Science.gov

Sample records for alcohol sensors based

  1. Alloy catalysts for fuel cell-based alcohol sensors

    NASA Astrophysics Data System (ADS)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  2. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  3. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  4. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  5. LUSH-based SPR sensor for the detection of alcohols and pheromone

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok

    2013-05-01

    Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.

  6. Microphotonic structures based on poly(viny1 alcohol) polymer for chemo- and bio-sensors

    NASA Astrophysics Data System (ADS)

    Obreja, P.; Manea, E.; Budianu, E.; Rebigan, R.; Kusko, M.; Cristea, D.

    2005-08-01

    Poly (vinyl alcohol) [PVA] is a photo-induced cross-linking polymer, water-soluble, biocompatible, used in holography, nonlinear optics, as tissue engineering scaffolds and as polymer matrices for enzymes immobilization. PVA has been investigated for use as binder polymer in optical waveguides for sensor applications. The Y-shaped waveguides is composed of a buffer layer (lower refractive index) - SiO2, a core layer (higher refractive index) - PVA doped for the refractive index and sensibility increasing and a cladding layer (lower refractive index) - an other polymer. The light propagation in doped PVA waveguides represents the sensing element of the sensor. The preliminary results suggest that doped PVA polymers are promising for optical (bio)chemical sensors; the processes used to make them, represent environmentally friendly technology.

  7. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    NASA Astrophysics Data System (ADS)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  8. Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor

    PubMed Central

    Hashmat, Uzma; Yousaf, Muhammad; Lal, Bhajan; Ullah, Shafiq; Holder, Alvin A.; Badshah, Amin

    2016-01-01

    DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, 1H NMR and 13C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 103, 2.4 × 103 and 0.2 × 103 M−1, for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl−1 for UA1, UA6 and UA7, respectively. PMID:28018613

  9. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    NASA Astrophysics Data System (ADS)

    Allan, Jesse

    Fuel cell based breath alcohol sensors (BrASs) are one of the most important tools used by law enforcement today. The ability to screen potentially intoxicated subjects with the ease, speed, and flexibility the BrAS can provide is unmatched by any other device of its kind. While these devices are used globally, they all suffer from a common deficiency: reliance on water. The ability of the fuel cell sensor to manage water content is one of the greatest fundamental challenges facing this technology today. In order to evaluate the fuel cell sensor device, a methodology was required that would allow in-house sensor testing to be coupled with a diagnostic testing method to not only test materials sensing performance, but also determine why a sensor behaved how it did. To do this, a next-generation fuel cell was designed specifically for sensor testing along with a test station that allowed for rapid response and sensor characteristics of a given material. The fuel cell was designed to allow in-situ testing of a membrane electrode assembly (MEA) of interest using cyclic voltammetry and electrochemical impedance spectroscopy. The in-house design was validated against a commercial cell to provide feedback on how materials in the in-house cell would behave in a commercial designed unit. The results showed that our cell with a commercial MEA behaved identically to a commercial cell with the same MEA. Following validation of our cell, common membrane materials were investigated to identify their suitability in a senor role. The materials chosen were designed for power generating devices, so they provided a benchmark to identify which properties would be important for sensor operation. It was found that while the Nafion membrane and sulfonated poly (ether ether ketone) did show performance increases over the commercial MEA, the thin characteristics of these membranes limited performance in drier conditions. From these results, it was determined that thicker membrane materials

  10. Predictors of detection of alcohol use episodes using a transdermal alcohol sensor.

    PubMed

    Barnett, Nancy P; Meade, E B; Glynn, Tiffany R

    2014-02-01

    The objective of this investigation was to establish the ability of the Secure Continuous Remote Alcohol Monitoring (SCRAM) alcohol sensor to detect different levels of self-reported alcohol consumption, and to determine whether gender and body mass index, alcohol dependence, bracelet version, and age of bracelet influenced detection of alcohol use. Heavy drinking adults (N = 66, 46% female) wore the SCRAM for 1-28 days and reported their alcohol use in daily Web-based surveys. Participant reports of alcohol use were matched with drinking episodes identified from bracelet readings. On days when bracelets were functional, 690 drinking episodes were reported and 502 of those episodes (72.8%) were detected using sensor data. Using generalized estimating equations, we found no gender differences in detection of reported drinking episodes (77% for women, 69% for men). In univariate analyses, at the level of fewer than 5 drinks, women's episodes were more likely to be detected, likely because of the significantly higher transdermal alcohol concentration levels of these episodes, whereas at the level of 5 or more drinks, there was no gender difference in detection (92.6% for women, 93.4% for men). In multivariable analyses, no variables other than number of drinks significantly predicted alcohol detection. In summary, the SCRAM sensor is very good at detecting 5 or more drinks; performance of the monitor below this level was better among women because of their higher transdermal alcohol concentration levels. Individual person characteristics and bracelet features were not related to detection after number of drinks was included. Minimal bracelet malfunctions were noted.

  11. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays.

    PubMed

    Mohan, A M Vinu; Windmiller, Joshua Ray; Mishra, Rupesh K; Wang, Joseph

    2017-05-15

    The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations.

  12. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    NASA Astrophysics Data System (ADS)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  13. Multipoint relative humidity measurement by polyvinyl alcohol-coated Fresnel reflection-based optical fiber sensors with an array-waveguide grating.

    PubMed

    Wang, Xueping; Zhao, Chun-Liu; Li, Jihui; Jin, Yongxing; Jin, Shangzhong

    2013-04-01

    A simple multipoint humidity measurement by polyvinyl alcohol (PVA)-coated Fresnel reflection-based optical fiber sensors with an Array-Waveguide Grating (AWG) is proposed and demonstrated. Every channel end of the AWG is split as a vertical planar surface, and then is coated with a layer of a PVA whose refractive index is sensitive to moisture. The reflection intensity for each channel will change with its surrounding humidity, since the optical fiber interface's Fresnel reflection is affected strongly by the refractive index difference of the interface two sides. Multiplexing is achieved by the AWG with 16 channels, in which 15 channels can be used as sensing heads when they are coated with a layer of PVA and the left one is used as a reference channel. The experimental setup is simple and easy to handle. Experimental results show that the proposed Fresnel reflection-based optical fiber sensor for multipoint humidity measurement works well and the average sensitivity is 0.135 dB∕% relative humidity (RH) within the measurement range of 30%-80% RH.

  14. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).

    PubMed

    Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio

    2016-01-15

    A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis.

  15. Portable potentiostatic sensor integrated with neopterin-imprinted poly(ethylene-co-vinyl alcohol)-based electrode.

    PubMed

    Huang, C-Y; Hsieh, C-H; Chen, Y-L; Lee, M-H; Lin, C-F; Tsai, H-H; Juang, Y-Z; Liu, B-D; Lin, H-Y

    2011-12-01

    Neopterin is a catabolic product of guanosine triphosphate, a purine nucleotide. Measuring neopterin concentrations in biological fluids such as urine provides information about cellular immune activation in humans under control of T helper cells. A high neopterin concentration in bodily fluids, including serum and urine, indicates cellular immunity activation, which is associated with oxidative stress. In this work, neopterin is the target molecule and imprinted onto poly(ethylene-co-vinyl alcohol) via solvent evaporation. The template molecules on the thin film are then removed, and the membrane is used as a sensing element for electrochemical urinalysis. Poly(ethylene-co-vinyl alcohol) containing 27 mol% ethylene had high imprinting effectiveness and may be integrated with the proposed portable biosensor. In random urine analysis, the cyclic voltammetry measurements of neopterin with an additional recovery method achieved >95% recovery for the neopterin concentration of 15 ng/mL.

  16. Using a passive alcohol sensor to detect legally intoxicated drivers.

    PubMed Central

    Foss, R D; Voas, R B; Beirness, D J

    1993-01-01

    OBJECTIVES. We examined whether a passive alcohol sensor could be used for mass screening of motorists to accurately and quickly detect drivers whose blood alcohol concentration exceeded a variety of levels often established as per se evidence of legal intoxication. METHODS. In a voluntary roadside survey, 1181 late-night drivers in Minnesota were interviewed. Breath measurements were taken with both a passive alcohol sensor and an evidentiary quality portable breath-test device. RESULTS. Measurements could be taken much more easily and quickly with the passive sensor, whose readings correlated very strongly (r = .87) with the evidentiary device. Moreover, for criterion blood alcohol concentration levels ranging from 100 mg/dL to 20 mg/dL, a large proportion of motorists could be accurately identified as being above or below the criterion, with relatively few false-negative or false-positive identifications. CONCLUSIONS. The use of passive alcohol sensors at sobriety checkpoints should allow motorists to be processed very quickly with minimal inconvenience. At the same time, detection of legally intoxicated motorists will probably be substantially increased and the general deterrent value of per se alcohol-impaired driving laws enhanced. PMID:8460734

  17. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  18. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  19. NEUROBIOLOGICAL BASES OF ALCOHOL ADDICTION.

    PubMed

    Matošić, Ana; Marušić, Srđan; Vidrih, Branka; Kovak-Mufić, Ana; Cicin-Šain, Lipa

    2016-03-01

    Alcohol addiction is a heterogeneous psychiatric disorder according to both phenotype and etiology. Difference in phenotype characteristics manifests in the manner the addiction arises, history of the alcoholic and history of drinking, comorbid disorders, and the phenomenon of abstinence difficulties. Concerning the etiology of alcoholism, the disease itself is considered to be a consequence of an interactive influence of the environment and genetic factors. Numerous researches conducted in the last decades discovered many aspects of the biochemical, cell and molecular bases of alcohol addiction, leading to a conclusion that alcoholism is, like many other addictions, a brain disease. By recognizing alcoholism as a disease which basically implies changes of the neurobiological mechanisms, as well as a clear genetic basis, it was supposed that the disease, having its basis solely in the symptomatology, is essentially heterogeneous. By trying to solve the problem of a clinically heterogeneous nature of the disease during the last fifty years, various sub-classifications of such patients have been suggested. According to Cloninger, subtypes of alcoholism differ also according to changes in the brain neurotransmission systems, i.e. it is supposed that patients suffering from alcoholism type 1 have a more pronounced dopaminergic transmission deficit, while dopaminergic transmission is not disturbed significantly in patients diagnosed with alcoholism type 2, who, however, have a significant lack of serotonergic transmission. In such a way, Cloninger actually presented the basis of the so-called neurobiological alcoholism model. Since he has connected differences in neurotransmission with differences in personality characteristics, this model is also known as the psychobiological model of alcoholism. The characteristic of alcoholism type 1 is avoiding damage (Harm Avoidance, HA) decreased dopamine transmission and increased serotonin transmission, while the significant

  20. Passive in-vehicle driver breath alcohol detection using advanced sensor signal acquisition and fusion.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Allalou, Amin; Pettersson, Håkan

    2017-04-03

    The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlighting the necessary conditions for large scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the DADSS (driver alcohol detection system for safety) program aiming at massive deployment of alcohol sensing systems which could potentially save thousands of American lives annually. The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO2) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO2. In the present investigation, alcohol and CO2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO2 and alcohol. From the statistical data, the accuracy of breath alcohol

  1. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments.

    PubMed

    Zhou, Gengheng; Byun, Joon-Hyung; Oh, Youngseok; Jung, Byung-Mun; Cha, Hwa-Jin; Seong, Dong-Gi; Um, Moon-Kwang; Hyun, Sangil; Chou, Tsu-Wei

    2017-02-08

    Textile-based humidity sensors can be an important component of smart wearable electronic-textiles and have potential applications in the management of wounds, bed-wetting, and skin pathologies or for microclimate control in clothing. Here, we report a wearable textile-based humidity sensor for the first time using high strength (∼750 MPa) and ultratough (energy-to-break, 4300 J g(-1)) SWCNT/PVA filaments via a wet-spinning process. The conductive SWCNT networks in the filaments can be modulated by adjusting the intertube distance by swelling the PVA molecular chains via the absorption of water molecules. The diameter of a SWCNT/PVA filament under wet conditions can be as much as 2 times that under dry conditions. The electrical resistance of a fiber sensor stitched onto a hydrophobic textile increases significantly (by more than 220 times) after water sprayed. Textile-based humidity sensors using a 1:5 weight ratio of SWCNT/PVA filaments showed high sensitivity in high relative humidity. The electrical resistance increases by more than 24 times in a short response time of 40 s. We also demonstrated that our sensor can be used to monitor water leakage on a high hydrophobic textile (contact angle of 115.5°). These smart textiles will pave a new way for the design of novel wearable sensors for monitoring blood leakage, sweat, and underwear wetting.

  2. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  3. Continuous Objective Monitoring of Alcohol Use: 21st Century Measurement using Transdermal Sensors

    PubMed Central

    Leffingwell, Thad R.; Cooney, Nathaniel J.; Murphy, James G.; Luczak, Susan; Rosen, Gary; Dougherty, Donald M.; Barnett, Nancy P.

    2013-01-01

    Transdermal alcohol sensors continuously collect reliable and valid data on alcohol consumption in vivo over the course of hours to weeks. Transdermal alcohol readings are highly correlated with breath alcohol measurements, but transdermal alcohol levels lag behind breath alcohol levels by one or more hours due to the longer time required for alcohol to be expelled through perspiration. By providing objective information about alcohol consumption, transdermal alcohol sensors can validate self-report and provide important information not previously available. In this article we describe the development and evaluation of currently available transdermal alcohol sensors, present the strengths and limitations of the technology, and give examples of recent research using the sensors. PMID:22823467

  4. Optical Fiber Relative-Humidity Sensor with Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Gastón, Ainhoa; Pérez, Fátima; Sevilla, Joaquín

    2004-07-01

    We describe a fiber-optic relative-humidity (RH) sensor comprising a moisture-sensitive overlay on a single-mode side-polished fiber. The hygroscopic polymeric material deposited was polyvinyl alcohol (PVA), which proved to have good adherence and stability. The film reached a fast equilibrium with atmospheric moisture (in less than 1 min), inducing changes in the output optical power of ~10 dB for the 70%-90% RH range. To yield a low-cost device, single-mode standard communication fibers were used; therefore all the components of the sensor can be commercial, mass-produced telecommunication devices. The experimental results obtained are consistent with the expected behavior of the system; the output power decreases because of losses in the polished region of the fiber as the refractive index of its external medium approaches the fiber core value. Because the external medium is PVA film, its refractive index changes in response to its water content.

  5. Flexible sensors based on nanoparticles.

    PubMed

    Segev-Bar, Meital; Haick, Hossam

    2013-10-22

    Flexible sensors can be envisioned as promising components for smart sensing applications, including consumer electronics, robotics, prosthetics, health care, safety equipment, environmental monitoring, homeland security and space flight. The current review presents a concise, although admittedly nonexhaustive, didactic review of some of the main concepts and approaches related to the use of nanoparticles (NPs) in flexible sensors. The review attempts to pull together different views and terminologies used in the NP-based sensors, mainly those established via electrical transduction approaches, including, but, not confined to: (i) strain-gauges, (ii) flexible multiparametric sensors, and (iii) sensors that are unaffected by mechanical deformation. For each category, the review presents and discusses the common fabrication approaches and state-of-the-art results. The advantages, weak points, and possible routes for future research, highlighting the challenges for NP-based flexible sensors, are presented and discussed as well.

  6. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  7. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  8. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    NASA Astrophysics Data System (ADS)

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  9. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat.

    PubMed

    Selvam, Anjan Panneer; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-21

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  10. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    PubMed Central

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-01-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours. PMID:26996103

  11. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    PubMed Central

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  12. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors.

    PubMed

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-03-10

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  13. Electrospinning cellulose based nanofibers for sensor applications

    NASA Astrophysics Data System (ADS)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  14. Differential Ring Oscillator Based Capacitance Sensor for Microfluidic Applications.

    PubMed

    Mohammad, Kaveh; Thomson, Douglas J

    2017-04-01

    A simple high frequency capacitance sensor with 180 aF sensitivity is designed for a wide range of microfluidic applications. The sensor is implemented utilizing differential ring oscillators operating at [Formula: see text] MHz with a differential signal at [Formula: see text] MHz. The sensor occupies [Formula: see text] cm × 2 cm on a printed circuit board. The sensor is tuned using two precision variable capacitors and has a full scale range of [Formula: see text] pF. The sensor was able to detect less than 1% Isopropyl Alcohol in DI water and to detect 15 μm polystyrene spheres flowing over 25 μm lines and spaces coplanar electrodes in a microfluidic channel. The compact differential ring oscillator based architecture of the design makes it suitable to be integrated into microprocessor based systems for detection in Lab on Chip or Lab on Board applications.

  15. A Postsynthetic Modified MOF Hybrid as Heterogeneous Photocatalyst for α-Phenethyl Alcohol and Reusable Fluorescence Sensor.

    PubMed

    Lian, Xiao; Yan, Bing

    2016-11-21

    The recent discovery of lanthanide-based metal-organic frameworks (Ln-MOFs) offers the potential to extend the chemical sensing and catalysis capabilities of metal-organic frameworks (MOFs). Herein, a new europium functionalized material based on MIL-125(Ti)-NH2 is synthesized by covalent postsynthetic modification and shows photocatalytic oxidation properties of α-phenethyl alcohol, and their fluorescence quenching behaviors are investigated. The catalytic efficiency is tested by monitoring the photocatalytic oxidation of α-phenethyl alcohol under ultraviolet light irradiation. Furthermore, MIL-125(Ti)-AM-Eu is developed as a fluorescence sensor integrated with its photocatalytic and luminescent properties. The MIL-125(Ti)-AM-Eu is used for detecting α-phenethyl alcohol, which could be successfully oxidized to acetophenone by the catalyst, and the fluorescence of MIL-125(Ti)-AM-Eu has changed accordingly.

  16. The Impact of Sepiolite on Sensor Parameters during the Detection of Low Concentrations of Alcohols

    PubMed Central

    Suchorska-Woźniak, Patrycja; Rac, Olga; Fiedot, Marta; Teterycz, Helena

    2016-01-01

    The article presents the results of the detection of low-concentration C1–C4 alcohols using a planar sensor, in which a sepiolite filter was applied next to the gas-sensitive layer based on tin dioxide. The sepiolite layer is composed of tubes that have a length of several microns, and the diameter of the single tube ranges from several to tens of nanometers. The sepiolite layer itself demonstrated no chemical activity in the presence of volatile organic compounds (VOC), and the passive filter made of this material did not modify the chemical composition of the gaseous atmosphere diffusing to the gas-sensitive layer. The test results revealed that the structural remodelling of the sepiolite that occurs under the influence of temperature, as well as the effect of the filter (a compound with ionic bonds) with molecules of water, has a significant impact on the improvement of the sensitivity of the sensor in relation to volatile organic compounds when compared to the sensor without a filter. PMID:27834879

  17. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  18. Fiber optic surface plasmon resonance based ethanol sensor

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2014-03-01

    A design of SPR based fiber optic ethanol biosensor is presented by using enzyme alcohol dehydrogenase and nicotinic acid. The sensing probe is fabricated with the coating of 40 nm thin film of silver metal and immobilization of alcohol dehydrogenase and nicotinic acid by gel entrapment method over unclad core of a multimode optical fiber. The SPR spectra of ethanol samples of concentrations ranging from 0 mM to 10 mM prepared in buffer have been recorded. The sensor works on the spectral interrogation technique and operates in the visible range of the spectrum. The SPR curves are blue shifted with the increasing concentration of ethanol and the sensitivity of the sensor decreases with the increasing concentration of ethanol. The sensor has many advantages such as fast response, stability, small probe size, low cost and can be used for remote/online monitoring.

  19. Radar based autonomous sensor module

    NASA Astrophysics Data System (ADS)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  20. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  1. EDITORIAL: Sensors based on interfaces

    NASA Astrophysics Data System (ADS)

    Camassel, Jean; Soukiassian, Patrick G.

    2007-12-01

    of Physics D: Applied Physics describe some recent advances in this field and the very different approaches and/or techniques that can be used for the sensors' implementation. They include the use of molecularly modified metal nanoparticles in or as chemical sensors, especially for high sensitivity hydrogen sensors. Hydrogen sensing can also be achieved by performing galvanic measurements on a thin layer of perovskite oxide covered with platinum. In this case, one mixes an ionic (proton) transport in the oxide with an electronic one in the metal. Another focus is on optical and electrical read-out techniques, like surface-plasmon resonance (SPR), such as for immuno-sensor applications or piezo-electrical and electro-chemical detection. Toward this end, the preparation, structure and application of functional interfacial surfaces are described and discussed. A totally different approach based on the use of Hall effect measurements performed on a granular metal-oxide-semiconductor layer and different experimental solutions is also presented. Finally, optical sensors are addressed through the photonic modulation of surface properties or transmission interferometric absorption sensors. Mixed electrical and optical chemical sensors are also examined.

  2. Reputation-based secure sensor localization in wireless sensor networks.

    PubMed

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  3. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  4. Fluorographene based Ultrasensitive Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-05-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents ‑~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors.

  5. Fluorographene based Ultrasensitive Ammonia Sensor.

    PubMed

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N

    2016-05-04

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM-0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4(+) are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents -~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors.

  6. Fluorographene based Ultrasensitive Ammonia Sensor

    PubMed Central

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-01-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents −~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522

  7. Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors.

    PubMed

    Vandezande, Wouter; Janssen, Kris P F; Delport, Filip; Ameloot, Rob; De Vos, Dirk E; Lammertyn, Jeroen; Roeffaers, Maarten B J

    2017-03-30

    The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.

  8. Carbon Nanotube Based Light Sensor

    NASA Technical Reports Server (NTRS)

    Wincheski, russell A. (Inventor); Smits, Jan M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Ingram, JoAnne L. (Inventor)

    2006-01-01

    A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.

  9. Image-based occupancy sensor

    SciTech Connect

    Polese, Luigi Gentile; Brackney, Larry

    2015-05-19

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generates an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.

  10. UV-Assisted Alcohol Sensors using Gallium Nitride Nanowires Functionalized with Zinc Oxide and Tin Dioxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajpai, Ritu

    The motivation behind this work has been to address two of the most challenging issues posed to semiconductor gas sensors--- tuning the device selectivity and sensitivity to a wide variety of gases. In a chemiresistor type nanowire sensor, the sensitivity and selectivity depend on the interaction of different chemical analytes with the nanowire surface. Constrained by the surface properties of the nanowire material, most nanowire sensors can detect only specific type of analytes. In order to make a nano-sensor array for a wide range of analytes, there is a need to tune the device sensitivity and selectivity towards different chemicals. Employing the inherent advantages of nanostructure based sensing such as large surface area, miniature size, low power consumption, and nmol/mol (ppb) sensitivity, an attempt has been made to propose a device with tunable selectivity and sensitivity. The idea proposed in this work is to functionalize GaN nanowires which have relatively inactive surface properties (i.e., with no chemiresistive sensitivity to different classes of organic vapors), with analyte dependent active metal oxides. The selectivity of the sensor devices is controlled independent of the surface properties of the nanowire itself. It is the surface properties of the functionalizing metal oxides which determine the selectivity of these sensors. Further facilitated by the proposed fabrication technique, these sensors can be easily tuned to detect different gases. The prototype developed in this work is that of a UV assisted alcohol sensor using GaN nanowires functionalized with ZnO and SnO2 nanoparticles. As opposed to the widely demonstrated metal oxide based sensors assisted by elevated temperature, the operation of photoconductive semiconductor sensor devices such as those fabricated in this work, can also be assisted by UV illumination at room temperature. Temperature assisted sensing requires an integrated on-chip heater, which could impose constraints on the

  11. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  12. Acute alcohol intoxication in a child following ingestion of an ethyl-alcohol-based hand sanitizer.

    PubMed

    Hertzog, James H; Radwick, Allison

    2015-07-01

    While uncommon, ingestion of ethanol-based hand sanitizers by children may be associated with significant intoxication. We report the case of a 7-year-old with acute alcohol intoxication following hand sanitizer ingestion. Alcohol elimination in this patient followed zero-order kinetics with a clearance rate of 22.5 mg/kg/h, consistent with the limited pharmacokinetic information available for children who experience alcohol intoxication from more traditional sources.

  13. Gas Sensors Based on Electrospun Nanofibers

    PubMed Central

    Ding, Bin; Wang, Moran; Yu, Jianyong; Sun, Gang

    2009-01-01

    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films. PMID:22573976

  14. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  15. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  16. Typology of Alcohol Users Based on Longitudinal Patterns of Drinking

    PubMed Central

    Harrington, Magdalena; Velicer, Wayne F.; Ramsey, Susan

    2014-01-01

    Objective Worldwide, alcohol is the most commonly used psychoactive substance. However, heterogeneity among alcohol users has been widely recognized. This paper presents a typology of alcohol users based on an implementation of idiographic methodology to examine longitudinal daily and cyclic (weekly) patterns of alcohol use at the individual level. Method A secondary data analysis was performed on the pre-intervention data from a large randomized control trial. A time series analysis was performed at the individual level, and a dynamic cluster analysis was employed to identify homogenous longitudinal patterns of drinking behavior at the group level. The analysis employed 180 daily observations of alcohol use in a sample of 177 alcohol users. Results The first order autocorrelations ranged from −.76 to .72, and seventh order autocorrelations ranged from −.27 to .79. Eight distinct profiles of alcohol users were identified, each characterized by a unique configuration of first and seventh autoregressive terms and longitudinal trajectories of alcohol use. External validity of the profiles confirmed the theoretical relevance of different patterns of alcohol use. Significant differences among the eight subtypes were found on gender, marital status, frequency of drug use, lifetime alcohol dependence, family history of alcohol use and the Short Index of Problems. Conclusions Our findings demonstrate that individuals can have very different temporal patterns of drinking behavior. The daily and cyclic patterns of alcohol use may be important for designing tailored interventions for problem drinkers. PMID:24333036

  17. Flexible Hall sensors based on graphene.

    PubMed

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-04-14

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  18. Flexible Hall sensors based on graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-03-01

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT-1 and 79 V AT-1 were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  19. Polymer-Based Carbon Monoxide Sensors

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  20. SiC-Based Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak; Liu, C. C.; Wu, Q. H.

    1997-01-01

    Electronic grade Silicon Carbide (SiC) is a ceramic material which can operate as a semiconductor at temperatures above 600 C. Recently, SiC semiconductors have been used in Schottky diode gas sensor structures. These sensors have been shown to be functional at temperatures significantly above the normal operating range of Si-based devices. SiC sensor operation at these higher temperatures allows detection of gases such as hydrocarbons which are not detectable at lower temperatures. This paper discusses the development of SiC-based Schottky diode gas sensors for the detection of hydrogen, hydrocarbons, and nitrogen oxides (NO(x)). Sensor designs for these applications are discussed. High sensitivity is observed for the hydrogen and hydrocarbon sensors using Pd on SiC Schottky diodes while the NO(x) sensors are still under development. A prototype sensor package has been fabricated which allows high temperature operation in a room temperature ambient by minimizing heat loss to that ambient. It is concluded that SiC-based gas sensors have considerable potential in a variety of gas sensing applications.

  1. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  2. SiC-Based Gas Sensor Development

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Gray, M.; Androjna, D.; Chen, L.-Y.; Hoffman, R. W., Jr.; Liu, C. C.; Wu, Q. H.

    2000-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for applications such as emission measurements and leak detection. The effects of the geometry of the tin oxide film in a Pd/SnO2/SiC structure will be discussed as well as improvements in packaging SiC-based sensors. It is concluded that there is considerable versatility in the formation of SiC-based Schottky diode gas sensing structures which will potentially allow the fabrication of a SiC-based gas sensor array for a variety of gases and temperatures.

  3. Displacement sensor based on plasmonic slot metamaterials

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Ren, Mengxin; Pi, Biao; Cai, Wei; Xu, Jingjun

    2016-02-01

    In this paper, we demonstrate a plasmonic type displacement sensor based on slot metamaterials. The sensors are formed by arranging metamaterial arrays with different dimension parameters adjacently. Hence, the measured spectra would be modified as a result of moving the sensors across the detecting area of the spectrometer. From the spectral changes, the displacement amount could be retrieved. The sensor is demonstrated to be capable of recognizing a displacement of 200 nm, which is equal to the period of the metamaterial lattice, and the sensitivity is largely dependent on the shape and size of the acquisition area of the spectrometer used for spectra analysis.

  4. Polypyrrole based gas sensor for ammonia detection

    NASA Astrophysics Data System (ADS)

    Dunst, K. J.; Cysewska, K.; Kalinowski, P.; Jasiński, P.

    2016-01-01

    The nature of polypyrrole response to toxic gases does not allow using the sensor in a conventional way. The main aim of this study is to acquire the information about the concentration using different approaches: a linear approximation, a non-linear approximation and a tangent method. In this paper a two-steps procedure for sensor response measurements has been utilized. Polypyrrole films were electrochemically synthesized on the interdigitated electrodes. Gas sensing measurements of polypyrrole based sensor were carried out at room temperature. The influence of the flow rate on the sensing performance to NH3 were investigated. The preliminary studies of aging of the sensor were also explored.

  5. [A USB-Based Digital ECG Sensor].

    PubMed

    Shi Bol; Kong, Xiangyong; Ma, Xiaozhi; Zhang, Genxuan

    2016-01-01

    Based on the ECG-specific BMD 101 integrated circun chip, this study designed a digital ECG sensor. In practical application, users just need to connect the ECG sensor 'o upper computer (such as PC or mobile phone) through USB interface, to realize the functions including display, alarm, saving, transfer etc. After tests, They demonstrate that the sensor can be applied to the detection of arrhythmia, such as bigeminy coupled rhythm, proiosystole etc. Besides, the sensor has various advantages in monitoring an managing the heart health of people out of hospital, including low cost, small volume, usableness, simplicity of operation etc.

  6. Can Intensive Use of Alcohol-Based Hand Rubs Lead to Passive Alcoholization?

    PubMed Central

    Bessonneau, Vincent; Clément, Michel; Thomas, Olivier

    2010-01-01

    Hand disinfection with alcohols-based hand rubs (ABHRs) are known to be the most effective measure to prevent nosocomial infections in healthcare. ABHRs contain on average 70% by weight of one or more alcohols. During the hand rubbing procedure, users are exposed to these alcohols not only through dermal contact, but also via inhalation, due to the physical and chemical properties of alcohols volatilizing from alcoholic solutions or gels into the air. Ethanol ingestion is well known to increase risks of several diseases (affecting the pancreas, liver, cardiovascular system…), but there is a lack of knowledge about the effects of exposure to other alcohols (including n- or isopropanol) via inhalation and dermal contact, despite the worldwide use of ABHRs. This work aims at discussing possible health effects related to unintentional alcoholization (via inhalation and dermal contact) from professional ABHR usage to suggest the need for more research in this area (but not to question the value of ABHRs). Based upon an average of 30 hand rubbings per healthcare professional per day, it can be assumed that a healthcare worker may be exposed to a maximum 5,500 mg/m3 per work shift, five times above the recommended occupational time weighted average limit. Thus, in order to answer the question posed in the title, studies on spatial and temporal variability of alcohol emission from ABHRs in real world situations and studies on certain high risk individuals are needed. PMID:20948945

  7. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  8. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  9. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H.; Berry, Nina M.

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  10. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  11. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  12. Atmospheric corrosion sensor based on strain measurement

    NASA Astrophysics Data System (ADS)

    Kasai, Naoya; Hiroki, Masatoshi; Yamada, Toshirou; Kihira, Hiroshi; Matsuoka, Kazumi; Kuriyama, Yukihisa; Okazaki, Shinji

    2017-01-01

    In this paper, an in situ atmospheric corrosion sensor based on strain measurement is discussed. The theoretical background for measuring the reduction in thickness of low carbon steel is also presented. Based on the theoretical considerations, a test piece and apparatus for an atmospheric corrosion sensor were designed. Furthermore, in a dry-wet cyclic accelerated exposure experiment, the measured strain indicated thinning of the test piece, although the corrosion product generated on the surface of the test piece affected the results. The atmospheric corrosion sensor would be effective for evaluating atmospheric corrosion of many types of infrastructure.

  13. Alcohol

    MedlinePlus

    ... parents and other adults use alcohol socially — having beer or wine with dinner, for example — alcohol seems ... besides just hanging out in someone's basement drinking beer all night. Plan a trip to the movies, ...

  14. Proposal for dark exciton based chemical sensors

    NASA Astrophysics Data System (ADS)

    Feierabend, Maja; Berghäuser, Gunnar; Knorr, Andreas; Malic, Ermin

    2017-03-01

    The rapidly increasing use of sensors throughout different research disciplines and the demand for more efficient devices with less power consumption depends critically on the emergence of new sensor materials and novel sensor concepts. Atomically thin transition metal dichalcogenides have a huge potential for sensor development within a wide range of applications. Their optimal surface-to-volume ratio combined with strong light-matter interaction results in a high sensitivity to changes in their surroundings. Here, we present a highly efficient sensing mechanism to detect molecules based on dark excitons in these materials. We show that the presence of molecules with a dipole moment transforms dark states into bright excitons, resulting in an additional pronounced peak in easy accessible optical spectra. This effect exhibits a huge potential for sensor applications, since it offers an unambiguous optical fingerprint for the detection of molecules--in contrast to common sensing schemes relying on small peak shifts and intensity changes.

