  18. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. PMID:26572421

  19. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. PMID:27027727

  20. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  1. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  2. A polyvinyl alcohol-coated silica gel stationary phase for hydrophilic interaction chromatography.

    PubMed

    Ji, Shunli; Zheng, Yang; Zhang, Feifang; Liang, Xinmiao; Yang, Bingcheng

    2015-09-21

    Multiple layers of polyvinyl alcohol (PVA) coating are generated onto silica gel by thermal immobilization to form a stationary phase applied for hydrophilic interaction liquid chromatography (HILIC). It offers an easy way to manipulate the thickness of PVA coating and the obtained stationary phase demonstrated high efficiency and high chemical stability. PMID:26280030

  3. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  4. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    SciTech Connect

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  5. A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility.

    PubMed

    Leone, Gemma; Consumi, Marco; Greco, Giuseppe; Bonechi, Claudia; Lamponi, Stefania; Rossi, Claudio; Magnani, Agnese

    2011-05-01

    To overcome opacification and absence of accommodation of human lens substitutes a new poly(vinyl alcohol) (PVA)/poly(N-vinyl-2- pyrrolidinone) (PVP) based hydrogel (PPS31075) was realised. The Infrared Spectroscopy and the mechanical spectra confirmed the successful occurrence of crosslinking reaction. The rheological analysis pointed out a behavior comparable with that of young human lens in terms of complex shear modulus and accommodation capability. Further analysis in terms of optical properties, water content measurements, diffusion coefficient, cytotoxicity, and human capsular cell adhesion confirmed the applicability of such a hydrogel as potential human lens substitute.

  6. Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan.

    PubMed

    Zhang, Dan; Yu, Guanghua; Long, Zhu; Yang, Guihua; Wang, Bin

    2016-04-20

    Phenylboronic acid-derivatized chitosan (chitosan-PBA) were prepared by grafting small molecules bearing phenylboronic acid groups onto chitosan with N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) as a coupling reagent pair. Self-assembly multilayer thin films of chitosan-PBA and poly(vinyl alcohol) were subsequently produced under pH control on supporting surfaces, either a silicon wafer or polystyrene latex particles. The driving force of the self-assembly was the ester formation of phenylboronic acid containing polymers with PVA, which can be "turned off" by simple pH control. PMID:26876848

  7. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads.

    PubMed

    Bonine, Bárbara M; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.

  8. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  9. HEA-PVA gel system for UVA radiation dose measurement.

    PubMed

    Zhang, Wei; Yang, Liming; Fang, Sijia; Chen, Jie

    2016-10-01

    Acrylic monomer is known to be sensitive to ultraviolet radiation (UVR) through photoinitiator. Upon irradiation, the acrylic monomers formed stable polymer through free radical polymerization, hence its appearance will change from colorless and transparent to colored and non-transparent. Furthermore, the degree of changes was based on the UVR dose, and those optical changes could be detected by UV-vis spectrophotometer at the fixed wavelength of 550nm. In this study, we used 2-hydroxyethyl acrylate (HEA) as acrylic monomer, which mixed with polyvinyl alcohol (PVA), and finally obtained a three-dimensional hydrogel material through cross-linking by glutaraldehyde (GA). After doping with photoinitiator-Bis(2,6-difluoro-3-(1-hydropyrro-1-yl)-phenyl) titanocene (784), the gel material was sensitive to UV-A radiation (400-315nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. The behavior of different formulations' dose response sensitivity, detector linearity, diffusion, stability after UVA radiation were investigated. The results showed that when the dosage range of UVA radiation was 0-560J/cm(2), the gel had a great sensitivity and the linearity was found to be closed to 1. After UVA radiation, the gel also had a very good optical stability. In addition to this, when irradiated with high dose UVA, the gel could maintain a low diffusion. PMID:27543762

  10. Bioactivity of permselective PVA hydrogels with mixed ECM analogues.

    PubMed

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2015-12-01

    The presentation of multiple biological cues, which simulate the natural in vivo cell environment within artificial implants, has recently been identified as crucial for achieving complex cellular functions. The incorporation of two or more biological cues within a largely synthetic network can provide a simplified model of multifunctional ECM presentation to encapsulated cells. Therefore, the aim of this study was to examine the effects of simultaneously and covalently incorporating two dissimilar biological molecules, heparin and gelatin, within a PVA hydrogel. PVA was functionalized with 7 and 20 methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogels. Both heparin and gelatin were covalently incorporated into PVA at an equal ratio resulting in a final PVA:heparin:gelatin composition of 19:0.5:0.5. The combination of both heparin and gelatin within a PVA network has proven to be stable over time without compromising the PVA base characteristics including its permselectivity to different proteins. Most importantly, this combination of ECM analogues supplemented PVA with the dual functionalities of promoting cellular adhesion and sequestering growth factors essential for cellular proliferation. Multi-functional PVA hydrogels with synthetically controlled network characteristics and permselectivity show potential in various biomedical applications including artificial cell implants.

  11. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  12. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film

    NASA Astrophysics Data System (ADS)

    Abdel-Baset, T. A.; Hassen, A.

    2016-10-01

    A film of 0.98 polyvinyl alcohol (PVA)/0.02 Polyacrylonitrile (PAN) has been prepared using casting method. The dielectric properties were measured as function of temperature and frequency. The dielectric permittivity of PVA is considerably enhanced by doping with PAN. Different relaxation processes have been recognized within the studied ranges of temperature and frequency. The frequency temperature superposition (FTS) is well verified. Frequency and temperature dependence of Ac conductivity, σac, were studied. The conduction mechanism of pure PVA and PVA doped with PAN are discussed. The activation energy either for relaxation or conduction was calculated. Comparison with similar polymeric materials is discussed.

  13. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies.

  14. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. PMID:27434159

  15. Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes.

    PubMed

    Tamaki, T; Fukaya, M; Takemura, H; Tayama, K; Okumura, H; Kawamura, Y; Nishiyama, M; Horinouchi, S; Beppu, T

    1991-02-16

    The membrane-bound alcohol dehydrogenase (ADH) from Acetobacter polyoxogenes NBI1028 is composed of a 72 kDa subunit and a 44 kDa cytochrome c subunit. The amino acid sequences of the two regions of the 72 kDa subunit were determined to prepare oligonucleotides for the purpose of amplification of a DNA fragment corresponding to the intermediate region by the polymerase chain reaction. A 0.5 kb DNA fragment thus amplified was used as the probe to clone a 7.0 kb PstI fragment coding for the whole 72 kDa subunit. Nucleotide sequencing and immunoblot analysis revealed that the cloned fragment contained the full structural genes for the 72 kDa and the 44 kDa subunits and they were clustered with the same transcription polarity. The predicted amino acid sequence of the gene for the 72 kDa subunit showed homology with that of the 72 kDa subunit from ADH of A. aceti and those of methanol dehydrogenase from methylotrophic bacteria. The 72 and 44 kDa subunits contained one and three typical haem binding sequences, respectively.

  16. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 10 4 S s cm -3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.

  17. Adsorption of pH-responsive amphiphilic copolymer micelles and gel on membrane surface as an approach for antifouling coating

    NASA Astrophysics Data System (ADS)

    Muppalla, Ravikumar; Rana, Harpalsinh H.; Devi, Sadhna; Jewrajka, Suresh K.

    2013-03-01

    A new approach for the surface modification of polymer membranes prepared by phase inversion technique for antifouling properties is reported. Direct deposition of poly(2-dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate)-b-poly(2-dimethylaminoethyl methacrylate) (PDMA-b-PMMA-b-PDMA) copolymer micelles (core-shell) and gel formed from mixture of polyvinyl alcohol (PVA) and PDMA-b-PMMA-b-PDMA on the polysulfone (PSf-virgin) ultrafiltration membrane surface successfully provides modified membranes with improved antifouling properties and pH-responsive behaviour during both water and protein filtrations. Successful deposition and adsorption of such type of micelle and gel particles on the membrane surface was assessed by combination of SEM, AFM, contact angle, ATR-IR, and zeta potential measurements. The micelle and gel particles preferentially remained on the membranes surface due to their bigger size than the pores on the skin layer and also due to adsorption on the membrane surface by hydrophobic interaction. The modified membranes exhibited much higher rejection of macromolecules and almost steady trend in flux compared to corresponding virgin membranes during filtration operation. The major advantage of this protocol is that the deposited micelles and gel remained on the membrane surface even after filtration and storage of the membrane in water and the modified membranes retained similar performance. The effect of all the micelles and gel components on the membrane performance has been elucidated.

  18. Lignosulfonate as reinforcement in polyvinyl alcohol film: Mechanical properties and interaction analysis.

    PubMed

    Ye, De-zhan; Jiang, Li; Hu, Xiao-qin; Zhang, Ming-hua; Zhang, Xi

    2016-02-01

    Recently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrated the possibility of using eucalyptus lignosulfonate calcium (HLS) particles as reinforcement in polyvinyl alcohol (PVA) matrix. 41% and 384.7% improvement of pure PVA tensile strength and Young's modulus were achieved with incorporation of 5 wt% HLS. The above results were ascribed to specific intermolecular interactions between HLS and PVA, suggested by the increasing PVA glass transition and crystalline relaxations temperature, depression of melting point with HLS incorporation. Moreover, this interaction was quantitatively determined by q value of -62.4±10.0 in Kwei equation. Additionally, the remarkable red shift of wavenumber corresponding to hydroxyl group also indicated the formation of strong hydrogen bond in HLS/PVA blend. SEM characterization confirmed that HLS/PVA blends are at least miscible.

  19. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    PubMed

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-01

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA.

  20. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  1. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.

    PubMed

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe3O4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing-thawing technique and subsequent with K(+) solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions.

  2. Facile synthesis of silver nanoparticles-modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sui, Chunhong; Li, Chao; Guo, Xiaohong; Cheng, Tiexin; Gao, Yukun; Zhou, Guangdong; Gong, Jian; Du, Jianshi

    2012-07-01

    Regarding poly(vinyl alcohol)/silicotungstic acid (PVA/H4SiW12O40) gel as precursor, the silver nanoparticles (NPs) were selectively deposited on the surface of the PVA/H4SiW12O40 nanofibers by using electrospinning and photoreduction methods. X-ray photoelectron spectroscopy, Fourier transformation infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy were used to affirm the structure and formation of tri-component nanohybrids. Field environmental scanning electron microscope and transmission electron microscopy indicate that the average diameter of silver NPs was changed from 25 nm to 50 nm, with decreasing the relative concentration of SiW12 in the as-electrospun nanofibers. The nanocomposites exhibit excellent photocatalytic activity in degradation of Rhodamine B. This result arises from the synergistic effects and the large specific surface areas of Ag/PVA/H4SiW12O40 tri-component nanohybrids.

  3. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  4. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-05-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.

  5. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres.

    PubMed

    Nie, Lei; Zhang, Guohua; Hou, Ruixia; Xu, Haiping; Li, Yaping; Fu, Jun

    2015-01-01

    Poly(vinyl alcohol) (PVA) hydrogels have been candidate materials for cartilage tissue engineering. However, the cell non-adhesive nature of PVA hydrogels has been a limit. In this paper, the cell adhesion and growth on PVA hydrogels were promoted by compositing with transform growth factor-β1 (TGF-β1) loaded porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres. The porous microspheres were fabricated by a modified double emulsion method with bovine serum albumin (BSA) as porogen. The average pore size of microspheres was manipulated by changing the BSA/PLGA ratio. Such controllable porous structures effectively influenced the encapsulation efficiency (Eencaps) and release profile of TGF-β1. By compositing PVA hydrogels with such TGF-β1-loaded PLGA microspheres, chondrocyte adhesion and proliferation were significantly promoted in a controllable manner, as confirmed by fluorescent imaging and quantitative CCK-8 assay. That is, the chondrocyte proliferation was favored by using PLGA microspheres with high Eencaps of TGF-β1 or by increasing the PLGA microsphere content in the hydrogels. These results demonstrated a facile method to improve the cell adhesion and growth on the intrinsically cell non-adhesive PVA hydrogels, which may find applications in cartilage substitution.

