Science.gov

Sample records for alcohol simple acid

  1. A toxicological and dermatological assessment of aryl alkyl alcohol simple acid ester derivatives when used as fragrance ingredients.

    PubMed

    Belsito, D; Bickers, D; Bruze, M; Calow, P; Dagli, M L; Fryer, A D; Greim, H; Miyachi, Y; Saurat, J H; Sipes, I G

    2012-09-01

    The aryl alkyl alcohol simple acid ester derivatives (AAASAE) group of fragrance ingredients was critically evaluated for safety following a complete literature search of the pertinent data. For high end users, calculated maximum skin exposures vary widely from 0.01% to 4.17%. AAASAE exhibit a common route of primary metabolism by carboxylesterases resulting in the formation of the simple acid and an aryl alkyl alcohol. They have low acute toxicity. No significant toxicity was observed in repeat-dose toxicity tests. There was no evidence of carcinogenicity of benzyl alcohol when it was administered in the feed; gavage studies resulted in pancreatic carcinogenesis due to the corn oil vehicle. The AAASAE are not mutagenic in bacterial systems or in vitro in mammalian cells, and have little to no in vivo genotoxicity. Reproductive and developmental toxicity data show no indication of adverse effects on reproductive function and NOELs for maternal and developmental toxicity are far in excess of current exposure levels. The AAASAE are generally not irritating or sensitizing at the current levels of exposure. The Panel is of the opinion that there are no safety concerns regarding the AAASAE at the current levels of use and exposure.

  2. A simple and advantageous protocol for the oxidation of alcohols with O-iodoxybenzoic acid (IBX).

    PubMed

    More, Jesse D; Finney, Nathaniel S

    2002-08-22

    [reaction: see text] An efficient, user-friendly procedure for the oxidation of alcohols using IBX is described. Simply heating a solution of the alcohol in the presence of suspended IBX followed by filtration and removal of the solvent gives excellent yields of the corresponding carbonyl compounds. We illustrate this procedure with a panel of primary and secondary alcohol substrates and note that it allows recycling and reuse of the oxidant.

  3. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    PubMed

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment.

  4. Interpretation of semiclassical transition moments through wave function expansion of dipole moment functions with applications to the OH stretching spectra of simple acids and alcohols.

    PubMed

    Takahashi, Hirokazu; Takahashi, Kaito; Yabushita, Satoshi

    2015-05-21

    Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace

  5. Interpretation of semiclassical transition moments through wave function expansion of dipole moment functions with applications to the OH stretching spectra of simple acids and alcohols.

    PubMed

    Takahashi, Hirokazu; Takahashi, Kaito; Yabushita, Satoshi

    2015-05-21

    Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace

  6. A simple, sensitive, and accurate alcohol electrode

    SciTech Connect

    Verduyn, C.; Scheffers, W.A.; Van Dijken, J.P.

    1983-04-01

    The construction and performance of an enzyme electrode is described which specifically detects lower primary aliphatic alcohols in aqueous solutions. The electrode consists of a commercial Clark-type oxygen electrode on which alcohol oxidase (E.C. 1.1.3.13) and catalase were immobilized. The decrease in electrode current is linearly proportional to ethanol concentrations betwee 1 and 25 ppm. The response of the electrode remains constant during 400 assays over a period of two weeks. The response time is between 1 and 2 min. Assembly of the electrode takes less than 1 h.

  7. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis

    PubMed Central

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC. PMID:22649749

  8. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  9. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  10. gamma-Hydroxybutyric acid (GHB) suppresses alcohol's motivational properties in alcohol-preferring rats.

    PubMed

    Maccioni, Paola; Pes, Daniela; Fantini, Noemi; Carai, Mauro A M; Gessa, Gian Luigi; Colombo, Giancarlo

    2008-03-01

    gamma-Hydroxybutyric acid (GHB) reduces alcohol drinking, promotes abstinence from alcohol, suppresses craving for alcohol, and ameliorates alcohol withdrawal syndrome in alcoholics. At preclinical level, GHB suppresses alcohol withdrawal signs and alcohol intake in rats. The present study was designed to investigate whether GHB administration was capable of affecting alcohol's motivational properties (the possible animal correlate of human craving for alcohol) in selectively bred Sardinian alcohol-preferring rats. To this aim, rats were initially trained to lever press for alcohol (15%, vol/vol) under a procedure of operant, oral alcohol self-administration (fixed ratio 4 in 30-min daily sessions). Once responding for alcohol had stabilized, rats were divided into two groups and allocated to two independent experiments. Experiment 1 assessed the effect of GHB (0, 25, 50, and 100mg/kg, i.p.) on breakpoint for alcohol, defined as the lowest response requirement not achieved by each rat when exposed to a single-session progressive ratio schedule of reinforcement. Experiment 2 assessed the effect of GHB (0, 25, 50, and 100mg/kg, i.p.) on single-session extinction responding for alcohol (alcohol was absent and unreinforced responding was recorded). Breakpoint and extinction responding for alcohol are reliable indexes of alcohol's motivational strength. In Experiment 1, all doses of GHB reduced--by approximately 20% in comparison to saline-treated rats--breakpoint for alcohol. In Experiment 2, administration of 25, 50, and 100mg/kg GHB reduced--by approximately 25%, 40%, and 50%, respectively, in comparison to saline-treated rats--extinction responding for alcohol. Conversely, no dose of GHB altered breakpoint and extinction responding for sucrose (3%, wt/vol) in two independent subsets of Sardinian alcohol-preferring rats. Together, these data suggest that GHB administration specifically suppressed alcohol's motivational properties in Sardinian alcohol-preferring rats

  11. Direct Ruthenium-Catalyzed Hydrogenation of Carboxylic Acids to Alcohols.

    PubMed

    Cui, Xinjiang; Li, Yuehui; Topf, Christoph; Junge, Kathrin; Beller, Matthias

    2015-09-01

    The "green" reduction of carboxylic acids to alcohols is a challenging task in organic chemistry. Herein, we describe a general protocol for generation of alcohols by catalytic hydrogenation of carboxylic acids. Key to success is the use of a combination of Ru(acac)3, triphos and Lewis acids. The novel method showed broad substrate tolerance and a variety of aliphatic carboxylic acids including biomass-derived compounds can be smoothly reduced.

  12. Thermal Conductivity of Metastable States of Simple Alcohols

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.; Romantsova, O. O.; Bermejo, F. J.; Cabrillo, C.; Bustinduy, I.; González, M. A.

    The thermal conductivity κ(T) of glassy and supercooled liquid methanol, ethanol and of 1-propanol has been measured under equilibrium vapor pressure in temperature interval from 2 K to 160 K by the steady-state method. The metastable orientationally disordered crystal of ethyl alcohol is found to exhibit a temperature dependence of κ(T) that is remarkably close to that of the fully amorphous solid, especially at low temperatures. In the case of propyl alcohol, our results emphasize the role played by internal molecular degrees of freedom as sources of strong resonant phonon scattering. For all samples here explored, the glass-like behavior of κ(T) is described at the phenomenological level using the model of soft potentials. The thermal transport is then understood in terms of a competition between phonon-assisted and diffusive transport effects. The thermal conductivity κ is thus a sum of two contributions: κ = κI + κII, where κI is the acoustic phonon component dependent on the translational and orientational ordering of molecules, κII — is the phonon diffusion component corresponding to a non — acoustic phonon heat transfer in accordance with the Cahill — Pohl model.

  13. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system.

  14. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system. PMID:18960346

  15. Simple method for refining arabinan polysaccharides by alcohol extraction of the prune, Prunus domestica L.

    PubMed

    Hara, Yukari; Mizukawa, Hitomi; Yamamoto, Hirotaka; Ikami, Takao; Kato, Koji; Yabe, Tomio

    2013-01-01

    L-Arabinose is a useful sugar in the food industry. We demonstrate here simple methods for refining arabinan polysaccharides by alcohol extraction from prune, Prunus domestica L., as a source of L-arabinose. Alcohol-soluble polysaccharides were purified from a solution of prune extracted by 80% ethanol. After fractionating the polysaccharides by ion-exchange chromatography, arabinans were identified as mainly constituted by (1→5)-linked arabinofuranosyl units.

  16. 2-Iodoxybenzoic acid--a simple oxidant with a dazzling array of potential applications.

    PubMed

    Duschek, Alexander; Kirsch, Stefan F

    2011-02-11

    Since its discovery by Christoph Hartmann and Victor Meyer in 1893, 2-iodoxybenzoic acid (IBX) has emerged as a rather ubiquitous oxidant for organic synthesis. The past decade has seen the development of a large variety of applications that go far beyond the simple oxidation of alcohols. This Review is concerned with the synthetic potential of IBX, with particular emphasis on uncommon reactivity patterns and novel fields of application.

  17. Simple spectrophotometry method for the determination of sulfur dioxide in an alcohol-thionyl chloride reaction.

    PubMed

    Zheng, Jinjian; Tan, Feng; Hartman, Robert

    2015-09-01

    Thionyl chloride is often used to convert alcohols into more reactive alkyl chloride, which can be easily converted to many compounds that are not possible from alcohols directly. One important reaction of alkyl chloride is nucleophilic substitution, which is typically conducted under basic conditions. Sulfur dioxide, the by-product from alcohol-thionyl chloride reactions, often reacts with alkyl chloride to form a sulfonyl acid impurity, resulting in yield loss. Therefore, the alkyl chloride is typically isolated to remove the by-products including sulfur dioxide. However, in our laboratory, the alkyl chloride formed from alcohol and thionyl chloride was found to be a potential mutagenic impurity, and isolation of this compound would require extensive safety measures. As a result, a flow-through process was developed, and the sulfur dioxide was purged using a combination of vacuum degassing and nitrogen gas sweeping. An analytical method that can quickly and accurately quantitate residual levels of sulfur dioxide in the reaction mixture is desired for in-process monitoring. We report here a simple ultraviolet (UV) spectrophotometry method for this measurement. This method takes advantage of the dramatic change in the UV absorbance of sulfur dioxide with respect to pH, which allows for accurate quantitation of sulfur dioxide in the presence of the strong UV-absorbing matrix. Each sample solution was prepared using 2 different diluents: 1) 50 mM ammonium acetate in methanol +1% v/v hydrochloric acid, pH 1.3, and 2) 50 mM ammonium acetate in methanol +1% glacial acetic acid, pH 4.0. The buffer solutions were carefully selected so that the UV absorbance of the sample matrix (excluding sulfur dioxide) at 276 nm remains constant. In the pH 1.3 buffer system, sulfur dioxide shows strong UV absorbance at 276 nm. Therefore, the UV absorbance of sample solution is the sum of sulfur dioxide and sample matrix. While in the pH 4.0 buffer system, sulfur dioxide has

  18. [Disturbances of folic acid and homocysteine metabolism in alcohol abuse].

    PubMed

    Cylwik, Bogdan; Chrostek, Lech

    2011-04-01

    Chronic alcohol abuse leads to malnutrition, and thus to the deficiency of many nutrients, including vitamins and trace elements. Most often comes to the deficiency of all vitamins, however because the clinical implications, the most important is folic acid (vitamin B9) deficiency. Biochemical effect of folate deficiency is elevated homocysteine concentration in the blood, named "cholesterol of XXI. century". In the paper, the folate and homocysteine metabolism in alcohol abuse was discussed. Mechanisms of alcohol action on folate homeostasis in the human body have been indicated. Chronic alcohol consumption leads to deficiency of this vitamin due to their dietary inadequacy, intestinal malabsorption, decreased hepatic uptake and increased body excretion, mainly via urine. The decreased concentration of serum folic acid may occur in 80% of alcoholics. The cause of elevated concentrations of homocysteine in the serum of alcohol abusers is also a deficiency of vitamins involved such as vitamin B12 and pyridoxal phosphate. Disturbance of folic acid and homocysteine metabolism in alcohol abusers can lead to serious clinical consequences. Folic acid deficiency leads inter alia to macrocytic and megaloblastic anemia and neurological disorders. Megaloblastic anemia occurs in about half of alcohol abusers with chronic liver diseases. In turn, high level of homocysteine in blood is associated with an inreased risk of cardiovascular diseases. Hyperhomocysteinemia is an independent risk factor that favors the occurrence of acute coronary syndromes in patients with coronary heart disease.

  19. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  20. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.

    PubMed

    Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin

    2014-01-01

    Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products.

  1. Chemoselective esterification of phenolic acids and alcohols.

    PubMed

    Appendino, Giovanni; Minassi, Alberto; Daddario, Nives; Bianchi, Federica; Tron, Gian Cesare

    2002-10-31

    [formula: see text] The Mitsunobu reaction can distinguish between alcohol and phenol hydroxyls in esterification reactions, providing an expeditious and broadly applicable entry into various phenolics and polyphenolics of biomedical and nutritional relevance.

  2. Simple Organic Molecules as Catalysts for Enantioselective Synthesis of Amines and Alcohols

    PubMed Central

    Silverio, Daniel L.; Torker, Sebastian; Pilyugina, Tatiana; Vieira, Erika M.; Snapper, Marc L.; Haeffner, Fredrik; Hoveyda, Amir H.

    2012-01-01

    The discovery of new catalysts that can generate complex organic compounds via enantioselective transformations is central to advances in the life sciences;i for this reason, many chemists try to discover catalysts that can be used to produce chiral molecules with a strong preference for one mirror image isomer.ii The ideal catalyst should be devoid of precious elementsiii and should bring reactions to completion in a few hours using operationally simple procedures. In this manuscript, we introduce a set of small organic molecules that can catalyze reactions of unsaturated organoboron reagents with imines and carbonyls; the products of the reactions are enantiomerically pure amines and alcohols, which can be used to synthesize more complex, biologically active molecules. A distinguishing feature of this new catalyst class is the presence of a 'key' proton embedded within their structure. The catalyst is derived from the abundant amino acid valine and was prepared in large quantities in four steps using inexpensive reagents. Reactions are scalable, do not demand stringent conditions, and can be performed with as little as 0.25 mol % catalyst in less than six hours at room temperature to generate products in >85% yield and ≥97:3 enantiomeric ratio. The efficiency, selectivity and operational simplicity of the transformations and the range of boron-based reagents render this advance vital to future progress in chemistry, biology and medicine. PMID:23407537

  3. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2013-04-30

    In the present work, we show that the superlubricity can be achieved when the polyhydroxy alcohol solutions are mixed with acid solutions. The lowest friction coefficients between 0.003 and 0.006 are obtained on a traditional tribometer with a high pressure under the lubrication of these mixtures. Experimental results indicate that the superlubricity mechanism is in accordance with that under the lubrication of the mixture of glycerol and acid solutions in the study by Li et al. (Li , J. J.; Zhang, C. H.; Ma, L. R.; Liu, Y. H.; Luo, J. B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 2013, 29, 271-275). It is also found that the superlubricity is closely dependent upon the concentration of polyhydroxy alcohol and the number of hydroxyl groups in the molecular structure of polyhydroxy alcohol. However, the number of carbon atoms and the arrangement of hydroxyl groups in the molecular structure almost have no effect on superlubricity.

  4. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    DOEpatents

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  5. Palladium-catalyzed allylic alkylation of simple ketones with allylic alcohols and its mechanistic study.

    PubMed

    Huo, Xiaohong; Yang, Guoqiang; Liu, Delong; Liu, Yangang; Gridnev, Ilya D; Zhang, Wanbin

    2014-06-23

    Allylic alcohols were directly used in Pd-catalyzed allylic alkylations of simple ketones under mild reaction conditions. The reaction proceeded smoothly at 20 °C by the concerted action of a Pd catalyst, a pyrrolidine co-catalyst, and a hydrogen-bonding solvent, and does not require any additional reagents. A computational study suggested that methanol plays a crucial role in the formation of the π-allylpalladium complex by lowering the activation barrier. PMID:24848670

  6. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    PubMed

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields.

  7. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans.

    PubMed

    Raabe, Richard C; Mathies, Laura D; Davies, Andrew G; Bettinger, Jill C

    2014-01-01

    Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.

  8. The Omega-3 Fatty Acid Eicosapentaenoic Acid Is Required for Normal Alcohol Response Behaviors in C. elegans

    PubMed Central

    Raabe, Richard C.; Mathies, Laura D.; Davies, Andrew G.; Bettinger, Jill C.

    2014-01-01

    Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol. PMID:25162400

  9. Solubilities of stearic acid, stearyl alcohol, and arachidyl alcohol in supercritical carbon dioxide at 35[degree]C

    SciTech Connect

    Iwai, Yoshio; Koga, Yoshio; Maruyama, Hironori; Arai, Yasuhiko . Dept. of Chemical Engineering)

    1993-10-01

    The solubilities of stearic acid (octadecanoic acid), stearyl alcohol (1-octadecanol), and arachidyl alcohol (1-eicosanol) in supercritical carbon dioxide were measured by using a flow-type apparatus at 35 C up to 23.7 MPa. The solubilities of those substances and other fatty acids and higher alcohols in supercritical carbon dioxide at 35 C were correlated by a solution model based on the regular solution model coupled with the Flory-Huggins theory.

  10. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review.

    PubMed

    Vinayagam, Ramachandran; Jayachandran, Muthukumaran; Xu, Baojun

    2016-02-01

    Diabetes mellitus (DM) has become a major public health threat across the globe. Current antidiabetic therapies are based on synthetic drugs that very often have side effects. It has been widely acknowledged that diet plays an important role in the management of diabetes. Phenolic acids are widely found in daily foods such as fruits, vegetables, cereals, legumes, and wine and they provide biological, medicinal, and health properties. Simple phenolic acids have been shown to increase glucose uptake and glycogen synthesis, improve glucose and lipid profiles of certain diseases (obesity, cardiovascular diseases, DM, and its complication). The current review is an attempt to list out the antidiabetic effects of simple phenolic acids from medicinal plants and botanical foods. PMID:26634804

  11. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    PubMed

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid.

  12. Direct dehydrative esterification of alcohols and carboxylic acids with a macroporous polymeric acid catalyst.

    PubMed

    Minakawa, Maki; Baek, Heeyoel; Yamada, Yoichi M A; Han, Jin Wook; Uozumi, Yasuhiro

    2013-11-15

    A macroporous polymeric acid catalyst was prepared for the direct esterification of carboxylic acids and alcohols that proceeded at 50-80 °C without removal of water to give the corresponding esters with high yield. Flow esterification for the synthesis of biodiesel fuel was also achieved by using a column-packed macroporous acid catalyst under mild conditions without removal of water.

  13. Alcohol and liver disease in Europe--Simple measures have the potential to prevent tens of thousands of premature deaths.

    PubMed

    Sheron, Nick

    2016-04-01

    In the World Health Organisation European Region, more than 2,370,000 years of life are lost from liver disease before the age of 50; more than lung cancer, trachea, bronchus, oesophageal, stomach, colon, rectum and pancreatic cancer combined. Between 60-80% of these deaths are alcohol related, a disease for which no pharmaceutical therapy has yet been shown to improve long-term survival. The toxicity of alcohol is dose related at an individual level, and is dose related at a population level; overall liver mortality is largely determined by population alcohol consumption. Trends in alcohol consumption correlate closely with trends in overall liver mortality, with 3-5-fold decreases or increases in liver mortality in different European countries over the last few decades. The evidence base for alcohol control measures aimed at reducing population alcohol consumption has been subjected to rigorous evaluation; most recently by the Organisation for Economic Co-Operation and Development (OECD). Effective alcohol policy measures reduce alcohol mortality, including mortality from liver disease. The most effective and cost effective measures have been summarised by the OECD and the World Health Organisation: regular incremental above inflation tax increases, a minimum price for alcohol, effective protection of children from alcohol marketing and low level interventions from clinicians. Simple, cheap and effective changes to alcohol policy by European Institutions and member states have the potential to dramatically reduce liver mortality in Europe. PMID:26592352

  14. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides

    SciTech Connect

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.

    1996-07-12

    Scandium triflate catalyzes the acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The catalytic activity of the scandium triflates is found to be quite high allowing the acylation of secondary and tertiary alcohols.

  15. 21 CFR 178.3770 - Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyhydric alcohol esters of oxidatively refined... Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids. Polyhydric alcohol... following prescribed conditions: (a) The polyhydric alcohol esters identified in this paragraph may be...

  16. 21 CFR 178.3770 - Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyhydric alcohol esters of oxidatively refined... Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids. Polyhydric alcohol... following prescribed conditions: (a) The polyhydric alcohol esters identified in this paragraph may be...

  17. 21 CFR 178.3770 - Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyhydric alcohol esters of oxidatively refined... Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids. Polyhydric alcohol... following prescribed conditions: (a) The polyhydric alcohol esters identified in this paragraph may be...

  18. 21 CFR 178.3770 - Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyhydric alcohol esters of oxidatively refined... Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids. Polyhydric alcohol... following prescribed conditions: (a) The polyhydric alcohol esters identified in this paragraph may be...

  19. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  20. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  1. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  2. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  3. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  4. Perfluorinated alcohols and acids induce coacervation in aqueous solutions of amphiphiles.

    PubMed

    Khaledi, Morteza G; Jenkins, Samuel I; Liang, Shuang

    2013-02-26

    We have discovered that water-miscible perfluorinated alcohols and acids (FA) can induce simple and complex coacervation in aqueous solutions of a wide range of amphiphilic molecules such as synthetic surfactants, phospholipids, and bile salts as well as polyelectrolytes. This unique phenomenon seems to be nearly ubiquitous, especially for complex coacervate systems composed of mixed catanionic amphiphiles. In addition, coacervation and aqueous phase separation were observed over a wide range of surfactants concentrations and for different mole fractions of the oppositely charged amphiphile.

  5. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  6. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  7. Regulation of human class I alcohol dehydrogenases by bile acids.

    PubMed

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C

    2013-09-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.

  8. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  9. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome

    PubMed Central

    SOGUT, IBRAHIM; OGLAKCI, AYSEGUL; KARTKAYA, KAZIM; OL, KEVSER KUSAT; SOGUT, MELIS SAVASAN; KANBAK, GUNGOR; INAL, MINE ERDEN

    2015-01-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure. PMID:25667671

  10. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  11. A Simple Technique of Liquid Purity Analysis and Its Application to Analysis of Water Concentration in Alcohol-Water Mixtures

    NASA Astrophysics Data System (ADS)

    de, Dilip; Aziz de, Abdul

    2012-10-01

    The change of activation energy of a liquid molecule and hence its viscosity coefficient with addition of contaminants to the original liquid gives rise to a new technology for analysis of purity of the liquid. We discovered that concentration of certain contaminants such as water in alcohol or vice versa can be uniquely and accurately determined in a short time (about 10-15 minutes) using a simple and yet innovative technique that only requires measurement of time of flow of the impure liquid (say, water-alcohol mixture) and distilled water through a simple viscometer. We determined the increase of activation energy of alcohol molecules with increase of water concentration for ethyl and methyl alcohol. Our detailed investigation on the alcohol-water mixtures along with discussion on possible future potential application of the simple and very reliable inexpensive technique for liquid purity analysis is presented. We compared our present method with other methods on the accuracies, problems and reliability of impurity analysis in liquids. We also discuss a part of the quantum theory of viscosity of liquid mixtures that is in the developmental stage.

  12. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  13. Chiral discrimination of secondary alcohols and carboxylic acids by NMR spectroscopy.

    PubMed

    Pal, Indrani; Chaudhari, Sachin R; Suryaprakash, Nagaraja Rao

    2015-02-01

    The manuscript reports two novel ternary ion-pair complexes, which serve as chiral solvating agents, for enantiodiscrimination of secondary alcohols and carboxylic acids. The protocol for discrimination of secondary alcohols is designed by using one equivalent mixture each of enantiopure mandelic acid, 4-dimethylaminopyridine (DMAP) and a chiral alcohol. For discrimination of carboxylic acids, the ternary complex is obtained by one equivalent mixture each of enantiopure chiral alcohol, DMAP and a carboxylic acid. The designed protocols also permit accurate measurement of enantiomeric composition.

  14. 21 CFR 178.3770 - Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyhydric alcohol esters of oxidatively refined... SANITIZERS Certain Adjuvants and Production Aids § 178.3770 Polyhydric alcohol esters of oxidatively refined (Gersthofen process) montan wax acids. Polyhydric alcohol esters of oxidatively refined (Gersthofen...

  15. PERFLUOROOCTANOIC ACID AND PERFLUORONONANOIC ACID IN FETAL AND NEONATAL MICE FOLLOWING IN UTERO EXPOSURE TO 8-2 FLUOROTELOMER ALCOHOL

    EPA Science Inventory

    8-2 fluorotelomer alcohol (FTOH) and its metabolites, perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), are developmental toxicants, but metabolism and distribution during pregnancy is not known. To examine this, timed-pregnant mice received a single gavage dose (...

  16. Low-temperature specific heat of structural and orientational glasses of simple alcohols

    NASA Astrophysics Data System (ADS)

    Ramos, M. A.; Talón, C.; Jiménez-Riobóo, R. J.; Vieira, S.

    2003-03-01

    In this work, we review, extend and discuss low-temperature specific-heat experiments, that we have conducted on different molecular (hydrogen-bonded) solids both in crystalline and glassy (either amorphous or orientationally disordered) phases. In particular, we have measured the low-temperature specific heat Cp for a set of simple, well known alcohols: glycerol, propanol and ethanol. For glycerol, we have prepared and measured Cp of both glass and crystal phases down to 0.5 K. The same has been done for propanol, in this case comparing the strikingly different values observed for the two chemical isomers, 1-propanol and 2-propanol. Moreover, ethanol exhibits a very interesting polymorphism presenting three different solid phases at low temperature: a fully ordered (monoclinic) crystal, an orientationally disordered (cubic) crystal or 'orientational glass' and the ordinary structural (amorphous) glass. By measuring and comparing the low-temperature specific heat of the three phases, in the boson peak range 2-10 K as well as in the tunnelling-state range below 1 K, we provide a quantitative confirmation that 'glassy behaviour', either concerning low-temperature properties or the glass-transition phenomenon itself, is not directly related to the lack of long-range crystalline order occurring in amorphous solids.

  17. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    PubMed

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  18. The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols.

    PubMed

    Xiao, Jian; Zhao, Kai; Loh, Teck-Peng

    2012-04-11

    The acid free asymmetric intermolecular α-alkylation of aldehydes with alcohols has been discovered using trifluoroethanol as solvent. This unprecedented system affords the enantioenriched functionalized primary alcohols (after NaBH(4) reduction) in high yields and good to excellent enantioselectivities with wide substrate scope in the absence of any acid additive.

  19. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  20. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  1. Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice.

    PubMed

    Xu, Yajun; Tang, Yunan; Li, Yong

    2008-03-01

    Maternal alcohol consumption during pregnancy can induce central nervous system abnormalities in the fetus, and folic acid supplementation can reverse some of the effects. The objective of the present study was to investigate prenatal alcohol exposure-induced fetal brain proteome alteration and the protective effect of folic acid using proteomic techniques. Alcohol (5.0 g/kg) was given intragastrically from gestational day (GD) 6 to 15, with or without 60.0 mg folic acid/kg given intragastrically during GD 1-16 to pregnant Balb/c mice. The control group received distilled water only. Results of litter evaluation on GD 18 showed that supplementation of folic acid reversed the prevalence of microcephaly induced by alcohol. Proteomic analysis indicated that, under the dosage of the present investigation, folic acid mainly reversed the alcohol-altered proteins involved in energy production, signal pathways and protein translation, which are all important for central nervous system development. PMID:17697403

  2. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  3. Safety and tolerability of gamma-hydroxybutyric acid in the treatment of alcohol-dependent patients.

    PubMed

    Beghè, F; Carpanini, M T

    2000-04-01

    Gamma-hydroxybutyric acid (GHB) has been in clinical use in Italy since 1991 for treatment of alcohol dependence. Results of phase III and phase IV studies have shown that the drug is effective and well tolerated in the treatment of alcohol withdrawal syndrome and in reducing alcohol consumption and alcohol craving. Pharmacosurveillance indicates that abuse of gamma-hydroxybutyric acid is a limited phenomenon in clinical settings when the drug is dispensed under strict medical surveillance and entrusted to a referring familiar member of the patient.

  4. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  5. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.

    PubMed

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols.

  6. Thermal transformation of trans-5-O-caffeoylquinic acid (trans-5-CQA) in alcoholic solutions.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2015-01-15

    Chlorogenic acid (CQA), the ester of caffeic acid with quinic acid supplied to human organisms mainly with coffee, tea, fruit and vegetables, has been one of the most studied polyphenols. It is potentially useful in pharmaceuticals, food additives, and cosmetics due to its recently discovered biomedical activity, which revived interest in its properties, isomers and natural occurrence. We found that the heating of the alcoholic solution of trans-5-O-caffeoylquinic acid produced at least twenty compounds (chlorogenic acid derivatives and its reaction products with water and alcohol). The formation of three of them (methoxy, ethoxy and propoxy adducts) has not been reported yet. No reports exist either on methoxy adducts of 3- and 4-O-caffeoylquinic acid appearing in buffered methanol/water mixtures at pH exceeding 7. We observed that the amount of each formed component depended on the heating time, type of alcohol, its concentration in alcoholic/water mixture, and pH.

  7. Exacerbation of Alcohol-Induced Oxidative Stress in Rats by Polyunsaturated Fatty Acids and Iron Load

    PubMed Central

    Patere, S. N.; Majumdar, A. S.; Saraf, M. N.

    2011-01-01

    The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography), polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron. PMID:22303057

  8. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  9. A simple lattice model for the microstructure of neat alcohols: Application to liquid methanol

    NASA Astrophysics Data System (ADS)

    Ciach, Alina; Perera, Aurélien

    2009-07-01

    Simple lattice model for self-associating molecules such as methanol or tert-butanol is proposed and studied in mean-field (MF) approximation in the case of methanol. In addition to the isotropic van der Waals interaction, the hydrogen bonding is present in this model when the neighboring alcohol molecules are in appropriate orientations. The orientation of the polar molecule is given by the unit vector n̂ parallel to the vector connecting the center of the tail group with the center of the head group of the molecule. Stability region of the uniform fluid phase against gas-liquid separation and order-disorder transition is obtained for neat methanol in MF approximation. In order to describe the self-association patterns in the liquid, we consider the grand-canonical ensemble average of the scalar product of the orientations of the molecules ⟨n̂(x)ṡn̂(x +Δx)⟩ as a function of the vector Δx describing the separation between the centers of the molecules. For methanol we find in MF oscillatory decay of ⟨n ̂(x)ṡn̂(x +Δx)⟩ for Δx ⊥n̂(x) and for Δx ∥n̂(x); the wavelength is somewhat less than two molecular diameters in both cases, and the decay length is larger in the perpendicular direction. This indicates that on average alternating antiparallel and parallel orientations of the second molecule are found for increasing separation from the first molecule in both directions. Such local orientational ordering of the molecules is consistent with association into zigzag chainlike clusters found in recent spectroscopic measurements and computer simulations. In Fourier representation the above structure function assumes maximum for the wave number that coincides with the prepeak position for site-site correlations found in simulations. We argue that ⟨n̂(x)ṡn̂(x +Δx)⟩ can provide a useful tool for discriminating between different local arrangements of any polar molecules.

  10. Unexpected dehomologation of primary alcohols to one-carbon shorter carboxylic acids using o-iodoxybenzoic acid (IBX).

    PubMed

    Xu, Shu; Itto, Kaori; Satoh, Masahide; Arimoto, Hirokazu

    2014-03-14

    A novel and efficient transformation of primary alcohols to one-carbon shorter carboxylic acids using IBX is reported. Mechanistic studies revealed that the combination of IBX and molecular iodine produces a different active hypervalent iodine species.

  11. Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold-acidic aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Hamelin, Antoinette; Ho, Yeunghaw; Chang, Si-Chung; Gao, Xiaoping; Weaver, Michael J.

    1992-02-01

    The voltammetric oxidation in aqueous 0.1 Molar perchloric acid of four polyhydric alcohols, ethylene glycol, glycerol, meso-erythritol, and d-mannitol, on seven oriented gold surfaces is reported with the objective of assessing the role of surface crystallographic orientation on the catalytic electrooxidation of such poly-functional reactants. The automatically well-ordered nature of these gold surfaces has been scrutinized by in-situ scanning tunneling microscopy. In particular, the Au(221) and (533) faces were selected since they provide stepped surfaces, 4(111)-(111) and 4(111)-(100), respectively. The results are compared with corresponding data for simple unifunctional reactants, specifically for formic acid oxidation and with results reported previously for carbon monoxide oxidation. In contrast to the last reaction, the electrooxidation rates for both the polyhydric alcoholic and formic acid are greatest on Au(111), with Au(110) displaying unusually low activity. While formic acid electrooxidation is insensitive to the presence of monoatomic surface steps, the polyhydric alcohols (especially mannitol) are substantially less reactive on AU(221) and (533) relative to Au(111).

  12. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  13. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  14. Model for conductometric detection of carbohydrates and alcohols as complexes with boric acid and borate ion in high-performance liquid chromatography

    SciTech Connect

    Bertrand, G.L.; Armstrong, D.W. )

    1989-03-15

    In recent articles, Okada has demonstrated the utility of indirect conductometric detection of electrically neutral sugars and alcohols through their complexes in boric acid solution. The use of a boric acid eluent provides a highly sensitive means of detection for monosaccharides, lactose, and sugar alcohols but not for polysaccharides (other than lactose) and simple alcohols. Addition of sorbitol, mannitol, or fructose to the boric acid eluent allows detection of the polysaccharides and simple alcohols, as well as lactose, glucose, fructose, and presumably other monosaccharides and sugar alcohols. These results were interpreted in terms of the ability of an analyte to form either dissociated or undissociated complexes with boric acid. This interpretation was quantified with a mathematical description of the complexation equilibria and the conductivity due to ionic species. Unfortunately, the mathematical model contains some incorrect assumptions that severely limit the utility of the derived equations and may prevent optimization of this potentially important technique. We present here a more general mathematical model that does not suffer from these limitations.

  15. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  16. The Central Amygdala and Alcohol: Role of γ-Aminobutyric Acid, Glutamate, and Neuropeptides

    PubMed Central

    Roberto, Marisa; Gilpin, Nicholas W.; Siggins, George R.

    2012-01-01

    Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-d-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence. PMID:23085848

  17. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  18. Simple and Automated Coulometric Titration of Acid Using Nonisolated Electrodes

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Kenney, Joshua B.; Hasbrouck, Scott; Collins, Michael J.; Amend, John R.

    2011-01-01

    Coulometric titrations involve the quantification of analyte by measurements of current and time. In most coulometric titrations, the anode and cathode are placed in isolated cells that are connected by a salt bridge. By contrast, the experiments described here involve coulometric titrations (of acidic protons in solution) using a silver anode and…

  19. Octanoic acid in alcohol-responsive essential tremor

    PubMed Central

    McCrossin, Gayle; Lungu, Codrin; Considine, Elaine; Toro, Camilo; Nahab, Fatta B.; Auh, Sungyoung; Buchwald, Peter; Grimes, George J.; Starling, Judith; Potti, Gopal; Scheider, Linda; Kalowitz, Daniel; Bowen, Daniel; Carnie, Andrea; Hallett, Mark

    2013-01-01

    Objective: To assess safety and efficacy of an oral, single, low dose of octanoic acid (OA) in subjects with alcohol-responsive essential tremor (ET). Methods: We conducted a double-blind, placebo-controlled, crossover, phase I/II clinical trial evaluating the effect of 4 mg/kg OA in 19 subjects with ET. The primary outcome was accelerometric postural tremor power of the dominant hand 80 minutes after administration. Secondary outcomes included digital spiral analysis, pharmacokinetic sampling, as well as safety measures. Results: OA was safe and well tolerated. Nonserious adverse events were mild (Common Terminology Criteria for Adverse Events grade 1) and equally present after OA and placebo. At the primary outcome, OA effects were not different from placebo. Secondary outcome analyses of digital spiral analysis, comparison across the entire time course in weighted and nonweighted accelerometry, as well as nondominant hand tremor power did not show a benefit of OA over placebo. The analysis of individual time points showed that OA improved tremor at 300 minutes (dominant hand, F1,16 = 5.49, p = 0.032 vs placebo), with a maximum benefit at 180 minutes after OA (both hands, F1,16 = 6.1, p = 0.025). Conclusions: Although the effects of OA and placebo at the primary outcome were not different, secondary outcome measures suggest superiority of OA in reducing tremor at later time points, warranting further trials at higher dose levels. Classification of evidence: This study provides Class I evidence that a single 4-mg/kg dose of OA is not effective in reducing postural tremor in patients with ET at a primary outcome of 80 minutes, but is effective for a secondary outcome after 180 minutes. PMID:23408867

  20. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities.

  1. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  2. Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols.

    PubMed

    Ankarloo, Jonas; Wikman, Susanne; Nicholls, Ian A

    2010-01-01

    The inducible Mar phenotype of Escherichia coli is associated with increased tolerance to multiple hydrophobic antibiotics as well as some highly hydrophobic organic solvents such as cyclohexane, mediated mainly through the AcrAB/TolC efflux system. The influence of water miscible alcohols ethanol and 1-propanol on a Mar constitutive mutant and a mar deletion mutant of E. coli K-12, as well as the corresponding strains carrying the additional acrAB deletion, was investigated. In contrast to hydrophobic solvents, all strains were killed in exponential phase by 1-propanol and ethanol at rates comparable to the parent strain. Thus, the Mar phenotype does not protect E. coli from killing by these more polar solvents. Surprisingly, AcrAB does not contribute to an increased alcohol tolerance. In addition, sodium salicylate, at concentrations known to induce the mar operon, was unable to increase 1-propanol or ethanol tolerance. Rather, the toxicity of both solvents was increased in the presence of sodium salicylate. Collectively, the results imply that the resilience of E. coli to water miscible alcohols, in contrast to more hydrophobic solvents, does not depend upon the AcrAB/TolC efflux system, and suggests a lower limit for substrate molecular size and functionality. Implications for the application of microbiological systems in environments containing high contents of water miscible organic solvents, e.g., phage display screening, are discussed. PMID:20480026

  3. Simple Resistance Exercise helps Patients with Non-alcoholic Fatty Liver Disease.

    PubMed

    Takahashi, A; Abe, K; Usami, K; Imaizumi, H; Hayashi, M; Okai, K; Kanno, Y; Tanji, N; Watanabe, H; Ohira, H

    2015-10-01

    To date, only limited evidence has supported the notion that resistance exercise positively impacts non-alcoholic fatty liver disease. We evaluated the effects of resistance exercise on the metabolic parameters of non-alcoholic fatty liver disease (NAFLD) in 53 patients who were assigned to either a group that performed push-ups and squats 3 times weekly for 12 weeks (exercise group; n=31) or a group that did not (control; n=22). Patients in the control group proceeded with regular physical activities under a restricted diet throughout the study. The effects of the exercise were compared between the 2 groups after 12 weeks. Fat-free mass and muscle mass significantly increased, whereas hepatic steatosis grade, mean insulin and ferritin levels, and the homeostasis model assessment-estimated insulin resistance index were significantly decreased in the exercise group. Compliance with the resistance exercise program did not significantly correlate with patient background characteristics such as age, sex, BMI and metabolic complications. These findings show that resistance exercise comprising squats and push-ups helps to improve the characteristics of metabolic syndrome in patients with non-alcoholic fatty liver disease.

  4. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    SciTech Connect

    Rock, C.D.; Zeevaart, J.A.D. )

    1990-05-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. {sup 18}O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of ({sup 18}O)ABA which contains two {sup 18}O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this ({sup 18}O)t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the {sup 18}O in ABA-aldehyde is trapped in the side chain by reduction to ({sup 18}O)ABA-alcohol, followed by isomerization to ({sup 18}O)t-ABA-alcohol and oxidation with {sup 18}O{sub 2} to ({sup 18}O)t-ABA. The ({sup 18}O)t-ABA is then rapidly converted to ({sup 18}O)t-ABA-GE. Because ({sup 18}O)ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway.

  5. A simple chromatographic route for the isolation of meso diaminopimelic acid.

    PubMed

    Tóth, Gábor K; Hetényi, Anasztázia; Ilisz, István; Péter, Antal

    2011-02-01

    Meso diaminopimelic acid is an important noncoded amino acid found in Gram-negative bacterial peptidoglycan. In spite of its importance, this stereoisomer is not available commercially. A simple, economical procedure was developed for the isolation of pure meso diaminopimelic acid via an high-performance liquid chromatography separation. In our new approach, the underivatized three isomers of diaminopimelic acid were separated on a crown ether-based chiral stationary phase. For the structure identification, (1)H NMR spectroscopy was applied.

  6. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  7. A phosphomolybdic acid anion probe-based label-free, stable and simple electrochemical biosensing platform.

    PubMed

    Wei, Tianxiang; Chen, Yuyun; Tu, Wenwen; Lan, Yaqian; Dai, Zhihui

    2014-08-25

    A versatile label-free, stable, low-cost and simple electrochemical biosensing platform has been developed based on a phosphomolybdic acid anion probe by jointly taking advantages of its native electronegativity, electrochemical activity and chemisorption with graphene oxide.

  8. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  9. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  10. New aliphatic alcohol and (Z)-4-coumaric acid glycosides from Acanthus ilicifolius.