  15. Chemical Sensors Based on Cyclodextrin Derivatives.

    PubMed

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  16. Chemical Sensors Based on Cyclodextrin Derivatives

    PubMed Central

    Ogoshi, Tomoki; Harada, Akira

    2008-01-01

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off” and “turn-on” fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with π-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review. PMID:27873795

  17. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  18. Alcohol-based hand sanitizers: severe intoxication in children.

    PubMed

    2012-07-01

    Alcohol-based hand sanitizers are an alternative to hand washing with soap and water when water is unavailable. Their use has increased over the last decade. Cases of acute intoxication have been reported in children after accidental ingestion of alcohol-based hand sanitizers, sometimes leading to inebriation, agitation, drowsiness, impaired consciousness, and blood alcohol levels sometimes exceeding 2 g/I. In practice, alcohol-based hand sanitizers should be kept out of reach of children and should only be used when hand washing with soap and water is not possible. The possibility of alcohol intoxication should be borne in mind when a child suddenly presents with behaviour problems or altered consciousness.

  19. Use of Novel Technology-Based Techniques to Improve Alcohol-Related Outcomes in Clinical Trials

    PubMed Central

    Gurvich, Eugenia M.; Kenna, George A.; Leggio, Lorenzo

    2013-01-01

    With a better understanding of the biologic basis of alcohol dependence and the considerable financial burden of alcohol abuse and dependence, the number of alcohol-related clinical pharmacotherapy trials has been on the rise. Subsequently, the potential to find efficacious treatments is more promising. Unfortunately, alcohol-related trials face a number of challenges, as a result of the difficulties that arise from traditional and outdated methods to collect data and ensure medication adherence. Novel technology-based assessments, such as ecological momentary assessment, interactive voice response, transdermal sensor and medication-event monitoring system provide a prospective solution—albeit not without possible concerns—to the difficulties faced in alcohol-related clinical trials. Clinical trials are meant to define the efficacy of the treatment and to determine an effective and safe dosage. However, due to lack of adherence a drug could inappropriately or mistakenly be judged as ineffective for treating a specific disorder. The described technologies may be important tools to prevent false negatives in validating drug efficacy, to provide consistency in clinical trials and to improve available data regarding the study of pharmacotherapies for alcohol dependence. PMID:23955872

  20. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  1. Wearable FPGA based wireless sensor platform.

    PubMed

    Ahola, Tom; Korpinen, Pekka; Rakkola, Juha; Rämö, Teemu; Salminen, Jukka; Savolainen, Jari

    2007-01-01

    A new wearable sensor platform has been developed. It is based on a Field Programmable Gate Array (FPGA) device. Because of this the hardware is very flexible and gives the platform unique opportunities for research of a wide range of architectures, applications and signal processing algorithms. The platform has been named NWSP, for Nokia Wrist- Attached Sensor Platform. This document describes the hardware, the firmware and applications of the platform.

  2. A Raspberry Pi-Based Attitude Sensor

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Mathew, Joice; Sarpotdar, Mayuresh; Mohan, Rekhesh; Nayak, Akshata; Safonova, Margarita; Murthy, Jayant

    We have developed a lightweight low-cost attitude sensor, based on a Raspberry Pi, built with readily available commercial components. It can be used in experiments where weight and power are constrained, such as in high-altitude lightweight balloon flights. This attitude sensor will be used as a major building block in a closed-loop control system with driver motors to stabilize and point cameras and telescopes for astronomical observations from a balloon-borne payload.

  3. Monitoring and evaluation of alcoholic fermentation processes using a chemocapacitor sensor array.

    PubMed

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-09-02

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument.

  4. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    PubMed Central

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  5. Effects of alcohol intake on time-based event expectations.

    PubMed

    Kunchulia, Marina; Thomaschke, Roland

    2016-04-01

    Previous evidence suggests that alcohol affects various forms of temporal cognition. However, there are presently no studies investigating whether and how alcohol affects on time-based event expectations. Here, we investigated the effects of alcohol on time-based event expectations. Seventeen healthy volunteers, aged between 19 and 36 years, participated. We employed a variable foreperiod paradigm with temporally predictable events, mimicking a computer game. Error rate and reaction time were analyzed in placebo (0 g/kg), low dose (0.2 g/kg) and high dose (0.6 g/kg) conditions. We found that alcohol intake did not eliminate, but substantially reduced, the formation of time-based expectancy. This effect was stronger for high doses, than for low doses, of alcohol. As a result of our studies, we have evidence that alcohol intake impairs time-based event expectations. The mechanism by which the level of alcohol impairs time-based event expectations needs to be clarified by future research.

  6. Assessing reactivity to virtual reality alcohol based cues.

    PubMed

    Bordnick, Patrick S; Traylor, Amy; Copp, Hilary L; Graap, Ken M; Carter, Brian; Ferrer, Mirtha; Walton, Alicia P

    2008-06-01

    The use of virtual reality (VR) programs in behavioral science research has been gaining prominence over the past several years. In the field of substance abuse, VR cue reactivity programs have been successfully tested for feasibility in nicotine and cocaine dependent samples. Seeking to expand VR applications in alcohol cue research, a novel VR alcohol cue reactivity assessment system incorporating visual, auditory, and olfactory stimuli was developed and tested. In a controlled trial, 40 non-treatment-seeking drinkers with alcohol use disorders were exposed to VR alcohol cue environments. Subjective craving, attention to alcohol cues, and level of presence (realism of experience) in VR were assessed across the environments. Overall, subjective craving for alcohol increased across the VR alcohol-related cue environments versus VR neutral cue environments. Participants reported high levels of presence in VR, indicating that the environments were perceived as realistic and compelling. These initial findings support the use of VR based cue reactivity environments for use in alcohol cue-based treatment and research.

  7. Self-assembled micro-structured sensors for food safety in paper based food packaging.

    PubMed

    Hakovirta, M; Aksoy, B; Hakovirta, J

    2015-08-01

    Natural self-assembled microstructured particles (diatomaceous earth) were used to develop a gas sensor paper with detection mechanism based on visible and distinct color changes of the sensor paper when exposed to volatile basic nitrogen compounds. The coating formulation for paper was prepared by applying diatomites, polyvinyl alcohol (PVOH), and pH sensitive dyes on acidic paper substrate. The surface coating was designed to allow a maximum gas flow through the diatomite sensors. The produced sensor paper was tested for sensitivity using different ammonia concentrations and we observed a sensitivity lower limit at 63 ppm. As a comparison, the results show comparable sensitivity levels to carbon nanotube based sensor technologies reported in literature.

  8. Telemedicine-Based Alcohol Services for Rural Offenders

    PubMed Central

    Staton-Tindall, Michele; Wahler, Elizabeth; Webster, J. Matthew; Godlaski, Theodore; Freeman, Rebecca; Leukefeld, Carl

    2016-01-01

    Research has consistently shown that alcohol use is a problem in rural communities and access to substance abuse treatment, particularly evidence-based treatment is limited. Because telemedicine has been shown to be effective in delivering services, this article presents a novel and innovative way of using telemedicine technology in the form of videoconferencing to deliver an evidence-based alcohol intervention (motivational enhancement therapy) with at-risk alcohol users in real-world settings (rural probation and parole offices). This article focuses on: (a) creating a profile of an at-risk group of rural alcohol users; (b) describing the evidence-based intervention; and (c) describing the innovative telemedicine-based service delivery approach. PMID:22867122

  9. Antimicrobial efficacy of alcohol-based hand gels.

    PubMed

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers.

  10. Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement.

    PubMed

    Yan, Guofeng; Liang, Yanhong; Lee, El-Hang; He, Sailing

    2015-06-15

    A novel high performance optical fiber sensor for simultaneous measurement of relative humidity (RH) and temperature based on our newly designed knob-integrated fiber Bragg grating (FBG) is proposed and experimentally demonstrated. The knob-shaped taper followed by an FBG works as a multifunctional joint that not only excites the cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique as a humidity-to-refractive index (RI) transducer, and affects the intensity of reflected cladding modes by way of evanescent fields. By monitoring the intensity and wavelength of the reflected cladding modes, the RH and temperature variance can be determined simultaneously. Experimental results show an RH sensitivity of up to 1.2 dB/%RH within an RH range of 30-95%, which is significantly better than previously reported values. And the temperature sensitivity of 8.2 pm/°Ccould be achieved in the temperature range of 25-60°C. A fast and reversible time response has also been demonstrated, enabling to pick up a humidity change as fast as 630 ms. The capability of simultaneous measurement of RH and temperature, the fast response, the reusability and the simple fabrication process make this structure a highly promising sensor for real-time practical RH monitoring applications.

  11. Pristine carbon nanotubes based resistive temperature sensor

    NASA Astrophysics Data System (ADS)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-04-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ˜ 0.29%/°C in the 25°C to 60°C temperature range.

  12. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  13. An SPR based sensor for allergens detection.

    PubMed

    Ashley, J; Piekarska, M; Segers, C; Trinh, L; Rodgers, T; Willey, R; Tothill, I E

    2017-02-15

    A simple, sensitive and label-free optical sensor method was developed for allergens analysis using α-casein as the biomarker for cow's milk detection, to be used directly in final rinse samples of cleaning in place systems (CIP) of food manufacturers. A Surface Plasmon Resonance (SPR) sensor chip consisting of four sensing arrays enabling the measurement of samples and control binding events simultaneously on the sensor surface was employed in this work. SPR offers several advantages in terms of label free detection, real time measurements and superior sensitivity when compared to ELISA based techniques. The gold sensor chip was used to immobilise α-casein-polyclonal antibody using EDC/NHS coupling procedure. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions giving a detection limit of 58ngmL(-1) as a direct binding assay. The assay sensitivity can be further improved by using sandwich assay format and amplified with nanoparticles. However, at this stage this is not required as the detection limit achieved exceeded the required allergens detection levels of 2µgmL(-1) for α-S1-casein. The sensor demonstrated good selectivity towards the α-casein as the target analyte and adequate recoveries from CIP final rinse wash samples. The sensor would be useful tool for monitoring allergen levels after cleaning procedures, providing additional data that may better inform upon wider food allergen risk management decision(s) that are made by food manufacturer. In particular, this sensor could potentially help validate or optimise cleaning practices for a given food manufacturing process.

  14. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    PubMed

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film.

  15. Renewable Reagent Fiber Optic Based Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Berman, Richard J.; Burgess, Lloyd W.

    1990-02-01

    Many fiber optic based chemical sensors have been described which rely on a reagent chemistry fixed at the fiber endface to provide analyte specificity. In such systems, problems involving probe-to-probe reproducibility, reagent photolability and reagent leaching are frequently encountered. As a result, calibration and standardization of these sensors becomes difficult or impossible and thus inhibits their application for long term in situ chemical monitoring. Many of these problems can be addressed and several additional advantages gained by continuously renewing the reagent chemistry. To illustrate this concept, a fiber optic ammonia sensor is described in which the reagent is delivered under direct control to a sensing volume of approximately 400 nanoliters located at the probe tip. Using an acid-base indicator (bromothymol blue) as the reagent, the sample ammonia concentrations are related to modulations in light intensity with a lower limit of detection of 10 ppb. The sensor performance was studied with respect to reagent pH, concentration and reagent delivery rate. Compared with previous fiber optic ammonia sensors, the ability to reproducibly renew the reagent has resulted in improvements with respect to response and return times, probe-to-probe reproducibility, probe lifetime and flexibility of use.

  16. Kinetic Resolution of Secondary Alcohols Using Amidine-Based Catalysts

    PubMed Central

    Li, Ximin; Jiang, Hui; Uffman, Eric W.; Guo, Lei; Zhang, Yuhua; Yang, Xing; Birman, Vladimir B.

    2012-01-01

    Kinetic resolution of racemic alcohols has been traditionally achieved via enzymatic enantioselective esterification and ester hydrolysis. However, there has long been considerable interest in devising nonenzymatic alternative methods for this transformation. Amidine-Based Catalysts (ABCs), a new class of enantioselective acyl transfer catalysts developed in our group, have demonstrated, inter alia, high efficacy in the kinetic resolution of benzylic, allylic and propargylic secondary alcohols and 2-substituted cycloalkanols, and thus provide a viable alternative to enzymes. PMID:22283696

  17. Alcohol biosensor based on alcohol dehydrogenase and Meldola Blue immobilized into a carbon paste electrode.

    PubMed

    García Mullor, S; Sánchez-Cabezudo, M; Miranda Ordieres, A J; López Ruiz, B

    1996-05-01

    A yeast alcohol dehydrogenase amperometric carbon paste-based biosensor, with Meldola Blue as a mediator and a dialysis membrane with a very small molecular weight cut-off for protection, is described. The influence of membrane pore size on the stability and overall kinetics of the biosensor is shown using cyclic voltammetry and stationary potential measurements. The operating potential is + 50 mV vs. Ag/AgCl, KCl sat. reference electrode. Application of this device to the determination of ethanol in alcoholic beverages was achieved successfully. In these kinds of samples and at this working potential no interferences were found.

  18. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    NASA Astrophysics Data System (ADS)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  19. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  20. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  1. Polymer-based micro-array sensors

    NASA Astrophysics Data System (ADS)

    Sharpe, Ruben B. A.; Rensing, Peter A.; van Heck, Gert T.; Allard, Bart A. M.; Koetse, Marc M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; de Zwart, René M.; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-09-01

    The introduction in the market of ubiquitous sensing applications relies heavily on the availability of affordable sensors. Key in the cost of a sensor is its modus of manufacture. In this paper a sensing scheme is presented, in which the signal transduction is based on an induced change in the optical path between an organic light emitting diode (OLED) and an organic photovoltaic (OPV) array. Using this platform, several aspects of cost efficient manufacturing technology are investigated. These aspects include the intrinsic printability of the active (OLED, responsive coating and OPV) components, which allows control of the local sensor functionality and sensitivity. It offers a large amount of freedom in sensor layout, while using relatively few process steps. Also investigated is the ability to realize the active devices on foil, which enables high throughput processing (e.g. in a reel-to-reel scheme). Moreover, the presented generic sensing scheme is of a modular design. It allows easy switching of the sensor functionality mostly by simply changing the transduction module. Since this does not affect the production parameters of the other components, these may be standardized, thus invoking favorable economies of scale.

  2. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  3. Gas sensors based on nanostructured materials.

    PubMed

    Jiménez-Cadena, Giselle; Riu, Jordi; Rius, F Xavier

    2007-11-01

    Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.

  4. Electrochemical Sensors Based on Carbon Nanotubes

    PubMed Central

    Saleh Ahammad, A. J.; Lee, Jae-Joon; Rahman, Md. Aminur

    2009-01-01

    This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs). CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers. PMID:22574013

  5. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  6. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  7. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    -crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).

  8. Ethanol-based cleanser versus isopropyl alcohol to decontaminate stethoscopes.

    PubMed

    Lecat, Paul; Cropp, Elliott; McCord, Gary; Haller, Nairmeen Awad

    2009-04-01

    Approximately 1 in 20 hospital admissions is complicated by a health care-associated infection. Stethoscopes may play a role in spreading nosocomial infections. The objective of this study was to determine the effectiveness of an ethanol-based cleanser (EBC) compared with isopropyl alcohol pads in reducing bacterial contamination of stethoscope diaphragms. Stethoscopes were cultured from medical professionals on 4 medical floors before and after cleaning with either EBC or isopropyl alcohol pads. The numbers of colony-forming units (cfu) grown were compared between the 2 cleaners and to baseline values. A total of 99 stethoscopes were cultured (49 EBC; 50 isopropyl alcohol), and all were positive for growth. After cleaning, 28.28% of the stethoscopes were growth-free (12 EBC; 16 isopropyl alcohol). Cleaning with EBC and isopropyl alcohol pads significantly reduced the cfu counts (by 92.8% and 92.5%, respectively), but neither was found to be statistically superior (F = 1.22; P = .2721). Cleaning a stethoscope diaphragm using either EBC or isopropyl alcohol led to a significant reduction in bacterial growth in culture. As an extension of the hand, a stethoscope should be cleaned with the same frequency as the hands. The simultaneous cleaning of hands and stethoscope may further increase compliance with current standards.

  9. Sensor-based interior modeling

    SciTech Connect

    Herbert, M.; Hoffman, R.; Johnson, A.; Osborn, J.

    1995-02-01

    Robots and remote systems will play crucial roles in future decontamination and decommissioning (D&D) of nuclear facilities. Many of these facilities, such as uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities, are dormant; there is also an increasing number of commercial reactors whose useful lifetime is nearly over. To reduce worker exposure to radiation, occupational and other hazards associated with D&D tasks, robots will execute much of the work agenda. Traditional teleoperated systems rely on human understanding (based on information gathered by remote viewing cameras) of the work environment to safely control the remote equipment. However, removing the operator from the work site substantially reduces his efficiency and effectiveness. To approach the productivity of a human worker, tasks will be performed telerobotically, in which many aspects of task execution are delegated to robot controllers and other software. This paper describes a system that semi-automatically builds a virtual world for remote D&D operations by constructing 3-D models of a robot`s work environment. Planar and quadric surface representations of objects typically found in nuclear facilities are generated from laser rangefinder data with a minimum of human interaction. The surface representations are then incorporated into a task space model that can be viewed and analyzed by the operator, accessed by motion planning and robot safeguarding algorithms, and ultimately used by the operator to instruct the robot at a level much higher than teleoperation.

  10. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  11. A magnetic cell-based sensor.

    PubMed

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-07

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  12. Fluorescence-lifetime-based sensors for anions

    NASA Astrophysics Data System (ADS)

    Teichmann, Maria; Draxler, Sonja; Kieslinger, Dietmar; Lippitsch, Max E.

    1997-05-01

    Sensing of anions has been investigated using the fluorescence decaytime as the information carrier. The sensing mechanism is based on the coextraction of an anion and a proton, and the presence of a fluorophore with a rather long fluorescence decaytime inside the membrane to act as a pH indicator. The relevant theory is discussed shortly. As an example a sensor for nitrate is shown, and the influence of ionic additives on the working function has been investigated.

  13. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  14. Efficacy of 2 alcohol-based gels and 1 alcohol-based rinse for surgical hand disinfection.

    PubMed

    Barbut, Frederic; Djamdjian, Laura; Neyme, Denis; Passot, Christophe; Petit, Jean-Claude

    2007-08-01

    We assessed the efficacy of 2 alcohol-based gels and 1 alcohol-based rinse for surgical hand disinfection, using European standard EN 12791. Volunteers performed surgical hand disinfection with a reference product and each of the 3 study products, with 1-week intervals between disinfection episodes. The immediate and sustained antimicrobial activities of each study product were not significantly less than those of the reference product. The study products passed the efficacy requirements of the EN 12791 standard, and they are considered suitable for surgical hand disinfection.

  15. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  16. Nanomaterial-based robust oxygen sensor

    NASA Astrophysics Data System (ADS)

    Goswami, Kisholoy; Sampathkumaran, Uma; Alam, Maksudul; Tseng, Derek; Majumdar, Arun K.; Kazemi, Alex A.

    2007-09-01

    Since the TWA flight 800 accident in July 1996, significant emphasis has been placed on fuel tank safety. The Federal Aviation Administration (FAA) has focused research to support two primary methods of fuel tank protection - ground-based and on-board - both involving fuel tank inerting. Ground-based fuel tank inerting involves some combination of fuel scrubbing and ullage washing with Nitrogen Enriched Air (NEA) while the airplane is on the ground (applicable to all or most operating transport airplanes). On-board fuel tank inerting involves ullage washing with OBIGGS (on-board inert gas generating system), a system that generates NEA during aircraft operations. An OBIGGS generally encompasses an air separation module (ASM) to generate NEA, a compressor, storage tanks, and a distribution system. Essential to the utilization of OBIGGS is an oxygen sensor that can operate inside the aircraft's ullage and assess the effectiveness of the inerting systems. OBIGGS can function economically by precisely knowing when to start and when to stop. Toward achieving these goals, InnoSense LLC is developing an all-optical fuel tank ullage sensor (FTUS) prototype for detecting oxygen in the ullage of an aircraft fuel tank in flight conditions. Data would be presented to show response time and wide dynamic range of the sensor in simulated flight conditions and fuel tank environment.

  17. Nanomaterials based electrochemical sensors for biomedical applications.

    PubMed

    Chen, Aicheng; Chatterjee, Sanghamitra

    2013-06-21

    A growing variety of sensors have increasingly significant impacts on everyday life. Key issues to take into consideration toward the integration of biosensing platforms include the demand for minimal costs and the potential for real time monitoring, particularly for point-of-care applications where simplicity must also be considered. In light of these developmental factors, electrochemical approaches are the most promising candidate technologies due to their simplicity, high sensitivity and specificity. The primary focus of this review is to highlight the utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms. Highly sensitive and precise nanomaterials based biosensors have opened up the possibility of creating novel technologies for the early-stage detection and diagnosis of disease related biomarkers. The attractive properties of nanomaterials have paved the way for the fabrication of a wide range of electrochemical sensors that exhibit improved analytical capacities. This review aims to provide insights into nanomaterials based electrochemical sensors and to illustrate their benefits in various key biomedical applications. This emerging discipline, at the interface of chemistry and the life sciences, offers a broad palette of opportunities for researchers with interests that encompass nanomaterials synthesis, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.

  18. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  19. Bend-insensitive fiber based vibration sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-05-01

    We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.

  20. Alcohol Use Problem Severity and Problem Behavior Engagement among School-Based Youths in Minnesota

    ERIC Educational Resources Information Center

    Mancha, Brent E.; Rojas-Neese, Vanessa C.; Latimer, William W.

    2010-01-01

    This study created an alcohol use problem severity taxonomy and examined its association to engagement in other problem behaviors. Minnesota youths were categorized based on their frequency of alcohol use and DSM-IV alcohol abuse and dependence criteria. Greater alcohol use problem severity was generally associated with higher prevalence of…

  1. Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker

    ERIC Educational Resources Information Center

    McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

  2. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    PubMed Central

    2010-01-01

    Background Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. Results During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p < 0.0001, RMSE = 0.279% vol). The applicability of the device was further proven for the analysis of wines during fermentation, and for the determination of unrecorded alcohol (i.e. non-commercial or illicit products). Conclusions The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample

  3. A Large Area Tactile Sensor Patch Based on Commercial Force Sensors

    PubMed Central

    Vidal-Verdú, Fernando; Barquero, Maria Jose; Castellanos-Ramos, Julián; Navas-González, Rafael; Sánchez, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2011-01-01

    This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus. PMID:22163910

  4. Photonic crystal sensors based on porous silicon.

    PubMed

    Pacholski, Claudia

    2013-04-09

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  5. Sol-gel based optical chemical sensors

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Korent Urek, Špela; Turel, Matejka; Frančič, Nina

    2011-05-01

    The growing activity in the field of optical chemical sensors has resulted in numerous sensing schemes, new indicator dyes, various polymeric matrix, size and shapes and highly diversified methods of immobilization. The sensor characteristics are dependent upon the choice of indicator, polymer, immobilization technique, and also size. Sol-gel technology provides a low-temperature method for obtaining porous silicate glass matrices. It enables to obtain material in the form of films, powders, monoliths, fibres or nanoparticles. Organic reagents and molecular receptors can be easily immobilized in the matrices. Moreover, one of the unique features of the sol-gel process is that the properties of the final network structure, such as hydrophobicity, thickness, porosity, flexibility, reactivity and stability can be easily tailored by controlling the process conditions, the type and the size of the precursors and catalysis. Here we will report about several sensor designed over the years based on sol-gel materials for monitoring and controlling different parameters, such as heavy metals, amines, phosphates, organophosphates.

  6. Literacy-Based Supports for Young Adults with FAS/FAE [Fetal Alcohol Syndrome/Fetal Alcohol Effects].

    ERIC Educational Resources Information Center

    Raymond, Margaret; Belanger, Joe

    During a 1-year period, a study investigated the contributions made by 3 literacy-based supports (support circles, cognitive compensatory tools, and cognitive enhancement tools) to the lives of 5 young adults, aged 16-34, with FAS/FAE (Fetal Alcohol Syndrome/Fetal Alcohol Effects). Four of the five subjects had IQs (intelligence quotients) above…

  7. Research of marine sensor web based on SOA and EDA

    NASA Astrophysics Data System (ADS)

    Jiang, Yongguo; Dou, Jinfeng; Guo, Zhongwen; Hu, Keyong

    2015-04-01

    A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean `instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.

  8. Advances and trends in ionophore-based chemical sensors

    NASA Astrophysics Data System (ADS)

    Mikhelson, K. N.; Peshkova, M. A.

    2015-06-01

    The recent advances in the theory and practice of potentiometric, conductometric and optical sensors based on ionophores are critically reviewed. The role of the heterogeneity of the sensor/sample systems is emphasized, and it is shown that due to this heterogeneity such sensors respond to the analyte activities rather than to concentrations. The basics of the origin of the response of all three kinds of ionophore-based sensors are briefly described. The use of novel sensor materials, new preparation and application techniques of the sensors as well as advances in theoretical treatment of the sensor response are analyzed using literature sources published mainly from 2012 to 2014. The basic achievements made in the past are also addressed when necessary for better understanding of the trends in the field of ionophore-based sensors. The bibliography includes 295 references.

  9. Research of horizontal and tiltmeter sensors based on FBG

    NASA Astrophysics Data System (ADS)

    En, De; Wang, Ningning

    2010-11-01

    Fiber Bragg Grating sensor is a kind of widely used new sensors. This paper presents a level based on fiber Bragg grating tilt sensor, with the variation of the tilt angle is converted to optical conversion of the change in deformation mechanism to achieve the measured level of relative horizontal angle measurement, sensor-related design theory is given, and to design sensor sensing structure. The sensor adopts fiber grating method to eliminate reference to temperature and metal bellows packaging method to improve the sensitive strain, and through experiments proved the feasibility of this design.

  10. Sensor Saturation Compensated Smoothing Algorithm for Inertial Sensor Based Motion Tracking

    PubMed Central

    Dang, Quoc Khanh; Suh, Young Soo

    2014-01-01

    In this paper, a smoothing algorithm for compensating inertial sensor saturation is proposed. The sensor saturation happens when a sensor measures a value that is larger than its dynamic range. This can lead to a considerable accumulated error. To compensate the lost information in saturated sensor data, we propose a smoothing algorithm in which the saturation compensation is formulated as an optimization problem. Based on a standard smoothing algorithm with zero velocity intervals, two saturation estimation methods were proposed. Simulation and experiments prove that the proposed methods are effective in compensating the sensor saturation. PMID:24806740

  11. Waveguide-based optical chemical sensor

    SciTech Connect

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  12. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  13. UV sensors based on liquid crystals mixtures

    NASA Astrophysics Data System (ADS)

    Chanishvili, Andro; Petriashvili, Gia; Chilaya, Guram; Barberi, Riccardo; De Santo, Maria P.; Matranga, Mario A.; Ciuchi, F.

    2006-04-01

    The Erythemal Response Spectrum is a scientific expression that describes the sensitivity of the skin to the ultraviolet radiation. The skin sensitivity strongly depends on the UV wavelength: a long exposition to UV radiation causes erythema once a threshold dose has been exceeded. In the past years several devices have been developed in order to monitor the UV exposure, most of them are based on inorganic materials that are able to mimic the human skin behaviour under UV radiation. We present a new device based on liquid crystals technology. The sensor is based on a liquid crystalline mixture that absorbs photons at UV wavelength and emits them at a longer one. This system presents several innovative features: the absorption range of the mixture can be varied to be sensitive to different wavelengths, the luminescence intensity can be tuned, the system can be implemented on flexible devices.

  14. Thermal energy harvesting plasmonic based chemical sensors.

    PubMed

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2014-10-28

    Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods.

  15. Microbiota-based treatments in alcoholic liver disease

    PubMed Central

    Sung, Hotaik; Kim, Seung Woo; Hong, Meegun; Suk, Ki Tae

    2016-01-01

    Gut microbiota plays a key role in the pathogenesis of alcoholic liver disease (ALD). Consumption of alcohol leads to increased gut permeability, small intestinal bacterial overgrowth, and enteric dysbiosis. These factors contribute to the increased translocation of microbial products to the liver via the portal tract. Subsequently, bacterial endotoxins such as lipopolysaccharide, in association with the Toll-like receptor 4 signaling pathway, induce a gamut of damaging immune responses in the hepatic milieu. Because of the close association between deleterious inflammation and ALD-induced microbiota imbalance, therapeutic approaches that seek to reestablish gut homeostasis should be considered in the treatment of alcoholic patients. To this end, a number of preliminary studies on probiotics have confirmed their effectiveness in suppressing proinflammatory cytokines and improving liver function in the context of ALD. In addition, there have been few studies linking the administration of prebiotics and antibiotics with reduction of alcohol-induced liver damage. Because these preliminary results are promising, large-scale randomized studies are warranted to elucidate the impact of these microbiota-based treatments on the gut flora and associated immune responses, in addition to exploring questions about optimal delivery. Finally, fecal microbiota transplant has been shown to be an effective method of modulating gut microbiota and deserve further investigation as a potential therapeutic option for ALD. PMID:27547010

  16. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics

    PubMed Central

    Adewale, Adebayo; Ifudu, Onyekachi

    2014-01-01

    In the 21st century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion) or obesity (US$133 billion). Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol. PMID:24791039

  17. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  18. Sensors Based on Spectroscopy of Guided Waves

    NASA Astrophysics Data System (ADS)

    Homola, Jiří

    The last two decades have witnessed remarkable progress in the develpment of affinity biosensors and their applications in areas such as environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security. An affinity biosensor consists of a transducer and a biological recognition element which is able to interact with a selected analyte. Various optical methods have been exploited in biosensors including fluorescence spectroscopy, interferometry (reflectometric white light interferometry, modal interferometry in optical waveguide structures), and spectroscopy of guided modes of optical waveguides. Optical biosensors based on spectroscopy of guided modes of optical waveguides - grating coupler, resonant mirror, and surface plasmon resonance (SPR) - rely on the measurement of binding-induced refractive index changes and thus are label-free technologies. This paper reviews fundamentals of optical sensors based on spectroscopy of guided modes of optical waveguides and their applications.

  19. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  20. Riboswitch-Based Reversible Dual Color Sensor.

    PubMed

    Harbaugh, Svetlana V; Goodson, Michael S; Dillon, Kateri; Zabarnick, Sarah; Kelley-Loughnane, Nancy

    2017-02-09

    Riboswitches are RNA-based "sensors" that utilize chemically induced structural changes in the 5'-untranslated region of mRNA to regulate expression of downstream genes. Coupling a specific riboswitch with a reporter gene system translates chemical detection by the cell into a quantifiable reporter protein signal. For the majority of reporter gene systems, the readout signal is only expressed in the presence of the target analyte. This makes it difficult to determine the viability and localization of the uninduced biosensor when it is used for "real-word" applications. To address this problem, we developed a dual-color reporter comprising elements of the E. coli fimbriae phase variation system: recombinase FimE controlled by a synthetic riboswitch and an invertible DNA segment (fimS) containing a constitutively active promoter placed between two fluorescent protein genes. Without an analyte, the fluorescent reporter constitutively expressed green fluorescent protein (GFPa1). Addition of the analyte initiated translation of fimE causing unidirectional inversion of the fimS segment and constitutive expression of red fluorescent protein (mKate2). Thus, the sensor is always fluorescent, but its color is determined by detection of a specific analyte. We demonstrate that the recombinase-based dual-color reporter can be successfully applied to monitor the activation of a theophylline synthetic riboswitch that was used as our model system. To show the feasibility of the FimE recombinase-based system to serve as a reporter for monitoring activation of multiple synthetic riboswitches and, therefore, expand the applicability of the system, we tested a number of previously developed synthetic riboswitches responsive to different analytes. We show that the dual-color reporter system can be successfully used to monitor activation of M6 and M6″ riboswitches responsive to ammeline and pyrimido[4,5-d]pyrimidine-2,4-diamine, respectively, and a 2,4,6-trinitrotoluene

  1. Physiological Sensor Signals Classification for Healthcare Using Sensor Data Fusion and Case-Based Reasoning

    PubMed Central

    Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin

    2014-01-01

    Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems. PMID:24995374

  2. Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning.

    PubMed

    Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin

    2014-07-03

    Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems.