  6. Reactive Membrane Barriers for Containment of Subsurface Contamination

    SciTech Connect

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  7. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  8. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  9. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin.

  10. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Song, Kunlin; Cheng, H N; Wu, Qinglin

    2016-11-20

    The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems. PMID:27561516

  11. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  12. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-01-01

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA. PMID:26703542

  13. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Beigzadeh, Borhan

    2014-02-01

    This study proposes the quasi-linear viscoelastic (QLV) model to characterize the time dependent mechanical behavior of poly(vinyl alcohol) (PVA) sponges. The PVA sponges have implications in many viscoelastic soft tissues, including cartilage, liver, and kidney as an implant. However, a critical barrier to the use of the PVA sponge as tissue replacement material is a lack of sufficient study on its viscoelastic mechanical properties. In this study, the nonlinear mechanical behavior of a fabricated PVA sponge is investigated experimentally and computationally using relaxation and stress failure tests as well as finite element (FE) modeling. Hyperelastic strain energy density functions, such as Yeoh and Neo-Hookean, are used to capture the mechanical behavior of PVA sponge at ramp part, and viscoelastic model is used to describe the viscose behavior at hold part. Hyperelastic material constants are obtained and their general prediction ability is verified using FE simulations of PVA tensile experiments. The results of relaxation and stress failure tests revealed that Yeoh material model can define the mechanical behavior of PVA sponge properly compared with Neo-Hookean one. FE modeling results are also affirmed the appropriateness of Yeoh model to characterize the mechanical behavior of PVA sponge. Thus, the Yeoh model can be used in future biomechanical simulations of the spongy biomaterials. These results can be utilized to understand the viscoelastic behavior of PVA sponges and has implications for tissue engineering as scaffold.

  14. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-12-19

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  15. Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

    PubMed

    Young, Cara; Rozario, Kester; Serra, Christophe; Poole-Warren, Laura; Martens, Penny

    2013-01-01

    Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.

  16. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  17. Fouling mitigation of anion exchange membrane by zeta potential control.

    PubMed

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase. PMID:16256509

  18. Fouling mitigation of anion exchange membrane by zeta potential control.

    PubMed

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase.

  19. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials.

  20. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA

    NASA Astrophysics Data System (ADS)

    Goumri, Meryem; Venturini, Jany Wéry; Bakour, Anass; Khenfouch, Mohammed; Baitoul, Mimouna

    2016-03-01

    The attractive optoelectronic properties of graphene are universally known. Also, their combination with polymer matrix added an exciting physical investigation. In the present work, nanocomposites based on poly (vinyl alcohol) (PVA) with low graphene oxide (GO) and partially reduced graphene oxide (PRGO) loadings (0.5, 1 and 2 wt%) were successfully prepared by a simple and environmentally friendly process using aqueous solution in both acidic (pH 4) and neutral media (pH 7)and optimized sonication time, in order to tailor the optical/electronic properties of the GO/PRGO nanosheets. FT-IR and Raman scattering spectroscopy reveal a strong interfacial interaction by hydrogen bonding between the two components. Steady-state photoluminescence results showed a pH-dependent fluorescence of these nanocomposites, and a significant luminescence over a wide range of the visible wavelengths was achieved at a concentration of 1 wt% GO and PRGO loading. A quenching of the PL started at 2 wt% suggesting the possibility of tuning the luminescence properties of GO/PRGO-based composites with PVA.

  1. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  2. Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system.

    PubMed

    Fathollahipour, Shahrzad; Abouei Mehrizi, Ali; Ghaee, Azadeh; Koosha, Mojtaba

    2015-12-01

    Nanofibrous core-sheath nanocomposite dual drug delivery system based on poly(vinyl alcohol) (PVA)/chitosan/lidocaine hydrochloride loaded with gelatin nanoparticles were successfully prepared by the electrospinning method. Gelatin nanoparticles were prepared by nanoprecipitation and were then loaded with erythromycin antibiotic agent with the average particle size of ∼175 nm. The morphology of gelatin nanoparticles observed by field emission scanning electron microscopy (FE-SEM) was shown to be optimal at the concentration of 1.25 wt % of gelatin in aqueous phase by addition of 20 µL of glutaraldehyde 5% as the crosslinking agent. The nanoparticles were also characterized by dynamic light scattering, zeta potential measurement, and Fourier transform infrared spectroscopy (FTIR). The best bead free morphology for the PVA/chitosan nanofibrous mats were obtained at the solution weight ratio of 96/4. The nanofibrous mats were analyzed by swelling studies, FTIR and antibacterial tests. In vitro dual release profile of the core-sheath nanofibers was also studied within 72 h and showed the release efficiency equal to 84.69 and 75.13% for lidocaine hydrochloride and erythromycin, respectively. According to release exponent n, the release of lidocaine hydrochloride from the sheath part of the matrix is quasi-Fickian diffusion mechanism, while the release of erythromycin is based on anomalous or non-Fickian mechanisms.

  3. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    PubMed

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement.

  4. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; Ghazanfari, L.

    2012-12-01

    Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1-1.2) pa s at constant shear rate of 20 s-1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s-1 to 150 s-1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.

  5. Investigations on Pva:. NH4F: ZrO2 Composite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Radha, K. P.; Selvasekarapandian, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    Composite polymer electrolytes have been prepared using Poly (vinyl alcohol), ammonium fluoride, nanofiller ZrO2 by solution casting technique. The amorphous nature of the composite polymer electrolyte has been confirmed by XRD analysis. FTIR analysis confirms the complex formation among the polymer, salt and nanofiller. The maximum ionic conductivity for 85 PVA:15 NH4F has been found to be 6.9 × 10-6 Scm-1 at ambient temperature. In the present work, the addition of 2 mol% nanofilller ZrO2 to the electrolyte 85PVA:15NH4F enhances the conductivity to 3.4 × 10-5 Scm-1. The temperature dependence of the conductivity of composite polymer electrolytes obeys Arrhenius relation. In the modulus spectra, there is a long tail at low frequencies which is an evidence for large capacitance associated with the electrodes. In the high frequency region, ∈'(ω) value saturates and giving rise to the dielectric constant of the material.

  6. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    NASA Astrophysics Data System (ADS)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  7. Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.

    2016-07-01

    In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391–406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.

  8. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.

    PubMed

    Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I

    2014-01-01

    The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies.

  9. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  10. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  11. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  12. [Preparation of PVA-SA-PHB-AC composite carrier and m-cresol biodegradation by immobilized Lysinibacillus cresolivorans].

    PubMed

    Li, Ting; Ren, Yuan; Wei, Chao-Hai

    2013-07-01

    Due to the effects of outer environment and concentration limit on the biodegradation of m-cresol, a carrier with adsorption ability was synthesized. A PVA-SA-PHB-AC composite membrane was prepared by adding SA, PHB and AC into PVA immobilization carrier using the combination of freezing-thawing and boric acid methods. A highly-effective m-cresol-degrading strain Lysinibacillus cresolivorans was entrapped in it and the effects of structural properties such as micro-structure, stability and diffusion coefficient on m-cresol biodegradation were investigated. The results showed that PVA-SA-PHB-AC composite membrane had uniform pore opening, of which the average pore size, specific surface area, m-cresol adsorption capacity and diffusion coefficient was 33.68 nm, 15.30 m2 x g(-1), 3.86 mg x g(-1) and 5.62 x 10(-8) m2 x min(-1), respectively. It could be reused for more than two months, m-Cresol removal by immobilized L. cresolivorans was the coupling of adsorption and biodegradation, and the removal rate was jointly determined by mass-transfer rate and biodegradation rate. When the initial concentration of m-cresol was lower than 350 mg x L(-1), the mass-transfer rate of PVA-SA-PHB-AC was smaller than the biodegradation rate. The m-cresol removal rate depended on the mass-transfer rate, when the concentration was higher than 380 mg x L(-1), it was determined by the biodegradation rate. The addition of adsorbent could decrease the mass transfer coefficient in the carrier, while the higher concentration of substrate could be tolerated and the efficient biodegradation could be achieved in a wider range of concentrations. The biodegradation of m-cresol by immobilized microorganism showed that the modified carrier increased the reaction kinetics in a range of initial concentrations.

  13. [Methods and applications of population viability analysis (PVA): a review].

    PubMed

    Tian, Yu; Wu, Jian-Guo; Kou, Xiao-Jun; Wang, Tian-Ming; Smith, Andrew T; Ge, Jian-Ping

    2011-01-01

    With the accelerating human consumption of natural resources, the problems associated with endangered species caused by habitat loss and fragmentation have become greater and more urgent than ever. Conceptually associated with the theories of island biogeography, population viability analysis (PVA) has been one of the most important approaches in studying and protecting endangered species, and this methodology has occupied a central place in conservation biology and ecology in the past several decades. PVA has been widely used and proven effective in many cases, but its predictive ability and accuracy are still in question. Also, its application needs expand. To overcome some of the problems, we believe that PVA needs to incorporate some principles and methods from other fields, particularly landscape ecology and sustainability science. Integrating landscape pattern and socioeconomic factors into PVA will make the approach theoretically more comprehensive and practically more useful. Here, we reviewed the history, basic conception, research methods, and modeling applications and their accuracies of PVA, and proposed the perspective in this field. PMID:21548317

  14. Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films.

    PubMed

    Karimi, Nazanin; Kunwar, Puskal; Hassinen, Jukka; Ras, Robin H A; Toivonen, Juha

    2016-08-01

    Direct laser writing has been utilized to fabricate highly photostable fluorescent nanocluster microstructures in an organic polymer poly(methacrylic acid), where the carboxyl functional group is reported to play a vital role in nanocluster stabilization. In this Letter, we demonstrate that not only the polymer containing the carboxyl functional group, but also the polymer comprising the hydroxyl group, namely polyvinyl alcohol (PVA), can act as an appropriate stabilizer matrix for laser-induced synthesis and patterning of silver nanoclusters. The as-formed nanoclusters in the PVA film exhibit broadband emission and photostability comparable to the nanoclusters formed in the poly(methacrylic acid) polymer. As PVA is a widely used, nontoxic, biocompatible and biodegradable polymer, the technique of patterning fluorescent nanoclusters in PVA thin films is expected to find numerous applications in fields like fluorescence imaging, biolabeling, and sensing. PMID:27472635

  15. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite.

    PubMed

    Leitão, Alexandre F; Gupta, Swati; Silva, João Pedro; Reviakine, Ilya; Gama, Miguel

    2013-11-01

    Bacterial cellulose (BC) has been suggested to be a suitable biomaterial for the development of cardiovascular grafts. The combination of BC with polyvinyl alcohol (PVA) results in nanocomposites with improved properties. Surprisingly, there are very few studies on the BC-blood interaction. This is the focus of this paper. We present the first thorough assessment of the hemocompatibility of the BC/PVA nanocomposite. Whole blood clotting time, plasma recalcification, Factor XII activation, platelet adhesion and activation, hemolytic index and complement activation are all determined. The platelet activation profiles on BC and BC/PVA surfaces are comprehensively characterized. BC and BC/PVA outperformed ePTFE--used as a point of comparison--thus evidencing their suitability for cardiovascular applications.

  16. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-01

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications.

  17. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  18. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  19. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  20. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  1. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  2. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    PubMed

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively. PMID:19699033

  3. Diffraction efficiency improvement in high spatial frequency holographic gratings stored in PVA/AA photopolymers: several ACPA concentrations

    NASA Astrophysics Data System (ADS)

    Fernandez, Elena; Fuentes, Rosa; Ortuño, Manuel; Beléndez, Augusto; Pascual, Inmaculada

    2015-01-01

    High spatial frequency in holographic gratings is difficult to obtain due to limitations of the recording material. In this paper, the results obtained after storing holographic transmission gratings with a spatial frequency of 2656 lines/mm in a material based on polyvinyl alcohol and acrylamide (PVA/AA) are presented. A chain transfer agent, 4, 4‧-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the composition of the material to improve the response of the material at a high spatial frequency. Different concentrations of ACPA were used in order to find the optimal concentration giving maximum diffraction efficiency for high spatial frequencies.