    PubMed

    Wu, Jun; Zhang, Si; Huang, Jianshe; Xiao, Qiang; Li, Qingxin; Long, Lijuan; Huang, Liangmin

    2003-10-01

    From the aerial parts of Acanthus ilicifolius, a new aliphatic alcohol glycoside (ilicifolioside C) and two new (Z)-4-coumaric acid glycosides, (Z)-4-coumaric acid 4-O-beta-D-glucopyranoside and (Z)-4-coumaric acid 4-O-beta-D-apiofuranosyl-(1"-->2')-O-beta-D-glucopyranoside were isolated. The structural elucidations were based on the analyses of spectroscopic data. Z-Form 4-coumaric acid glycosides were first isolated from plant.

  11. A simple plate-assay for the screening of L-malic acid producing microorganisms.

    PubMed

    Peleg, Y; Rokem, J S; Goldberg, I

    1990-02-01

    A simple plate-assay has been developed to screen microorganisms for L-malic acid production. Acid producing organisms were identified, after microbial colony growth on media containing glucose or fumaric acid as sole carbons sources, by formation of a dark halo of formazan. The halo was observed when the plate was covered with a soft agar overlay containing NAD(+)-malate dehydrogenase, NAD+, phenazine methosulfate (PMS) and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). The assay developed is simple, specific for L-malic acid and therefore can be used to identify L-malic acid producing filamentous fungi using glucose as carbon source (e.g. Aspergillus strains). The assay is also applicable for screening bacteria with high fumarase activity, able to convert fumaric acid to L-malic acid.

  12. Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol.

    PubMed

    Park, Sun-Young; Lee, Young Min; Kwac, Kijeong; Jung, Yousung; Kwon, Oh-Hoon

    2016-03-18

    Alcohols, the simplest amphiprotic organic compounds, can exhibit either acidic or basic behavior by donating or accepting a proton. In this study, proton dissociation of a model photoacid in solution is explored by using time-resolved spectroscopy, revealing quantitatively for the first time that alcohol acts as a Brønsted base because of H-bonded cluster formation to enhance the reactivity. The protonated alcohol cluster, the alkyl oxonium ion, can be regarded as a key reaction intermediate in the well-established alcohol dehydration reaction. This finding signifies, as in water, the cooperativity of protic solvent molecules to facilitate nonaqueous acid-base reactions. PMID:26757097

  13. Petasis Borono-Mannich reaction and allylation of carbonyl compounds via transient allyl boronates generated by palladium-catalyzed substitution of allyl alcohols. an efficient one-pot route to stereodefined alpha-amino acids and homoallyl alcohols.

    PubMed

    Selander, Nicklas; Kipke, Andreas; Sebelius, Sara; Szabó, Kalman J

    2007-11-01

    An efficient one-pot procedure was designed by integration of the pincer-complex-catalyzed borylation of allyl alcohols in the Petasis borono-Mannich reaction and in allylation of aldehydes and ketones. These procedures are suitable for one-pot synthesis of alpha-amino acids and homoallyl alcohols from easily available allyl alcohol, amine, aldehyde, or ketone substrates. In the presented transformations, the active allylating agents are in situ generated allyl boronic acid derivatives. These transient intermediates are proved to be reasonably acid-, base-, alcohol-, water-, and air-stable species, which allows a high level of compatibility with the reaction conditions of the allylation of various aldehyde/ketone and imine electrophiles. The boronate source of the reaction is diboronic acid or in situ hydrolyzed diboronate ester ensuring that the waste product of the reaction is nontoxic boric acid. The regio- and stereoselectivity of the reaction is excellent, as almost all products form as single regio- and stereoisomers. The described procedure is suitable to create quaternary carbon centers in branched allylic products without formation of the corresponding linear allylic isomers. Furthermore, products comprising three stereocenters were formed as single products without formation of other diastereomers. Because of the highly disciplined consecutive processes, up to four-step, four-component transformations could be performed selectively as a one-pot sequence. For example, stereodefined pyroglutamic acid could be prepared from a simple allyl alcohol, a commercially available amine, and glyoxylic acid in a one-step procedure. The presented method also grants an easy access to stereodefined 1,7-dienes that are useful substrates for Grubbs ring-closing metathesis.

  14. Development of alcoholic and malolactic fermentations in highly acidic and phenolic apple musts.

    PubMed

    del Campo, Gloria; Berregi, Iñaki; Santos, José Ignacio; Dueñas, Maite; Irastorza, Ana

    2008-05-01

    This work reports the influence of the high acidity and high phenolic content in apple musts on the development of alcoholic and malolactic fermentations and on the final chemical and microbiological composition of the ciders. Four different musts were obtained by pressing several varieties and proportions of cider apples from the Basque Country (Northern Spain). Specially acidic and phenolic varieties were selected. Three musts were obtained in experimental stations and the fourth one, in a cider factory following usual procedures. The evolution of these musts was monitored during five months by measuring 18 parameters throughout eight samplings. In the most acidic of the three experimental musts, yeasts were added to complete the alcoholic fermentation. In the rest of the musts, alcoholic and malolactic fermentations took place spontaneously due to natural microflora and no chemical was added to control these processes. Malolactic fermentation (MLF) finished before alcoholic fermentation in the three tanks obtained in experimental stations, even in the most acidic and phenolic one (pH 3.18, 1.78 g tannic acid/l). After four months, these ciders maintained low levels of lactic acid bacteria (10(4)CFU/ml) and low content of acetic acid (<0.60 g/l). Both fermentations began simultaneously in the must obtained in the cider factory, but MLF finished 10 days after alcoholic fermentation. Subsequently, this must maintained a high population of lactic acid bacteria (>10(6)CFU/ml), causing a higher production of acetic acid (>1.00 g/l) than in the other ciders. These results show the possible advantages of MLF finishing before alcoholic fermentation. PMID:17706419

  15. Simple Bulk Readout of Digital Nucleic Acid Quantification Assays.

    PubMed

    Morinishi, Leanna S; Blainey, Paul

    2015-01-01

    Digital assays are powerful methods that enable detection of rare cells and counting of individual nucleic acid molecules. However, digital assays are still not routinely applied, due to the cost and specific equipment associated with commercially available methods. Here we present a simplified method for readout of digital droplet assays using a conventional real-time PCR instrument to measure bulk fluorescence of droplet-based digital assays. We characterize the performance of the bulk readout assay using synthetic droplet mixtures and a droplet digital multiple displacement amplification (MDA) assay. Quantitative MDA particularly benefits from a digital reaction format, but our new method applies to any digital assay. For established digital assay protocols such as digital PCR, this method serves to speed up and simplify assay readout. Our bulk readout methodology brings the advantages of partitioned assays without the need for specialized readout instrumentation. The principal limitations of the bulk readout methodology are reduced dynamic range compared with droplet-counting platforms and the need for a standard sample, although the requirements for this standard are less demanding than for a conventional real-time experiment. Quantitative whole genome amplification (WGA) is used to test for contaminants in WGA reactions and is the most sensitive way to detect the presence of DNA fragments with unknown sequences, giving the method great promise in diverse application areas including pharmaceutical quality control and astrobiology. PMID:26436576

  16. Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids.

    PubMed

    Jiang, Xingguo; Zhang, Jiasheng; Ma, Shengming

    2016-07-13

    Oxidation from alcohols to carboxylic acids, a class of essential chemicals in daily life, academic laboratories, and industry, is a fundamental reaction, usually using at least a stoichiometric amount of an expensive and toxic oxidant. Here, an efficient and practical sustainable oxidation technology of alcohols to carboxylic acids using pure O2 or even O2 in air as the oxidant has been developed: utilizing a catalytic amount each of Fe(NO3)3·9H2O/TEMPO/MCl, a series of carboxylic acids were obtained from alcohols (also aldehydes) in high yields at room temperature. A 55 g-scale reaction was demonstrated using air. As a synthetic application, the first total synthesis of a naturally occurring allene, i.e., phlomic acid, was accomplished.

  17. Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials.

    PubMed

    Krebs, Teri S; Johansen, Pål-Ørjan

    2012-07-01

    Assessments of lysergic acid diethylamide (LSD) in the treatment of alcoholism have not been based on quantitative meta-analysis. Hence, we performed a meta-analysis of randomized controlled trials in order to evaluate the clinical efficacy of LSD in the treatment of alcoholism. Two reviewers independently extracted the data, pooling the effects using odds ratios (ORs) by a generic inverse variance, random effects model. We identified six eligible trials, including 536 participants. There was evidence for a beneficial effect of LSD on alcohol misuse (OR, 1.96; 95% CI, 1.36-2.84; p = 0.0003). Between-trial heterogeneity for the treatment effects was negligible (I² = 0%). Secondary outcomes, risk of bias and limitations are discussed. A single dose of LSD, in the context of various alcoholism treatment programs, is associated with a decrease in alcohol misuse.

  18. Role of farnesoid X receptor and bile acids in alcoholic liver disease

    PubMed Central

    Manley, Sharon; Ding, Wenxing

    2015-01-01

    Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure. PMID:26579442

  19. Calculations of phase equilibria for mixtures of triglycerides, fatty acids, and their esters in lower alcohols

    NASA Astrophysics Data System (ADS)

    Stepanov, D. A.; Ermakova, A.; Anikeev, V. I.

    2011-01-01

    The objects of study were mixtures containing triglycerides and lower alcohols and also the products of the transesterification of triglycerides, glycerol and fatty acid esters. The Redlich-Kwong-Soave equation of state was used as a thermodynamic model for the phase state of the selected mixtures over wide temperature, pressure, and composition ranges. Group methods were applied to determine the critical parameters of pure substances and their acentric factors. The parameters obtained were used to calculate the phase diagrams and critical parameters of mixtures containing triglycerides and lower alcohols and the products of the transesterification of triglycerides, glycerol and fatty acid esters, at various alcohol/oil ratios. The conditions of triglyceride transesterification in various lower alcohols providing the supercritical state of reaction mixtures were selected.

  20. Role of farnesoid X receptor and bile acids in alcoholic liver disease.

    PubMed

    Manley, Sharon; Ding, Wenxing

    2015-03-01

    Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure. PMID:26579442

  1. 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone.

    PubMed

    Uyanik, Muhammet; Akakura, Matsujiro; Ishihara, Kazuaki

    2009-01-14

    Electron-donating group-substituted 2-iodoxybenzoic acids (IBXs) such as 5-Me-IBX (1g), 5-MeO-IBX (1h), and 4,5-Me(2)-IBX (1i) were superior to IBX 1a as catalysts for the oxidation of alcohols with Oxone (a trademark of DuPont) under nonaqueous conditions, although Oxone was almost insoluble in most organic solvents. The catalytic oxidation proceeded more rapidly and cleanly in nitromethane. Furthermore, 2-iodoxybenzenesulfonic acid (IBS, 6a) was much more active than modified IBXs. Thus, we established a highly efficient and selective method for the oxidation of primary and secondary alcohols to carbonyl compounds such as aldehydes, carboxylic acids, and ketones with Oxone in nonaqueous nitromethane, acetonitrile, or ethyl acetate in the presence of 0.05-5 mol % of 6a, which was generated in situ from 2-iodobenzenesulfonic acid (7a) or its sodium salt. Cycloalkanones could be further oxidized to alpha,beta-cycloalkenones or lactones by controlling the amounts of Oxone under the same conditions as above. When Oxone was used under nonaqueous conditions, Oxone wastes could be removed by simple filtration. Based on theoretical calculations, we considered that the relatively ionic character of the intramolecular hypervalent iodine-OSO(2) bond of IBS might lower the twisting barrier of the alkoxyperiodinane intermediate 16.

  2. Effect of wheatgrass on membrane fatty acid composition during hepatotoxicity induced by alcohol and heated PUFA.

    PubMed

    Durairaj, Varalakshmi; Shakya, Garima; Pajaniradje, Sankar; Rajagopalan, Rukkumani

    2014-06-01

    Alcoholism is a broad term used for problems related to alcohol, medically considered as disease, specifically an addictive illness, abuse, and dependence. It is the major cause of liver disease in western countries. Alcoholic liver disease encompasses the hepatic alterations leading to fatty liver, hepatitis, and fibrosis or cirrhosis. Fried food items prepared with repeatedly heated polyunsaturated fatty acid (PUFA) exacerbate the disturbances induced by alcohol. The use of herbs to treat diseases is almost universal. Wheatgrass (WG) is used as a supplemental nutrition because of its unique curative properties. As it has antioxidant property, it prevents cancer, diabetes, and acts as liver cleanser. The present study was undertaken to evaluate the efficacy of WG on preserving membrane integrity in liver damage induced by alcohol and heated PUFA (ΔPUFA).The rats were divided into four groups. The animals in group 1 served as normal (standard diet), group 2 served as hepatotoxic (alcohol + ΔPUFA), group 3 served as treated (alcohol + ΔPUFA + WG), and group 4 served as WG control. The compositions of membrane fatty acid, total phospholipids, phospholipase A, C (PLA and PLC) were analyzed in liver to evaluate the effects of WG. Changes in fatty acid composition, decrease in phospholipids levels, and increase in PLA, PLC were observed in the diseased group. Restoration effect was seen in WG-treated rats. Histopathological observations were in correlation with the biochemical parameters. From the results obtained, we conclude that WG effectively protects the liver against alcohol and ΔPUFA-induced changes in fatty acid composition and preserves membrane integrity. PMID:24706101

  3. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation.

    PubMed

    Perez, Jose M; Richter, Hanno; Loftus, Sarah E; Angenent, Largus T

    2013-04-01

    Short-chain carboxylic acids generated by various mixed- or pure-culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short-chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, and n-caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4-0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD(+) via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n-butyric acid to n-butanol conversion via syngas fermentation can be further improved. PMID:23172270

  4. A Simple Visual Ethanol Biosensor Based on Alcohol Oxidase Immobilized onto Polyaniline Film for Halal Verification of Fermented Beverage Samples

    PubMed Central

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%–0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  5. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples.

    PubMed

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-27

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.

  6. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  7. Conversion of isoamyl alcohol over acid catalysts: Reaction dependence on nature of active centers

    SciTech Connect

    Babu, G.P.; Murthy, R.S.; Krishnan, V.

    1997-02-01

    Acid catalysts are known to catalyze the dehydration of alcohols. In addition some oxide catalysts with basic properties have also been shown to play an important role in such dehydration reactions. The dehydration of aliphatic alcohols to olefins has been studied in detail using alumina silica-alumina and zeolite catalysts. The olefin products further undergo isomerization in presence of acidic sites. The reaction of isoamyl alcohol on catalytic surfaces has not been investigated in greater detail. The dehydration of isoamyl alcohol is of considerable interest in fine chemicals. Isoamyl alcohol may also undergo dehydrogenation as observed in the case of n-butanol. The scope of the present work is to identify the nature of the active sites selective for dehydration and dehydrogenation of isoamyl alcohol and to modify the active sites to promote isomerization of dehydrated products. Four catalytic surfaces on which the acidic strength can be varied, as well as selectively suppressed, are chosen for this study. 17 refs., 1 fig., 3 tabs.

  8. Time-Domain Terahertz Spectroscopy (0.3 - 7.5 THz) of Molecular Ices of Simple Alcohols

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Ioppolo, Sergio; Allodi, Marco A.; de Vries, Xander; Finneran, Ian; Carroll, Brandon; Blake, Geoffrey

    2014-06-01

    We have recently constructed a time-domain TeraHertz (THz) spectrometer for the study of molecular ices in the far-infrared. Here, we present the results of a study of amorphous and crystalline ices of simple alcohols from methanol (CH_3OH) through butanol (CH_3(CH_2)_3OH) in the region of 0.3 - 7.5 THz. We examine the effects of the length and degree of branching of the carbon chain on the observed spectra arising from the bulk, large-amplitude motions which are prominent in this spectral region. We also discuss these results in an astrochemical context: the application of these spectra to astronomical observations of interstellar ices with Herschel PACS/SPIRE and SOFIA.

  9. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  10. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    PubMed Central

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  11. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors.

    PubMed

    Kim, Tae Ho; An, Dan Bi; Oh, Se Heang; Kang, Min Kwan; Song, Hyun Hoon; Lee, Jin Ho

    2015-02-01

    Polyvinyl alcohol (PVA) cylindrical hydrogel with a stiffness gradient was prepared using a simple liquid nitrogen (LN2)-contacting gradual freezing and thawing method in order to investigate the effects of substrate stiffness on stem cell differentiation into specific cell types. The prepared cylindrical PVA hydrogel showed a gradually increasing stiffness along the longitudinal direction from the top at approximately 1 kPa to the bottom (LN2 contacted side) at approximately 24 kPa. From the in vitro culture of bone marrow stem cells, it was observed that each soft (∼1 kPa) and stiff (∼24 kPa) hydrogel section promotes effective neurogenesis and osteogenesis of the cells, respectively, with the tendency to gradually decrease toward the opposing characteristic's side. The stiffness gradient cylindrical PVA hydrogel fabricated using this simple gradual freezing and thawing method can be a useful tool for basic studies, including the determination of optimum stiffness ranges for a variety of stem cell differentiations, as well as the investigation of cell migration in terms of substrate stiffness.

  12. Microgravity Compatible Reagentless Instrumentation for Detection of Dissolved Organic Acids and Alcohols in Potable Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Jan, Darrell L. (Technical Monitor)

    2002-01-01

    The Organic Acid and Alcohol Monitor (OAAM) program has resulted in the successful development of a computer controlled prototype analyzer capable of accurately determining aqueous organic acids and primary alcohol concentrations over a large dynamic range with high sensitivity. Formic, acetic, and propionic acid were accurately determined at concentrations as low as 5 to 10 micrograms/L in under 20 minutes, or as high as 10 to 20 mg/L in under 30 minutes. Methanol, ethanol, and propanol were determined at concentrations as low as 20 to 100 micrograms/L, or as high as 10 mg/L in under 30 minutes. Importantly for space based application, the OAAM requires no reagents or hazardous chemicals to perform these analyses needing only power, water, and CO2 free purge gas. The OAAM utilized two membrane processes to segregate organic acids from interfering ions. The organic acid concentration was then determined based upon the conductiometric signal. Separation of individual organic acids was accomplished using a chromatographic column. Alcohols are determined in a similar manner after conversion to organic acids by sequential biocatalytic and catalytic oxidation steps. The OAAM was designed to allow the early diagnosis of under performing or failing sub-systems within the Water Recovery System (WRS) baselined for the International Space Station (ISS). To achieve this goal, several new technologies were developed over the course of the OAAM program.

  13. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate.

    PubMed

    Nair, B

    2001-01-01

    Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzoic Acid is an aromatic acid used in a wide variety of cosmetics as a pH adjuster and preservative. Sodium Benzoate is the sodium salt of Benzoic Acid used as a preservative, also in a wide range of cosmetic product types. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. Benzoic Acid and Sodium Benzoate are generally recognized as safe in foods according to the U.S. Food and Drug Administration. No adverse effects of Benzyl Alcohol were seen in chronic exposure animal studies using rats and mice. Effects of Benzoic Acid and Sodium Benzoate in chronic exposure animal studies were limited to reduced feed intake and reduced growth. Some differences between control and Benzyl Alcohol-treated populations were noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and Benzyl Alcohol-treated groups. Benzoic Acid was associated with an increased number of resorptions and malformations in hamsters, but there were no reproductive or developmental toxicty findings in studies using mice and rats exposed to Sodium Benzoate, and, likewise, Benzoic Acid was negative in two rat studies. Genotoxicity tests for these ingredients were mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicated that these ingredients can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions

  14. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  15. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  16. Reductive Etherification of Fatty Acids or Esters with Alcohols using Molecular Hydrogen.

    PubMed

    Erb, Benjamin; Risto, Eugen; Wendling, Timo; Gooßen, Lukas J

    2016-06-22

    In the presence of a catalyst system consisting of a ruthenium/triphos complex and the Brønsted acid trifluoromethanesulfonimide, mixtures of fatty acids and aliphatic alcohols are converted into the corresponding ethers at 70 bar H2 . The protocol allows the sustainable one-step synthesis of valuable long-chain ether fragrances, lubricants, and surfactants from renewable sources. The reaction protocol is extended to various fatty acids and esters both in pure form and as mixtures, for example, tall oil acids or rapeseed methyl ester (RME). Even the mixed triglyceride rapeseed oil was converted in one step. PMID:27214823

  17. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    PubMed

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming.

  18. Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid.

    PubMed

    Chai, Wei-Ming; Liu, Xuan; Hu, Yong-Hua; Feng, Hui-Ling; Jia, Yu-Long; Guo, Yun-Ji; Zhou, Han-Tao; Chen, Qing-Xi

    2013-06-01

    The inhibitory kinetics of furfuryl alcohol, furfural and furoic acid on mushroom tyrosinase have been investigated. The results showed that these furan compounds were reversible inhibitors of the enzyme. Furthermore, furfuryl alcohol and furfural were found to be mixed-type inhibitors while furoic acid is uncompetitive inhibitor. The inhibition constants have been confirmed and the order of the inhibiting ability was furfural>furoic acid>furfuryl alcohol. They indicate that the functional groups on the furan ring play a crucial role in the inhibition on the enzyme. In addition, it was also found that these furan compounds could inhibit the proliferation of Salmonella bacteria and Bacillus subtilis to different extents. The minimum inhibitory concentration (MIC) values of furfuryl alcohol, furfural and furoic acid against B. subtilis and S. bacteria were 0.115, 0.027, 0.015 and 0.115, 0.029, 0.009 μM, respectively. The minimum bactericidal concentration (MBC) values of that were 0.115, 0.027, 0.015 and 0.231, 0.121, 0.030 μM, respectively.

  19. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  20. Nonmetal catalyzed insertion reactions of diazocarbonyls to acid derivatives in fluorinated alcohols.

    PubMed

    Dumitrescu, Lidia; Azzouzi-Zriba, Kaouther; Bonnet-Delpon, Danièle; Crousse, Benoit

    2011-02-18

    The insertion reaction of diazocarbonyls to acids could be performed smoothly in fluorinated alcohols in the absence of metal catalyst. This new procedure allowed the chemoselective preparation of various functionalized compounds such as acyloxyesters, depsipeptides, and sulfonate, phosphonate, or boronate derivatives.

  1. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyhydric alcohol esters of long chain monobasic acids. 178.3780 Section 178.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  2. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyhydric alcohol esters of long chain monobasic acids. 178.3780 Section 178.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  3. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyhydric alcohol esters of long chain monobasic acids. 178.3780 Section 178.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  4. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyhydric alcohol esters of long chain monobasic acids. 178.3780 Section 178.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS...

  5. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyhydric alcohol esters of long chain monobasic acids. 178.3780 Section 178.3780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES:...

  6. In vitro release of salicylic acid from lanolin alcohols-ethylcellulose films.

    PubMed

    Khan, A R; Iyer, B V; Cirelli, R A; Vasavada, R C

    1984-03-01

    Lanolin alcohols-ethylcellulose films were investigated as a potential drug delivery system for the controlled release of salicylic acid. The effects of changes in film composition, drug concentration, drug solubility, and stirrer speed on the in vitro release of salicylic acid have been examined. The drug release has been found to obey a diffusion-controlled matrix model and square root of time release profile both in the suspension and solution cases.

  7. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways. PMID:21416338

  8. Polyvinyl alcohol and amino acids as substitutes for bovine serum albumin in culture media for mouse preimplantation embryos.

    PubMed

    Biggers, J D; Summers, M C; McGinnis, L K

    1997-01-01

    The effect of replacing bovine serum albumin (BSA) in a simple defined medium (KSOM) with polyvinyl alcohol (PVA) and/or amino acids on the percentages of mouse zygotes that develop to at least the blastocyst stage and that hatch at least partially or completely is reported. Blastocysts could form when BSA was replaced with only PVA, but at a moderately reduced rate; however, partial hatching, and hence complete hatching, were severely impaired when BSA was replaced with only PVA. The substitution of BSA with amino acids alone resulted in a high rate of blastocyst formation and moderate impairment of hatching. The addition of PVA to BSA-free KSOM supplemented with amino acids had no extra effect. BSA had significant effects when added to BSA-free KSOM supplemented with amino acids. The BSA caused a significant increase in the rate of partial hatching, and may even have had a small effect on the rate of blastocyst formation. The results also showed that glucose, at a high concentration of 5.56 mM, does not inhibit the development of mouse zygotes to hatched blastocysts when cultured in KSOM supplemented with amino acids. PMID:9286737

  9. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  10. Oxidative Radical Addition-Cyclization of Sulfonyl Hydrazones with Simple Olefins by Binary Acid Catalysis.

    PubMed

    Zhong, Xingren; Lv, Jian; Luo, Sanzhong

    2016-07-01

    An unprecedented binary acid accelerated oxidative radical annulation of sulfonyl hydrazones with simple olefins is described. Notably, this method provides a novel oxidative radical cycloaddition for the construction of six-member heterocycles. It offers a rapid and efficient approach to tetrahydropyridazines which are key structural motifs in pharmaceutically active compounds.

  11. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  12. Terpolymers of ethyl acrylate/methacrylic acid/unsaturated acid ester of alcohols and acids as anti-settling agents in coal water slurries

    SciTech Connect

    Savoly, A.; Villa, J.L.; Grinstein, R.H.; Nachfolger, S.J.

    1988-05-17

    This patent describes a pumpable stabilized coal water slurry, having a coal content of at least about 50% by weight wherein at least 80% of the coal particles are about 200 mesh or finer, containing from about 0.01% to about 1% by weight of the slurry of a water soluble terpolymer of ethylacrylate (A), metacrylic acid (B) and a third monomer (C) selected from the group consisting of an unsaturated carboxylic acid ester of an alcohol and an ethoxylated carboxylic acid. The unsaturated carboxylic acid is a mono- or di- basic unsaturated carboxylic acid of 3 to 10 carbon atoms selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid.

  13. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins

    PubMed Central

    Strnad, Pavel; Usachov, Valentyn; Debes, Cedric; Gräter, Frauke; Parry, David A. D.; Omary, M. Bishr

    2011-01-01

    Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin ‘mutation hotspot’ residues and their wild-type counterparts. PMID:22215855

  14. A simple and highly sensitive radioenzymatic assay for lysophosphatidic acid quantification

    PubMed Central

    Saulnier-Blache, Jean Sébastien; Girard, Alexia; Simon, Marie-Françoise; Lafontan, Max; Valet, Philippe

    2000-01-01

    The objective of the present work was to develop a simple and sensitive radioenzymatic assay to quantify lysophosphatidic acid (LPA). For that, a recombinant rat lysophosphatidic acid acyl transferase (LPAAT) produced in Escherichia coli was used. In the presence of [14C]oleoyl CoA, LPAAT selectively catalyzes the transformation of LPA and alkyl-LPA into [14C]phosphatidic acid. Acylation of LPA was complete and linear from 0 to 200 pmoles with a minimal detection of 0.2 pmoles. This method was used to quantify LPA in butanol- extracted lipids from bovine sera, as well as from human and mouse plasma. This radioenzymatic assay represents a new, simple, and highly sensitive method to quantify LPA in various biological fluids. PMID:11108727

  15. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets.

    PubMed

    Krahe, Thomas E; Filgueiras, Claudio C; Medina, Alexandre E

    2016-08-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5g/kg, i.p.), VPA (200mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  16. Physicians' Knowledge of Alcohol, Tobacco and Folic Acid in Pregnancy

    ERIC Educational Resources Information Center

    Lefebvre, L. G.; Ordean, A.; Midmer, D.; Kahan, M.; Tolomiczenko, G.

    2007-01-01

    Objective: To assess: (1) physicians' knowledge and clinical confidence regarding problematic substance use in pregnancy compared to folic acid, and (2) physicians' desire for education in this area and their preferred learning modalities tools. Design: Self-administered survey. Setting: "Family Medicine Forum 2004" in Toronto, Canada.…

  17. Nicotinic acid supplementation in the context of alcoholic liver injury: friend or foe?

    PubMed

    Kharbanda, Kusum K

    2014-07-01

    Li and colleagues (2014) in this issue report that dietary nicotinic acid (NA) supplementation ameliorates ethanol-induced hepatic steatosis, but a deficiency does not worsen injury induced by alcohol alone. The authors further present some mechanistic insights into the protective role of NA supplementation. Results of this and other previous studies in the context of alcoholic liver injury raise one important question as to what should be an adequate dose of NA that will provide the maximum benefit to hepatic and extrahepatic tissues and with minimum adverse effects.

  18. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    PubMed Central

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis. Images PMID:1996113

  19. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  20. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  1. The association of vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and gout.

    PubMed

    Towiwat, Patapong; Li, Zhan-Guo

    2015-06-01

    About 2500 years ago, gout was observed by Hippocrates and many people suffered severe pain and deformity. Lifestyle and diet play a significant role in gout and serum uric acid levels. Epidemiological and research studies have supported this evidence. Many recommendations and guidelines from different parts of the world mention the impact of diet on gout. Recently, new research has shown associations between vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and the risk of gout. Our review summarizes recently published research regarding dietary impact on the risk of gout and serum uric acid levels.

  2. General Synthesis of Amino Acid Salts from Amino Alcohols and Basic Water Liberating H2.

    PubMed

    Hu, Peng; Ben-David, Yehoshoa; Milstein, David

    2016-05-18

    An atom-economical and environmentally friendly method to transform amino alcohols to amino acid salts using just basic water, without the need of pre-protection or added oxidant, catalyzed by a ruthenium pincer complex, is developed. Water is the solvent, the source of the oxygen atom of the carboxylic acid group, and the actual oxidant, with liberation of dihydrogen. Many important and useful natural and unnatural amino acid salts can be produced in excellent yields by applying this new method. PMID:27139983

  3. The association of vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and gout.

    PubMed

    Towiwat, Patapong; Li, Zhan-Guo

    2015-06-01

    About 2500 years ago, gout was observed by Hippocrates and many people suffered severe pain and deformity. Lifestyle and diet play a significant role in gout and serum uric acid levels. Epidemiological and research studies have supported this evidence. Many recommendations and guidelines from different parts of the world mention the impact of diet on gout. Recently, new research has shown associations between vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and the risk of gout. Our review summarizes recently published research regarding dietary impact on the risk of gout and serum uric acid levels. PMID:26082349

  4. Catalytic esterification of methacrylic acid with methyl alcohol

    SciTech Connect

    Lunin, A.F.; Zheleznaya, L.L.; Karakhanov, R.A.; Meshcheryakov, S.V.; Magadov, R.S.; Mkrtychan, V.R.; Fomin, V.A.

    1987-08-10

    The authors contend that virtually all methods for the production of methacrylic acid esters suffer from the drawbacks of low conversion, dependence on costly catalysts, low feed rates, and the need to use inhibitors in the process. To eliminate these drawbacks, they propose and test a new catalyst, sulfopolyphenyl ketone, which contains an extensive conjugated bond system together with ionic hydroxide groups. The catalytic esterification rate and yield is given for this catalyst and chromatography is performed for the resulting esters.

  5. Chiral changes of simple amino acids in early Earth's ocean by meteorite impacts: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Takase, A.; Sekine, T.; Furukawa, Y.; Kakegawa, T.

    2012-12-01

    It has been recognized that meteorite impacts on early Earth ocean may have contributed significantly for molecules related to the origin of life to originate and evolve. We have already established the formation of simple biomolecules from inorganic materials through oceanic impacts that may have occurred at late heavy bombardment. These simple molecules including amino acids need to be subjected to further developments to initiate life on the Earth. The chirality of terrestrial amino acids constructing proteins is only L-type. In order to make clear the the point that biomolecules are formed by oceanic impacts of meteorites, it wll be crucial to determine how they select the chirality. In order to investigate the basic chemistry on chirality of simple amino acids, we tried to simulate experimentally the chiral change of some amino acids present in ocean at that time under shock loading. Each aqueous solution (0.1 M) of L- and D-valine was prepared and used as mixtures of olivine powders and solutions in sealed steel containers. We performed shock recovery experiments at an impact condition where samples were compressed at ~5 GPa. The analytical results of shock recovered solutions indicate that valine survives significantly (~10%) and that L- and D-valines transform partially to D- and L-valine, respectively. The transformation rate varied with the chemical species present in solutions. These results imply that meteorite impacts as well as the surrounding conditions play important roles to control the chirality of simple amino acids that may have been formed at that time.

  6. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  7. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  8. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    SciTech Connect

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  9. Pioglitazone, quercetin and hydroxy citric acid effect on hepatic biomarkers in Non Alcoholic Steatohepatitis

    PubMed Central

    Surapaneni, Krishna Mohan; Jainu, Mallika

    2014-01-01

    Background: Non alcoholic steatohepatitis (NASH), severe form of diseases belonging to the spectrum of the Non alcoholic fatty liver disease (NAFLD). It is an asymptomatic disease which leads to fibrosis and finally to cirrhosis, an end stage liver disease. Objective: To study the effect of pioglitazone, quercetin and hydroxy citric acid on hepatic biomarkers and various biochemical parameters in experimentally induced non alcoholic steatohepatitis (NASH). Materials and Methods: Male Wister rats were divided into 8 groups. The activities of alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) and γ-Glutamyl Transferase (GGT) were assayed in serum. The levels of various other biochemical parameters such as serum albumin, total bilirubin, creatinine, urea, uric acid and glucose were also estimated in experimental NASH. Results: The NASH group produced severe liver injury by significantly increasing the serum levels of ALT, AST, GGT and LDH compared with that of the control. However, the experimental NASH rats treated with pioglitazone, with quercetin and with hydroxy citric acid showed an obvious decrease in ALT, AST, GGT and LDH levels when compared with that of NASH induced group. A significant increase in the levels of albumin, creatinine, urea, uric acid, glucose and total bilirubin was noticed in experimentally induced NASH group (group 2) when compared to rats in control group (group 1). Conclusion: It could be inferred from this study that, pioglitazone, quercetin and hydroxy citric acid may afford protection to the liver against NASH, as evidenced by the results of this study on the levels of various biochemical parameters such as glucose, urea, uric acid, creatinine and bilirubin. Whereas from the results of hepatic marker enzymes, it is evident that optimal protection was observed after quercetin treatment against experimental NASH whereas pioglitazone and hydroxy citric acid also confers

  10. Intestinal absorption, liver uptake, and excretion of /sup 3/H-folic acid in folic acid-deficient, alcohol-consuming nonhuman primates

    SciTech Connect

    Blocker, D.E.; Thenen, S.W.

    1987-09-01

    Nonhuman primates fed folic acid-deficient diets +/- 30% kcal ethanol were used to determine alcohol effects on megaloblastic anemia development and folate bioavailability. Lower hemoglobin (Hb) and red blood cell (RBC) counts and higher mean corpuscular volume (MCV) occurred after 13 wk in alcohol-fed monkeys, later in controls. Plasma, RBC, and liver folate declined and urinary formiminoglutamic acid (FIGLU) was elevated in both groups with FIGLU increasing more among alcohol-fed monkeys at 38 wk. After 40 wk, the bioavailability of oral /sup 3/H-folic acid was investigated and showed increased fecal and reduced urinary tritium excretion in alcohol-fed monkeys compared with controls while plasma uptake and liver and whole body tritium retention were similar in both groups. These observations demonstrate that chronic alcohol consumption impairs folate coenzymes, accelerates appearance of hematologic indices of megaloblastic anemia, and causes possible malabsorption of enterohepatically circulated folates in folate deficiency even when other essential nutrients are provided.

  11. Influence of biuret and cyanuric acid on dewaxing petroleum stocks with alcoholic urea solution

    SciTech Connect

    Abdullaev, E.Sh.; Ismailov, A.G.; Gadzhiev, A.Sh.; Balayan, R.D.

    1987-11-01

    The influence of biuret and cyanuric acid contents on the formation and separation of the adduct in commercial dewaxing of petroleum stocks by a urea solution in a water and isopropyl alcohol mixture was studied. The stock was a diesel fuel distillate with a solid point of -12/sup 0/C. Experiments were performed with a 3.5:1 volume ratio of urea solution to feed, urea content 38% by weight, isopropyl alcohol concentration 70% by weight, adduct formation temperature 55-30/sup 0/C, and adduct formation duration 30 min. Test results show the adverse effects at different quantities of cyanuric and biuret acids on adduct formation. Solutions for overcoming these effects are proposed.

  12. Pyrolysis of simple chiral aromatic alcohols. Survivability and preservation of chirality on minerals of astrophysical interest: a case study

    NASA Astrophysics Data System (ADS)

    Keheyan, Y.

    2011-05-01

    The idea that extraterrestrial delivery of organic matter played an important role in prebiotic evolution depends on the capability of the biomolecules to survive at high temperatures, taking into account the fact that to reach the earth the space bodies can be exposed to a significant heat up. It has also been suggested that the chiral molecules of extraterrestrial origin might have initiated the biological homochirality, thus also the chiral properties must be preserved. The survivability of these molecules on the space bodies who reach the earth is an important question. The aim of the present work is to study the influence of temperature and influence of different minerals like silicates, ilmenite, wuestite, libethenite, etc. on the decomposition and the racemization of the most simple chiral aromatic molecule, i.e. (R)- o (S)-1-phenylethanol. In addition, other benzylic alcohols have also been studied to compare their behaviour with 1-phenylethanol. A Py-GC-MS technique was used to investigate this phenomenon. Various pyrolytic experiments, at temperatures between 100 and 600 C with and without minerals, were performed. A Principal Component Analysis (PCA) model was created using the results obtained with all catalysts at different temperatures and with the main products, i.e. acetophenone, dibenzylic ethers and styrene to discriminate the catalysts on the basis of their effects. The kinetic of racemization has been calculated and a tentative mechanism has been proposed. Using the trend of the enantiomeric excess in function of the temperature, a new approach to calculate the rate of racemization is proposed.

  13. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface.

  14. The study of interaction of modified fatty acid with 99mTc in alcoholic media

    NASA Astrophysics Data System (ADS)

    Skuridin, V. S.; Stasyuk, E. S.; Varlamova, N. V.; Nesterov, E. A.; Sinilkin, I. G.; Sadkin, V. L.; Rogov, A. S.; Ilina, E. A.; Larionova, L. A.; Sazonova, S. I.; Zelchan, R. V.; Villa, N. E.

    2016-08-01

    The paper presents the results of laboratory research aimed at the development of methods of synthesis of new radiodiagnostic agents based on modified fatty acid labelled with technetium-99m intended for scintigraphic evaluation of myocardial metabolism. In particular, the interaction of substance with 99mTc in alcoholic media and the use of ethanol as solvent in the synthesis of the radiopharmaceutical were studied.

  15. Activity of MMP1 and MMP13 and Amino Acid Metabolism in Patients with Alcoholic Liver Cirrhosis

    PubMed Central

    Prystupa, Andrzej; Szpetnar, Maria; Boguszewska-Czubara, Anna; Grzybowski, Andrzej; Sak, Jarosław; Załuska, Wojciech

    2015-01-01

    Background Alcoholic liver disease remains one of the most common causes of chronic liver disease worldwide. The aim of this study was to assess the usefulness of metalloproteinases (MMP1 and MMP13) as diagnostic markers of alcoholic liver disease and to determine the changes in free amino acid profile in the patients with alcoholic liver cirrhosis. Material/Methods Sixty patients with alcoholic liver cirrhosis treated in various hospitals of the Lublin region were randomly enrolled. The control group consisted of 10 healthy individuals without liver disease, who did not drink alcohol. Additionally, a group of alcoholics (22 persons) without liver cirrhosis was included in the study. The activity of MMP-1 and MMP-13 in blood plasma of patients and controls was measured using the sandwich enzyme immunoassay technique with commercially available quantitative ELISA test kits. Amino acids were determined by automated ion-exchange chromatography. Results No significant differences were observed in the activity of MMP-1 in alcoholics with or without liver cirrhosis or in controls. Increased serum MMP-13 was found in patients with liver cirrhosis (stage A, B, C) compared to the control group. Patients with alcoholic liver cirrhosis (stage A, B, C) demonstrated reduced concentrations of glutamic acid and glutamine compared to the control group. Plasma levels of valine, isoleucine, leucine, and tryptophan were significantly lower in patients with alcoholic liver cirrhosis (stage C) than in controls. Conclusions MMP-13 can be useful to confirm the diagnosis of alcoholic liver cirrhosis, but levels of MMP-1 are not significantly increased in patients with liver cirrhosis compared to controls. The serum branched-chain amino acid (BCAA) is markedly reduced in patients with stage C alcoholic liver cirrhosis. PMID:25863779

  16. Serum and muscle levels of alpha-tocopherol, ascorbic acid, and retinol are normal in chronic alcoholic myopathy.

    PubMed

    Fernández-Solà, J; Villegas, E; Nicolàs, J M; Deulofeu, R; Antúnez, E; Sacanella, E; Estruch, R; Urbano-Márquez, A

    1998-04-01

    Some authors have suggested a possible loss of antioxidant factors in alcoholic skeletal myopathy. To assess the relationship between ethanol consumption and serum and muscle levels of alpha-tocopherol, ascorbic acid, and retinol in chronic alcoholics with and without skeletal myopathy, a prospective cross-sectional study was performed in the Alcohol Unit of a 1000-bed university hospital. Twenty-five chronic male alcoholic patients (10 with skeletal myopathy) and 15 male controls of similar age were included. Evaluation of daily and lifetime ethanol consumption, assessment of anthropometric and protein nutritional parameters, and open biopsy of the left deltoid muscle were performed, as well as determinations of serum and muscle levels of retinol, alpha-tocopherol, and ascorbic acid by HPLC analysis. Ten of the 25 chronic alcoholic patients presented histological criteria of skeletal myopathy. Four alcoholics presented caloric malnutrition and three protein malnutrition. All of the muscle biopsies of the control group were entirely normal, as were their nutritional studies. The serum and muscular levels of alpha-tocopherol, ascorbic acid, and retinol were normal and were similar in both alcoholics and controls. Except for serum retinol, these values were also similar in alcoholic patients with or without skeletal myopathy. In the univariate analysis, we identified the total lifetime dose of ethanol (p < 0.003), the muscle arm area (p < 0.05), and serum levels of prealbumin (p < 0.03) and retinol-binding protein (p < 0.05) as factors influencing the development of alcoholic myopathy. However, in multivariate analysis, the total lifetime dose of ethanol was the only independent factor in relation to alcoholic myopathy (p < 0.003). Serum and muscle levels of the antioxidants alpha-tocopherol, ascorbic acid, and retinol do not influence the presence of skeletal myopathy in chronic alcoholic patients.