  3. Voucher-based reinforcement for alcohol abstinence using the ethyl-glucuronide alcohol biomarker.

    PubMed

    McDonell, Michael G; Howell, Donelle N; McPherson, Sterling; Cameron, Jennifer M; Srebnik, Debra; Roll, John M; Ries, Richard K

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase. The percentage of negative urines was 35% during the first baseline phase, 69% during the C phase, and 20% during the return-to-baseline phase. Results suggest that EtG urine tests may be a feasible method to deliver CM to promote alcohol abstinence.

  4. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  5. Carbon-Nanotube-Based Chemical Gas Sensor

    NASA Technical Reports Server (NTRS)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  6. Patient Posture Monitoring System Based on Flexible Sensors

    PubMed Central

    Cha, Youngsu; Nam, Kihyuk; Kim, Doik

    2017-01-01

    Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. The flexible sensors are inserted into parts close to the knee and hip of the loose patient cloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients. PMID:28335385

  7. Detection of Salmonella typhimurium using phage-based magnetostrictive sensor

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Ramji S.; Hu, Jing; Guntupalli, Rajesh; Wan, Jiehui; Huang, Shichu; Yang, Hong; Petrenko, Valery A.; Barbaree, James M.; Chin, Bryan A.

    2006-05-01

    This article presents a contactless, remote sensing Salmonella typhimurium sensor based on the principle of magnetostriction. Magnetostrictive materials have been used widely for various types of sensor systems. In this work, the use of a magnetostrictive material for the detection of Salmonella typhimurium has been established. The mass of the bacteria attached to the sensor causes changes in the resonance frequency of the sensor. Filamentous bacteriophage was used as a probe order to ensure specific and selective binding of the bacteria onto the sensor surface. Thus changes in response of the sensor due to the mass added onto the sensor caused by specific attachment of bacteria can be monitored in absence of any contact to the sensor. The response of the sensor due to increasing concentrations (from 5x101 to 5x10 8 cfu/ml) of the bacteria was studied. A reduction in the physical dimensions enhances the sensitivity of these sensors and hence different dimensions of the sensor ribbons were studied. For a 2mm x 0.1mm x 0.02mm the detection limit was observed to be of the order of 10 4 cfu/mL and for a sensor of 1mm x 0.2mm x 0.02mm a reduced detection limit of 10 3 cfu/mL was achieved.

  8. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  9. Protein Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ksendzov, Alexander

    2006-01-01

    Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.

  10. Sensor-based demand controlled ventilation

    SciTech Connect

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  11. Force/torque and tactile sensors for sensor-based manipulator control

    NASA Technical Reports Server (NTRS)

    Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying

    1989-01-01

    The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.

  12. Alcohol consumption, alcohol dependence and related harms in Spain, and the effect of treatment-based interventions on alcohol dependence.

    PubMed

    Rehm, Jürgen; Rehm, Maximilien X; Shield, Kevin D; Gmel, Gerrit; Gual, Antoni

    2013-01-01

    Alcohol consumption in Spain has traditionally followed the Mediterranean drinking pattern, featuring daily drinking with meals, beer as the preferred beverage, and comparatively little drinking to intoxication. Alcohol dependence (AD), one of the most detrimental disorders caused by alcohol, was prevalent in 0.2% of women and 1.2% of men, corresponding to 31,200 women and 186,000 men in Spain with AD in 2005 in the age group of 15 to 64 year. These prevalence estimates of alcohol dependence are likely underestimated due to limitations in the World Mental Health Survey which cannot be fully corrected for; however, the estimates of AD for Spain represent the most accurate and up to date estimates available. Alcohol creates a significant health burden in Spain with 11.3 premature deaths in women per 100,000 aged 15 to 64 years, and 40.9 premature deaths in men per 100,000 in the same age group were due to alcohol consumption (data for 2004). This amounts to 8.4% of all female deaths and 12.3% of all the male deaths in this age group being attributable to alcohol consumption. A large percentage of these harms were due to heavy alcohol consumption and AD. AD is undertreated in Spain, with less than 10% of all people with AD treated. For those who are treated, psychotherapy is the most utilized form of treatment to avoid relapse. If 40% of AD patients in Spain were treated with pharmacological treatment (the most effective treatment method), 2.2% of female and 6.2% of male deaths due to AD would be prevented within one year. Thus by increasing treatment rates is an important means of reducing the alcohol-attributable mortality and health burden in Spain.

  13. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  14. Gene-based and pathway-based genome-wide association study of alcohol dependence

    PubMed Central

    ZUO, Lingjun; ZHANG, Clarence K.; SAYWARD, Frederick G.; CHEUNG, Kei-Hoi; WANG, Kesheng; KRYSTAL, John H.; ZHAO, Hongyu; LUO, Xingguang

    2015-01-01

    Background The organization of risk genes within signaling pathways may provide clues about the converging neurobiological effects of risk genes for alcohol dependence. Aim Identify risk genes and risk gene pathways for alcohol dependence. Methods We conducted a pathway-based genome-wide association study (GWAS) of alcohol dependence using a gene-set-rich analytic approach. Approximately one million genetic markers were tested in the discovery sample which included 1409 European-American (EA) alcohol dependent individuals and 1518 EA healthy comparison subjects. An additional 681 African-American (AA) cases and 508 AA healthy subjects served as the replication sample. Results We identified several genome-wide replicable risk genes and risk pathways that were significantly associated with alcohol dependence. After applying the Bonferroni correction for multiple testing, the ‘cellextracellular matrix interactions’ pathway (p<2.0E-4 in EAs) and the PXN gene (which encodes paxillin) (p=3.9E-7 in EAs) within this pathway were the most promising risk factors for alcohol dependence. There were also two nominally replicable pathways enriched in alcohol dependence-related genes in both EAs (0.015≤p≤0.035) and AAs (0.025≤p≤0.050): the ‘Na+/Cl- dependent neurotransmitter transporters’ pathway and the ‘other glycan degradation’ pathway. Conclusion These findings provide new evidence highlighting several genes and biological signaling processes that may be related to the risk for alcohol dependence. PMID:26120261

  15. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  16. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  17. Biotoxin Detection Using Cell-Based Sensors

    PubMed Central

    Banerjee, Pratik; Kintzios, Spyridon; Prabhakarpandian, Balabhaskar

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized. PMID:24335754

  18. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  19. Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lo, Chun; Lynch, Jerome P.; Liu, Mingyan

    2016-01-01

    Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.

  20. Alcohol-based solutions for bovine testicular tissue fixation.

    PubMed

    Cabrera, Nelson C; Espinoza, Jorge R; Vargas-Jentzsch, Paul; Sandoval, Patricio; Ramos, Luis A; Aponte, Pedro M

    2017-01-01

    Tissue fixation, a central element in histotechnology, is currently performed with chemical compounds potentially harmful for human health and the environment. Therefore, alternative fixatives are being developed, including alcohol-based solutions. We evaluated several ethanol-based mixtures with additives to study fixative penetration rate, tissue volume changes, and morphologic effects in the bovine testis. Fixatives used were Bouin solution, 4% formaldehyde (F4), 70% ethanol (E70), E70 with 1.5% glycerol (E70G), E70 with 5% acetic acid (E70A), E70 with 1.5% glycerol and 5% acetic acid (E70AG), and E70 with 1.5% glycerol, 5% acetic acid, and 1% dimethyl sulfoxide (DMSO; E70AGD). Five-millimeter bovine testicular tissue cubes could be completely penetrated by ethanol-based fixatives and Bouin solution in 2-3 h, whereas F4 required 21 h. Bouin solution produced general tissue shrinkage, whereas the other fixatives (alcohol-based and F4) caused tissue volume expansion. Although Bouin solution is an excellent fixative for testicular tissue, ethanol-based fixatives showed good penetration rates, low tissue shrinkage, and preserved sufficient morphology to allow identification of the stages of the seminiferous epithelium cycle, therefore representing a valid alternative for histotechnology laboratories. Common additives such as acetic acid, glycerol, and DMSO offered marginal benefits for the process of fixation; E70AG showed the best preservation of morphology with excellent nuclear detail, close to that of Bouin solution.

  1. What Works in School-Based Alcohol Education: A Systematic Review

    ERIC Educational Resources Information Center

    Lee, Nicole K.; Cameron, Jacqui; Battams, Samantha; Roche, Ann

    2016-01-01

    Background: Considerable attention has been focused on the impact of young people's alcohol use. To address this, schools often implement alcohol and drug education and there are many potential programmes to choose from. Objective: The aim of this study was to identify evidence-based alcohol education programmes for schools. Methods: A systematic…

  2. 78 FR 9938 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... COMMISSION Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States... is equal to 7 percent of the U.S. domestic market for fuel ethyl alcohol during the 12-month period...'' of imports of fuel ethyl alcohol, and the Commission transmitted it determinations to the...

  3. Star sensor image acquisition and preprocessing hardware system based on CMOS image sensor and FGPA

    NASA Astrophysics Data System (ADS)

    Hao, Xuetao; Jiang, Jie; Zhang, Guangjun

    2003-09-01

    Star Sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft utilizing star observations. It consists of an electronic camera and associated processing electronics. As outcome of advancing state-of-the-art, new generation star sensor features faster, lower cost, power dissipation and size than the first generation star sensor. This paper describes a star sensor anterior image acquisition and pre-processing hardware system based on CMOS image-sensor and FPGA technology. Practically, star images are produced by a simple simulator on PC, acquired by CMOS image sensor, pre-processed by FPGA, saved in SRAM, read out by EPP protocol and validated by an image process software on PC. The hardware part of system acquires images thought CMOS image-sensor controlled by FPGA, then processes image data by a circuit module of FPGA, and save images to SRAM for test. Basic image data for star recognition and attitude determination of spacecrafts are provided by it. As an important reference for developing star sensor prototype, the system validates the performance advantages of new generation star sensor.

  4. Tactile MEMS-based sensor for delicate microsurgery

    NASA Astrophysics Data System (ADS)

    Park, Young Soo; Lee, Wooho; Gopalsami, Nachappa; Gundeti, Mohan

    2014-06-01

    This paper presents development of a new MEMS-based tactile microsensor to replicate the delicate sense of touch in robotic surgery. Using an epoxy-based photoresist, SU-8, as substrate, the piezoresistive type sensor is flexible, robust, and easy to fabricate in mass. Sensor characteristic tests indicate adequate sensitivity and linearity, and the multiple sensor elements can match full range of surgical tissue stiffness. Such characteristic nearly match the most delicate sense of touch at the human fingertip. It is expected such a sensor is essential for delicate surgeries, such as handling delicate tissues and microsurgery.

  5. A novel fiber optic concrete sensor based on EFPI

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Dai, Jingyun; Sun, Baochen; Du, Yanliang

    2007-07-01

    In this paper, a novel fiber optic concrete sensor based on extrinsic fiber Fabry-Perot interferometer (EFPI) is designed and analyzed. Two fiber ends are inserted into a glass capillary and encapsulated into a cement cylinder to act as the sensor head. In this way, the cement cylinder itself is the sensor head instead of the traditional steel tube, which makes it very convenient to embed the sensor head into the concrete, because the cement consists with the concrete well. Based on the theory of white light interferometry and the theory of elasticity, the wavelength modulation method and the strain transfer are analyzed theoretically. The demodulation system is also introduced in this paper. The experiment being made by our research group is aimed at testing the consistency, stability, reliability and the sensitivity of the fiber optic sensor. The sensor head of the cement cylinder is embedded into a model ferroconcrete beam together with traditional strain gauges. The experiment is carried out using the PEM-500A hydraulic pulsation fatigue test machine after 2 million stress circles. The readout of the fibre optic sensor and the strain gauges is recorded and made a contrast. It can be found from the result that the fibre optic sensors have good stability and reliability, the accuracy for the fibre optic sensor is better than 0.5 micro-strain, which shows that the sensor can meet the demand of the long-term monitoring of large-size concrete structure.

  6. Dynamic gesture recognition based on multiple sensors fusion technology.

    PubMed

    Wenhui, Wang; Xiang, Chen; Kongqiao, Wang; Xu, Zhang; Jihai, Yang

    2009-01-01

    This paper investigates the roles of a three-axis accelerometer, surface electromyography sensors and a webcam for dynamic gesture recognition. A decision-level multiple sensor fusion method based on action elements is proposed to distinguish a set of 20 kinds of dynamic hand gestures. Experiments are designed and conducted to collect three kinds of sensor data stream simultaneously during gesture implementation and compare the performance of different subsets in gesture recognition. Experimental results from three subjects show that the combination of three kinds of sensor achieves recognition accuracies at 87.5%-91.8%, which are higher largely than that of the single sensor conditions. This study is valuable to realize continuous and dynamic gesture recognition based on multiple sensor fusion technology for multi-model interaction.

  7. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    PubMed

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  8. Phenomenology-Based Inverse Scattering for Sensor Information Fusion

    DTIC Science & Technology

    2006-09-15

    SENSOR INFORMATION FUSION Kung-Hau Ding 15 September 2006 Final Report Approved for Public Release; Distribution...Hanscom AFB MA 01731-2909 TECHNICAL REPORT Title: Phenomenology-Based Inverse Scattering for Sensors Information Fusion Unlimited, Statement A...Scattering for Sensor Information Fusion 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d. PROJECT NUMBER 2304 Kung

  9. Development of Electrolyte-based Capacitive Level Sensor

    NASA Astrophysics Data System (ADS)

    Morinaga, Hideki; Matsumoto, Yoshinori

    In this study, electrolyte-based level sensor has been fabricated on printed circuit board and evaluated with charge balanced C-V converter fabricated by 0.35μm CMOS process. Sector pattern sensor electrodes were fabricated and polydimethylsiloxane was used as package material. Propylene carbonate was injected in the bumpy surface sensor cavity of 10mm diameter and 2mm height, output voltage was changed with the inclination angle without the effect of vibration.

  10. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  11. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors

    PubMed Central

    Wang, Houyu; He, Yao

    2017-01-01

    During the past decades, owing to silicon nanomaterials’ unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors. PMID:28165357

  12. Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Tseng, Hong-Yi; Lin, Wei-Che; Liu, Bin-Da; Lin, Hung-Yin

    2011-08-01

    The quartz crystal microbalance (QCM) has a sensitivity comparable to that of the surface plasmon resonance (SPR) transducer. Molecularly imprinted polymers (MIPs) have a much lower cost than natural antibodies, they are easier to fabricate and more stable, and they exhibit satisfactory recognition ability when integrated onto sensing transducers. Hence, MIP-based QCM sensors have been used to recognize small molecules and, recently, microorganisms, but only a few have been adopted in protein sensing. In this work, a mixed salivary protein and poly(ethylene-co-vinyl alcohol), EVAL, solution is coated onto a QCM chip and a molecularly imprinted EVAL thin film formed by thermally induced phase separation (TIPS). The optimal ethylene mole ratios of the commercially available EVALs for the imprinting of amylase, lipase and lysozyme were found to be 32, 38, and 44 mol %, respectively. Finally, the salivary protein-imprinted EVAL-based QCM sensors were used to detect amylase, lipase and lysozyme in real samples (saliva) and their effectiveness was compared with that of a commercial ARCHITECT ci 8200 chemical analysis system. The limits of detection (LOD) for those salivary proteins were as low as ∼pM.

  13. A wearable sensor based on CLYC scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Benjamin S.; Myjak, Mitchell J.; Zalavadia, Mital A.; Smart, John E.; Willett, Jesse A.; Landgren, Peter C.; Greulich, Christopher R.

    2016-06-01

    We have developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ∅ 2.5 × 2.5cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of gamma rays and neutrons. The total counts, anomaly detection metrics, and identified isotopes are displayed on a small screen. Users may leave the device in unattended mode to collect long-dwell energy spectra. The system stores up to 18 h of one-second data, including energy spectra, and may transfer the data to a remote computer via a wired or wireless connection. The prototype is 18 × 13 × 7.5cm3, weighs 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 h with the wireless link active, or 41 h with the wireless link disabled. In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  14. A wearable sensor based on CLYC scintillators

    SciTech Connect

    McDonald, Benjamin S.; Myjak, Mitchell J.; Zalavadia, Mital A.; Smart, John E.; Willett, Jesse A.; Landgren, Peter C.; Greulich, Christopher R.

    2016-06-01

    We developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ø2.5×2.5 cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of neutrons and gamma-rays. Data, including spectra, can be transferred via a wired or wireless connection. The total gamma-ray and neutron counts, anomaly detection metrics, and identified isotopes are displayed on a small screen on the device. Users may leave the system in unattended mode to collect long-dwell energy spectra. The prototype system has overall dimensions of 13×7.5×18 cm3 and weight of 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 hours with a 1% wireless transmission duty cycle and 41 hours with the wireless turned off . In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  15. Polygenic risk for alcohol dependence associates with alcohol consumption, cognitive function and social deprivation in a population-based cohort.

    PubMed

    Clarke, Toni-Kim; Smith, Andrew H; Gelernter, Joel; Kranzler, Henry R; Farrer, Lindsay A; Hall, Lynsey S; Fernandez-Pujals, Ana M; MacIntyre, Donald J; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; Thomson, Pippa A; Porteous, David J; Deary, Ian J; McIntosh, Andrew M

    2016-03-01

    Alcohol dependence is frequently co-morbid with cognitive impairment. The relationship between these traits is complex as cognitive dysfunction may arise as a consequence of heavy drinking or exist prior to the onset of dependence. In the present study, we tested the genetic overlap between cognitive abilities and alcohol dependence using polygenic risk scores (PGRS). We created two independent PGRS derived from two recent genome-wide association studies (GWAS) of alcohol dependence (SAGE GWAS: n = 2750; Yale-Penn GWAS: n = 2377) in a population-based cohort, Generation Scotland: Scottish Family Health Study (GS:SFHS) (n = 9863). Data on alcohol consumption and four tests of cognitive function [Mill Hill Vocabulary (MHV), digit symbol coding, phonemic verbal fluency (VF) and logical memory] were available. PGRS for alcohol dependence were negatively associated with two measures of cognitive function: MHV (SAGE: P = 0.009, β = -0.027; Yale-Penn: P = 0.001, β = -0.034) and VF (SAGE: P = 0.0008, β = -0.036; Yale-Penn: P = 0.00005, β = -0.044). VF remained robustly associated after adjustment for education and social deprivation; however, the association with MHV was substantially attenuated. Shared genetic variants may account for some of the phenotypic association between cognitive ability and alcohol dependence. A significant negative association between PGRS and social deprivation was found (SAGE: P = 5.2 × 10(-7) , β = -0.054; Yale-Penn: P = 0.000012, β = -0.047). Individuals living in socially deprived regions were found to carry more alcohol dependence risk alleles which may contribute to the increased prevalence of problem drinking in regions of deprivation. Future work to identify genes which affect both cognitive impairment and alcohol dependence will help elucidate biological processes common to both disorders.

  16. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    PubMed Central

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  17. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.

    PubMed

    Yang, Cheng; Denno, Madelaine E; Pyakurel, Poojan; Venton, B Jill

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.

  18. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Wang, Quan; Xing, Malcolm

    2015-12-02

    Presented in this work is a novel and facile approach to fabricate an elastic, attachable, and cost-efficient carbon nanotube (CNT)-based strain gauge which can be efficiently used as bodily motion sensors. An innovative and unique method is introduced to align CNTs without external excitations or any complicated procedure. In this design, CNTs are aligned and distributed uniformly on the entire chewing gum by multiple stretching and folding technique. The current sensor is demonstrated to be a linear strain sensor for at least strains up to 200% and can detect strains as high as 530% with a high sensitivity ranging from 12 to 25 and high durability. The gum sensor has been used as bodily motion sensors, and outstanding results are achieved; the sensitivity is quite high, capable of tracing slow breathing. Since the gum sensor can be patterned into various forms, it has wide applications in miniaturized sensors and biochips. Interestingly, we revealed that our gum sensor has the ability to monitor humidity changes with high sensitivity and fast resistance response capable of monitoring human breathing.

  19. pH sensor based on boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Bando, Y.; Zhao, L.; Zhi, C. Y.; Golberg, D.

    2009-10-01

    A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.

  20. A simple optical fiber interferometer based breathing sensor

    NASA Astrophysics Data System (ADS)

    Li, Xixi; Liu, Dejun; Kumar, Rahul; Ng, Wai Pang; Fu, Yong-qing; Yuan, Jinhui; Yu, Chongxiu; Wu, Yufeng; Zhou, Guorui; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-03-01

    A breathing sensor has been experimentally demonstrated based on a singlemode–multimode–singlemode (SMS) fiber structure which is attached to a thin plastic film in an oxygen mask. By detecting power variations due to the macro bending applied to the SMS section by each inhalation and exhalation process, the breath state can be monitored. The proposed sensor is capable of distinguishing different types of breathing conditions including regular and irregular breath state. The sensor can be used in a strong electric/magnetic field and radioactive testing systems such as magnetic resonance imaging (MRI) systems and computed tomography (CT) examinations where electrical sensors are restricted.

  1. Few-mode fiber based sensor in biomedical application

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    2015-05-01

    A novel few-mode fiber based sensor for monitoring the vital signs of pulse (heart rate), and breathing rate (respiratory rate) was developed. The sensor was applied in non-invasive measurement of pulse and breathing rates. The pulse, breathing and even body movement affected the sensor's output as the strain on the few-mode fiber changed with these activities. This sensor has simple structure and easy to fabricate. Its signal is easy to monitor. It can be used in the medical equipment in what situation non-invasive realtime monitoring and measurement of pulse rate, and respiratory/body movement pattern of healthy subjects are required.

  2. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  3. Biomimetic virus-based colourimetric sensors

    NASA Astrophysics Data System (ADS)

    Oh, Jin-Woo; Chung, Woo-Jae; Heo, Kwang; Jin, Hyo-Eon; Lee, Byung Yang; Wang, Eddie; Zueger, Chris; Wong, Winnie; Meyer, Joel; Kim, Chuntae; Lee, So-Young; Kim, Won-Geun; Zemla, Marcin; Auer, Manfred; Hexemer, Alexander; Lee, Seung-Wuk

    2014-01-01

    Many materials in nature change colours in response to stimuli, making them attractive for use as sensor platform. However, both natural materials and their synthetic analogues lack selectivity towards specific chemicals, and introducing such selectivity remains a challenge. Here we report the self-assembly of genetically engineered viruses (M13 phage) into target-specific, colourimetric biosensors. The sensors are composed of phage-bundle nanostructures and exhibit viewing-angle independent colour, similar to collagen structures in turkey skin. On exposure to various volatile organic chemicals, the structures rapidly swell and undergo distinct colour changes. Furthermore, sensors composed of phage displaying trinitrotoluene (TNT)-binding peptide motifs identified from a phage display selectively distinguish TNT down to 300 p.p.b. over similarly structured chemicals. Our tunable, colourimetric sensors can be useful for the detection of a variety of harmful toxicants and pathogens to protect human health and national security.

  4. Biomimetic virus-based colourimetric sensors.

    PubMed

    Oh, Jin-Woo; Chung, Woo-Jae; Heo, Kwang; Jin, Hyo-Eon; Lee, Byung Yang; Wang, Eddie; Zueger, Chris; Wong, Winnie; Meyer, Joel; Kim, Chuntae; Lee, So-Young; Kim, Won-Geun; Zemla, Marcin; Auer, Manfred; Hexemer, Alexander; Lee, Seung-Wuk

    2014-01-01

    Many materials in nature change colours in response to stimuli, making them attractive for use as sensor platform. However, both natural materials and their synthetic analogues lack selectivity towards specific chemicals, and introducing such selectivity remains a challenge. Here we report the self-assembly of genetically engineered viruses (M13 phage) into target-specific, colourimetric biosensors. The sensors are composed of phage-bundle nanostructures and exhibit viewing-angle independent colour, similar to collagen structures in turkey skin. On exposure to various volatile organic chemicals, the structures rapidly swell and undergo distinct colour changes. Furthermore, sensors composed of phage displaying trinitrotoluene (TNT)-binding peptide motifs identified from a phage display selectively distinguish TNT down to 300 p.p.b. over similarly structured chemicals. Our tunable, colourimetric sensors can be useful for the detection of a variety of harmful toxicants and pathogens to protect human health and national security.

  5. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  6. Molecular pincers – new antibody-based homogenous protein sensors

    PubMed Central

    Heyduk, Ewa; Dummit, Benjamin; Chang, Yie-Hwa; Heyduk, Tomasz

    2008-01-01

    We describe here a new homogenous antibody-based protein sensor design (molecular pincers) that allows rapid and sensitive detection of a specific protein in solution. In the presence of the target protein these sensors produce fluorescence signal derived from target-dependent annealing of short complementary fluorochrome-labeled oligonucleotides attached to a pair of target-specific antibodies via nanometer-scale flexible linkers. The sensors allow near-instantaneous detection of the target with sensitivity and specificity approaching ELISA but requiring no sample manipulation other then the addition of the sample to the sensor mix. We used cardiac troponin I and C-reactive protein as the targets to validate these desirable properties of the sensors. Due to the availability of antibodies to thousands of interesting targets and the straightforward design blueprint of the sensors we expect their wide-ranging applications in research and medical diagnosis, especially when simplicity, high throughput, and short detection time are essential. PMID:18491925

  7. Biomimic Hairy Skin Tactile Sensor Based on Ferromagnetic Microwires.

    PubMed

    Zhang, Jian; Hao, Lifeng; Yang, Fan; Jiao, Weicheng; Liu, Wenbo; Li, Yibin; Wang, Rongguo; He, Xiaodong

    2016-12-14

    We present a multifunctional tactile sensor inspired by human hairy skin structure, in which the sensitive hair sensor and the robust skin sensor are integrated into a single device via a pair of Co-based ferromagnetic microwire arrays in a very simple manner. The sensor possesses a self-tunable effective compliance with respect to the magnitude of the stimulus, allowing a wide range of loading force to be measured. The sensor also exhibits some amazing functions, such as air-flow detection, material property characterization, and excellent damage resistance. The novel sensing mechanism and structure provide a new strategy for designing multifunctional tactile sensors and show great potential applications on intelligent robot and sensing in harsh environments.

  8. Ion Based High-Temperature Pressure Sensor

    DTIC Science & Technology

    2004-01-01

    Humphrey, and Chapman - Jouguet Detonation cycles to be 27%, 47%, and 49% respectively.1 In addition to the clear thermodynamic advantages, the PDE also...and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the...ignited using a traditional spark plug connected to an ignition coil. A low DC voltage is applied across the ion sensor, a Champion RC12LYC spark plug

  9. Electrochemical sensor based on conductive polymer electrolyte

    SciTech Connect

    Ribes, C.; Cisneros, B.; Noding, S.A.; Ribes, A.J.

    1995-12-31

    A novel conductive polymer film has been incorporated into an electrochemical sensor for the determination of toxic gases. The conductive film consists of an inert polymer, a completing agent, and a salt. A variety of gases can be determined with this sensor. The specific detection of sulfuryl fluoride (SO{sub 2}F{sub 2}) in air will be discussed as an example of the capability and flexibility of technology.

  10. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  11. Chip-Based Sensors for Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Fang, Zhichao

    Nucleic acid analysis is one of the most important disease diagnostic approaches in medical practice, and has been commonly used in cancer biomarker detection, bacterial speciation and many other fields in laboratory. Currently, the application of powerful research methods for genetic analysis, including the polymerase chain reaction (PCR), DNA sequencing, and gene expression profiling using fluorescence microarrays, are not widely used in hospitals and extended-care units due to high-cost, long detection times, and extensive sample preparation. Bioassays, especially chip-based electrochemical sensors, may be suitable for the next generation of rapid, sensitive, and multiplexed detection tools. Herein, we report three different microelectrode platforms with capabilities enabled by nano- and microtechnology: nanoelectrode ensembles (NEEs), nanostructured microelectrodes (NMEs), and hierarchical nanostructured microelectrodes (HNMEs), all of which are able to directly detect unpurified RNA in clinical samples without enzymatic amplification. Biomarkers that are cancer and infectious disease relevant to clinical medicine were chosen to be the targets. Markers were successfully detected with clinically-relevant sensitivity. Using peptide nucleic acids (PNAs) as probes and an electrocatalytic reporter system, NEEs were able to detect prostate cancer-related gene fusions in tumor tissue samples with 100 ng of RNA. The development of NMEs improved the sensitivity of the assay further to 10 aM of DNA target, and multiplexed detection of RNA sequences of different prostate cancer-related gene fusion types was achieved on the chip-based NMEs platform. An HNMEs chip integrated with a bacterial lysis device was able to detect as few as 25 cfu bacteria in 30 minutes and monitor the detection in real time. Bacterial detection could also be performed in neat urine samples. The development of these versatile clinical diagnostic tools could be extended to the detection of various

  12. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  13. Severity of alcohol use and problem behaviors among school-based youths in Puerto Rico

    PubMed Central

    Latimer, William W.; Rojas, Vanessa Cecilia; Mancha, Brent Edward

    2009-01-01

    Objectives The present study sought to: (a) categorize youths into groups based on their level of alcohol use and number of symptoms of alcohol abuse and dependence defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), and (b) examine whether these categories were associated with other problem behaviors in which youths engage (marijuana use, sexual intercourse, and having been arrested or having trouble with the law). Methods The study is based on a cross-sectional survey administered to 972 school-based youths from one middle school and one high school in San Juan, Puerto Rico. Youths were categorized based on their alcohol use and alcohol problems. These categories were then examined for associations with lifetime marijuana use, lifetime sexual intercourse, and having been arrested or having had trouble with the law in the past year. The original eight categories of alcohol use were collapsed into six categories based on the results. Results For virtually every group characterized by higher severity of alcohol use and alcohol problems, researchers found an increasing prevalence of marijuana use in their lifetimes, increasing odds of sexual intercourse in their lifetimes, and having had trouble with the law in the past year. Conclusions Knowing about variations in alcohol use and alcohol problems may be instrumental in measuring the degree to which youths may also be engaging in a range of other elevated risk behaviors and a progression to more serious forms of alcohol and drug use. PMID:18510792

  14. Electrostatic Limit of Detection of Nanowire-Based Sensors.

    PubMed

    Henning, Alex; Molotskii, Michel; Swaminathan, Nandhini; Vaknin, Yonathan; Godkin, Andrey; Shalev, Gil; Rosenwaks, Yossi

    2015-10-07

    Scanning gate microscopy is used to determine the electrostatic limit of detection (LOD) of a nanowire (NW) based chemical sensor with a precision of sub-elementary charge. The presented method is validated with an electrostatically formed NW whose active area and shape are tunable by biasing a multiple gate field-effect transistor (FET). By using the tip of an atomic force microscope (AFM) as a local top gate, the field effect of adsorbed molecules is emulated. The tip induced charge is quantified with an analytical electrostatic model and it is shown that the NW sensor is sensitive to about an elementary charge and that the measurements with the AFM tip are in agreement with sensing of ethanol vapor. This method is applicable to any FET-based chemical and biological sensor, provides a means to predict the absolute sensor performance limit, and suggests a standardized way to compare LODs and sensitivities of various sensors.

  15. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  16. Folding- and Dynamics-Based Electrochemical DNA Sensors.

    PubMed

    Lai, Rebecca Y

    2017-01-01

    A number of electrochemical DNA sensors based on the target-induced change in the conformation and/or flexibility of surface-bound oligonucleotides have been developed in recent years. These sensors, which are often termed E-DNA sensors, are comprised of an oligonucleotide probe modified with a redox label (e.g., methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of the target to the DNA probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. Since electrochemically active contaminants are less common, these sensors are resistant to false-positive signals arising from the nonspecific adsorption of contaminants and perform well even when employed directly in serum, whole blood, and other realistically complex sample matrices. Moreover, because all of the sensor components are chemisorbed to the electrode, the E-DNA sensors are essentially label-free and readily reusable. To date, these sensors have achieved state-of-the-art sensitivity, while offering the unprecedented selectivity, reusability, and the operational convenience of direct electrochemical detection. This chapter reviews the recent advances in the development of both "signal-off" and "signal-on" E-DNA sensors. Critical aspects that dictate the stability and performance of these sensors are also addressed so as to provide a realistic overview of this oligonucleotide detection platform.

  17. Multipoint sensor based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Méndez-Zepeda, O.; Muñoz-Aguirre, S.; Beltrán-Pérez, G.; Castillo-Mixcóatl, J.

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  18. A Risk-Based Sensor Placement Methodology

    SciTech Connect

    Lee, Ronald W; Kulesz, James J

    2006-08-01

    A sensor placement methodology is proposed to solve the problem of optimal location of sensors or detectors to protect population against the exposure to and effects of known and/or postulated chemical, biological, and/or radiological threats. Historical meteorological data are used to characterize weather conditions as wind speed and direction pairs with the percentage of occurrence of the pairs over the historical period. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate population at risk against standard exposure levels. Sensor locations are determined via a dynamic programming algorithm where threats captured or detected by sensors placed in prior stages are removed from consideration in subsequent stages. Moreover, the proposed methodology provides a quantification of the marginal utility of each additional sensor or detector. Thus, the criterion for halting the iterative process can be the number of detectors available, a threshold marginal utility value, or the cumulative detection of a minimum factor of the total risk value represented by all threats.