  4. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  5. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials.

  6. FABRICATION OF A NEW TYPE OF DOUBLE SHELL TARGET HAVING A PVA INNER LAYER

    SciTech Connect

    STEINMAN,D.A; WALLACE,R; GRANT,S.E; HOPPE,M.L; SMITH,JR.J.N

    2003-06-01

    OAK-B135 The General Atomics Target Fabrication team was tasked in FY03, under its ICF Target Support contract, to make a new type of double-shell target. its specifications called for the outer shell to have an inner lining of PVA (poly(vinyl alcohol)) that would keep the xenon gas fill from occupying the target wall. The inner shell consisted of a glass shell coated with 2000 {angstrom} of silver and filled with 9 atm of deuterium. Furthermore, the delivery deadline was less than seven weeks away. This paper describes the fielding of this double-shell target, made possible through the combined efforts of Lawrence Livermore National Laboratory and General Atomics target fabrication specialists.

  7. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads

    PubMed Central

    Bonine, Bárbara M.; Polizelli, Patricia Peres; Bonilla-Rodriguez, Gustavo O.

    2014-01-01

    This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. PMID:24818012

  8. Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films

    SciTech Connect

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-15

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  9. Spectroscopic properties of (PVA+ZnO):Mn2+ polymer films

    NASA Astrophysics Data System (ADS)

    Rani, Ch.; Raju, D. Siva; Bindu, S. Hima; Krishna, J. Suresh; Raju, Ch. Linga

    2015-05-01

    Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn2+ ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn2+ ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn2+ ion in d5 and the site symmetry around Mn2+ ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. The FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.

  10. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa. PMID:22939352

  11. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    PubMed

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa.

  12. Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol.

    PubMed

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2015-12-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (-)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  13. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    PubMed Central

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  14. An intensive study on the optical, rheological, and electrokinetic properties of polyvinyl alcohol-capped nanogold

    NASA Astrophysics Data System (ADS)

    Behera, Manoranjan

    2015-05-01

    Low-temperature-assisted wet chemical synthesis of nanogold (NG) using gold hydroxide, a new precursor salt in the presence of a macroscopic ligand poly(vinyl alcohol) PVA in water in the form of nanofluid, is reported for the first time in this article. In the absorption spectra, the surface Plasmon resonance absorption band in the range of 520-545 nm signifies the formation of NG via a controlled Au3+ + 3e → Au reaction grafted in small assemblies with polymer. Absorption maximum increases nonlinearly with Au-contents up to 100 µM Au in Au-PVA charge-transfer complex. Marked enhancement in the peak intensity of some of the vibration bands of PVA polymer such as C-H stretching, C=O stretching, CH2 bending, and C-C in-plane bending in the presence of NG reveals an interfacial interaction between NG and oxidized PVA via C=O group. Execution of shear thinning behavior regardless of the Au-content strongly suggests that crosslinking exists between NG and PVA in Au-PVA rheo-optical nanofluids. Hydrodynamic diameter and polydispersity index draw a nonlinear path with the Au doping with 30.0 g/L PVA in water over a wide region of 5-100 μM Au covered in this study. Enhancement in the zetapotential of Au-PVA nanofluid over bare PVA in water is ascribed to buildup of nonbonding electrons of "-C=O" moieties from the oxidized PVA on the NG surface. Displaying of lattice fringes in the microscopic image of core-shell Au-PVA nanostructure confirms that crystalline nature of NG core with inter planar spacing 0.235 nm corresponds to Au (111) plane.

  15. Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation.

    PubMed

    Marcilli, Raphael H M; de Oliveira, Marcelo G

    2014-04-01

    Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

  16. An experimental study for syndiotactic polyvinyl alcohol spheres as an embolic agent: can it maintain spherical shape in vivo?

    PubMed

    Chun, Ho Jong; Lee, Hae Giu; Lyoo, Won Seok; Lee, Ji Youl; Kim, Jina

    2014-01-01

    Syndiotactic polyvinyl alcohol (PVA) had been developed to overcome the drawbacks of atactic PVA spheres that deform easily, which can lead to non-target embolization. This study was performed to evaluate the in vivo stability of spherical shape of the syndiotactic PVA spheres. Selective arteriography and transarterial embolization (TAE) were performed in the main renal arteries of eight New Zealand white rabbits using syndiotactic PVA sphere that consisted of syndiotactic PVA skin and a copolymer core of vinyl acetate/vinyl pivalate. The size of the syndiotactic PVA spheres used for the TAE was 212-355 μm. The rabbits were sacrificed 12-14 days after TAE. Gross and microscopic examinations of each kidney were performed. The microscopic examination showed infarction of all embolized kidneys. Syndiotactic PVA spheres were seen uniformly within the arterial lumen and appeared as round ring-like structures without any deformity. The syndiotactic PVA spheres exclusively occupied the arterial lumen. As a conclusion, syndiotactic PVA spheres maintained their spherical shape without significant deformation in this in vivo short-term experimental study. Further investigation is necessary for evaluation of detailed effects of physical stability in tumor embolization.

  17. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles.

    PubMed

    He, Dian; Hu, Bo; Yao, Qiao-Feng; Wang, Kan; Yu, Shu-Hong

    2009-12-22

    A new and facile way to synthesize a free-standing and flexible surface-enhanced Raman scattering (SERS) substrate has been successfully developed, where high SERS-active Ag dimers or aligned aggregates are assembled within poly(vinyl alcohol) (PVA) nanofibers with chain-like arrays via electrospinning technique. The aggregation state of the obtained Ag nanoparticle dimers or larger, which are formed in a concentrated PVA solution, makes a significant contribution to the high sensitivity of SERS to 4-mercaptobenzoic acid (4-MBA) molecules with an enhancement factor (EF) of 10(9). The superiority of enhancement ability of this Ag/PVA nanofiber mat is also shown in the comparison to other substrates. Furthermore, the Ag/PVA nanofiber mat would keep a good reproducibility under a low concentration of 4-MBA molecule (10(-6) M) detection with the average RSD values of the major Raman peak less than 0.07. The temporal stability of the substrate has also been demonstrated. This disposable, easy handled, flexible free-standing substrate integrated the advantages including the superiority of high sensitivity, reproducibility, stability, large-scale, and low-cost production compared with other conventional SERS substrates, implying that it is a perfect choice for practical SERS detection application.

  18. Electrospun tungsten oxide NPs/PVA nanofibers: A study on the morphology and Kramers-Kronig analysis of infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Chenari, Hossein Mahmoudi; Kangarlou, Haleh

    2016-10-01

    The major objective of this work is focused on the preparation and characterization of poly (vinyl alcohol) (PVA) embedding tungsten oxide nanoparticles based on electrospinning technique. A surfactant (CTAB) was introduced to incorporate tungsten oxide nanoparticles into the PVA nanofibers homogeneously. To prepare a viscous solution of PVA nanofiber containing tungsten oxide nanoparticles, the distance between the tip of the needle and the surface of the foil was chosen as 10 and 15 cm. The tungsten oxide NPs/PVA composite nanofibers have been characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and reflectance spectrum in the wave length range of 200-1200 nm. Fiber diameters decrease with increasing of tip-to-collector distance from 10 to 15 cm. The average diameters were estimated about 165±30 nm and 145±30 nm from scanning electron microscopy at 10 and 15 cm, respectively. The optical properties of the electrospun nanofibers were examined by the Kramers-Kronig model. The optical results show that tungsten oxide nanopowder show almost five times higher conductivity, lower absorbance and zero band gap energy.

  19. Graphene-poly(vinyl alcohol) composites: Fabrication, adsorption and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Chang, Peter R.; Zheng, Pengwu; Ma, Xiaofei

    2014-09-01

    Porous composites of graphene oxide (GO)-poly(vinyl alcohol) (PVA) were fabricated using a process of aqueous suspension precursor freezing, solvent exchange, and ethanol drying. When frozen, ice crystals formed leaving a porous structure, composed of randomly oriented GO sheets consolidated by PVA. The yellow GO-PVA composite could be reduced with glucose to obtain a black porous RGO (PRGO). XRD revealed that PVA enlarged the GO interlay spacing in the GO-PVA composite, and that RGO sheets were highly disordered in single or several layers in PRGO. GO-PVA and PRGO exhibited ultralight densities of 10.52 and 11.42 mg/cm3, respectively. GO-PVA adsorbed greater quantities of water, ethanol, and soybean oil than PRGO. The methylene blue (MB) adsorption pattern for both materials was also investigated. The kinetic adsorption and isotherm data fit the pseudo second-order and the Langmuir models, respectively. The maximum adsorption capacity according to the Langmuir isotherm model was 571.4 mg/g for GO-PVA. The electrochemical properties of PRGO were estimated using cyclic voltammetry, electrochemical impedance spectrometry, and chronopotentiometry. The PRGO electrode exhibited large capacitance (82.8 F/g) and small internal resistance (0.52 Ω).

  20. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  1. Comparison of properties of poly(vinyl alcohol) nanocomposites containing two different clays.

    PubMed

    Chang, Jin-Hae; Ham, Miran; Kim, Jeong-Cheol

    2014-11-01

    Morphologies, thermo-optical properties, and gas barriers of poly(vinyl alcohol) (PVA) hybrid films containing two different clays are compared. Saponite (SPT) and hydrophilic bentonite (BTT) were used as the reinforcing filler in the fabrication of PVA hybrid films, which were synthesized from aqueous solutions and were solvent-cast at room temperature under vacuum, yielding 20-31-μm-thick PVA hybrid films with varying clay contents. The addition of small amounts of clay is sufficient to improve the thermal properties and gas barriers of PVA hybrid films. Even polymers with a low clay content (3-10 wt%) were found to exhibit much higher transition temperature values than pure PVA. The addition of BTT was more effective than the addition of SPT for improving the thermal properties and gas barrier in the PVA matrix. The PVA hybrid films containing 5 wt% SPT were equibiaxially stretched, with stretching ratios ranging from 150% to 250%. Clay dispersion, morphology, optical transparency, and gas permeability were then examined as a function of the equibiaxial stretching ratio. PVA hybrid films with a stretching ratio of ≥ 150% displayed homogeneously dispersed clay within the polymer matrix and exfoliated nanocomposites.

  2. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016.

  3. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute.

    PubMed

    Morandim-Giannetti, Andreia de Araujo; Silva, Rosianne Cristina; Magalhães, Octaviano; Schor, Paulo; Bersanetti, Patrícia Alessandra

    2016-10-01

    Hydrogels are polymeric materials with numerous medical and biological applications because of their physicochemical properties. In this context, the conditions were defined for obtaining a hydrogel with characteristics similar to the vitreous humor using polyvinyl alcohol (PVA) and trisodium trimetaphosphate (STMP). The concentration of PVA (X1 ), PVA/STMP ratio (X2 ), and initial pH (X3 ) were modified, and their effect was analyzed in terms of the refractive index (Y1 ), density (Y2 ), dynamic viscosity (Y3 ), and final pH (Y4 ). The results demonstrated that X1 interferes with Y1 , Y2 , and Y3 , and X2 interferes with Y2 and Y3 . The best condition for obtaining a hydrogel with characteristics similar to the vitreous humor was 4.2586% PVA (wt/wt), STMP/PVA ratio of 1:6.8213 (wt/wt), and initial pH of 9.424. DSC, ATR-FTIR, swelling degree, and AFM analysis confirmed the PVA reticulation with STMP. Furthermore, STMP increased the glass transition temperature and decreased the water uptake of ∼50% of the hydrogels, which can be explained by the crosslinking of PVA chains. Infrared spectroscopy revealed a decrease of hydroxyl bonds and confirmed the reticulation between PVA and STMP. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1386-1395, 2016. PMID:26224170

  4. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  5. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    PubMed

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  6. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.