  17. Synthesis of Fused Polycyclic Indoles by Brønsted Acid-Catalyzed Intramolecular Alkylation of Indoles with Alcohols.

    PubMed

    Suárez, Anisley; Gohain, Mukut; Fernández-Rodríguez, Manuel A; Sanz, Roberto

    2015-10-16

    An efficient methodology for the synthesis of a series of new fused polyclyclic indoles has been developed by Brønsted acid-catalyzed intramolecular Friedel-Crafts reactions of properly designed indolyl alcohols. PMID:26418556

  18. PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUORONONANOIC ACID (PFNA) IN NEONATAL MICE FOLLOWING IN UTERO EXPOSURE TO 8-2 FLUOROTELOMER ALCOHOL (FTOH)

    EPA Science Inventory

    The fluorotelomer alcohols (FTOHs) are the probable precursors of a homologous series of perfluoroalkyl carboxylic acids (PFCAs) detected globally in both mammalian and environmental samples. Recently, 8-2 FTOH has been classified as a xenoestrogen and its derivatives, perfluoro...

  19. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  20. Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein

    PubMed Central

    Kaye, Clive M.

    1973-01-01

    1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754

  1. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Bandsma, Robert; Comelli, Elena M.; Arendt, Bianca M.; Zhang, Ling; Fung, Scott; Fischer, Sandra E.; McGilvray, Ian G.; Allard, Johane P.

    2016-01-01

    Background & Aims Non-alcoholic fatty liver disease (NAFLD) is characterized by dysbiosis. The bidirectional effects between intestinal microbiota (IM) and bile acids (BA) suggest that dysbiosis may be accompanied by an altered bile acid (BA) homeostasis, which in turn can contribute to the metabolic dysregulation seen in NAFLD. This study sought to examine BA homeostasis in patients with NAFLD and to relate that with IM data. Methods This was a prospective, cross-sectional study of adults with biopsy-confirmed NAFLD (non-alcoholic fatty liver: NAFL or non-alcoholic steatohepatitis: NASH) and healthy controls (HC). Clinical and laboratory data, stool samples and 7-day food records were collected. Fecal BA profiles, serum markers of BA synthesis 7-alpha-hydroxy-4-cholesten-3-one (C4) and intestinal BA signalling, as well as IM composition were assessed. Results 53 subjects were included: 25 HC, 12 NAFL and 16 NASH. Levels of total fecal BA, cholic acid (CA), chenodeoxycholic acid (CDCA) and BA synthesis were higher in patients with NASH compared to HC (p<0.05 for all comparisons). The primary to secondary BA ratio was higher in NASH compared to HC (p = 0.004), but ratio of conjugated to unconjugated BAs was not different between the groups. Bacteroidetes and Clostridium leptum counts were decreased in in a subset of 16 patients with NASH compared to 25 HC, after adjusting for body mass index and weight-adjusted calorie intake (p = 0.028 and p = 0.030, respectively). C. leptum was positively correlated with fecal unconjugated lithocholic acid (LCA) (r = 0.526, p = 0.003) and inversely with unconjugated CA (r = -0.669, p<0.0001) and unconjugated CDCA (r = - 0.630, p<0.0001). FGF19 levels were not different between the groups (p = 0.114). Conclusions In adults with NAFLD, dysbiosis is associated with altered BA homeostasis, which renders them at increased risk of hepatic injury. PMID:27203081

  2. Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice

    PubMed Central

    Xia, Wei; Wu, Jianping; Yuan, Liyun; Wu, Jing; Tu, Di; Fang, Jun

    2014-01-01

    Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver. PMID:24378582

  3. Simple Limbal Epithelial Transplantation in Acid Injury and Severe Dry Eye.

    PubMed

    Arya, Sudesh Kumar; Bhatti, Anubha; Raj, Amit; Bamotra, Ravi Kant

    2016-06-01

    The epithelial cells of cornea constantly undergo renewal and regeneration and the stem cells responsible for renewal resides within basal epithelium at the limbus in palisades of Vogt. Simple limbal epithelial transplantation (SLET) is a simplified technique for limbal stem cell deficiency and it combines the benefits of both conjunctival limbal autografting and cultivated limbal epithelial transplantation by being single-stage and utilizing minimal donor tissue. We will be discussing two cases of ocular surface disorder which were managed successfully by new technique simple limbal epithelial transplantation. Two patients one with unilateral Limbal Stem Cell Deficiency (LSCD) following acid injury and other with bilateral LSCD due to severe dry eye underwent limbal epithelial transplantation using the SLET method after taking prior consent for the procedure. Success was termed complete when a completely epithelialized, avascular and stable corneal surface was seen. The follow up examinations were done on first day, at 1 week, 2 weeks, 4 weeks and at 3 months after the surgery. A completely epithelialised, avascular and stable corneal surface was achieved by 4 weeks in both patients. Simple limbal epithelial transplantation is a new technique which is simple, cheap and easily affordable and it has decreased the dependence on stem cell laboratory. PMID:27504323

  4. Acute alcohol exposure, acidemia or glutamine administration impacts amino acid homeostasis in ovine maternal and fetal plasma.

    PubMed

    Washburn, Shannon E; Sawant, Onkar B; Lunde, Emilie R; Wu, Guoyao; Cudd, Timothy A

    2013-09-01

    Fetal alcohol syndrome (FAS) is a significant problem in human reproductive medicine. Maternal alcohol administration alters maternal amino acid homeostasis and results in acidemia in both mother and fetus, causing fetal growth restriction. We hypothesized that administration of glutamine, which increases renal ammoniagenesis to regulate acid-base balance, may provide an intervention strategy. This hypothesis was tested using sheep as an animal model. On day 115 of gestation, ewes were anesthetized and aseptic surgery was performed to insert catheters into the fetal abdominal aorta as well as the maternal abdominal aorta and vena cava. On day 128 of gestation, ewes received intravenous administration of saline, alcohol [1.75 g/kg body weight (BW)/h], a bolus of 30 mg glutamine/kg BW, alcohol + a bolus of 30 mg glutamine/kg BW, a bolus of 100 mg glutamine/kg BW, alcohol + a bolus of 100 mg glutamine/kg BW, or received CO2 administration to induce acidemia independent of alcohol. Blood samples were obtained simultaneously from the mother and the fetus at times 0 and 60 min (the time of peak blood alcohol concentration) of the study. Administration of alcohol to pregnant ewes led to a reduction in concentrations of glutamine and related amino acids in plasma by 21-30%. An acute administration of glutamine to ewes, concurrent with alcohol administration, improved the profile of most amino acids (including citrulline and arginine) in maternal and fetal plasma. We suggest that glutamine may have a protective effect against alcohol-induced metabolic disorders and FAS in the ovine model.

  5. Monolayers of long-chain alcohols, fatty acids, and fatty acid esters at the air/water interface: a comparison by external infrared reflection-absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gericke, Arne; Huehnerfuss, Heinrich

    1994-01-01

    The properties of C15, C16, C18 and C20-alcohols, fatty acids and fatty acid esters are investigated by external infrared reflection-absorption spectrometry in the range 3000 - 1000 cm-1. Analysis of the methylene stretching vibration shows that an increasing space requirement of the hydrophilic headgroup (fatty acid ester > fatty acid >= alcohol) for the same chain length leads to higher chain disorder (i.e., more gauche conformers). However, for a given headgroup the prolongation of the alkyl-chain generally results in an increased hydrophobic interaction and thus in a higher chain-order, i.e., the molecules attain a more transconformation.

  6. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  7. Fatty Acid Profile and Unigene-Derived Simple Sequence Repeat Markers in Tung Tree (Vernicia fordii)

    PubMed Central

    Zhang, Lin; Jia, Baoguang; Tan, Xiaofeng; Thammina, Chandra S.; Long, Hongxu; Liu, Min; Wen, Shanna; Song, Xianliang; Cao, Heping

    2014-01-01

    Tung tree (Vernicia fordii) provides the sole source of tung oil widely used in industry. Lack of fatty acid composition and molecular markers hinders biochemical, genetic and breeding research. The objectives of this study were to determine fatty acid profiles and develop unigene-derived simple sequence repeat (SSR) markers in tung tree. Fatty acid profiles of 41 accessions showed that the ratio of α-eleostearic acid was increasing continuously with a parallel trend to the amount of tung oil accumulation while the ratios of other fatty acids were decreasing in different stages of the seeds and that α-eleostearic acid (18∶3) consisted of 77% of the total fatty acids in tung oil. Transcriptome sequencing identified 81,805 unigenes from tung cDNA library constructed using seed mRNA and discovered 6,366 SSRs in 5,404 unigenes. The di- and tri-nucleotide microsatellites accounted for 92% of the SSRs with AG/CT and AAG/CTT being the most abundant SSR motifs. Fifteen polymorphic genic-SSR markers were developed from 98 unigene loci tested in 41 cultivated tung accessions by agarose gel and capillary electrophoresis. Genbank database search identified 10 of them putatively coding for functional proteins. Quantitative PCR demonstrated that all 15 polymorphic SSR-associated unigenes were expressed in tung seeds and some of them were highly correlated with oil composition in the seeds. Dendrogram revealed that most of the 41 accessions were clustered according to the geographic region. These new polymorphic genic-SSR markers will facilitate future studies on genetic diversity, molecular fingerprinting, comparative genomics and genetic mapping in tung tree. The lipid profiles in the seeds of 41 tung accessions will be valuable for biochemical and breeding studies. PMID:25167054

  8. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  9. Kinetic study of esterification of sulfuric acid with alcohols in aerosol bulk phase

    NASA Astrophysics Data System (ADS)

    Li, J.; Jang, M.

    2013-09-01

    In this study, we hypothesize that the formation of organosulfates through the reactions between sulfuric acid and alcohols in the aerosol bulk phase is more efficient than that in solution chemistry. To prove this hypothesis, the kinetics of the organosulfate formation was investigated for both aliphatic alcohol with single OH group (e.g., 1-heptanol) and the multialcohols ranging from semivolatiles (e.g., hydrated-glyoxal and glycerol) to nonvolatiles (e.g., sucrose) using analytical techniques directly monitoring aerosol bulk phase. Both the forward (k1) and the backward (k-1) reaction rate constants of organosulfate formation via the particle phase esterification of 1-heptanol with sulfuric acid were estimated using a Fourier Transform Infrared (FTIR) spectrometer equipped with a flow chamber under varying humidities. Both k1 and k-1 are in orders of 10-3 L mol-1 min-1, which are three orders of magnitude higher than the reported values obtained in solution chemistry. The formation of organosulfate in the H2SO4 aerosol internally mixed with multialcohols was studied by measuring the proton concentration of the aerosol collected on the filter using a newly developed Colorimetry integrated with a Reflectance UV-Visible spectrometer (C-RUV). The formation of organosulfate significantly decreases aerosol acidity due to the transformation of H2SO4 into dialkylsulfates. The forward reaction rate constants for the dialkylsulfate formation in the multialcohol-H2SO4 aerosols were also three orders of magnitude greater than the reported values in solution chemistry. The water content (MH2O) in the multialcohol-H2SO4 particle was monitored using the FTIR spectrometer. A large reduction of MH2O accords with the high yield of organosulfate in aerosol. Based on this study, we conclude that organosulfate formation in atmospheric aerosol, where both alcohols and sulfuric acid are found together, is significant.

  10. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zheng, Yonghong; Liang, Jiaman; Long, Sha; Chen, Xianping; Tan, Kejun

    2016-04-01

    A simple, highly sensitive resonance light scattering (RLS) method for the detection of perfluorooctanoic acid (PFOA) has been developed based on the interaction with crystal violet (CV). It was found that PFOA can form complexes with CV in acid medium resulting in remarkable enhancement of the RLS intensity of the system. And the enhanced RLS intensities are in proportion to the concentration of PFOA in the range of 0.1-25.0 μmol/L (R2 = 0.9998), with a detection limit of 11.0 nmol/L (S/N = 3). In this work, the optimum reaction conditions and the interferences of foreign substances were investigated. The reaction mechanism between CV and PFOA was also studied by the absorption spectrum and scanning electron microscope (SEM). This method is successfully applied to the determination of PFOA in tap water and Jialing river water samples with RSD ≤ 4.04%.

  11. A simple hydrothermal preparation of TiO 2 nanomaterials using concentrated hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Nguyen Phan, Thuy-Duong; Pham, Hai-Dinh; Viet Cuong, Tran; Jung Kim, Eui; Kim, Sunwook; Woo Shin, Eun

    2009-12-01

    A TiO 2 nanostructure was synthesized via a simple method using only concentrated hydrochloric acid as the morphological/crystallographic controlling agent. Microscopy images showed that the texture of the TiO 2 powder could be easily engineered and tuned by tailoring the HCl volume, creating cuboid, flower, cauliflower, and ball-shaped particles. Three-dimensional TiO 2 microparticles resulted from the self-assembly of nanostructured sub-units including nanocubes, nanoprisms, and nanorods. The crystalline anatase and rutile phases were also identified depending on the acidic medium. HCl played a key role in orchestrating the structures and morphologies of the TiO 2 nanoscale materials. The phase transformation and morphological changes were strongly related to the crystal growth mechanism of the TiO 2 nanostructure.

  12. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    PubMed

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX.

  13. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    PubMed

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  14. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    PubMed Central

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  15. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.

    PubMed

    Li, Ming-Fei; Yang, Sheng; Sun, Run-Cang

    2016-01-01

    Organosolv fractionation is a promising process to separate lignocellulosic biomass for the preparation of multiply products including biofuels, chemicals, and materials. This review presents the state of art of different processes applying alcohols and organic acids to treat lignocellulosic biomass for the production of ethanol, lignin, xylose, etc. The major organosolv technologies using ethanol, formic acid, and acetic acid, are intensively introduced and discussed in depth. In addition, the structural modifications of the major components of lignocelluloses, the technical processes, and the applications of the products were also summarized. The object of the review is to provide recent information in the field of organosolv process for the integrated biorefinery. The perspectives of the challenge and opportunity related to this topic are also presented. PMID:26476870

  16. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement

    PubMed Central

    Marrs, James A.; Clendenon, Sherry G.; Ratcliffe, Don R.; Fielding, Stephen M.; Liu, Qin; Bosron, William F.

    2009-01-01

    This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid signaling caused by embryonic ethanol. Retinoic acid deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100 mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with retinoic acid at a low concentration (10−9 M) and 100 mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100 mM ethanol alone. The rescue phenotype that we observed was quantitatively more similar to embryos treated with 10−9 M retinoic acid alone (retinoic acid toxicity) than to untreated or 100 mM ethanol treated embryos. Retinoic acid rescues defects caused by 100 mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation and ear development. Morphological evidence also suggests that other characteristic features of FASD (e. g., neural axis patterning) are rescued by retinoic acid supplement. PMID:20036484

  17. Increasing serum Pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers

    PubMed Central

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A.; Crabb, David W.; Lai, Xianyin; Witzmann, Frank A.

    2014-01-01

    Background Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. Methods One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Results Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p < 0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Conclusions Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use. PMID:25449367

  18. Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers.

    PubMed

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A; Crabb, David W; Lai, Xianyin; Witzmann, Frank A

    2014-12-01

    Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p<0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use.

  19. A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption.

    PubMed

    Higley, J D; Suomi, S J; Linnoila, M

    1996-06-01

    Developmental, biochemical, and behavioral concomitants of excessive alcohol consumption were investigated using a nonhuman primate model. The variables of interest were: (1) interindividual stability of cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) from infancy to adulthood, (2) effect of parental deprivation early in life on adult CSF 5-HIAA concentrations; (3) correlations between CSF 5-HIAA and 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations and alcohol consumption; and (4) correlation between the frequency of competent social behaviors and alcohol consumption. Twenty-nine rhesus macaques were reared for their first 6 months either with their mothers or without adults in peer-only conditions. At 6 and 50 months of age, each subject underwent a series of four, 4-day social separations. Cisternal CSF was sampled before and during the first and last separations; concomitantly, observational data were collected on social dominance behavior in the home-cage. When they reached 50 months of age, the monkeys were provided free access to a palatable alcohol solution daily for 1-hr periods before, during, and after the social separations. Before and after the 50-month separations, data were collected on all types of social behavior in the home-cage. Results showed that peer-reared subjects consumed more alcohol than mother-reared subjects during baseline conditions. Mother-reared subjects, however, increased their rates of consumption to equal peer-reared subjects' rates of consumption during the conditions of a social separation stressor. Peer-reared subjects also exhibited lower CSF 5-HIAA concentrations in infancy and adulthood than their mother-reared counterparts. With rearing condition held constant, interindividual differences in CSF 5-HIAA, MHPG, and homovanillic acid were stable from infancy to adulthood, and high rates of alcohol were consumed by the young adult monkeys with low CSF 5-HIAA and MHPG concentrations, particularly when the CSF

  20. [Study on hydrophilicity and degradability of polyvinyl alcohol/polylactic acid blend film].

    PubMed

    Wang, Hualin; Sheng, Mingang; Zhai, Linfeng; Li, Yanhong

    2008-02-01

    Based on casting and solvent evaporation method, the degradable PLA/PVA blend film was prepared with polylactic acid (PLA) and polyvinyl alcohol (PVA) as raw material. The moisture absorbability, water absorbability and degradability of the polylactic acid/polyvinyl alcohol (PLA/PVA) blend film were studied; also the degradation mechanism of blend film was investigated. The results showed that the moisture absorption and water absorption of blend film decreased as the concentration of PLA increased. The degradation process of blend film in the normal saline is conducted by stepwise. At the forepart, the degradation of PLA played an important role, while PVA was the main degradation substance later. The solvent acidity could catalyze the degradation of PLA, and degradation of PLA was always turning from noncrystalline region to crystalline region. PVA had abilities to accelerate the degradation of PLA by increasing the hydrophilicity of the blend film and by breaking the crystallinity of PLA. Therefore, the hydrophilicity and degradability of PLA/PVA blend film can be controlled in a certain range by adjusting the proportion of PLA and PVA. PMID:18435276

  1. Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.; Kovač, J.; Jakša, G.

    2016-02-01

    Information about the interactions between lubricants and DLC coatings is scarce, despite there having been many studies over the years. In this investigation we used ToF-SIMS, XPS and contact-angle analyses to examine the adsorption ability and mechanisms with respect to two oiliness additives, i.e., hexadecanol and hexadecanoic acid, on an a-C:H coating. In addition, we analyzed the resistance of the adsorbed films to external influences like solvent cleaning. The results show that both molecules adsorb onto surface oxides and hydroxides present on the initial DLC surface and shield these structures with their hydrocarbon tails. This makes the surfaces less polar, which is manifested in a smaller polar component of the surface energy. We also showed that ultrasonic cleaning in heptane has no significant effect on the quantity of adsorbed molecules or on their chemical state. This not only shows the relatively strong adsorption of these molecules, but also provides useful information for future experimental work. Of the two examined molecules, the acid showed a greater adsorption ability than the alcohol, which explains some of the previously reported better tribological properties in the case of the acid with respect to the alcohol.

  2. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  3. SIMPLE METHOD FOR THE EXTRACTION OF PHOTOPIGMENTS AND MYCOSPORINE-LIKE AMINO ACIDS (MAAS) FROM SYMBIODINIUM SPP.

    EPA Science Inventory

    Numerous extraction methods have been developed and used in the quantitation of both photopigments and mycosporine amino acids (MAAs) found in Symbiodinium sp. and zooanthellate metazoans. We have development of a simple, mild extraction procedure using methanol, which when coupl...

  4. Polyvinyl alcohol-polystyrene sulphonic acid blend electrolyte for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Selva Kumar, M.; Bhat, D. Krishna

    2009-05-01

    A new polymer blend electrolyte based on poly vinyl alcohol and poly styrene sulphonic acid has been studied as an electrolyte for supercapcitors. A carbon-carbon supercapacitor has been fabricated using this electrolyte and its electrochemical characteristics and performance have been studied. The conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The real and imaginary parts of the electrical modulus of samples show a long tail feature, which can be attributed to high capacitance of the material. The super capacitor showed a fairly good specific capacitance of 40 F g-1 and a time constant of 5 s.

  5. Developing an Invisible Message about Relative Acidities of Alcohols in the Natural Products Henna, Turmeric, Rose Petals, and Vitamin A

    ERIC Educational Resources Information Center

    Dewprashad, Brahmadeo; Hadir, Latifa

    2010-01-01

    An engaging and colorful demonstration was developed that illustrates the utility of resonance theory in predicting the relative acidities of alcohols. The demonstration can be used as an introduction to exercises that provide students with practice in writing resonance structures and in predicting relative acidities. The demonstration exploits…

  6. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries. PMID:19115303

  7. Influence of Fluorination on the Conformational Properties and Hydrogen-Bond Acidity of Benzyl Alcohol Derivatives

    PubMed Central

    Bogdan, Elena; Compain, Guillaume; Mtashobya, Lewis; Le Questel, Jean-Yves; Besseau, François; Galland, Nicolas; Linclau, Bruno; Graton, Jérôme

    2015-01-01

    The effect of fluorination on the conformational and hydrogen-bond (HB)-donating properties of a series of benzyl alcohols has been investigated experimentally by IR spectroscopy and theoretically with quantum chemical methods (ab initio (MP2) and DFT (MPWB1K)). It was found that o-fluorination generally resulted in an increase in the HB acidity of the hydroxyl group, whereas a decrease was observed upon o,o′-difluorination. Computational analysis showed that the conformational landscapes of the title compounds are strongly influenced by the presence of o-fluorine atoms. Intramolecular interaction descriptors based on AIM, NCI and NBO analyses reveal that, in addition to an intramolecular OH⋅⋅⋅F interaction, secondary CH⋅⋅⋅F and/or CH⋅⋅⋅O interactions also occur, contributing to the stabilisation of the various conformations, and influencing the overall HB properties of the alcohol group. The benzyl alcohol HB-donating capacity trends are properly described by an electrostatic potential based descriptor calculated at the MPWB1K/6-31+G(d,p) level of theory, provided solvation effects are taken into account for these flexible HB donors. PMID:26130594

  8. A convenient iodination method for alcohols using cesium iodide/methanesulfonic acid and its comparison using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

    PubMed

    Khan, Khalid Mohammed; Zia-Ullah; Perveen, Shahnaz; Hayat, Safdar; Ali, Muhammad; Voelter, Wolfgang

    2008-01-01

    In situ generation of hydrogen iodide from cesium iodide/methanesulfonic acid was found to be an attractive reagent combination for the conversion of alkyl, allyl, and benzyl alcohols to their corresponding iodides under mild conditions. The method is compared with that using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

  9. Pd@[nBu₄][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols.

    PubMed

    Cacciuttolo, Bastien; Pascu, Oana; Aymonier, Cyril; Pucheault, Mathieu

    2016-01-01

    Palladium nanoparticles, simply and briefly generated in commercial and cheap onium salts using supercritical carbon dioxide, have been found to be an effective catalytic system for additive free N-alkylation reaction using alcohols via cascade oxidation/condensation/reduction steps. PMID:27517898

  10. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    PubMed

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol. PMID:26675839

  11. Chronic alcohol consumption augments loss of sialic acid residues and alters erythrocyte membrane charge in type II diabetic patients.

    PubMed

    Degirmenci, Serkan; Akalin, Aysen; Kartkaya, Kazim; Kanbak, Güngör

    2008-01-01

    In this study, the effects of alcohol consumption on erythrocyte membrane properties in type 2 diabetic patients were investigated. Therefore, we measured total and lipid-bound sialic acid (LSA) levels, sialidase activities, and erythrocyte membrane negative charge. Three groups, including control group (n = 20), alcohol-consuming diabetic patients group (n = 14), and diabetic patients without alcohol consumption group (n = 42), were created. Plasma total sialic acid (TSA) levels of the alcohol-consuming diabetic group were elevated as compared to the healthy control and diabetic group (p < 0.001 and p < 0.01, respectively). TSA levels of the diabetic group were significantly elevated as compared to the healthy control group (p > 0.001). Plasma LSA levels of the alcohol-consuming diabetic group were higher than that in the healthy control and diabetic group (p < 0.05 and p < 0.05, respectively). LSA levels of the diabetic group were found to be high as compared to the healthy control group (p < 0.05). Plasma sialidase activities of the alcohol-consuming diabetic group and diabetic group were significantly elevated as compared to the healthy control group (p < 0.05 and p < 0.05, respectively). Sialidase activities of the alcohol-consuming diabetic group were elevated as compared to the diabetic group, but this was not statistically significant (p > 0.05). Erythrocyte membrane negativity levels of the alcohol-consuming diabetic group and diabetic group were significantly decreased (p < 0.001 and p < 0.001, respectively) as compared to the healthy control group. Erythrocyte membrane negativity levels of the alcohol-consuming diabetic group were decreased as compared to the diabetic group, but this was not statistically significant (p > 0.05). In conclusion, our results indicate that chronic alcohol consumption may augment membrane alterations in type 2 diabetic patients.

  12. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.

    PubMed

    Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven

    2013-12-01

    Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed.

  13. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGES

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  14. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  15. Enhanced antiamyloidal activity of hydroxy cinnamic acids by enzymatic esterification with alkyl alcohols.

    PubMed

    Kondo, Hazuki; Sugiyama, Haruka; Katayama, Shigeru; Nakamura, Soichiro

    2014-01-01

    Lipophilic derivatives of hydroxyl cinnamic acids (HCAs) including caffeic acid (CA), ferulic acid, sinapic acid (SA), and chlorogenic acid were synthesized by esterification with butanol, octanol, or hexadecanol catalyzed by the lipase from Candida antarctica to investigate the effect of lipophilicity on their antiamyloidal activity assessed by the inhibitory activities toward fibrillization of amyloid β (Aβ) peptide. Among them, CA showed the highest activity at 50 μM, reducing the amyloid fibril formation of Aβ to 34.4 ± 6.8%. The antiamyloidal effects of HCAs were enhanced by esterification with alkyl alcohols, and the longer alkyl chain tended to be more effective except for SA. Aβ fibril formation was suppressed by the hexadecyl ester of CA, which was reduced to 8.8 ± 2.3%. In contrast, those of octyl and butyl esters were 19.3 ± 2.3% and 41.6 ± 6.1%, respectively. These results show that lipophilicity plays an important role in the antiamyloidal activities of esterified phenolic compounds.

  16. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate.

  17. Effects of alcohol inhalation on the fatty acid composition of rat tissues

    SciTech Connect

    Melville, D.M.; Karanian, J.W.; Salem, N. Jr.

    1986-05-01

    The objective of this study was to determine if polyunsaturated fatty acid levels in rat tissues are altered by alcohol exposure. Therefore, rats were exposed to ethanol vapor using an inhalation system designed in their laboratory and capable of producing rats with blood ethanol concentrations (BEC) of 50-400 mg%, as desired. Mean BEC were determined after 7 or 14 days of exposure and the lipids were extracted from brains, hearts, livers and aortas by the method of Bligh and Dyer. These total lipid extracts were transmethylated with BF/sub 3/ in methanol and analyzed using a fused silica capillary column. The largest compositional changes were observed in the liver after 14 days of exposure; 18:0, 18:2w6 and 20:4w6 decreased by 7, 18, and 20%, respectively, whereas 16:1w7, 18:1w9, 18:3w3 and 22:6w3 increased by 42, 19, 9, and 11%, respectively. A similar, although quantitatively smaller, effect was observed after only 7 days of alcohol inhalation. Little change was observed in the total lipid extract fatty acyl distribution in the brain or heart, however, the aorta showed losses in the polyunsaturates 20:4w6 and 22:6w3. More detailed data will be presented for the fatty acid distributional changes in individual phospholipid classes. It appears that the direction and magnitude of compositional changes depend upon both the duration of exposure and the blood concentration of alcohol.

  18. Alcohol, volatile fatty acid, phenol, and methane emissions from dairy cows and fresh manure.

    PubMed

    Sun, Huawei; Trabue, Steven L; Scoggin, Kenwood; Jackson, Wendi A; Pan, Yuee; Zhao, Yongjing; Malkina, Irina L; Koziel, Jacek A; Mitloehner, Frank M

    2008-01-01

    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.

  19. A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone.

    PubMed

    Bag, Braja G; Dey, Partha P; Dinda, Shaishab K; Sheldrick, William S; Oppel, Iris M

    2008-01-01

    While separating two natural nano-sized triterpenic acids via bromolactonization, we serendipitously discovered that arjuna-bromolactone is an excellent gelator of various organic solvents. A simple and efficient method for the separation of two triterpenic acids and the gelation ability and solid state 1D-helical self-assembly of nano-sized arjuna-bromolactone are reported.

  20. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  1. A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal

    2014-11-01

    A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.

  2. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  3. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres

    PubMed Central

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D

    2015-01-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  4. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres.

    PubMed

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D; Day, Richard M

    2015-08-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min-24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  5. Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.

    PubMed

    McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L

    2016-01-01

    FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets. PMID:27583575

  6. Hydrogen isotope measurements of organic acids and alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.

    2011-12-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by us and others as intermediary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II° quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample. Samples of carboxylic acid (C1 through C4) and alcohols (C1 through C4) were pyrolyzed at 200°C on a CDS Analytical. Inc. Model 5200° pyroprobe and passed through a Thermo Electron GC-MS-TC-IRMS system operating in continuous flow mode. The High Temperature Conversion step

  7. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  8. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Olsson, Nils U.; Salem, Norman

    2008-01-01

    Background/Aims We reported that reduced dietary intake of polyunsaturated fatty acids (PUFA) such as arachidonic (AA,20:4n6, omega-6) and docosahexaenoic (DHA,22:6n3, omega-3) acids led to alcohol-induced fatty liver and fibrosis. This study was aimed at studying the mechanisms by which a DHA/AA-supplemented diet prevents alcohol-induced fatty liver. Methods Male Long-Evans rats were fed an ethanol or control liquid-diet with or without DHA/AA for 9 weeks. Plasma transaminase levels, liver histology, oxidative/nitrosative stress markers, and activities of oxidatively-modified mitochondrial proteins were evaluated. Results Chronic alcohol administration increased the degree of fatty liver but fatty liver decreased significantly in rats fed the alcohol-DHA/AA-supplemented diet. Alcohol exposure increased oxidative/nitrosative stress with elevated levels of ethanol-inducible CYP2E1, nitric oxide synthase, nitrite and mitochondrial hydrogen peroxide. However, these increments were normalized in rats fed the alcohol-DHA/AA-supplemented diet. The number of oxidatively-modified mitochondrial proteins was markedly increased following alcohol exposure but significantly reduced in rats fed the alcohol-DHA/AA-supplemented diet. The suppressed activities of mitochondrial aldehyde dehydrogenase, ATP synthase, and 3-ketoacyl-CoA thiolase in ethanol-exposed rats were also recovered in animals fed the ethanol-DHA/AA-supplemented diet. Conclusions Addition of DHA/AA prevents alcohol-induced fatty liver and mitochondrial dysfunction in an animal model by protecting various mitochondrial enzymes most likely through reducing oxidative/nitrosative stress. PMID:18571270

  9. Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule.

    PubMed

    Zhao, Yu; Rodrigo, Jason; Hoveyda, Amir H; Snapper, Marc L

    2006-09-01

    Reliable, selective and environmentally friendly chemical transformations are crucial to the development of new therapeutics and the design of novel materials. Chiral catalysts that can be easily prepared and used to obtain organic molecules of high enantiomeric purity are critical to modern chemical synthesis. The development of protecting groups that shield reactive functionalities has also proved indispensable in the preparation of complex biologically active molecules. Here we present a chiral catalyst that promotes the enantioselective protection of a secondary alcohol as one of the most commonly used protected forms of an alcohol: a silyl ether. The catalyst is a small, simple molecule that can be prepared in three steps from commercial materials without the need for rigorously controlled conditions. Enantioselective silylations are performed with commercial silyl chlorides and produce yields of up to 96 per cent at an enantiomeric ratio of up to 98:2. Chiral catalysts for selective formation of commonly used protecting groups such as silyl ethers should significantly enhance the ability of chemical synthesis to deliver, in a more practical and efficient manner, important organic molecules.

  10. Alkanes, Alcohols, and Fatty Acids Record Complementary Signals in Fluvial Sediments: Insights From a Three Year Congo River Time Series

    NASA Astrophysics Data System (ADS)

    Hemingway, J. D.; Schefuß, E.; Bienvenu, D. J.; Pryer, H. V.; Galy, V.

    2015-12-01

    The concentrations, distributions, δ13C and dD of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystems and climate. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. Here, we present distributions, δ13C, and δD composition of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the Congo River. We show multiple end-members contribute differentially to n-alkanes, as evidenced by a large δ13C spread of 4.2 ± 0.7‰ across homologues and low correlation between homologue concentrations. n-Acids and n-alcohols exhibit less δ13C variability, indicating dominance of C3 end-members. Temporally, n-acid and n-alcohol concentrations, distributions, and δD values are much more influenced by seasonal changes in discharge than n-alkanes. Increasing discharge through the low-lying swamp forest likely biases n-acids and n-alcohols toward this highly productive source area, while n-alkanes are less affected due to their more refractory nature and persistence during transport. This is reflected in large changes in n-alcohol/acid minus n-alkane δD (∆δD) between high and low discharge of 15-20‰. We conclude that the n-alkanoic acids and n-alcohols respond to seasonal/inter-annual changes in source area while n-alkanes better represent a seasonally stable signal, and that multiple n-alkyl lipid classes therefore record complementary information in sedimentary archives.

  11. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  12. Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution

    PubMed Central

    Jendral, Julien A.; Monakhova, Yulia B.; Lachenmeier, Dirk W.

    2011-01-01

    A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L). 210 samples (41%) gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of the chromotropic acid-formaldehyde derivative combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Calculation of UV-VIS and 13C NMR spectra confirmed the monocationic dibenzoxanthylium structure as the product of the reaction and disproved the widely cited para,para-quinoidal structure. Method validation for the spectrophotometric procedure showed a detection limit of 0.09 mg/L and a precision of 4.2–8.2% CV. In total, 132 samples (26%) contained formaldehyde with an average of 0.27 mg/L (range 0–14.4 mg/L). The highest incidence occurred in tequila (83%), Asian spirits (59%), grape marc (54%), and brandy (50%). Our survey showed that only 9 samples (1.8%) had formaldehyde levels above the WHO IPCS tolerable concentration of 2.6 mg/L. PMID:21760790

  13. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  14. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  15. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  16. Rapid acid digestion and simple microplate method for milk iodine determination.

    PubMed

    Hedayati, Mehdi; Ordookhani, Arash; Daneshpour, Maryam Sadat; Azizi, Fereidoun

    2007-01-01

    Iodine deficiency leads to deficiency of thyroid hormones, which causes mental retardation in infant. Laboratory confirmation is important in its diagnosis. The major problems associated with the existing methods for iodine determination in milk samples are: 1) nonsafe alkaline solution; 2) harsh thermal condition; and 3) extra time required to complete various steps. In this study, a simple and rapid colorimetric method was investigated, which used acid digestion in combination with a rapid microplate reading format method to determine the total iodine content in milk. Sample digestion was done on 50 microL milk in metavanadate/perchloric, at 230 degrees C for 10 min. After digestion, iodine determination was based on the Sandell-Kolthoff reaction. The reaction results were read in 96-well microplates by an enzyme-linked immunosorbent assay (ELISA) reader. The determination range of the assay was between 2 and 40 microg/dL. The within-run coefficient of variation percent in three levels (3, 12, and 36 microg/dL) ranged from 6.7 to 9.3 and between-run coefficients of variation ranged from 8.6 to 12.3%. The results obtained (n=70) by the optimized method have good correlation with the results of alkaline incineration as a reference method (n=70; r2=0.907; y=0.952x+1.77). Recovery tests for accuracy assessment in six levels from 6.2 to 34.2 microg/dL) were between 91.3 and 113%. This method has enabled us to achieve 0.12 microg/dL sensitivity. The results of this study show that a quick acid digestion combined with mild thermal and low sample volume with a quick reading of assay results were the main advantages of the acid digestion and microplate reading format. PMID:17847102

  17. Palladium-catalyzed mono-N-allylation of unprotected anthranilic acids with allylic alcohols in aqueous media.

    PubMed

    Hikawa, Hidemasa; Yokoyama, Yuusaku

    2011-10-21

    Palladium-catalyzed N-allylation of anthranilic acids 1a-j with allyl alcohol 2a in the presence of Pd(OAc)(2), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS) in THF-H(2)O at room temperature gave only mono-N-allylated anthranilic acids 3a-j in good yields (70-98%). The reactions of 4-bromoanthranilic acid 1i with 2-methyl-3-buten-2-ol 2b showed complete chemoselectivity in N-allylation (neutral conditions) and C-vinylation (basic conditions). In our catalytic system, the keys to success are use of an unprotected anthranilic acid as a starting material and the presence of water in the reaction medium. The carboxyl group of anthranilic acid and water may play important roles for the smooth generation of the π-allyl palladium species by activation of the hydroxyl group of the allylic alcohol. PMID:21919524

  18. Adaptive changes in fatty acid profile of erythrocyte membrane in relation to plasma and red cell metabolic changes in chronic alcoholic men.

    PubMed

    Maturu, Paramahamsa; Varadacharyulu, Nallanchakravarthula

    2012-07-01

    Chronic alcohol consumption is a major reason for several human diseases, and alcoholism has been associated with a variety of societal problems. Changes in fatty acid metabolism in alcoholics and its effects leading to membrane damage are largely unknown. Therefore, we aimed to investigate the fatty acid composition of erythrocyte membrane phospholipids in relation with plasma lipid profile and other plasma metabolites in chronic alcoholics in comparison with controls. We systematically measured the levels of glucose, lactate and pyruvate in the blood and free amino acids, free fatty acids, mucoproteins and glycolipids, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL) cholesterol and triglycerides (TG) in plasma of chronic alcoholics and controls. Furthermore, we measured fatty acid composition by gas chromatographic analysis. The fatty acid composition clearly revealed certain changes in chronic alcoholic erythrocyte membrane, chiefly increments in C16:0 and a decrease in C22:4 and C22:6 fatty acids besides the presence of unidentified fatty acids, probably C-24 or C-26 fatty acids. In addition, a significant increase in blood lactate, decrease in blood pyruvate and increased levels of free amino acids and free fatty acids, mucoproteins, VLDL cholesterol, TG and HDL-C in chronic alcoholics were observed with no significant change in plasma TC, LDL-C and glycolipids when compared with controls. Alcohol-induced alterations in plasma and erythrocyte membranes of chronic alcoholics in the present study might be an adaptive response to counteract the deleterious effects of alcohol. The implications of our findings warrant further investigation and needs further in-depth study to explore the mechanisms of alcohol-induced membrane changes.

  19. Protic acid immobilized on solid support as an extremely efficient recyclable catalyst system for a direct and atom economical esterification of carboxylic acids with alcohols.

    PubMed

    Chakraborti, Asit K; Singh, Bavneet; Chankeshwara, Sunay V; Patel, Alpesh R

    2009-08-21

    A convenient and clean procedure of esterification is reported by direct condensation of equimolar amounts of carboxylic acids with alcohols catalyzed by an easy to prepare catalyst system of perchloric acid immobilized on silica gel (HClO(4)-SiO(2)). The direct condensation of aryl, heteroaryl, styryl, aryl alkyl, alkyl, cycloalkyl, and long-chain aliphatic carboxylic acids with primary/secondary alkyl/cycloalkyl, allyl, propargyl, and long-chain aliphatic alcohols has been achieved to afford the corresponding esters in excellent yields. Chiral alcohol and N-t-Boc protected chiral amino acid also resulted in ester formation with the representative carboxylic acid or alcohol without competitive N-t-Boc deprotection and detrimental effect on the optical purity of the product demonstrating the mildness and chemoselectivity of the procedure. The esters of long-chain (>C(10)) acids and alcohols are obtained in high yields. The catalyst is recovered and recycled without significant loss of activity. The industrial application of the esterification process is demonstrated by the synthesis of prodrugs of ibuprofen and a few commercial flavoring agents. Other protic acids such as H(2)SO(4), HBr, TfOH, HBF(4), and TFA that were adsorbed on silica gel were less effective compared to HClO(4)-SiO(2) following the order HClO(4)-SiO(2) > H(2)SO(4)-SiO(2) > HBr-SiO(2) > TfOH-SiO(2) > HBF(4)-SiO(2) approximately TFA-SiO(2). When HClO(4) was immobilized on other solid supports the catalytic efficiency followed the order HClO(4)-SiO(2) > HClO(4)-K10 > HClO(4)-Al(2)O(3) (neutral) > HClO(4)-Al(2)O(3) (acidic) > HClO(4)-Al(2)O(3) (basic).