  19. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  20. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-01-01

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199

  1. Ethanol sensor based on nanocrystallite cadmium ferrite

    SciTech Connect

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2015-06-24

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe{sub 2}O{sub 4} sensor was tested for LPG, Cl{sub 2} and C{sub 2}H{sub 5}OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C{sub 2}H{sub 5}OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl{sub 2} as compared to ethanol.

  2. Ethanol sensor based on nanocrystallite cadmium ferrite

    NASA Astrophysics Data System (ADS)

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2015-06-01

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe2O4 sensor was tested for LPG, Cl2 and C2H5OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C2H5OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl2 as compared to ethanol.

  3. Standards-based sensor interoperability and networking SensorWeb: an overview

    NASA Astrophysics Data System (ADS)

    Bolling, Sam

    2012-06-01

    The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.

  4. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    PubMed Central

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  5. Micro-Vibration-Based Slip Detection in Tactile Force Sensors

    PubMed Central

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S.; Becedas, Jonathan

    2014-01-01

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor. PMID:24394598

  6. Capillarity-based preparation system for optical colorimetric sensor arrays

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-gang; Yi, Xin; Bu, Xiang-nan; Hou, Chang-jun; Huo, Dan-qun; Yang, Mei; Fa, Huan-bao; Lei, Jin-can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  7. Capillarity-based preparation system for optical colorimetric sensor arrays.

    PubMed

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  8. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-12-26

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  9. Automotive MEMS sensors based on additive technologies

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. A.; Sokolov, A. V.; Pisliakov, A. V.; Oblov, K. Yu; Samotaev, N. N.; Kim, V. P.; Tkachev, S. V.; Gubin, S. P.; Potapov, G. N.; Kokhtina, Yu V.; Nisan, A. V.

    2016-10-01

    The application of MEMS devices is one of the recent trends in sensor technology. However, traditional silicon MEMS have some intrinsic limitations, when applied to the monitoring of high temperature/high humidity processes. Thin ceramic films of alumina, zirconia or LTCC fixed on rigid frame made of the same ceramic material in combination with ink and aerosol jet printing of functional materials (heaters, temperature, pressure, gas sensitive elements) provides a cheap, flexible, and high-performance alternative for silicon MEMS devices used as gas sensors, gas flowmeters, lambda probes, bolometric matrices for automotive and general application.

  10. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  11. Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.

    PubMed

    Chen, Huan; Sun, Jiatong; Jiang, Hong; Wang, Xianyue; Wu, Lingxiang; Wu, Wei; Wang, Qh

    2016-12-20

    The disturbance of consciousness is one of the most common symptoms of those have alcoholism and may cause disability and mortality. Previous studies indicated that several single nucleotide polymorphisms (SNP) increase the susceptibility of alcoholism. In this study, we utilized the Ensemble Bayesian Network (EBN) method to identify causal SNPs of alcoholism based on the verified GAW14 data. Thirteen out of eighteen SNPs directly connected with alcoholism were found concordance with potential risk regions of alcoholism in OMIM database. As a number of SNPs were found contributing to alteration on gene expression, known as expression quantitative trait loci (eQTLs), we further sought to identify chemical compounds acting as regulators of alcoholism genes captured by causal SNPs. Chloroprene and valproic acid were identified as the expression regulators for genes C11orf66 and SALL3 which were captured by alcoholism SNPs, respectively.

  12. Portable Nanoparticle-Based Sensors for Food Safety Assessment

    PubMed Central

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed. PMID:26690169

  13. Portable Nanoparticle-Based Sensors for Food Safety Assessment.

    PubMed

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-12-05

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed.

  14. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  15. Intensity based sensor based on single mode optical fiber patchcords

    NASA Astrophysics Data System (ADS)

    Bayuwati, Dwi; Waluyo, Tomi Budi; Mulyanto, Imam

    2016-11-01

    This paper describes the use of several single mode (SM) fiber patchcords available commercially in the market for intensity based sensor by taking the benefit of bending loss phenomenon. Firtsly, the full transmission spectrum of all fiber patchcords were measured and analyzed to examine its bending properties at a series of wavelength using white light source and optical spectrum analyzer. Bending spectral at various bending diameter using single wavelength light sources were then measured for demonstration.Three good candidates for the intensity based sensor are SM600 fiber patchcord with 970 nm LED, SMF28 fiber patchcord with 1050 nm LED and 780HP fiber patchcord with 1310 nm LED which have noticeable bending sensitive area. Experiments show that the combination of the SMF28with 1050 nm LED has 30 mm measurement range which is the widest; with sensitivity 0.107 dB/mm and resolution 0.5 mm compared with combination of SM600 patchcord and LED 970 nm which has the best sensitivity (0.891 dB/mm) and resolution (0.06 mm) but smaller range measurement (10 mm). Some suitable applications for each fiber patchcord - light source pair have also been discussed.

  16. Alcohol and Drug Defense Program Manual on Comprehensive K-12 School-Based Prevention and Intervention Alcohol and Drug Services.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Alcohol and Drug Defense Program.

    This document presents a manual to help program developers plan for a comprehensive school and community-based response to the drug problem as required by the Drug-Free Schools and Communities Act. Part I explains the purpose of the manual and discusses other work being conducted by the North Carolina Alcohol and Drug Defense Program. Part II…

  17. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    PubMed

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction.

  18. [Population-based studies on alcohol-related harm in Spain].

    PubMed

    Pulido, José; Indave-Ruiz, B Iciar; Colell-Ortega, Esther; Ruiz-García, Mónica; Bartroli, Montserrat; Barrio, Gregorio

    2014-08-01

    Based on the review of scientific papers and institutional reports on the subject and analysis of some secondary data, we assess the alcohol-related harm in Spain between 1990 and 2011. In 2011 they could be attributable to alcohol, 10% of the total mortality of the population aged 15-64, and about 30% of deaths due to traffic accidents. Among the population aged 15-64 years at least 0.8% had alcohol use disorders, an additional 5% could have harmful alcohol consumption that would need clinical evaluation, and about 20% had had some acute alcohol intoxication (AAI) in the last year. The AAI accounted for approximately 0.5-1.1 % of hospital emergency visits. Social costs of alcohol could represent 1% of gross domestic product. The prevalence of alcohol-related harm was significantly higher in men than women, with a male/female ratio greater than three for alcohol-related mortality and serious injuries, and this situation has hardly changed in the last 20 years. Alcohol-related harm has followed a downward trend, except for AAI. In 1990-2011 the standardized mortality rates related to alcohol decreased by half. Large gaps in knowledge and uncertainties on alcohol-related harm in Spanish population, clearly justify the institutional support for the research in this field and the implementation of a comprehensive monitoring system.

  19. Gas Sensors Based on Polymer Field-Effect Transistors

    PubMed Central

    Lv, Aifeng; Pan, Yong; Chi, Lifeng

    2017-01-01

    This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (ΔISD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance. Most importantly, we summarize various analyte–polymer interactions, which help to understand the sensing mechanism in the PFET sensors and can provide possible approaches for the sensor fabrication in the future. PMID:28117760

  20. Metamaterial-based sensor for skin disease diagnostics

    NASA Astrophysics Data System (ADS)

    La Spada, L.; Iovine, R.; Tarparelli, R.; Vegni, L.

    2013-05-01

    Skin absorption properties, under diseases conditions, are modified due to the structural variations of chromophores and pigments. The measurement of such different absorptions can be a useful tool for the recognition of different skin diseases. In this study the design of a multi-resonant metamaterial-based sensor operating in the optical frequency range is presented. The sensor has been designed, in order to have multiple specific resonant frequencies, tuned to the skin components spectral characteristics. A change in the frequency amplitude of the sensor response is related to the different absorption rate of skin chromophores and pigments. A new analytical model, describing the multi-resonant sensor behaviour, is developed. Good agreement among analytical and numerical results was achieved. Full-wave simulations have validated the capability of the proposed sensor to identify different skin diseases.

  1. Sensor network based vehicle classification and license plate identification system

    SciTech Connect

    Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J; Raby, Eric Y; Kulathumani, Vinod K

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  2. Gas Sensors Based on Polymer Field-Effect Transistors.

    PubMed

    Lv, Aifeng; Pan, Yong; Chi, Lifeng

    2017-01-22

    This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (ΔISD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance. Most importantly, we summarize various analyte-polymer interactions, which help to understand the sensing mechanism in the PFET sensors and can provide possible approaches for the sensor fabrication in the future.

  3. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-01-01

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659

  4. Self-powered magnetic sensor based on a triboelectric nanogenerator.

    PubMed

    Yang, Ya; Lin, Long; Zhang, Yue; Jing, Qingshen; Hou, Te-Chien; Wang, Zhong Lin

    2012-11-27

    Magnetic sensors are usually based on the Hall effect or a magnetoresistive sensing mechanism. Here we demonstrate that a nanogenerator can serve as a sensor for detecting the variation of the time-dependent magnetic field. The output voltage of the sensor was found to exponentially increase with increasing magnetic field. The detection sensitivities for the change and the changing rate of magnetic field are about 0.0363 ± 0.0004 ln(mV)/G and 0.0497 ± 0.0006 ln(mV)/(G/s), respectively. The response time and reset time of the sensor are about 0.13 and 0.34 s, respectively. The fabricated sensor has a detection resolution of about 3 G and can work under low frequencies (<0.4 Hz).

  5. Amino alcohol-based degradable poly(ester amide) elastomers

    PubMed Central

    Bettinger, Christopher J.; Bruggeman, Joost P.; Borenstein, Jeffrey T.; Langer, Robert S.

    2009-01-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young’s modulus on the order of 1 MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo. PMID:18295329

  6. Haem-based sensors: a still growing old superfamily.

    PubMed

    Germani, Francesca; Moens, Luc; Dewilde, Sylvia

    2013-01-01

    The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.

  7. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  8. Plasmonics Based Harsh Environment Compatible Chemical Sensors

    SciTech Connect

    Michael Carpenter

    2012-01-15

    Au-YSZ, Au-TiO{sub 2} and Au-CeO{sub 2} nanocomposite films have been investigated as a potential sensing element for high-temperature plasmonic sensing of H{sub 2}, CO, and NO{sub 2} in an oxygen containing environment. The Au-YSZ and Au-TiO{sub 2} films were deposited using PVD methods, while the CeO{sub 2} thin film was deposited by molecular beam epitaxy (MBE) and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. Each of the films were characterized by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H{sub 2}, CO, and NO{sub 2} were performed at a temperature of 500°C in oxygen backgrounds of 5.0, 10, and ~21% O{sub 2}. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the respective metal oxides. This process affects the LSPR peak position either by charge exchange with the Au nanoparticles or by changes in the dielectric constant surrounding the particles. Hyperspectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used on the Au-CeO{sub 2} results and showed separation between analytes as well as trends in gas concentration. Results indicate that each of the films are is selective towards O{sub 2}, H{sub 2}, CO, and NO{sub 2} in separate exposures. However, when the films were analyzed in a sensor array based experiment, ie simultaneous exposures to the target gases, PCA analysis of the combined response showed an even greater selective character towards the target gases. Combined

  9. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  10. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGES

    Zhu, Chengzhou; Yang, Guohai; Li, He; ...

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  11. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    PubMed Central

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  12. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    PubMed

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-18

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  13. Analysis of vehicle detection with WSN-based ultrasonic sensors.

    PubMed

    Jo, Youngtae; Jung, Inbum

    2014-08-04

    Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs) has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection.

  14. Higher-order mode photonic crystal based nanofluidic sensor

    NASA Astrophysics Data System (ADS)

    Peng, Wang; Chen, Youping; Ai, Wu

    2017-01-01

    A higher-order photonic crystal (PC) based nanofluidic sensor, which worked at 532 nm, was designed and demonstrated. A systematical and detailed method for sculpturing a PC sensor for a given peak wavelength value (PWV) and specified materials was illuminated. It was the first time that the higher order mode was used to design PC based nanofluidic sensor, and the refractive index (RI) sensitivity of this sensor had been verified with FDTD simulation software from Lumerical. The enhanced electrical field of higher order mode structure was mostly confined in the channel area, where the enhance field is wholly interacting with the analytes in the channels. The comparison of RI sensitivity between fundamental mode and higher order mode shows the RI variation of higher order mode is 124.5 nm/RIU which is much larger than the fundamental mode. The proposed PC based nanofluidic structure pioneering a novel style for future optofluidic design.

  15. Analysis of Vehicle Detection with WSN-Based Ultrasonic Sensors

    PubMed Central

    Jo, Youngtae.; Jung, Inbum.

    2014-01-01

    Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs) has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection. PMID:25093342

  16. 76 FR 82320 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... COMMISSION Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States.... domestic market for fuel ethyl alcohol during the 12-month period ending on the preceding September 30. This determination is to be used to establish the ``base quantity'' of imports of fuel ethyl...

  17. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  18. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  19. Sensor-fusion-based biometric identity verification

    SciTech Connect

    Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.; Martinez, R.F.; Bartholomew, J.W.; Jordan, J.B.; Flachs, G.M.; Bao, Z.; Zhu, L.

    1998-02-01

    Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed for discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.

  20. Nanomaterial Based Sensors for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  1. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  2. Smart sensors wireless measurement network based on Bluetooth standard

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard; Jablonski, Michal

    2003-09-01

    The paper briefly describes Bluetooth standard and authors" Bluetoth sensors modules construction. At the beginning the short comparison of existing on the market standards of wireless data transmission (IEEE802.11, IEEE802.11b/g, IEEE802.11a, HomeRF, Bluetooth, Radiometrix, Motorola, IrDA) brought out by main firms is presented. Next selected Bluetooth features and functions useful to sensors wireless network creations are discussed. At the end our own Bluetooth sensor based on the newest Ericsson ROK 101 007 module is specified.

  3. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    SciTech Connect

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles

    2009-01-01

    This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are discussed. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are covered.

  4. A space-based concept for a collision warning sensor

    NASA Technical Reports Server (NTRS)

    Talent, David L.; Vilas, Faith

    1990-01-01

    This paper describes a concept for a space-based collision warning sensor experiment, the Debris Collision Warning Sensor (DCWS) experiment, in which the sensor will rely on passive sensing of debris in optical and IR passband. The DCWS experiment will be carried out under various conditions of solar phase angle and pass geometry; debris from 1.5 m to 1 mm diam will be observable. The mission characteristics include inclination in the 55-60 deg range and an altitude of about 500 km. The results of the DCWS experiment will be used to generate collision warning scenarios for the Space Station Freedom.

  5. Facile access to unnatural dipeptide-alcohols based on cis-2,5-disubstituted pyrrolidines.

    PubMed

    Jia, Yan-Yan; Li, Xiao-Ye; Wang, Ping-An; Wen, Ai-Dong

    2015-02-11

    Well-defined unnatural dipeptide-alcohols based on a cis-2,5-disubstitued pyrrolidine backbone were synthesized from commercially available starting materials meso-diethyl-2,5-dibromoadipate, (S)-(-)-1-phenylethylamine, and phenylalaninol. The structures of these unnatural dipeptide-alcohols are supported by HRMS, 1H- and 13C-NMR spectroscopy. These unnatural dipeptide-alcohols can act as building blocks for peptidomimetics.

  6. School/Community-Based Alcoholism/Substance Abuse Prevention Survey.

    ERIC Educational Resources Information Center

    Owan, Tom Choken; And Others

    This report describes school and community efforts to prevent alcoholism and substance abuse among American Indian and Alaskan Native youth. In 1986, the Indian Health Service (IHS) surveyed Bureau of Indian Affairs schools, public schools with large Indian enrollments, and community groups involved in 225 IHS-funded alcohol and substance abuse…

  7. SERS-based pesticide detection by using nanofinger sensors.

    PubMed

    Kim, Ansoon; Barcelo, Steven J; Li, Zhiyong

    2015-01-09

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  8. Sensor Systems Based on FPGAs and Their Applications: A Survey

    PubMed Central

    de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah

    2012-01-01

    In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.

  9. Voronoi-based localisation algorithm for mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Guan, Zixiao; Zhang, Yongtao; Zhang, Baihai; Dong, Lijing

    2016-11-01

    Localisation is an essential and important part in wireless sensor networks (WSNs). Many applications require location information. So far, there are less researchers studying on mobile sensor networks (MSNs) than static sensor networks (SSNs). However, MSNs are required in more and more areas such that the number of anchor nodes can be reduced and the location accuracy can be improved. In this paper, we firstly propose a range-free Voronoi-based Monte Carlo localisation algorithm (VMCL) for MSNs. We improve the localisation accuracy by making better use of the information that a sensor node gathers. Then, we propose an optimal region selection strategy of Voronoi diagram based on VMCL, called ORSS-VMCL, to increase the efficiency and accuracy for VMCL by adapting the size of Voronoi area during the filtering process. Simulation results show that the accuracy of these two algorithms, especially ORSS-VMCL, outperforms traditional MCL.

  10. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  11. Herd-Based Target Tracking Protocol in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Xing, Xiaofei; Wang, Guojun; Wu, Jie

    Target tracking is a killer application in wireless sensor networks (WSNs). Energy efficiency is one of the most important design goals for target tracking. In this paper, we propose a herd-based target tracking protocol (HTTP) with the notions of node state transition and herd-based node group for target tracking. A sensor node has three states, namely, sleeping state, sensing state, and tracking state. Each sensor node is associated with a weight to be used to make a state transition among the three states. When a target moves into a monitoring area, a cluster node is selected as the herd head that is responsible for reporting the target information to the sink in the network. The sensor node can adjust the frequency of data reporting according to the velocity of the target. Simulation results show that HTTP not only improves the energy efficiency, but also enhances the tracking accuracy.

  12. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.

    PubMed

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-10-29

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO₃ is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO₃ samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO₃-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods.

  13. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers.

    PubMed

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-02-08

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Ω) of the SWCNT paper and the wide change in resistance (up to 10(6) Ω) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  14. SERS-based pesticide detection by using nanofinger sensors

    NASA Astrophysics Data System (ADS)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  15. Students' Experiences with Web-Based Alcohol Prevention: A Qualitative Evaluation of AlcoholEdu

    ERIC Educational Resources Information Center

    Nygaard, Peter; Paschall, Mallie J.

    2012-01-01

    Aim: To provide more in-depth information about students' experiences with AlcoholEdu and in particular to assess if students perceive that the course gives them tools to better control their drinking-related behavior. Methods: Focus group interviews with freshmen at three California universities. Findings: 1) The course provides so much…

  16. Partner Violence before and after Couples-Based Alcoholism Treatment for Female Alcoholic Patients

    ERIC Educational Resources Information Center

    Schumm, Jeremiah A.; O'Farrell, Timothy J.; Murphy, Christopher M.; Fals-Stewart, William

    2009-01-01

    This study examined partner violence before and in the 1st and 2nd year after behavioral couples therapy (BCT) for 103 married or cohabiting women seeking alcohol dependence treatment and their male partners; it used a demographically matched nonalcoholic comparison sample. The treatment sample received M = 16.7 BCT sessions over 5-6 months.…

  17. Polygenic risk for alcohol dependence associates with alcohol consumption, cognitive function and social deprivation in a population‐based cohort

    PubMed Central

    Smith, Andrew H.; Gelernter, Joel; Kranzler, Henry R.; Farrer, Lindsay A.; Hall, Lynsey S.; Fernandez‐Pujals, Ana M.; MacIntyre, Donald J.; Smith, Blair H.; Hocking, Lynne J.; Padmanabhan, Sandosh; Hayward, Caroline; Thomson, Pippa A.; Porteous, David J.; Deary, Ian J.; McIntosh, Andrew M.

    2015-01-01

    Abstract Alcohol dependence is frequently co‐morbid with cognitive impairment. The relationship between these traits is complex as cognitive dysfunction may arise as a consequence of heavy drinking or exist prior to the onset of dependence. In the present study, we tested the genetic overlap between cognitive abilities and alcohol dependence using polygenic risk scores (PGRS). We created two independent PGRS derived from two recent genome‐wide association studies (GWAS) of alcohol dependence (SAGE GWAS: n = 2750; Yale‐Penn GWAS: n = 2377) in a population‐based cohort, Generation Scotland: Scottish Family Health Study (GS:SFHS) (n = 9863). Data on alcohol consumption and four tests of cognitive function [Mill Hill Vocabulary (MHV), digit symbol coding, phonemic verbal fluency (VF) and logical memory] were available. PGRS for alcohol dependence were negatively associated with two measures of cognitive function: MHV (SAGE: P = 0.009, β = −0.027; Yale‐Penn: P = 0.001, β = −0.034) and VF (SAGE: P = 0.0008, β = −0.036; Yale‐Penn: P = 0.00005, β = −0.044). VF remained robustly associated after adjustment for education and social deprivation; however, the association with MHV was substantially attenuated. Shared genetic variants may account for some of the phenotypic association between cognitive ability and alcohol dependence. A significant negative association between PGRS and social deprivation was found (SAGE: P = 5.2 × 10−7, β = −0.054; Yale‐Penn: P = 0.000012, β = −0.047). Individuals living in socially deprived regions were found to carry more alcohol dependence risk alleles which may contribute to the increased prevalence of problem drinking in regions of deprivation. Future work to identify genes which affect both cognitive impairment and alcohol dependence will help elucidate biological processes common to both disorders. PMID:25865819

  18. Approach to the genetics of alcoholism: a review based on pathophysiology.

    PubMed

    Köhnke, Michael D

    2008-01-01

    Alcohol dependence is a common disorder with a heterogenous etiology. The results of family, twin and adoption studies on alcoholism are reviewed. These studies have revealed a heritability of alcoholism of over 50%. After evaluating the results, it was epidemiologically stated that alcoholism is heterogenous complex disorder with a multiple genetic background. Modern molecular genetic techniques allow examining specific genes involved in the pathophysiology of complex diseases such as alcoholism. Strategies for gene identification are introduced to the reader, including family-based and association studies. The susceptibility genes that are in the focus of this article have been chosen because they are known to encode for underlying mechanisms that are linked to the pathophysiology of alcoholism or that are important for the pharmacotherapeutic approaches in the treatment of alcohol dependence. Postulated candidate genes of the metabolism of alcohol and of the involved neurotransmitter systems are introduced. Genetic studies on alcoholism examining the metabolism of alcohol and the dopaminergic, GABAergic, glutamatergic, opioid, cholinergic and serotonergic neurotransmitter systems as well as the neuropeptide Y are presented. The results are critically discussed followed by a discussion of possible consequences.

  19. Novel gas sensors based on carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Sayago, I.; Terrado, E.; Aleixandre, M.; Horrillo, M. C.; Fernandez, M. J.; Lafuente, E.; Maser, W. K.; Benito, A. M.; Urriolabeitia, E. P.; Navarro, R.; Martinez, M. T.; Gutierrez, J.; Muñoz, E.

    2008-08-01

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO2 and H2, respectively. The studied sensors provided good response to NO2 and H2 as well as excellent selectivities to interfering gases.

  20. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  1. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  2. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  3. Inertial Sensor-Based Gait Recognition: A Review.

    PubMed

    Sprager, Sebastijan; Juric, Matjaz B

    2015-09-02

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability.

  4. Portable optical oxygen sensor based on time-resolved fluorescence.

    PubMed

    Chu, Cheng-Shane; Chu, Ssu-Wei

    2014-11-10

    A new, simple signal processing, low-cost technique for the fabrication of a portable oxygen sensor based on time-resolved fluorescence is described. The sensing film uses the oxygen sensing dye platinum meso-tetra (pentfluorophenyl) porphyrin (PtTFPP) embedded in a polymer matrix. The ratio τ0100 measures sensitivity of the sensing film, where τ0 and τ100 represent the detected fluorescence lifetimes from the sensing film exposed to 100% nitrogen and 100% oxygen, respectively. The experimental results reveal that the PtTFPP-doped oxygen sensor has a sensitivity of 2.2 in the 0%-100% range. A preparation procedure for coating the photodiodes with the oxygen sensor film that produces repetitive and reliable sensing devices is proposed. The developed time-resolved optical oxygen sensor is portable, low-cost, has simple signal processing, and lacks optical filter elements. It is a cost-effective alternative to traditional electrochemical-based oxygen sensors and provides a platform for other optical based sensors.

  5. Phosphorescent sensor for phosphorylated peptides based on an iridium complex.

    PubMed

    Kang, Jung Hyun; Kim, Hee Jin; Kwon, Tae-Hyuk; Hong, Jong-In

    2014-07-03

    A bis[(4,6-difluorophenyl)pyridinato-N,C(2')]iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn(2+)-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3(2-), NO3(-), SO4(2-), phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn(2+) ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.

  6. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  7. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  8. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.

  9. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp(2) hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed.

  10. Maternal Alcohol Consumption, Alcohol Metabolism Genes, and the Risk of Oral Clefts: A Population-based Case-Control Study in Norway, 1996–2001

    PubMed Central

    Boyles, Abee L.; DeRoo, Lisa A.; Lie, Rolv T.; Taylor, Jack A.; Jugessur, Astanand; Murray, Jeffrey C.; Wilcox, Allen J.

    2010-01-01

    Heavy maternal alcohol consumption during early pregnancy increases the risk of oral clefts, but little is known about how genetic variation in alcohol metabolism affects this association. Variants in the alcohol dehydrogenase 1C (ADH1C) gene may modify the association between alcohol and clefts. In a population-based case-control study carried out in Norway (1996–2001), the authors examined the association between maternal alcohol consumption and risk of oral clefts according to mother and infant ADH1C haplotypes encoding fast or slow alcohol-metabolizing phenotypes. Subjects were 483 infants with oral cleft malformations and 503 control infants and their mothers, randomly selected from all other livebirths taking place during the same period. Mothers who consumed 5 or more alcoholic drinks per sitting during the first trimester of pregnancy had an elevated risk of oral cleft in their offspring (odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4, 4.7). This increased risk was evident only in mothers or children who carried the ADH1C haplotype associated with reduced alcohol metabolism (OR= 3.0, 95% CI: 1.4, 6.8). There was no evidence of alcohol-related risk when both mother and infant carried only the rapid-metabolism ADH1C variant (OR = 0.9, 95% CI: 0.2, 4.1). The teratogenic effect of alcohol may depend on the genetic capacity of the mother and fetus to metabolize alcohol. PMID:20810466

  11. Gas Sensors Based on Ceramic p-n Heterocontacts

    SciTech Connect

    Aygun, Seymen Murat

    2005-01-01

    Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from ~2.3 to ~9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying characteristics

  12. Performance evaluation of triangulation based range sensors.

    PubMed

    Guidi, Gabriele; Russo, Michele; Magrassi, Grazia; Bordegoni, Monica

    2010-01-01

    The performance of 2D digital imaging systems depends on several factors related with both optical and electronic processing. These concepts have originated standards, which have been conceived for photographic equipment and bi-dimensional scanning systems, and which have been aimed at estimating different parameters such as resolution, noise or dynamic range. Conversely, no standard test protocols currently exist for evaluating the corresponding performances of 3D imaging systems such as laser scanners or pattern projection range cameras. This paper is focused on investigating experimental processes for evaluating some critical parameters of 3D equipment, by extending the concepts defined by the ISO standards to the 3D domain. The experimental part of this work concerns the characterization of different range sensors through the extraction of their resolution, accuracy and uncertainty from sets of 3D data acquisitions of specifically designed test objects whose geometrical characteristics are known in advance. The major objective of this contribution is to suggest an easy characterization process for generating a reliable comparison between the performances of different range sensors and to check if a specific piece of equipment is compliant with the expected characteristics.

  13. Sensor Drift Compensation Algorithm based on PDF Distance Minimization

    NASA Astrophysics Data System (ADS)

    Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo

    2009-05-01

    In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation

  14. Highly sensitive biological sensor based on photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Azzam, Shaimaa I. H.; Hameed, Mohamed F.; Obayya, S. S. A.

    2014-05-01

    A photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor is proposed and analysed. The proposed sensor consists of microuidic slots enclosing a dodecagonal layer of air holes cladding and a central air hole. The sensor can perform analyte detection using both HEx 11 and HEy 11 modes with a relatively high sensitivities up to 4000 nm=RIU and 3000 nm=RIU and resolutions of 2.5×10-5 RIU-1 and 3.33×10-5 RIU-1 with HEx11 and HEy11, respectively, with regards to spectral interrogation which to our knowledge are higher than those reported in the literature. Moreover, the structure of the suggested sensor is simple with no fabrication complexities which makes it easy to fabricate with standard PCF fabrication technologies.

  15. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  16. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate.

    PubMed

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  17. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate

    NASA Astrophysics Data System (ADS)

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  18. Impedance-based damage assessment using piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Rim, Mi-Sun; Yoo, Seung-Jae; Lee, In; Song, Jae-Hoon; Yang, Jae-Won

    2011-04-01

    Recently structural health monitoring (SHM) systems are being focused because they make it possible to assess the health of structures at real-time in many application fields such as aircraft, aerospace, civil and so on. Piezoelectric materials are widely used for sensors of SHM system to monitor damage of critical parts such as bolted joints. Bolted joints could be loosened by vibration, thermal cycling, shock, corrosion, and they cause serious mechanical failures. In this paper, impedance-based method using piezoelectric sensors was applied for real-time SHM. A steel beam specimen fastened by bolts was tested, and polymer type piezoelectric materials, PVDFs were used for sensors to monitor the condition of bolted joint connections. When structure has some damage, for example loose bolts, the impedance of PVDF sensors showed different tendency with normal structure which has no loose bolts. In the case of loose bolts, impedance values are decreased and admittance values are increased.

  19. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  20. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    PubMed

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application.

  1. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  2. Photonic crystal fiber sensor array based on modes overlapping.

    PubMed

    Cárdenas-Sevilla, Guillermo A; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio

    2011-04-11

    An alternative method to build point and sensor array based on photonic crystal fibers (PCFs) is presented. A short length (in the 9-12 mm range) of properly selected index-guiding PCF is fusion spliced between conventional single mode fibers. By selective excitation and overlapping of specific modes in the PCF we make the transmission spectra of the sensors to exhibit a single and narrow notch. The notch position changes with external perturbation which allows sensing diverse parameters. The well-defined single notch, the extinction ratio exceeding 30 dB and the low overall insertion loss allow placing the sensors in series. This makes the implementation of sensor networks possible.

  3. Sensor-based architecture for medical imaging workflow analysis.

    PubMed

    Silva, Luís A Bastião; Campos, Samuel; Costa, Carlos; Oliveira, José Luis

    2014-08-01

    The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.

  4. Novel carbon dioxide gas sensor based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  5. A flexible piezoelectric force sensor based on PVDF fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C.

    2011-04-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensor and transducer material due to its high piezo-, pyro- and ferroelectric properties. To activate these properties, PVDF films require a mechanical treatment, stretching or poling. In this paper, we report on a force sensor based on PVDF fabrics with excellent flexibility and breathability, to be used as a specific human-related sensor. PVDF nanofibrous fabrics were prepared by using an electrospinning unit and characterized by means of scanning electron microscopy (SEM), FTIR spectroscopy and x-ray diffraction. Preliminary force sensors have been fabricated and demonstrated excellent sensitivity and response to external mechanical forces. This implies that promising applications can be made for sensing garment pressure, blood pressure, heartbeat rate, respiration rate and accidental impact on the human body.

  6. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    SciTech Connect

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  7. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks.

    PubMed

    Janani, E Srie Vidhya; Kumar, P Ganesh

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio.

  8. Engineering new aptamer geometries for electrochemical aptamer-based sensors

    NASA Astrophysics Data System (ADS)

    White, Ryan J.; Plaxco, Kevin W.

    2009-05-01

    Electrochemical aptamer-based sensors (E-AB sensors) represent a promising new approach to the detection of small molecules. E-AB sensors comprise an aptamer that is attached at one end to an electrode surface. The distal end of the aptamer probed is modified with an electroactive redox marker for signal transduction. Herein we report on the optimization of a cocaine-detecting E-AB sensor via optimization of the geometry of the aptamer. We explore two new aptamer architectures, one in which we concatenate three cocaine aptamers into a poly-aptamer and a second in which we divide the cocaine aptamer into pieces connected via an unstructured, 60-thymine linker. Both of these structures are designed such that the reporting redox tag will be located farther from the electrode in the unfolded, target-free conformation. Consistent with this, we find that signal gains of these two constructs are two to three times higher than that of the original E-AB architecture. Likewise all three architectures are selective enough to deploy directly in complex sample matrices, such as undiluted whole blood, with all three sensors successfully detecting the presence of cocaine. The findings in this ongoing study should be of value in future efforts to optimize the signaling of electrochemical aptamer-based sensors.