    PubMed

    Hajji, Sawssen; Chaker, Achraf; Jridi, Mourad; Maalej, Hana; Jellouli, Kemel; Boufi, Sami; Nasri, Moncef

    2016-08-01

    The development and characterization of biodegradable blend films based on chitosan and poly (vinyl alcohol) for possible use in a variety of biological activities are reported. Fourier transform infrared spectroscopy (FTIR) spectra of chitosan-poly (vinyl alcohol) (Ch/PVA) films showed characteristics peaks shifting to a lower frequency range due to hydrogen bonding between -OH of PVA and -NH2 of chitosan. The chitosan and PVA polymers presented good compatibility. The morphology study of chitosan and composite films showed a compact and homogenous structure. The tensile strength and elongation at break increased with PVA content. In fact, the highest tensile strength and elongation at break (53.58 MPa and 454 %) occurs with pure PVA film. The results showed that PVA incorporation in the blends contributes to increase the intermolecular interactions, thus improving the mechanical properties. In addition, the prepared films demonstrated high antioxidant activities monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, reducing power, and β-carotene bleaching activity. Nevertheless, PVA addition reduced antioxidant and antibacterial activities against Gram-positive and Gram-negative bacteria tested. PMID:27106077

  7. [Study on hydrophilicity and degradability of polyvinyl alcohol/polylactic acid blend film].

    PubMed

    Wang, Hualin; Sheng, Mingang; Zhai, Linfeng; Li, Yanhong

    2008-02-01

    Based on casting and solvent evaporation method, the degradable PLA/PVA blend film was prepared with polylactic acid (PLA) and polyvinyl alcohol (PVA) as raw material. The moisture absorbability, water absorbability and degradability of the polylactic acid/polyvinyl alcohol (PLA/PVA) blend film were studied; also the degradation mechanism of blend film was investigated. The results showed that the moisture absorption and water absorption of blend film decreased as the concentration of PLA increased. The degradation process of blend film in the normal saline is conducted by stepwise. At the forepart, the degradation of PLA played an important role, while PVA was the main degradation substance later. The solvent acidity could catalyze the degradation of PLA, and degradation of PLA was always turning from noncrystalline region to crystalline region. PVA had abilities to accelerate the degradation of PLA by increasing the hydrophilicity of the blend film and by breaking the crystallinity of PLA. Therefore, the hydrophilicity and degradability of PLA/PVA blend film can be controlled in a certain range by adjusting the proportion of PLA and PVA. PMID:18435276

  8. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  9. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  10. Synthesis of Nanocomposites of Polyvinyl Alcohol with Silver Nanoparticles and Their Use

    NASA Astrophysics Data System (ADS)

    Bhat, N. V.; Karmakar, N. S.; Kothari, D. C.

    2013-08-01

    Composites of polyvinyl alcohol (PVA) containing silver nanoparticles were prepared using in situ synthesis of nanoparticles. Structure and properties of these composites were investigated using UV-Vis spectroscopy, XRD, DSC, SEM and AFM. The studies show that PVA can reduce the AgNO3 to yield silver nanoparticles and in the process forms bonds with PVA chains. The anti-bacterial properties of these films were studied by qualitative as well as quantitative methods which gave the values of 98% for gram positive and 89% for gram negative bacteria.

  11. 78 FR 20890 - Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... established in the Antidumping Duty Order: Polyvinyl Alcohol From Taiwan, 76 FR 13982 (March 15, 2011). These... the antidumping duty order on polyvinyl alcohol (PVA) from Taiwan. The period of review (POR) is... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  12. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  13. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  14. Differing features of proteins in membranes may result in antioxidant or prooxidant action: opposite effects on lipid peroxidation of alcohol dehydrogenase and albumin in liposomal systems.

    PubMed

    Riedl, A; Shamsi, Z; Anderton, M; Goldfarb, P; Wiseman, A

    1996-02-01

    The influence of 3 thiol-containing compounds, bovine serum albumin (fatty acid free: BSA), glutathione (GSH) and yeast alcohol dehydrogenase (YADH) on lipid peroxidation in multilamellar liposomes, prepared from ox-brain phospholipid, was investigated. Thiol-compounds were added either before liposome formation, or after liposome formation; and their effects compared to a positive control. Bovine serum albumin (BSA), an acidic hydrophilic protein, displays a small, concentration dependent, antioxidant effect when added to preformed liposomes. A much larger antioxidant effect was observed when the BSA was entrapped inside the liposome, by adding BSA just prior to liposome preparation. In contrast, a Zn(2+) containing redox enzyme, YADH, a basic hydrophobic membrane-associating protein, displays a large pro-oxidant effect at much lower concentrations especially when entrapped inside the liposome. This was observed also with GSH; but per mole of -SH, YADH was about 18 times as powerful a pro-oxidant perhaps because of structural changes to the membrane. Oxidized glutathione and N-acetylcysteine were also pro-oxidant (cysteine and cystine showed little effect). Formation of thiyl radicals may occur in the presence of iron ions with these pro-oxidant sulphur-containing compounds. Partial protection against lipid peroxidation was observed with EDTA, desferrioxamine and protoporphyrin (IX), potent iron-chelating agents.

  15. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus.

    PubMed

    Kondo, K; Beppu, T; Horinouchi, S

    1995-09-01

    The membrane-bound alcohol dehydrogenase (ADH) of Acetobacter pasteurianus NCI1452 consists of three different subunits, a 78-kDa dehydrogenase subunit, a 48-kDa cytochrome c subunit, and a 20-kDa subunit of unknown function. For elucidation of the function of the smallest subunit, this gene was cloned from this strain by the oligonucleotide-probing method, and its nucleotide sequence was determined. Comparison of the deduced amino acid sequence and the NH2-terminal sequence determined for the purified protein indicated that the smallest subunit contained a typical signal peptide of 28 amino acids, as did the larger two subunits. This gene complemented the ADH activity of a mutant strain which had lost the smallest subunit. Disruption of this gene on the chromosome resulted in loss of ADH activity in Acetobacter aceti, indicating that the smallest subunit was essential for ADH activity. Immunoblot analyses of cell lysates prepared from various ADH mutants suggested that the smallest subunit was concerned with the stability of the 78-kDa subunit and functioned as a molecular coupler of the 78-kDa subunit to the 48-kDa subunit on the cytoplasmic membrane.

  16. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2012-10-01

    Hydrogels are a cross-linked network of polymers swollen with liquid and have the potential to be used as a synthetic replacement for local defects in load bearing tissues such as articular cartilage. Hydrogels display viscoelastic time dependent behavior, therefore experimental analysis of stresses at the surface and within the gel is difficult to perform. A three-dimensional model of a hydrogel was developed in the commercial finite element software ABAQUS™, implementing a poro-viscoelastic constitutive model along with a contact-dependent flow state and friction conditions. Water content measurements, sliding, and indentation experiments were performed on neat polyvinyl alcohol (PVA), and on low friction boundary lubricant functionalized (BLF-PVA) hydrogels, both manufactured by freeze-thaw processes. Modulus results from the indentation experiments and coefficient of friction values from the sliding experiments were used as material property inputs to the model, while water content was used to calculate initial flow conditions. Tangential force and normal displacement data from a three-dimensional simulation of sliding were compared with the experiments. The tangential force patterns indicated important similarities with the fabricated hydrogels that included an initially high force value due to time dependent deformation followed by a decrease in a stabile value. A similar trend was observed with the normal displacement. These comparisons rendered the model suitable as a representation and were used to analyze the development and propagation of stresses in the immediate surface region. The results showed that in a three-dimensional stress field during sliding, the maximum stress shifted to the surface and rotated closer to the leading edge of contact. This occurred because the stress field becomes dominated by an amplified compressive stress at the leading edge due to the biphasic viscoelastic response of the material during sliding. Also, the complex multi

  17. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly (vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on m...

  18. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  19. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  20. Rainfastness of Poly(vinyl alcohol) Deposits on Vicia faba Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain.

    PubMed

    Symonds, Brett L; Thomson, Niall R; Lindsay, Christopher I; Khutoryanskiy, Vitaliy V

    2016-06-01

    Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants. PMID:27070864

  1. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  2. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  3. Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing.

    PubMed

    Mabrouk, Mostafa; Choonara, Yahya E; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; van Vuuren, Sandy; Pillay, Viness

    2016-06-30

    The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity. PMID:27154257

  4. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  5. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    NASA Astrophysics Data System (ADS)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical

  6. Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol).

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-09-01

    An environmentally friendly and inexpensive substitute to the widely used poly(vinyl alcohol) (PVA) has been developed from soy proteins for textile warp sizing. Textile processing is the major source of industrial water pollution across the world, and sizing and desizing operations account for nearly 30 % of the water consumed in a textile plant. PVA is one of the most common sizing agents used for synthetic fibers and their blends due to PVA's easy water solubility and ability to provide desired sizing performance. However, PVA does not degrade and is a major contributor to pollution in textile effluent treatment plants. Although considerable efforts have been made to replace PVA with biodegradable sizing materials, the performance properties provided by PVA on synthetic fibers and their blends have been unmatched so far. Soy proteins are inexpensive, biodegradable, and have been widely studied for potential use in food packaging, as resins and adhesives. In this research, the potential of using soy proteins as textile sizing agents to replace PVA was studied. Polyester and polyester/cotton rovings, yarns, and fabrics sized with soy protein showed a considerably better improvement in strength and abrasion resistance compared to commercially available PVA-based size. Soy protein size had a 5-day biochemical oxygen demand /chemical oxygen demand ratio of 0.57 compared to 0.01 for PVA indicating that soy protein sizes were easily biodegradable in activated sludge. The total and ammonia nitrogen released from the proteins also did not adversely impact the biodegradability. Good sizing performance and easy biodegradability demonstrate that soy protein-based sizes have potential to replace PVA-based sizes leading to substantial benefits to the textile industry and the environment. PMID:23536274

  7. Magnetite (Fe3O4) microcapsules prepared using a glass membrane and solvent removal.

    PubMed

    Omi, S; Kanetaka, A; Shimamori, Y; Supsakulchai, A; Nagai, M; Ma, G H

    2001-01-01

    Fine magnetite powders dispersed in polymer solution were encapsulated from an oil-in-water emulsion prepared by an emulsification process employing a porous glass membrane and subsequent evaporation of the solvent. Styrene-based copolymers were dissolved in a magnetic fluid, and then continuously pushed through the pores of glass membrane into the aqueous phase, which had dissolved polyvinyl alcohol (PVA) and sodium dodecyl sulphate (SDS) as a mixed stabilizer. P(styrene-co-acrylic acid) (PS-AA), P(stryrene-co-butyl acrylate) (PS-BA) and styrene-butadiene rubber (SBR) were dissolved in the specially ordered magnetite fluid (25 wt% magnetite dispersed in toluene) separately or as a mixture, and uniform droplets suspending the magnetic particles were obtained. After the evaporation of toluene, PS-AA capsules retained a spherical shape and uniformity, whereas PS-AA/PS-BA capsules revealed a creased surface and broader size distribution. The microcapsules entrapped 30-40 wt% of magnetite, and the encapsulation yield of magnetite was 20-40%. Glass membranes with 9.5, 5.25 and 1.42 microm pore size were employed and 5-40 microm microcapsules were obtained depending on the pore size. When magnetite suspended in chloroform was used, magnetite capsules with broader size distributions were obtained because of the sticking of the droplets to the membrane wall. The advantage of the membrane emulsification which provides uniform sized droplets was lost. PMID:11695639

  8. Cross-linked hybrid nanofiltration membrane with antibiofouling properties and self-assembled layered morphology.

    PubMed

    Singh, Ajay K; Prakash, S; Kulshrestha, Vaibhav; Shahi, Vinod K

    2012-03-01

    A new siloxane monomer, 3-(3-(diethoxy(2-(5-(4-(10-ethoxy-4-hydroxy-2,2-dimethyl-11-oxa-2-ammonio-6-aza-10-silatridecan-10-yl)phenyl)-1,3,4-oxadi azol-2-ylthio)ethyl)silyl)propylamino)-2-hydroxy-N,N,N-trimethylpropan-1-aminium chloride (OA), was synthesized by reported 3-((4-(5-(2-((3-aminopropyl) diethoxysilyl)ethylthio)-1,3,4-oxadiazol-2-yl)phenyl) diethoxysilyl)propan-1-amine (APDSMO) and glycidyltrimethylammonium chloride (GDTMAC) by epoxide ring-opening reaction. OA-poly(vinyl alcohol) (PVA) hybrid antibiofouling nanofilter (NF) membranes were prepared by acid-catalyzed sol-gel followed by formal cross-linking. Membranes showed wormlike arrangement and self-assembled layered morphology with varying OA content. Hybrid NF membrane, especially OA-6, showed low surface roughness, high hydrophilic nature, low biofouling, high cross-linking density, thermal and mechanical stablility, solvent- and chlorine-tolerant nature, along with good permeability and salt rejection. Prepared OA-6 hybrid NF membrane can be used efficiently for desalting and purification of water with about 2.0 g/L salt content (groundwater in major part of India). The described method provides novel route for producing antibiofouling membranes of diversified applications. PMID:22360398

  9. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE PAGES

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  10. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  11. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  12. Preparation of a Nanoscaled Poly(vinyl alcohol)/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery.