  20. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers.

    PubMed

    Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello

    2014-11-01

    This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. PMID:25137651

  1. Development and Application of Low-Carbohydrates and Low-Simple Sugar Nutrition Education Materials for Non-Alcoholic Fatty Liver Disease Patients

    PubMed Central

    An, Yoo-Min; Jun, Dae Won

    2015-01-01

    We developed nutrition education materials for non-alcoholic fatty liver disease (NAFLD) patients focusing on low-carbohydrate and low-simple sugar diet and assessed subjective difficulty and compliance for the developed materials. The materials were developed in 2 types, a booklet for face-to-face education and a handout for phone education. The booklet covered 4 topic areas of fatty liver, low-carbohydrate and low-simple sugar diet, weight control, and meal plan. The handout material included several eating behavior tips. To assess practical usability of nutrition education using the developed materials, subjective compliance and difficulty levels were examined in a sample for NAFLD patients. A total of 106 patients recruited from 5 general hospitals were randomly assigned to a low-carbohydrate and low-simple sugar weight control diet group or a general weight control diet group. Each participant received a 6-week nutrition education program consisting of a face-to-face education session and two sessions of phone education. The developed materials were used for the low-carbohydrate and low-simple sugar weight control diet group and general weight control information materials were used for the control group. Subjective difficulty and compliance levels were evaluated three times during the education period. Subjective difficulty level was significantly higher in the low-carbohydrate and low-simple sugar diet group compared to the control group at the end of the second week, but such a discrepancy disappeared afterward. No significant difference was found for subjective compliance between the groups at each time. In conclusion, the developed nutrition education materials for low-carbohydrate and low-simple sugar diet are reasonably applicable to general Korean NAFLD patients. PMID:26566520

  2. Development and Application of Low-Carbohydrates and Low-Simple Sugar Nutrition Education Materials for Non-Alcoholic Fatty Liver Disease Patients.

    PubMed

    An, Yoo-Min; Jun, Dae Won; Lee, Seung Min

    2015-10-01

    We developed nutrition education materials for non-alcoholic fatty liver disease (NAFLD) patients focusing on low-carbohydrate and low-simple sugar diet and assessed subjective difficulty and compliance for the developed materials. The materials were developed in 2 types, a booklet for face-to-face education and a handout for phone education. The booklet covered 4 topic areas of fatty liver, low-carbohydrate and low-simple sugar diet, weight control, and meal plan. The handout material included several eating behavior tips. To assess practical usability of nutrition education using the developed materials, subjective compliance and difficulty levels were examined in a sample for NAFLD patients. A total of 106 patients recruited from 5 general hospitals were randomly assigned to a low-carbohydrate and low-simple sugar weight control diet group or a general weight control diet group. Each participant received a 6-week nutrition education program consisting of a face-to-face education session and two sessions of phone education. The developed materials were used for the low-carbohydrate and low-simple sugar weight control diet group and general weight control information materials were used for the control group. Subjective difficulty and compliance levels were evaluated three times during the education period. Subjective difficulty level was significantly higher in the low-carbohydrate and low-simple sugar diet group compared to the control group at the end of the second week, but such a discrepancy disappeared afterward. No significant difference was found for subjective compliance between the groups at each time. In conclusion, the developed nutrition education materials for low-carbohydrate and low-simple sugar diet are reasonably applicable to general Korean NAFLD patients.

  3. Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Wu, Pei-Ling; Hsu, Yu-Ting; Yang, Chi-Ru

    2010-09-01

    Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g -1 of Hsing Shan incense and 43.7 ± 1.08 mg g -1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7-52.2% w/w of the identified particulate and 1078.3-1169.8 μg g -1 of incense, followed by inorganic salts at 30.4-31.8% w/w of identified particulate and 681.6-734.0 μg g -1 of incense, carboxylic acids at 12.0-17.1% w/w of the identified particulate and 268.6-392.8 μg g -1 of incense, and sugar alcohols at 4.44-5.38% w/w of the identified particulate and 102.3-120.6 μg g -1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses ( Lao Shan 21.7 mg g -1 of PM and Hsing Shan 18.7 mg g -1). K + and Cl - were the second most abundant components (K + and Cl - were summed), accounting for 10.6 mg g -1 of Hsing Shan PM and 9.85 mg g -1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7-36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for

  4. Alcohol fermentation of sweet potato. 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154 degrees celcius. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154 degrees C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154 degrees C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by HPLC, contained glucose, fructose and sucrose, butdegreaded SPP had only glucose and fructose. Products of degraded SPP, under appropriate conditions, could be used for alcohol fermentation. (Refs. 18).

  5. Conversion of acids to alcohols by Clostridium ragsdalei strain P11: Process optimization and biochemistry

    NASA Astrophysics Data System (ADS)

    Isom, Catherine E.

    Research focus was directed toward the development of a biocatalyst that can be used to produce commodity chemicals and transportation fuels from volatile fatty acids ubiquitous in waste biomass. Clostridium ragsdalei was introduced to serve as an exemplar carboxidotrophic acetogen that reduces VFAs to alcohols of the same carbon structure with only acetate and ethanol as by-products of the fermentation. This dissertation developed a better understanding of this process in C. ragsdalei and, in turn, other similar bacteria and to supported previous discoveries as they relate to carboxylate reduction in acetogens. Additionally, pure culture studies allowed for a more detailed understanding of the biochemical behavior response to different compounds without skewing the results due to the influence of other species.

  6. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    PubMed

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  7. Amino acid alcohols: growth inhibition and induction of differentiated features in melanoma cells.

    PubMed

    Landau, O; Wasserman, L; Deutsch, A A; Reiss, R; Panet, H; Novogrodsky, A; Nordenberg, J

    1993-05-14

    The effects of a series of D- and L-amino acid alcohols on the proliferation and phenotypic expression of B16 mouse melanoma cells were evaluated. B16 melanoma cells were incubated for different time intervals in the presence of D- or L-phenylalaninol (PHE), D- or L-alaninol (AL), D- or L-leucinol (LE), L-histidinol (HIS), L-tyrosinol (TYR) and L-methioninol (MET). All agents, including the D or L configuration, induced an anti-proliferative effect, although of considerably different magnitude. D-PHE was the most active growth inhibitor. The growth inhibitory effects were accompanied by phenotypic alterations, which included morphological changes and enhancement in the activities of NADPH cytochrome c reductase and tau-glutamyl transpeptidase. These phenotypic alterations correlated with the growth inhibitory effects of the different agents and seem to reflect a higher differentiated state. PMID:8099846

  8. Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols.

    PubMed

    Balkrishna, Shah Jaimin; Prasad, Ch Durga; Panini, Piyush; Detty, Michael R; Chopra, Deepak; Kumar, Sangit

    2012-11-01

    Isoselenazolones were synthesized by a copper-catalyzed Se-N bond forming reaction between 2-halobenzamides and selenium powder. The catalytic activity of the various isoselenazolones was studied in the bromolactonization of pent-4-enoic acid. Isoselenazolone 9 was studied as a catalyst in several reactions: the bromolactonization of a series of alkenoic acids with bromine or N-bromosuccinimide (NBS) in the presence of potassium carbonate as base, the bromoesterification of a series of alkenes using NBS and a variety of carboxylic acids, and the oxidation of secondary alcohols to ketones using bromine as an oxidizing reagent. Mechanistic details of the isoselenazolone-catalyzed bromination reaction were revealed by (77)Se NMR spectroscopic and ES-MS studies. The oxidative addition of bromine to the isoselenazolone gives the isoselenazolone(IV) dibromide, which could be responsible for the activation of bromine under the reaction conditions. Steric effects from an N-phenylethyl group on the amide of the isoselenazolone and electron-withdrawing fluoro substituents on the benzo fused-ring of the isoselenazolone appear to enhance the stability of the isoselenazolone as a catalyst for the bromination reaction. PMID:23046286

  9. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taen, T.; Tsuchiya, Y.; Shi, Z. X.; Tamegai, T.

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe1+yTe0.6Se0.4, including annealing in a vacuum, N2, O2 and I2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N2 annealing are proved to be ineffective in inducing superconductivity in a Fe1+yTe0.6Se0.4 single crystal. Annealing in O2 and I2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O2 annealed samples is of a bulk nature, while I2, acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O2, I2, acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe1+yTe0.6Se0.4.

  10. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  11. COMPARATIVE DISTRIBUTION OF PERFLUOROOCTANOIC ACID IN MALE, FEMALE AND PREGNANT MICE FOLLOWING TREATMENT WITH 8-2 FLUOROTELOMER ALCOHOL (FTOH)

    EPA Science Inventory

    The global occurrence of perfluorooctanoic acid (PFOA) in environmental and mammalian matrices has spurred regulatory interest in potential sources of this stable compound. 8-2 fluorotelomer alcohol, a primary compound used in polymer synthesis, is found ubiquitously in the envi...

  12. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  13. One-Carbon Homologation of Primary Alcohols to Carboxylic Acids, Esters, and Amides via Mitsunobu Reactions with MAC Reagents.

    PubMed

    Kagawa, Natsuko; Nibbs, Antoinette E; Rawal, Viresh H

    2016-05-20

    A method is reported for the one-carbon homologation of an alcohol to the extended carboxylic acid, ester, or amide. The process involves the Mitsunobu reaction with an alkoxymalononitrile, followed by unmasking in the presence of a suitable nucleophile. The homologation and unmasking can even be performed in a one-pot process in high yield. PMID:27135854

  14. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Oster, Jürgen; Parker, Jeffrey; à Brassard, Lothar

    2001-01-01

    The versatile application of polyvinyl-alcohol-based magnetic M-PVA beads is demonstrated in the separation of genomic DNA, sequence specific nucleic acid purification, and binding of bacteria for subsequent DNA extraction and detection. It is shown that nucleic acids can be obtained in high yield and purity using M-PVA beads, making sample preparation efficient, fast and highly adaptable for automation processes.

  15. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles.

    PubMed

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal P

    2005-01-01

    Excessive alcohol intake induces hyperlipidemia. Studies suggest that natural principles and their analogs are known to possess anti-hyperlipidemic properties. In the present work we tested the effect of curcumin, an active principle of turmeric (Curcuma longa), and a curcumin analog on alcohol- and thermally oxidized polyunsaturated fatty acid (deltaPUFA)- induced hyperlipidemia. Male albino Wistar rats were used for the experimental study. Anti-hyperlipidemic activity of curcumin and curcumin analog was evaluated by analyzing the levels of cholesterol, triglycerides (TGs), phospholipids (PLs), and free fatty acids (FFAs). The results showed that the levels of cholesterol, TGs, PLs, and FFAs were increased significantly in alcohol-, deltaPUFA-, and alcohol + deltaPUFA-treated groups, which were brought down significantly on treatment with either of the curcuminoids. Curcumin analog treatment was found to be more effective than curcumin treatment. From the results obtained, we conclude that both curcumin and its analog effectively protect the system against alcohol- and deltaPUFA-induced hyperlipidemia and are possible candidates for the treatment of hyperlipidemia.

  16. Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms

    PubMed Central

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-01-01

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples. PMID:24077320

  17. Long-term γ-hydroxybutyric acid (GHB) and disulfiram combination therapy in GHB treatment-resistant chronic alcoholics.

    PubMed

    Maremmani, Angelo Giovanni Icro; Pani, Pier Paolo; Rovai, Luca; Pacini, Matteo; Dell'Osso, Liliana; Maremmani, Icro

    2011-07-01

    Leading Italian studies support the use of γ-hydroxybutyric acid (GHB), not only in the treatment of the alcohol withdrawal syndrome, but also in maintaining alcohol abstinence. GHB gives a better result than naltrexone and disulfiram in maintaining abstinence, and it has a better effect on craving than placebo or disulfiram. The problem is that about 30-40% of alcoholics are non-responders to GHB therapy. In our clinical practice, we speculate that by combining disulfiram with GHB treatment we may be able to achieve a kind of 'antagonist' effect by using the 'psychological threat' of disulfiram (adversative effect) while taking advantage of the anticraving effect of GHB, despite the limitation of its 'non-blockade' effect on alcohol. In this context, to improve the outcome in GHB long-term treated alcoholics, we added disulfiram to GHB in the management of GHB treatment-resistant alcoholics. In this study we compared retention in treatment of 52 patients who were treated with the GHB-disulfiram combination for up to six months, with retention for the same subjects considering their most recent unsuccessful outpatient long-term treatment with GHB only. An additional comparison was carried out on the days of complete abstention from alcohol. Thirty four patients (65.4%) successfully completed the protocol and were considered to be responders; 18 (34.6%) left the programme, and were considered to be non-responders. Considering the days of complete abstinence from alcohol, 36 patients stayed in treatment longer with the GHB-Disulfiram combination, 12 stayed for a shorter time and four for the same time. The results of this study seem to indicate a higher efficacy of the GHB-disulfiram association compared with GHB alone. Randomized controlled trials are now needed to verify this hypothesis.

  18. Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel.

    PubMed

    Juntanon, Kanokporn; Niamlang, Sumonman; Rujiravanit, Ratana; Sirivat, Anuvat

    2008-05-22

    Electrically controlled drug delivery using poly(vinyl alcohol) (PVA) hydrogels as the matrix/carriers for a model drug was investigated. The drug-loaded PVA hydrogels were prepared by solution-casting using sulfosalicylic acid as the model drug and glutaraldehyde as the crosslinking agent. The average molecular weight between crosslinks, the crosslinking density, and the mesh size of the PVA hydrogels were determined from the equilibrium swelling theory as developed by Peppas and Merril, and the latter data were compared with those obtained from scanning electron microscopy. The release mechanisms and the diffusion coefficients of the hydrogels were studied using modified Franz-Diffusion cells in an acetate buffer with pH 5.5 and temperature 37 degrees C during a period of 48 h, in order to determine the effects of crosslinking ratio, electric field strength, and electrode polarity. The amounts of drug released were analyzed by UV-vis spectrophotometry. The amounts of drug released vary linearly with square root of time. The diffusion coefficients of drug-loaded PVA hydrogels decrease with increasing crosslink ratio. Moreover, the diffusion coefficients of the charged drug in the PVA hydrogels depend critically on the electric field strength between 0 and 5 V as well as on the electrode polarity. Thus, the release rate of sulfosalicylic acid can be altered and controlled precisely through electric field stimulation.

  19. SIMPLE SAMPLE CLEAN UP PROCEDURE AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR THE ANALYSIS OF CYANURIC ACID IN HUMAN URINE

    EPA Science Inventory

    Cyanuric acide (CA) is widely used as a chlorine stabilizer in outdoor pools. No simple method exists for CA measurement in the urine of exposed swimmers. The high hydrophilicity of CA makes usage of solid phase sorbents to extract it from urine nearly impossible because of samp...

  20. Selective conversion of alcohols in water to carboxylic acids by in situ generated ruthenium trans dihydrido carbonyl PNP complexes.

    PubMed

    Choi, Jong-Hoo; Heim, Leo E; Ahrens, Mike; Prechtl, Martin H G

    2014-12-14

    In this work, we present a mild method for direct conversion of primary alcohols into carboxylic acids with the use of water as an oxygen source. Applying a ruthenium dihydrogen based dehydrogenation catalyst for this cause, we investigated the effect of water on the catalytic dehydrogenation process of alcohols. Using 1 mol% of the catalyst we report up to high yields. Moreover, we isolated key intermediates which most likely play a role in the catalytic cycle. One of the intermediates was identified as a trans dihydrido carbonyl complex which is generated in situ in the catalytic process.

  1. Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate.

    PubMed

    de Paiva, Eduardo José Mendes; Corazza, Marcos Lúcio; Sierakowski, Maria Rita; Wärnå, Johan; Murzin, Dmitry Yu; Wypych, Fernando; Salmi, Tapio

    2015-10-01

    In this work, esterification of fatty acids (oleic, linoleic and stearic acid) with a commercial zinc carboxylate (a layered compound formed by simultaneous intercalation of stearate and palmitate anions) was performed. Kinetic modeling using a quasi-homogeneous approach successfully fitted experimental data at different molar ratio of fatty acids/alcohols (1-butanol and 1-hexanol) and temperature. An apparent first-order reaction related to all reactants was found and activation energy of 66 kJ/mol was reported. The catalyst showed to be unique, as it can be easily recovered like a heterogeneous catalysts behaving like ionic liquids. In addition, this catalyst demonstrated a peculiar behavior, because higher reactivity was observed with the increase in the alcohols chain length compared to the authors' previous work using ethanol.

  2. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.

    PubMed

    Fang, Shi-Qi; Wang, Yong-Tang; Wei, Jing-Xiang; Shu, Ya-Hai; Xiao, Lan; Lu, Xiu-Min

    2016-04-01

    As one of the most commonly abused psychotropic substances, ethanol exposure has deleterious effects on the central nervous system (CNS). The most detrimental results of ethanol exposure during development are the loss of neurons in brain regions such as the hippocampus and neocortex, which may be related to the apoptosis and necrosis mediated by oxidative stress. Recent studies indicated that a number of natural drugs from plants play an important role in protection of nerve cells from damage. Among these, it has been reported that chlorogenic acid (CA) has neuroprotective effects against oxidative stress. Thus, it may play some beneficial effects on ethanol-induced neurotoxicity. However, the effects of CA on ethanol-induced nerve damage remain unclear. In order to investigate the protective effects of CA on alcohol-induced apoptosis in rat pheochromocytoma PC12 cells, in the present study, cell viability and the optimal dosage of CA were first quantified by MTT assay. Then, the cell apoptosis and cell cycle were respectively investigated by Hoechst 33258 staining and flow cytometer (FCM). To further clarify the possible mechanism, followed with the test of mitochondria transmembrane potential with Rhodamine 123 (Rho 123) staining, the expression of Bcl-2, Capase-3 and growth associated protein-43 (GAP-43) were analyzed by immunofluorescence assay separately. The results showed that treatment with 500 mM alcohol decreased the cell viability and then significantly induced apoptosis in PC12 cells. However, when pretreated with different concentrations of CA (1, 5, 10, 50 μM), cell viability increased in different degree. Comparatively, CA with the concentration of 10 μM most effectively promoted the proliferation of damaged cells, increased the distribution ratio of the cells at the G2/M and S phases, and enhanced mitochondria transmembrane potential. This appears to be in agreement with up-regulation of the expression of Bcl-2 and GAP-43, and down-regulation of

  3. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  4. Ligand-Enabled β-C–H Arylation of Alpha-Amino Acids Using a Simple and Practical Auxiliary

    PubMed Central

    Chen, Gang; Shigenari, Toshihiko; Jain, Pankaj; Zhang, Zhipeng; Jin, Zhong; He, Jian; Li, Suhua; Mapelli, Claudio; Miller, Michael M.; Poss, Michael A.; Scola, Paul M.; Yeung, Kap-Sun

    2015-01-01

    Pd-catalyzed β-C–H functionalizations of carboxylic acid derivatives using an auxiliary as a directing group have been extensively explored in the past decade. In comparison to the most widely used auxiliaries in asymmetric synthesis, the simplicity and practicality of the auxiliaries developed for C–H activation remains to be improved. We previously developed a simple N-methoxyamide auxiliary to direct β-C–H activation, albeit this system was not compatible with carboxylic acids containing α-hydrogen atoms. Herein we report the development of a pyridine-type ligand that overcomes this limitation of the N-methoxyamide auxiliary, leading to a significant improvement of β-arylation of carboxylic acid derivatives, especially α-amino acids. The arylation using this practical auxiliary is applied to the gram-scale syntheses of unnatural amino acids, bioactive molecules and chiral bis(oxazoline) ligands. PMID:25697780

  5. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  6. Detection and qualitative analysis of fatty acid amides in the urine of alcoholics using HPLC-QTOF-MS.

    PubMed

    Dabur, Rajesh; Mittal, Ashwani

    2016-05-01

    Fatty acid amides (FAAs) in alcoholism lead to liver diseases. These amides have been reported in plasma and in other organs of the body, while their detection or presence in the urine is still unknown. Therefore, the focus of the current study was to detect and analyze FAAs qualitatively in urine samples of alcoholics. Furthermore, the effects of Tinospora cordifolia (hepatoprotective medicinal plant) intervention on FAA levels in moderate alcoholics were also analyzed. In the study, asymptomatic chronic alcoholics (n = 22) without chronic liver disease and nonalcoholic healthy volunteers (n = 24) with a mean age of 39 ± 2.0 years were selected. The first-pass urine and fasting blood samples were collected in the morning on day 0 and day 14 after T. cordifolia water extract (TCE) treatment and analyzed using automated biochemistry analyzer and HPLC-QTOF-MS. Results indicated the increased levels of serum triglycerides, cholesterol, and liver function enzymes in alcoholic subjects, which were significantly down-regulated by TCE intervention. Multivariate discrimination analysis of QTOF-MS data showed increased urinary levels of oleoamide (2.55-fold), palmitamide (5.6-fold), and erucamide (1.6-fold) in alcoholics as compared to control subjects. Levels of oleamide (1.8-fold), palmitamide (1.7-fold), and linoleamide (1.5-fold) were found to be increased in plasma. Treatment with TCE in alcoholics (3.0 g lyophilized water extract/day) significantly decreased the plasma and urinary levels of all FAAs except linoleamide. The HPLC-QTOF-MS approach for FAAs analysis in both urinary and plasma samples of alcoholics worked very well. Moreover, findings (i.e., increased levels of FAAs in urine and in plasma) further support other findings that these amides play a very important role in alcoholism. Further, like our previous findings, TCE proved its hepatoprotective effect against alcoholism not only by lowering the levels of these detected FAAs, but also by decreasing the

  7. Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease

    PubMed Central

    McMahan, Rachel H.; Porsche, Cara E.; Edwards, Michael G.; Rosen, Hugo R.

    2016-01-01

    Non-alcoholic fatty liver disease is a prevalent problem throughout the western world. Liver sinusoidal endothelial cells (LSEC) have been shown to play important roles in liver injury and repair, but their role in the underlying pathogenetic mechanisms of non-alcoholic fatty liver disease remains undefined. Here, we evaluated the effects of steatosis on LSEC gene expression in a murine model of non-alcoholic fatty liver disease and an immortalized LSEC line. Using microarray we identified distinct gene expression profiles following exposure to free fatty acids. Gene pathway analysis showed a number of differentially expressed genes including those involved in lipid metabolism and signaling and inflammation. Interestingly, in contrast to hepatocytes, fatty acids led to decreased expression of pro-inflammatory chemokines including CCL2 (MCP-1), CXCL10 and CXCL16 in both primary and LSEC cell lines. Chemokine downregulation translated into a significant inhibition of monocyte migration and LSECs isolated from steatotic livers demonstrated a similar shift towards an anti-inflammatory phenotype. Overall, these pathways may represent a compensatory mechanism to reverse the liver damage associated with non-alcoholic fatty liver disease. PMID:27454769

  8. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO42-/Zr-MCM-48 and SO42-/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH3-TPD and N2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)-MCM-48 samples, SO42-/Zr-MCM-48 and SO42-/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO42-/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h-1 and the reaction temperature is 140 °C.

  9. Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols

    SciTech Connect

    DeTuri, V.F.; Ervin, K.M.

    1999-09-02

    Energy-resolved competitive collision-induced dissociation methods are used to measure the gas-phase acidities of a series of alcohols (methanol, ethanol, 2-propanol, and 2-methyl-2-propanol). The competitive dissociation reactions of fluoride-alcohol, [F{sup {minus}}{center{underscore}dot}HOR], alkoxide-water, [RO{sup {minus}}{center{underscore}dot}HOH], and alkoxide-methanol [RO{+-}{center{underscore}dot}HOCH{sub 3}] proton-bound complexes are studied using a guided ion beam tandem mass spectrometer. The reaction cross sections and product branching fractions to the two proton transfer channels are measured as a function of collision energy. The enthalpy difference between the two product channels is found by modeling the reaction cross sections near threshold using RRKM theory to account for the energy-dependent product branching ratio and kinetic shift. From the enthalpy difference, the alcohol gas-phase acidities are determined relative to the well-known values of HF and H{sub 2}O. The measured gas-phase acidities are {Delta}{sub acid}H{sub 298}(CH{sub 3}OH) = 1599 {+-} 3 kJ/mol, {Delta}{sub acid}H{sub 298}(CH{sub 3}CH{sub 2}OH) = 1586 {+-} 5 kJ/mol, {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 2}CHOH) = 1576 {+-} 4 kJ/mol, and {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 3}COH) = 1573 {+-} 3 kJ/mol.

  10. Electric field-controlled benzoic acid and sulphanilamide delivery from poly(vinyl alcohol) hydrogel.

    PubMed

    Sittiwong, Jarinya; Niamlang, Sumonman; Paradee, Nophawan; Sirivat, Anuvat

    2012-12-01

    The controlled release of benzoic acid (3.31 Å) and sulphanilamide (3.47 Å) from poly(vinyl alcohol), PVA, hydrogels fabricated by solution casting at various cross-linking ratios, were investigated. The PVA hydrogels were characterized in terms of the degree of swelling, the molecular weight between cross-links, and the mesh size. The drug release experiment was carried out using a modified Franz diffusion cell, at a pH value of 5.5 and at temperature of 37°C. The amount of drug release and the diffusion coefficients of the drugs from the PVA hydrogels increased with decreasing cross-linking ratio, as a larger mesh size was obtained with lower cross-linking ratios. With the application of an electric field, the amount of drug release and the diffusion coefficient increased monotonically with increasing electric field strength, since the resultant electrostatic force drove the ionic drugs from the PVA matrix. The drug size, matrix pore size, electrode polarity, and applied electric field were shown to be influential controlling factors for the drug release rate. PMID:23065453

  11. Alcohol fermentation of sweet potato - 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154/degree/C. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154/degree/C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154/degree/C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by High Performance Liquid Chromatography, contained glucose, fructose and sucrose, but degraded SPP had only glucose and fructose. Products of degraded SPP, Under appropriate conditions, could be used for alcohol fermentation. 18 refs.

  12. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.

    PubMed

    Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul

    2010-01-01

    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively. PMID:20124754

  13. Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Liu, Genqi; Zhang, Cheng; Liao, Jiae

    2013-01-01

    A strong electrolyte hydrogel was prepared by modifying poly (vinyl alcohol) hydrogel with sulfoacetic acid (SA-PVA). Its swelling properties, mechanical properties, and electroresponsive behavior in Na2SO4 solutions were studied. The results indicated that the water take-up ability of the hydrogel decreased with the increasing ionic strength of Na2SO4 solution. The Young’s modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water are 1.247 MPa, 187% and 2.2 MPa, respectively. The hydrogel swollen in a Na2SO4 solution bent towards the cathode under non-contact dc electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. There is a critical ionic strength of 0.03 at which the maximum equilibrium strain of the hydrogel occurs. Also the bending behavior of hydrogel was not affected by the pH changes. By altering the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. On this basis, a gel-worm was designed. Under a cyclically varying electric field (the period was 8 s, and the voltage ranged from -10 to 10 V), the walking speed was up to 15 cm min-1 in Na2SO4 solution with an ionic strength of 0.03.

  14. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.

    PubMed

    Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul

    2010-01-01

    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.

  15. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  16. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  17. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-01-01

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis. PMID:26602919

  18. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement.

    PubMed

    Marrs, James A; Clendenon, Sherry G; Ratcliffe, Don R; Fielding, Stephen M; Liu, Qin; Bosron, William F

    2010-01-01

    This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid (RA) signaling caused by embryonic ethanol exposure. RA deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with RA at a low concentration (10(-9)M) and 100mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100mM ethanol alone. The rescued phenotype that we observed was quantitatively more similar to embryos treated with 10(-9)M RA alone (RA toxicity) than to untreated or 100mM ethanol-treated embryos. RA rescued defects caused by 100mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation, and ear development. Morphological evidence also suggests that other characteristic features of FASD (e.g., neural axis patterning) are rescued by RA supplement.

  19. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  20. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  1. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  2. Correlating Acid Properties and Catalytic Function: A First-Principles Analysis of Alcohol Dehydration Pathways on Polyoxometalates

    SciTech Connect

    Janik, Michael J.; Macht, Josef; Iglesia, Enrique; Neurock, Matthew

    2009-02-05

    Density functional theory calculations and reactivity data were used to examine the mechanism of alcohol dehydration on Keggin-type polyoxometalate (POM) catalysts and the influence of the POM composition and the degree of substitution of the alcohol on kinetically relevant elimination steps. Dehydration was found to proceed through E1 pathways in which the alcohol CsO bond is cleaved heterolytically via a carbeniumion transition state. Dehydration rates were found to depend on the elimination rate constant and the equilibrium constant for the formation of unreactive alcohol dimers. E2-type elimination transition states, involving concerted CsH and CsO bond cleavage, were not found. The extent of substitution at the R-carbon on the alcohol was found to lead to marked effects on elimination barriers, because substitution increases the proton affinity of the alcohol and the stability of the carbenium-ion transition state. Changes in the central and addenda atoms of the POM cluster and the presence of n-donors, a support, vicinal POM clusters, or charge-compensating cations were found to lead to changes in the deprotonation energy (DPE) of the POM cluster, activation barriers to dehydration, and the stability of the unreactive dimer. These effects are all captured in a general linear relation between activation barriers and deprotonation energy, a rigorous measure of acid strength. The explicit dependence of the E1 activation barrier on the acid deprotonation energy is much weaker than that on reactant proton affinity. This results from the more effective compensation between the acid deprotonation energy and the interaction energy between the cationic hydrocarbon fragment and the anionic POM cluster at the transition state. The direct interactions between the POM protons and the support, other POM clusters, n-donors, base probe molecules, and charge-compensating cations increased the negative charge of the oxide shell of the W12O40 conjugate base, which increased the

  3. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. PMID:27469095

  4. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  5. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  6. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.

    PubMed

    Castañón-Rodríguez, Juan Francisco; Pérez-Rodríguez, Noelia; de Souza Oliveira, Ricardo Pinheiro; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2016-10-01

    Raw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ). Additionally, micrographics of carrier surface were obtained by field emission-scanning electron microscopy to study the influence of morphological changes during pretreatments in the adhesion of cells immobilized. The results point out that in spite of showing the lowest WAI and intermediate λ, raw material was the most appropriated substrate to conduct the bioconversion, achieving up to 262.9 mg/L phenolic compounds after 24 h, corresponding to 42.9 mg/L vanillin, 115.6 mg/L vanillyl alcohol, and 104.4 mg/L vanillic acid. The results showed the potential of this process to be applied for biotechnological production of vanillin from ferulic acid solutions; however, further studies must be carried out to increase vanillin yield. Additionally, the liquors obtained after treatment of vine-trimming wastes could be assayed to replace synthetic ferulic acid. PMID:27431730

  7. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.

    PubMed

    Castañón-Rodríguez, Juan Francisco; Pérez-Rodríguez, Noelia; de Souza Oliveira, Ricardo Pinheiro; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2016-10-01

    Raw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ). Additionally, micrographics of carrier surface were obtained by field emission-scanning electron microscopy to study the influence of morphological changes during pretreatments in the adhesion of cells immobilized. The results point out that in spite of showing the lowest WAI and intermediate λ, raw material was the most appropriated substrate to conduct the bioconversion, achieving up to 262.9 mg/L phenolic compounds after 24 h, corresponding to 42.9 mg/L vanillin, 115.6 mg/L vanillyl alcohol, and 104.4 mg/L vanillic acid. The results showed the potential of this process to be applied for biotechnological production of vanillin from ferulic acid solutions; however, further studies must be carried out to increase vanillin yield. Additionally, the liquors obtained after treatment of vine-trimming wastes could be assayed to replace synthetic ferulic acid.

  8. Effect of pioglitazone, quercetin and hydroxy citric acid on extracellular matrix components in experimentally induced non-alcoholic steatohepatitis

    PubMed Central

    Mohan, Surapaneni Krishna; Veeraraghavan, Vishnu Priya; Jainu, Mallika

    2015-01-01

    Objective(s): Non-alcoholic steatohepatitis (NASH), is an important component of Non-alcoholic fatty liver disease (NAFLD) spectrum, which progresses to the end stage liver disease, if not diagnosed and treated properly. The disproportionate production of pro- and anti-inflammatory adipokines secreted from fat contributes to the pathogenesis of NASH. In this study, the comparative effect of pioglitazone, quercetin and hydroxy citric acid on extracellular matrix (ECM) component levels were studied in experimentally induced NASH. Materials and Methods: The experimental protocol consists of using 48 male Wister rats, which were divided into 8 groups. The levels of hyaluronic acid, leptin and adiponectin were monitored in experimental NASH. Results: The experimental NASH rats treated with pioglitazone showed significant decrease in the levels of hyaluronic acid and significant increase in adiponectin levels when compared to experimentally induced NASH group, but did not show any effect on the levels of leptin. Contrary to these two drugs, viz. pioglitazone and hydroxy citric acid, the group treated with quercetin showed significant decrease in the levels of hyaluronic acid and leptin and significant decrease in adiponectin levels compared with that of experimentally induced NASH NASH group, offering maximum protection against NASH. Conclusion: Considering our findings, it could be concluded that quercetin may offer maximum protection against NASH by significantly increasing the levels of adiponectin, when compared to pioglitazone and hydroxy citric acid. PMID:26557974

  9. Altered Fatty Acid Metabolism-Related Gene Expression in Liver from Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Auguet, Teresa; Berlanga, Alba; Guiu-Jurado, Esther; Martinez, Salomé; Porras, José Antonio; Aragonès, Gemma; Sabench, Fátima; Hernandez, Mercé; Aguilar, Carmen; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2014-01-01

    Lipid accumulation in the human liver seems to be a crucial mechanism in the pathogenesis and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate gene expression of different fatty acid (FA) metabolism-related genes in morbidly obese (MO) women with NAFLD. Liver expression of key genes related to de novo FA synthesis (LXRα, SREBP1c, ACC1, FAS), FA uptake and transport (PPARγ, CD36, FABP4), FA oxidation (PPARα), and inflammation (IL6, TNFα, CRP, PPARδ) were assessed by RT-qPCR in 127 MO women with normal liver histology (NL, n = 13), simple steatosis (SS, n = 47) and non-alcoholic steatohepatitis (NASH, n = 67). Liver FAS mRNA expression was significantly higher in MO NAFLD women with both SS and NASH compared to those with NL (p = 0.003, p = 0.010, respectively). Hepatic IL6 and TNFα mRNA expression was higher in NASH than in SS subjects (p = 0.033, p = 0.050, respectively). Interestingly, LXRα, ACC1 and FAS expression had an inverse relation with the grade of steatosis. These results were confirmed by western blot analysis. In conclusion, our results indicate that lipogenesis seems to be downregulated in advanced stages of SS, suggesting that, in this type of extreme obesity, the deregulation of the lipogenic pathway might be associated with the severity of steatosis. PMID:25474087

  10. Mild oxidation of alcohols with o-iodoxybenzoic acid (IBX) in water/acetone mixture in the presence of beta-cyclodextrin.

    PubMed

    Surendra, K; Krishnaveni, N Srilakshmi; Reddy, M Arjun; Nageswar, Y V D; Rao, K Rama

    2003-03-01

    A mild and efficient oxidation of alcohols with o-iodoxybenzoic acid (IBX) catalyzed by beta-cyclodextrin in a water/acetone mixture (86:14) has been developed. A series of alcohols were oxidized at room temperature in excellent yields.

  11. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols.

    PubMed

    Mo, Xiaobin; Hall, Dennis G

    2016-08-31

    A ferrocenium boronic acid salt activates allylic alcohols to generate transient carbocations that react with in situ-generated chiral enamines from branched aldehydes. The optimized conditions afford the desired acyclic products embedding a methyl-aryl quaternary carbon center with up to 90% yield and 97:3 enantiomeric ratio, with only water as the byproduct. This noble-metal-free method complements alternative methods that are incompatible with carbon-halogen bonds and other sensitive functional groups. PMID:27518200

  12. Lewis acid catalyzed cascade reaction of 3-(2-benzenesulfonamide)propargylic alcohols to spiro[indene-benzosultam]s.

    PubMed

    Sun, Lang; Zhu, Yuanxun; Wang, Jing; Lu, Ping; Wang, Yanguang

    2015-01-16

    A highly efficient and convenient construction of the spiro[indene-benzosultam] skeleton from propargylic alcohols has been developed. The reaction proceeded in a Lewis acid catalyzed cascade process, including the trapping of allene carbocation with sulfonamide, electrophilic cyclization, and intramolecular Friedel-Crafts alkylation. In the presence of NIS or NBS, iodo/bromo-substituted spiro[indene-benzosultam]s could be prepared in excellent yields. PMID:25541815

  13. A simple screening test for fatty acid oxidation defects using whole-blood palmitate oxidation.

    PubMed

    Seargeant, L E; Balachandra, K; Mallory, C; Dilling, L A; Greenberg, C R

    1999-08-01

    We report that measurement of whole-blood palmitate oxidation is a rapid and inexpensive screening test for fatty acid oxidation defects. The assay has been adapted from published assays using cultured fibroblasts or isolated white blood cells. Micro whole-blood samples are incubated with tritiated palmitic acid as substrate. The tritiated water produced is proportional to the mitochondrial beta-oxidation of palmitic acid. Patients with confirmed beta-oxidation defects show low whole-blood palmitate oxidation.

  14. Electrochemical Study of AISI C1018 Steel in Methanesulfonic Acid Containing an Acetylenic Alcohol-Based Corrosion Inhibitor Formulation.

    PubMed

    Finšgar, Matjaž; Jackson, Jennifer

    2016-10-01

    In this work, the electrochemical potentiodynamic behavior of AISI C1018 lower-grade steel material was investigated in 20 wt.% methanesulfonic acid (MSA) solutions with or without different components to design corrosion inhibitor formulations based on acetylenic alcohol, cinnamaldehyde, 1-dodecylpyridinium chloride, and methanol. MSA has recently been considered as a new potential acid to be used in the matrix stimulation procedure and in well cleaning. It is demonstrated that AISI C1018 steel MSA needs to be inhibited. Inhibition type is determined for single components as well as for formulations.

  15. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  16. "As Simple as Possible, but Not Simpler"--The Case of Dehydroascorbic Acid

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2008-01-01

    Ascorbic acid (vitamin C) is an essential nutrient, whose metabolic roles depend on its function as a reducing agent. Textbooks routinely assign its oxidized form, dehydroascorbic acid, a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. The actual structures of the various forms of…

  17. [Determination of sugars, organic acids and alcohols in microbial consortium fermentation broth from cellulose using high performance liquid chromatography].

    PubMed

    Jiang, Yan; Fan, Guifang; Du, Ran; Li, Peipei; Jiang, Li

    2015-08-01

    A high performance liquid chromatographic method was established for the determination of metabolites (sugars, organic acids and alcohols) in microbial consortium fermentation broth from cellulose. Sulfate was first added in the samples to precipitate calcium ions in microbial consortium culture medium and lower the pH of the solution to avoid the dissociation of organic acids, then the filtrates were effectively separated using high performance liquid chromatography. Cellobiose, glucose, ethanol, butanol, glycerol, acetic acid and butyric acid were quantitatively analyzed. The detection limits were in the range of 0.10-2.00 mg/L. The linear correlation coefficients were greater than 0.999 6 in the range of 0.020 to 1.000 g/L. The recoveries were in the range of 85.41%-115.60% with the relative standard deviations of 0.22% -4.62% (n = 6). This method is accurate for the quantitative analysis of the alcohols, organic acids and saccharides in microbial consortium fermentation broth from cellulose.

  18. A Simple Purification of Indole-3-Acetic Acid and Abscisic Acid for GC-SIM-MS Analysis by Microfiltration of Aqueous Samples through Nylon

    PubMed Central

    Dunlap, James R.; Guinn, Gene

    1989-01-01

    A simple procedure was developed for the partial purification of plant tissue samples to be analyzed simultaneously for indole-3-acetic acid (IAA) and abscisic acid (ABA). The procedure relies on removal of contaminants by filtration through nylon and partitioning into dichloromethane. This procedure successfully purified both IAA and ABA from muskmelon, cotton, and broccoli tissue. Twenty individual samples can be purified and methylated in 8 h for analysis of free IAA and ABA with gas chromatography-selected ion monitoring-mass spectrometry. The use of microfiltration of aqueous samples through nylon offers new opportunities for improving the efficiency of existing sample purification procedures. PMID:16666735

  19. Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol

    PubMed Central

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2014-01-01

    Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol). PMID:25035710

  20. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  1. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    PubMed

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  2. Relationships between blood lead concentration and aminolevulinic acid dehydratase in alcoholics and workers industrially exposed to lead

    SciTech Connect

    Bortoli, A.; Fazzin, G.; Marin, V.; Trabuio, G.; Zotti, S.

    1986-07-01

    Blood lead concentration (Pb-B), aminolevulinic acid dehydratase (ALAD), and gamma-GT were measured in 265 workers industrially exposed to lead and in 184 patients with liver disease resulting from alcohol consumption. The first group was divided according to alcohol use, i.e., nondrinkers, moderate drinkers, and heavy drinkers. The second group was divided according to the following criteria: hepatopatic without cirrhosis, hepatopatic with compensated cirrhosis, and hepatopatic with decompensated cirrhosis. Heavy drinkers who were industrially exposed had the highest Pb-B (40.4 +/- 14.6 micrograms/dl) and the lowest ALAD (22.2 +/- 9.1 U/L). The correlations between Pb-B and ALAD show no significant change with the increase of Pb-B. In the alcoholic group, 76 patients with alcoholic liver disease without cirrhosis had the highest Pb-B (40.3-9.1 micrograms/dl) and ALAD the lowest (18.6 +/- 7.7 U/L). The negative correlation between Pb-B and log ALAD disappeared completely in individuals with Pb-B that exceeded 50 micrograms/dl, independent from the seriousness of illness.

  3. Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters by gran titration

    USGS Publications Warehouse

    Barringer, J.L.; Johnsson, P.A.

    1996-01-01

    Titrations for alkalinity and acidity using the technique described by Gran (1952, Determination of the equivalence point in potentiometric titrations, Part II: The Analyst, v. 77, p. 661-671) have been employed in the analysis of low-pH natural waters. This report includes a synopsis of the theory and calculations associated with Gran's technique and presents a simple and inexpensive method for performing alkalinity and acidity determinations. However, potential sources of error introduced by the chemical character of some waters may limit the utility of Gran's technique. Therefore, the cost- and time-efficient method for performing alkalinity and acidity determinations described in this report is useful for exploring the suitability of Gran's technique in studies of water chemistry.

  4. A simple sonochemical method for fabricating poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules.

    PubMed

    Wang, Guxia; Xu, Weibing; Hou, Qian; Guo, Shengwei

    2015-11-01

    In this study, stearic acid suitable for thermal energy storage applications was nanoencapsulated in a poly(methyl methacrylate) shell. The nanocapsules were prepared using a simple ultrasonically initiated in situ polymerization method. The morphology and particle size of the poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules (PMS-PCESNs) were analyzed using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering. The latent heat storage capacities of stearic acid and the PMS-PCESNs were determined using differential scanning calorimetry. The chemical composition of the nanocapsules was characterized using Fourier transform infrared spectroscopy. All of the results show that the PMS-PCESNs were synthesized successfully and that the latent heat storage capacity and encapsulation efficiency were 155.6 J/g and 83.0%, respectively, and the diameter of each nanocapsule was 80-90 nm.

  5. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    ERIC Educational Resources Information Center

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  6. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    SciTech Connect

    Jiang, Tingshun Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  7. The Solubility of Xenon in Simple Organic Solvents and in Aqueous Amino Acid Solutions.

    NASA Astrophysics Data System (ADS)

    Himm, Jeffrey Frank

    We have measured the Ostwald solubility (L) of ('133)Xe in a variety of liquids, including normal alkanes, normal alkanols, and aqueous solutions of amino acids, NaCl, and sucrose. For the alkanes and alkanols, measurements were made in the temperature range from 10-50(DEGREES)C. Values of L were found to decrease with increasing temperature, and also with increasing chain length, for both series of solvents. Thermodynamic properties of solution (enthalpy and entropy of solution) are calculated using both mole fraction and number density scales. Results are interpreted using Uhlig's model of the solvation process. Measurements of L in aqueous amino acid solutions were made at 25(DEGREES)C. Concentrations of amino acids in solution varied from near saturation for each of the amino acids studied to pure water. In all solutions, except those with NaCl, L decreases linearly with increasing solution molarity. Hydration numbers (H), the mean number of water molecules associated with each solute molecule, were determined for each amino acid, for NaCl, and for sucrose. Values of H obtained ranged from near zero (arginine, H = 0.2 (+OR-) 0.5) to about 16 (NaCl, H = 16.25 (+OR-) 0.3).

  8. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    PubMed

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  9. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  10. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth.

    PubMed

    Parker, Eric T; Zhou, Manshui; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Bada, Jeffrey L

    2014-07-28

    Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

  11. Mechanism of the formation and growth of fine particles clustered polymer microspheres by simple one-step polymerization in aqueous alcohol system

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Wen, Chao; Wu, Shuyao; Liu, Daliang; Zhang, Yu; Song, Xi-Ming

    2016-02-01

    By using the one-step copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), fine particles clustered (FPC) poly(St-co-VEIB) microspheres have been successfully prepared in the present of sodium dodecylsulfonate (SDS) in aqueous alcohol system. The FPC poly(St-co-VEIB) microspheres are composed of small poly(St-co-VEIB) nanospheres with the average diameter of 40 nm. The formation mechanism of FPC poly(St-co-VEIB) microspheres is proposed by investigating the influence of reaction conditions on their morphologies and observing their growth process. It can be well convinced that VEIB not only acted as a kind of monomers, which participated in the polymerization and provided electropositivity for FPC poly(St-co-VEIB) microspheres, but also acted as emulsifier and reactive stabilizer. The FPC poly(St-co-VEI[SO3CF3]) microspheres, which were obtained by anion-exchange between -SO3CF3 of HSO3CF3 and Br- in FPC poly(St-co-VEIB) microspheres due to the existence of imidazolium groups with electropositivity, showed higher catalytic efficiency for hydration of 1,2-epoxypropane with H2O and esterification between acetic acid and ethanol than that of H2SO4.

  12. A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs.

    PubMed

    López-Córdoba, Alex; Castro, Guillermo R; Goyanes, Silvia

    2016-12-01

    Poly(vinyl alcohol) (PVA) is a hydrophilic, biocompatible and nontoxic polymer. However, because of its low water-resistance, some applications for PVA-based materials are limited (e.g., drug delivery systems and wound dressings). In the current work, PVA mats containing tetracycline hydrochloride (TC) were successfully developed by electrospinning. In order to improve the water stability of the systems, the cross-linking of the PVA matrix was induced by citric acid (CA) addition together with heating treatments (150°C or 190°C for 3min). TC presence led to a strong increase in the electrical conductivity of the blends and as a result, fibers with about 44% lower diameter (270nm) than that of the corresponding unloaded mats (485nm) were obtained. Laser scanning confocal microscopy images indicated that TC was well distributed along the PVA nanofibers. The mats were evaluated by FTIR, which revealed chemical interactions between PVA hydroxyl groups and CA carboxylic ones. The treatment at 150°C for 3min proved to be the more suitable for the preparation of TC-containing mats with improved water resistance, maintaining the TC antimicrobial activity against both Escherichia coli and Staphylococcus aureus almost unaltered. These mats showed a burst release of TC, giving around 95% of the drug within the first hour of immersion in water. PMID:27612766

  13. A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs.

    PubMed

    López-Córdoba, Alex; Castro, Guillermo R; Goyanes, Silvia

    2016-12-01

    Poly(vinyl alcohol) (PVA) is a hydrophilic, biocompatible and nontoxic polymer. However, because of its low water-resistance, some applications for PVA-based materials are limited (e.g., drug delivery systems and wound dressings). In the current work, PVA mats containing tetracycline hydrochloride (TC) were successfully developed by electrospinning. In order to improve the water stability of the systems, the cross-linking of the PVA matrix was induced by citric acid (CA) addition together with heating treatments (150°C or 190°C for 3min). TC presence led to a strong increase in the electrical conductivity of the blends and as a result, fibers with about 44% lower diameter (270nm) than that of the corresponding unloaded mats (485nm) were obtained. Laser scanning confocal microscopy images indicated that TC was well distributed along the PVA nanofibers. The mats were evaluated by FTIR, which revealed chemical interactions between PVA hydroxyl groups and CA carboxylic ones. The treatment at 150°C for 3min proved to be the more suitable for the preparation of TC-containing mats with improved water resistance, maintaining the TC antimicrobial activity against both Escherichia coli and Staphylococcus aureus almost unaltered. These mats showed a burst release of TC, giving around 95% of the drug within the first hour of immersion in water.

  14. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents.

    PubMed

    Li, Ben; Wang, Cuiping; Chen, Guang; Zhang, Zhiqiang

    2013-06-01

    Highly active, air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents. Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture, water/propanol mixture and neat water respectively, the corresponding yields of cross-coupling heteroaryl-aryls were satisfied. The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPd1 and POPd2, and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3. The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step. Compared with other solid phase transfer catalysts, TBAB was tested as the ideal one. The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents. Notably, in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products. However in terms of the liquid phase transfer catalyst of PEGs, mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase, which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  15. A SIMPLE ASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID USING COATED TEST-STRIPS

    EPA Science Inventory

    Immunoassay test strips utilizing ascending chromatography has been devised for the detection of 2.4-dichlorophenoxyacetic acid (2,4-D). This test requires no instrumentation, inexpensive reagents and relies on the application of antibodies to 2,4-D adsorbed onto colloidal gol...

  16. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  17. Uptake and/or utilization of two simple phenolic acids by Cucumis sativus

    SciTech Connect

    Shann, J.R.

    1986-01-01

    The uptake of ferulic acid (FA) and p-hydroxybenzoic acid (p-HBA) from solutions (0.1 to 1.00 mM, pH 4.0 to 7.0), was determined for intact and excised roots of Cucumis sativus. Uptake methods based on high performance liquid chromatographic (HPLC) analysis of phenolic acid depletion from solution were compared to those radioisotopic methods employing (U-ring-/sup 14/C)FA or p-HBA. Although radiotracer methods more accurately reflected actual uptake of the compounds by cucumber seedlings, HPLC solution depletion methods may be useful in the elucidation of trends over very limited periods of time. The uptake of FA was unaffected by the presence of p-HBA. The uptake of p-HBA was reduced by 30% in the presence of FA when compared to the uptake from solutions containing p-HBA alone. Ferulic acid acts both as an allelopathic agent and precursor in the endogenous process of lignification. To evaluate the involvement of exogenous FA in lignin biosynthesis, roots of hydroponically grown cucumber seedlings were exposed to concentrations of FA labeled with (U-ring-/sup 14/C)FA. Radiotracer was distributed throughout the seedling. A quantitative change in lignification occurred in treated seedlings. In roots and stems, the level of lignin increased with the number of exposures and as the concentrations of exogenous FA increased. Radiotracer was found in the residues of lignin isolated from seedling tissue treated with (U-ring-/sup 14/C)FA. This suggested the utilization of the exogenously applied FA in the endogenous process of lignification.

  18. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    PubMed

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  19. A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia.

    PubMed

    Trček, Janja; Matsushita, Kazunobu

    2013-08-01

    A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558(T). Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera.

  20. Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Iqbal, S Thanvir; Agrawal, O P; Parashar, B D

    2014-10-01

    Human skin emanations attract hungry female mosquitoes toward their host for blood feeding. In this study, we report the flight orientation and electroantennogram response of Aedes albopictus females to certain unsaturated acids and alcohols found in human skin. In the Y-tube olfactometer, odors of lactic acid and 2-methyl-3-pentanol attracted 54-65% of Ae. albopictus females at all doses in a dose-dependent manner. However, at the highest dose (10(-2) g), the acids repelled 40-45% females. Attractancy (ca. 62-68%) at lower doses and repellency (ca. 30-45%) at higher doses were recorded for 3-methyl-3-pentanol and 1-octen-3-ol, while 5-hexen-1-ol, cis-2-hexen-1-ol, and trans 2-hexen-1-ol odor repelled ca. 55-65% of Ae. albopictus females at all doses. Antenna of female Ae. albopictus exhibited a dose-dependent EAG response up to 10(-3) g of L-lactic acid, trans-2-methyl-2-pentenoic acid, 2-octenoic acid, trans-2-hexen-1-ol and 1-octen-3-ol stimulations; however, the highest dose (10(-2) g) caused a little decline in the EAG response. EAG response of 9-10-fold was elicited by lactic acid, 2-octenoic acid, trans-2-hexenoic acid, and 3-methyl-3-pentanol, while cis-2-hexen-1-ol and trans-2-methyl pentenoic acid elicited 1-5-fold responses compared to solvent control. A blend of attractive compounds could be utilized in odor-baited trap for surveillance and repellent molecules with suitable formulation could be used to reduce the biting menace of mosquitoes.

  1. Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Iqbal, S Thanvir; Agrawal, O P; Parashar, B D

    2014-10-01

    Human skin emanations attract hungry female mosquitoes toward their host for blood feeding. In this study, we report the flight orientation and electroantennogram response of Aedes albopictus females to certain unsaturated acids and alcohols found in human skin. In the Y-tube olfactometer, odors of lactic acid and 2-methyl-3-pentanol attracted 54-65% of Ae. albopictus females at all doses in a dose-dependent manner. However, at the highest dose (10(-2) g), the acids repelled 40-45% females. Attractancy (ca. 62-68%) at lower doses and repellency (ca. 30-45%) at higher doses were recorded for 3-methyl-3-pentanol and 1-octen-3-ol, while 5-hexen-1-ol, cis-2-hexen-1-ol, and trans 2-hexen-1-ol odor repelled ca. 55-65% of Ae. albopictus females at all doses. Antenna of female Ae. albopictus exhibited a dose-dependent EAG response up to 10(-3) g of L-lactic acid, trans-2-methyl-2-pentenoic acid, 2-octenoic acid, trans-2-hexen-1-ol and 1-octen-3-ol stimulations; however, the highest dose (10(-2) g) caused a little decline in the EAG response. EAG response of 9-10-fold was elicited by lactic acid, 2-octenoic acid, trans-2-hexenoic acid, and 3-methyl-3-pentanol, while cis-2-hexen-1-ol and trans-2-methyl pentenoic acid elicited 1-5-fold responses compared to solvent control. A blend of attractive compounds could be utilized in odor-baited trap for surveillance and repellent molecules with suitable formulation could be used to reduce the biting menace of mosquitoes. PMID:25049052

  2. Hydrogen generation from alcohols (α-hydroxy carboxylic acids) and alcohol-ammonia coupling in aqueous media catalysed by water-soluble bipyridine-Cp*Ir (Rh or Os) catalyst: a computational mechanism insight

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Dan; Chen, Xian-Kai; Liu, Hui-Ling; Huang, Xu-Ri

    2015-06-01

    Density functional theory (DFT) calculations were performed to elucidate the mechanism of the dehydrogenative oxidation of various primary alcohols (or α-hydroxy carboxylic acids) and the dehydrogenative coupling of alcohols with ammonia catalysed by the same water-soluble Cp*Ir complex bearing a 2-pyridonate-based ligand (A-Ir). Another two new catalysts A-Rh and A-Os are computationally designed for the dehydrogenative oxidation of alcohols. The plausible pathway for alcohol dehydrogenation includes three steps: alcohol oxidation to aldehyde (step I); the generation of dihydrogen in the metal coordination sphere (step II); and the liberation of dihydrogen accompanied with the regeneration of active catalyst A (step III). Among them, the step I follows bifunctional concerted double hydrogen transfer mechanism rather than the β-H elimination. For step II, the energy barriers involving the addition of one or two water molecules are higher than in absence of water. Our results also confirm that A-Ir can be applied in the dehydrogenation of various α-hydroxy carboxylic acids by the similar mechanism. Remarkably, A-Ir is also found to be efficient for the coupling reactions of various primary benzyl alcohols with ammonia to afford amides.

  3. Induction of CYP2E1 in non-alcoholic fatty liver diseases.

    PubMed

    Aljomah, Ghanim; Baker, Susan S; Liu, Wensheng; Kozielski, Rafal; Oluwole, Janet; Lupu, Benita; Baker, Robert D; Zhu, Lixin

    2015-12-01

    Mounting evidence supports a contribution of endogenous alcohol metabolism in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is not known whether the expression of alcohol metabolism genes is altered in the livers of simple steatosis. There is also a current debate on whether fatty acids induce CYP2E1 in fatty livers. In this study, expression of alcohol metabolizing genes in the liver biopsies of simple steatosis patients was examined by quantitative real-time PCR (qRT-PCR), in comparison to biopsies of NASH livers and normal controls. Induction of alcohol metabolizing genes was also examined in cultured HepG2 cells treated with ethanol or oleic acid, by qRT-PCR and Western blots. We found that the mRNA expression of alcohol metabolizing genes including ADH1C, ADH4, ADH6, catalase and CYP2E1 was elevated in the livers of simple steatosis, to similar levels found in NASH livers. In cultured HepG2 cells, ethanol induced the expression of CYP2E1 mRNA and protein, but not ADH4 or ADH6; oleic acid did not induce any of these genes. These results suggest that elevated alcohol metabolism may contribute to the pathogenesis of NAFLD at the stage of simple steatosis as well as more severe stages. Our in vitro data support that CYP2E1 is induced by endogenous alcohol but not by fatty acids.

  4. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  5. Difference in Hepatic Metabolism of Long- and Medium-Chain Fatty Acids: the Role of Fatty Acid Chain Length in the Production of the Alcoholic Fatty Liver*

    PubMed Central

    Lieber, Charles S.; Lefèvre, André; Spritz, Norton; Feinman, Lawrence; DeCarli, Leonore M.

    1967-01-01

    Replacement of dietary triglycerides containing long-chain fatty acids (LCFA) by triglycerides containing medium-chain fatty acids (MCFA) markedly reduced the capacity of alcohol to produce fatty liver in rats. After 24 days of ethanol and MCFA, the increase in hepatic triglycerides was only 3 times that of controls, whereas an 8-fold rise was observed after ethanol and LCFA. The triglyceride fatty acids that accumulated in the liver after feeding of ethanol with MCFA contained only a small percentage of the MCFA; their composition also differed strikingly from that of adipose lipids. To study the mechanism of the reduction in steatosis, we compared oxidation to CO2 and incorporation into esterified lipids of 14C-labeled chylomicrons or palmitate-14C (representing LCFA), and of octanoate-14C (as MCFA) in liver slices and isolated perfused livers, in the presence or absence of ethanol. Ethanol depressed the oxidation of all substrates to CO2; MCFA, however, was much more oxidized and reciprocally much less esterified than LCFA, with a 100-fold difference in the ratio of esterified lipid-14C to 14CO2. Furthermore, in hepatic microsomal fractions incubated with α-glycerophosphate, octanoate was much less esterified than palmitate. This propensity of MCFA to oxidation rather than esterification represents a likely explanation for the reduction in alcoholic steatosis upon replacement of dietary LCFA by MCFA. PMID:6036539

  6. Simple Experiments To Demonstrate Proton Flux in Pseudomonas after Alkaline or Acidic Stress

    NASA Astrophysics Data System (ADS)

    Previtali, Gabriela; Giordano, Walter; Domenech, Carlos E.

    2003-12-01

    This laboratory introduces chemistry students to the ability of microorganisms to adapt to acidic or alkaline environmental conditions. A laboratory experiment to ascertain the bacterial response to the stress produced by suspension in different pH solutions has been developed. The experiment may be performed in several versions depending on the availability of lab equipment and the chemistry level of the students. This laboratory experiment has the pedagogical advantage of giving chemistry students experience with the application of various pH levels to a biological system and enables the students to expand their understanding of pH to mean more than a strictly chemical concept.

  7. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed.

  8. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards. PMID:8125066

  9. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards.

  10. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  11. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.

  12. Evolution of hydrogen from acidic aqueous and aqueous-alcoholic solutions by reduced forms of isopolytungstates

    SciTech Connect

    Saidkhanov, S.S.; Parmon, V.N.; Savinov, E.N.

    1986-02-10

    The authors determine the specific nature of the hydrogen-releasing polytungstate (PT) species and investigate the features of H/sub 2/ evolution by this species. In aqueous and aqueous-alcohol solutions, reoxidation of the doubly reduced form of hexatungstate proceeds spontaneously, accompanied by hydrogen evolution; in contrast, the reduced form of the PT is stable with respect to reoxidation.

  13. Biomass acid-catalyzed liquefaction - Catalysts performance and polyhydric alcohol influence.

    PubMed

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano Dos

    2015-12-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  14. Biomass acid-catalyzed liquefaction – Catalysts performance and polyhydric alcohol influence

    PubMed Central

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano dos

    2015-01-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments. PMID:26693504

  15. Biomass acid-catalyzed liquefaction - Catalysts performance and polyhydric alcohol influence.

    PubMed

    Mateus, Maria Margarida; Carvalho, Ricardo; Bordado, João Carlos; Santos, Rui Galhano Dos

    2015-12-01

    Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments.

  16. A simple and fast method based on mixed hemimicelles coated magnetite nanoparticles for simultaneous extraction of acidic and basic pollutants.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira

    2016-01-01

    One of the considerable and disputable areas in analytical chemistry is a single-step simultaneous extraction of acidic and basic pollutants. In this research, a simple and fast coextraction of acidic and basic pollutants (with different polarities) with the aid of magnetic dispersive micro-solid phase extraction based on mixed hemimicelles assembly was introduced for the first time. Cetyltrimethylammonium bromide (CTAB)-coated Fe3O4 nanoparticles as an efficient sorbent was successfully applied to adsorb 4-nitrophenol and 4-chlorophenol as two acidic and chlorinated aromatic amines as basic model compounds. Using a central composite design methodology combined with desirability function approach, the optimal experimental conditions were evaluated. The opted conditions were pH = 10; concentration of CTAB = 0.86 mmol L(-1); sorbent amount = 55.5 mg; sorption time = 11.0 min; no salt addition to the sample, type, and volume of the eluent = 120 μL methanol containing 5% acetic acid and 0.01 mol L(-1) HCl; and elution time = 1.0 min. Under the optimum conditions, detection limits and linear dynamic ranges were achieved in the range of 0.05-0.1 and 0.25-500 μg L(-1), respectively. The percent of extraction recoveries and relative standard deviations (n = 5) were in the range of 71.4-98.0 and 4.5-6.5, respectively. The performance of the optimized method was certified by coextraction of other acidic and basic compounds. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the target analytes in various water samples, and satisfactory results were obtained.

  17. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  18. Incidence of craving for and abuse of gamma-hydroxybutyric acid (GHB) in different populations of treated alcoholics: an open comparative study.

    PubMed

    Caputo, F; Francini, S; Stoppo, M; Lorenzini, F; Vignoli, T; Del Re, A; Comaschi, C; Leggio, L; Addolorato, G; Zoli, G; Bernardi, M

    2009-11-01

    Gamma-hydroxybutyric acid (GHB) is a drug currently used for the treatment of alcohol dependence. The aim of our study was to investigate the incidence of craving for and abuse of GHB in 47 patients enrolled and divided into four groups: group A (pure alcoholics), group B (alcoholics with a sustained full remission from cocaine dependence), group C (alcoholics with a sustained full remission from heroin dependence) and group D (alcoholics in a methadone maintenance treatment [MMT] programme). All patients were treated with an oral dose of GHB (50 mg/kg of body weight t.i.d.) for three months. Craving for GHB was statistically significant higher in group B than in group A (P < 0.001), C (P = 0.01) and D (P < 0.001), and in group C than in group D (P < 0.05). Abuse of GHB proved to be statistically significant higher in group B than in group A (P < 0.001) and D (P < 0.01), and in group C than in group A (P = 0.01) and D (P < 0.05). Thus, the administration of GHB in alcoholics with a sustained full remission from heroin or cocaine dependence is not recommended; however, this should not discourage physicians from using GHB for the treatment of pure alcoholics or alcohol dependents following a MMT.

  19. Photo-Tautomerization of Acetaldehyde to Vinyl Alcohol: a New Mechanism for Organic Acid Formation in the Troposphere

    NASA Astrophysics Data System (ADS)

    Andrews, D. U.; Heazlewood, B. R.; Maccarone, A. T.; Conroy, T.; Payne, R. J.; Jordan, M. J. T.; Kable, S. H.

    2012-06-01

    We present a detailed kinetic master equation (ME) model of the photochemistry of acetaldehyde under conditions relevant to tropospheric chemistry. The dissociation and isomerization rate constants are benchmarked to collision-free experiments in a supersonic expansion, at wavelengths where reaction is only possible on S_0. Extensive photo-isomerization is observed when irradiated with actinic ultraviolet radiation (310-330 nm). The ME model quantitatively reproduces the experimental observations and shows unequivocally that keto-enol photo-tautomerization, forming vinyl alcohol, is the crucial first step. When collisions are included into the ME, the model quantitatively reproduces the previously reported quantum yields for photodissociation at all pressures (0 - 1 atm) and wavelengths (295 - 340 nm). Crucially, at 1 atm pressure, and averaged over the intensity distribution of the solar spectrum, our model predicts that 26% of the total CH_3CHO quantum yield is into the collisionally-relaxed vinyl alcohol photo-tautomerization product. The photochemistry and photophysics of many carbonyls are similar to that of acetaldehyde. Therefore, we expect that photo-tautomerization of carbonyls into their respective enols will be a general phenomenon under atmospheric conditions. Such photo-tautomerization mechanisms are not included in any current tropospheric model and might, given that an enol will react rapidly to form an acid, we propose that they may account for the production of organic acids in the troposphere.

  20. Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli.

    PubMed

    Kim, Sun-Ki; Park, Yong-Cheol; Lee, Hyung Ho; Jeon, Seung Taeg; Min, Won-Ki; Seo, Jin-Ho

    2015-02-01

    Escherichia coli is the best-established microbial host strain for production of proteins and chemicals, but has a weakness for not secreting high amounts of active heterologous proteins to the extracellular culture medium, of which origins belong to whether prokaryotes or eukaryotes. In this study, Candida antarctica lipase B (CalB), a popular eukaryotic enzyme which catalyzes a number of biochemical reactions and barely secreted extracellularly, was expressed functionally at a gram scale in culture medium by using a simple amino acid-tag system of E. coli. New fusion tag systems consisting of a pelB signal sequence and various anion amino acid tags facilitated both intracellular expression and extracellular secretion of CalB. Among them, the N-terminal five aspartate tag changed the quaternary structure of the dimeric CalB and allowed production of 1.9 g/L active CalB with 65 U/mL activity in culture medium, which exhibited the same enzymatic properties as the commercial CalB. This PelB-anion amino acid tag-based expression system for CalB can be extended to production of other industrial proteins hardly expressed and exported from E. coli, thereby increasing target protein concentrations and minimizing purification steps. PMID:25182473

  1. Simple polyol route to synthesize heptanoic acid coated magnetite (Fe{sub 3}O{sub 4}) nanoparticles

    SciTech Connect

    Gunay, M.; Kavas, H.; Baykal, A.

    2013-03-15

    Highlights: ► Heptanoic acid@Fe{sub 3}O{sub 4} nanocomposite has been prepared via simple polyol. ► Heptanoic acid used as both surfactant and solvents. ► Magneto polymer composite with adjustable Ea has a potential usage as functional composites. - Abstract: Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were prepared via polyol method by using FeCl{sub 2} as only source of iron. As-prepared samples were characterized by powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analyzer (TGA) and vibrating sample magnetometer (VSM). Crystalline phase was identified as Fe{sub 3}O{sub 4} and the crystallite sizes were calculated as 19.1 ± 1.1 and 22 ± 1.3 nm for uncalcinated and calcinated products from X-ray line profile fitting. The capping of heptanoic acid around Fe{sub 3}O{sub 4} nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygen's of the carboxylate and the nanoparticle surface and also by TG analysis. VSM measurements showed that both samples exhibited typical superparamagnetic behavior at room temperature with different Ms values. The ε′ decreases with increasing frequency for both composites and permeability has almost same values for all temperatures at higher frequencies. As synthesized and calcinated samples conductivity increase linearly with the temperature.

  2. Infrared spectrum analysis of the dissociated states of simple amino acids.

    PubMed

    Sebben, Damien; Pendleton, Phillip

    2014-11-11

    In this work, we present detailed analyses of the dissociation of dilute aqueous solutions of glycine and of lysine over the range 18 resulted in consistent pKa values for the amino acids.

  3. simple method for decomposition of peracetic acid in a microalgal cultivation system.

    PubMed

    Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass. PMID:25270405

  4. NIS-catalyzed oxidative cyclization of alcohols with amidines: a simple and efficient transition-metal free method for the synthesis of 1,3,5-triazines.

    PubMed

    Tiwari, Abhishek R; T, Akash; Bhanage, Bhalchandra M

    2015-12-01

    An efficient method for the synthesis of 1,3,5-triazines by NIS-catalyzed oxidative cyclization of alcohols with amidines has been developed. The reaction works smoothly under transition-metal free and phosphine-free conditions to afford a wide range of 1,3,5-triazine derivatives in moderate to good yields. The synthetic methodology was achieved via in situ oxidation of alcohols to aldehydes. PMID:26477749

  5. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  6. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  7. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  8. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  9. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  10. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    PubMed Central

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  11. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium from newborns for detection of alcohol abuse in a maternal health evaluation study.

    PubMed

    Bakdash, Abdulsallam; Burger, Pascal; Goecke, Tamme W; Fasching, Peter A; Reulbach, Udo; Bleich, Stefan; Hastedt, Martin; Rothe, Michael; Beckmann, Matthias W; Pragst, Fritz; Kornhuber, Johannes

    2010-04-01

    Fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) were determined in 602 meconium samples in a maternal health evaluation study for detection of gestational alcohol consumption. A validated headspace solid phase microextraction method in combination with GC-MS was used for FAEE and the cumulative concentration of ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate with a cut-off of 500 ng/g was applied for interpretation. A new and simple method was developed and validated for quantification of EtG from 10-20 mg meconium with D(5)-EtG as internal standard consisting of 30 min. extraction with methanol/water (1:1, v/v), evaporation of methanol, filtration of the aqueous solution through a cellulose filter and injection into LC-MS-MS. The limits of detection and quantification for EtG were 10 and 30 ng/g, the recovery 86.6 to 106.4% and the standard deviation of the concentrations ranged from 13% at 37 ng/g to 5% at 46,700 ng/g (N = 6). FAEE above the cut-off were found in 43 cases (7.1%) with cumulative concentrations between 507 and 22,580 ng/g and with one outlier of about 150,000 ng/g (EtG not detected). EtG was detected in 97 cases (16.3%) and concentrations between LOD and 10,200 ng/g with another outlier of 82,000 ng/g (FAEE 10,500 ng/g). Optimal agreement between the two markers was obtained with a cut-off for EtG of 274 ng/g and 547 cases with both FAEE- and EtG-negative, 33 cases with both FAEE- and EtG-positive, nine cases with FAEE-positive and EtG-negative, and seven cases with FAEE-negative and EtG-positive. Differences in physical, chemical, and biochemical properties and in the pharmacokinetic behavior are discussed as reasons for the deviating cases. In none of the 602 cases, serious alcohol consumption was reported by the mothers and no evidence for gestational ethanol exposure was observed in the medical investigation of the newborns. It is concluded that the combined use of FAEE and EtG in meconium as markers for fetal

  12. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    He, Xi-Xi; Wu, Xiao-Li; Chen, Ren-Pin; Chen, Chao; Liu, Xiao-Gang; Wu, Bin-Jiao; Huang, Zhi-Ming

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a clinical syndrome with the main characteristic of diffuse liver cells with fatty changes. The clinical evolution of NAFLD includes simple non-alcoholic fatty liver, non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis, and even hepatocellular carcinoma. Methods and Findings We conducted this review to identify the effectiveness of omega-3 polyunsaturated fatty acids (ω-3 PUFA) in NAFLD. We searched PubMed, Cochrane Library and Embase. All randomized controlled trials (RCTs) of ω-3 PUFA treatment for NAFLD were considered. Two reviewers assessed the quality of each study and collected data independently. Disagreements were resolved by discussion among the reviewers and any of the other authors of the paper. We performed a meta-analysis and reported summary estimates of outcomes as inverse variance (IV), fixed or random, with 95% confidence intervals (CIs). We included seven RCTs involving 442 patients (227 for the experimental group and 215 for the control group). All the patients were divided into two groups: one treated with ω-3 PUFA and the other was the control group (generally placebo). The demographics of the ω-3 PUFA and control groups were comparable. Beneficial changes in alanine aminotransferase (ALT) (IV 95% CI: −7.61 [−12.83 to −2.39], p = 0.004), total cholesterol (TC) (IV 95% CI: −13.41 [−21.44 to −5.38], p = 0.001), triglyceride (TG) (IV 95% CI: −43.96 [−51.21 to −36.71], p<0.00001) and high-density lipoprotein cholesterol (HDL-C) (IV 95% CI: 6.97 [2.05 to 11.90], p = 0.006) favored ω-3 PUFA treatment. Omega-3 PUFA tended towards a beneficial effect on aspartate aminotransferase (AST) (IV 95% CI: −6.89 [−17.71 to 3.92], p = 0.21), γ-glutamyl transferase (GGT) (IV 95% CI: −8.28 [−18.38 to 1.83], p = 0.11) and low-density lipoprotein cholesterol (LDL-C) (IV 95% CI: −7.13 [−14.26 to 0.0], p = 0.05). Conclusions Supplementation with ω-3 PUFA is a

  13. Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroid, and MLO nucleic acids.

    PubMed

    Levy, L; Lee, I M; Hadidi, A

    1994-10-01

    A rapid, simple method for preparing plant tissues infected with viruses, viroids, or MLOs using a commercial product known as Gene Releaser is described. The Gene Releaser polymeric matrix method produced plant extracts suitable for PCR amplification without the use of organic solvents, ethanol precipitation, or additional nucleic acid purification techniques. Modification of maceration methods and/or extraction buffers resulted in the PCR amplification of potato spindle tuber, apple scar skin, and dapple apple viroids, as well as, genomic segments of plum pox potyvirus, grapevine virus B, grapevine leafroll-associated virus III, and elm yellows MLO. These pathogens were amplified from tissue of woody and herbaceous hosts such as peach, apricot, apple, grapevine, elm, periwinkle and potato. The application of this product for use with intractable tissue avoids lengthy and laborious extraction procedures. In our hands, about 20 samples could be prepared for PCR or RT-PCR in 1-2 h versus 1-3 days. PMID:7868647

  14. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.

    PubMed

    Akie, Thomas E; Liu, Lijun; Nam, Minwoo; Lei, Shi; Cooper, Marcus P

    2015-01-01

    OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.

  15. Development of a simple, low-cost and eurytopic medium based on Pleurotus eryngii for lactic acid bacteria.

    PubMed

    Zhao, Yancun; Wang, Ying; Song, Zhiwei; Shan, Chengjun; Zhu, Runjie; Liu, Fengquan

    2016-12-01

    Lactic acid bacteria (LAB) are a group of important beneficial microorganisms for human, but their growth is restricted to the habitats with rich nutrients. In order to develop a simple, low-cost and efficient medium based on the mushroom Pleurotus eryngii, this study evaluated the effects of different treatment methods for the mushroom, concentration of the mushroom, buffers, tween 80, MgSO4·7H2O, MnSO4·4H2O, CuSO4·5H2O, riboflavin and ascorbic acid on the growth of Lactococcus lactis subsp. lactis SLPE1-3. An optimized medium was developed, which was composed of the mushroom at 200 g/L, the buffer sodium acetate at 5 g/L, and riboflavin at 0.5 mg/L. The mushroom was ground, boiled and filtered for the filtrate in advance. In this optimized medium which was named as PSR medium, the population density of SLPE1-3 sharply reached 2.13 × 10(9) CFU/mL within 18 h of incubation, and still maintained 1.17 × 10(8) CFU/mL at 120 h. In addition, this study found that 6 kinds of LAB could grow almost well, and maintained high survival in PSR medium compared to M17 or MRS medium, including Lactococcus lactis subsp. lactis, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, Lactobacillus paracasei, Pediococcus pentosaceus and Lactobacillus rhamnosus. These results showed that PSR medium was a simple, low cost and eurytopic medium for the cultivation of LAB, and could replace MRS or M17 medium in the food industry, biomedicine and laboratory. PMID:27590888

  16. Omega-3 fatty acids for treatment of non-alcoholic fatty liver disease: design and rationale of randomized controlled trial

    PubMed Central

    2013-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome since obesity and insulin resistance are the main pathogenic contributors for both conditions. NAFLD carries increased risk of atherosclerosis and cardiovascular diseases. There is an urgent need to find effective and safe therapy for children and adults with NAFLD. Data from research and clinical studies suggest that omega-3 fatty acids may be beneficial in metabolic syndrome-related conditions and can reduce the risk of cardiovascular disease. Methods/design We are conducting a randomized, multicenter, double-blind, placebo-controlled trial of treatment with omega-3 fatty acids in children with NAFLD. Patients are randomized to receive either omega-3 fatty acids containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or placebo for 24 weeks. The dose of omega-3 (DHA+ EPA) ranges from 450 to 1300 mg daily. Low calorie diet and increased physical activity are advised and monitored using validated questionnaires. The primary outcome of the trial is the number of patients who decreased ALT activity by ≥ 0,3 of upper limit of normal. The main secondary outcomes are improvement in the laboratory liver tests, liver steatosis on ultrasound, markers of insulin resistance and difference in fat/lean body mass composition after 6 months of intervention. Discussion Potential efficacy of omega-3 fatty acids in the treatment of NAFLD will provide needed rationale for use of this safe diet supplement together with weight reduction therapy in the growing population of children with NAFLD. Trial registration NCT01547910 PMID:23702094

  17. The Activation Effects of Low Level Isopropyl Alcohol Exposure on Arterial Blood Pressures Are Associated with Decreased 5-Hydroxyindole Acetic Acid in Urine

    PubMed Central

    Zhao, Zhiqiang; Liu, Xinxia; Xing, Xiumei; Lu, Yao; Sun, Yi; Ou, Xiaoyan; Su, Xiaolin; Jiang, Jun; Yang, Yarui; Chen, Jingli; Shen, Biling; He, Yun

    2016-01-01

    Purposes The objectives of this paper are to study the impact of low level isopropyl alcohol exposure on blood pressure and to explore its potential mechanism. Methods This cross-sectional study was based on a prospective occupational cohort in south China, which focusing on occupational risk factors related cardiovascular health problems. A total of 283 participants (200 low isopropyl alcohol exposed workers and 83 controls) was finally enrolled in this study. Linear regression models were used to analyze the relationship between arterial blood pressures and low level isopropyl alcohol exposure. We used mediation method to explore possible mediated roles of neurogenic factors. Results Systolic blood pressure (SBP, 123±10 vs. 118±11), diastolic blood pressure (DBP, 79±7 vs. 74±7) and mean blood pressure (MBP, 93±8 vs. 89±9) were different between the exposed group and the control group (p < 0.01). After adjusting for covariates, the difference was still significant. Besides, isopropyl alcohol and smoking had an interactive effect on DBP and MBP (p < 0.05). Furthermore, we observed a mediated effect of 5-hydroxyindole acetic acid (5-HIAA) on isopropyl alcohol exposure induced arterial blood pressure increase, which accounted for about 25%. Conclusions Our results suggest that low level isopropyl alcohol exposure is a potential risk factor for the increased arterial blood pressure and 5-HIAA partly mediates the association between low level isopropyl alcohol exposure and arterial blood pressures. PMID:27622502

  18. Corticotropin Releasing Factor–Induced Amygdala Gamma-Aminobutyric Acid Release Plays a Key Role in Alcohol Dependence

    PubMed Central

    Roberto, Marisa; Cruz, Maureen T.; Gilpin, Nicholas W.; Sabino, Valentina; Schweitzer, Paul; Bajo, Michal; Cottone, Pietro; Madamba, Samuel G.; Stouffer, David G.; Zorrilla, Eric P.; Koob, George F.; Siggins, George R.; Parsons, Loren H.

    2010-01-01

    Background Corticotropin-releasing factor (CRF) and gamma-aminobutyric acid (GABA)ergic systems in the central amygdala (CeA) are implicated in the high-anxiety, high-drinking profile associated with ethanol dependence. Ethanol augments CeA GABA release in ethanol-naive rats and mice. Methods Using naive and ethanol-dependent rats, we compared electrophysiologic effects and interactions of CRF and ethanol on CeA GABAergic transmission, and we measured GABA dialyzate in CeA after injection of CRF1 antagonists and ethanol. We also compared mRNA expression in CeA for CRF and CRF1 using real-time polymerase chain reaction. We assessed effects of chronic treatment with a CRF1 antagonist on withdrawal-induced increases in alcohol consumption in dependent rats. Results CRF and ethanol augmented CeA GABAergic transmission in naive rats via increased GABA release. Three CRF1 receptor (CRF1) antagonists decreased basal GABAergic responses and abolished ethanol effects. Ethanol-dependent rats exhibited heightened sensitivity to CRF and CRF1 antagonists on CeA GABA release. Intra-CeA CRF1 antagonist administration reversed dependence–related elevations in GABA dialysate and blocked ethanol-induced increases in GABA dialyzate in both dependent and naive rats. Polymerase chain reaction studies indicate increased expression of CRF and CRF1 in CeA of dependent rats. Chronic CRF1 antagonist treatment blocked withdrawal-induced increases in alcohol drinking by dependent rats and tempered moderate increases in alcohol consumption by nondependent rats in intermittent testing. Conclusions These combined findings suggest a key role for specific presynaptic CRF-GABA interactions in CeA in the development and maintenance of ethanol dependence. PMID:20060104

  19. Clinical use of meconium fatty acid ethyl esters for identifying children at risk for alcohol-related disabilities: the first reported case.

    PubMed

    Zelner, Irene; Shor, Sarit; Lynn, Hazel; Roukema, Henry; Lum, Lisa; Eisinga, Kirsten; Koren, Gideon

    2012-01-01

    Fatty acid ethyl esters (FAEEs) in meconium are validated biomarkers of heavy fetal alcohol exposure that may potentially be used clinically for identifying children at risk for alcohol-related disabilities. However, until now, FAEEs have been largely used anonymously in epidemiological studies, and by child protection authorities in need for verification of heavy alcohol use in pregnancy. Here we describe the first case of a neonate identified as part of a research study on a pilot neonatal screening program for prenatal alcohol exposure. The neonate's meconium tested high for FAEEs (52 nmol/g; positive cut-off ≥ 2 nmol/g), which prompted active follow-up of the infant's development, identifying early neurocognitive problems and allowing initiation of a remedial program. PMID:22247425

  20. Usability of an Alcohol Disinfectant Containing Organic Acids and Metal Salt for Environmental Surfaces.

    PubMed

    Okunishi, Junji; Nagahara, Hironori; Tsujitani, Kumiko; Matsuse, Hitoshi; Kugawa, Kazuyuki; Soga, Manabu

    2016-09-01

    Environmental cleaning and disinfection plays an important role as a part of the standard precautions to prevent healthcare-associated infections, whereas hand hygiene is one of the most important strategies for breaking the chain of transmission. Cleaning and disinfection of high-touch areas in a health-care facility is emphasized. And wiping with an alcohol-saturated cloth which has features such as low corrosion and a wide range of antimicrobial activity is performed commonly for this purpose. Although alcohol provides immediate activity against enveloped viruses, its virucidal activity against certain non-enveloped viruses, including norovirus, is insufficient. We created a novel alcohol-based hand rub, MR06B7, which is safe for the skin, and is active against an extended spectrum of microorganisms including non-enveloped viruses. For environmental surface disinfection, a novel disinfectant MR13B15, which is based on MR06B7, has been developed. In vitro antimicrobial activity against a variety of pathogens, material compatibility, and simulated surface disinfection and decontamination efficacy of MR13B15 were investigated. According to the results, MR13B15 demonstrated potent bactericidal, fungicidal, mycobactericidal, and virucidal activity within a short contact time in addition to superior efficacy against non-enveloped viruses compared to ethanol for disinfection. Moreover, MR13B15 showed better material compatibility. Two simulation tests conducted for evaluating the disinfection and decontamination potency on environmental surfaces against feline calicivirus, a surrogate for norovirus, indicated that MR13B15 had superior efficacy for surface treatment compared to ethanol. These findings suggest that MR13B15, which satisfies most requirements of an environmental surface disinfectant, may contribute to accomplishing advanced standard precautions in preventing infections.

  1. Usability of an Alcohol Disinfectant Containing Organic Acids and Metal Salt for Environmental Surfaces.

    PubMed

    Okunishi, Junji; Nagahara, Hironori; Tsujitani, Kumiko; Matsuse, Hitoshi; Kugawa, Kazuyuki; Soga, Manabu

    2016-09-01

    Environmental cleaning and disinfection plays an important role as a part of the standard precautions to prevent healthcare-associated infections, whereas hand hygiene is one of the most important strategies for breaking the chain of transmission. Cleaning and disinfection of high-touch areas in a health-care facility is emphasized. And wiping with an alcohol-saturated cloth which has features such as low corrosion and a wide range of antimicrobial activity is performed commonly for this purpose. Although alcohol provides immediate activity against enveloped viruses, its virucidal activity against certain non-enveloped viruses, including norovirus, is insufficient. We created a novel alcohol-based hand rub, MR06B7, which is safe for the skin, and is active against an extended spectrum of microorganisms including non-enveloped viruses. For environmental surface disinfection, a novel disinfectant MR13B15, which is based on MR06B7, has been developed. In vitro antimicrobial activity against a variety of pathogens, material compatibility, and simulated surface disinfection and decontamination efficacy of MR13B15 were investigated. According to the results, MR13B15 demonstrated potent bactericidal, fungicidal, mycobactericidal, and virucidal activity within a short contact time in addition to superior efficacy against non-enveloped viruses compared to ethanol for disinfection. Moreover, MR13B15 showed better material compatibility. Two simulation tests conducted for evaluating the disinfection and decontamination potency on environmental surfaces against feline calicivirus, a surrogate for norovirus, indicated that MR13B15 had superior efficacy for surface treatment compared to ethanol. These findings suggest that MR13B15, which satisfies most requirements of an environmental surface disinfectant, may contribute to accomplishing advanced standard precautions in preventing infections. PMID:27301389

  2. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions. PMID:27387660

  3. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  4. Oxidation of alcohols and activated alkanes with Lewis acid-activated TEMPO.

    PubMed

    Nguyen, Thuy-Ai D; Wright, Ashley M; Page, Joshua S; Wu, Guang; Hayton, Trevor W

    2014-11-01

    The reactivity of MCl3(η(1)-TEMPO) (M = Fe, 1; Al, 2; TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) with a variety of alcohols, including 3,4-dimethoxybenzyl alcohol, 1-phenyl-2-phenoxyethanol, and 1,2-diphenyl-2-methoxyethanol, was investigated using NMR spectroscopy and mass spectrometry. Complex 1 was effective in cleanly converting these substrates to the corresponding aldehyde or ketone. Complex 2 was also able to oxidize these substrates; however, in a few instances the products of overoxidation were also observed. Oxidation of activated alkanes, such as xanthene, by 1 or 2 suggests that the reactions proceed via an initial 1-electron concerted proton-electron transfer (CPET) event. Finally, reaction of TEMPO with FeBr3 in Et2O results in the formation of a mixture of FeBr3(η(1)-TEMPOH) (23) and [FeBr2(η(1)-TEMPOH)]2(μ-O) (24), via oxidation of the solvent, Et2O.

  5. Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    P, Jayakrishnan; Ramesan, M. T.

    2014-10-01

    This work focused on the synthesis of magnetite (Fe3O4)/poly(vinyl alcohol-co-acrylic acid) nanocomposite by in situ polymerization. The composite were characterized by FT-IR spectroscopy, XRD, SEM, TGA, AC and DC conductivity measurements. The spectroscopic studies revealed the molecular interaction between the polymer and nanocomposites. SEM, XRD indicated the uniform dispersion of nanoparticle inside the molecular chain of copolymer. TGA studies indicated the excellent thermal stability of copolymer nanocomposites. AC and DC conductivity of nanocomposites were higher than that of the copolymer and conductivity values were significantly increased with increase in concentration of metal oxide nanoparticles. These properties suggest that the polymer composite can be used as multifunctional material for nanoelectronics.

  6. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats.

    PubMed

    Mansouri, Esrafil; Hardani, Ameneh; Afzalzadeh, Mohamad Reza; Amir Zargar, Ashraf; Meamar, Zakiaeh

    2016-01-01

    Retinoic acid and Rosa damascena are compounds that have considerable effects in the cellular proliferation and synthesis of extracellular matrix. The present study was designed to assess the combined effects of retinoic acid and Rosa damascena mill on wound in diabetic rats. Seventy-two rats were used in this study. Diabetes was induced by a single intraperitoneal injection of streptozotocin (60 mg. Kg(-1)). Then, a full thickness wound was created on dorsal surface of all animals. After that, rats were divided, into three groups; control (normal saline), positive control (Phenytoin), and  case (combined of 0.1% Tretinoein lotion and hydro-alcoholic extract of Rosa damascena mill). Afterward, wounds were evaluated macroscopically and microscopically on days 5, 10 and 15. Macroscopic and microscopic evaluations showed a significant improvement (p<0.05) of wounds in case group on 5(th) and 10(th) days when compared to positive control and control groups. The combination of Retinoic acid and hydro-alcholic extract of Rosa damascena mill can accelerate wound healing in diabetic rats.

  7. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats.

    PubMed

    Mansouri, Esrafil; Hardani, Ameneh; Afzalzadeh, Mohamad Reza; Amir Zargar, Ashraf; Meamar, Zakiaeh

    2016-01-01

    Retinoic acid and Rosa damascena are compounds that have considerable effects in the cellular proliferation and synthesis of extracellular matrix. The present study was designed to assess the combined effects of retinoic acid and Rosa damascena mill on wound in diabetic rats. Seventy-two rats were used in this study. Diabetes was induced by a single intraperitoneal injection of streptozotocin (60 mg. Kg(-1)). Then, a full thickness wound was created on dorsal surface of all animals. After that, rats were divided, into three groups; control (normal saline), positive control (Phenytoin), and  case (combined of 0.1% Tretinoein lotion and hydro-alcoholic extract of Rosa damascena mill). Afterward, wounds were evaluated macroscopically and microscopically on days 5, 10 and 15. Macroscopic and microscopic evaluations showed a significant improvement (p<0.05) of wounds in case group on 5(th) and 10(th) days when compared to positive control and control groups. The combination of Retinoic acid and hydro-alcholic extract of Rosa damascena mill can accelerate wound healing in diabetic rats. PMID:27642329

  8. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats

    PubMed Central

    Mansouri, Esrafil; Hardani, Ameneh; Afzalzadeh, Mohamad Reza; Amir zargar, Ashraf; Meamar, Zakiaeh

    2016-01-01

    Retinoic acid and Rosa damascena are compounds that have considerable effects in the cellular proliferation and synthesis of extracellular matrix. The present study was designed to assess the combined effects of retinoic acid and Rosa damascena mill on wound in diabetic rats. Seventy-two rats were used in this study. Diabetes was induced by a single intraperitoneal injection of streptozotocin (60 mg. Kg-1). Then, a full thickness wound was created on dorsal surface of all animals. After that, rats were divided, into three groups; control (normal saline), positive control (Phenytoin), and  case (combined of 0.1% Tretinoein lotion and hydro-alcoholic extract of Rosa damascena mill). Afterward, wounds were evaluated macroscopically and microscopically on days 5, 10 and 15. Macroscopic and microscopic evaluations showed a significant improvement (p<0.05) of wounds in case group on 5th and 10th days when compared to positive control and control groups. The combination of Retinoic acid and hydro-alcholic extract of Rosa damascena mill can accelerate wound healing in diabetic rats. PMID:27642329

  9. Involvement of endocannabinoids in alcohol “binge” drinking: studies of mice with human fatty acid amide hydrolase genetic variation and after CB1 receptor antagonists

    PubMed Central

    Zhou, Yan; Huang, Ted; Lee, Francis; Kreek, Mary Jeanne

    2016-01-01

    Background The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH, a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. Methods As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol “binge” drinking in the drinking-in-the-dark (DID) model. Results We found that the FAAHA/A mice had greater alcohol intake and preference than the wild-type FAAHC/C mice, suggesting that increased endocannabinoid signaling in FAAHA/A mice led to increased alcohol “binge” consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the “binge” DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. Conclusions These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol “binge” drinking. PMID:26857901

  10. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  11. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model.

    PubMed

    Manna, Soumen K; Patterson, Andrew D; Yang, Qian; Krausz, Kristopher W; Idle, Jeffrey R; Fornace, Albert J; Gonzalez, Frank J

    2011-09-01

    Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.

  12. Effects of simple acid leaching of crushed and powdered geological materials on high-precision Pb isotope analyses

    NASA Astrophysics Data System (ADS)

    Todd, Erin; Stracke, Andreas; Scherer, Erik E.

    2015-07-01

    We present new results of simple acid leaching experiments on the Pb isotope composition of USGS standard reference material powders and on ocean island basalt whole rock splits and powders. Rock samples were leached with cold 6 N HCl in an ultrasonic bath, then on a hot plate, and washed with ultrapure H2O before sample digestion in HF-HNO3 and chromatographic purification of Pb. Lead isotope analyses were measured by Tl-doped MC-ICPMS. Intrasession and intersession analytical reproducibilities of repeated analyses of both synthetic Pb solutions and Pb from single digests of chemically processed natural samples were generally better than 100 ppm (2 SD). The comparison of leached and unleached samples shows that leaching consistently removes variable amounts of contaminants that differ in Pb isotopic composition for different starting materials. For repeated digests of a single sample, analyses of leached samples reproduce better than those of unleached ones, confirming that leaching effectively removes most of the heterogeneously distributed extraneous Pb. Nevertheless, the external reproducibility of leached samples is still up to an order of magnitude worse than that of Pb solution standards (˜100 ppm). More complex leaching methods employed by earlier studies yield Pb isotope ratios within error of those produced by our method and at similar levels of reproducibility, demonstrating that our simple leaching method is as effective as more complex leaching techniques. Therefore, any Pb isotope heterogeneity among multiple leached digests of samples in excess of the external reproducibility is attributed to inherent isotopic heterogeneity of the sample. The external precision of ˜100 ppm (2 SD) achieved for Pb isotope ratio determination by Tl-doped MC-ICPMS is thus sufficient for most rocks. The full advantage of the most precise Pb isotope analytical methods is only realized in cases where the natural isotopic heterogeneity among samples in a studied suite is

  13. Percutaneous Sclerotherapy Using Acetic Acid After Failure of Alcohol Ablation in an Intra-abdominal Lymphangioma

    SciTech Connect

    Park, Sang Woo Cha, In Ho; Kim, Kyeong Ah; Hong, Suk Joo; Park, Cheol Min; Chung, Hwan Hoon

    2004-09-15

    We report a case of percutaneous sclerotherapy using acetic acid in a 22-year-old woman with an intra-abdominal cystic lymphangioma who was not successfully treated with ethanol despite multiple trials.

  14. IDRD2 TaqIA polymorphism is associated with urinary homovanillic acid levels in a sample of Spanish male alcoholic patients.

    PubMed

    Ponce, G; Hoenicka, J; Rodríguez-Jiménez, R; Gozalo, A; Jimenéz, M; Monasor, R; Aragüés, M; Rubio, G; Jiménez-Arriero, M A; Ramos, J A; Palomo, T

    2004-01-01

    The TaqIA1 allele of the dopamine receptor gene D2 (DRD2) has been associated with alcoholism, as well as with other addictive behaviours. The exact nature of how the presence of this allele can be a vulnerability factor in the development of alcoholism remains unclear. In this study we found that the presence in the DRD2 genotype of the TaqIA1 allele in Spanish alcoholics is associated with higher levels of urine homovanillic acid (HVA) when compared to patients homozygous for the TaqIA2 allele. A sample of 142 Spanish male alcoholic patients was split into 2 groups on the basis of the presence or absence of the A1 allele in their genotype. The urine sample was analyzed by high performance liquid cromatography (HPLC), and the concentration of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA) and vanilylmandelic acid (VMA) was determined. We found a statistical difference in the concentration of HVA between the groups, that suggests this polymorphism could be related to the variance of urine HVA levels.

  15. THERMAL DESORPTION MASS SPECTROMETRIC ANALYSIS OF ORGANIC AEROSOL FORMED FROM REACTIONS OF 1-TETRADECENE AND O3 IN THE PRESENCE OF ALCOHOLS AND CARBOXYLIC ACIDS. (R826235)

    EPA Science Inventory

    The chemistry of secondary organic aerosol formation from reactions of
    1-tetradecene and O3 in dry air in the presence of excess alcohols
    and carboxylic acids was investigated in an environmental chamber using a
    thermal desorption particle beam mass spec...

  16. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.

    2012-03-01

    We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.

  17. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  18. Novel, major 2α- and 2β-hydroxy bile alcohols and bile acids in the bile of Arapaima gigas, a large South American river fish.

    PubMed

    Sato née Okihara, Rika; Saito, Tetsuya; Ogata, Hiroaki; Nakane, Naoya; Namegawa, Kazunari; Sekiguchi, Shoutaro; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Raines, Jan; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi

    2016-03-01

    Bile alcohols and bile acids from gallbladder bile of the Arapaima gigas, a large South American freshwater fish, were isolated by reversed-phase high-performance liquid chromatography. The structures of the major isolated compounds were determined by electrospray-tandem mass spectrometry and nuclear magnetic resonance using (1)H- and (13)C-NMR spectra. The novel bile salts identified were six variants of 2-hydroxy bile acids and bile alcohols in the 5α- and 5β-series, with 29% of all compounds having hydroxylation at C-2. Three C27 bile alcohols were present (as ester sulfates): (24ξ,25ξ)-5α-cholestan-2α,3α,7α,12α,24,26-hexol; (25ξ)-5β-cholestan-2β,3α,7α,12α,26,27-hexol, and (25ξ)-5α-cholestan-2α,3α,7α,12α,26,27-hexol. A single C27 bile acid was identified: (25ξ)-2α,3α,7α,12α-tetrahydroxy-5α-cholestan-26-oic acid, present as its taurine conjugate. Two novel C24 bile acids were identified: the 2α-hydroxy derivative of allochenodeoxycholic acid and the 2β-hydroxy derivative of cholic acid, both occurring as taurine conjugates. These studies extend previous work in establishing the natural occurrence of novel 2α- and 2β-hydroxy-C24 and C27 bile acids as well as C27 bile alcohols in both the normal (5β) as well as the (5α) "allo" A/B-ring juncture. The bile salt profile of A. gigas appears to be unique among vertebrates. PMID:26768415

  19. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase.

    PubMed

    Kittridge, K J; Willson, R L

    1984-05-01

    Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.

  20. Elevated Linoleic Acid (A Pro-Inflammatory PUFA) and Liver Injury in a Treatment Naive HIV-HCV Co-Infected Alcohol Dependent Patient

    PubMed Central

    Vatsalya, Vatsalya; Barve, Shirish S.; McClain, Craig J.; Ramchandani, Vijay A.

    2016-01-01

    HIV and HCV co-infection is a unique disease condition, and medical management of such condition is difficult due to severity and systemic complications. Added with heavy alcohol drinking, risk of liver injury increases due to several pro-inflammatory responses that subsequently get involved with alcohol metabolism. Elevated levels of fatty acids have been reported both in viral infections as well as alcoholic liver disease though such investigations have not addressed the adverse events with dual viral infection of HIV and HCV along with heavy drinking. This case report is of a patient with excessive alcohol drinking and first time diagnosis of HIV and HCV dual infection, elaborating concurrent alteration in Linoleic Acid (LA) levels and pro-inflammatory shift in ω-6/ω-3 ratio along with the elevations in liver injury markers. Elevated LA has been recently studied extensively for its role in alcoholic liver disease; and in the present case, we also found it to be clinically relevant to liver injury. PMID:27489857

  1. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    PubMed

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries.

  2. Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol.

    PubMed

    Zhang, Hairong; Luo, Jun; Li, Yingying; Guo, Haijun; Xiong, Lian; Chen, Xinde

    2013-08-01

    Bagasse was subjected to a liquefaction process with polyethylene glycol/glycerol using sulfuric acid as catalyst. The effects of various liquefaction conditions, such as reaction time, liquefaction temperature, catalyst content, and liquid ratio (liquefaction solvents/bagasse), on the liquefied residue (LR) content and hydroxyl and acid numbers of liquefied products were investigated. The preferred liquefaction condition of bagasse was determined through orthogonal experiments. The results showed that the catalyst content and reaction time have a greater influence than liquid ratio and liquefaction temperature on the percentage of LR. The hydroxyl and acid numbers of the liquefied products were influenced by many factors, including liquefaction temperature, reaction time, acid content, and liquid ratio. The hydroxyl number of liquefied products decreased as the liquefaction reaction progressed, but the acid number of liquefied products increased. Based on the obtained data, the kinetics for liquefaction was modeled using the first-order reaction rate law and the apparent activation energy for the liquefaction of bagasse was estimated to be 38.30 kJ mol(-1).

  3. Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems.

    PubMed

    Flaiz, Linda; Freire, María; Cofrades, Susana; Mateos, Raquel; Weiss, Jochen; Jiménez-Colmenero, Francisco; Bou, Ricard

    2016-12-15

    The purpose of this study was to compare three different emulsion-based systems, namely simple emulsion, double emulsion and gelled double emulsion, for delivery of n-3 fatty acids (perilla oil at 300g/kg) and hydroxytyrosol (300mg/kg). Considering that their structural differences may affect their physical and oxidative stability, this was studied by storing them at 4°C for 22days in the dark. The results showed that the oxidative status was maintained in all systems by the addition of hydroxytyrosol. However, there was some loss of hydroxytyrosol, mainly during sample storage and during preparation of the gelled double emulsion. Moreover, the antioxidant loss was more pronounced in more compartmentalized systems, which was attributed to their increased surface area. However, the double emulsion was found to be less stable than the gelled emulsion. Overall, the encapsulation of labile compounds in more complex systems needs to be carefully studied and adapted to specific technological and/or nutritional requirements. PMID:27451154

  4. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  5. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    PubMed

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  6. Influence of the structure of polyfluorinated alcohols on Brønsted acidity/hydrogen-bond donor ability and consequences on the promoter effect.

    PubMed

    Vuluga, Daniela; Legros, Julien; Crousse, Benoit; Slawin, Alexandra M Z; Laurence, Christian; Nicolet, Pierre; Bonnet-Delpon, Danièle

    2011-02-18

    The influence of substituents on the properties of tri- and hexafluorinated alcohols derived from 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was examined. Measurements of specific solvent-solute interactions revealed that H-bond donation (HBD) of fluorinated alcohols is sensitive to the steric hindrance of the OH group, whereas their Brønsted acidity is dependent only on the number of fluorine atoms. For hexafluorinated alcohols (HFAs), their association with amines characterized by X-ray diffraction showed that the balance between HBD and acidity is influenced by their structure. Moreover, the ability of HFAs to donate H-bonds is exerted in synclinal (sc), synperiplanar (sp), and also antiperiplanar (ap) conformations along the C-O bond. Comparison of the effects of fluorinated alcohols as promoting solvents in three reactions is reported. The positive correlation between rate constants and H-bonding donation ability for sulfide oxidation and imino Diels-Alder reaction brings to light the role of this property, while acidity might have a minor influence. In the third reaction, epoxide opening by piperidine, none of these properties can clearly be put forward at this stage.

  7. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  8. Quantitative determination of five hydroxy acids, precursors of relevant wine aroma compounds in wine and other alcoholic beverages.

    PubMed

    Gracia-Moreno, Elisa; Lopez, Ricardo; Ferreira, Vicente

    2015-10-01

    A method for the quantitative determination of 2-hydroxy-2-methylbutanoic (2OH2MB), 2-hydroxy-3-methylbutanoic (2OH3MB), 3-hydroxy-3-methylbutanoic (3OH3MB), 2-hydroxy-4-methylpentanoic (2OH4MP) and 3-hydroxybutanoic (3OHB) acids has been optimized, validated and applied to a set of wines and other alcoholic beverages. The analytes were preconcentrated in a solid phase extraction cartridge and derivatized with 2,3,4,5,6-pentafluorobenzyl bromide at room temperature for 30 min, followed by GC-MS analysis. Detection limits were between 0.5 and 29 μg L(-1), and linearity was maintained up to 3 or 12 mg L(-1), depending on the analyte. Recovery values were between 85 and 106 %, and reproducibility was better than 12 % RSD in most cases. The first specific study of these analytes in wine and other alcoholic beverages is herein reported. Concentrations ranged from the method detection limits to 7820, 519, 8510, 3470 and 2500 μg L(-1) for 2OH2MB, 2OH3MB, 3OH3MB, 2OH4MP and 3OHB, respectively, which may have relevant sensory effects. These products were not found in distillates (except 3OHB) but were all present in beer. 2OH2MB, 3OH3MB and 3OHB were found in unfermented grape derivatives. Sherry wines had the highest levels of all except for 3OHB.

  9. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    PubMed Central

    Park, Han-Sol; Jang, Jung Eun; Ko, Myoung Seok; Woo, Sung Hoon; Kim, Bum Joong; Kim, Hyun Sik; Park, Hye Sun; Park, In-Sun; Koh, Eun Hee

    2016-01-01

    Background Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. Methods Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver. Results Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels. Conclusion Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  10. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages.

    PubMed

    Pragst, F; Rothe, M; Moench, B; Hastedt, M; Herre, S; Simmert, D

    2010-03-20

    In this study the combined use of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for diagnoses of chronically excessive alcohol abuse is investigated at 174 hair samples from driving ability examination, workplace testing and child custody cases for family courts and evaluated with respect to the basics of interpretation. Using the cut-off values of 0.50 ng/mg for FAEE and 25 pg/mg for EtG, both markers were in agreement in 75% of the cases with 103 negative and 28 positive results and there were 30 cases with FAEE positive and EtG negative and 13 cases with FAEE negative and EtG positive. As the theoretical basis of interpretation, the pharmacokinetics of FAEE and EtG is reviewed for all steps between drinking of ethanol to incorporation in hair with particular attention to relationships between alcohol dose and concentrations in hair. It is shown that the concentrations of both markers are essentially determined by the area under the ethanol concentration in blood vs. time curve AUC(EtOH), despite large inter-individual variations. It is demonstrated by calculation of AUC(EtOH) on monthly basis for moderate, risky and heavy drinking that AUC(EtOH) increases very strongly in the range between 60 and 120 g ethanol per day. This specific feature which is caused by the zero-order elimination of ethanol is a favorable prerequisite for a high discrimination power of the hair testing for alcohol abuse. From the consideration of the different profiles of FAEE and EtG along the hair and in agreement with the literature survey, a standardized hair segment 0-3 cm is proposed with cut-off values of 0.5 ng/mg for FAEE and 30 pg/mg for EtG. This improves also the agreement between FAEE and EtG results in the cases of the present study. A scheme for combined interpretation of FAEE and EtG is proposed which uses the levels of abstinence and the double of the cut-off values as criteria in addition to the cut-off's. Considering the large variations in the relationship

  11. Fatty acid ethyl esters in hair as alcohol markers: estimating a reliable cut-off point by evaluation of 1,057 autopsy cases.

    PubMed

    Hastedt, Martin; Bossers, Lydia; Krumbiegel, Franziska; Herre, Sieglinde; Hartwig, Sven

    2013-06-01

    Alcohol abuse is a widespread problem, especially in Western countries. Therefore, it is important to have markers of alcohol consumption with validated cut-off points. For many years research has focused on analysis of hair for alcohol markers, but data on the performance and reliability of cut-off values are still lacking. Evaluating 1,057 cases from 2005 to 2011, included a large sample group for the estimation of an applicable cut-off value when compared to earlier studies on fatty acid ethyl esters (FAEEs) in hair. The FAEEs concentrations in hair, police investigation reports, medical history, and the macroscopic and microscopic alcohol-typical results from autopsy, such as liver, pancreas, and cardiac findings, were taken into account in this study. In 80.2 % of all 1,057 cases pathologic findings that may be related to alcohol abuse were reported. The cases were divided into social drinkers (n = 168), alcohol abusers (n = 502), and cases without information on alcohol use. The median FAEEs concentration in the group of social drinkers was 0.302 ng/mg (range 0.008-14.3 ng/mg). In the group of alcohol abusers a median of 1.346 ng/mg (range 0.010-83.7 ng/mg) was found. Before June 2009 the hair FAEEs test was routinely applied to a proximal hair segment of 0-6 cm, changing to a routinely investigated hair length of 3 cm after 2009, as proposed by the Society of Hair Testing (SoHT). The method showed significant differences between the groups of social drinkers and alcoholics, leading to an improvement in the postmortem detection of alcohol abuse. Nevertheless, the performance of the method was rather poor, with an area under the curve calculated from receiver operating characteristic (ROC curve AUC) of 0.745. The optimum cut-off value for differentiation between social and chronic excessive drinking calculated for hair FAEEs was 1.08 ng/mg, with a sensitivity of 56 % and a specificity of 80 %. In relation to the "Consensus on Alcohol Markers 2012

  12. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  13. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. PMID:26706517

  14. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine.

  15. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  16. Simple Protocol for Secondary School Hands-On Activity: Electrophoresis of Pre-Stained Nucleic Acids on Agar-Agar Borate Gels

    ERIC Educational Resources Information Center

    Britos, Leticia; Goyenola, Guillermo; Orono, Silvia Umpierrez

    2004-01-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical…

  17. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

    PubMed

    Miller, Darren S; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N

    2015-07-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose (13)C sodium acetate ((13)C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of (13)CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT(®) L100-55 on gelatin capsules and also on DRcaps(®). Test results demonstrated that DRcaps(®) coated with EUDRAGIT(®) L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

  18. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine*

    PubMed Central

    Miller, Darren S.; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A.; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N.

    2015-01-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose 13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of 13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT®L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps®coated with EUDRAGIT®L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine. PMID:26160716

  19. Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2013-09-01

    Mesoporous nanoparticles composed of γ-Al2O3 cores and α-Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ-Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide-angle XRD, energy-dispersive X-ray spectroscopy, and elemental mapping by ultrahigh-resolution (UHR) TEM and X-ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g(−1) and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self-aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse-reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide-angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one-pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.

  20. Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2013-09-01

    Mesoporous nanoparticles composed of γ-Al2O3 cores and α-Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ-Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide-angle XRD, energy-dispersive X-ray spectroscopy, and elemental mapping by ultrahigh-resolution (UHR) TEM and X-ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g(−1) and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self-aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse-reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide-angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one-pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently. PMID:24167824

  1. New type of trifunctional alcohol

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Hutchison, J. J.

    1972-01-01

    New type of trifunctional alcohol was synthesized from commercially available trimer acid. Trifunctional alcohol is hydrocarbon with widely separated terminal hydroxyl groups, and was expressly developed as crosslinking agent for preparation of polyurethane propellants, binders and case liners.

  2. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.

  3. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    SciTech Connect

    Sugama, T.; Petrakis, L.; Webster, R.P.

    1999-12-21

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  4. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial

    PubMed Central

    Neuschwander-Tetri, Brent A; Loomba, Rohit; Sanyal, Arun J; Lavine, Joel E; Van Natta, Mark L; Abdelmalek, Manal F; Chalasani, Naga; Dasarathy, Srinivasan; Diehl, Anna Mae; Hameed, Bilal; Kowdley, Kris V; McCullough, Arthur; Terrault, Norah; Clark, Jeanne M; Tonascia, James; Brunt, Elizabeth M; Kleiner, David E; Doo, Edward

    2015-01-01

    Summary Background The bile acid derivative 6-ethylchenodeoxycholic acid (obeticholic acid) is a potent activator of the farnesoid X nuclear receptor that reduces liver fat and fibrosis in animal models of fatty liver disease. We assessed the efficacy of obeticholic acid in adult patients with non-alcoholic steatohepatitis. Methods We did a multicentre, double-blind, placebo-controlled, parallel group, randomised clinical trial at medical centres in the USA in patients with non-cirrhotic, non-alcoholic steatohepatitis to assess treatment with obeticholic acid given orally (25 mg daily) or placebo for 72 weeks. Patients were randomly assigned 1:1 using a computer-generated, centrally administered procedure, stratified by clinical centre and diabetes status. The primary outcome measure was improvement in centrally scored liver histology defined as a decrease in non-alcoholic fatty liver disease activity score by at least 2 points without worsening of fibrosis from baseline to the end of treatment. A planned interim analysis of change in alanine aminotransferase at 24 weeks undertaken before end-of-treatment (72 weeks) biopsies supported the decision to continue the trial (relative change in alanine aminotransferase −24%, 95% CI −45 to −3). A planned interim analysis of the primary outcome showed improved efficacy of obeticholic acid (p=0·0024) and supported a decision not to do end-of-treatment biopsies and end treatment early in 64 patients, but to continue the trial to obtain the 24-week post-treatment measures. Analyses were done by intention-to-treat. This trial was registered with ClinicalTrials.gov, number NCT01265498. Findings Between March 16, 2011, and Dec 3, 2012, 141 patients were randomly assigned to receive obeticholic acid and 142 to placebo. 50 (45%) of 110 patients in the obeticholic acid group who were meant to have biopsies at baseline and 72 weeks had improved liver histology compared with 23 (21%) of 109 such patients in the placebo group

  5. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  6. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease.

    PubMed

    Petrasek, Jan; Iracheta-Vellve, Arvin; Saha, Banishree; Satishchandran, Abhishek; Kodys, Karen; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A; Szabo, Gyongyi

    2015-08-01

    Inflammation defines the progression of ALD from reversible to advanced stages. Translocation of bacterial LPS to the liver from the gut is necessary for alcohol-induced liver inflammation. However, it is not known whether endogenous, metabolic danger signals are required for inflammation in ALD. Uric acid and ATP, 2 major proinflammatory danger signals, were evaluated in the serum of human volunteers exposed to a single dose of ethanol or in supernatants of primary human hepatocytes exposed to ethanol. In vitro studies were used to evaluate the role of uric acid and ATP in inflammatory cross-talk between hepatocytes and immune cells. The significance of signaling downstream of uric acid and ATP in the liver was evaluated in NLRP3-deficient mice fed a Lieber-DeCarli ethanol diet. Exposure of healthy human volunteers to a single dose of ethanol resulted in increased serum levels of uric acid and ATP. In vitro, we identified hepatocytes as a significant source of these endogenous inflammatory signals. Uric acid and ATP mediated a paracrine inflammatory cross-talk between damaged hepatocytes and immune cells and significantly increased the expression of LPS-inducible cytokines, IL-1β and TNF-α, by immune cells. Deficiency of NLRP3, a ligand-sensing component of the inflammasome recognizing uric acid and ATP, prevented the development of alcohol-induced liver inflammation in mice and significantly ameliorated liver damage and steatosis. Endogenous metabolic danger signals, uric acid, and ATP are involved in inflammatory cross-talk between hepatocytes and immune cells and play a crucial role in alcohol-induced liver inflammation.

  7. Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel-Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity due to Ion-Pairing Effects.

    PubMed

    Mo, Xiaobin; Yakiwchuk, Joshua; Dansereau, Julien; McCubbin, J Adam; Hall, Dennis G

    2015-08-01

    The development of general and more atom-economical catalytic processes for Friedel-Crafts alkylations of unactivated arenes is an important objective of interest for the production of pharmaceuticals and commodity chemicals. Ferroceniumboronic acid hexafluoroantimonate salt (1) was identified as a superior air- and moisture-tolerant catalyst for direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes with stable and readily available primary and secondary benzylic alcohols. Compared to the use of classical metal-catalyzed alkylations with toxic benzylic halides, this methodology employs exceptionally mild conditions to provide a wide variety of unsymmetrical diarylmethanes and other 1,1-diarylalkane products in high yield with good to high regioselectivity. The optimal method, using the bench-stable ferroceniumboronic acid salt 1 in hexafluoroisopropanol as cosolvent, displays a broader scope compared to previously reported catalysts for similar Friedel-Crafts reactions of benzylic alcohols, including other boronic acids such as 2,3,4,5-tetrafluorophenylboronic acid. The efficacy of the new boronic acid catalyst was confirmed by its ability to activate primary benzylic alcohols functionalized with destabilizing electron-withdrawing groups like halides, carboxyesters, and nitro substituents. Arene benzylation was demonstrated on a gram scale at up to 1 M concentration with catalyst recovery. Mechanistic studies point toward the importance of the ionic nature of the catalyst and suggest that factors other than the Lewis acidity (pKa) of the boronic acid are at play. A SN1 mechanism is proposed where ion exchange within the initial boronate anion affords a more reactive carbocation paired with the non-nucleophilic hexafluoroantimonate counteranion. PMID:26158198

  8. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  9. Protective effects of glycyrrhizic acid from edible botanical glycyrrhiza glabra against non-alcoholic steatohepatitis in mice.

    PubMed

    Wang, Changyuan; Duan, Xingping; Sun, Xue; Liu, Zhihao; Sun, Pengyuan; Yang, Xiaobo; Sun, Huijun; Liu, Kexin; Meng, Qiang

    2016-09-14

    Non-alcoholic steatohepatitis (NASH) is a syndrome with simultaneous severe hepatic steatosis, lobular inflammation and pericelluar fibrosis. The purpose of the present study is to investigate the protective effect of glycyrrhizic acid (GA), a natural triterpene glycoside from edible botanical glycyrrhiza glabra, on NASH induced by a methionine and choline-deficient (MCD) diet in mice, and further to elucidate the mechanisms of GA protection. Serum ALT and AST assay and H&E staining were used to identify the amelioration of the liver histopathological changes. Serum and hepatic lipid assay and Oil Red O staining were used to measure lipid accumulation. Hepatic inflammatory and fibrosis gene determination, as well as Mason Trichrome and Sirius Red staining were used to determine the reduction of hepatic inflammation and pericelluar fibrosis. Quantitative real-time PCR and Western blot assays were used to elucidate the mechanisms underlying GA protection. The results indicated that GA treatment reduced hepatic lipogenesis through a decrease in hepatic levels of SREBP-1c, FAS, ACC1 and SCD1, and increased lipid metabolism through an induction of PPARα, CPT1α, ACADS and LPL. GA also reduced hepatic inflammation via a decrease in the expression of the hepatic inflammatory genes MCP-1 and VCAM-1. In addition, GA reduced liver fibrosis through limiting HSC activation and collagen deposition. In conclusion, GA produces a markedly protective effect against NASH induced by a methionine and choline-deficient (MCD) diet in mice. PMID:27487733

  10. Protective effects of glycyrrhizic acid from edible botanical glycyrrhiza glabra against non-alcoholic steatohepatitis in mice.

    PubMed

    Wang, Changyuan; Duan, Xingping; Sun, Xue; Liu, Zhihao; Sun, Pengyuan; Yang, Xiaobo; Sun, Huijun; Liu, Kexin; Meng, Qiang

    2016-09-14

    Non-alcoholic steatohepatitis (NASH) is a syndrome with simultaneous severe hepatic steatosis, lobular inflammation and pericelluar fibrosis. The purpose of the present study is to investigate the protective effect of glycyrrhizic acid (GA), a natural triterpene glycoside from edible botanical glycyrrhiza glabra, on NASH induced by a methionine and choline-deficient (MCD) diet in mice, and further to elucidate the mechanisms of GA protection. Serum ALT and AST assay and H&E staining were used to identify the amelioration of the liver histopathological changes. Serum and hepatic lipid assay and Oil Red O staining were used to measure lipid accumulation. Hepatic inflammatory and fibrosis gene determination, as well as Mason Trichrome and Sirius Red staining were used to determine the reduction of hepatic inflammation and pericelluar fibrosis. Quantitative real-time PCR and Western blot assays were used to elucidate the mechanisms underlying GA protection. The results indicated that GA treatment reduced hepatic lipogenesis through a decrease in hepatic levels of SREBP-1c, FAS, ACC1 and SCD1, and increased lipid metabolism through an induction of PPARα, CPT1α, ACADS and LPL. GA also reduced hepatic inflammation via a decrease in the expression of the hepatic inflammatory genes MCP-1 and VCAM-1. In addition, GA reduced liver fibrosis through limiting HSC activation and collagen deposition. In conclusion, GA produces a markedly protective effect against NASH induced by a methionine and choline-deficient (MCD) diet in mice.

  11. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  12. Regio- and stereoselective synthesis of ferrocene-containing β-iodoallylic esters and ethers from the iodofunctionalization of ferrocenylallene with carboxylic acids, phenols, and alcohols.

    PubMed

    Chen, Shufeng; Zhang, Hongli; Yan, Qing; Wang, Chenjun; Han, Fei; Zhang, Kaixin; Zhao, Haiying; Li, Baoguo

    2014-06-20

    The iodofunctionalization of ferrocenylallene with carboxylic acids, phenols, and alcohols is described. The reaction proceeds smoothly in the presence of molecule iodine as a halonium promoter and using various carboxylic acids, phenols, and alcohols as nucleophiles to give the corresponding ferrocene-containing β-iodoallylic ester and ether products in moderate to high yields and with high regio- and stereoselectivities. It can be envisaged that the regio- and stereoselectivity of this reaction may be controlled by the steric effect of the bulky ferrocene group. The presence of the C-I bond in the corresponding products makes these molecules highly attractive from a synthetic point of view, as it provides an opportunity for further transformations. Thus, palladium-catalyzed Heck coupling, Suzuki coupling, Sonogashira coupling, and copper-catalyzed click reactions were carried out successfully.

  13. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's.

    PubMed

    Ugur, Ilke; Marion, Antoine; Parant, Stéphane; Jensen, Jan H; Monard, Gerald

    2014-08-25

    In a first step toward the development of an efficient and accurate protocol to estimate amino acids' pKa's in proteins, we present in this work how to reproduce the pKa's of alcohol and thiol based residues (namely tyrosine, serine, and cysteine) in aqueous solution from the knowledge of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively. The applicability of the suggested protocol is tested with tyrosine and cysteine amino acids, and precise pKa predictions are obtained. The stability of the amino acid pKa's with respect to geometrical changes is also tested by MM-MD and DFT-MD calculations. Considering its strong accuracy and its high computational efficiency, these pKa prediction calculations using atomic charges indicate a promising method for predicting amino acids' pKa in a protein environment.

  14. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's.

    PubMed

    Ugur, Ilke; Marion, Antoine; Parant, Stéphane; Jensen, Jan H; Monard, Gerald

    2014-08-25

    In a first step toward the development of an efficient and accurate protocol to estimate amino acids' pKa's in proteins, we present in this work how to reproduce the pKa's of alcohol and thiol based residues (namely tyrosine, serine, and cysteine) in aqueous solution from the knowledge of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively. The applicability of the suggested protocol is tested with tyrosine and cysteine amino acids, and precise pKa predictions are obtained. The stability of the amino acid pKa's with respect to geometrical changes is also tested by MM-MD and DFT-MD calculations. Considering its strong accuracy and its high computational efficiency, these pKa prediction calculations using atomic charges indicate a promising method for predicting amino acids' pKa in a protein environment. PMID:25089727

  15. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    PubMed

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  16. Acid and alcohol tolerance of Escherichia coli O157:H7 in pulque, a typical Mexican beverage.

    PubMed

    Gómez-Aldapa, Carlos A; Díaz-Cruz, Claudio A; Villarruel-López, Angelica; Del Refugio Torres-Vitela, M; Rangel-Vargas, Esmeralda; Castro-Rosas, Javier

    2012-03-01

    Pulque is a traditional Mexican fermented alcoholic beverage produced from the nectar of maguey agave plants. No data exist on the behavior of Escherichia coli O157:H7 in agave nectar and pulque. An initial trial was done of the behavior of E. coli O157:H7 during fermentation of nectar from a single producer, a nectar mixture from different producers and "seed" pulque. A second trial simulating artisanal pulque production was done by contaminating fresh nectar with a cocktail of three E. coli O157:H7 strains, storing at 16 ° and 22 °C for 14 h, adding seed pulque and fermenting until pulque was formed. A third trial used pulque from the second trial stored at 22 °C as seed to ferment fresh nectar at 22 °C for 48 h (fermentation cycle). This procedure was repeated for an additional two fermentation cycles. During incubation at 16 ° or 22 °C in the first trial, the E. coli O157:H7 strains multiplied in both the single producer nectar and nectar mixture, reaching maximum concentration at 12h. E. coli O157:H7 cell concentration then decreased slowly, although it survived at least 72 h in both fermented nectars. E. coli O157:H7 did not multiply in the seed pulque but did survive at least 72 h. In the second trial, the numbers of E. coli O157:H7 increased approximately 1.5 log CFU/ml at 22 °C and 1.2 log CFU/ml at 16 °C after 14 h. After seed pulque was added, E. coli O157:H7 concentration decreased to approximately 2 log CFU/ml, and then remained constant until pulque was produced. In the third trial, the E. coli O157:H7 cells multiplied and survived during at least three nectar fermentation cycles. The results suggest that E. coli O157:H7 can develop acid and alcohol tolerance in pulque, and constitutes a public health risk for pulque consumers.

  17. Simple prostatectomy

    MedlinePlus

    Prostatectomy - simple; Suprapubic prostatectomy; Retropubic simple prostatectomy; Open prostatectomy; Millen procedure ... prostate and what caused your prostate to grow. Open simple prostatectomy is often used when the prostate ...

  18. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  19. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  20. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  1. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  2. A simple GC-MS method for the screening of betulinic, corosolic, maslinic, oleanolic and ursolic acid contents in commercial botanicals used as food supplement ingredients.

    PubMed

    Caligiani, Augusta; Malavasi, Giulia; Palla, Gerardo; Marseglia, Angela; Tognolini, Massimiliano; Bruni, Renato

    2013-01-15

    The occurrence of triterpene pentacyclic acids in plants is extensive, but little is known about their availability in commercial extracts. A simple GC-MS method for the simultaneous determination of betulinic, corosolic, maslinic, oleanolic and ursolic acids was developed and applied to 38 different commercial plant extracts sold as ingredients for dietary supplements. A suitable protocol was set up to perform routine control of a diverse array of samples with different botanical, chemical and physical characteristics. Remarkable quantities of corosolic acid were found in dried extracts from aerial parts of Lagerstroemia speciosa and Ortosiphon stamineus (14233 and 1132 mg/kg, respectively), while oleanolic acid was abundant in O. stamineus and Crataegus monogyna flowers (2774 and 2339 mg/kg); ursolic was identified in O. stamineus, C. monogyna, L. speciosa and Arctostaphylos uva-ursi leaves (7773, 4165, 2108 and 1034 mg/kg). Only L. speciosa was rich in maslinic acid (4958 mg/kg), while minor amounts of betulinic acid (257 and 80 mg/kg) were detected in L. speciosa and C. monogyna extracts. Lower quantities of triterpenic acids were identified in dried extracts of Harpagophyton procumbens root, propolis, Punica granatum root, Styrax benzoin, Vaccinium myrtillus fruits and Vitis vinifera seeds. Decoctions and fluid extracts lacked or contained very low amounts of triterpenic acids. Results are discussed in terms of quality and safety of these ingredients.

  3. High-performance liquid chromatography with diamond ATR-FTIR detection for the determination of carbohydrates, alcohols and organic acids in red wine.

    PubMed

    Edelmann, Andrea; Diewok, Josef; Baena, Josefa Rodriguez; Lendl, Bernhard

    2003-05-01

    A horizontal diamond attenuated total reflection (ATR) element has been incorporated in a flow-through cell with low dead volume and used for on-line mid-IR detection in high-performance liquid chromatography. The chemical inertness of the ATR element permitted the use of a strongly acidic mobile phase in the isocratic separation. The hyphenation was used for the analysis of organic acids, sugars and alcohols in red wine. In the case of co-eluting analytes multivariate curve resolution-alternating least squares (MCR-ALS) was successfully employed for quantitative analysis.

  4. A simple and efficient synthesis of fused morpholine pyrrolidines/piperdines with potential insecticidal activities.

    PubMed

    Wang, Jiayi; Xu, Beiling; Si, Shanyu; Li, Hui; Song, Gonghua

    2014-11-01

    A simple and efficient synthesis of fused morpholine pyrrolidine/piperdine core structures was accomplished via a Petasis-borono Mannich reaction of cyclic amino alcohols, glyoxal and arylboronic acids with moderate to good yields. The bioassay data showed that the synthesized compounds displayed selective insecticidal activities against armyworm and root-knot nematode.

  5. Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns

    NASA Astrophysics Data System (ADS)

    Hwang, In-Tae; Jin, Yu-Ran; Oh, Min-Suk; Jung, Chan-Hee; Choi, Jae-Hak

    2014-10-01

    In this study, a facile and non-toxic method for the formation of cell-adhesive poly(vinyl alcohol) (PVA) patterns on the surface of a non-biological polystyrene substrate (NPS) is developed to control cellular micro-organization. PVA thin films spin-coated onto the NPS are selectively irradiated with 150 keV H+ ions through a pattern mask and developed with deionized water to form negative-type PVA patterns. Well-defined stripe patterns of PVA with a width of 100 μm are created on the NPS at a higher fluence than 5 × 1015 ions/cm2, and their surface chemical compositions are changed by ion irradiation without any significant morphological change. Based on the results of the protein adsorption test and in vitro cell culture, cancer cells are preferentially adhered and proliferated onto the more hydrophilic PVA regions of the PVA-patterned NPS, resulting in well-defined cell patterns.

  6. The critical size of hydrogen-bonded alcohol clusters as effective Brønsted bases in solutions.

    PubMed

    Park, Sun-Young; Kim, Taeg Gyum; Ajitha, Manjaly J; Kwac, Kijeong; Lee, Young Min; Kim, Heesu; Jung, Yousung; Kwon, Oh-Hoon

    2016-09-28

    The alkyl oxonium ion, which is a protonated alcohol, has long been proposed as a key reaction intermediate in alcohol dehydration. Nonetheless, the dynamics and structure of this simple but important intermediate species have not been adequately examined due to the transient nature of the oxonium ion. Here, we devised a model system for the key step in the alcohol dehydration reaction, in which a photoacid transfers a proton to alcohols of different basicity in the acetonitrile solvent. Using time-resolved spectroscopy and computation, we have found that the linkage of at least two alcohol molecules via hydrogen bonding is critical for their enhanced reactivity and extraction of the proton from the acid. This finding addresses the cooperative role of the simplest organic protic compounds, namely alcohols, in nonaqueous acid-base reactions. PMID:27337993

  7. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  8. Protection of Nicotinic Acid against Oxidative Stress-Induced Cell Death in Hepatocytes Contributes to Its Beneficial Effect on Alcohol-induced Liver Injury in Mice

    PubMed Central

    Dou, Xiaobing; Shen, Chen; Wang, Zhigang; Li, Songtao; Zhang, Ximei; Song, Zhenyuan

    2013-01-01

    Oxidative stress plays a pathological role in the development of alcoholic liver disease. In this study, we investigated the effects of nicotinic acid (NA) supplementation on H2O2-induced cell death in hepatocytes and alcohol-induced liver injury in mice. Hepatocytes were exposed to H2O2 (0–0.4 mM) for 16 hours after a 2-hour pretreatment with NA (0–100 µM). Cell viability, intracellular glutathione and total NAD contents were determined. In animal experiments, male C57 BL/6 mice were exposed to Lieber-De Carli liquid diet (+/− ethanol with/without NA supplementation (0.5%, w/v) for 4 weeks. Nicotinic acid phosphoribosyltransferase (NaPRT) is the first enzyme participated in the NA metabolism, converting NA to nicotinic acid mononucleotide (NaMN). In NaPRT-expressing Hep3B cells, H2O2-induced cell death was attenuated by NA, whereas in NaPRT-lost HepG2 cells, only NaMN conferred protective effect, suggesting that NA metabolism is required for its protective action against H2O2. In Hep3B cells, NA supplementation prevented H2O2-inudced declines in intracellular total NAD and GSH/GSSG ratios. Further mechanistic investigations revealed that conservation of Akt activity contributed to NA’s protective effect against H2O2-inudced cell death. In alcohol-fed mice, NA supplementation attenuated liver injury induced by chronic alcohol exposure, which was associated with alleviated hepatic lipid peroxidation and increased liver GSH concentrations. In conclusion, our findings indicate that exogenous NA supplementation may be an ideal choice for the treatment of liver diseases involved oxidative stress. PMID:23465591

  9. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease

  10. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease.

  11. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters

    PubMed Central

    Yang, J.Y.; Kwak, H.S.; Choi, J.S.; Ahn, H.K.; Oh, Y.J.; Velázquez-Armenta, E.Y.; Nava-Ocampo, A.A.

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  12. Influence of the degree of exposure to lead on relations between alcohol consumption and the biological indices of lead exposure: epidemiological study in a lead acid battery factory.

    PubMed Central

    Cezard, C; Demarquilly, C; Boniface, M; Haguenoer, J M

    1992-01-01

    Alcohol has been shown to interact with lead to influence haem biosynthesis. The aim of this study was to define the dependence of this interaction on the degree of exposure to lead. Exposure to alcohol was estimated by measurement of alcohol concentrations in a sample of urine collected during the morning (AlcUM) (0.82 (SD 4.36) mmol/l) and in a sample collected during the afternoon (AlcUA) (1.15 (SD 3.49) mmol/l). The biological monitoring of exposure to lead included measurements of blood lead (Pb-B) (1.82 (SD 0.72) mumol/l), urinary delta-aminolaevulinic acid (ALAU) (35.33 (SD 28.00) mumol/l; d = 1.015), and erythrocyte zinc-protoporphyrin (ZPP) (112.90 (SD 83.71) nmol/mmol Hb) concentrations. The study of the influence of the degree of occupational exposure to lead on relations between alcohol consumption and effects of the exposure to lead led to the consideration of two different groups--namely, mildly and strongly exposed subjects. In the first group, individual biological susceptibility seemed to play a preponderant part. In the second, the pool of lead present in the body seemed to be sufficiently important to mask the effects of individual susceptibility. PMID:1390270

  13. Influence of the degree of exposure to lead on relations between alcohol consumption and the biological indices of lead exposure: epidemiological study in a lead acid battery factory.

    PubMed

    Cezard, C; Demarquilly, C; Boniface, M; Haguenoer, J M

    1992-09-01

    Alcohol has been shown to interact with lead to influence haem biosynthesis. The aim of this study was to define the dependence of this interaction on the degree of exposure to lead. Exposure to alcohol was estimated by measurement of alcohol concentrations in a sample of urine collected during the morning (AlcUM) (0.82 (SD 4.36) mmol/l) and in a sample collected during the afternoon (AlcUA) (1.15 (SD 3.49) mmol/l). The biological monitoring of exposure to lead included measurements of blood lead (Pb-B) (1.82 (SD 0.72) mumol/l), urinary delta-aminolaevulinic acid (ALAU) (35.33 (SD 28.00) mumol/l; d = 1.015), and erythrocyte zinc-protoporphyrin (ZPP) (112.90 (SD 83.71) nmol/mmol Hb) concentrations. The study of the influence of the degree of occupational exposure to lead on relations between alcohol consumption and effects of the exposure to lead led to the consideration of two different groups--namely, mildly and strongly exposed subjects. In the first group, individual biological susceptibility seemed to play a preponderant part. In the second, the pool of lead present in the body seemed to be sufficiently important to mask the effects of individual susceptibility.

  14. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters.

    PubMed

    Yang, J Y; Kwak, H S; Han, J Y; Choi, J S; Ahn, H K; Oh, Y J; Velázquez-Armenta, E Y; Nava-Ocampo, A A

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  15. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters.

    PubMed

    Yang, J Y; Kwak, H S; Han, J Y; Choi, J S; Ahn, H K; Oh, Y J; Velázquez-Armenta, E Y; Nava-Ocampo, A A

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week.

  16. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice.

    PubMed

    Zheng, Jie; Yang, Baoru; Trépanier, Martin; Kallio, Heikki

    2012-03-28

    Sea buckthorn berries (Hippophaë rhamnoides ssp. mongolica) of nine varieties were collected from three growth locations in five inconsecutive years (n = 152) to study the compositional differences of sugars, sugar alcohols, fruit acids, and ascorbic acid in berries of different genotypes. Fructose and glucose (major sugars) were highest in Chuiskaya and Vitaminaya among the varieties studied, respectively. Malic acid and quinic acid (major acids) were highest in Pertsik and Vitaminaya, respectively. Ascorbic acid was highest in Oranzhevaya and lowest in Vitaminaya. Berry samples of nine varieties collected from two growth locations in five years (n = 124) were combined to study the effects of latitude and weather conditions on the composition of H. rhamnoides ssp. mongolica. Sea buckthorn berries grown at lower latitude had higher levels of total sugar and sugar/acid ratio and a lower level of total acid and were supposed to have better sensory properties than those grown at higher latitude. Glucose, quinic acid, and ascorbic acid were hardly influenced by weather conditions. The other components showed various correlations with temperature, radiation, precipitation, and humidity variables. In addition, fructose, sucrose, and myo-inositol correlated positively with each other and showed negative correlation with malic acid on the basis of all the samples studied (n = 152).

  17. Ascorbic acid decomposition into oxalate ions: a simple synthetic route towards oxalato-bridged heterometallic 3d-4f clusters.

    PubMed

    Dinca, Alina S; Shova, Sergiu; Ion, Adrian E; Maxim, Catalin; Lloret, Francesc; Julve, Miguel; Andruh, Marius

    2015-04-28

    Two types of oxalato-bridged heterometallic 3d-4f dodeca- and hexanuclear compounds have been obtained by connecting six bi- and, respectively, trinuclear moieties through oxalato bridges arising from the slow decomposition of the L-ascorbic acid.

  18. Identification of Amino Acids Conferring Chain Length Substrate Specificities on Fatty Alcohol-forming Reductases FAR5 and FAR8 from Arabidopsis thaliana*

    PubMed Central

    Chacón, Micaëla G.; Fournier, Ashley E.; Tran, Frances; Dittrich-Domergue, Franziska; Pulsifer, Ian P.; Domergue, Frédéric; Rowland, Owen

    2013-01-01

    Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value. PMID:24005667

  19. Mercaptobenzoic acid-palladium(0) complexes as active catalysts for S-benzylation with benzylic alcohols via (η(3)-benzyl)palladium(II) cations in water.

    PubMed

    Hikawa, Hidemasa; Azumaya, Isao

    2014-08-21

    Mercaptobenzoic acid-palladium(0) complexes show high catalytic activity for S-benzylation with benzylic alcohols via the (η(3)-benzyl)palladium(II) cation in water. Notably, these palladium(0) complexes could play an important role in formation of active (η(3)-benzyl)palladium(II) cation complexes followed by S-benzylation. Hammett studies on the rate constants of S-benzylation by various substituted alcohols show good correlation between log(kX/kH) and the σ(+) value of the respective substituents. From the slope, negative ρ values are obtained, suggesting that there is a build-up of positive charge in the transition state. Water plays an important role in the catalytic system for sp(3) C-O bond activation and stabilization of the activated Pd(II) cation species. The catalytic system can be performed using only 2.5 mol% Pd2(dba)3 without the phosphine ligand or other additives.

  20. The influence of the major ions of seawater on the adsorption of simple organic acids by goethite

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.

    1987-05-01

    The adsorption of oxalic, phthalic, salicylic, and lactic acids on goethite from 0.53 M NaCl and from synthetic major ion seawater is examined to determine the effect of Mg, Ca, and SO 4 on the adsorption behavior of the organic compounds. The comparison shows that organic acid adsorption is suppressed in seawater relative to the NaCl system. Successive additions of SO 4, Mg, and Ca in their natural ionic proportions found in seawater to 0.53 M NaCl indicate that sulfate suppresses the adsorption of all the organic acids, especially in the low pH range. The addition of Mg also suppresses the adsorption of oxalic and phthalic acids while the addition of Ca suppresses lactic acid adsorption. The effect of SO 4, Mg, and Ca on the adsorption of the organic acids is due to competition for available binding sites and the formation of solution complexes which either do not adsorb or weakly adsorb.

  1. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach

    SciTech Connect

    Abhilash, P.A.; Harikrishnan, R.; Indira, M.

    2014-01-15

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4 g/kg b.wt for 90 days. After 90 days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250 mg/kg b.wt) and AA (250 mg/kg b.wt) supplemented groups and maintained for 30 days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β{sub 1} and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α{sub 1} (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. - Highlights: • Alcohol increases intestinal bacterial overgrowth and permeability of endotoxin. • Endotoxin mediated inflammation plays a major role in alcoholic liver fibrosis. • Ascorbic acid reduces endotoxemia, NF-κB activation and proinflammatory cytokines. • AA's action is by inhibition of SIBO, IKKβ and alteration of

  2. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea.

  3. Fatty acids in bacterium Dietzia sp. grown on simple and complex hydrocarbons determined as FAME by GC-MS.

    PubMed

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-09-01

    The influence of growth substrates on the fatty acids produced by Dietzia sp. A14101 has been studied to investigate how qualitative and semi-quantitative information on fatty acids correlates with the ability of this strain to access and utilize a wide range of water-immiscible HC-substrates by modifying the FA content and thus also the properties of the cellular membrane. After incubation on different substrates and media, the profiles of fatty acids (FA) were analyzed by gas chromatography and mass spectrometry (GC-MS). The equivalent chain length (ECL) index calibration system was employed to identify FA. The effect of each substrate on the cell surface charge and on the hydrophobicity of the cellular membrane was also investigated. The results indicate that the variation of the content of saturated fatty acids (SAT-FA) versus mono-unsaturated fatty acids (MUFA) was found to be the most pronounced while branched FA exhibited much less variation in spite of different substrate regimes. The regulation of the ratio of SAT-FA and MUFA seems to be coupled with the regulation of the charge and hydrophobicity of the outer cellular surface. The exposure to a water immiscible substrate led to the development of the negative cellular surface charge, production of carotenoid-type pigments and increased hydrophobicity of the cellular surface. The specific aspects of the adaptation mechanism could have implications for bioremediation and/or (M)EOR applications.

  4. [Wunderlich syndrome caused by the rupture of a simple cyst in a patient treated with acetyl salicylic acid].

    PubMed

    Martín-Laborda Bergasa, F; Vallejo Herrador, J; Sánchez de la Muela Naverac, P; Herrero Reyes, J J

    1998-04-01

    Report case of a Wunderlich syndrome due to spontaneous rupture of a simple renal cyst. The patient is a 77-year old, hypertensive female who was on routine treatment with Aspirin. The rarity of retroperitoneal haemorrhage with this origin is documented; also the influence of aspirin as predisposing factor for this condition is ruled out. Brief evaluation of the various diagnostic means available. An accurate evaluation that may allow to adopt a conservative aptitude is recommended.

  5. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  6. Cadmium, lead and zinc leaching from smelter fly ash in simple organic acids--simulators of rhizospheric soil solutions.

    PubMed

    Ettler, Vojtech; Vrtisková, Růzena; Mihaljevic, Martin; Sebek, Ondrej; Grygar, Tomás; Drahota, Petr

    2009-10-30

    Emissions from base-metal smelters are responsible for high contamination of the surrounding soils. Fly ash from a secondary Pb smelter was submitted to a batch leaching procedure (0.5-168 h) in 500 microM solutions of acetic, citric, or oxalic acids to simulate the release of toxic metals (Cd, Pb, Zn) in rhizosphere-like environments. Organic acids increased dissolution of fly ash by a factor of 1.3. Cadmium and Pb formed mobile chloro- and sulphate-complexes, whereas Zn partly present in a citrate (Zn-citrate(-)) complex is expected to be less mobile due to sorption onto the positively charged surfaces of hydrous ferric oxides (HFO) and organic matter (OM) in acidic soil.

  7. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  8. Fatty acid ethyl ester concentrations in hair and self-reported alcohol consumption in 644 cases from different origin.

    PubMed

    Süsse, Silke; Selavka, Carl M; Mieczkowski, Tom; Pragst, Fritz

    2010-03-20

    For diagnosis of chronic alcohol abuse, fatty acid ethyl esters (FAEE) were determined in hair samples from 644 individuals, mainly parents from child protection cases. The analysis for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate was performed according to a validated procedure consisting of external degreasing by two times washing with n-heptane, extraction with a mixture of dimethylsulfoxide and n-heptane, separation and evaporation of the n-heptane layer, headspace solid phase microextraction of the residue after addition of phosphate buffer pH 7.6 and gas chromatography-mass spectrometry using deuterated internal standards. For interpretation, the sum of the concentrations of the four esters C(FAEE) was used with the cut-off's 0.5 ng/mg for the proximal scalp hair segment 0-3 cm or less and 1.0 ng/mg for scalp hair samples with a length between 3 and 6 cm and for body hair. C(FAEE) ranged from 0.11 to 31 ng/mg (mean 1.77 ng/mg, median 0.82 ng/mg). The mean concentration ratio between the 4 esters was 8:45:38:9. 298 cases had C(FAEE) above the cut-off's. Self-reported drinking data were obtained in 553 of the cases in the categories abstinent (156 cases), moderate drinking (252 cases) and excessive drinking (145 cases). Median and box-plot data clearly demonstrate differentiation of these ingestor sub-populations by C(FAEE). However, in the abstinent and moderate groups the consumption was frequently underreported (37 and 110 cases positive) whereas in the group self-reported excessive drinking 32 cases were negative. Comparison of C(FAEE) with carbohydrate-deficient transferrin (CDT) in 139 cases and gamma-glutamyltransferase (GGT) in 136 cases showed a good agreement in CDT- and GGT positive cases (27/28 and 32/41) but a large portion of the negative CDT- and GGT-results with positive hair test (44/100 and 48/95) which is explained mainly by the much shorter time window of CDT and GGT. No significant correlation was found between persons

  9. Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1996-02-01

    The thermolysis of two aromatic carboxylic acids 1,2-(3,3`-dicarboxyphenyl)ethane (2) have been investigated at 400{degree} C as models of carboxylic acids in low rank coals. The major decomposition pathway observed is decarboxylation, which mainly occurs by an ionic pathway. This decarboxylation route does not lead to any significant amount of coupling or high molecular weight products that would be indicative of cross-linking products in coal. The pyrolysis of 1 and 2 will be investigated under a variety of conditions that better mimic the enviromment found in coal to further delineate the role that decarboxylation plays in coal cross-linking chemistry.

  10. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid.

    PubMed

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu(2+) through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10(-3)-10(-6) M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. PMID:26703268

  11. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid.

    PubMed

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu(2+) through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10(-3)-10(-6) M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments.

  12. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    SciTech Connect

    Zhang, Ligang; Liu, Di; Guan, Jing; Chen, Xiufang; Guo, Xingcui; Zhao, Fuhua; Hou, Tonggang; Mu, Xindong

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  13. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.

    PubMed

    Brose, Dominic A; James, Bruce R

    2013-11-19

    Chromium is a naturally occurring transition metal and a soil contaminant in the Cr(VI) oxidation state, but reduction of Cr(VI) to Cr(III) mitigates its toxicity. Tartaric acid reduces Cr(VI) via a termolecular complex with isopropyl alcohol and Cr(VI), but its efficacy in soils has not been demonstrated. Five Mid-Atlantic soils from Maryland, U.S. were examined for their potential to enhance the reduction of Cr(VI). A control treatment (no soil +12 mM tartaric acid + 0.29 M isopropyl alcohol) reduced 0.37 mM Cr(VI) (19%) in 99 h. Reduction was enhanced to 1.97 mM (99%) with addition of a Russett Ap soil horizon (fine-loamy, mixed, semiactive, mesic Typic Hapludult). With a half-life of 18.7 h, the rate of reduction of Cr(VI) with the Russett soil sample was 20 times faster than with no soil (371 h). Soil Mn was solubilized in this reaction and plays a role in the enhanced reduction of Cr(VI). Mn(III/IV)(hydr)oxide-coated quartz sand reduced 1.24 mM (62%) Cr(VI), with all of the Mn(III,IV)(hydr)oxides solubilized. The addition of isopropyl alcohol and tartaric acid to soils enhances the reduction of Cr(VI), and this reduction is further enhanced by the catalytic behavior of Mn(II) from easily reducible Mn(III,IV)(hydr)oxides in soil.

  14. 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid ethyl ester (THC-COOEt): unsuccessful search for a marker of combined cannabis and alcohol consumption.

    PubMed

    Nadulski, Thomas; Bleeck, Simona; Schräder, Johannes; Bork, Wolf-Rainer; Pragst, Fritz

    2010-03-20

    11-Nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid ethyl ester (THC-COOEt) can be presumed to be a mixed metabolite formed during combined consumption of cannabinoids and alcohol. In order to examine this hypothesis, THC-COOEt and its deuterated analogue D(3)-THC-COOEt were synthesized as reference substance and internal standard from the corresponding carboxylic acids and diazoethane and methods were developed for the sensitive detection of THC-COOEt in plasma and hair based on gas chromatography-electron impact mass spectrometry after silylation with N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide and gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS) as well as tandem mass spectrometry (GC-NCI-MS-MS) after derivatization with pentafluoropropionyl anhydride. The methods were applied for THC-COOEt determination to plasma samples from 22 drunk driving cases which contained both ethanol (0.30-2.16 mg/g) and THC-COOH (15-252 ng/mL) as well as to 12 hair samples from drug fatalities which were both positive for THC (0.09-2.04 ng/mg) and fatty acid ethyl esters as markers of chronic alcohol abuse (0.70-6.3 ng/mg). In none of these samples THC-COOEt could be found with limits of detection of 0.3 ng/mL in plasma and 2 pg/mg in hair in 11 samples using GC-NCI-MS and 0.2 pg/mg in one sample using GC-NCI-MS. Therefore, the use of this compound as a marker for combined cannabis and alcohol consumption could not be achieved. PMID:20074877

  15. Development and Implementation of a Simple, Engaging Acid Rain Neutralization Experiment and Corresponding Animated Instructional Video for Introductory Chemistry Students

    ERIC Educational Resources Information Center

    Rand, Danielle; Yennie, Craig J.; Lynch, Patrick; Lowry, Gregory; Budarz, James; Zhu, Wenlei; Wang, Li-Qiong

    2016-01-01

    Here we describe an acid rain neutralization laboratory experiment and its corresponding instructional video. This experiment has been developed and implemented for use in the teaching laboratory of a large introductory chemistry course at Brown University. It provides a contextually relevant example to introduce beginner-level students with…

  16. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  17. A simple estimation of ideal profile of essential amino acids and metabolizable energy for growing Japanese quail.

    PubMed

    Mehri, M; Ghazaghi, M; Bagherzadeh-Kasmani, F; Rokouei, M

    2016-08-01

    An experiment was conducted to determine apparent metabolizable energy (AME) and amino acid requirements of growing Japanese quail based on ideal protein concept using artificial neural network and desirability function (D-ANN). Seven-day-old quail chicks were assigned to nine experimental diets based on central composite design (CCD) containing five levels of AME (2809-3091 kcal/kg) and CP (19-24.8% of diet). The ratio of lysine (Lys) to CP was set at 0.053 among all treatments, and remaining essential amino acids (EAA) were adjusted to Lys. The experimental data of CCD were fitted to D-ANN model to compute the optimal values for independent variables. The optimal values of inputs including AME, CP, digestible Lys (dLys), methionine (dMet), total sulphur amino acids (dTSAA), threonine (dThr), tryptophan (dTrp), isoleucine (dIle), valine (dVal) and arginine (dArg) for maximizing gain and minimizing feed conversion ratio were estimated at 2865 kcal/kg, 25, 1.32, 0.55, 0.88, 0.84, 0.20, 0.75, 1.04 and 1.45% of diet, respectively, with D (desirability function) = 0.94. The corresponding optimal amounts of amino acids based on total amino acids were 1.42, 0.59, 0.95, 0.90, 0.22, 0.81, 1.12 and 1.56% of diet respectively. The ideal pattern of essential amino acids to Lys was as follows: dMet: dLys = 0.42, dTSAA: dLys = 0.67, dThr: dLys = 0.64, dTrp: dLys = 0.15, dIle: dLys = 0.57, dVal: dLys = 0.79 and dArg: dLys = 1.09. The results of this study showed that amino acid requirements of modern quails might be higher than those reported by NRC.

  18. A simple estimation of ideal profile of essential amino acids and metabolizable energy for growing Japanese quail.

    PubMed

    Mehri, M; Ghazaghi, M; Bagherzadeh-Kasmani, F; Rokouei, M

    2016-08-01

    An experiment was conducted to determine apparent metabolizable energy (AME) and amino acid requirements of growing Japanese quail based on ideal protein concept using artificial neural network and desirability function (D-ANN). Seven-day-old quail chicks were assigned to nine experimental diets based on central composite design (CCD) containing five levels of AME (2809-3091 kcal/kg) and CP (19-24.8% of diet). The ratio of lysine (Lys) to CP was set at 0.053 among all treatments, and remaining essential amino acids (EAA) were adjusted to Lys. The experimental data of CCD were fitted to D-ANN model to compute the optimal values for independent variables. The optimal values of inputs including AME, CP, digestible Lys (dLys), methionine (dMet), total sulphur amino acids (dTSAA), threonine (dThr), tryptophan (dTrp), isoleucine (dIle), valine (dVal) and arginine (dArg) for maximizing gain and minimizing feed conversion ratio were estimated at 2865 kcal/kg, 25, 1.32, 0.55, 0.88, 0.84, 0.20, 0.75, 1.04 and 1.45% of diet, respectively, with D (desirability function) = 0.94. The corresponding optimal amounts of amino acids based on total amino acids were 1.42, 0.59, 0.95, 0.90, 0.22, 0.81, 1.12 and 1.56% of diet respectively. The ideal pattern of essential amino acids to Lys was as follows: dMet: dLys = 0.42, dTSAA: dLys = 0.67, dThr: dLys = 0.64, dTrp: dLys = 0.15, dIle: dLys = 0.57, dVal: dLys = 0.79 and dArg: dLys = 1.09. The results of this study showed that amino acid requirements of modern quails might be higher than those reported by NRC. PMID:26671312

  19. A simple purification procedure of D-amino-acid oxidase from Candida guilliermondii H(see symbol)-4.

    PubMed

    Gevorgyan, G K; Davtyan, M A; Hambardzumyan, A A

    2012-01-01

    D-amino-acid oxidase (EC 1.4.3.3) was purified about 1480-fold from the yeast Candida guilliermondii H(see symbol)-4 using chromatofocusing method. The purification procedure gave an enzyme preparation which is greater than 90% homogenous on SDS-polyacrylamide gels with a specific activity of 11.54 U/mg at 30 degrees C with D-proline as substrate with the yield of total activity 9.3%. The molecular weights of subunit and native enzyme were determined to be 38.4 and 78.6 kDa by SDS-polyacrylamide gel electrophoresis and gel-filtration, respectively, suggesting that the native enzyme exists as a homodimer. A single molecular form with an isoelectric point of 6.85 was detected in analytical isoelectrofocusing. The optimum pH and temperature were 8.0 and 33 degrees C. An enzyme shows stability in the pH range from 7.4 to 9.0 and at the temperature no higher than 38 degrees C. Activation energy for D-amino-acid oxidase reaction was calculated to be 60 kJ/mol at 30 degrees C. The strict D-isomer specificity of the enzyme is confirmed, since no reaction could be detected with L-amino acids, and a large number of D-amino acids could be substrates for this enzyme. K(m) and V(max) values were determined for D-proline and D-alanine, which, among 22 tested, were the best substrates of the enzyme. D-amino-acid oxidase from the yeast C. guilliermondii is a flavoprotein oxidase in which the prosthetic group is tightly, but not covalently, bound FAD. The enzyme is completely inhibited by sodium benzoate, SH-oxidizing agents, but not by sodium azide, toluene or chloroform. PMID:23156699

  20. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex.

    PubMed

    Xia, Yong; Lin, Lili; Chang, Fenzhen; Fu, Xuan; Liu, Xiaohua; Feng, Xiaoming

    2015-11-01

    A highly efficient asymmetric ring-opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N'-dioxide-scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99% yield and 95% ee. This is also the first example of one catalytic system working for the ring-opening reaction of donor-acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.

  1. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex.

    PubMed

    Xia, Yong; Lin, Lili; Chang, Fenzhen; Fu, Xuan; Liu, Xiaohua; Feng, Xiaoming

    2015-11-01

    A highly efficient asymmetric ring-opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N'-dioxide-scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99% yield and 95% ee. This is also the first example of one catalytic system working for the ring-opening reaction of donor-acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version. PMID:26398505

  2. Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health, using a new simple method of lipase inactivation.

    PubMed Central

    Zentler-Munro, P L; Fine, D R; Fitzpatrick, W J; Northfield, T C

    1984-01-01

    We have investigated whether acid-mediated bile acid precipitation, pancreatic enzyme inactivation, and fatty acid partitioning occur in health when intraluminal pH falls below 5. In order to assess lipolysis and aqueous solubilisation of lipid, we first developed a new technique for inactivating lipase in jejunal aspirate (acid inactivation), and showed it to be more effective and simpler than the established technique (heat inactivation). We then studied 14 healthy subjects, aspirating jejunal content for three hours after a liquid meal, and pooling according to pH. Eighteen per cent of the total aspirate was collected at pH less than 5 compared with 56% at pH greater than 6 (p less than 0.01). Forty eight per cent of the bile acids were precipitated at pH less than 5 compared with 18% at pH greater than 6 (p less than 0.01), leading to a reduction in aqueous phase bile acid concentration at low pH (2.1 mmol/l at pH less than 5 vs 5.8 mmol/l at pH greater than 6, p less than 0.01). Lipase activity was reduced at low pH (133 IU/l at pH less than 5 vs 182 IU/l at pH greater than 6, p less than 0.01), leading to reduced lipolysis at low pH (14% at pH less than 5 vs 32% at pH greater than 6, p less than 0.01). Aqueous phase lipid concentration was reduced at low pH (3.5 mmol/l at pH less than 5 vs 12.5 mmol/l at pH greater than 6, p less than 0.01). This reduction was less dependent on bile acid precipitation than on lipase inactivation and fatty acid partitioning. We conclude that intraluminal acidity influences aqueous solubilisation of bile acids and lipid in health. PMID:6714793

  3. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    PubMed

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  4. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    PubMed

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-13

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  5. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    PubMed

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi. PMID:26220851

  6. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    PubMed Central

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  7. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  8. Biochemical characteristics of AtFAR2, a fatty acid reductase from Arabidopsis thaliana that reduces fatty acyl-CoA and -ACP substrates into fatty alcohols.

    PubMed

    Doan, Thuy T P; Carlsson, Anders S; Stymne, Sten; Hofvander, Per

    2016-01-01

    Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2. PMID:27274541

  9. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    PubMed

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  10. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    PubMed

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi.

  11. A Simple, Efficient Synthesis of 2-Aryl Benzimidazoles Using Silica Supported Periodic Acid Catalyst and Evaluation of Anticancer Activity

    PubMed Central

    Sontakke, Vyankat A.; Ghosh, Sougata; Lawande, Pravin P.; Chopade, Balu A.; Shinde, Vaishali S.

    2013-01-01

    A new, efficient method for the synthesis of 2-aryl substituted benzimidazole by using silica supported periodic acid (H5IO6-SiO2) as a catalyst has been developed. The salient feature of the present method includes mild reaction condition, short reaction time, high yield and easy workup procedure. The synthesized benzimidazoles exhibited potent anticancer activity against MCF7 and HL60 cell lines. PMID:24052861

  12. Simple boric acid-based fluorescent focusing for sensing of glucose and glycoprotein via multipath moving supramolecular boundary electrophoresis chip.

    PubMed

    Dong, Jingyu; Li, Si; Wang, Houyu; Meng, Qinghua; Fan, Liuyin; Xie, Haiyang; Cao, Chengxi; Zhang, Weibing

    2013-06-18

    Boric acid-based fluorescent complex probe of BBV-HPTS (boronic acid-based benzyl viologen (BBV) and hydroxypyrene trisulfonic acid trisodium salt (HPTS)) was rarely used for sensitive sensing of saccharide (especially glycoprotein) via electrophoresis. We proposed a novel model of moving supramolecular boundary (MSB) formed with monosaccharide or glycoprotein in microcolumn and the complex probe of BBV-HPTS in the cathodic injection tube, developed a method of MSB fluorescent focusing for sensitive recognition of monosaccharide and glycoprotein, and designed a special multipath capillary electrophoresis (CE) chip for relative experiments. As a proof of concept, glucose and hemoglobin A1c (HbA1c) were respectively used as the mode saccharide and glycoprotein for the relevant demonstration. The experiments revealed that (i) the complex of BBV-HPTS could interact with free glucose or bound one in glycoprotein; (ii) the fluorescent signal was a function of glucose or glycoprotein content approximately; and (iii) interestingly the fluorescent band motion was dependent on glucose content. The developed method had the following merits: (i) low cost; (ii) low limit of detection (down to 1.39 pg/mL for glucose and 2.0 pg per capillary HbA1c); and (iii) high throughput (up to 12 runs or more per patch) and speed (less than 5 min). The developed method has potential use for sensitive monitoring of monosaccharide and glycoprotein in biomedical samples.

  13. Physical Nature of Fatty Acid Amide Hydrolase Interactions with Its Inhibitors: Testing a Simple Nonempirical Scoring Model.

    PubMed

    Giedroyć-Piasecka, Wiktoria; Dyguda-Kazimierowicz, Edyta; Beker, Wiktor; Mor, Marco; Lodola, Alessio; Sokalski, W Andrzej

    2014-12-26

    Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the deactivating hydrolysis of fatty acid ethanolamide neuromodulators. FAAH inhibitors have gained considerable interest due to their possible application in the treatment of anxiety, inflammation, and pain. In the context of inhibitor design, the availability of reliable computational tools for predicting binding affinity is still a challenging task, and it is now well understood that empirical scoring functions have several limitations that in principle could be overcome by quantum mechanics. Herein, systematic ab initio analyses of FAAH interactions with a series of inhibitors belonging to the class of the N-alkylcarbamic acid aryl esters have been performed. In contrast to our earlier studies of other classes of enzyme-inhibitor complexes, reasonable correlation with experimental results required us to consider correlation effects along with electrostatic term. Therefore, the simplest comprehensive nonempirical model allowing for qualitative predictions of binding affinities for FAAH ligands consists of electrostatic multipole and second-order dispersion terms. Such a model has been validated against the relative stabilities of the benchmark S66 set of biomolecular complexes. As it does not involve parameters fitted to experimentally derived data, this model offers a unique opportunity for generally applicable inhibitor design and virtual screening. PMID:25420234

  14. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: a mechanistic approach.

    PubMed

    Abhilash, P A; Harikrishnan, R; Indira, M

    2014-01-15

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4g/kg b.wt for 90days. After 90days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250mg/kg b.wt) and AA (250mg/kg b.wt) supplemented groups and maintained for 30days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β1 and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α1 (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. PMID:24239723

  15. Myths about drinking alcohol

    MedlinePlus

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  16. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    EPA Science Inventory

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  17. Controllable synthesis of CuFe2O4 nanostructures through simple hydrothermal method in the presence of thioglycolic acid

    NASA Astrophysics Data System (ADS)

    Paramasivan, P.; Venkatesh, P.

    2016-10-01

    In this paper a novel and simple route for the preparation of copper ferrite (CuFe2O4) is proposed. The present investigation reports, the novel synthesis of CuFe2O4 samples C1, C2, C3 and C4 using hydrothermal method and its physicochemical characterization. In order to elucidate the relationship between the constituent, structure, magnetic and PL properties product's particle size, morphological and structural properties were characterized by the X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and magnetic properties. The crystallization, surface morphology, magnetic properties and luminescence properties of the samples have been investigated. The relatively high Ms of the samples suggests that this method is suitable for preparing high-quality nanocrystalline copper ferrites for practical applications. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed.

  18. Simple Resolution of Enantiomeric NMR Signals of α-Amino Acids by Using Samarium(III) Nitrate With L-Tartarate.

    PubMed

    Aizawa, Sen-Ichi; Kidani, Takahiro; Takada, Sayuri; Ofusa, Yumika

    2015-05-01

    Readily available L-tartaric acid, which is a bidentate ligand with two chiral centers forming a seven-membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric (13)C and (1)H NMR signals and enantiotopic (1)H NMR signals of α-amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L-tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L-tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present (13)C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL-amino acids.

  19. Development of a simple method for quantitation of methanesulfonic acid at low ppm level using hydrophilic interaction chromatography coupled with ESI-MS.

    PubMed

    Huang, Zongyun; Francis, Robert; Zha, Yan; Ruan, Joan

    2015-01-01

    A simple, sensitive and robust method using HILIC-ESI-MS has been developed for the determination of methane sulfonic acid (MSA) at low ppm level in order to verify the effectiveness of controlling the formation of genotoxic sulfonate esters in the downstream synthetic step, by which produces active pharmaceutical ingredient (API). Stationary phases with positively charged functional groups such as triazole and amino phases were evaluated for the retention of alkyl sulfonic acids. The MSA was quantitated at 1-10 ppm relative to the API using a Cosmosil column (triazole stationary phase) in HILIC mode and the control of MSA can be monitored effectively using the HILIC-ESI-MS methodology. In addition, to provide general guidance for the HILIC-ESI-MS method development, the retention behavior of propanesulfonic acid (PSA) in HILIC mode was investigated using a Unison UK-Amino column to have a better understanding of the HILIC separation mechanism. The results showed reasonable evidence that the combined effect of surface adsorption and ion-exchange played a dominant role for sulfonic acids when using a mobile phase within typical HILIC operation range (0.05-0.20 aqueous volume fraction) while the ion-exchange effect becomes increasingly important in a mobile phase with higher water content. The advantage of using ESI-MS detection in HILIC mode was also demonstrated by the observation that the sensitivity of PSA increased substantially with increasing acetonitrile fraction in mobile phase from 0.80 to 0.95.

  20. Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Zhao, Can; Fujii, Yukiko; Yan, Junxia; Harada, Kouji H; Koizumi, Akio

    2015-01-01

    Chlorine is the most widely used disinfectant for control of waterborne diseases in drinking water treatment. It can react with natural organic matter in water and form haloacetic acids (HAAs). For analysis of HAA levels, derivatization with diazomethane is commonly recommended as the standard methodology in Japan. However, diazomethane is a carcinogenic alkylating agent. Therefore, in this study, a safe, simple, and sensitive quantification method was developed to monitor HAAs in drinking water. Pentafluorobenzyl esterification was used for pretreatment. The pentafluorobenzyl-ester derivative was detected by gas chromatography-negative ion chemical ionization-mass spectrometry analysis with very high sensitivity for HAAs analysis. The method has low detection limits (8-94 ng L(-1)) and good recovery rates (89-99%) for HAAs. The method was applied to 30 tap water samples from 15 cities in the Kansai region of Japan. The levels of HAAs detected were in the range 0.54-7.83 μg L(-1). Dichloroacetic acid, trichloroacetic acid, and bromochloroacetic acid were the major HAAs detected in most of the tap water, and accounted for 29%, 20% and 19% of the total HAAs, respectively. This method could be used for routine monitoring of HAAs in drinking water without exposure of workers to occupational hazards.

  1. Fetal alcohol exposure: consequences, diagnosis, and treatment.

    PubMed

    Pruett, Dawn; Waterman, Emily Hubbard; Caughey, Aaron B

    2013-01-01

    Maternal alcohol use during pregnancy is prevalent, with as many as 12% of pregnant women consuming alcohol. Alcohol intake may vary from an occasional drink, to weekly binge drinking, to chronic alcohol use throughout pregnancy. Whereas there are certain known consequences from fetal alcohol exposure, such as fetal alcohol syndrome, other effects are less well defined. Craniofacial dysmorphologies, abnormalities of organ systems, behavioral and intellectual deficits, and fetal death have all been attributed to maternal alcohol consumption. This review article considers the theoretical mechanisms of how alcohol affects the fetus, including the variable susceptibility to fetal alcohol exposure and the implications of ethanol dose and timing of exposure. Criteria for diagnosis of fetal alcohol syndrome are discussed, as well as new methods for early detection of maternal alcohol use and fetal alcohol exposure, such as the use of fatty acid ethyl esters. Finally, current and novel treatment strategies, both in utero and post utero, are reviewed.

  2. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    PubMed Central

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian

    2016-01-01

    Summary A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  3. Simple preparation of solid-phase microextraction fiber with cation exchange capacities using poly(butadiene-maleic acid).

    PubMed

    Zhu, Yingli; Shen, Guobin; Zhang, Feifang; Yang, Bingcheng

    2013-01-01

    A simply way was proposed to prepare solid-phase microextraction (SPME) fiber with cation-exchange functional groups by the thermally initiated radical polymerization of poly(butadiene-maleic acid) (PBMA) copolymer onto a silica capillary. The capacity of the fiber coating could be easily controlled by fabricating successive layers of PBMA. The performance of the fiber combined with ion chromatography was evaluated by choosing Mg(2+) and Ca(2+) as model analytes; ∼13 and ∼51-fold enrichment factors for Mg(2+) and Ca(2+) were obtained, respectively. PMID:24107568

  4. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands.

    PubMed

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru-O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  5. Effect of Alcohol Fermented Feed on Lactating Performance, Blood Metabolites, Milk Fatty Acid Profile and Cholesterol Content in Holstein Lactating Cows

    PubMed Central

    Li, X. Z.; Park, B. K.; Yan, C. G.; Choi, J. G.; Ahn, J. S.; Shin, J. S.

    2012-01-01

    A feeding experiment with 40 lactating Holstein cows and 4 dietary treatments was conducted to investigate supplementation with different levels of alcohol fermented feed to the TMR on lactating performance, blood metabolites, milk fatty acid profile and cholesterol concentration of blood and milk. Forty Holstein lactating cows (106±24 d post-partum; mean±SD) were distributed into four groups and randomly assigned to one of four treatments with each containing 10 cows per treatment. The treatment supplemented with TMR (DM basis) as the control (CON), and CON mixed with alcohol-fermented feeds (AFF) at a level of 5%, 10% and 15% of the TMR as T1, T2 and T3, respectively. Dry matter intake and milk yield were not affected by supplementation of AFF. An increased 4% FCM in the milk occurred in cows fed T3 diet compared with CON, while T1 and T2 diets decreased 4% FCM in a dose dependent manner. Supplementation of AFF increased the concentration of albumin, total protein (TP), ammonia, and high density lipoprotein-cholesterol in serum compared with CON. In contrast, supplementation with AFF clearly decreased concentration of blood urea nitrogen (BUN) and total cholesterol (TC) compare with CON. AFF supplementation increased the proportion of C18:1n9 and C18:2n6 compared to CON. A decrease in the concentration of saturated fatty acid (SFA) for T1, T2 and T3 resulted in an increased unsaturated fatty acid (USFA) to SFA ratio compared to CON. Concentration of cholesterol in milk fat was reduced in proportion to the supplemental level of AFF. Feeding a diet supplemented with a moderate level AFF to lactating cows could be a way to alter the feed efficiency and fatty acid profile of milk by increasing potentially human consumer healthy fatty acid without detrimental effects on feed intake and milk production. A substantially decreased cholesterol proportion in milk induced by supplementation AFF suggests that alcohol fermented feed may improve milk cholesterol levels

  6. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    PubMed

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  7. Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric acid and creatinine) by capillary zone electrophoresis.

    PubMed

    Muñoz, Jose A; López-Mesas, Montserrat; Valiente, Manuel

    2010-04-15

    Oxalate, citrate, uric acid and creatinine are important urine markers for the evaluation and treatment of urolithiasic patients. They have been traditionally analysed by enzymatic and chromatographic techniques which present practical drawbacks, mainly in the sample pre-treatment step. The purpose of this study was to evaluate those markers in urine samples, by an easy multi-analyte assay using capillary zone electrophoresis. The four urine metabolites were determined, at 25 degrees C, by using a 50 cm x 75 microm capillary in 50 mmol l(-1) phosphate buffer (pH 6.5), at constant voltage of -30 kV and UV detection at 195 nm (for oxalate and citrate) or 30 kV and 234 nm (for creatinine and uric acid). The sample pre-treatment was minimum, 5- and 20-fold dilution of the urine sample and acidification to pH 3-4. Validation parameters (linear range, sensitivity, accuracy, precision and detection limits) were statistically comparable to those obtained with the official methods normally used in the clinical practice. The effect of freezing as a conservation method of urine samples is also discussed in terms of recoveries of the analytes. The analytical method developed is highly useful as a diagnostic tool for detecting metabolic renal disorders due to its simplicity, time consuming, easy automation, cost efficiency and analytical effectiveness, accomplishing with the clinical requirements.

  8. Evaluation of human skin irritation by carboxylic acids, alcohols, esters and aldehydes, with nitrocellulose-replica method and closed patch testing.

    PubMed

    Sato, A; Obata, K; Ikeda, Y; Ohkoshi, K; Okumura, H; Ozawa, N; Ogawa, T; Katsumura, Y; Kawai, J; Tatsumi, H; Honoki, S; Hiramatsu, I; Hiroyama, H; Okada, T; Kozuka, T

    1996-01-01

    Closed patch testing and the nitrocellulose-replica method are performed as useful clinical methods for the evaluation of human skin irritation by cosmetics and topical medicaments. Comparison of the sensitivity between microscopic scoring by nitrocellulose-replica method and visual scoring by closed patch test in the detection of skin irritation, however, has not been well studied with statistical analysis. Here, we evaluated human skin irritation by carboxylic acids, alcohols, esters and aldehydes, with different chain length (C8-C18), using both methods. The results of closed patch testing showed that, although the score of skin irritation for carboxylic acids (C8, C12), alcohols (C8) and aldehydes (C8), tested at a concentration of 0.5 m-2.0 m, significantly increased with increasing concentration of the test compounds, ester compounds scarcely caused any irritation on the surface of the skin occluded. In addition, an increase of carbon chain length in the test compounds made it impossible to detect skin irritation. In contrast, the nitrocellulose-replica method could evaluate skin reactions against very weak irritants that gave no macroscopic alterations on the skin surface in the closed patch test. However, the scoring system is somewhat subjective and should be improved to make the analysis more objective.

  9. Effects of a Combined Therapy With D-002 (Beeswax Alcohols) Plus D-003 (Sugarcane Wax Acids) on Osteoarthritis Symptoms.

    PubMed

    Puente, Roberto Antonio; Illnait, José; Mas, Rosa María; Carbajal, Daisy María; Mendoza, Sarahí; Ceballos, Alfredo; Fernández, Julio César; Mesa, Meilis; Reyes, Pablo; Ruiz, Dalmer

    2016-06-01

    Context • Nonsteroidal, anti-inflammatory drugs effectively relieve osteoarthritis (OA) symptoms but also induce adverse effects (AEs) that limit their long-term use, which drives a search for safer treatments. D-002, a mixture of beeswax alcohols, and D-003, a mixture of sugarcane wax acids, have been effective in experimental and clinical studies for patients with OA. Objective • The study intended to investigate the effects on OA symptoms of a combined therapy using D-002 and D-003 (D-002/D-003), which were administered for 6 wk. Design • The study was a randomized, double-blind, placebo-controlled trial. Setting • The study was conducted at the Surgical Medical Research Center in Havana, Cuba. Participants • Participants were patients with mild-to-moderate OA. Intervention • Participants were randomly assigned to 1 of 4 groups-(1) a control group, which received a placebo; (2) the D-002 group (intervention group), which received 50 mg/d of D-002; (3) the D-003 group (intervention group), which received 10 mg/d of D-003; or (4) the D-002/D-003 group (intervention group), which received a combined therapy of 50 mg/d of D-002 plus 10 mg/d of D-003. The control group received tablets that were indistinguishable in appearance from the D-002 and D-003 tablets and had a similar composition, except that the active ingredients were replaced by lactose. The groups took the medications once per day for 6 wk. Outcome Measures • Symptoms were assessed using the Western Ontario and McMaster Individual Osteoarthritis Index (WOMAC) and a visual analogue scale (VAS). The primary outcome was the reduction in the total WOMAC score. The subscale scores on the WOMAC for pain, stiffness, and physical function, the VAS scores, and the use of rescue medications were secondary outcomes. Results • Of the 120 enrolled participants, 116 completed the study. The treatments with D-002, D-003, and D-002/D-003 reduced the mean total WOMAC scores significantly from baseline to

  10. Fatty acid ethyl ester concentrations in hair and self-reported alcohol consumption in 644 cases from different origin.

    PubMed

    Süsse, Silke; Selavka, Carl M; Mieczkowski, Tom; Pragst, Fritz

    2010-03-20

    For diagnosis of chronic alcohol abuse, fatty acid ethyl esters (FAEE) were determined in hair samples from 644 individuals, mainly parents from child protection cases. The analysis for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate was performed according to a validated procedure consisting of external degreasing by two times washing with n-heptane, extraction with a mixture of dimethylsulfoxide and n-heptane, separation and evaporation of the n-heptane layer, headspace solid phase microextraction of the residue after addition of phosphate buffer pH 7.6 and gas chromatography-mass spectrometry using deuterated internal standards. For interpretation, the sum of the concentrations of the four esters C(FAEE) was used with the cut-off's 0.5 ng/mg for the proximal scalp hair segment 0-3 cm or less and 1.0 ng/mg for scalp hair samples with a length between 3 and 6 cm and for body hair. C(FAEE) ranged from 0.11 to 31 ng/mg (mean 1.77 ng/mg, median 0.82 ng/mg). The mean concentration ratio between the 4 esters was 8:45:38:9. 298 cases had C(FAEE) above the cut-off's. Self-reported drinking data were obtained in 553 of the cases in the categories abstinent (156 cases), moderate drinking (252 cases) and excessive drinking (145 cases). Median and box-plot data clearly demonstrate differentiation of these ingestor sub-populations by C(FAEE). However, in the abstinent and moderate groups the consumption was frequently underreported (37 and 110 cases positive) whereas in the group self-reported excessive drinking 32 cases were negative. Comparison of C(FAEE) with carbohydrate-deficient transferrin (CDT) in 139 cases and gamma-glutamyltransferase (GGT) in 136 cases showed a good agreement in CDT- and GGT positive cases (27/28 and 32/41) but a large portion of the negative CDT- and GGT-results with positive hair test (44/100 and 48/95) which is explained mainly by the much shorter time window of CDT and GGT. No significant correlation was found between persons

  11. Pharmaceuticals and Surfactants from Alga-Derived Feedstock: Amidation of Fatty Acids and Their Derivatives with Amino Alcohols.

    PubMed

    Tkacheva, Anastasia; Dosmagambetova, Inkar; Chapellier, Yann; Mäki-Arvela, Päivi; Hachemi, Imane; Savela, Risto; Leino, Reko; Viegas, Carolina; Kumar, Narendra; Eränen, Kari; Hemming, Jarl; Smeds, Annika; Murzin, Dmitry Yu

    2015-08-24

    Amidation of renewable feedstocks, such as fatty acids, esters, and Chlorella alga based biodiesel, was demonstrated with zeolites and mesoporous materials as catalysts and ethanolamine, alaninol, and leucinol. The last two can be derived from amino acids present in alga. The main products were fatty alkanol amides and the corresponding ester amines, as confirmed by NMR and IR spectroscopy. Thermal amidation of technical-grade oleic acid and stearic acid at 180 °C with ethanolamine were non-negligible; both gave 61% conversion. In the amidation of stearic acid with ethanolamine, the conversion over H-Beta-150 was 80% after 3 h, whereas only 63% conversion was achieved for oleic acid; this shows that a microporous catalyst is not suitable for this acid and exhibits a wrinkled conformation. The highest selectivity to stearoyl ethanolamide of 92% was achieved with mildly acidic H-MCM-41 at 70% conversion in 3 h at 180 °C. Highly acidic catalysts favored the formation of the ester amine, whereas the amide was obtained with a catalyst that exhibited an optimum acidity. The conversion levels achieved with different fatty acids in the range C12-C18 were similar; this shows that the fatty acid length does not affect the amidation rate. The amidation of methyl palmitate and biodiesel gave low conversions over an acidic catalyst, which suggested that the reaction mechanism in the amidation of esters was different.

  12. Pharmaceuticals and Surfactants from Alga-Derived Feedstock: Amidation of Fatty Acids and Their Derivatives with Amino Alcohols.

    PubMed

    Tkacheva, Anastasia; Dosmagambetova, Inkar; Chapellier, Yann; Mäki-Arvela, Päivi; Hachemi, Imane; Savela, Risto; Leino, Reko; Viegas, Carolina; Kumar, Narendra; Eränen, Kari; Hemming, Jarl; Smeds, Annika; Murzin, Dmitry Yu

    2015-08-24

    Amidation of renewable feedstocks, such as fatty acids, esters, and Chlorella alga based biodiesel, was demonstrated with zeolites and mesoporous materials as catalysts and ethanolamine, alaninol, and leucinol. The last two can be derived from amino acids present in alga. The main products were fatty alkanol amides and the corresponding ester amines, as confirmed by NMR and IR spectroscopy. Thermal amidation of technical-grade oleic acid and stearic acid at 180 °C with ethanolamine were non-negligible; both gave 61% conversion. In the amidation of stearic acid with ethanolamine, the conversion over H-Beta-150 was 80% after 3 h, whereas only 63% conversion was achieved for oleic acid; this shows that a microporous catalyst is not suitable for this acid and exhibits a wrinkled conformation. The highest selectivity to stearoyl ethanolamide of 92% was achieved with mildly acidic H-MCM-41 at 70% conversion in 3 h at 180 °C. Highly acidic catalysts favored the formation of the ester amine, whereas the amide was obtained with a catalyst that exhibited an optimum acidity. The conversion levels achieved with different fatty acids in the range C12-C18 were similar; this shows that the fatty acid length does not affect the amidation rate. The amidation of methyl palmitate and biodiesel gave low conversions over an acidic catalyst, which suggested that the reaction mechanism in the amidation of esters was different. PMID:26197759

  13. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    PubMed

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion.

  14. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  15. Evolution of a new function in an esterase: simple amino acid substitutions enable the activity present in the larger paralog, BioH.

    PubMed

    Flores, Humberto; Lin, Steven; Contreras-Ferrat, Gabriel; Cronan, John E; Morett, Enrique

    2012-08-01

    Gene duplication and divergence are essential processes for the evolution of new activities. Divergence may be gradual, involving simple amino acid residue substitutions, or drastic, such that larger structural elements are inserted, deleted or rearranged. Vast protein sequence comparisons, supported by some experimental evidence, argue that large structural modifications have been necessary for certain catalytic activities to evolve. However, it is not clear whether these activities could not have been attained by gradual changes. Interestingly, catalytic promiscuity could play a fundamental evolutionary role: a preexistent secondary activity could be increased by simple amino acid residue substitutions that do not affect the enzyme's primary activity. The promiscuous profile of the enzyme may be modified gradually by genetic drift, making a pool of potentially useful activities that can be selected before duplication. In this work, we used random mutagenesis and in vivo selection to evolve the Pseudomonas aeruginosa PAO1 carboxylesterase PA3859, a small protein, to attain the function of BioH, a much larger paralog involved in biotin biosynthesis. BioH was chosen as a target activity because it provides a highly sensitive selection for evolved enzymatic activities by auxotrophy complementation. After only two cycles of directed evolution, mutants with the ability to efficiently complement biotin auxotrophy were selected. The in vivo and in vitro characterization showed that the activity of one of our mutant proteins was similar to that of the wild-type BioH enzyme. Our results demonstrate that it is possible to evolve enzymatic activities present in larger proteins by discrete amino acid substitutions.

  16. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst.

    PubMed

    Zhang, Zehui; Dong, Kun; Zhao, Zongbao Kent

    2011-01-17

    A clean, facile, and environment-friendly catalytic method has been developed for the conversion of furfuryl alcohol into alkyl levulinates making use of the novel solid catalyst methylimidazolebutylsulfate phosphotungstate ([MIMBS]₃PW₁₂O₄₀). The solid catalyst is an organic-inorganic hybrid material, which consists of an organic cation and an inorganic anion. A study for optimizing the reaction conditions such as the reaction time, the temperature and the catalyst loading has been performed. Under optimal conditions, a high n-butyl levulinate yield of up to 93 % is obtained. Furthermore, the kinetics of the reaction pathways and the mechanism for the alcoholysis of furfuryl alcohol are discussed. This method is environmentally benign and economical for the conversion of biomass-based derivatives into fine chemicals. PMID:21226220

  17. Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHEW), Chevy Chase, MD. National Clearinghouse for Mental Health Information.

    This concise survey presents some of the highlights of modern research on drinking and alcoholism, as based on technical articles published in the scientific literature and the views expressed by leading authorities in the field. Contents include discussions about: (1) the nature and scope of the problem; (2) the chemical composition of alcoholic…

  18. Dissolution kinetics and mechanism of Mg-Al layered double hydroxides: a simple approach to describe drug release in acid media.

    PubMed

    Parello, Mara L; Rojas, Ricardo; Giacomelli, Carla E

    2010-11-01

    Layered double hydroxides (LDHs) weathering in acidic media is one of the main features that affects their applications in drug delivery systems. In this work, the dissolution kinetics of biocompatible Mg-Al LDHs was studied at different initial pH values and solid concentrations using a simple and fast experimental method that coupled flow injection analysis and amperometric detection. A carbonate intercalated sample was used to determine the controlling step of the process and the dissolution mechanism. Finally, the study was extended to an ibuprofen intercalated LDH. The obtained results showed that the weathering process was mainly controlled by the exposed area and surface reactivity of LDHs particles. The dissolution mechanism at the particle surface was described in two steps: fast formation of surface reactive sites by hydroxyl group protonation and slow detachment of metal ions from surface. At strongly acidic conditions, the reaction rate was pH dependent due to the equilibrium between protonated (active) and deprotonated (inactive) hydroxyl groups. On the other hand, at mildly acidic conditions, the dissolution behavior was also ruled by the equilibrium attained between the particle surface reactive sites and the dissolved species. LDHs solubility and dissolution rate presented strong dependence with the interlayer anion. The ibuprofen intercalated sample was more soluble and more rapidly dissolved than the carbonate intercalated one in acetic/acetate buffer. On the other hand, the dissolution mechanism was invariant with the interlayer anion.

  19. Simple preparation of new [(18) F]F-labeled synthetic amino acid derivatives with two click reactions in one-pot and SPE purification.

    PubMed

    Yook, Cheol-Min; Lee, Sang Ju; Oh, Seung Jun; Ha, Hyun-Joon; Lee, Jong Jin

    2015-06-30

    New [(18) F]fluorinated 1,2,3-triazolyl amino acid derivatives were efficiently prepared from Huisgen 1,3-dipolar cycloaddition reactions, well known as click reaction. We developed two simultaneous click reactions in one-pot with a simple solid-phase extraction (SPE) purification method. [(18) F]fluoro-1-propyne was obtained at a 45% non-decay corrected radiochemical yield based on the [(18) F]fluoride ion. The one-pot and simultaneous two click reactions were performed with unprotected azido-alkyl amino acid, [(18) F]fluoro-1-propyne, and lipophilic additive alkyne to produce three synthetic amino acid derivatives, AMC-101 ([(18) F]-6a), AMC-102 ([(18) F]-6b), and AMC-103 ([(18) F]-6c) with 29%, 28%, and 24% of non-decay corrected radiochemical yields, respectively. All radiotracers indicated that radiochemical purities were >95% without any residual organic solvent. Our new method involving two click reactions in one-pot showed high radiochemical and chemical purity by easy removal of the residual precursor from the simultaneous two click reactions.

  20. Increased norfloxacin skin permeability for fatty alcohol propylene glycol (FAPG) ointment by optimized process of preparation: behavior of stearic acid in stratum corneum lipids.

    PubMed

    Lin, H H; Hsu, L R; Wu, P C; Tsai, Y H

    1995-11-01

    Preparation of the fatty alcohol propylene glycol (FAPG) ointment base plays an important role in controlling the physicochemical properties of ointments. These essay investigates the effects of preparative conditions such as cooling rate and stirring rate on the percutaneous absorption of norfloxacin from FAPG ointment. The influence of process-induced variation in enhancing effect of stearic acid which was incorporated into FAPG base was evaluated in vitro on rat skin. In the permeation experiment, norfloxacin penetration significantly increased with faster cooling rate. This result directly related to the increasing norfloxacin skin--vehicle partition coefficient. Histological analysis results showed no appreciable exfoliation of the stratum corneum. The differential scanning calorimetry (DSC) results show that stearic acid enriched lipid in the stratum corneum resulting from treatment with supercooling products may result in more crystalline structure and, hence preferential partitioning of the norfloxacin into the more crystalline regions of the membrane can be observed. A much greater enhancing effect can be achieved when we use stearic acid together with norfloxacin in propylene glycol (PG); but such effect cannot be found if 5 wt% stearic acid/PG suspension is used to pretreat skin before the application of norfloxacin PG solution.

  1. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury.

    PubMed

    Han, Chunfang; Zheng, Chengbin; Wang, Jun; Cheng, Guanglei; Lv, Yi; Hou, Xiandeng

    2007-06-01

    With UV irradiation, Hg(2+) in aqueous solution can be converted into Hg(0) cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO(2) more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO(2)-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02-0.04 microg L(-1), with linear dynamic ranges up to 15 microg L(-1). The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury.

  2. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  3. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

    PubMed Central

    Suzuki-Kemuriyama, Noriko; Matsuzaka, Takashi; Kuba, Motoko; Ohno, Hiroshi; Han, Song-iee; Takeuchi, Yoshinori; Isaka, Masaaki; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Miyajima, Katsuhiro; Nakae, Dai; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs—eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)—in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis. PMID:27333187

  4. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice.

    PubMed

    Suzuki-Kemuriyama, Noriko; Matsuzaka, Takashi; Kuba, Motoko; Ohno, Hiroshi; Han, Song-Iee; Takeuchi, Yoshinori; Isaka, Masaaki; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Miyajima, Katsuhiro; Nakae, Dai; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs-eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)-in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis. PMID:27333187

  5. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities.

  6. Curing of Furfuryl Alcohol-Impregnated Parts

    NASA Technical Reports Server (NTRS)

    Lawton, J. W.; Brayden, T. H.

    1983-01-01

    Delamination problem in reinforced carbon/carbon parts impregnated with oxalic acid-catalyzed furfuryl alcohol overcome by instituting two additional quality-control tests on alcohol and by changing curing conditions.

  7. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis

    NASA Astrophysics Data System (ADS)

    Tolosa, I.; Treignier, C.; Grover, R.; Ferrier-Pagès, C.

    2011-09-01

    This study assesses the combined effect of feeding and short-term thermal stress on various physiological parameters and on the fatty acid, sterol, and alcohol composition of the scleractinian coral Turbinaria reniformis. The compound-specific carbon isotope composition of the lipids was also measured. Under control conditions (26°C), feeding with Artemia salina significantly increased the symbiont density and chlorophyll content and the growth rates of the corals. It also doubled the concentrations of almost all fatty acid (FA) compounds and increased the n-alcohol and sterol contents. δ13C results showed that the feeding enhancement of FA concentrations occurred either via a direct pathway, for one of the major polyunsaturated fatty acid (PUFA) compounds of the food (18:3n-3 FA), or via an enhancement of photosynthate transfer (indirect pathway), for the other coral FAs. Cholesterol (C27Δ5) was also directly acquired from the food. Thermal stress (31°C) affected corals, but differently according to their feeding status. Chlorophyll, protein content, and maximal photosynthetic efficiency of photosystem II (PSII) decreased to a greater extent in starved corals. In such corals, FA concentrations were reduced by 33%, (especially C16, C18 FAs, and n-3 PUFA) and the sterol content by 27% (especially the C28∆5,22 and C28∆5). The enrichment in the δ13C signature of the storage and structural FAs suggests that they were the main compounds respired during the stress to maintain the coral metabolism. Thermal stress had less effect on the lipid concentrations of fed corals, as only FA levels were reduced by 13%, with no major changes in their isotope carbon signatures. In conclusion, feeding plays an essential role in sustaining T. reniformis metabolism during the thermal stress.

  8. A simple mathematical model and practical approach for evaluating citric acid cycle fluxes in perfused rat hearts by 13C-NMR and 1H-NMR spectroscopy.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Bouet, F; Herve, M

    1997-04-15

    We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C-NMR and 1H-NMR spectroscopy. We demonstrate that 13C-NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments. Wistar rat hearts (five beating and four KCl-arrested hearts) were aerobically perfused with 100% enriched [2-(13)C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 +/- 0.003 min(-1) for beating hearts and 0.0741 +/- 0.004 min(-1) for KCl-arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl-arrested hearts are 1.06 +/- 0.06 micromol x min(-1) x mg(-1) and 0.21 +/- 0.02 micromol x min(-1) x g(-1), respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 +/- 1.7% and 8.8 +/- 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2-oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half-time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species.

  9. Rapid and simple solid-phase esterification of sialic acid residues for quantitative glycomics by mass spectrometry.

    PubMed

    Miura, Yoshiaki; Shinohara, Yasuro; Furukawa, Jun-ichi; Nagahori, Noriko; Nishimura, Shin-Ichiro

    2007-01-01

    A rapid and quantitative method for solid-phase methyl esterification of carboxy groups of various sialylated oligosaccharides has been established. The method employed a triazene derivative, 3-methyl-1-p-tolyltriazene, for facile derivatization of oligosaccharides immobilized onto general solid supports such as Affi-Gel Hz and gold colloidal nanoparticles in a multiwell plate. The workflow protocol was optimized for the solid-phase processing of captured sialylated/unsialylated oligosaccharides separated from crude sample mixtures by chemical ligation. From tryptic and/or PNGase F-digest mixtures of glycoproteins, purification by chemoselective immobilization, esterification and recovery were achieved in the same well of the filter plate within three hours when used in conjunction with "glycoblotting technology" (S.-I. Nishimura, K. Niikura, M. Kurogochi, T. Matsushita, M. Fumoto, H. Hinou, R. Kamitani, H. Nakagawa, K. Deguchi, N. Miura, K. Monde, H. Kondo, High-throughput protein glycomics: Combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry: Angew. Chem. 2005, 117, 93-98; Angew. Chem. Int. Ed. 2005, 44, 91-96). The recovered materials were directly applicable to subsequent characterization by mass spectrometric techniques such as MALDI-TOF for large-scale glycomics of both neutral and sialylated oligosaccharides. On-bead/on-gold nanoparticle derivatization of glycans containing sialic acids allowed rapid and quantitative glycoform profiling by MALDI-TOF MS with reflector and positive ion mode. In addition to its simplicity and speed, the method eliminates the use of unfavorable halogenated solvents such as chloroform and dichloromethane or volatile solvents such as diethyl ether and hexane, resulting in a practical and green chemical method for automated robotic adaptation.

  10. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant

    NASA Technical Reports Server (NTRS)

    Schoonen, M. A.; Xu, Y.; Bebie, J.

    1999-01-01

    The thermodynamics of the FeS-H2S/FeS2 redox couple and a select number of reactions critical to the synthesis of simple carboxylic acids and amino acids have been evaluated as a function of temperature. This thermodynamic evaluation shows that the reducing power of the FeS-H2S/FeS2 redox couple decreases drastically with temperature. By contrast the equilibria describing the reduction of CO2 and the formation of simple carboxylic acids and amino acids require an increasingly higher reducing power with temperature. Given these two opposite trends, the thermodynamic driving force for CO2 reduction and amino acid formation with the FeS-H2S/FeS2 redox couple as reductant diminishes with increasing temperature. An evaluation of the mechanism of CO2 reduction by the FeS-H2S/FeS2 couple suggests that the electron transfer from pyrrhotite to CO2 is hindered by a high activation energy, even though the overall reaction is thermodynamically favorable. By comparison the electron transfer from pyrrhotite to either CS2, CO, or HCOOH are far more facile. This theoretical analysis explains the results of experimental work by Keefe et al. (1995), Heinen and Lauwers (1996) and Huber and Wachtershauser (1997). The implication is that a reaction sequence involving the reduction of CO2 with the FeS-H2S/FeS2 couple as reductant is unlikely to initiate a proposed prebiotic carbon fixation cycle (Wachtershauser, 1988b; 1990b, 1990a, 1992, 1993).

  11. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: influence on insulin resistance and energy expenditure.

    PubMed

    Zaitone, Sawsan A; Barakat, Bassant M; Bilasy, Shymaa E; Fawzy, Manal S; Abdelaziz, Eman Z; Farag, Noha E

    2015-06-01

    Non-alcoholic fatty liver disease (NAFLD) is closely linked to insulin resistance, oxidative stress, and cytokine imbalance. Boswellic acids, a series of pentacyclic triterpene molecules that are produced by plants in the genus Boswellia, has been traditionally used for the treatment of a variety of diseases. This study aimed at evaluating the protective effect of boswellic acids in a model of diet-induced NAFLD in rats in comparison to the standard insulin sensitizer, pioglitazone. Rats were fed with a high-fat diet (HFD) for 12 weeks to induce NAFLD. Starting from week 5, rats received boswellic acids (125 or 250 mg/kg) or pioglitazone parallel to the HFD. Feeding with HFD induced hepatic steatosis and inflammation in rats. In addition, liver index, insulin resistance index, activities of liver enzymes, and serum lipids deviated from normal. Further, serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cyclooxygenase 2 were elevated; this was associated with an increase in hepatic expression of inducible nitric oxide synthase (iNOS) and formation of 4-hydroxy-2-nonenal (HNE). Rats treated with boswellic acids (125 or 250 mg/kg) or pioglitazone showed improved insulin sensitivity and a reduction in liver index, activities of liver enzymes, serum TNF-α and IL-6 as well as hepatic iNOS expression and HNE formation compared to HFD group. Furthermore, at the cellular level, boswellic acids (250 mg/kg) ameliorated the expression of thermogenesis-related mitochondrial uncoupling protein-1 and carnitine palmitoyl transferase-1 in white adipose tissues. Data from this study indicated that boswellic acids might be a promising therapy in the clinical management of NAFLD if appropriate safety and efficacy data are available. PMID:25708949

  12. A novel, simple and inexpensive procedure for the simultaneous determination of iopamidol and p-aminohippuric acid for renal function assessment from plasma samples in awake rats.

    PubMed

    Rodríguez-Romero, Violeta; González-Villalva, Karla I; Reyes, José L; Franco-Bourland, Rebecca E; Guízar-Sahagún, Gabriel; Castañeda-Hernández, Gilberto; Cruz-Antonio, Leticia

    2015-03-25

    The purpose of the current study was to design, validate and implement a novel analytical method for the simultaneous plasma measurement of iopamidol and p-aminohippuric acid (PAH) to estimate renal function in awake rats. A reverse-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous measurement of iopamidol (for glomerular filtration rate estimation, GFR) and PAH (for tubular secretion determination, TS) was designed and validated using a C-18 column, 0.1M acetic acid-10% acetonitrile (90:10, v/v) as mobile phase, at a flow rate of 0.3 ml/min, and UV detection at 270 nm. Iopamidol (244.8 mg/kg) was administered intravenously followed immediately by sodium PAH (100 mg/kg) to healthy female Sprague-Dawley rats. Plasma samples obtained at 2.5, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min after drug administration were deproteinized with 2.5% trichloroacetic acid containing p-aminobenzoic acid as internal standard, and separated by the validated RP-HPLC method described above. The iopamidol and PAH chromatographic data were analyzed using a non-compartmental model. The results demonstrated that the RP-HPLC method was linear in ranges between 15-120 μg/ml and 2.5-120 μg/ml for iopamidol and PAH, respectively. Precision and accuracy were within 15% for both drugs. Recovery of iopamidol and PAH was 92% and 100%, respectively. Plasma iopamidol and PAH clearances in awake rats, estimates for GFR and TS, respectively, were 1.49±0.20 ml/min and 3.73±0.38 ml/min. In conclusion, the method here described is a simple and reliable procedure, for the simultaneous and time-saving determination of GFR and TS from plasma samples in the conscious rat.

  13. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  14. Alcohol use disorder

    MedlinePlus

    ... Alcohol abuse; Problem drinking; Drinking problem; Alcohol addiction; Alcoholism - alcohol use; Substance use - alcohol ... The National Institute on Alcohol Abuse and Alcoholism ... 1 drink per day Men should not drink more than 2 drinks per day

  15. Simple Formation of C60 and C60-Ferrocene Conjugated Monolayers Anchored onto Silicon Oxide with Five Carboxylic Acids and Their Transistor Applications

    SciTech Connect

    Y Itoh; B Kim; R Gearba; N Tremblay; R Pindak; Y Matsuo; E Nakamura; C Nuckolls

    2011-12-31

    C{sub 60} and C{sub 60}-ferrocene conjugated molecule bearing five carboxylic acids successfully anchor onto a silicon oxide surface as a monolayer through a simple method of simply dipping an amino-terminated surface into the solution of the C{sub 60} derivatives. The monolayer structure was characterized by UV-vis spectroscopy, X-ray reflectivity, X-ray photoelectron spectroscopy, and IR spectroscopy to reveal that the molecules are standing presenting its C{sub 60} spherical face at the surface. The electronic effect of the C{sub 60} monolayer and the ferrocene-functionalized C{sub 60} monolayer in OFET devices was investigated. When an n-type OFET was fabricated on the ferrocene functionalized monolayer, we see an enhancement in the mobility. When a p-type OFET was made the ferrocene-functionalized C{sub 60} monolayer showed a lowering of the carrier mobility.

  16. Are the fatty acids responsible for the higher effect of oil and alcoholic extract of Nigella sativa over its aqueous extract on Trichomonas vaginalis trophozoites?

    PubMed

    Mahmoud, Mona Abd El-Fattah Ahmad; Aminou, Heba AbdelKader; Hashem, Hanan Ahmed

    2016-03-01

    Trichomoniasis, the disease caused by the flagellate protozoan Trichomonas vaginalis is the sexually transmitted infection with the largest annual incidence. Metronidazole is the drug of choice recommended for the treatment of human trichomoniasis but it can lead to drug resistance and many other adverse effects. So, it is necessary for new alternatives for the treatment of this infection. Medicinal plants or herbs could be good alternative regimens to be inexpensive, effective and safe to use. In the present study, the therapeutic potential of Nigella sativa aqueous and alcoholic extracts as well as seeds oil was examined. Different concentrations of these plant preparations were incubated in vitro with cultivated T. vaginalis trophozoites and its effect on growth was compared with metronidazole under the same conditions. Both the alcoholic extract and oil proved to be valuable agents as efficient as metronidazole in treating T. vaginalis infection. The remarkable effect of N. sativa oil may be attributed to the fact that the active principles extracted from N. sativa seeds are mostly from its essential oil (omega 3, 6, 9 as well as 7 fatty acids). However, further experimental and clinical investigations are needed to evaluate and standardize the doses of these natural products to be safe and efficient. PMID:27065592

  17. Are the fatty acids responsible for the higher effect of oil and alcoholic extract of Nigella sativa over its aqueous extract on Trichomonas vaginalis trophozoites?

    PubMed

    Mahmoud, Mona Abd El-Fattah Ahmad; Aminou, Heba AbdelKader; Hashem, Hanan Ahmed

    2016-03-01

    Trichomoniasis, the disease caused by the flagellate protozoan Trichomonas vaginalis is the sexually transmitted infection with the largest annual incidence. Metronidazole is the drug of choice recommended for the treatment of human trichomoniasis but it can lead to drug resistance and many other adverse effects. So, it is necessary for new alternatives for the treatment of this infection. Medicinal plants or herbs could be good alternative regimens to be inexpensive, effective and safe to use. In the present study, the therapeutic potential of Nigella sativa aqueous and alcoholic extracts as well as seeds oil was examined. Different concentrations of these plant preparations were incubated in vitro with cultivated T. vaginalis trophozoites and its effect on growth was compared with metronidazole under the same conditions. Both the alcoholic extract and oil proved to be valuable agents as efficient as metronidazole in treating T. vaginalis infection. The remarkable effect of N. sativa oil may be attributed to the fact that the active principles extracted from N. sativa seeds are mostly from its essential oil (omega 3, 6, 9 as well as 7 fatty acids). However, further experimental and clinical investigations are needed to evaluate and standardize the doses of these natural products to be safe and efficient.

  18. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation.

  19. High-alcohol microemulsion fuel performance in a diesel engine

    SciTech Connect

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

  20. Magnetic Relaxation Switch Detecting Boric Acid or Borate Ester through One-Pot Synthesized Poly(vinyl alcohol) Functionalized Nanomagnetic Iron Oxide.

    PubMed

    Zhang, Guilong; Lu, Shiyao; Qian, Junchao; Zhong, Kai; Yao, Jianming; Cai, Dongqing; Cheng, Zhiliang; Wu, Zhengyan

    2015-08-01

    We developed a highly efficient magnetic relaxation switch (MRS) system based on poly(vinyl alcohol) functionalized nanomagnetic iron oxide (PVA@NMIO) particles for the detection of boric acid or borate ester (BA/BE). It was found that the addition of BA/BE induced the aggregation of PVA@NMIO particles, resulting in a measurable change in the T2 relaxation time in magnetic resonance measurements. The main mechanism was proposed that the electron-deficient boron atoms of BA/BE caused the aggregation of PVA@NMIO particles through covalent binding to the hydroxyl groups of PVA. This novel detection system displayed excellent selectivity, high sensitivity, and rapid detection for BA/BE. Thus, this system may provide a great application prospect for detection of BA/BE.