  9. MEMS-based sensor arrays for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2002-07-01

    Scientists and engineers at the Army Aviation Missile Command's (AMCOM) Research, Development and Engineering Center (RDEC) are cooperatively working with the Defense Advanced Research Projects Agency (DARPA), other Army agencies, and industry to provide technical solutions for the Army's transformation efforts into the 21st Century force. Advanced technologies are being exposed to achieve the performance and cost goals dictated by the emerging missions of the Transformed Army. It is well established that MEMS technology offers the potential solution to cost, size, and weight issues for the soldier, missile, gun, ground vehicles, and aircraft applications. MEMS sensor arrays are currently being investigated to meet system performance requirements and provide more robust mission capability. A Science and Technology Objective, Research and Development Project is underway at AMCOM/RDEC to develop controlled MEMS sensor arrays to provide for full military dynamic performance ranges using miniature sensor system. MEMS-based angular rate sensors are enhanced with vibration feedback form MEMS accelerometers for output signal stabilization in high-vibration environments. Multi-range MEMS-based accelerometers, cooperatively developed by Government and industry, are being multiplexed to provide dynamic range expansion. An array of integrated accelerometers is expected to increase the dynamic range by an order of magnitude. Future projections suggest that MEMS sensor array technology will be applicable to a broad range of military applications, which include environmental sensor suites for structural health monitoring and forward reconnaissance and surveillance; and optical and radio frequency phased arrays for fast beam steering.

  10. Matching sensors to missions using a knowledge-based approach

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Gomez, Mario; de Mel, Geeth; Vasconcelos, Wamberto; Sleeman, Derek; Colley, Stuart; Pearson, Gavin; Pham, Tien; La Porta, Thomas

    2008-04-01

    Making decisions on how best to utilise limited intelligence, surveillance and reconnaisance (ISR) resources is a key issue in mission planning. This requires judgements about which kinds of available sensors are more or less appropriate for specific ISR tasks in a mission. A methodological approach to addressing this kind of decision problem in the military context is the Missions and Means Framework (MMF), which provides a structured way to analyse a mission in terms of tasks, and assess the effectiveness of various means for accomplishing those tasks. Moreover, the problem can be defined as knowledge-based matchmaking: matching the ISR requirements of tasks to the ISR-providing capabilities of available sensors. In this paper we show how the MMF can be represented formally as an ontology (that is, a specification of a conceptualisation); we also represent knowledge about ISR requirements and sensors, and then use automated reasoning to solve the matchmaking problem. We adopt the Semantic Web approach and the Web Ontology Language (OWL), allowing us to import elements of existing sensor knowledge bases. Our core ontologies use the description logic subset of OWL, providing efficient reasoning. We describe a prototype tool as a proof-of-concept for our approach. We discuss the various kinds of possible sensor-mission matches, both exact and inexact, and how the tool helps mission planners consider alternative choices of sensors.

  11. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  12. Vehicle passes detector based on multi-sensor analysis

    NASA Astrophysics Data System (ADS)

    Bocharov, D.; Sidorchuk, D.; Konovalenko, I.; Koptelov, I.

    2015-02-01

    The study concerned deals with a new approach to the problem of detecting vehicle passes in vision-based automatic vehicle classification system. Essential non-affinity image variations and signals from induction loop are the events that can be considered as detectors of an object presence. We propose several vehicle detection techniques based on image processing and induction loop signal analysis. Also we suggest a combined method based on multi-sensor analysis to improve vehicle detection performance. Experimental results in complex outdoor environments show that the proposed multi-sensor algorithm is effective for vehicles detection.

  13. Evidence-Based Practice Guidelines for Fetal Alcohol Spectrum Disorder and Literacy and Learning

    ERIC Educational Resources Information Center

    Mitten, H. Rae

    2013-01-01

    Evidence-based Practice Guidelines for Fetal Alcohol Spectrum Disorder (FASD) and Literacy and Learning are derived from an inductive analysis of qualitative data collected in field research. FASD is the umbrella term for a spectrum of neurocognitive and physical disabilities caused by prenatal exposure to alcohol. Data from a sample of N=150 was…

  14. Evidence-Based Practice Guidelines for Fetal Alcohol Spectrum Disorder and Literacy and Learning

    ERIC Educational Resources Information Center

    Mitten, H. Rae

    2013-01-01

    Evidence-based Practice Guidelines for Fetal Alcohol Spectrum Disorder (FASD) and Literacy and Learning are derived from an inductive analysis of qualitative data collected in field research. FASD is the umbrella term for a spectrum of neurocognitive and physical disabilities caused by prenatal exposure to alcohol. Data from a sample of N =150 was…

  15. Predictive Models of Alcohol Use Based on Attitudes and Individual Values

    ERIC Educational Resources Information Center

    Del Castillo Rodríguez, José A. García; López-Sánchez, Carmen; Soler, M. Carmen Quiles; Del Castillo-López, Álvaro García; Pertusa, Mónica Gázquez; Campos, Juan Carlos Marzo; Inglés, Cándido J.

    2013-01-01

    Two predictive models are developed in this article: the first is designed to predict people' attitudes to alcoholic drinks, while the second sets out to predict the use of alcohol in relation to selected individual values. University students (N = 1,500) were recruited through stratified sampling based on sex and academic discipline. The…

  16. Influencing Adolescent Social Perceptions of Alcohol Use to Facilitate Change through a School-Based Intervention

    ERIC Educational Resources Information Center

    Schulte, Marya T.; Monreal, Teresa K.; Kia-Keating, Maryam; Brown, Sandra A.

    2010-01-01

    The current study examines the effectiveness of a voluntary high school-based alcohol intervention by investigating one proposed mechanism of change in adolescent alcohol involvement: perception of peer use. High school students reporting lifetime drinking (N = 2055) completed fall and spring surveys that assessed demographic information,…

  17. Evaluating Community Readiness to Implement Environmental and Policy-Based Alcohol Abuse Prevention Strategies in Wisconsin

    ERIC Educational Resources Information Center

    Paltzer, Jason; Black, Penny; Moberg, D. Paul

    2013-01-01

    Background: Matching evidence-based alcohol prevention strat- egies with a community's readiness to support those strategies is the basis for the Tri-Ethnic Community Readiness Model (CRM). The purpose of this evaluation was to assess the association of a community's readiness to address alcohol abuse in their community with the implementation of…

  18. Analytical Sensor Response Function of Viscosity Sensors Based on Layered Piezoelectric Thickness Shear Resonators

    NASA Astrophysics Data System (ADS)

    Benes, Ewald; Nowotny, Helmut; Braun, Stefan; Radel, Stefan; Gröschl, Martin

    Resonant piezoelectric sensors based on bulk acoustic wave (BAW) thickness shear resonators are promising for the inline measurement of fluid viscosity, e.g., in industrial processes. The sensor response function can be derived from the general rigorous transfer matrix description of one-dimensional layered structures consisting of piezoelectric and non-piezoelectric layers of arbitrary number. This model according to Nowotny et al. provides a complete analytical description of the electrical and mechanical behaviour of such structures with two electrodes and arbitrary acoustic termination impedances (Rig-1d-Model). We apply this model to derive the sensor response functions and the mechanical displacement curves of the following configurations appropriate for viscosity sensors: An AT cut quartz crystal plate in contact with vacuum at the backside plane and with the liquid under investigation at the front side plane (QL). An AT cut quartz crystal in contact with the liquid under investigation at both sides (LQL). It is shown that in the QL case the originally only heuristically introduced and well established sensor response function according to Kanasawa can be derived from the Rig-1d-Model by introducing minor approximations. Experimental results are presented for the LQL configuration using an N1000 viscosity reference oil as test fluid.

  19. Robust Model-Based Sensor Fault Monitoring System for Nonlinear Systems in Sensor Networks

    PubMed Central

    Wang, Dejun; Song, Shiyao

    2014-01-01

    A new model-based sensor fault diagnosis (FD) scheme, using an equivalent model, is developed for a kind of Multiple Inputs Multiple Outputs (MIMO) nonlinear system which fulfills the Lipschitz condition. The equivalent model, which is a bank of one-dimensional linear state equations with the bounded model uncertainty, can take the place of a plant's exact nonlinear model in the case of sensor FD. This scheme shows a new perspective whereby, by using the equivalent model, it doesn't have to study the nonlinear internal structure character or get the exact model. The influence of the model uncertainty on the residuals is explained in this paper. A method, called pretreatment, is utilized to minimize the model uncertainty. The eigenstructure assignment method with assistant state is employed to solve the problem of perfect decoupling against the model uncertainty, disturbance, system faults, the relevant actuator faults, or even the case of no input from the relevant actuator. The realization of the proposed scheme is given by an algorithm according to a single sensor FD, and verified by a simulation example. Depending on the above, a sensor fault monitoring system is established by the sensor network and diagnosis logic, then the effectiveness is testified by a simulation. PMID:25320904

  20. Assessment of Exposure to Alcohol Vapor from Alcohol-Based Hand Rubs

    PubMed Central

    Bessonneau, Vincent; Thomas, Olivier

    2012-01-01

    This study assessed the inhaled dose of alcohol during hand disinfection. Experiments were conducted with two types of hand rub using two hand disinfection procedures. Air samples were collected every 10 s from the breathing zone, by bubbling through a mixture of K2Cr2O7 and H2SO4. The reduction of dichromate ions in the presence of alcohols was followed by UV-vis spectrophotometry. The difference in intensity of the dichromate absorption peak was used to quantify the alcohol concentration expressed in ethanol equivalent. During hygienic hand disinfection, the mean ethanol equivalent concentrations peaked at around 20–30 s for both hand rubs (14.3 ± 1.4 mg/L for hand rub 1 and 13.2 ± 0.7 mg/L for hand rub 2). During surgical hand disinfection, two peaks were found at the same time (40 and 80 s) for both hand rubs. The highest mean concentrations were 20.2 ± 0.9 mg/L for hand rub 1 and 18.1 ± 0.9 mg/L for hand rub 2. For hand rub 1, the total absorbed doses, calculated from ethanol with an inhalation flow of 24 L/min and an absorption rate of 62%, were 46.5 mg after one hygienic hand disinfection and 203.9 mg after one surgical hand disinfection. Although the use of ABHRs leads to the absorption of very low doses, sudden, repeated inhalation of high alcohol concentrations raises the question of possible adverse health effects. PMID:22690169

  1. Assessment of exposure to alcohol vapor from alcohol-based hand rubs.

    PubMed

    Bessonneau, Vincent; Thomas, Olivier

    2012-03-01

    This study assessed the inhaled dose of alcohol during hand disinfection. Experiments were conducted with two types of hand rub using two hand disinfection procedures. Air samples were collected every 10 s from the breathing zone, by bubbling through a mixture of K(2)Cr(2)O(7) and H(2)SO(4). The reduction of dichromate ions in the presence of alcohols was followed by UV-vis spectrophotometry. The difference in intensity of the dichromate absorption peak was used to quantify the alcohol concentration expressed in ethanol equivalent. During hygienic hand disinfection, the mean ethanol equivalent concentrations peaked at around 20-30 s for both hand rubs (14.3 ± 1.4 mg/L for hand rub 1 and 13.2 ± 0.7 mg/L for hand rub 2). During surgical hand disinfection, two peaks were found at the same time (40 and 80 s) for both hand rubs. The highest mean concentrations were 20.2 ± 0.9 mg/L for hand rub 1 and 18.1 ± 0.9 mg/L for hand rub 2. For hand rub 1, the total absorbed doses, calculated from ethanol with an inhalation flow of 24 L/min and an absorption rate of 62%, were 46.5 mg after one hygienic hand disinfection and 203.9 mg after one surgical hand disinfection. Although the use of ABHRs leads to the absorption of very low doses, sudden, repeated inhalation of high alcohol concentrations raises the question of possible adverse health effects.

  2. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  3. Water-based oxygen-sensor films.

    PubMed

    Habibagahi, Arezoo; Mébarki, Youssef; Sultan, Yasir; Yap, Glenn P A; Crutchley, Robert J

    2009-08-01

    The luminescent cyclometalated iridium complex [Ir(fppy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 1 (fppy = 4-(2-pyridyl)benzaldehyde, and t-Bu-iCN = tert-butyl isocyanide), was synthesized and characterized by X-ray crystallography and (1)H NMR, absorption, and emission spectroscopies. Complex 1 was quantitatively bound to the water-soluble amine-functionalized polymer Silamine D208-EDA by reductive amination, to produce 2. The quantum yield of emission and excited state lifetime of 2 (varphi(em) = 0.23 and tau = 20.6 mus) are comparable to that of the model complex [Ir(tpy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 3 (tpy = 2-(p- tolyl) pyridine) with varphi(em) = 0.28 and tau = 35.6 mus. Aqueous blends of 2 with Silamine and colloidal microcrystalline cellulose (MC) were used to prepare oxygen-sensor films. Oxygen sensitivities of these films were determined as a function of Silamine:MC ratio and obeyed Stern-Volmer kinetics. The optimum oxygen-sensor film composition was 2 in 1:1 Silamine:MC, which had an oxygen sensitivity of 0.502 over an atmospheric pressure range of 0.007-45 psi. Temperature sensitivity (percentage loss of intensity per degrees C) of this film was determined to be -1.1 and -1.4% degrees C(-1) at vacuum and 1 bar atmospheric pressure, respectively. These results were compared to those of films incorporating dispersions of 1 and 3. Luminescence microscopy of 9:1, 1:1, and 1:5 Silamine:MC films of 2 show that the charged iridium complex in 2 associates with the surface of MC and lifetime measurements of these films show an increase in lifetime with increasing MC fraction. The optimum quenching sensitivity observed for the 1:1 Silamine:MC film suggests that the diffusion of oxygen must decrease with increasing fraction of MC and thereby decrease oxygen sensitivity. These novel materials offer an environmentally friendly alternative to the preparation of oxygen-sensor films.

  4. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  5. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  6. Laser-based Sensors for Chemical Detection

    SciTech Connect

    Myers, Tanya L.; Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Schiffern, John T.; Cannon, Bret D.

    2010-05-10

    Stand-off detection of hazardous materials ensures that the responder is located at a safe distance from the suspected source. Remote detection and identification of hazardous materials can be accomplished using a highly sensitive and portable device, at significant distances downwind from the source or the threat. Optical sensing methods, in particular infrared absorption spectroscopy combined with quantum cascade lasers (QCLs), are highly suited for the detection of chemical substances since they enable rapid detection and are amenable for autonomous operation in a compact and rugged package. This talk will discuss the sensor systems developed at Pacific Northwest National Laboratory and will discuss the progress to reduce the size and power while maintaining sensitivity to enable stand-off detection of multiple chemicals.

  7. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  8. Aptamer based electrochemical sensors for emerging environmental pollutants

    NASA Astrophysics Data System (ADS)

    Hayat, Akhtar; Marty, Jean Louis

    2014-06-01

    Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  9. Carbon nanotube based pressure sensor for flexible electronics

    SciTech Connect

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  10. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects.

    PubMed

    Guthery, Eugene; Seal, Lawton A; Anderson, Edward L

    2005-02-01

    Alcohol-based products for skin antisepsis have a long history of safety and efficacy in the United States and abroad. However, alcohol alone lacks the required antimicrobial persistence to provide for the sustained periods of skin antisepsis desired in the clinical environment. Therefore, alcohol-based products must have a preservative agent such as iodine/iodophor compounds, chlorhexidine gluconate, or zinc pyrithione, to extend its antimicrobial effects. Iodine, iodophors, and chlorhexidine gluconate are well-characterized antimicrobials and preservatives. The thrust of our effort was to examine the characteristics of the lesser-known zinc pyrithione and to evaluate its utility as a preservative in the formulation of alcohol-based products for skin antisepsis. This work includes a literature review of current zinc pyrithione applications in drugs and cosmetics, a safety and toxicity evaluation, consideration of the proposed mechanisms of antimicrobial action, in vitro and in vivo efficacy data, and a discussion of the mechanisms that confer the desired antimicrobial persistence. In addition, alcohol-based, zinc pyrithione-preserved, commercially available products of skin antisepsis are compared with other commercially available antimicrobials used for skin antisepsis and with additional alcohol-based products with different preservatives. The authors' conclusion is that zinc pyrithione is not only a safe and effective antimicrobial but that its use in certain alcohol-based formulations results in antimicrobial efficacy exceeding that of iodine and chlorhexidine gluconate.

  11. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.

    PubMed

    Yu, Zhi-gang; Zaitouna, Anita J; Lai, Rebecca Y

    2014-02-17

    This article summarizes the sensor performance of four electrochemical DNA sensors that exploit the recently developed displacement-replacement sensing motif. In the absence of the target, the capture probe is partially hybridized to the signaling probe at the distal end, positioning the redox label, methylene blue (MB), away from the electrode. In the presence of the target, the MB-modified signaling probe is released; one type of probe is capable of assuming a stem-loop probe (SLP) conformation, whereas the other type adopts a linear probe (LP) conformation. Independent of the sensor architecture, all four sensors showed "signal-on" sensor behavior. Unlike the previous report, here we focused on elucidating the effect of the redox label tether length and flexibility on sensor sensitivity, specificity, selectivity, and reusability. For both SLP and LP sensors, the limit of detection was 10 pM for sensors fabricated using a signaling probe with three extra thymine (T3) bases linked to the MB label. A limit of detection of 100 pM was determined for sensors fabricated using a signaling probe with five extra thymine (T5) bases. The linear dynamic range was between 10 pM and 100 nM for the T3 sensors, and between 100 pM and 100 nM for the T5 sensors. When compared to the LP sensors, the SLP sensors showed higher signal enhancement in the presence of the full-complement target. More importantly, the SLP-T5 sensor was found to be highly specific; it is capable of discriminating between the full complement and single-base mismatch targets even when employed in undiluted blood serum. Overall, these results highlight the advantages of using oligo-T(s) as a tunable linker to control flexibility of the tethered redox label, so as to achieve the desired sensor response.

  12. Sensor-based navigation of air duct inspection mobile robots

    NASA Astrophysics Data System (ADS)

    Koh, Kyoungchul; Choi, H. J.; Kim, Jae-Seon; Ko, Kuk Won; Cho, Hyungsuck

    2001-02-01

    12 This paper deals with an image sensor system and its position estimation algorithm for autonomous duct cleaning and inspection mobile robots. For the real application, a hierarchical control structure that consists of robot motion controller and image sensor system is designed considering the efficient and autonomous motion behaviors in narrow space such as air ducts. The sensor's system consists of a CCD camera and two laser sources to generate slit beams. The image of the structured lights is used for calculating the geometric parameters of the air ducts which are usually designed with a rectangular section. With the acquired 3D information about the environment, the mobile robot with two differential driving wheels is able to autonomously navigates along the duct path without any human intervention. For real time navigation, the relative position estimation of the robot are performed from 3D image reconstructed by the sensor system. The calibration and image processing methods used for the sensor system are presented with the experimental data. The experimental results show the possibility of the sensor based navigation which is important for effective duct cleaning by small mobile robots.

  13. A bionic camera-based polarization navigation sensor.

    PubMed

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-07-21

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode.

  14. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  15. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  16. A Bionic Camera-Based Polarization Navigation Sensor

    PubMed Central

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode. PMID:25051029

  17. Illicit material detector based on gas sensors and neural networks

    NASA Astrophysics Data System (ADS)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  18. Molecular pincers: antibody-based homogeneous protein sensors.

    PubMed

    Heyduk, Ewa; Dummit, Benjamin; Chang, Yie-Hwa; Heyduk, Tomasz

    2008-07-01

    We describe here a new homogeneous antibody-based protein sensor design (molecular pincers) that allows rapid and sensitive detection of a specific protein in solution. In the presence of the target protein these sensors produce fluorescence signal derived from target-dependent annealing of short complementary fluorochrome-labeled oligonucleotides attached to a pair of target-specific antibodies via nanometer-scale flexible linkers. The sensors allow near-instantaneous detection of the target with sensitivity and specificity approaching that of enzyme-linked immunosorbent assay (ELISA) but requiring no sample manipulation other then the addition of the sample to the sensor mix. We used cardiac troponin I and C-reactive protein as the targets to validate these desirable properties of the sensors. Due to the availability of antibodies to thousands of interesting targets and the straightforward design blueprint of the sensors we expect their wide-ranging applications in research and medical diagnosis, especially when simplicity, high throughput, and short detection time are essential.

  19. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  20. Project-Based Housing First for Chronically Homeless Individuals With Alcohol Problems: Within-Subjects Analyses of 2-Year Alcohol Trajectories

    PubMed Central

    Malone, Daniel K.; Clifasefi, Seema L.; Ginzler, Joshua A.; Garner, Michelle D.; Burlingham, Bonnie; Lonczak, Heather S.; Dana, Elizabeth A.; Kirouac, Megan; Tanzer, Kenneth; Hobson, William G.; Marlatt, G. Alan; Larimer, Mary E.

    2012-01-01

    Objectives. Two-year alcohol use trajectories were documented among residents in a project-based Housing First program. Project-based Housing First provides immediate, low-barrier, nonabstinence-based, permanent supportive housing to chronically homeless individuals within a single housing project. The study aim was to address concerns that nonabstinence-based housing may enable alcohol use. Methods. A 2-year, within-subjects analysis was conducted among 95 chronically homeless individuals with alcohol problems who were allocated to project-based Housing First. Alcohol variables were assessed through self-report. Data on intervention exposure were extracted from agency records. Results. Multilevel growth models indicated significant within-subjects decreases across alcohol use outcomes over the study period. Intervention exposure, represented by months spent in housing, consistently predicted additional decreases in alcohol use outcomes. Conclusions. Findings did not support the enabling hypothesis. Although the project-based Housing First program did not require abstinence or treatment attendance, participants decreased their alcohol use and alcohol-related problems as a function of time and intervention exposure. PMID:22390516

  1. Bacterial reduction of alcohol-based liquid and gel products on hands soiled with blood.

    PubMed

    Kawagoe, Julia Y; Graziano, Kazuko Uchikawa; Martino, Marines Dalla Valle; Siqueira, Itacy; Correa, Luci

    2011-11-01

    The antibacterial efficacy of three alcohol-based products (liquid and gel) were tested on the hands with blood and contaminated with Serratia marcescens (ATCC 14756), using EN 1500 procedures in 14 healthy volunteers. The alcohol-based products tested, either gel or liquid-based, reached bacterial reduction levels higher than 99.9% in the presence of blood and did not differ significantly (ANOVA test; P = 0.614).

  2. Validation of Underwater Sensor Package Using Feature Based SLAM

    PubMed Central

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  3. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring

    PubMed Central

    Cavallari, Marco R.; Izquierdo, José E. E.; Braga, Guilherme S.; Dirani, Ely A. T.; Pereira-da-Silva, Marcelo A.; Rodríguez, Estrella F. G.; Fonseca, Fernando J.

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1–10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  4. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  5. LADAR And FLIR Based Sensor Fusion For Automatic Target Classification

    NASA Astrophysics Data System (ADS)

    Selzer, Fred; Gutfinger, Dan

    1989-01-01

    The purpose of this report is to show results of automatic target classification and sensor fusion for forward looking infrared (FLIR) and Laser Radar sensors. The sensor fusion data base was acquired from the Naval Weapon Center and it consists of coregistered Laser RaDAR (range and reflectance image), FLIR (raw and preprocessed image) and TV. Using this data base we have developed techniques to extract relevant object edges from the FLIR and LADAR which are correlated to wireframe models. The resulting correlation coefficients from both the LADAR and FLIR are fused using either the Bayesian or the Dempster-Shafer combination method so as to provide a higher confidence target classifica-tion level output. Finally, to minimize the correlation process the wireframe models are modified to reflect target range (size of target) and target orientation which is extracted from the LADAR reflectance image.

  6. A micromachined pressure sensor based on an array of microswitches

    NASA Astrophysics Data System (ADS)

    Park, Chang-Sin; Lee, Dong-Weon

    2010-05-01

    A micromachined pressure sensor based on an array of microswitches is presented. The pressure sensor consists of a silicon substrate that has a thin metal-deposited diaphragm and indium tin oxide (ITO)-based switch arrays patterned on a Pyrex glass. When pressure is applied to the thin diaphragm through a small tube, the diaphragm starts to deform and contact the array of switches at a certain pressure level. The increase in the contact area due to the diaphragm deformation causes the change in electrical resistance between two terminals of the ITO resistor. The change in resistance that corresponds to electrical output in the pressure sensor is measured by the use of a simple circuit. We also describe the results of numerical simulations that are carried out to find a suitable range of the pressure. The simulation results are in good agreement with the experimental results.

  7. Strain sensor based on cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Yun, Gyu-Young; Kim, Joo Hyung; Kim, Jaehwan

    2014-04-01

    ZnO is well known semiconductor material with high band gap as well as piezoelectricity. Because of its high performance of electromechanical behavior, ZnO based piezoelectric devices have taken great attention from many research groups. However, ZnO should be grown on a flexible substrate so as to allow its flexibility. Since cellulose is renewable, flexible and biocompatible, ZnO is grown on cellulose by hydrothermal process, then a novel flexible piezoelectric material. We report the fabrication and strain sensor behavior of cellulose ZnO hybrid nanocomposite(CEZOHN) In this research, simple piezoelectric strain sensor based on CEZOHN is made by directly stretching it and by boding it on a cantilever. Its performance is measured in terms of longitudinal and bending strain. This strain sensor shows a good linearity.

  8. In plane optical sensor based on organic electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman

    2008-08-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.

  9. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  10. MEMS-based sensors for post-earthquake damage assessment

    NASA Astrophysics Data System (ADS)

    Pozzi, M.; Zonta, D.; Trapani, D.; Athanasopoulos, N.; Amditis, A. J.; Bimpas, M.; Garetsos, A.; Stratakos, Y. E.; Ulieru, D.

    2011-07-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.

  11. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    PubMed Central

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles A.

    2009-01-01

    The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical sensors has the potential to meet the needs for low cost, rapid, high-throughput and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective electrochemical (EC) sensors capable of pM sensitivity, high-throughput and low sample requirements (<50uL) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next-generation of biomonitoring analyzers. This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed. PMID:19018275

  12. Fluorescence-lifetime-based sensors using inhomogeneous waveguiding

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Kieslinger, Dietmar; Trznadel, Karolina; Lippitsch, Max E.

    1996-12-01

    Most intrinsic fiberoptic sensors are based on the evanescent-wave scheme, where the evanescent field of modes guided in a fiber reaches out into a chemically sensitive coating. In the commonly used multimode waveguides, the evanescent field contains only a small part of the total energy, however, thus making evanescent-wave sensors rather insensitive. Combining a transparent substrate and a transparent sensing layer of rather similar refractive index into a common waveguiding structure produces an inhomogeneous waveguide, where a large portion of the total energy transverses the sensing layer. This yields much superior sensor performance. The transmission through a waveguide is subject to various disturbing influences. Thus it is advantageous to combine the inhomogeneous waveguiding approach with a measuring scheme that is not prone to those disturbances. Such a scheme is available with fluorescence lifetime-based sensors. The fluorescence lifetime of an indicator incorporated into the sensing layer is changed by the presence of the respective analyte. This lifetime is independent of the transmission through the waveguide. Thus inhomogeneous waveguiding together with fluorescence lifetime measurement paves the way for optical chemical sensors with high analyte sensitivity and immunity to external disturbances.

  13. Voltage-Biased Magnetic Sensors Based on Tuned Varistors

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William. A.; Sutanto, Ivan; Shamsuzzoha, M.

    2015-04-01

    In this paper, we explore the possibility of finding practical applications when the nonlinear current-voltage ( I- V) characteristics of a varistor are modified by the application of external magnetic fields. With this goal in mind, varistors based on a pseudobrookite oxide semiconductor have been studied. Pseudobrookite (PsB) is a wide bandgap n-type semiconductor with the bandgap of 2.77 eV. It is also weakly ferromagnetic. The "voltage-dependent resistor" (VDR) mode of the magnetically-tuned pseudobrookite varistors offers an opportunity to advance magnetic sensor technology. The resistive and magnetoresistive parameters of PsB VDRs exhibit good responses to applied magnetic fields and they can therefore be the basis for the fabrication of simple yet practical magnetic sensors. These sensors can cover the range of magnetic fields between 0 and 4500 Oe with good accuracy, and could possibly be considered as a substitute for Hall Effect-based sensors for many applications. Also, due to their simple structure, they would be rugged and not susceptible to abuses. They may also be suitable for applications in hazardous environments such as high temperatures and atmospheres having the presence of radiation, such as neutrons, protons, etc. It is also possible that these novel sensors could be suitable for geological applications such as in well logging in search of energy sources.

  14. A Universal Intelligent System-on-Chip Based Sensor Interface

    PubMed Central

    Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo

    2010-01-01

    The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624

  15. Conductive polymer-based sensors for biomedical applications.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2011-01-15

    A class of organic polymers, known as conducting polymers (CPs), has become increasingly popular due to its unique electrical and optical properties. Material characteristics of CPs are similar to those of some metals and inorganic semiconductors, while retaining polymer properties such as flexibility, and ease of processing and synthesis, generally associated with conventional polymers. Owing to these characteristics, research efforts in CPs have gained significant traction to produce several types of CPs since its discovery four decades ago. CPs are often categorised into different types based on the type of electric charges (e.g., delocalized pi electrons, ions, or conductive nanomaterials) responsible for conduction. Several CPs are known to interact with biological samples while maintaining good biocompatibility and hence, they qualify as interesting candidates for use in a numerous biological and medical applications. In this paper, we focus on CP-based sensor elements and the state-of-art of CP-based sensing devices that have potential applications as tools in clinical diagnosis and surgical interventions. Representative applications of CP-based sensors (electrochemical biosensor, tactile sensing 'skins', and thermal sensors) are briefly discussed. Finally, some of the key issues related to CP-based sensors are highlighted.

  16. The Influence of Alcohol-Related Cognitions on Personality-Based Risk for Alcohol Use during Adolescence

    ERIC Educational Resources Information Center

    Bekman, Nicole M.; Cummins, Kevin; Brown, Sandra A.

    2011-01-01

    This study examines whether expectancies about the impact of not drinking or reducing alcohol use and perceptions of peer alcohol use partially mediated risk incurred by sensation seeking for adolescent alcohol involvement. High school drinkers (N = 3,153) completed a survey assessing substance use, sensation seeking, perceived peer alcohol use,…

  17. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  18. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    PubMed Central

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  19. Predictive models of alcohol use based on attitudes and individual values.

    PubMed

    García del Castillo Rodríguez, José A; López-Sánchez, Carmen; Quiles Soler, M Carmen; García del Castillo-López, Alvaro; Gázquez Pertusa, Mónica; Marzo Campos, Juan Carlos; Inglés, Candido J

    2013-01-01

    Two predictive models are developed in this article: the first is designed to predict people's attitudes to alcoholic drinks, while the second sets out to predict the use of alcohol in relation to selected individual values. University students (N = 1,500) were recruited through stratified sampling based on sex and academic discipline. The questionnaire used obtained information on participants' alcohol use, attitudes and personal values. The results show that the attitudes model correctly classifies 76.3% of cases. Likewise, the model for level of alcohol use correctly classifies 82% of cases. According to our results, we can conclude that there are a series of individual values that influence drinking and attitudes to alcohol use, which therefore provides us with a potentially powerful instrument for developing preventive intervention programs.

  20. Antimicrobial efficacy of soap and water hand washing versus an alcohol-based hand cleanser.

    PubMed

    Holton, Ronald H; Huber, Michaell A; Terezhalmy, Geza T

    2009-12-01

    The emergence of alcohol-based hand cleansers may represent an alternative to soap and water in the clinical dental setting. In this study, the antimicrobial efficacy of traditional hand washing vs. a unique alcohol-based hand cleanser with persistence was evaluated. Two experienced dentists participated over a 10-day period. On days 1-5, each clinician used an antibacterial liquid soap (Dial, Dial Corporation, Scottsdale, AZ). Days 6-10, an alcohol-based hand cleanser (Triseptin Water Optional, Healthpoint Surgical, Fort Worth, TX) was used. Sampling was by modified glove juice technique. The results indicate that the alcohol-based hand cleanser dramatically outperforms the traditional hand washing agent in the general dental setting.

  1. Engineering Paper-Based Sensors for Zika Virus

    DOE PAGES

    Meagher, Robert J.; Negrete, Oscar A.; Van Rompay, Koen K.

    2016-05-30

    The emergence of Zika virus in Latin America has created an urgent need for new, simple yet sensitive diagnostic tests. We highlight recent work using paper-based sensors coupled with CRISPR/Cas9 to detect Zika RNA, as a new approach to rapid development and deployment of field-ready diagnostics for emerging infectious diseases.