    PubMed

    Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio

    2011-01-01

    Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  13. [Preparation of polyvinyl alcohol film inlaid with silk fibroin peptide nano-scale particles and evaluation of its function to promote cell growth].

    PubMed

    Chen, Zhongmin; Hao, Xuefei; Fan, Kai

    2010-12-01

    Nano-scale particles of silk fibroin peptide (SFP) were prepared from discarded materials of cocoon or filature by dissolving and enzymolysis. Polyvinyl Alcohol films inlaid with silk fibroin peptide nano-scale particles (SFP in PVA) were prepared by blending nano-SFP and PVA in water according to different blending ratios. The films' characteristics and their promoting cell growth functions were investigated. Silk fibroin fiber was dissolved in 60% NaSCN solution, and was decomposed with alpha-Chymotrypsin, Trypsin and Neutral, respectively. The uniformity of size of SFP nano-particles prepared by Neutral was better and appeared about 80-150 nm. (SFP in PVA) films were characterized by infrared spectroscopy (IR) measurement which demonstrated the combination of SFP and PVA. Scanning electron microscopy revealed the PVA films already inlaid with SFP micro-segment. The surface and form stability in water of the (SFP in PVA) films with blending ratios of 10/90, 20/80, 30/70 and 40/60 were observed. And the results showed that SFP/PVA film with the blending ratio of 30/70 has smoother surface and better stability in water. The Chinese hamster ovary (CHO) cells were cultured, and the promoting cell growth function of (SFP in PVA) films was assessed by MTT colorimetric assay. These findings indicate that SFP/PVA (30/70) film has excellent function of promoting cell growth.

  14. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation. PMID:27570286

  15. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  16. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application.

    PubMed

    Gaikwad, Kirtiraj K; Lee, Jin Yong; Lee, Youn Suk

    2016-03-01

    Active antioxidant food packaging films were developed by incorporation of apple pomace (AP) with 1, 5, 10, and 30 % (w/w) into polyvinyl alcohol (PVA) matrix. A complete thermal, structural, mechanical and functional characterization was carried out. The findings of this study showed that the incorporation of AP into PVA films enhanced the total phenolic content and antioxidant properties. As regards the physical properties, higher AP content incorporated into PVA films revealed significantly lower tensile strength, elongation at break and increase in thickness. PVA-AP films exhibited lower transparency value compared to control film. The thermal stability of PVA-AP films was improved and grew with the increasing concentration of AP. FTIR spectra indicated that protein-polyphenol interactions were involved in the PVA-AP films. Rough surface and compact-structure were observed in PVA-AP films. The storage study of soybean oil at 60 °C in PVA-AP pouch showed the antioxidant activity and the effectiveness for delaying its lipid oxidation.

  17. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  18. Whole-Pattern Fitting and Positron Annihilation Studies of Magnetic PVA/α-Fe2O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Ningaraju, S.; Ravikumar, H. B.; Somashekar, R.; Nagabhushana, B. M.

    2016-06-01

    A low-temperature solution combustion method was used to synthesize α-Fe2O3 nanoparticles. Magnetic polyvinyl alcohol (PVA)/α-Fe2O3/NaCl nanocomposites were prepared by solvent cast method. The Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) results are in confirmation with X-ray diffraction (XRD) results indicating the formation of nanocomposites. The microcrystalline parameters, crystallite size ( ), lattice strain ( g in %), stacking faults ( α d ), and twin faults ( β) of prepared polymer nanocomposites were evaluated by whole-pattern fitting technique. The refinement was carried out using the computed microstructural parameters in which the twin faults and stacking faults did not vary much and statistical deviation was less than 5 %. Positron annihilation lifetime spectroscopy (PALS) was used for microstructural characterization. PALS results show that the ortho-positronium (o-Ps) lifetime (τ3) increases gradually as a function of nanoparticle concentration and about 219 ps increase observed from1.50 to1.71 ns at 3 wt%. This indicates the increase of free volume hole size ( V f ) from 54.47 to 72.18 Å3. The o-Ps intensities ( I 3) decrease indicating the inhibition of o-Ps formation upon incorporation of nanoparticles into PVA. The increase in I 2 values suggests the increased annihilation at the interface region. Positron lifetime parameters, viz., o-Ps lifetime, and its intensities indicate the effect of quenching and inhibition upon incorporation of metal oxide nanoparticles and inorganic salt into PVA.

  19. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    PubMed

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  20. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  1. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application.

    PubMed

    Bai, Xue; Gu, Haixin; Chen, Wei; Shi, Hanchang; Yang, Bei; Huang, Xin; Zhang, Qi

    2014-07-01

    Poly(vinyl alcohol) (PVA) microspheres were prepared by inverse suspension crosslinked method, with glutaraldehyde as a crosslinking agent. PVA microspheres activated with aldehyde groups were employed for Trametes versicolor laccase immobilization. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the activated PVA microspheres and PVA microspheres with immobilized laccase (Lac/PVA microspheres), which show that laccase was successfully immobilized on the PVA microspheres. The optimum pH and temperature coupling conditions for the immobilized laccase were determined to be 3.3 and 30 °C, respectively. Residual activity was also investigated by soaking the immobilized laccase in organic solvents at different concentrations, proving it chemically stable. Immobilized laccase exhibited good storage stability at 4 °C. The enzyme biosensor showed good performance in 2,2-azinobis(3-ethylthiazoline-6-sulfonate) and bisphenol A, with concentration ranges of 2 to 8 mM and 0.05 to 0.25 mM, respectively. Therefore, PVA microspheres may have high potential as support for enzyme thermistor applications.

  2. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44 ± 14.99 and 958.35 ± 155.27 μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. PMID:26965199

  3. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films.

    PubMed

    Hanafy, Taha A

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ε', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σ(ac), of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La(3+), Gd(3+), and Er(3+) ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into α(a) and α(c). This splitting is due to the segmental motion in the amorphous (α(a)) and crystalline (α(c)) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  4. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Oster, Jürgen; Parker, Jeffrey; à Brassard, Lothar

    2001-01-01

    The versatile application of polyvinyl-alcohol-based magnetic M-PVA beads is demonstrated in the separation of genomic DNA, sequence specific nucleic acid purification, and binding of bacteria for subsequent DNA extraction and detection. It is shown that nucleic acids can be obtained in high yield and purity using M-PVA beads, making sample preparation efficient, fast and highly adaptable for automation processes.

  5. The electrical and optical studies of the KC1 doped PVA polymer electrolyte materials

    NASA Astrophysics Data System (ADS)

    Kamani, K. K.; Madhu, B. J.; Nethravathi, M.; Ashwini, S. T.

    2013-06-01

    In the recent years the greatest attention has been paid to determine the conductivity of different concentration solutions conducting polymers exhibit a wide range of novel electrochemical and chemical properties that has led to their use in a diverse array of applications including sensors PVA is fully degradable and dissolves quickly. PVA biodegradation is believed to be due to a random chain cleavage process. PVA molecular matrix and KC1 solutions were prepared with distilled water as solvent. The saturated solutions electric conductivity, pH values reveals the increase of ionic concentrations with increase of dopant weight fractions. Dielectric properties and UV visible studies of PVA and KC1 polymer complex experimental observations suggest the variations in the ionic nature electrolyte. Material. We are reporting the conducting properties of the PVA and KC1 polymer matrix and electrical nature of the PVA complex structure as electrolyte.

  6. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  7. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  8. Evaluation and modeling of thermal kinetic degradation for PVA doped PbS quantum dot

    SciTech Connect

    Mahmoud, Waleed E.; Al-Heniti, S.H.

    2011-09-15

    Highlights: {yields} Synthesis of PVA doped PbS quantum dots. {yields} Data fitting using integral and differential thermal kinetic models for calculating activation energy. {yields} Prediction of thermal degradation using iso-conversion model. -- Abstract: The kinetic analysis of the thermogravimetric curves for the thermal decomposition processes of PVA/PbS was performed. The samples were heated in nitrogen, with three different heating rates: 10, 20 and 30 {sup o}C min{sup -1}. Various forms of non-isothermal methods of analysis for determining the kinetic parameters were used. The differential and integral models were used to calculate the activation energies. Comparing with pure PVA, the results showed that the maximum activation energy of thermal degradation is achieved for PVA/PbS nanocomposite. Isoconversion model is used for predicting the thermal degradation acceleration. The results showed that the acceleration of thermal degradation for pure PVA was faster than PVA/PbS nanocomposite.

  9. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  10. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  11. Heat resistance poly(vinyl alcohol) hydrogel

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Makuuchi, K.; Darwis, D.; Iriawan, T.; Razzak, M. T.; Rosiak, Janusz M.

    1995-08-01

    Six methods were used to evaluate the heat resistance of poly(vinyl alcohol) (PVA) hydrogel prepared by a combination of electron beam irradiation and acetalization of PVA. The physical properties of the hydrogel depended on the degree of acetilization which was affected by content of water in PVA sheet of acetalization in formaldehyde solution at 60°C. It was found that the optimum water content was 20-30%. The acetalized PVA sheet gave maximum tensile strength in electron beams irradiation at 100 kGy. The tensile strength of the hydrogel film increased to 20 MPa from 14 MPa by the irradiation. Heat resistance of the hydrogel was evaluated by measuring the mechanical properties after sterilization in a steam autoclave at 121°C for 90 min. The tensile strength decreased to 10 MPa whereas the elongation at break increased to 300%. The tackiness of the hydrogel was improved by radiation grafting of acrylic acid. Wholesomeness of the hydrogel as a wound dressing was evaluated by attaching to a burn or wound of the back skin of marmots. Advantages of the hydrogel over a gauze dressing were homogeneous adhesion to the affected parts, easy removal without damage to renewed skin and slightly faster rate of reconstruction of the injured skin.

  12. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes

    PubMed Central

    Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.

    2015-01-01

    Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197

  13. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications.

  14. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  15. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    NASA Astrophysics Data System (ADS)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  16. Synthesis of coprecipitated strontium hexaferrite nanoparticles in the presence of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Hashemi, B.; Yousefi, M. H.

    2011-12-01

    Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.

  17. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications. PMID:26478388

  18. Introduction and demonstration of a novel Pb(II)-imprinted polymeric membrane with high selectivity and reusability for treatment of lead contaminated water.

    PubMed

    He, Jinsong; Liu, Aoyun; Chen, J Paul

    2015-02-01

    Lead contaminant in water has become an issue of great concern due to its high toxicity and easy accumulation in human body. In this study, a novel Pb(II)-imprinted polyvinyl alcohol (PVA)/polyacrylic acid (PAA) membrane (Pb-IM) was prepared based on semi-interpenetrating polymer network for selective lead removal. The chemical stability and lead adsorption performance of the Pb-IM were evaluated. The results revealed that the Pb-IM exhibited high adsorption capacity of 1.003mmol/g for lead, fast adsorption equilibrium within 1.5h, and the adsorption process obeyed Langmuir isotherm model and intraparticle pore diffusion model. The Pb-IM retained high adsorption of lead in the presence of competitive factor, i.e. cadmium. In comparison with non-imprinted PVA/PAA membrane, the Pb-IM possessed a much higher selectivity toward lead versus cadmium, with selectivity coefficient of 70.7. Furthermore, the Pb-IM displayed a high reusability for lead uptake and could maintain 96.32% of the adsorption capacity of virgin Pb-IM after six adsorption/desorption cycles. The FTIR and XPS analyses indicated that carboxyl groups in PAA and hydroxyl groups in PVA were mainly associated with the lead adsorption. Finally, the stability study showed that Pb-IM was quite stable and suitable for water treatment. It can be concluded that the Pb-IM can be provided as a powerful material for the selective removal of lead from aqueous solution.

  19. Introduction and demonstration of a novel Pb(II)-imprinted polymeric membrane with high selectivity and reusability for treatment of lead contaminated water.

    PubMed

    He, Jinsong; Liu, Aoyun; Chen, J Paul

    2015-02-01

    Lead contaminant in water has become an issue of great concern due to its high toxicity and easy accumulation in human body. In this study, a novel Pb(II)-imprinted polyvinyl alcohol (PVA)/polyacrylic acid (PAA) membrane (Pb-IM) was prepared based on semi-interpenetrating polymer network for selective lead removal. The chemical stability and lead adsorption performance of the Pb-IM were evaluated. The results revealed that the Pb-IM exhibited high adsorption capacity of 1.003mmol/g for lead, fast adsorption equilibrium within 1.5h, and the adsorption process obeyed Langmuir isotherm model and intraparticle pore diffusion model. The Pb-IM retained high adsorption of lead in the presence of competitive factor, i.e. cadmium. In comparison with non-imprinted PVA/PAA membrane, the Pb-IM possessed a much higher selectivity toward lead versus cadmium, with selectivity coefficient of 70.7. Furthermore, the Pb-IM displayed a high reusability for lead uptake and could maintain 96.32% of the adsorption capacity of virgin Pb-IM after six adsorption/desorption cycles. The FTIR and XPS analyses indicated that carboxyl groups in PAA and hydroxyl groups in PVA were mainly associated with the lead adsorption. Finally, the stability study showed that Pb-IM was quite stable and suitable for water treatment. It can be concluded that the Pb-IM can be provided as a powerful material for the selective removal of lead from aqueous solution. PMID:25463189

  20. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  1. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (PVA's chemical stability, photolithography can be performed directly on the polymer electrolyte, which allows for the deposition of a patterned, metal gate directly on the electrolyte, as well as the ability to pattern the electrolyte itself. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  2. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  3. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    PubMed

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads.

  4. Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites.

    PubMed

    Li, Yunxi; Wang, Chunhui; Li, Hailong; Wang, Xiaoyi; Han, Junhe; Huang, Mingju

    2015-11-20

    Al2O3 nanoparticles modified with different chemical reagents, prepared by using three chemical dispersants [high definition (HD), sodium dodecyl benzene sulfonate, and cetyl trimethyl ammonium chloride], were doped into photopolymer films in a polyvinyl alcohol/acrylamide (PVA/AA) system, respectively. A 647 nm Ar-Kr laser was used to expose and study the holographic properties of the samples. The research shows that doping Al2O3 nanoparticles into PVA/AA photopolymer film leads to different levels of improvement of the holographic characteristics. The diffraction efficiency of the sample can be raised to 93.8%, the maximum refractive index modulation increased to 2.28×10(-3), the shrinkage can be depressed to 0.8%, and the Bragg mismatch is 0.04°, while the concentration of 10 nm Al2O3 nanoparticles modified by HD dispersant is 1.02×10(-3)  mol·L(-1). PMID:26836540

  5. Studies on photo- and thermal stability of PVA-encapsulated Mn-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Venkataramana, Savadana; Ramanaiah, K.; Sarcar, M. M. M.

    2016-04-01

    In this study, an aqueous-based synthesis route has been developed to prepare highly luminescent polyvinyl alcohol (PVA)-capped manganese-doped ZnS quantum dots (QDs). The QDs showed markedly blue shift in their optical absorbance, indicating strong quantum size effect and the average diameter of the QDs calculated ~3 nm. The QDs showed high-intensity Mn2+-related orange luminescence at 585 nm with a very low-intensity peak at 430 nm for the surface defect states. X-ray powder diffraction, transmission electron microscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the doped QDs. Studies on the thermal and photochemical stability of the photoluminescence properties are carried out, which showed that after 5 h of photoexcitation and 30 min of 70 °C treatments, the nanoparticles retain almost 40 % of their initial quantum yield. Our systematic investigation shows that these PVA-capped Mn:ZnS QDs may be used as fluorescent labels in biological applications.

  6. Performance enhancement of poly(3-hexylthiophene-2,5-diyl) based field effect transistors through surfactant treatment of the poly(vinyl alcohol) gate insulator surface.

    PubMed

    Nawaz, Ali; Cruz-Cruz, Isidro; Rodrigues, Rafael; Hümmelgen, Ivo A

    2015-10-28

    We report on the improvement of field effect transistors based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as a channel semiconductor and crosslinked poly(vinyl alcohol) (cr-PVA) as a gate insulator, through the treatment of the cr-PVA film surface before P3HT deposition. We treated the cr-PVA either with hydrochloric acid (HCl) or with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), aiming at the passivation of the hole traps at the cr-PVA/P3HT interface. The treatment with HCl leads to an excessive increase in the transistor leakage current and unstable electrical characteristics, despite implying an increase in the gate capacitance. The treatment with CTAB leads to transistors with ca. 50% higher specific capacitance and a tenfold increase in the charge carrier field-effect mobility, when compared to devices based on untreated cr-PVA.

  7. Fiber introduction mass spectrometry: determination of pesticides in herbal infusions using a novel sol-gel PDMS/PVA fiber for solid-phase microextraction.

    PubMed

    da Silva, Rogério Cesar; Zuin, Vânia Gomes; Yariwake, Janete Harumi; Eberlin, Marcos Nogueira; Augusto, Fabio

    2007-10-01

    An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption. PMID:17902108

  8. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  9. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Idris, Ani; Irfan, Muhammad; Kurniawan, Denni; Yusof, Noordin Mohd; Nasiri, Rozita

    2015-09-01

    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.

  10. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient.

  11. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient. PMID:25965457

  12. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    PubMed Central

    Sheha, Eslam M.; Nasr, Mona M.; El-Mansy, Mabrouk K.

    2014-01-01

    A solid polymer electrolyte system based on poly(vinyl alcohol) (PVA) and poly(3,4-Etylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) complexed with magnesium bromide (MgBr2) salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2) at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties. PMID:26199746

  13. The influence of γ-rays irradiation on the structure and crystallinity of heteropoly acid doped PVA

    NASA Astrophysics Data System (ADS)

    Mahmoud, Waleed E.; Al-Ghamdi, A. A.; Kadi, Mohammad W.

    2012-06-01

    This contribution represents the manufacturing of a hybrid organic-inorganic proton conducting compound, which involves the introduction of heteropoly acid (HPA) of different concentrations into poly-vinyl alcohol (PVA). These compounds were irradiated by γ-rays at different doses of 10, 20, 30, and 40 kGy. The unirradiated and irradiated compounds were characterized by XRD and DSC. The XRD results showed that the crystallinity and d-spacing were strongly influenced by the amount of HPA and irradiation doses. The DSC results showed that the melting point was decreased as a result of HPA concentration and irradiation doses. The degree of crystallinity calculated from XRD is in good agreement with that calculated from DSC. The activation energy of the Unirradiated and irradiated compounds was calculated using the Flynn-Wall-Ozawa model.

  14. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. PMID:26397234

  15. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days.

  16. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  17. An innovative arrangement for in-vial membrane-assisted liquid-liquid microextraction: application to the determination of esters of phthalic acid in alcoholic beverages by gas chromatography-mass spectrometry.

    PubMed

    March, Juan Gabriel; Cerdà, Victor

    2015-05-01

    A new arrangement for membrane-assisted liquid-liquid microextraction is presented. The extracting organic solvent was placed into a chromatographic microvial, compatible with the chromatograph autosampler, whose septum was replaced by a disc of porous hydrophobic membrane. This extraction device was completely immersed into the analytical sample contained in a cylindrical container subjected to rotary and basculant movement. Then, the extraction of analytes took place from the sample to the organic solvent contained in the vial through the membrane. Esters of the phthalic acid have been selected as model analytes to determine the performance characteristics of the extraction system. The limits of detection, limits of quantification and relative standard deviations (%) were in the range 0.1-0.4, 0.3-1 and 4-7, respectively. Esters of phthalic acid have been successfully analysed in alcoholic beverages. The main operational advantages of this arrangement consisted of minimal required handling, minimal risk of cross contamination and its simplicity.

  18. An innovative arrangement for in-vial membrane-assisted liquid-liquid microextraction: application to the determination of esters of phthalic acid in alcoholic beverages by gas chromatography-mass spectrometry.

    PubMed

    March, Juan Gabriel; Cerdà, Victor

    2015-05-01

    A new arrangement for membrane-assisted liquid-liquid microextraction is presented. The extracting organic solvent was placed into a chromatographic microvial, compatible with the chromatograph autosampler, whose septum was replaced by a disc of porous hydrophobic membrane. This extraction device was completely immersed into the analytical sample contained in a cylindrical container subjected to rotary and basculant movement. Then, the extraction of analytes took place from the sample to the organic solvent contained in the vial through the membrane. Esters of the phthalic acid have been selected as model analytes to determine the performance characteristics of the extraction system. The limits of detection, limits of quantification and relative standard deviations (%) were in the range 0.1-0.4, 0.3-1 and 4-7, respectively. Esters of phthalic acid have been successfully analysed in alcoholic beverages. The main operational advantages of this arrangement consisted of minimal required handling, minimal risk of cross contamination and its simplicity. PMID:25876533

  19. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  20. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  1. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  2. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  3. Enhanced salt-removal percentage in capacitive deionization with addition of ion-exchange membrane using carbon electrode synthesized with freezing thawing method

    NASA Astrophysics Data System (ADS)

    Sari, Intan Permata; Endarko

    2016-04-01

    Ion-exchange membrane technology has shown a great potential to enhance the desalting efficiency. Ion-exchange membranes are placed in front of the electrodes so that the charged ions can be selectively passed through the membrane layer and captured by the oppositely charged electrode more quickly, so as to increase the efficiency of desalination. In this research, carbon electrodes have been synthesized from an activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using freezing thawing method. A solution with 180 µS/cm NaCl was pumped to the capacitive deionization (CDI) cell using a Boyu Submersible pump (model SP-601) at a flow rate of 25 mL/min and the voltage was set at 2 V. The result showed that the CDI cell with ion-exchange membrane (MCDI) has the salt removal efficiency greater than the CDI cell without ion-exchange membrane. The salt-removal percentage of MCDI was achieved at 66.36%, meanwhile the CDI cell without ion-exchange membrane resulted in 54.4%.

  4. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    SciTech Connect

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Mali, S.S.; Hong, C.K.; Pawar, S.H.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamic light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.

  5. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan.

    PubMed

    Sung, Jung Hoon; Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Giu; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-06-15

    The purpose of this study was to develop a minocycline-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and chitosan using the freeze-thawing method. Their gel properties, in vitro protein adsorption, release, in vivo wound healing effect and histopathology were then evaluated. Chitosan decreased the gel fraction, maximum strength and thermal stability of PVA hydrogel, while it increased the swelling ability, water vapour transmission rate, elasticity and porosity of PVA hydrogel. Incorporation of minocycline (0.25%) did not affect the gel properties, and chitosan hardly affected drug release and protein adsorption. Furthermore, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug was more swellable, flexible and elastic than PVA alone because of relatively weak cross-linking interaction of chitosan with PVA. In wound healing test, this minocycline-loaded PVA-chitosan hydrogel showed faster healing of the wound made in rat dorsum than the conventional product or the control (sterile gauze) due to antifungal activity of chitosan. In particular, from the histological examination, the healing effect of minocycline-loaded hydrogel was greater than that of the drug-loaded hydrogel, indicating the potential healing effect of minocycline. Thus, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug is a potential wound dressing with excellent forming and enhanced wound healing.

  6. A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit[7]uril, gelatin and polyvinyl alcohol.

    PubMed

    Oun, Rabbab; Plumb, Jane A; Wheate, Nial J

    2014-05-01

    The anticancer drug cisplatin was encapsulated within the cucurbit[7]uril macrocycle to form the host-guest complex: cisplatin@CB[7]. This was then incorporated into gelatin and 0-4% w/v polyvinyl alcohol (PVA)-based hydrogels as slow release drug delivery vehicles. The hydrogels demonstrated predicable swelling and disintegration dependent on the PVA concentration. The hydrogel with the highest PVA content was slower to swell and release drug compared with lower concentrations of PVA. The effect of the hydrogel PVA concentration on in vitro cytotoxicity was examined using A2780/CP70 ovarian cancer cells. Over the 24h drug exposure time used, hydrogels containing 4% PVA showed a 20% decrease in viable cells compared to the control, whereas hydrogels containing 0% and 2% PVA induced an 80% and 45% inhibition of cell growth, respectively. There was no measurable difference in the in vitro cytotoxicity of free cisplatin and cisplatin@CB[7] containing hydrogels. Finally, the in vivo effectiveness of a 2%-PVA hydrogel implanted under the skin of nude mice bearing A2780/CP70 xenografts showed that low dose hydrogels containing cisplatin@CB[7] (30 μg equivalent of drug) was just as effective as an intraperitoneal high dose administration of free cisplatin (150 μg) at inhibiting tumour growth.

  7. Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Pandiyarajan, T.; Mangalaraja, R. V.

    2016-01-01

    ZnO:PVA nanocomposite films were prepared and their fluorescence and time resolved photoluminescence properties were discussed. X-ray diffraction and infrared spectroscopy results confirmed the ZnO:PVA interaction. Optical absorption spectra showed two bands at 280 and 367 nm which were ascribed to PVA and excitonic absorption band, respectively. Fluorescence spectra showed that the blue emission of ZnO was enhanced about tenfold through chemical interface electron transfer. The electron transfer from ZnO to PVA and its decay dynamics were experimentally analyzed through time resolved fluorescence measurements. The study revealed that the excited electrons found pathway through PVA to ground state which was slower than the pure ZnO nanoparticles.

  8. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  9. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Nagy, L.; Kukovecz, Á.; Kónya, Z.

    2014-07-01

    Multiwalled carbon nanotubes were synthesized by chemical vapor deposition over an Fe-Co/alumina catalyst. Nanotubes were then oxidized and grafted with polyvinyl alcohol (PVA). The obtained nanostructure was characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM, TEM and TGA methods. FTIR confirmed the presence of the characteristic peaks of the anticipated ester group. The formation of polymer nanocomposites based on polyvinyl alcohol and multiwalled carbon nanotubes was confirmed by SEM and TEM. High resolution electron micrographs revealed that the primary binding sites for PVA grafting are the sidewall defects of the nanotubes. The novelty of this work is the use of the Fischer esterification reaction for creating the permanent link between the nanotubes and the PVA matrix.

  10. Imaging and thermal studies of wheat gluten/poly(vinyl alcohol) and wheat gluten/thiolated poly(vinyl alcohol) blends.

    PubMed

    Dong, Jing; Dicharry, Rebecca; Waxman, Eleanor; Parnas, Richard S; Asandei, Alexandru D

    2008-02-01

    The morphology of wheat protein (WG) blends with polyvinyl alcohol (PVA) and respectively with thiolated polyvinyl alcohol (TPVA) was investigated by atomic force (AFM) and transmission electron microscopy (TEM) as well as by modulated dynamic scanning calorimetry (MDSC). Thiolated additives based on PVA and other substrates were previously presented as effective means of improving the strength and toughness of compression molded native WG bars via disulfide-sulfhydryl exchange reactions. Consistent with our earlier results, AFM and TEM imaging clearly indicate that the addition of just a few mole percent of thiol to PVA was sufficient to dramatically change its compatibility with wheat protein. Thus, TPVA is much more compatible with WG and phase separates into much smaller domains than in the case of PVA, although there are still two phases in the blend: one WG-rich phase and another TPVA-rich phase. The WG/TPVA blend has phase domains ranging in size from 0.01 to 0.1 microm, which are roughly 10 times smaller than those of the WG/PVA blend. MDSC further illustrates the compatibilization of the protein with TPVA via the dependence of the transition temperatures on composition.

  11. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  12. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  13. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement.

    PubMed

    Katta, Jayanth K; Marcolongo, Michele; Lowman, Anthony; Mansmann, Kevin A

    2007-11-01

    Many hydrogels have been proposed as articular cartilage replacements as an alternative to partial or total joint replacements. In the current study, poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) hydrogels were investigated as potential cartilage replacements by investigating their in vitro wear and friction characteristics in a pin-on-disk setup. A three-factor variable-level experiment was designed to study the wear and friction characteristics of PVA/PVP hydrogels. The three different factors studied were (a) polymer content of PVA/PVP hydrogels, (b) load, and (c) effect of lubricant. Twelve tests were conducted, with each lasting 100,000 cycles against Co-Cr pins. The average coefficient of friction for synovial fluid lubrication was a low 0.035 compared with 0.1 for bovine serum lubrication. Frictional behavior of PVA/PVP hydrogels did not follow Amonton's law of friction. Wear of the hydrogels was quantified by measuring their dry masses before and after the tests. Higher polymer content significantly reduced the wear of hydrogel samples with 15% PVA/PVP samples, showing an average dry polymer loss of 4.74% compared with 6.05% for 10% PVA/PVP samples. A trend change was observed in both the friction and wear characteristics of PVA/PVP hydrogels at 125 N load, suggesting a transition in the lubricating mechanism at the pin-hydrogel interface at the critical 125 N load.

  14. Ultrasonic force microscopy on poly(vinyl alcohol)/SrTiO(3) nano-perovskites hybrid films.

    PubMed

    Marino, Salvatore; Joshi, Girish M; Lusuardi, Angelo; Cuberes, M Teresa

    2014-07-01

    Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) have been applied to the characterization of composite samples formed by SrTiO3 (STO) nanoparticles (NPs) and polyvinyl alcohol (PVA). The morphological features of the STO NPs were much better resolved using UFM than contact-mode AFM topography. For high STO concentrations the individual STO NPs formed nanoclusters, which gathered in microaggregates. The STO aggregates, covered by PVA, exhibited no AFM frictional contrast, but were clearly distinguished from the PVA matrix using UFM. Similar aggregation was observed for NPs in the composite samples and for NPs deposited on top of a flat silicon substrate from milliQ water solution in the absence of polymer. In the hybrid films, most STO nanoparticles typically presented a lower UFM contrast than the PVA matrix, even though stiffer sample regions such as STO should give rise to a higher UFM contrast. STO NPs with intermediate contrast were characterized by an UFM halo of lower contrast at the PVA/STO interface. The results may be explained by considering that ultrasound is effectively damped on the nanometer scale at PVA/STO interfaces. According to our data, the nanoscale ultrasonic response at the PVA/STO interface plays a fundamental role in the UFM image contrast.

  15. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes

    NASA Astrophysics Data System (ADS)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2016-02-01

    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  16. Characterizing p-channel thin film transistors using ZnO/hydrated polyvinyl alcohol as the conducting channel

    SciTech Connect

    Liau, Leo Chau-Kuang Hsu, Tzu-Hsien; Lo, Pei-Hsuan

    2014-08-11

    We report the characteristics of p-channel thin film transistors (p-TFTs) with ZnO/hydrated polyvinyl alcohol (PVA) (ZnO/PVA) conducting channels. The metal-oxide-semiconductor structure of the p-TFTs was composed of indium tin oxide (ITO)/SiO{sub 2}/ZnO/PVA layers. The TFT was assembled using PVA gel, which was glued to ITO substrates patterned to form source and drain electrodes. The ZnO/PVA composite film acted as an effective conducting film because of the chemisorption reaction at the film interface where free electrons can be generated. The formation of the conducting channel was also affected by V{sub G} applied to the TFT. The ZnO/PVA-based TFTs demonstrated p-channel transistor performance, shown by current-voltage (I-V) data analysis. The electrical parameters of the device were evaluated, including the on/off ratio (∼10{sup 3}), threshold voltage (V{sub th}, −1 V), and subthreshold swing (−2.2 V/dec). The PVA/ZnO-based p-TFTs were fabricated using simple and cost-effective approaches instead of doping methods.

  17. Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing.

    PubMed

    Schanuel, Fernanda Seabra; Raggio Santos, Karen Slis; Monte-Alto-Costa, Andréa; de Oliveira, Marcelo G

    2015-06-01

    Nitric oxide (NO) releasing biomaterials represent a potential strategy for use as active wound dressings capable of accelerating wound healing. Topical NO-releasing poly(vinyl alcohol) (PVA) films and Pluronic F127 hydrogels (F127) have already exhibited effective skin vasodilation and wound healing actions. In this study, we functionalized PVA films with SNO groups via esterification with a mixture of mercaptosucinic acid (MSA) and thiolactic acid (TLA) followed by S-nitrosation of the SH moieties. These films were combined with an underlying layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-PPO-PEO (Pluronic F127) hydrogel and used for the topical treatment of skin lesions in an animal model. The mixed esterification of PVA with MSA and TLA led to chemically crosslinked PVA-SNO films with a high swelling capacity capable of spontaneously releasing NO. Real time NO-release measurements revealed that the hydrogel layer reduces the initial NO burst from the PVA-SNO films. We demonstrate that the combination of PVA-SNO films with F127 hydrogel accelerates wound contraction, decreases wound gap and cellular density and accelerates the inflammatory phase of the lesion. These results were reflected in an increase in myofibroblastic differentiation and collagen type III expression in the cicatricial tissue. Therefore, PVA-SNO films combined with F127 hydrogel may represent a new approach for active wound dressings capable of accelerating wound healing. PMID:25907598

  18. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.

    PubMed

    Hu, Huawen; Xin, John H; Hu, Hong; Chan, Allan; He, Liang

    2013-01-01

    In this study, a commercial chitosan cross-linked with glutaraldehyde (GA-chitosan) having the autofluorescent property was effectively blended with a poly (vinyl alcohol) (PVA) matrix, in the formation of a transparent and fluorescent blend film. The fluorescent efficiency of the film was enhanced with red-shifted emission band by increasing the concentrations of the GA-chitosan and decreasing the PVA crystallinity. It was found that the incorporation of silica nanoparticles could further decrease the PVA crystallinity, enhance the fluorescent efficiency, and largely redshift the emission band, as compared with the neat GA-chitosan-PVA blend film. This fluorescent property could be finely tuned by careful doping of the silica nanoparticles and change of the PVA crystallinity. These phenomena could be reasonably explained by high extent of isolation of the fluorophores, increase of the stiffness of the fluorescent conjugated planar structure, and further decrease of the PVA crystallinity. In addition, the introduction of the nano-silica could improve the water and heat resistances of the GA-chitosan-PVA based silica nanocomposites. PMID:23044137

  19. Alcohol and the heart: theoretical considerations.

    PubMed

    Rubin, E

    1982-06-01

    It is now well established that consumption of ethyl alcohol, both acute and chronic, exerts deleterious effects on the heart. Evidence is presented that the initial event that precipitates both acute and chronic changes reflects the physical effects of alcohol on membrane phospholipids and perhaps proteins. The presence of alcohol increases membrane fluidity, a condition that leads to an adaptive change in the phospholipid composition of the membranes, with resultant greater rigidity of the membranes. The effects of alcohol on the lipid bilayer of the plasma membrane, when combined with other nonspecific insults, may lead to a drastic increase in calcium permeability; the resulting calcium influx may cause cell necrosis and initiate irreversibly cardiomyopathy. It is likely that changes in membrane fluidity also exert profound effects on enzyme and transport activities of membrane-bound proteins. In addition, alcohol may interact directly with the hydrophobic regions of proteins. Such interactions may play an important role not only in membrane-bound proteins, but also in alcohol-induced changes in contractile proteins of the heart. It is suggested that, in general, the effects of alcohol are similar to those of other anesthetic agents, and that the elucidation of the pathogenesis of alcoholic cardiomyopathy may require a deeper understanding of the physical interaction among alcohol, phospholipids, and proteins.

  20. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production. PMID:24355619

  1. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro.

    PubMed

    Xu, Fenglan; Li, Yubao; Deng, Yingpin; Xiong, Jie

    2008-01-01

    A nano-hydroxyapatite/poly(vinyl alcohol) (n-HA/PVA) composite hydrogel was employed as artificial cornea fringe to improve biocompatibility for the firm fixation between material and surrounding host tissues. The morphology and swelling behavior, as well as mechanical strength of the fringes were characterized. The results showed that the n-HA/PVA fringes had interconnective porous structure, high water content and good mechanical properties. With the aid of cell culture observed by inverted microscopy, scanning electron microscopy (SEM) and MTT test, it was concluded that PVA hydrogel modified with n-HA can improve biocompatibility and has no negative effects on the corneal fibroblasts in vitro. These findings indicate that the porous n-HA/PVA fringe can allow invasion and proliferation of cells, and can function as a fringe for artificial cornea.

  2. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production.

  3. Hydrogen Bonding Based Layer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Mensire, Remy; Cohen, Robert; Rubner, Michael

    2012-02-01

    Multilayer thin films that consist of poly(vinyl alcohol) (PVA) and weak polyacids such as poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were prepared by hydrogen bonding interactions. Both the degree of hydrolysis and molecular weight of PVA were investigated in terms of their influence on growth behavior and pH stability. Multilayer films containing PVA and PAA could be assembled successfully only by using partially hydrolyzed PVA and low pH solutions. By comparing films containing PAA with those containing a more strongly interacting partner, PMAA, it was shown that the extent of PVA hydrolysis becomes significant only when weak hydrogen bonding pairs such as PVA and PAA were used. pH-triggered dissolution experiments demonstrated that the degree of hydrolysis can be used as an additional parameter by which to tune the pH stability of the film. Also, the presence of an abundance of free hydroxyl and carboxylic acid groups in the multilayer allowed enhanced pH stability to be obtained by thermal and chemical methods as well as numerous opportunities for post-assembly functionalization.

  4. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  5. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design.

  6. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    PubMed

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  7. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study

    PubMed Central

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag+ was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130–192 nm. The diameters of the AgNPs were in the range of 15–22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing. PMID:24204142

  8. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study.

    PubMed

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag(+) was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130-192 nm. The diameters of the AgNPs were in the range of 15-22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing.

  9. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-09-01

    There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load.

  10. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite.

  11. Poly(vinyl alcohol)/silica nanocomposites: morphology and thermal degradation kinetics.

    PubMed

    Peng, Zheng; Kong, Ling Xue; Li, Si-Dong; Spiridonov, Pavel

    2006-12-01

    The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 < or =5 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host. PMID:17256356

  12. Significant enhancement of the superconducting properties of MgB2 by polyvinyl alcohol additives

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Lu, L.; Dou, S. X.

    2008-08-01

    We report a systematic study of the effects of polymer addition on the lattice parameters, microstructure and superconducting properties of MgB2. Polyvinyl alcohol [-C2H4O-]n (PVA) as a typical polymer was used as an additive to MgB2. It was found that PVA additions have the following features: (1) the polymer can have a very low oxygen (O) content or even none at all, and PVA has a low O content (C:O = 2:1), which reduces the impurities brought into MgB2 from the doping, and (2) PVA decomposes at a temperature of 400-650 °C, which means that the reaction occurs in the same temperature range as MgB2 formation, providing highly reactive C, which homogeneously substitutes for B at this low-temperature range. The above considerations significantly enhance the critical current, Jc, the irreversibility field, Hirr, and the upper critical field, Hc2, of MgB2 compared to un-doped samples or those doped with other carbon sources. In this work, suitable PVA doping levels improved both the connectivity and flux pinning, so that the Jc of PVA-doped MgB2 was improved over the whole field range.

  13. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  14. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  15. Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels.

    PubMed

    Mohamed, Riham R; Abu Elella, Mahmoud H; Sabaa, Magdy W

    2015-09-01

    Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios – 1.0 and 5.0% – have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.

  16. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  17. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering. PMID:24259496

  18. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate.

  19. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  20. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase and lignocellulosic fibres, derived from sugarcane bagasse, apple and orange waste were moulded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a bio...

  1. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  2. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  3. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  4. Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hak; Song, Hyeong Yong; Hyun, Kyu

    2016-05-01

    In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I 3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity ( I 3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [ Q 0( ϕ)/ Q 0(0)]/[ G*( ϕ)/ G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.

  5. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  6. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery.

  7. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.

    PubMed

    Yang, Ming; Lai, Samuel K; Yu, Tao; Wang, Ying-Ying; Happe, Christina; Zhong, Weixi; Zhang, Michael; Anonuevo, Abraham; Fridley, Colleen; Hung, Amy; Fu, Jie; Hanes, Justin

    2014-10-28

    Therapeutic nanoparticles must rapidly penetrate the mucus secretions lining the surfaces of the respiratory, gastrointestinal and cervicovaginal tracts to efficiently reach the underlying tissues. Whereas most polymeric nanoparticles are highly mucoadhesive, we previously discovered that a dense layer of low MW polyethylene glycol (PEG) conferred a sufficiently hydrophilic and uncharged surface to effectively minimize mucin-nanoparticle adhesive interactions, allowing well-coated particles to rapidly diffuse through human mucus. Here, we sought to investigate the influence of surface coating by polyvinyl alcohol (PVA), a relatively hydrophilic and uncharged polymer routinely used as a surfactant to formulate drug carriers, on the transport of nanoparticles in fresh human cervicovaginal mucus. We found that PVA-coated polystyrene (PS) particles were immobilized, with speeds at least 4000-fold lower in mucus than in water, regardless of the PVA molecular weight or incubation concentration tested. Nanoparticles composed of poly(lactide-co-glycolide) (PLGA) or diblock copolymers of PEG-PLGA were similarly immobilized when coated with PVA (slowed 29,000- and 2500-fold, respectively). PVA coatings could not be adequately removed upon washing, and the residual PVA prevented sufficient coating with Pluronic F127 capable of reducing particle mucoadhesion. In contrast to PVA-coated particles, the similar sized PEG-coated formulations were slowed only ~6- to 10-fold in mucus compared to in water. Our results suggest that incorporating PVA in the particle formulation process may lead to the formation of mucoadhesive particles for many nanoparticulate systems. Thus, alternative methods for particle formulation, based on novel surfactants or changes in the formulation process, should be identified and developed in order to produce mucus-penetrating particles for mucosal applications.

  8. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    PubMed Central

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  9. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability.

  10. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  11. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-10-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30-130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5-52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30-90%, as

  12. DBS investigation on films of cobalt chloride doped PVA-PVP blend

    NASA Astrophysics Data System (ADS)

    Hammannavar, Preeti B.; Baraker, Basavarajeshwari M.; Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise

    2015-06-01

    Films of Cobalt Chloride (CoCl2) doped polyvinylalcohol(PVA)- polyvinylpyrrolidone(PVP) blend (doped from 0.5 wt% up to 28 wt%) were prepared by solution casting, and characterized by XRD, DSC, UV-Visible Spectrometry TGA, FTIR and electrical measurements. In this paper, the results of Doppler Broadening Spectroscopy (DBS) in CoCl2 doped PVA-PVP blend is discussed. An increase in crystallinity of PVA-PVP blend, is observed, on doping it with CoCl2. The DBS results are complemented by XRD and DSC scans.

  13. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications. PMID:26105548

  14. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  15. Electrical conductivity of polyvinyl alcohol-multiwall carbon nanotubes composites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2013-06-01

    The dc and ac conductivity of polyvinyl alcohol (PVA)-multiwalled carbon nanotube (MWNT) nanocomposites prepared by solution casting were investigated by employing dielectric relaxation spectroscopy in broad frequency range (0.1 Hz-10 MHz) at room temperature as a function of the conductive weight fraction (p) ranging from 0 to 2wt.%. The frequency dependence of the measured conductivity obeys the universal dynamic response (UDR); a dc plateau followed, by the power law above a critical frequency (fc).

  16. Low biosorption of PVA coated engineered magnetic nanoparticles in granular sludge assessed by magnetic susceptibility.

    PubMed

    Herrling, Maria P; Fetsch, Katharina L; Delay, Markus; Blauert, Florian; Wagner, Michael; Franzreb, Matthias; Horn, Harald; Lackner, Susanne

    2015-12-15

    When engineered nanoparticles (ENP) enter into wastewater treatment plants (WWTP) their removal from the water phase is driven by the interactions with the biomass in the biological treatment step. While studies focus on the interactions with activated flocculent sludge, investigations on the detailed distribution of ENP in other types of biomass, such as granulated sludge, are needed to assess their potential environmental pollution. This study employed engineered magnetic nanoparticles (EMNP) coated with polyvinyl alcohol (PVA) as model nanoparticles to trace their fate in granular sludge from WWT. For the first time, magnetic susceptibility was used as a simple approach for the in-situ quantification of EMNP with a high precision (error <2%). Compared to other analytical methods, the magnetic susceptibility requires no sample preparation and enabled direct quantification of EMNP in both the aqueous phase and the granular sludge. In batch experiments granular sludge was exposed to EMNP suspensions for 18 h. The results revealed that the removal of EMNP from the water phase (5-35%) and biosorption in the granular sludge were rather low. Less than 2.4% of the initially added EMNP were associated with the biomass. Loosely bounded to the granular sludge, desorption of EMNP occurred. Consequently, the removal of EMNP was mainly driven by physical co-sedimentation with the biomass instead of sorption processes. A mass balance elucidated that the majority of EMNP were stabilized by particulate organic matter in the water phase and can therefore likely be transported further. The magnetic susceptibility enabled tracing EMNP in complex matrices and thus improves the understanding of the general distribution of ENP in technical as well as environmental systems. PMID:26282738

  17. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I.

    PubMed

    Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L

    2013-09-12

    PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption.

  18. Myths about drinking alcohol

    MedlinePlus

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  19. Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents.

    PubMed

    Uzal, Niğmet; Jaworska, Agnieszka; Miśkiewicz, Agnieszka; Zakrzewska-Trznadel, Grażyna; Cojocaru, Corneliu

    2011-10-15

    The paper presents the results of the studies of UF-complexation process applied for the removal of Co(2+) ions from water solutions. As binding agents for cobalt ions, the PVA polymer (M(w)=10,000) and its sulfonated form, synthesized in the laboratory, have been used. The method of experimental design and response surface methodology have been employed to find out the optimal conditions for the complexation process and to evaluate the interaction between the input variables, i.e., initial cobalt concentration, pH and amount of the polymer used, expressed as a polymer/Co(2+) ratio r. The data collected by the designed experiments showed that sulfonation of polymer has improved significantly the binding ability of PVA. The optimal conditions of cobalt ions complexation established by response surface model for non-sulfonated PVA polymer have been found to be as follows: the initial concentration of Co(2+)=5.70 mg L(-1), the ratio between polymer and metal ions, r=8.58 and pH=5.93. The removal efficiency of Co(2+) in these conditions was 31.81%. For sulfonated PVA polymer, the optimal conditions determined are as follows: initial concentration of [Co(2+)](0)=10 mg L(-1), r=1.2 and pH=6.5. For these conditions, a removal efficiency of 99.98% has been determined. The experiments showed that Co(2+) removal ability of sulfonated PVA was much higher than its non-sulfonated precursor. Although the polymer concentrations used in the tests with sulfonated PVA were approximately ten times lower than the non-sulfonated one, the removal efficiency of cobalt ions was significantly higher.

  20. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.