  2. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  3. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  4. Exploring knowledge, attitudes, and practices related to alcohol in Mongolia: a national population-based survey

    PubMed Central

    2013-01-01

    Background The leading cause of mortality in Mongolia is Non-Communicable Disease. Alcohol is recognised by the World Health Organization as one of the four major disease drivers and so, in order to better understand and triangulate recent national burden-of-disease surveys and to inform policy responses to alcohol consumption in Mongolia, a national Knowledge, Attitudes and Practices survey was conducted. Focusing on Non-Communicable Diseases and their risk factors, this publication explores the alcohol-related findings of this national survey. Methods A door-to-door, household-based questionnaire was conducted on 3450 people from across Mongolia. Participants were recruited using a multi-stage random cluster sampling technique, and eligibility was granted to permanent residents of households who were aged between 15 and 64 years. A nationally representative sample size was calculated, based on methodologies aligned with the WHO STEPwise approach to Surveillance. Results Approximately 50% of males and 30% of females were found to be current drinkers of alcohol. Moreover, nine in ten respondents agreed that heavy episodic drinking of alcohol is common among Mongolians, and the harms of daily alcohol consumption were generally perceived to be high. Indeed, 90% of respondents regarded daily alcohol consumption as either ‘harmful’ or ‘very harmful’. Interestingly, morning drinking, suggestive of problematic drinking, was highest in rural men and was associated with lower-levels of education and unemployment. Conclusion This research suggests that Mongolia faces an epidemiological challenge in addressing the burden of alcohol use and related problems. Males, rural populations and those aged 25-34 years exhibited the highest levels of risky drinking practices, while urban populations exhibit higher levels of general alcohol consumption. These findings suggest a focus and context for public health measures addressing alcohol-related harm in Mongolia. PMID

  5. Effectiveness of alcohol prevention interventions based on the principles of social marketing: a systematic review

    PubMed Central

    2013-01-01

    Background Alcohol education aims to increase knowledge on the harm related to alcohol, and to change attitudes and drinking behaviour. However, little (lasting) evidence has been found for alcohol education, in changing alcohol-related attitudes and behaviour. Social marketing uses marketing techniques to achieve a social or healthy goal, and can be used in alcohol education. Social marketing consists of eight principles: customer orientation, insight, segmentation, behavioural goals, exchange, competition, methods mix, and is theory based. This review investigates the application of social marketing in alcohol prevention interventions, and whether application of social marketing influences alcohol-related attitudes or behaviour. Method A literature search was conducted in PubMed, PsychInfo, Cochrane and Scopus. Inclusion criteria were that original papers had to describe the effects of an alcohol prevention intervention developed according to one or more principles of social marketing. No limits were set on the age of the participants or on the kind of alcohol prevention intervention. The abstracts of the 274 retrieved studies were reviewed and the full texts of potentially relevant studies were screened. Results Six studies met the inclusion criteria and were included in this review. These six studies showed associations for the application of social marketing techniques on alcohol-related attitudes or behaviour; one study relates to participation in a drinking event, four to alcohol drinking behaviour, two to driving a car while under the influence of alcohol, two to recognition of campaign messages or campaign logo, and one to awareness of the campaign. However, no associations were also found. In addition, the studies had several limitations related to a control group, response rate and study methodology. Conclusion Based on this review, the effect of applying the principles of social marketing in alcohol prevention in changing alcohol-related attitudes or

  6. Medical respiratory monitoring sensors based on microbend fiber loss

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhouxiao, Liuting; Yang, Jian; Li, Xianjing

    2016-11-01

    In this work, a medical respiratory monitoring sensor based on the microbend effect of optical fiber on light transmission is proposed. The microbend effect of multimode optical fiber is analyzed theoretically using optical theory. A respiratory signal modulator with a "sandwich" microbender structure is designed enabling the noninvasive real-time monitoring. In vitro testing showed that the proposed sensor has excellent following characteristics and can automatically discern respiratory condition, the signal-to-noise ratio can be better than 28dB.

  7. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  8. Smartphone-based portable intensity modulated force sensor

    NASA Astrophysics Data System (ADS)

    Negri, Lucas H.; Schiefer, Elberth M.; Paterno, Aleksander S.; Muller, Marcia; Fabris, José L.

    2015-09-01

    This work proposes a low-cost force sensor, based on intensity modulation in an optical fibre. The transducer element is composed of a knot in a single mode fibre embedded to a silicone adhesive cuboid, and can be easily fabricated. A simple sensing scheme is devised by using a visible light source and a CCD camera of a smartphone, allowing implementation costs to be reduced. Experimental results have shown that the sensor presents a linear response and a standard uncertainty of 1:07N within the dynamical range from 0 to 30 N.

  9. VCSEL-based flexible opto-fluidic fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Gai, Boju; Yoon, Jongseung

    2016-03-01

    Flexible opto-fluidic fluorescence sensors based on microscale vertical cavity surface emitting lasers (micro-VCSELs) and silicon photodiodes (Si-PDs) are demonstrated, where arrays of 850 nm micro-VCSELs and thin film Si-PDs are heterogeneously integrated on a polyethylene terephthalate (PET) substrate by transfer printing, in conjunction with elastomeric fluidic channel. Enabled with optical isolation trenches together with wavelength- and angle-selective spectral filters implemented to suppress the absorption of excitation light, the integrated flexible fluorescence sensors exhibited significantly enhanced signal-to-background ratio, resulting in a maximum sensitivity of 5 × 10-5 wt% of infrared-absorbing organic dyes.

  10. LPG-based sensor for curvature and vibration

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Chesini, G.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, P. A. S.

    2016-05-01

    A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C.

  11. Abrupt fiber taper based Michelson interferometric deflection sensor

    NASA Astrophysics Data System (ADS)

    Tian, Zhaobing; Yam, Scott S.-H.

    2008-06-01

    A new compact standard single mode fiber Michelson interferometer deflection sensor was proposed, tested and simulated. The new interferometer consists of a symmetrical abrupt 3 dB taper region with a 40 μm waist diameter, a 700 μm length and a 500nm thick gold layer coating. Compared with similar interferometric devices based on long period gratings that need microfabrication technology and photosensitive fibers, the proposed sensor uses a much simplified fabrication process and normal single mode fiber, and has a linear response of 1.1nm/mm.

  12. Magneto-optical fiber sensor based on magnetic fluid.

    PubMed

    Zu, Peng; Chan, Chi Chiu; Lew, Wen Siang; Jin, Yongxing; Zhang, Yifan; Liew, Hwi Fen; Chen, Li Han; Wong, Wei Chang; Dong, Xinyong

    2012-02-01

    A novel magnetic field fiber sensor based on magnetic fluid is proposed. The sensor is configured as a Sagnac interferometer structure with a magnetic fluid film and a section of polarization maintaining fiber inserted into the fiber loop to produce a sinusoidal interference spectrum for measurement. The output interference spectrum is shifted as the change of the applied magnetic field strength with a sensitivity of 16.7 pm/Oe and a resolution of 0.60 Oe. The output optical power is varied with the change of the applied magnetic field strength with a sensitivity of 0.3998 dB/Oe.

  13. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    PubMed

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building.

  14. Gas sensors based on semiconducting nanowire field-effect transistors.

    PubMed

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-09-17

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  15. Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Han, Xue; Zheng, Kai; Zhou, Zude

    2017-01-01

    A novel fiber Bragg grating (FBG) sensing-based acceleration sensor has been proposed to simultaneously decouple and measure temperature and acceleration in real-time. This design applied a diaphragm structure and utilized the axial property of a tightly suspended optical fiber, enabling improvement in its sensitivity and resonant frequency and achieve a low cross-sensitivity. The theoretical vibrational model of the sensor has been built, and its design parameters and sensing properties have been analyzed through the numerical analysis. A decoupling method has been presented with consideration of the thermal expansion of the sensor structure to realize temperature compensation. Experimental results show that the temperature sensitivity is 8.66 pm/°C within the range of 30–90 °C. The acceleration sensitivity is 20.189 pm/g with a linearity of 0.764% within the range of 5~65 m/s2. The corresponding working bandwidth is 10~200 Hz and its resonant frequency is 600 Hz. This sensor possesses an excellent impact resistance for the cross direction, and the cross-axis sensitivity is below 3.31%. This implementation can avoid the FBG-pasting procedure and overcome its associated shortcomings. The performance of the proposed acceleration sensor can be easily adjusted by modifying their corresponding physical parameters to satisfy requirements from different vibration measurements. PMID:28124998

  16. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  17. Thick-film humidity sensor based on porous ? material

    NASA Astrophysics Data System (ADS)

    Qu, Wenmin; Meyer, Jörg-Uwe

    1997-06-01

    A new compact, robust, yet fast and highly sensitive ceramic humidity sensor based on the semiconducting metal oxide 0957-0233/8/6/002/img2 has been developed using thick-film technology. The sensor element possesses a novel `sandwich' configuration with a 0957-0233/8/6/002/img3 porous 0957-0233/8/6/002/img2 ceramic layer sandwiched by two 0957-0233/8/6/002/img5 polarity-reversed interdigitated metal films. Instead of traditional glass frits, LiCl powders were used as adhesion promoters. The sintered ceramic layer exhibits a porous structure. The degree of the porosity is controlled by the amount of LiCl added and by the firing conditions for the ceramic. The surfaces of ceramic grains behave like electrolytes and easily adsorb water vapour through the pores. The novel electrode arrangement combines the advantages of humidity sensors in the form of a parallel capacitor with those in the form of an interdigital capacitor. The influence of temperature on the sensor characteristics has been compensated for by integrating a thick-film NTC resistor. The results of studies on the material processing, the fabrication and the characterization of this novel thick-film humidity sensor are described.

  18. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging.

  19. Sensor-based fine telemanipulation for space robotics

    NASA Technical Reports Server (NTRS)

    Andrenucci, M.; Bergamasco, M.; Dario, P.

    1989-01-01

    The control of a multifingered hand slave in order to accurately exert arbitrary forces and impart small movements to a grasped object is, at present, a knotty problem in teleoperation. Although a number of articulated robotic hands have been proposed in the recent past for dexterous manipulation in autonomous robots, the possible use of such hands as slaves in teleoperated manipulation is hindered by the present lack of sensors in those hands, and (even if those sensors were available) by the inherent difficulty of transmitting to the master operator the complex sensations elicited by such sensors at the slave level. An analysis of different problems related to sensor-based telemanipulation is presented. The general sensory systems requirements for dexterous slave manipulators are pointed out and the description of a practical sensory system set-up for the developed robotic system is presented. The problem of feeding back to the human master operator stimuli that can be interpreted by his central nervous system as originated during real dexterous manipulation is then considered. Finally, some preliminary work aimed at developing an instrumented glove designed purposely for commanding the master operation and incorporating Kevlar tendons and tension sensors, is discussed.

  20. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    PubMed Central

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  1. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  2. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  3. Aptamer-based cantilever array sensors for oxytetracycline detection.

    PubMed

    Hou, Hui; Bai, Xiaojing; Xing, Chunyan; Gu, Ningyu; Zhang, Bailin; Tang, Jilin

    2013-02-19

    We present a new method for specific detection of oxytetracycline (OTC) at nanomolar concentrations based on a microfabricated cantilever array. The sensing cantilevers in the array are functionalized with self-assembled monolayers (SAMs) of OTC-specific aptamer, which acts as a recognition molecule for OTC. While the reference cantilevers in the array are functionalized with 6-mercapto-1-hexanol SAMs to eliminate the influence of environmental disturbances. The cantilever sensor shows a good linear relationship between the deflection amplitude and the OTC concentration in the range of 1.0-100 nM. The detection limit of the cantilever array sensor is as low as 0.2 nM, which is comparable to some traditional methods. Other antibiotics such as doxycycline and tetracycline do not cause significant deflection of the cantilevers. It is demonstrated that the cantilever array sensors can be used as a powerful tool to detect drugs with high sensitivity and selectivity.

  4. [Active crop canopy sensor-based nitrogen diagnosis for potato].

    PubMed

    Yu, Jing; Li, Fei; Qin, Yong-Lin; Fan, Ming-Shou

    2013-11-01

    In the present study, two potato experiments involving different N rates in 2011 were conducted in Wuchuan County and Linxi County, Inner Mongolia. Normalized difference vegetation index (NDVI) was collected by an active GreenSeeker crop canopy sensor to estimate N status of potato. The results show that the NDVI readings were poorly correlated with N nutrient indicators of potato at vegetative Growth stage due to the influence of soil background. With the advance of growth stages, NDVI values were exponentially related to plant N uptake (R2 = 0.665) before tuber bulking stage and were linearly related to plant N concentration (R2 = 0.699) when plant fully covered soil. In conclusion, GreenSeeker active crop sensor is a promising tool to estimate N status for potato plants. The findings from this study may be useful for developing N recommendation method based on active crop canopy sensor.

  5. Optical Sensor Based on a Single CdS Nanobelt

    PubMed Central

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-01-01

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions. PMID:24763211

  6. Optical sensor based on a single CdS nanobelt.

    PubMed

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  7. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor.

    PubMed

    Brown, P; Whiteside, B J; Beek, T J; Fox, P; Horbury, T S; Oddy, T M; Archer, M O; Eastwood, J P; Sanz-Hernández, D; Sample, J G; Cupido, E; O'Brien, H; Carr, C M

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45,000 nT ambient field.

  8. A piezopaint-based sensor for monitoring structure dynamics

    NASA Astrophysics Data System (ADS)

    Lahtinen, R.; Muukkonen, T.; Koskinen, J.; Hannula, S.-P.; Heczko, O.

    2007-12-01

    Piezoceramic materials are used today in a variety of applications. By combining a piezoceramic powder with paint resin it is possible to fabricate a new type of piezomaterial, which can easily be applied to almost any surface. This paper describes the development of such a paint. The thermal stability and sensitivity as a function of frequency were investigated. Furthermore, a sensor based on an optimized epoxy piezopaint having a thickness of 80 µm was fixed on a steel beam of a footbridge to study the performance of the sensor and its long-term stability. It was demonstrated that the sensor could detect signals easily both from bridge movement and from pedestrian traffic on the bridge. The signal remained constant for a period of over thirteen months of monitoring.

  9. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    NASA Astrophysics Data System (ADS)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  10. Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-03-01

    We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  11. Biomarker-Based Approaches for Assessing Alcohol Use Disorders.

    PubMed

    Niemelä, Onni

    2016-01-27

    Although alcohol use disorders rank among the leading public health problems worldwide, hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is postulated here that a more systematic use of biomarkers improves the detection of the specific role of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on the actual amounts of recent alcohol consumption through questionnaires and measurements of ethanol and its specific metabolites, such as ethyl glucuronide. Carbohydrate-deficient transferrin is a valuable tool for assessing chronic heavy drinking. Activities of common liver enzymes can be used for screening ethanol-induced liver dysfunction and to provide information on the risk of co-morbidities including insulin resistance, metabolic syndrome and vascular diseases. Conventional biomarkers supplemented with indices of immune activation and fibrogenesis can help to assess the severity and prognosis of ethanol-induced tissue damage. Many ethanol-sensitive biomarkers respond to the status of oxidative stress, and their levels are modulated by factors of life style, including weight gain, physical exercise or coffee consumption in an age- and gender-dependent manner. Therefore, further attention should be paid to defining safe limits of ethanol intake in various demographic categories and establishing common reference intervals for biomarkers of alcohol use disorders.

  12. Biomarker-Based Approaches for Assessing Alcohol Use Disorders

    PubMed Central

    Niemelä, Onni

    2016-01-01

    Although alcohol use disorders rank among the leading public health problems worldwide, hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is postulated here that a more systematic use of biomarkers improves the detection of the specific role of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on the actual amounts of recent alcohol consumption through questionnaires and measurements of ethanol and its specific metabolites, such as ethyl glucuronide. Carbohydrate-deficient transferrin is a valuable tool for assessing chronic heavy drinking. Activities of common liver enzymes can be used for screening ethanol-induced liver dysfunction and to provide information on the risk of co-morbidities including insulin resistance, metabolic syndrome and vascular diseases. Conventional biomarkers supplemented with indices of immune activation and fibrogenesis can help to assess the severity and prognosis of ethanol-induced tissue damage. Many ethanol-sensitive biomarkers respond to the status of oxidative stress, and their levels are modulated by factors of life style, including weight gain, physical exercise or coffee consumption in an age- and gender-dependent manner. Therefore, further attention should be paid to defining safe limits of ethanol intake in various demographic categories and establishing common reference intervals for biomarkers of alcohol use disorders. PMID:26828506

  13. Children of Alcoholics: A School-Based Comparative Study.

    ERIC Educational Resources Information Center

    Morey, Connie K.

    1999-01-01

    Examines differences between 4th-6th grade children of alcoholics (COAs) and non-COAs on measures of internalized shame, self-esteem, perceived support, and teacher behavior ratings. No significant differences were found on measures of social support and shame; however self-esteem and teacher ratings for COAs were significantly lower. Gender…

  14. Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds.

    PubMed

    Schyrr, Bastien; Pasche, Stéphanie; Voirin, Guy; Weder, Christoph; Simon, Yoan C; Foster, E Johan

    2014-08-13

    Cellulose nanocrystals (CNCs), which offer a high aspect ratio, large specific surface area, and large number of reactive surface groups, are well suited for the facile immobilization of high density biological probes. We here report functional high surface area scaffolds based on cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) and demonstrate that this platform is useful for fluorescence-based sensing schemes. Porous CNC/PVA nanocomposite films with a thickness of 25-70 nm were deposited on glass substrates by dip-coating with an aqueous mixture of the CNCs and PVA, and the porous nanostructure was fixated by heat treatment. In a subsequent step, a portion of the scaffold's hydroxyl surface groups was reacted with 2-(acryloxy)ethyl (3-isocyanato-4-methylphenyl)carbamate to permit the immobilization of thiolated fluorescein-substituted lysine, which was used as a first sensing motif, via nucleophile-based thiol-ene Michael addition. The resulting sensor films exhibit a nearly instantaneous and pronounced change of their fluorescence emission intensity in response to changes in pH. The approach was further extended to the detection of protease activity by immobilizing a Förster-type resonance energy transfer chromophore pair via a labile peptide sequence to the scaffold. This sensing scheme is based on the degradation of the protein linker in the presence of appropriate enzymes, which separate the chromophores and causes a turn-on of the originally quenched fluorescence. Using a standard benchtop spectrometer to monitor the increase in fluorescence intensity, trypsin was detected at a concentration of 250 μg/mL, i.e., in a concentration that is typical for abnormal proteolytic activity in wound fluids.

  15. Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, Maksim

    I describe photonic bandgap (PBG) fiber-based resonant optical sensors of analyte's refractive index which have recently invoked strong interest due to the development of novel fiber types and of techniques for the activation of fiber microstructure with functional materials. Particularly, I consider two sensors types. One employs hollow-core photonic bandgap fibers where the core-guided mode is confined in the analyte's filled core through resonant effect in the surrounding periodic reflector. The other employs metallized photonic bandgap waveguides and fibers, where core-guided mode is phase-matched with a plasmon wave propagating at the fiber/analyte interface. In resonant sensors, one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte's refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation, this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte's refractive index ( {10^{ - 6}} - {10^{ - 4}}{ RIU} ) and in the imaginary part of the analyte's refractive index in the vicinity of absorption lines. Although the operational principle of almost all PBG fiber-based sensors relies on strong sensitivity of the PBG fiber losses to the value of the analyte's refractive index, particular transduction mechanisms for biodetection vary significantly. Finally, I detail various sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for biosensing applications.

  16. Chain-based communication in cylindrical underwater wireless sensor networks.

    PubMed

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  17. Graphene-based composite sensors for energy applications

    NASA Astrophysics Data System (ADS)

    Chadhari, S.; Graves, A. R.; Cain, M. V.; Stinespring, C. D.

    2016-05-01

    The long range objectives of this research are to develop and demonstrate the use of graphene-nanoparticle composites as a high sensitivity, rapid response electronic nose for gas sensing in energy applications. Graphene based device structures suitable for temperatures as high as 1000 °C are targeted. The scope of work includes: a) development of procedures for controllable nucleation and growth of nanoparticles on graphene surfaces, b) fabrication graphene-nanoparticle composite sensors, c) measurement of electrical properties of graphene-nanoparticle composites, and d) determination of sensor characteristics (selectivity and sensitivity). The graphene films are synthesized on 6H-SiC (0001) surfaces using a halogen based plasma etching followed by rapid thermal annealing in atmospheric pressure Ar or under ultrahigh vacuum conditions. Lithography free methods are then used to produce simple sensor structures consisting of interdigitated fingers. This is followed by the nucleation of either Ag, Au, Pt, or Ir nanoparticles on the graphene surfaces using solution based techniques. Atomic force microscopy is used to characterize the particle size distribution of the nucleated nanoparticles. Electrical properties of the graphene and graphenenanoparticle composites are characterized using two point current-voltage measurements. Gas sensor response as a function of temperature is characterized for H2 in Ar gas mixtures.

  18. A speed of sound based feed water temperature sensor

    NASA Astrophysics Data System (ADS)

    Klason, P.; Holmsten, M.; Andersson, A.; Lau, P.; Kok, G. J. P.

    2013-09-01

    Controlling thermal power in the feed water line of a power plant presupposes both accurate flow and temperature measurement. In this application the temperature measurement is usually a single Pt-100. This results in a measurement error of several kelvin. In this study we have investigated two different sensors based on the speed of sound (SoS) in the flowing medium for measuring the average temperature across a flow pipe cross-section. This is a task within the on-going European research project called ENG-06. The two SoS-based temperature measuring sensors were investigated under laboratory conditions. Investigations were done using both homogenous and non-homogenous temperature distributions with temperature differences up to 25 K. In addition the influence of pressure (50-200 kPa) and flow rates (0.5-2 m/s) on the SoS devices were also investigated. Our results show that the SoS-based temperature principle is working. Furthermore, depending on the measurement conditions a SoS temperature measurement device significantly can reduce the deviation to the reference sensor compared with a single Pt-100 sensor. Relative reductions in the deviation to the reference of 20-85 % were possible to achieve. This opens for the possibility of increasing the energy efficiency in power plants as aimed for in the ENG-06 project.

  19. Sensor-based diagnosis using knowledge of structure and function

    NASA Technical Reports Server (NTRS)

    Scarl, Ethan A.; Jamieson, John R.; Delaune, Carl I.

    1987-01-01

    A system for fault detection and isolation called LES, developed at the Kennedy Space Center for the Space Shuttle's Launch Processing System, is a well-developed diagnostic system that is simultaneously model-based and sensor-based. This experiment has led to a surprising result: the failure of a sensor can not only be handled in precisely the same way as the failure of any other object, but may present an especially easy case. Classical rule-based diagnostic systems need to find out whether or not their sensors are telling them the truth before they can safely draw inferences from them. By contrast, while LES does treat sensors as a special case, it does so only because there may exist a short cut that allows them to be handled more simply than other objects. LES uses both structural and functional knowledge, and has found cases in which the structural knowledge can be economically replaced by the judicious use of functional relationships; LES' functional relationships are stored in exactly one place, so they must be inverted to determine hypothetical values for possibly faulty objects. The inversion process has been extended to include conditional functions not normally considered to have inverses.

  20. Magnetic field sensor using a polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  1. The Link Between Alcohol Use and Aggression Toward Sexual Minorities: An Event-Based Analysis

    PubMed Central

    Parrott, Dominic J.; Gallagher, Kathryn E.; Vincent, Wilson; Bakeman, Roger

    2010-01-01

    The current study used an event-based assessment approach to examine the day-to-day relationship between heterosexual men’s alcohol consumption and perpetration of aggression toward sexual minorities. Participants were 199 heterosexual drinking men between the ages of 18–30 who completed (1) separate timeline followback interviews to assess alcohol use and aggression toward sexual minorities during the past year, and (2) written self-report measures of risk factors for aggression toward sexual minorities. Results indicated that aggression toward sexual minorities was twice as likely on a day when drinking was reported than on non-drinking days, with over 80% of alcohol-related aggressive acts perpetrated within the group context. Patterns of alcohol use (i.e., number of drinking days, mean drinks per drinking day, number of heavy drinking days) were not associated with perpetration after controlling for demographic variables and pertinent risk factors. Results suggest that it is the acute effects of alcohol, and not men’s patterns of alcohol consumption, that facilitate aggression toward sexual minorities. More importantly, these data are the first to support an event-based link between alcohol use and aggression toward sexual minorities (or any minority group), and provide the impetus for future research to examine risk factors and mechanisms for intoxicated aggression toward sexual minorities and other stigmatized groups. PMID:20853937

  2. The link between alcohol use and aggression toward sexual minorities: an event-based analysis.

    PubMed

    Parrott, Dominic J; Gallagher, Kathryn E; Vincent, Wilson; Bakeman, Roger

    2010-09-01

    The current study used an event-based assessment approach to examine the day-to-day relationship between heterosexual men's alcohol consumption and perpetration of aggression toward sexual minorities. Participants were 199 heterosexual drinking men between the ages of 18-30 who completed (1) separate timeline followback interviews to assess alcohol use and aggression toward sexual minorities during the past year, and (2) written self-report measures of risk factors for aggression toward sexual minorities. Results indicated that aggression toward sexual minorities was twice as likely on a day when drinking was reported than on nondrinking days, with over 80% of alcohol-related aggressive acts perpetrated within the group context. Patterns of alcohol use (i.e., number of drinking days, mean drinks per drinking day, number of heavy drinking days) were not associated with perpetration after controlling for demographic variables and pertinent risk factors. Results suggest that it is the acute effects of alcohol, and not men's patterns of alcohol consumption, that facilitate aggression toward sexual minorities. More importantly, these data are the first to support an event-based link between alcohol use and aggression toward sexual minorities (or any minority group), and provide the impetus for future research to examine risk factors and mechanisms for intoxicated aggression toward sexual minorities and other stigmatized groups.

  3. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    NASA Astrophysics Data System (ADS)

    Nallon, Eric C.

    chemiresistor device and used as a chemical sensor, where its resistance is temporarily modified while exposed to chemical compounds. The inherent, broad selective nature of graphene is demonstrated by testing a sensor against a diverse set of volatile organic compounds and also against a set of chemically similar compounds. The sensor exhibits excellent selectivity and is capable of achieving high classification accuracies. The kinetics of the sensor's response are further investigated revealing a relationship between the transient behavior of the response curve and physiochemical properties of the compounds, such as the molar mass and vapor pressure. This kinetic information is also shown to provide important information for further pattern recognition and classification, which is demonstrated by increased classification accuracy of very similar compounds. Covalent modification of the graphene surface is demonstrated by means of plasma treatment and free radical exchange, and sensing performance compared to an unmodified graphene sensor. Finally, the first example of a graphene-based, cross-reactive chemical sensor array is demonstrated by applying various polymers as coatings over an array of graphene sensors. The sensor array is tested against a variety of compounds, including the complex odor of Scotch whiskies, where it is capable of perfect classification of 10 Scotch whiskey variations.

  4. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    Templating Polyelectrolyte Multilayer Capsules”, Chemistry of Materials, 20(6), 2063-2065, 2008. S.S. Sridharamurthy, K. D. Cadwell, N. L. Abbott... Templating Polyelectrolyte Multilayer Capsules, filed with USPTO, 2008. Immobilization of Droplets of Liquid Crystals on Surfaces, filed with USPTO, 2009...chemical species (see above). The methodology is based on templating PEM capsules formed by the layer-by-layer (LbL) adsorption of polyelectrolytes on

  5. All-transparent graphene-based flexible pressure sensor array

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Yichuan; Wang, Xudong; Wang, Xiaohao

    2017-03-01

    In this work, we propose and demonstrate a flexible capacitive tactile sensor array based on graphene served as electrodes. The sensor array consists of 3 × 3 units with 3 mm spatial resolution, similar to that of human skin. Each unit has three layers. The middle layer with microstructured PDMS served as an insulator is sandwiched by two perpendicular graphene-based electrodes. The size of each unit is 3 mm × 3 mm and the initial capacitance is about 0.2 pF. High sensitivities of 0.73 kPa‑1 between 0 and 1.2 kPa and 0.26 kPa‑1 between 1.2 and 2.5 kPa were achieved on the fabricated graphene pressure sensors. The proposed flexible pressure sensor array shows a great potential on the application of electric skin or 3D touch control.

  6. Determination of Lead with a Copper-Based Electrochemical Sensor.

    PubMed

    Kang, Wenjing; Pei, Xing; Rusinek, Cory A; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2017-03-21

    This work demonstrates determination of lead (Pb) in surface water samples using a low-cost copper (Cu)-based electrochemical sensor. Heavy metals require careful monitoring due to their toxicity, yet current methods are too complex or bulky for point-of-care (POC) use. Electrochemistry offers a convenient alternative for metal determination, but the traditional electrodes, such as carbon or gold/platinum, are costly and difficult to microfabricate. Our copper-based sensor features a low-cost electrode material-copper-that offers simple fabrication and competitive performance in electrochemical detection. For anodic stripping voltammetry (ASV) of Pb, our sensor shows 21 nM (4.4 ppb) limit of detection, resistance to interfering metals such as cadmium (Cd) and zinc (Zn), and stable response in natural water samples with minimum sample pretreatment. These results suggest this electrochemical sensor is suitable for environmental and potentially biological applications, where accurate and rapid, yet inexpensive, on-site monitoring is necessary.

  7. Framework of sensor-based monitoring for pervasive patient care.

    PubMed

    Triantafyllidis, Andreas K; Koutkias, Vassilis G; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos

    2016-09-01

    Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors' approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach.

  8. Stress-sensor device based on flexoelectric liquid crystalline membranes.

    PubMed

    Rey, Alejandro D; Servio, Phillip; Herrera Valencia, Edtson Emilio

    2014-05-19

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane bending and membrane electrical polarization caused by bending under electric fields. In this paper we propose, formulate, and characterize a stress-sensor device for mechanically loaded solids, consisting of a soft flexoelectric thin membrane attached to the loaded deformed solid. Because the curvature of the deformed solid is transferred to the attached flexoelectric membrane, the electromechanical transduction of the latter produces a charge that is proportional to the stress of the solid. The model of the stress-sensor device is based on the integration of the thermodynamics of polarizable membranes with isotropic solid elasticity, leading to a transfer function that identifies the elastic, electromechanical, and geometrical parameters involved in electrical-signal generation. The model is applied to representative normal bending and then to more complex off-axis bending of elastic bars. In all cases, a common transfer function shows the generic material and its geometric contributions. The sensor sensitivity increases linearly with flexoelectricity and the membrane-solid interface, and the sensitivity decreases with increasing membrane thickness and Young's modulus of the solid. The theoretical results contribute to ongoing experimental efforts towards the development of anisotropic soft-matter-based stress-sensor devices through solid-membrane interactions and electromechanical transduction.

  9. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  10. Commercialization Issues For Catheter-Based Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Nikolchev, Julian; Gaisford, Scott

    1989-08-01

    The need for continuous monitoring of key clinical parameters in hospitals is well recognized. Figure 1 shows typical time constants for blood gases, ions and enzymes in response to acute ventilatory changes and interventions. Although it can be seen that relatively low rates of data collection are necessary for many medical measurements, it is also clear that intermittent measurement of P02, PCO2 and pH are not sufficient to provide safe and effective management of the patient. Very frequent or continuous monitoring is often essential. This figure also shows why the emphasis of a large number of research efforts in this country and in Europe and Japan have as their goal the development of continuous blood gas sensors, i.e., sensors that continuously monitor blood pH, partial pressure of oxygen and partial pressure of carbon dioxide. These are three (3) of the most frequent parameters measured in hospitals and the ones having the shortest time constant. Considering that in the United States alone close to 25 million blood gas samples per year are taken from patients, the potential market for continuous monitoring sensors is enormous. The emergence of microelectronics and microfabrication technologies over the past 30 years are now pointing to a possible resolution of the well recognized need for real time monitoring of critically ill patients through catheter-based sensors. Although physicians will always prefer non-invasive monitoring techniques, there are a number of parameters that presently can only be monitored by invasive method. The emerging ability to miniaturize chemical sensors using silicon microfabrication or fiber-optic techniques offer an excellent opportunity to solve this need. In fact, the development of in vivo biomedical sensors with satisfactory performance characteristics has long been considered the ultimate application of these emerging technologies.

  11. Fiber-Optic Hydrogen Sensors Based upon Chromogenic Materials

    NASA Astrophysics Data System (ADS)

    Pitts, Roland

    2002-03-01

    The development of lightweight, low cost, inherently safe, reliable hydrogen sensors is crucial to the development of an infrastructure for a hydrogen-based economy. Since the involvement of hydrogen in the Hindenburg disaster (May 7, 1937), the public perception is that hydrogen is dangerous to use, store, and handle. It will require extraordinary safety measures to ensure the public that hydrogen leaks can be detected and controlled early. Detection requires sensors to be arrayed in locations where explosive concentrations of hydrogen can accumulate, and mitigation of risk requires a control function associated with detection that can trigger alarms or actuate devices to prevent hydrogen concentrations from reaching the explosive limit. The approach at NREL to meet the needs for hydrogen detection that are anticipated in the transportation sector uses thin films to indicate the presence of hydrogen. The thin films react with hydrogen to produce a change in optical properties that can be sensed with a light beam propagating along a fiber-optic element. Sensitivity of the device is 200 ppm hydrogen in air, with response times less than one second. The sensor response is unique to hydrogen. It is inherently safe, in that no wires are used that could provide an ignition source in a monitored space. Sensor films can be deposited inexpensively on the end of commercial fiber optic cables, either glass or polymer. They are lightweight and resistant to interference from electric and magnetic fields. Arrays of sensors can be operated from a single detection and control point. Primary challenges involve stabilizing the response in real environments, where pollutants and contamination of the thin film surface interfere with response, and extending the lifetime of the sensor to periods of interest in the transportation sector.

  12. Smart sensor-based geospatial architecture for dike monitoring

    NASA Astrophysics Data System (ADS)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  13. Monitoring and Control Interface Based on Virtual Sensors

    PubMed Central

    Escobar, Ricardo F.; Adam-Medina, Manuel; García-Beltrán, Carlos D.; Olivares-Peregrino, Víctor H.; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V.

    2014-01-01

    In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462

  14. Functional nucleic-acid-based sensors for environmental monitoring.

    PubMed

    Sett, Arghya; Das, Suradip; Bora, Utpal

    2014-10-01

    Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental

  15. Monitoring and control interface based on virtual sensors.

    PubMed

    Escobar, Ricardo F; Adam-Medina, Manuel; García-Beltrán, Carlos D; Olivares-Peregrino, Víctor H; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V

    2014-10-31

    In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users.

  16. Multiple sensors-based kernel machine learning in smart environment

    NASA Astrophysics Data System (ADS)

    Li, Jun-Bao; Pan, Jeng-Shyang

    2017-01-01

    Sensor-based monitoring systems use multiple sensors to identify high-level information based on the events that take place in a monitored environment. Identification and health care are important tasks in the smart environment. This paper presents a framework for multisensory multimedia data analysis using a kernel optimization-based principal analysis for identification and health care in a smart environment. Images of faces, palmprints, and fingerprints are used to identify a person, and a wrist pulse signal is used to analyze the person's health condition. The recognition performance evaluations are implemented on the complex dataset of face, palmprint, fingerprint, and wrist pulse signals. The experimental results show that the proposed algorithms perform well for identification and heath analysis.

  17. Phase-sensitive silicon-based total internal reflection sensor.

    PubMed

    Patskovsky, S; Meunier, M; Kabashin, A V

    2007-09-17

    A concept of phase-sensitive Si-based Total Internal Reflection bio- and chemical sensor is presented. The sensor uses the reflection of light from an internal edge of a Si prism, which is in contact with analyte material changing its index of refraction (thickness). Changes of the refractive index are monitored by measuring the differential phase shift between p- and s-polarized components of light reflected from the system. We show that due to a high refractive index of Si, such methodology leads to a high sensitivity and dynamic range of measurements. Furthermore, the Si-based platform offers an easy bioimmobilization step and excellent opportunities for the development of multi-channel microsensors taking advantage of the advanced state of development of Si-based microfabrication technologies.

  18. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  19. Wheel-Based Ice Sensors for Road Vehicles

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Fink, Patrick W.; Ngo, Phong H.; Carl, James R.

    2011-01-01

    Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another

  20. Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides.

    PubMed

    Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin

    2016-09-02

    Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as "hard sensors" (Sensor 1 and Sensor 2), the other two are referred to as "soft sensors" (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm.

  1. Estimation of Alcohol Concentration of Red Wine Based on Cole-Cole Plot

    NASA Astrophysics Data System (ADS)

    Watanabe, Kota; Taka, Yoshinori; Fujiwara, Osamu

    To evaluate the quality of wine, we previously measured the complex relative permittivity of wine in the frequency range from 10 MHz to 6 GHz with a network analyzer, and suggested a possibility that the maturity and alcohol concentration of wine can simultaneously be estimated from the Cole-Cole plot. Although the absolute accuracy has not been examined yet, this method will enable one to estimate the alcohol concentration of alcoholic beverages without any distillation equipment simply. In this study, to investigate the estimation accuracy of the alcohol concentration of wine by its Cole-Cole plots, we measured the complex relative permittivity of pure water and diluted ethanol solution from 100 MHz to 40 GHz, and obtained the dependence of the Cole-Cole plot parameters on alcohol concentration and temperature. By using these results as calibration data, we estimated the alcohol concentration of red wine from the Cole-Cole plots, which was compared with the measured one based on a distillation method. As a result, we have confirmed that the estimated alcohol concentration of red wine agrees with the measured results in an absolute error by less than 1 %.

  2. Sensor-based actuation of water samplers in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Burgener, D.; Beutel, J.; Wombacher, A.; Seibert, J.

    2012-12-01

    Wireless sensor networks (WSN) have started to change environmental monitoring, and as such, real-time sensor data are available in high temporal and spatial resolution. However, sampling of water bodies and the analysis of these samples in the lab will continue to be an essential part of environmental monitoring, as many parameters can only be analyzed with accurate precision in the lab. In a joint project of computer sciences, network engineering and environmental research we integrated an automated water sampler (ISCO 6712) as an actuator into a WSN. Based on the online interpretation of sensor data an actuation schedule for the sampling of water is generated. This actuation schedule is transferred to the water sampling unit for remote execution. Electric conductivity (EC) was chosen as a proxy parameter for water origin (e.g. groundwater or river water in alluvial systems) and thus for changes in stable isotopes and water quality. The onset of river water infiltrating the observed section of the aquifer is detected by EC sampled at several locations and high temporal resolution (2min) using a stream based filtering technique rather than a simple signal threshold. The EC signal is continuously analyzed by the streaming filter defining a sampling event when the EC signal clearly leaves the boundaries of daily oscillation over given a time window. To cope with noise in the EC data, we implemented and evaluated different outlier detection algorithms and plausibility checks to actuate the automated water sampler at the onset of an event and then applying a static sampling scheme. As a next step, we are working on dynamic sampling schemes, which are based on stream processing algorithms predicting the peak and duration of EC events based on deconvolution and geostatistics (Cirpka 2007).

  3. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module

    PubMed Central

    Pandya, H. J.; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P.

    2014-01-01

    In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400–1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen. PMID:24855449

  4. Flat Panel Space Based Space Surveillance Sensor

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.

    2013-09-01

    Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction

  5. Compact hyperspectral image sensor based on a novel hyperspectral encoder

    NASA Astrophysics Data System (ADS)

    Hegyi, Alex N.; Martini, Joerg

    2015-06-01

    A novel hyperspectral imaging sensor is demonstrated that can enable breakthrough applications of hyperspectral imaging in domains not previously accessible. Our technology consists of a planar hyperspectral encoder combined with a traditional monochrome image sensor. The encoder adds negligibly to the sensor's overall size, weight, power requirement, and cost (SWaP-C); therefore, the new imager can be incorporated wherever image sensors are currently used, such as in cell phones and other consumer electronics. In analogy to Fourier spectroscopy, the technique maintains a high optical throughput because narrow-band spectral filters are unnecessary. Unlike conventional Fourier techniques that rely on Michelson interferometry, our hyperspectral encoder is robust to vibration and amenable to planar integration. The device can be viewed within a computational optics paradigm: the hardware is uncomplicated and serves to increase the information content of the acquired data, and the complexity of the system, that is, the decoding of the spectral information, is shifted to computation. Consequently, system tradeoffs, for example, between spectral resolution and imaging speed or spatial resolution, are selectable in software. Our prototype demonstration of the hyperspectral imager is based on a commercially-available silicon CCD. The prototype encoder was inserted within the camera's ~1 cu. in. housing. The prototype can image about 49 independent spectral bands distributed from 350 nm to 1250 nm, but the technology may be extendable over a wavelength range from ~300 nm to ~10 microns, with suitable choice of detector.

  6. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  7. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  8. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  9. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  10. Triboelectrification based motion sensor for human-machine interfacing.

    PubMed

    Yang, Weiqing; Chen, Jun; Wen, Xiaonan; Jing, Qingshen; Yang, Jin; Su, Yuanjie; Zhu, Guang; Wu, Wenzuo; Wang, Zhong Lin

    2014-05-28

    We present triboelectrification based, flexible, reusable, and skin-friendly dry biopotential electrode arrays as motion sensors for tracking muscle motion and human-machine interfacing (HMI). The independently addressable, self-powered sensor arrays have been utilized to record the electric output signals as a mapping figure to accurately identify the degrees of freedom as well as directions and magnitude of muscle motions. A fast Fourier transform (FFT) technique was employed to analyse the frequency spectra of the obtained electric signals and thus to determine the motion angular velocities. Moreover, the motion sensor arrays produced a short-circuit current density up to 10.71 mA/m(2), and an open-circuit voltage as high as 42.6 V with a remarkable signal-to-noise ratio up to 1000, which enables the devices as sensors to accurately record and transform the motions of the human joints, such as elbow, knee, heel, and even fingers, and thus renders it a superior and unique invention in the field of HMI.

  11. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. A radar-based sensor network for bridge displacement measurements

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Gu, Changzhan; Li, Changzhi; Guan, Shanyue

    2012-04-01

    The development of effective structural health monitoring (SHM) strategies is critical as aging infrastructure remains a national concern with widespread impact on the quality of our daily lives. Wireless smart sensor networks (WSSNs) are an attractive alternative to traditional SHM systems for their lower deployment cost and their ability to enable new methods of distributed data processing. While acceleration has been the primary measurement utilized in most WSSN SHM applications, practically and accurately capturing structural deflections has been proven much more challenging. Displacement sensors produce reliable low-frequency measurements but are often difficult to implement in long-term field deployments. Conventional technologies for measuring deflection, both dynamic and static, are either too bulky or expensive to be integrated into WSSNs or lack sufficient accuracy. This paper presents the validation and characterization of a network of low-cost, wireless radar-based sensors for the enhancement of low-frequency vibrationbased bridge monitoring and the measurement of static bridge deflections. Experimental results utilizing a laboratoryscale truss bridge are presented and the performance of the wireless radar sensors is compared to conventional vibration and displacement transducers. In addition, challenges associated with detection distance, interference rejection and signal processing are discussed.

  13. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  14. ZnO Coated Nanospring-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Bakharev, Pavel Viktorovich

    . The experimental and computational analyses of the sensing properties of the 3-D (nanospring-based) and flat thin films structures show that the complexity and periodic boundary conditions of the nanospring-based devices result in a lower detection limit, while flat thin films exhibit higher sensitivity to small analyte concentration fluctuations. Our analysis shows that the productive approach to fabrication of integrated sensors (electronic noses) is to use both the structures (3D and flat geometries) as the receptors for a prompt and reliable detection and recognition of the target chemical compounds. Analog lock-in amplifier (LIA) AC measurements of the electrical response have been performed to significantly improve the signal-to-noise ratio (SNR) and reduce the detection limit of the single ZnO coated nanospring chemiresistor from the ppm to the ppb analyte concentration ranges. The LIA-based sensor signal recognition technique has shown to extend the capabilities of the gas sensor array for a linear discrimination analysis (LDA), an independent component analysis (ICA), a principal component analysis (PCA) and other multiple odor recognition methods.

  15. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is

  16. Low-Cost Graphite-Based Free Chlorine Sensor.

    PubMed

    Pan, Si; Deen, M Jamal; Ghosh, Raja

    2015-11-03

    Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.

  17. Magnetic field sensor based on coupled photonic crystal nanobeam cavities

    NASA Astrophysics Data System (ADS)

    Du, Han; Zhou, Guangya; Zhao, Yunshan; Chen, Guoqiang; Chau, Fook Siong

    2017-02-01

    We report the design, fabrication, and characterization of a resonant Lorentz force magnetic field sensor based on dual-coupled photonic crystal nanobeam cavities. Compared with microelectromechanical systems (MEMS) Lorentz force magnetometers, the proposed magnetic field sensor has an ultra-small footprint (less than 70 μm × 40 μm) and a wider operation bandwidth (of 160 Hz). The sensing mechanism is based on the resonance wavelength shift of a selected supermode of the coupled cavities, which is caused by the Lorentz force-induced relative displacement of the cavity nanobeams, and thus the optical transmission variation. The sensitivity and resolution of the device demonstrated experimentally are 22.9 mV/T and 48.1 μT/Hz1/2, respectively. The results can be further improved by optimizing the initial offset of the two nanobeams.

  18. Surface-Based Parameters of Brain Imaging in Male Patients with Alcohol Use Disorder

    PubMed Central

    Im, Sungjin; Lee, Sang-Gu; Lee, Jeonghwan; Shin, Chul-Jin; Son, Jeong-Woo; Ju, Gawon; Lee, Sang-Ick

    2016-01-01

    Objective The structural alteration of brain shown in patients with alcohol use disorder (AUD) can originate from both alcohol effects and genetic or developmental processes. We compared surface-based parameters of patients with AUD with healthy controls to prove the applicability of surface-based morphometry with head size correction and to determine the areas that were sensitive to brain alteration related to AUD. Methods Twenty-six abstinent male patients with AUD (alcohol group, mean abstinence=13.2 months) and twenty-eight age-matched healthy participants (control group) were recruited from an inpatient mental hospital and community. All participants underwent a 3T MRI scan. Surface-based parameters were determined by using FreeSurfer. Results Every surface-based parameter of the alcohol group was lower than the corresponding control group parameter. There were large group differences in the whole brain, grey and white matter volume, and the differences were more prominent after head size correction. Significant group differences were shown in cortical thicknesses in entire brain regions, especially in parietal, temporal and frontal areas. There were no significant group differences in surface areas, but group difference trends in surface areas of the frontal and parietal cortices were shown after head size correction. Conclusion Most of the surface-based parameters in alcohol group were altered because of incomplete recovery from chronic alcohol exposure and possibly genetic or developmental factors underlying the risk of AUD. Surface-based morphometry with controlling for head size is useful in comparing the volumetric parameters and the surface area to a lesser extent in alcohol-related brain alteration. PMID:27757129

  19. A model-based reasoning approach to sensor placement for monitorability

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doyle, Richard; Homemdemello, Luiz

    1992-01-01

    An approach is presented to evaluating sensor placements to maximize monitorability of the target system while minimizing the number of sensors. The approach uses a model of the monitored system to score potential sensor placements on the basis of four monitorability criteria. The scores can then be analyzed to produce a recommended sensor set. An example from our NASA application domain is used to illustrate our model-based approach to sensor placement.

  20. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  1. Model-based optimal design of polymer-coated chemical sensors.

    PubMed

    Phillips, Cynthia; Jakusch, Michael; Steiner, Hannes; Mizaikoff, Boris; Fedorov, Andrei G

    2003-03-01

    A model-based methodology for optimal design of polymer-coated chemical sensors is developed and is illustrated for the example of infrared evanescent field chemical sensors. The methodology is based on rigorous and computationally efficient modeling of combined fluid mechanics and mass transfer, including transport of multiple analytes. A simple algebraic equation for the optimal size of the sensor flow cell is developed to guide sensor design and validated by extensive CFD simulations. Based upon these calculations, optimized geometries of the sensor flow cell are proposed to further improve the response time of chemical sensors.

  2. 75 FR 82069 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade... be used to establish the ``base quantity'' of imports of fuel ethyl alcohol with a zero percent local... base quantity to be used by U.S. Customs and Border Protection in the administration of the law is...

  3. Exploratory Trial of a School-Based Alcohol Prevention Intervention with a Family Component

    ERIC Educational Resources Information Center

    Segrott, Jeremy; Rothwell, Heather; Pignatelli, Ilaria; Playle, Rebecca; Hewitt, Gillian; Huang, Chao; Murphy, Simon; Hickman, Matthew; Reed, Hayley; Moore, Laurence

    2016-01-01

    Purpose: Involvement of parents/carers may increase effectiveness of primary school-based alcohol-misuse prevention projects through strengthening family-based protective factors, but rates of parental engagement are typically low. This paper reports findings from an exploratory trial of a school-based prevention intervention--Kids, Adults…

  4. A Portable Laser Photoacoustic Methane Sensor Based on FPGA

    PubMed Central

    Wang, Jianwei; Wang, Huili; Liu, Xianyong

    2016-01-01

    A portable laser photoacoustic sensor for methane (CH4) detection based on a field-programmable gate array (FPGA) is reported. A tunable distributed feedback (DFB) diode laser in the 1654 nm wavelength range is used as an excitation source. The photoacoustic signal processing was implemented by a FPGA device. A small resonant photoacoustic cell is designed. The minimum detection limit (1σ) of 10 ppm for methane is demonstrated. PMID:27657079

  5. Hydrogen sensor based on metallic photonic crystal slabs.

    PubMed

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  6. Biomarker Discovery by Novel Sensors Based on Nanoproteomics Approaches

    PubMed Central

    Dasilva, Noelia; Díez, Paula; Matarraz, Sergio; González-González, María; Paradinas, Sara; Orfao, Alberto; Fuentes, Manuel

    2012-01-01

    During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors. PMID:22438764

  7. Nanotube-based Sensors and Systems for Outer Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Noca, F.; Hunt, B. D.; Hoenk, M. E.; Choi, D.; Kowalczyk, R.; Williams, R.; Xu, J.; Koumoutsakos, P.

    2001-01-01

    Direct sensing and processing at the nanometer scale offer NASA the opportunity to expand its capabilities in deep space exploration, particularly for the search for signatures of life, the analysis of planetary oceans and atmospheres, and communications systems. Carbon nanotubes, with their unique mechanical, electrical, and radiation-tolerant properties, are a promising tool for this exploration. We are developing devices based on carbon nanotubes, including sensors, actuators, and oscillators. Additional information is contained in the original extended abstract.

  8. A Portable Laser Photoacoustic Methane Sensor Based on FPGA.

    PubMed

    Wang, Jianwei; Wang, Huili; Liu, Xianyong

    2016-09-21

    A portable laser photoacoustic sensor for methane (CH₄) detection based on a field-programmable gate array (FPGA) is reported. A tunable distributed feedback (DFB) diode laser in the 1654 nm wavelength range is used as an excitation source. The photoacoustic signal processing was implemented by a FPGA device. A small resonant photoacoustic cell is designed. The minimum detection limit (1σ) of 10 ppm for methane is demonstrated.

  9. Luminescence-based optical sensor systems for monitoring water parameters

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Turel, Matejka; Korent, Špela Mojca

    2007-06-01

    Lanthanide-sensitized luminescence is very attractive because the intramolecular energy transfers between the absorbing ligand and the luminescent ion results in strong narrow-band fluorescence with a large Stokes' shift and long decay times. We will report about several sensor systems based either on sol-gel materials or lanthanide chelates for monitoring and controlling water parameters, such as heavy metals, amines, phosphates.

  10. Sensor technologies based on a cellulose supported platform.

    PubMed

    Poplin, Jane Holly; Swatloski, Richard P; Holbrey, John D; Spear, Scott K; Metlen, Andreas; Grätzel, Michael; Nazeeruddin, Mohammad K; Rogers, Robin D

    2007-05-28

    A simple approach to sensor development based on encapsulating a probe molecule in a cellulose support followed by regeneration from an ionic liquid solution is demonstrated here by the codissolution of cellulose and 1-(2-pyridylazo)-2-naphthol in 1-butyl-3-methylimidazolium chloride followed by regeneration with water to form strips which exhibit a proportionate (1 : 1) response to Hg(II) in aqueous solution.

  11. Alcohol marketing, drunkenness, and problem drinking among Zambian youth: findings from the 2004 Global School-Based Student Health Survey.

    PubMed

    Swahn, Monica H; Ali, Bina; Palmier, Jane B; Sikazwe, George; Mayeya, John

    2011-01-01

    This study examines the associations between alcohol marketing strategies, alcohol education including knowledge about dangers of alcohol and refusal of alcohol, and drinking prevalence, problem drinking, and drunkenness. Analyses are based on the Global School-Based Student Health Survey (GSHS) conducted in Zambia (2004) of students primarily 11 to 16 years of age (N = 2257). Four statistical models were computed to test the associations between alcohol marketing and education and alcohol use, while controlling for possible confounding factors. Alcohol marketing, specifically through providing free alcohol through a company representative, was associated with drunkenness (AOR = 1.49; 95% CI: 1.09-2.02) and problem drinking (AOR = 1.41; 95% CI: 1.06-1.87) among youth after controlling for demographic characteristics, risky behaviors, and alcohol education. However, alcohol education was not associated with drunkenness or problem drinking. These findings underscore the importance of restricting alcohol marketing practices as an important policy strategy for reducing alcohol use and its dire consequences among vulnerable youth.

  12. Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry

    SciTech Connect

    Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

    1983-07-01

    This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

  13. Capacitance-based sensor for monitoring bees passing through a tunnel

    NASA Astrophysics Data System (ADS)

    Campbell, Jennifer M.; Dahn, Douglas C.; Ryan, Daniel A. J.

    2005-12-01

    A sensor has been developed to monitor objects passing through tunnels using a capacitance bridge. While the sensor concept is easily adaptable to a wide range of objects or organisms which pass through an enclosed area, our version of the sensor was designed specifically for monitoring bumblebee colonies. Other bee sensors have been developed based on optical methods of detection. The capacitance sensor provides all the information of the optical sensors and additional information on the bee size and velocity. The sensor is expected to provide entomologists with more efficient methods of studying the foraging activities of bees.

  14. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  15. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  16. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  17. Bridge monitoring based on smart sensor data acquisition system

    NASA Astrophysics Data System (ADS)

    Ehrlich, Jacques; Eymard, Robert; Coche, Georges

    1996-04-01

    The knowledge of loads applied to bridges has to be enhanced in order to actualize national and international codes, like Eurocodes. The nature of traffic loads is extremely complex including such phenomena as dynamic effects, random distribution of damping techniques over the actual trucks, multiple non-linear visco-elastic links in mechanical description of a given truck. For all these reasons, a system of monitoring bridges has been preferred to an unrigorous modelling, in order to get a statistical knowledge of the traffic loads applied to the bridge over large periods. This knowledge under the form of histograms will be useful in order to evaluate extreme load effects and fatigue load effects over the lifetime of the bridge. To achieve these goals, a data acquisition system based on smart sensors extracting and classifying extrema in the traffic loads signal has been developed. At each measurement site a small microsystem is dedicated to the tasks of signal conditioning and sampling, calculation and communication. Each smart sensor can communicate through a numerical data link with its neighbors or with a PC based system controller. In this paper an outline of the problem, the proposed solution based on the smart sensor paradigm, and the results which have been obtained are presented.

  18. Sensor-Based Collision Avoidance: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Steele, Robert; Ivlev, Robert

    1996-01-01

    A new on-line control strategy for sensor-based collision avoidance of manipulators and supporting experimental results are presented in this article. This control strategy is based on nullification of virtual forces applied to the end-effector by a hypothetical spring-plus-damper attached to the object's surface. In the proposed approach, the real-time arm control software continuously monitors the object distance measured by the arm-mounted proximity sensors. When this distance is less than a preset threshold, the collision avoidance control action is initiated to inhibit motion toward the object and thus prevent collision. This is accomplished by employing an outer feedback loop to perturb the end-effector nominal motion trajectory in real-time based on the sensory data. The perturbation is generated by a proportional-plus-integral (PI) collision avoidance controller acting on the difference between the sensed distance and the preset threshold. This approach is computationally very fast, requires minimal modification to the existing manipulator positioning system, and provides the manipulator with an on-line collision avoidance capability to react autonomously and intelligently. A dexterous RRC robotic arm is instrumented with infrared proximity sensors and is operated under the proposed collision avoidance strategy. Experimental results are presented to demonstrate end-effector collision avoidance both with an approaching object and while reaching inside a constricted opening.

  19. Intent-based resource deployment in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    de Mel, Geeth; Pham, Tien; Sullivan, Paul; Grueneberg, Keith; Vasconcelos, Wamberto; Norman, Tim

    2012-06-01

    Information derived from sensor networks plays a crucial role in the success of many critical tasks such as surveillance, and border monitoring. In order to derive the correct information at the right time, sensor data must be captured at desired locations with respect to the operational tasks in concern. Therefore, it is important that at the planning stage of a mission, sensing resources are best placed in the field to capture the required data. For example, consider a mission goal identify snipers, in an operational area before troops are deployed - two acoustic arrays and a day-night video camera are needed to successfully achieve this goal. This is because, if the resources are placed in correct locations, two acoustic arrays could provide direction of the shooter and a possible location by triangulating acoustic data whereas the day-night camera could produce an affirmative image of the perpetrators. In order to deploy the sensing resources intelligently to support the user decisions, in this paper we propose a Semantic Web based knowledge layer to identify the required resources in a sensor network and deploy the needed resources through a sensor infrastructure. The knowledge layer captures crucial information such as resources configurations, their intended use (e.g., two acoustic arrays deployed in a particular formation with day-night camera are needed to identify perpetrators in a possible sniper attack). The underlying sensor infrastructure will assists the process by exposing the information about deployed resources, resources in theatre, and location information about tasks, resources and so on.

  20. Nano-based sensor for assessment of weaponry structural degradation

    NASA Astrophysics Data System (ADS)

    Brantley, Christina L.; Edwards, Eugene; Ruffin, Paul B.; Kranz, Michael

    2016-04-01

    Missiles and weaponry-based systems are composed of metal structures that can degrade after prolonged exposure to environmental elements. A particular concern is accumulation of corrosion that generally results from prolonged environmental exposure. Corrosion, defined as the unintended destruction or deterioration of a material due to its interaction with the environment, can negatively affect both equipment and infrastructure. System readiness and safety can be reduced if corrosion is not detected, prevented and managed. The current corrosion recognition methods (Visual, Radiography, Ultrasonics, Eddy Current, and Thermography) are expensive and potentially unreliable. Visual perception is the most commonly used method for determining corrosion in metal. Utilization of an inductance-based sensor system is being proposed as part of the authors' research. Results from this research will provide a more efficient, economical, and non-destructive sensing approach. Preliminary results demonstrate a highly linear degradation within a corrosive environment due to the increased surface area available on the sensor coupon. The inductance of the devices, which represents a volume property of the coupon, demonstrated sensitivity to corrosion levels. The proposed approach allows a direct mass-loss measurement based on the change in the inductance of the coupon when placed in an alternating magnetic field. Prototype devices have demonstrated highly predictable corrosion rates that are easily measured using low-power small electronic circuits and energy harvesting methods to interrogate the sensor. Preliminary testing demonstrates that the device concept is acceptable and future opportunities for use in low power embedded applications are achievable. Key results in this paper include the assessment of typical Army corrosion cost, degradation patterns of varying metal materials, and application of wireless sensors elements.

  1. A fuzzy behaviorist approach to sensor-based robot control

    SciTech Connect

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  2. Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides

    PubMed Central

    Zhang, Qinghua; Wang, Yuan; Sun, Yangyang; Gao, Lei; Zhang, Zhenglin; Zhang, Wenyuan; Zhao, Pengchong; Yue, Yin

    2016-01-01

    Four custom fiber Bragg grating (FBG)-based sensors are developed to monitor an artificial landslide located in Nanjing, China. The sensors are composed of a rod and two FBGs. Based on the strength of the rods, two sensors are referred to as “hard sensors” (Sensor 1 and Sensor 2), the other two are referred to as “soft sensors” (Sensor 3 and Sensor 4). The two FBGs are fixed on each sensor rod at distances of 50 cm and 100 cm from the top of the rod (an upper FBG and a lower FBG). In the experiment presented in this paper, the sensors are installed on a slope on which an artificial landslide is generated through both machine-based and manual excavation. The fiber sensing system consists of the four custom FBG-based sensors, optical fiber, a static fiber grating demodulation instrument (SM125), and a PC with the necessary software. Experimental data was collected in the presence of an artificial landslide, and the results show that the lower FBGs are more sensitive than the upper FBGs for all four of the custom sensors. It was also found that Sensor 2 and Sensor 4 are more capable of monitoring small-scale landslides than Sensor 1 and Sensor 3, and this is mainly due to their placement location with respect to the landslide. The stronger rods used in the hard sensors make them more adaptable to the harsh environments of large landslides. Thus, hard sensors should be fixed near the landslide, while soft sensors should be placed farther away from the landslide. In addition, a clear tendency of strain variation can be detected by the soft sensors, which can be used to predict landslides and raise a hazard alarm. PMID:27598163

  3. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    PubMed Central

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  4. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-03-08

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.

  5. Usage Based Building Management through Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Erickson, Varick L.

    Wireless sensor networks (WSNs) is a field with broad variety of applications. Its flexibility for remote continuous measurement lends itself to applications ranging from locating snipers to measuring volcanic activity. One application that stands to substantially benefit from WSNs is building management. Buildings currently account for 41% of the total energy consumption of U.S. [bed11]. Reducing this energy is of critical importance if we are to achieve sustainability. In most commercial buildings, many rooms remain unoccupied or are conditioned assuming maximum occupancy. By relaxing temperature setbacks and adjusting ventilation to match actual occupancy, significant energy savings are possible. This Dissertation examines the use of wireless sensor networks for the purpose of building energy management and actuation. It explores the design and development of wireless sensor networks for building energy management, how data from these deployments are utilized, the development and implementation of data driven occupancy models to perform simulation and prediction, how data models are used to actuate building management systems, and how crowd-sourced data can be integrated into building control strategies. We show based on real-world data that 30% energy savings is possible through usage based strategies and that 80% occupant satisfaction rates are possible by occupant driven control strategies.

  6. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  7. Vision Sensor-Based Road Detection for Field Robot Navigation

    PubMed Central

    Lu, Keyu; Li, Jian; An, Xiangjing; He, Hangen

    2015-01-01

    Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art. PMID:26610514

  8. Inertial Sensor-Based Smoother for Gait Analysis

    PubMed Central

    Suh, Young Soo

    2014-01-01

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother). PMID:25526359

  9. Miniature fiber optic sensor based on fluorescence energy transfer

    NASA Astrophysics Data System (ADS)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  10. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  11. Bio-molecular sensors based on guided mode resonance filters

    NASA Astrophysics Data System (ADS)

    Saleem, M. R.; Ali, R.; Honkanen, S.; Turunen, J.

    2016-08-01

    In this work a low surface roughness and homogenous, high refractive index, and amorphous TiO2 layer on corrugated structures of diffractive optical element is coated by Atomic Layer Deposition (ALD) for biosensors. The design of Guided Mode Resonance Filters (GMRFs) is based on refractive indices and thicknesses of the waveguide biomolecular layers. The designed spectral shifts are calculated by Fourier Modal Method (FMM) and depend on the magnitude of the variations in refractive index of the biomolecular layer on waveguide structures. Furthermore, the sensitivity of the biomolecular sensors depends on the thickness of biomolecular layer and periodicity of the structures. The waveguide structures designed for larger periods show an enhancement in the sensitivity (nm/RIU) of the biomolecular sensor at longer wavelengths. The periodicities of nanophotonic structures are varied from 300 to 500 nm in design calculations with predominance of increase in effective index of the structure to support leaky waveguide modes.

  12. Measurement system for nitrous oxide based on amperometric gas sensor

    NASA Astrophysics Data System (ADS)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  13. Understanding Piezo Based Sensors for Acoustic Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Anton, G.; Graf, K.; Höβl, J.; Kappes, A.; Katz, U. F.; Lahmann, R.; Salomon, K.

    2007-09-01

    The ANTARES collaboration is currently installing a neutrino telescope off the French Mediterranean coast to measure diffuse fluxes and point sources of high energy cosmic neutrinos. The complete detector will consist of 900 photomultipliers on 12 detector lines, using 0.01km3 of sea water as target material[1]. As part of the ANTARES deep-sea research infrastructure, the Erlangen group is planning to modify several ANTARES storeys by fitting them with acoustic receivers to study the feasibility of acoustic neutrino detection in the deep sea. In this paper, studies of the electromechanical properties of piezoelectric sensors are presented, based on an equivalent circuit diagram for the coupled mechanical and electrical oscillations of a piezoelectric element. A method for obtaining the system parameters as well as derivations of sensor properties like pressure sensitivity and intrinsic noise are treated and results compared to measurements. Finally, a possible application of these results for simulating system response and optimising reconstruction algorithms is discussed.

  14. Refractive index sensor based on tapered multicore fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Pei, Li; Li, Chao; Lin, Heng

    2017-01-01

    A novel refractive index (RI) sensor based on middle-tapered multicore fiber (TMCF) is proposed and experimentally demonstrated. The sensing structure consists of two singlemode fibers (SMF) and simply spliced a section tapered four-core fiber between them. The light injected from the SMF into the multicore fiber (MCF) will excite multiple cladding mode, and interference between these modes can be affected by the surrounding refractive index (SRI), which also dictates the wavelength shift of the transmission spectrum. Our experimental investigations achieved a sensitivity around 171.2 nm/RIU for a refractive index range from 1.3448 to 1.3774. All sensors fabricated in this paper show good linearity in terms of the spectral wavelength shift versus changes in RI.

  15. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  16. Optical carbon dioxide sensor based on fluorescent capillary array

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wen, Zhihui; Yang, Bo; Yang, Xuefeng

    A novel carbon dioxide (CO2) gas sensor based on capillary array is presented. The capillary array is composed of 51 capillaries and modified by fluorescent dye 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS, PTS-) and tetraoctylammonium cation (TOA+) doped porous ethyl cellulose. A Y-fiber is used to transmit exciting light and fluorescence. A fiber optic pigtail-contained spectrophotometer is used to collect and deal with optical signals. Due to its structural features, each capillary has the two rolling-up layers of inner and outer sensing films, which make the 2 cm long capillary array has large sensing area about 12.81 cm2 and the fluorescence signal easily be collected. The sensing probe has advantages such as small volume, compact structure and large sensing area. The results demonstrate that the sensor has a linear response in the CO2 volume ratio range from 0 to 10%.

  17. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  18. A New Fluorescent Sensor Based on Bisindolizine Derivative.

    PubMed

    I, Anitha; M, Sheela Gopal; Thomas, Divya

    2016-03-01

    A fluorescent sensor based on 1,2,1',2'- Tetra(methoxycarbonyl)- 3,3'- bis(p-methylbenzoyl)- 7,7'-bisindolizine (MBI) showing excellent selectivity towards Fe(3+) ions was developed. Under optimized experimental conditions, the fluorescence intensity of 1,2,1',2'- Tetramethoxycarbonyl- 3,3'- bis(p-methylbenzoyl)- 7,7'-bisindolizine was quenched linearly by Fe(3+) ions in the range of 2.00 × 10(-2) to 4.76 × 10(-3) M. The limit of detection was found to be 3.17 × 10(-3) M. The mechanism for quenching was investigated. The developed sensor was applied for the determination of Fe(3+) in pharmaceutical samples.

  19. Oral cancer: the association between nation-based alcohol-drinking profiles and oral cancer mortality.

    PubMed

    Petti, Stefano; Scully, Crispian

    2005-09-01

    The unclear association between different nation-based alcohol-drinking profiles and oral cancer mortality was investigated using, as observational units, 20 countries from Europe, Northern America, Far Eastern Asia, with cross-nationally comparable data. Stepwise multiple regression analyses were run with male age-standardised, mortality rate (ASMR) as explanatory variable and annual adult alcohol consumption, adult smoking prevalence, life expectancy, as explanatory. Large between-country differences in ASMR (range, 0.88-6.87 per 100,000) were found, but the mean value was similar to the global estimate (3.31 vs. 3.09 per 100,000). Differences in alcohol consumption (2.06-21.03 annual litres per capita) and in distribution between beverages were reported. Wine was the most prevalent alcoholic beverage in 45% of cases. Significant increases in ASMR for every litre of pure ethanol (0.15 per 100,000; 95 CI, 0.01-0.29) and spirits (0.26 per 100,000; 95 CI, 0.03-0.49), non-significant effects for beer and wine were estimated. The impact of alcohol on oral cancer deaths would be higher than expected and the drinking profile could affect cancer mortality, probably because of the different drinking pattern of spirit drinkers, usually consuming huge alcohol quantities on single occasions, and the different concentrations of ethanol and cancer-preventing compounds such as polyphenols, in the various beverages.

  20. Development Of Antibody-Based Fiber-Optic Sensors

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.; Sepaniak, Michael J.; Vo-Dinh, Tuan

    1988-06-01

    The speed and specificity characteristic of immunochemical complex formation has encouraged the development of numerous antibody-based analytical techniques. The scope and versatility of these established methods can be enhanced by combining the principles of conventional immunoassay with laser-based fiber-optic fluorimetry. This merger of spectroscopy and immunochemistry provides the framework for the construction of highly sensitive and selective fiber-optic devices (fluoroimmuno-sensors) capable of in-situ detection of drugs, toxins, and naturally occurring biochemicals. Fluoroimmuno-sensors (FIS) employ an immobilized reagent phase at the sampling terminus of a single quartz optical fiber. Laser excitation of antibody-bound analyte produces a fluorescence signal which is either directly proportional (as in the case of natural fluorophor and "antibody sandwich" assays) or inversely proportional (as in the case of competitive-binding assays) to analyte concentration. Factors which influence analysis time, precision, linearity, and detection limits include the nature (solid or liquid) and amount of the reagent phase, the method of analyte delivery (passive diffusion, convection, etc.), and whether equilibrium or non-equilibrium assays are performed. Data will be presented for optical fibers whose sensing termini utilize: (1) covalently-bound solid antibody reagent phases, and (2) membrane-entrapped liquid antibody reagents. Assays for large-molecular weight proteins (antigens) and small-molecular weight, carcinogenic, polynuclear aromatics (haptens) will be considered. In this manner, the influence of a system's chemical characteristics and measurement requirements on sensor design, and the consequence of various sensor designs on analytical performance will be illustrated.

  1. Pyrolyzed-parylene based sensors and method of manufacture

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Miserendino, Scott (Inventor); Konishi, Satoshi (Inventor)

    2007-01-01

    A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.

  2. Silicon nanowire based Pirani sensor for vacuum measurements

    NASA Astrophysics Data System (ADS)

    Brun, T.; Mercier, D.; Koumela, A.; Marcoux, C.; Duraffourg, L.

    2012-10-01

    Nano-Pirani vacuum gauges based on the physical properties of suspended silicon nanowires have been fabricated and characterized. With a 160 × 260 nm2 rectangular section and a 5.2 μm length, they are 50 times smaller than the smallest silicon based vacuum sensor and they exhibits much lower power consumption. The nano-Pirani constructed are capable of measuring pressures from 50 to 105 Pa. Moreover, their fabrication is compatible with microelectronic and micromachining fabrication techniques making them suitable for in-situ monitoring of micro and nano systems vacuum packaging.

  3. EEG sensor based classification for assessing psychological stress.

    PubMed

    Begum, Shahina; Barua, Shaibal

    2013-01-01

    Electroencephalogram (EEG) reflects the brain activity and is widely used in biomedical research. However, analysis of this signal is still a challenging issue. This paper presents a hybrid approach for assessing stress using the EEG signal. It applies Multivariate Multi-scale Entropy Analysis (MMSE) for the data level fusion. Case-based reasoning is used for the classification tasks. Our preliminary result indicates that EEG sensor based classification could be an efficient technique for evaluation of the psychological state of individuals. Thus, the system can be used for personal health monitoring in order to improve users health.

  4. A wearable respiratory biofeedback system based on body sensor networks.

    PubMed

    Liu, Guang-Zheng; Huang, Bang-Yu; Mei, Zhan-Yong; Guo, Yan-Wei; Wang, Lei

    2010-01-01

    Technology advantages of body sensor networks (BSN) have shown great deal of promises in medical applications. In this paper we introduced a wearable device for biofeedback application based on the BSN platform we had developed. The biofeedback device we have developed includes the heart rate monitoring belt with conductive fabric and the biofeedback device with respiration belt. A wearable respiratory biofeedback system was preliminarily explored based on the BSN platform. In-situ experiments showed that the BSN platform and the biofeedback device worked as intended.

  5. Graphene Electronic Device Based Biosensors and Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  6. A qualitative exploration of attitudes towards alcohol, and the role of parents and peers of two alcohol-attitude-based segments of the adolescent population

    PubMed Central

    2014-01-01

    Background An earlier study using social marketing and audience segmentation distinguished five segments of Dutch adolescents aged 12–18 years based on their attitudes towards alcohol. The present, qualitative study focuses on two of these five segments (‘ordinaries’ and ‘ordinary sobers’) and explores the attitudes of these two segments towards alcohol, and the role of parents and peers in their alcohol use in more detail. Methods This qualitative study was conducted in the province of North-Brabant, the Netherlands. With a 28-item questionnaire, segments of adolescents were identified. From the ordinaries and ordinary sobers who were willing to participate in a focus group, 55 adolescents (30 ordinaries and 25 ordinary sobers) were selected and invited to participate. Finally, six focus groups were conducted with 12–17 year olds, i.e., three interviews with 17 ordinaries and three interviews with 20 ordinary sobers at three different high schools. Results The ordinaries thought that drinking alcohol was fun and relaxing. Curiosity was an important factor in starting to drink alcohol. Peer pressure played a role, e.g., it was difficult not to drink when peers were drinking. Most parents advised their child to drink a small amount only. The attitude of ordinary sobers towards alcohol was that drinking alcohol was stupid; moreover, they did not feel the need to drink. Most parents set strict rules and prohibited the use of alcohol before the age of 16. Conclusions Qualitative insight into the attitudes towards alcohol and the role played by parents and peers, revealed differences between ordinaries and ordinary sobers. Based on these differences and on health education theories, starting points for the development of interventions, for both parents and adolescents, are formulated. Important starting points for interventions targeting ordinaries are reducing perceived peer pressure and learning to make one’s own choices. For the ordinary sobers, an

  7. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  8. Cross-calibration of Imaging Sensors using Model-based, SI-traceable Predictions of At-sensor Radiance

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel

    2012-01-01

    Many inter-consistency efforts force empirical agreement between sensors viewing a source nearly coincident in time and geometry that ensures consistency between sensors rather than obtain an SI-traceable calibration with documented error budgets. The method described here provides interconsistency via absolute radiometric calibration with defensible error budget avoiding systematic errors through prediction of at-sensor radiance for a site viewed by multiple sensors but not necessarily viewed at coincident times. The method predicts spectral radiance over a given surface site for arbitrary view and illumination angles and for any date dominated by clear-sky conditions. The foundation is a model-based, SI-traceable prediction of at-sensor radiance over selected sites based on physical understanding of the surface and atmosphere. The calibration of the ground site will include spatial, spectral, and sunview geometric effects based on satellite and ground-based data. The result is an interconsistency of hyperspectral and multispectral sensors spanning spatial resolutions from meters to kilometers all relative to the surface site rather than a single sensor. The source-centric philosophy of calibrating the site inherently accounts for footprint size mismatch, spectral band mismatch, and temporal and spatial sampling effects. The method for characterizing the test site allows its use for SI-traceable calibration of any sensor that can view the calibrated test site. Interconsistency is obtained through the traceability and error budget rather than coincident views. Such an approach to inter-consistency provides better understanding of biases between sensors as well producing more accurate results with documented SI-traceability that reduces the need for overlapping data sets.

  9. SSL: Signal Similarity-Based Localization for Ocean Sensor Networks

    PubMed Central

    Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan

    2015-01-01

    Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes’ positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes’ positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes’ relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks. PMID:26610520

  10. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.

    PubMed

    Lee, Jaehong; Kwon, Hyukho; Seo, Jungmok; Shin, Sera; Koo, Ja Hoon; Pang, Changhyun; Son, Seungbae; Kim, Jae Hyung; Jang, Yong Hoon; Kim, Dae Eun; Lee, Taeyoon

    2015-04-17

    A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.

  11. MoS2 -Based Tactile Sensor for Electronic Skin Applications.

    PubMed

    Park, Minhoon; Park, Yong Ju; Chen, Xiang; Park, Yon-Kyu; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-04-06

    A conformal tactile sensor based on MoS2 and graphene is demonstrated. The MoS2 tactile sensor exhibits excellent sensitivity, high uniformity, and good repeatability in terms of various strains. In addition, the outstanding flexibility enables the MoS2 strain tactile sensor to be realized conformally on a finger tip. The MoS2 -based tactile sensor can be utilized for wearable electronics, such as electronic skin.

  12. A magnonic gas sensor based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  13. Organic electronics based pressure sensor towards intracranial pressure monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    The intra-cranial space, which houses the brain, contains cerebrospinal fluid (CSF) that acts as a fluid suspension medium for the brain. The CSF is always in circulation, is secreted in the cranium and is drained out through ducts called epidural veins. The venous drainage system has inherent resistance to the flow. Pressure is developed inside the cranium, which is similar to a rigid compartment. Normally a pressure of 5-15 mm Hg, in excess of atmospheric pressure, is observed at different locations inside the cranium. Increase in Intra-Cranial Pressure (ICP) can be caused by change in CSF volume caused by cerebral tumors, meningitis, by edema of a head injury or diseases related to cerebral atrophy. Hence, efficient ways of monitoring ICP need to be developed. A sensor system and monitoring scheme has been discussed here. The system architecture consists of a membrane less piezoelectric pressure sensitive element, organic thin film transistor (OTFT) based signal transduction, and signal telemetry. The components were fabricated on flexible substrate and have been assembled using flip-chip packaging technology. Material science and fabrication processes, subjective to the device performance, have been discussed. Capability of the device in detecting pressure variation, within the ICP pressure range, is investigated and applicability of measurement scheme to medical conditions has been argued for. Also, applications of such a sensor-OTFT assembly for logic sensor switching and patient specific-secure monitoring system have been discussed.

  14. A magnonic gas sensor based on magnetic nanoparticles.

    PubMed

    Matatagui, D; Kolokoltsev, O V; Qureshi, N; Mejía-Uriarte, E V; Saniger, J M

    2015-06-07

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  15. Feasibility of a Gelatin Temperature Sensor Based on Electrical Capacitance

    PubMed Central

    Teixeira Silva, Fernando; Sorli, Brice; Calado, Veronica; Guillaume, Carole; Gontard, Nathalie

    2016-01-01

    The innovative use of gelatin as a temperature sensor based on capacitance was studied at a temperature range normally used for meat cooking (20–80 °C). Interdigital electrodes coated by gelatin solution and two sensors of different thicknesses (38 and 125 µm) were studied between 300 MHz and 900 MHz. At 38 µm, the capacitance was adequately measured, but for 125 µm the slope capacitance versus temperature curve decreased before 900 MHz due to the electrothermal breakdown between 60 °C and 80 °C. Thus, for 125 µm, the capacitance was studied applying 600 MHz. Sensitivity at 38 µm at 868 MHz (0.045 pF/°C) was lower than 125 µm at 600 MHz (0.14 pF/°C), influencing the results in the simulation (temperature range versus time) of meat cooking; at 125 µm, the sensitivity was greater, mainly during chilling steps. The potential of gelatin as a temperature sensor was demonstrated, and a balance between thickness and frequency should be considered to increase the sensitivity. PMID:27999415

  16. Integrated organic electronic based optochemical sensors using polarization filters

    SciTech Connect

    Kraker, Elke; Haase, Anja; Lamprecht, Bernhard; Jakopic, Georg; Konrad, Christian; Koestler, Stefan

    2008-01-21

    A compact, integrated photoluminescence based oxygen and pH sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The main challenge in such an integrated sensor is the suppression of the excitation light at the detector, which is typically by many orders of magnitude higher in intensity than the emitted fluorescence. In our approach, we refrain from utilizing edge filters which require narrow band excitation sources and dyes with an adequate large Stokes shift. We rather developed an integrated sensor concept relying on two polarizers to separate the emission and excitation light. One polarizer is located right after the OLED, while the other one, oriented at 90 deg. to the first, is placed in front of the OPD. The main advantage of this solution is that any combination of excitation and emission light is acceptable, even if the two signals overlap spectrally. This is especially important for the use of OLEDs as the excitation sources, as these devices typically exhibit a broad spectral emission.

  17. Fiber Bragg grating sensor-based communication assistance device

    NASA Astrophysics Data System (ADS)

    Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan

    2016-08-01

    Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever. The FBG breath pattern analyzer along with specific breath patterns, which are programmed to give specific audio output commands, constitutes the proposed fiber Bragg grating sensor-based communication assistive device. The basic communication can be carried out by instructing the patients with restricted communication ability to perform the specific breath patterns. The present approach is intended to be an alternative to the common approach of brain-computer interface in which an instrument is utilized for learning of brain responses.

  18. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  19. Recent developments in nanostructure based electrochemical glucose sensors.

    PubMed

    Zaidi, Shabi Abbas; Shin, Jae Ho

    2016-01-01

    Diabetes is a major health problem causing 4 million deaths each year and 171 million people suffering worldwide. Although there is no cure for diabetes, nevertheless, the blood glucose level of diabetic patients should be monitored tightly to avoid further complications. Thus, monitoring of glucose in blood has become an inevitable need leading to fabrication of accurate and sensitive advanced blood sugar detection devices for clinical diagnosis and personal care. It led to the development of enzymatic glucose sensing approach. Later on, various types of nanostructures have been utilized owing to their high surface area, great stability, and cost effectiveness for the fabrication of enzymatic as well as for nonenzymatic glucose sensing approach. This work reviews on both categories, however it is not intended to discuss all the research reports published regarding nanostructure based enzymatic and nonenzymatic approaches between mid-2010 and mid-2015. We, do, however, focused to describe the details of many substantial articles explaining the design of sensors, and utilities of the prepared sensors, so that readers might get the principles behind such devices and relevant detection strategies. This work also focuses on biocompatibility and toxicity of nanomaterials as well as provides a critical opinion and discussions about misconceptions in glucose sensors.

  20. A self-powered acetaldehyde sensor based on biofuel cell.

    PubMed

    Zhang, Lingling; Zhou, Ming; Dong, Shaojun

    2012-12-04

    Acetaldehyde is recognized as a type of organic environmental pollutant all over the world, which makes the sensitive, rapid, simple and low-cost detection of acetaldehyde urgent and significant. Inspired by the biological principle of feedback modulation, we have developed a novel and effective self-powered device for aqueous acetaldehyde detection. In this self-powered device, an ethanol/air enzymatic biofuel cell (BFC) served as the core component, which showed the maximum power output density of 28.5 μW cm(-2) at 0.34 V and the open circuit potential (V(oc)) of 0.64 V. The product of ethanol oxidation, acetaldehyde, would counteract the electrocatalysis at the bioanode and further decrease the power output of the BFC. Based on such principles, the fabricated acetaldehyde sensor exhibited excellent selectivity with wide linear range (5-200 μM) and low detection limit (1 μM), which conforms to the criteria provided by the World Health Organisation (WHO). In addition, the sensor fabrication is simple, fast, inexpensive, and user-friendly, and the detection process is convenient, efficient, and time-saving, requiring no complicated equipment. These make such self-powered acetaldehyde sensors feasible and practical for detecting aqueous acetaldehyde, particularly in the field of quality control and monitoring aimed at water resource protection.

  1. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  2. Sphere-based calibration method for trinocular vision sensor

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Shao, Mingwei

    2017-03-01

    A new method to calibrate a trinocular vision sensor is proposed and two main tasks are finished in this paper, i.e. to determine the transformation matrix between each two cameras and the trifocal tensor of the trinocular vision sensor. A flexible sphere target with several spherical circles is designed. As the isotropy of a sphere, trifocal tensor of the three cameras can be determined exactly from the feature on the sphere target. Then the fundamental matrix between each two cameras can be obtained. Easily, compatible rotation matrix and translation matrix can be deduced base on the singular value decomposition of the fundamental matrix. In our proposed calibration method, image points are not requested one-to-one correspondence. When image points locates in the same feature are obtained, the transformation matrix between each two cameras with the trifocal tensor of trinocular vision sensor can be determined. Experiment results show that the proposed calibration method can obtain precise results, including measurement and matching results. The root mean square error of distance is 0.026 mm with regard to the view field of about 200×200 mm and the feature matching of three images is strict. As a sphere projection is not concerned with its orientation, the calibration method is robust and with an easy operation. Moreover, our calibration method also provides a new approach to obtain the trifocal tensor.

  3. Optimal sensor placement using FRFs-based clustering method

    NASA Astrophysics Data System (ADS)

    Li, Shiqi; Zhang, Heng; Liu, Shiping; Zhang, Zhe

    2016-12-01

    The purpose of this work is to develop an optimal sensor placement method by selecting the most relevant degrees of freedom as actual measure position. Based on observation matrix of a structure's frequency response, two optimal criteria are used to avoid the information redundancy of the candidate degrees of freedom. By using principal component analysis, the frequency response matrix can be decomposed into principal directions and their corresponding singular. A relatively small number of principal directions will maintain a system's dominant response information. According to the dynamic similarity of each degree of freedom, the k-means clustering algorithm is designed to classify the degrees of freedom, and effective independence method deletes the sensors which are redundant of each cluster. Finally, two numerical examples and a modal test are included to demonstrate the efficient of the derived method. It is shown that the proposed method provides a way to extract sub-optimal sets and the selected sensors are well distributed on the whole structure.

  4. Optical system designs based on bi-directional sensor devices

    NASA Astrophysics Data System (ADS)

    Grossmann, Constanze; Gawronski, Ute; Perske, Franziska; Notni, Gunther; Tünnermann, Andreas

    2012-10-01

    Small and compact optical system designs are needed in nearly all application scenarios of optical projection and imaging systems, e.g. automotive, metrology, medical or multimedia. Most active optical systems are based on separated imaging (e.g. camera unit) and image generating units (e.g. projection unit). This fact limits the geometrical miniaturization of the system. We present compact optical system designs using the new technology of bi-directional sensor devices. These devices combine light emitting and light detecting elements on one single chip. The application of such innovative opto-electronic devices - so-called bi-directional OLED microdisplays (BiMiDs) - offer a huge potential for miniaturization with a simultaneous increase of performance due to a new integration step. For these new bi-directional sensor devices new optical design concepts for simultaneous and sequential emission and detection are necessary. Because the simultaneous emission and detection can disturb the functionality of the optical system. New concepts has to be applied. A first concept is an exemplary 3-D metrology system applying fringe projection. A second concept is a pico-projection system with an integrated camera function. For both concepts the system configurations and the optical design are discussed. Due to the application of the bi-directional sensor device ultra-compact systems are presented.

  5. Sensor Based Engine Life Calculation: A Probabilistic Perspective

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip

    2003-01-01

    It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.

  6. Quantum Field Energy Sensor based on the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.

  7. Effects on alcohol related fatal crashes of a community based initiative to increase substance abuse treatment and reduce alcohol availability

    PubMed Central

    Hingson, R; Zakocs, R; Heeren, T; Winter, M; Rosenbloom, D; DeJong, W

    2005-01-01

    Objective: This analysis tested whether comprehensive community interventions that focus on reducing alcohol availability and increasing substance abuse treatment can reduce alcohol related fatal traffic crashes. Intervention: Five of 14 communities awarded Fighting Back grants by The Robert Wood Johnson Foundation to reduce substance abuse and related problems attempted to reduce availability of alcohol and expand substance abuse treatment programs (FBAT communities). Program implementation began on 1 January 1992. Design: A quasi-experimental design matched each program community to two or three other communities of similar demographic composition in the same state. Main outcome measures: The ratio of fatal crashes involving a driver or pedestrian with a blood alcohol concentration of 0.01% or higher, 0.08% or higher, or 0.15% or higher were examined relative to fatal crashes where no alcohol was involved for 10 years preceding and 10 years following program initiation. Results: Relative to their comparison communities, the five FBAT communities experienced significant declines of 22% in alcohol related fatal crashes at 0.01% BAC or higher, 20% at 0.08% or higher, and 17% at 0.15% or higher relative to fatal crashes not involving alcohol. Conclusions: Community interventions to reduce alcohol availability and increase substance abuse treatment can reduce alcohol related fatal traffic crashes. PMID:15805436

  8. A flexoelectricity effect-based sensor for direct torque measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Xu, Minglong; Liu, Kaiyuan; Shen, Shengping

    2015-12-01

    In this study, a direct torque sensor based on the flexoelectricity generated by un-polarized polyvinylidene fluoride (PVDF) via electromechanical coupling is developed as a novel torque measurement mechanism that does not require external electric power excitation. The sensing method is developed based on the shear strain gradient and the shear flexoelectric response of PVDF. A theoretical analysis is primarily presented for the design of the sensing structure. Then the structure of the PVDF sensing module is discussed and designed. The radius ratio of the sensing module is defined and then discussed according to the load, the strain gradient, the electrode area and the general electric charge output. The finite element method is used to analyze the mechanical properties of the designed PVDF sensing module. Then the theoretical sensitivity of the sensor is predicated as 0.9441 pC Nm-1. The experiment system setup is developed, and the sensing properties of the measurement mechanism are tested at frequencies of 0.5 Hz, 1 Hz, 1.5 Hz and 2 Hz using identical modules. The measurement range of the designed sensor is 0-1.68 Nm and the average sensitivity is measured as 0.8950 pC Nm-1. The experimental results agree well with the theoretically predicted results. These results prove that the torque sensing method based on un-polarized PVDF is suitable for measurement of dynamic torque loads with a flexoelectricity-based mechanism. When using this method, external electric power excitation of the sensing module is no longer required.

  9. Diagnosis‐based emergency department alcohol harm surveillance: What can it tell us about acute alcohol harms at the population level?

    PubMed Central

    Dinh, Michael; Rodgers, Craig; Muscatello, David J.; McGuire, Rhydwyn; Ryan, Therese; Thackway, Sarah

    2016-01-01

    Abstract Introduction and Aims Acute harm from heavy drinking episodes is an increasing focus of public health policy, but capturing timely data on acute harms in the population is challenging. This study aimed to evaluate the precision of readily available administrative emergency department (ED) data in public health surveillance of acute alcohol harms. Design and Methods We selected a random sample of 1000 ED presentations assigned an ED diagnosis code for alcohol harms (the ‘alcohol syndrome’) in the New South Wales, Australia, automatic syndromic surveillance system. The sample was selected from 68 public hospitals during 2014. Nursing triage free‐text fields were independently reviewed to confirm alcohol consumption and classify each presentation into either an ‘acute’ or ‘chronic’ harm. Positive predictive value (PPV) for acute harm was calculated, and predictors of acute harm presentations were estimated using logistic regression. Results The PPV of the alcohol syndrome for acute alcohol harm was 53.5%. Independent predictors of acute harm were ambulance arrival [adjusted odds ratio (aOR) = 3.4, 95% confidence interval (CI) 2.4–4.7], younger age (12–24 vs. 25–39 years: aOR = 3.4, 95% CI 2.2–5.3), not being admitted (aOR 2.2, 95% CI 1.5–3.2) and arriving between 10 pm and 5.59 am (aOR 2.1, 95% CI 1.5–2.8). PPV among 12 to 24‐year‐olds was 82%. Discussion and Conclusions The alcohol syndrome provides moderate precision as an indicator of acute alcohol harms presenting to the ED. Precision for monitoring acute harm in the population is improved by filtering the syndrome by the strongest independent predictors of acute alcohol harm presentations. [Whitlam G, Dinh M, Rodgers C, Muscatello DJ, McGuire R, Ryan T, Thackway S. Diagnosis‐based emergency department alcohol harm surveillance: What can it tell us about acute alcohol harms at the population level? Drug Alcohol Rev 2016;35:693–701] PMID:27786390

  10. Hiding the Source Based on Limited Flooding for Sensor Networks

    PubMed Central

    Chen, Juan; Lin, Zhengkui; Hu, Ying; Wang, Bailing

    2015-01-01

    Wireless sensor networks are widely used to monitor valuable objects such as rare animals or armies. Once an object is detected, the source, i.e., the sensor nearest to the object, generates and periodically sends a packet about the object to the base station. Since attackers can capture the object by localizing the source, many protocols have been proposed to protect source location. Instead of transmitting the packet to the base station directly, typical source location protection protocols first transmit packets randomly for a few hops to a phantom location, and then forward the packets to the base station. The problem with these protocols is that the generated phantom locations are usually not only near the true source but also close to each other. As a result, attackers can easily trace a route back to the source from the phantom locations. To address the above problem, we propose a new protocol for source location protection based on limited flooding, named SLP. Compared with existing protocols, SLP can generate phantom locations that are not only far away from the source, but also widely distributed. It improves source location security significantly with low communication cost. We further propose a protocol, namely SLP-E, to protect source location against more powerful attackers with wider fields of vision. The performance of our SLP and SLP-E are validated by both theoretical analysis and simulation results. PMID:26593923

  11. Hiding the Source Based on Limited Flooding for Sensor Networks.

    PubMed

    Chen, Juan; Lin, Zhengkui; Hu, Ying; Wang, Bailing

    2015-11-17

    Wireless sensor networks are widely used to monitor valuable objects such as rare animals or armies. Once an object is detected, the source, i.e., the sensor nearest to the object, generates and periodically sends a packet about the object to the base station. Since attackers can capture the object by localizing the source, many protocols have been proposed to protect source location. Instead of transmitting the packet to the base station directly, typical source location protection protocols first transmit packets randomly for a few hops to a phantom location, and then forward the packets to the base station. The problem with these protocols is that the generated phantom locations are usually not only near the true source but also close to each other. As a result, attackers can easily trace a route back to the source from the phantom locations. To address the above problem, we propose a new protocol for source location protection based on limited flooding, named SLP. Compared with existing protocols, SLP can generate phantom locations that are not only far away from the source, but also widely distributed. It improves source location security significantly with low communication cost. We further propose a protocol, namely SLP-E, to protect source location against more powerful attackers with wider fields of vision. The performance of our SLP and SLP-E are validated by both theoretical analysis and simulation results.

  12. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    PubMed Central

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks. PMID:22315541

  13. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  14. Vulnerability of OFDR-based distributed sensors to radiations

    SciTech Connect

    Rizzolo, S.; Boukenter, A.; Marin, E.; Ouerdane, Y.; Girard, S.; Cannas, M.; Perisse, J.; Bauer, S.; Mace, J.R.

    2015-07-01

    Silica-based optical fibers have recently attracted much interest for their use in harsh environments such as the ones encountered in space, military or high energy physics applications. Small size, fast response, light weight and immunity to electromagnetic fields are favorable advantages that often become decisive for fiber sensing to be chosen over other conventional sensing technologies. As an important and representative example, Fukushima's accident highlighted weaknesses in the safety of nuclear power plants. Since, one of the strategic research axis of the nuclear industry is devoted to the development of novel technologies and sensors to enhance and reinforce the safety in nuclear power plants, especially in the case of accidental conditions associated with a strong increase of the constraints applied to the fiber-based system. The objective of this research field is to develop classes of distributed fiber-based sensors using scattering-based techniques, powerful solutions for various measurands measurement. Optical fiber properties, indeed, depend on several external parameters such as temperature, strain and therefore the fiber itself can be used as the sensitive element. Different classes of fiber-based sensing techniques have been recently investigated such as Fiber Bragg Gratings (FBGs) for discrete measurements and Brillouin, Raman and Rayleigh [8,9] scattering based techniques for distributed measurements of various environmental parameters. Whereas Brillouin and Raman sensor resolutions remain in the range of one meter, the advantage of Rayleigh scattering based technique is that it offers very high spatial resolution from 1 cm down to few μm over several hundred meters of fiber length down to few meters respectively. For nuclear industry, integrating fibers-based sensors has to improve the performances (resolution, operating range,...) of security systems in current nuclear power plants (NPPs) and offers new alternative technologies that may

  15. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  16. On effectiveness of network sensor-based defense framework

    NASA Astrophysics Data System (ADS)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  17. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  18. Fabric-based Pressure Sensor Array for Decubitus Ulcer Monitoring

    PubMed Central

    Chung, Philip; Rowe, Allison; Etemadi, Mozziyar; Lee, Hanmin; Roy, Shuvo

    2015-01-01

    Decubitus ulcers occur in an estimated 2.5 million Americans each year at an annual cost of $11 billion to the U.S. health system. Current screening and prevention techniques for assessing risk for decubitus ulcer formation and repositioning patients every 1–2 hours are labor-intensive and can be subjective. We propose use of a Bluetooth-enabled fabric-based pressure sensor array as a simple tool to objectively assess and continuously monitor decubitus ulcer risk. PMID:24111232

  19. Differential Reprogramming Based on Constructive Interference for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Sun, Zhixin

    2016-09-01

    To improve the performance of reprogramming in wireless sensor network, we present a novel reprogramming structure and constructive interference-based dissemination protocol (CIDP) to transmit the patch through out the network fast and reliability. CIDP disseminates the patch, which is divided into several packets, to the network exploiting constructive interference. We evaluate our implementation of CIDP using simulation under different number of nodes. Our results show that CIDP disseminates the patch less than 4 milliseconds. In general, the probability of a node receives the complete patch as high as 99.99%.

  20. Analysis of a plastic optical fiber-based displacement sensor.

    PubMed

    Jiménez, Felipe; Arrue, Jon; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Ziemann, Olaf; Bunge, Christian-Alexander

    2007-09-01

    An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided.