Science.gov

Sample records for alcohol tba biodegradation

  1. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils

    PubMed Central

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J

    2007-01-01

    Background Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Methods Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. Results First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 × 10-3 days-1, respectively (or 2.86 ± 0.05, 3.31 ± 0.03, 5.60 ± 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Conclusion Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature. PMID:17877835

  2. IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE

    EPA Science Inventory

    MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

  3. IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE

    EPA Science Inventory

    MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

  4. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    2002-01-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  5. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  6. MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA

    EPA Science Inventory

    Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...

  7. MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA

    EPA Science Inventory

    Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...

  8. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  9. Forensic analysis of tertiary-butyl alcohol (TBA) detections in a hydrocarbon-rich groundwater basin.

    PubMed

    Quast, Konrad W; Levine, Audrey D; Kester, Janet E; Fordham, Carolyn L

    2016-04-01

    Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data.

  10. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    PubMed

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  11. Natural Anaerobic Biodegradation of TBA in Aquifer Sediments at Gasoline Spill Sites

    EPA Science Inventory

    TBA is an important contaminant at spills sites of gasoline that contains MTBE. The impact of TBA is particularly important in Southern California, where the State Action Level for TBA is 12 μg/L and many communities produce ground water for drinking water from an urban landscape...

  12. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    PubMed Central

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2012-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089

  13. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    USGS Publications Warehouse

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2011-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.

  14. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  15. Misconceptions concerning the behavior, fate and transport of the fuel oxygenates TBA and MTBE

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Sloan, R.

    2003-04-01

    The release of gasoline from underground storage tanks and the subsequent appearance of dissolved constituents in drinking water has focused attention on the use of MTBE in reformulated fuels. Natural biodegradation of MTBE in soil, photo-oxidation in the atmosphere or chemical oxidation during remediation of gasoline releases can produce the intermediate tertiary butyl alcohol (TBA). TBA is also a fuel oxygenate and can be found as a co-product in MTBE synthesized from methanol and TBA. Because the physical properties of ethers and alcohols differ somewhat from the predominant hydrocarbon compounds in gasoline, misconceptions have developed about the behavior of fuel oxygenates in storage and in the subsurface. Critical review of several misconceptions about MTBE and TBA in gasoline reveals the concepts were conceived to rationalize early field observations and/or incomplete data sets. Closer scrutiny, in light of recent laboratory investigations, field data, case studies and world literature, clarifies these misconceptions and assumptions about the behavior of ether oxygenates and their degradation products in the environment. Commonly held misconceptions focus on four general areas of fuel and fuel oxygenate management: storage/dispensing, hydrology, remediation, and health effects. Storage/dispensing misconceptions address materials stability to ethers and alcohols in fuel and the environmental forensics of fuel systems failure. Groundwater and hydrology misconceptions deal with plume dynamics and the impact of fuel on drinking water resources. Remediation misconceptions focus on the performance of traditional hydrocarbon remediation technologies, recent developments in biodegradation and natural attenuation, drivers of remedial design and remediation costs. Health effects misconceptions address both acute and chronic exposure risk evaluations by national and international health agencies. Generally MTBE and TBA are manageable by the same processes and

  16. MTBE, TBA, and TAME attenuation in diverse hyporheic zones

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.

  17. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  18. In Situ Biodegradation of MTBE and TBA

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, and air sparging are common treatment technologies in Kansas. The technologies supply oxygen to support ...

  19. In Situ Biodegradation of MTBE and TBA

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, and air sparging are common treatment technologies in Kansas. The technologies supply oxygen to support ...

  20. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  1. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  2. HYDROLYSIS OF MTBE TO TBA IN GROUND WATER SAMPLES WITH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  3. HYDROLYSIS OF MTBE TO TBA IN GROUND WATER SAMPLES WITH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  4. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    NASA Astrophysics Data System (ADS)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  5. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.

    PubMed

    El-Naas, Muftah H; Al-Muhtaseb, Shaheen A; Makhlouf, Souzan

    2009-05-30

    Batch experiments were carried out to evaluate the biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel pellets in a bubble column bioreactor at different conditions. The bacteria were activated and gradually acclimatized to high concentrations of phenol of up to 300 mg/l. The experimental results indicated that the biodegradation capabilities of P. putida are highly affected by temperature, pH, initial phenol concentration and the abundance of the biomass. The biodegradation rate is optimized at 30 degrees C, a pH of 7 and phenol concentration of 75 mg/l. Higher phenol concentrations inhibited the biomass and reduced the biodegradation rate. At high phenol concentration, the PVA particle size was found to have negligible effect on the biodegradation rate. However, for low concentrations, the biodegradation rate increased slightly with decreasing particle size. Other contaminants such heavy metals and sulfates showed no effect on the biodegradation process. Modeling of the biodegradation of phenol indicated that the Haldane inhibitory model gave better fit of the experimental data than the Monod model, which ignores the inhibitory effects of phenol.

  6. Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage

    USDA-ARS?s Scientific Manuscript database

    This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...

  7. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  8. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  9. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  10. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  11. COMPOUND-SPECIFIC ISOTOPE ANALYSIS OF MTBE AND TBA FOR BIOREMEDIATION STUDIES

    EPA Science Inventory

    The utility of stable isotope ratios to detect biodegradation for a number of chemical compounds including MTBE and TBA has been demonstrated in a number of laboratory or field studies. Chemical reactions tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), ...

  12. COMPOUND-SPECIFIC ISOTOPE ANALYSIS OF MTBE AND TBA FOR BIOREMEDIATION STUDIES

    EPA Science Inventory

    The utility of stable isotope ratios to detect biodegradation for a number of chemical compounds including MTBE and TBA has been demonstrated in a number of laboratory or field studies. Chemical reactions tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), ...

  13. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  14. TBA PRODUCTION BY ACID HYDROLYSIS OF MTBE DURING HEATED HEADSPACE ANALYSIS & EVALUATION OF A BASE AS A PRESERVATIVE

    EPA Science Inventory

    At room temperature (20°±3°C), purge and trap samplers provide poor sensitivity for analysis of the fuel oxygenates that are alcohols, such as tertiary butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, they are not efficiently transferred to a gas chr...

  15. TBA PRODUCTION BY ACID HYDROLYSIS OF MTBE DURING HEATED HEADSPACE ANALYSIS & EVALUATION OF A BASE AS A PRESERVATIVE

    EPA Science Inventory

    At room temperature (20°±3°C), purge and trap samplers provide poor sensitivity for analysis of the fuel oxygenates that are alcohols, such as tertiary butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, they are not efficiently transferred to a gas chr...

  16. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten C.; Schirmer, Mario; Weiß, Holger; Haderlein, Stefan B.

    2004-06-01

    The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic

  17. Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture.

    PubMed

    Tsujiyama, Sho-ichi; Nitta, Tomoko; Maoka, Takashi

    2011-07-01

    To examine the biodegradation of polyvinyl alcohol (PVA), Flammulina velutipes (Enokitake) was cultivated in both liquid and quartz sand cultures. After incubation, discoloration of an iodide solution was observed in the filtrate recovered from the quartz sand culture, whereas discoloration was not observed in the filtrate recovered from the liquid culture. Gel permeation chromatography showed that the PVA recovered from the quartz sand culture was depolymerized and yielded low-molecular-weight portions. Infrared and ultraviolet spectrometry indicated that there was formation of carbonyl groups, and NMR analysis showed that the syndiotactic portions of PVA were preferably attacked. Based on these results, an unsubmerged cultivation of F. velutipes was considered suitable for the biodegradation of PVA, probably because the mycelium was sufficiently developed to produce PVA-degrading enzymes. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Lignin biodegradation and the production of ethyl alcohol from cellulose

    SciTech Connect

    Rosenberg, S.L.; Wilke, C.R.

    1981-02-01

    During the last few years our group has been engaged in developing a biochemical process for the conversion of lignocellulosic materials to ethyl alcohol. Lignin is a barrier to complete cellulose saccharification in this process, but chemical and physical delignification steps are too expensive to be used at the present time. An enzymatic delignification process might be attractive for several reasons: little energy would be expected to be needed, enzymes could be recovered and reused, and useful chemicals might be produced from dissolved lignin. A number of thermophilic and thermotolerant fungi were examined for the ability to rapidly degrade lignocellulose in order to find an organism whcih produced an active lignin-degrading enzyme system. Chryosporium pruinosum and Sporotrichum pulverulentum were found to be active lignocellulose degraders, and C. pruinosum was chosen for further study. Lignin and carbohydrate were degraded when the substrate remained moistened by, but not submerged in, the liquid medium. Attempts were made to demonstrate a cell-free lignin degrading system by both extraction and pressing of cultures grown on moist lignocellulose. Carbohydrate-degrading activity was found but not lignin-degrading activity. This led us to ask whether diffusible lignin-degrading activity could be demonstrated in this organism. The data indicate that the lignin degradation system, or one or more of its components, produced by this organism is either unstable, non-diffusible, or inactive at small distances (about 1 mm) from growing hyphae. At present, studies are being conducted using diffusion cultures to select mutants of C. pruinosum that do produce a diffusible lignin degradation system. We are also examining a number of mesophilic lignin-degrading molds for this ability.

  19. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants

    SciTech Connect

    Steber, J.; Wierich, P.

    1985-03-01

    The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the /sup 14/C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of /sup 14/C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated /sup 14/C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions.

  20. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  1. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  2. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  3. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  4. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants.

    PubMed Central

    Steber, J; Wierich, P

    1985-01-01

    The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the 14C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of 14C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated 14C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. Most of the identified low-molecular-weight 14C-labeled acids suggest an ultimate degradation of EO monomers by the oxidative dicarbonic acid cycle or the glycerate pathway or both. In addition, the finding of considerable amounts of oxalic and formic acids allow consideration of an additional mineralization route via glyoxylic, oxalic, and formic acids. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions. PMID:3994363

  5. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process.

  6. Anaerobic biodegradability of alkylphenols and fuel oxygenates in the presence of alternative electron acceptors.

    PubMed

    Puig-Grajales, L; Tan, N G; van der Zee, F; Razo-Flores, E; Field, J A

    2000-11-01

    Alkylphenols and fuel oxygenates are important environmental pollutants produced by the petrochemical industry. A batch biodegradability test was conducted with selected ortho-substituted alkylphenols (2-cresol, 2,6-dimethylphenol and 2-ethylphenol), fuel oxygenates (methyl tert-butyl ether, ethyl tert-butyl ether and tert-amylmethyl ether) and tert-butyl alcohol (TBA) as model compounds. The ortho-substituted alkylphenols were not biodegraded after 100 days of incubation under methanogenic, sulfate-, or nitrate-reducing conditions. However, biodegradation of 2-cresol and 2-ethylphenol (150 mg l(-1)) was observed in the presence of Mn (IV) as electron acceptor. The biodegradation of these two compounds took place in less than 15 days and more than 90% removal was observed for both compounds. Mineralization was indicated since no UV-absorbing metabolites accumulated after 23 days of incubation. These alkylphenols were also slowly chemically oxidized by Mn (IV). No biodegradation of fuel oxygenates or TBA (1 g l(-1)) was observed after 80 or more days of incubation under methanogenic, Fe (III)-, or Mn (IV)-reducing conditions, suggesting that these compounds are recalcitrant under anaerobic conditions. The fuel oxygenates caused no toxicity towards acetoclastic methanogens activity in anaerobic granular sludge.

  7. RK-TBA prototype RF source

    SciTech Connect

    Houck, T.; Anderson, D.; Giordano, G.

    1996-04-11

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail.

  8. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation.

    PubMed

    Alvarez, Pedro J J; Hunt, Craig S

    2002-01-01

    The proposed replacement of the gasoline oxygenate MTBE with ethanol represents potential economic and environmental quality benefits. However, these benefits may be offset to some extent by potential detrimental effects on groundwater quality and natural attenuation of released petroleum products. The objectives of this literature review are to bound the extent to which these impacts may occur, summarize the available information on the biodegradation of ethanol in the environment, assess the potential effect that biodegradation processes may have on the fate and transport of BTEX compounds, and provide recommendations for research to enhance related risk assessment and management decisions. Ethanol that reaches groundwater aquifers is likely to be degraded at much faster rates than other gasoline constituents. If the carbon source is not limiting, a preferential degradation of ethanol over BTEX may be observed under both aerobic and anaerobic conditions. Depending on the extent of the release, ethanol may exert a high biochemical oxygen demand that would contribute to the rapid depletion of dissolved oxygen in the groundwater. Thus, ethanol will likely be degraded predominantly under anaerobic conditions. None of the potential ethanol metabolites that could accumulate in groundwater are toxic, although some potential biodegradation by-products such as butyrate could adversely affect the taste and odor of drinking water sources. In addition, acetate and other volatile fatty acids could accumulate at high concentrations, causing a pH decrease in poorly buffered systems. It is unknown, however, whether the pH would decrease to a point that inhibits natural degradative processes. Inhibition of microbial, activity near the source is likely to occur as a result of exposure to high alcohol concentrations, and bactericidal effects are likely to occur when cells are exposed to ethanol concentrations exceeding 10,000 mg/L. However, the maximum allowable ethanol content in

  9. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.

    PubMed

    Hajji, Sawssen; Chaker, Achraf; Jridi, Mourad; Maalej, Hana; Jellouli, Kemel; Boufi, Sami; Nasri, Moncef

    2016-08-01

    The development and characterization of biodegradable blend films based on chitosan and poly (vinyl alcohol) for possible use in a variety of biological activities are reported. Fourier transform infrared spectroscopy (FTIR) spectra of chitosan-poly (vinyl alcohol) (Ch/PVA) films showed characteristics peaks shifting to a lower frequency range due to hydrogen bonding between -OH of PVA and -NH2 of chitosan. The chitosan and PVA polymers presented good compatibility. The morphology study of chitosan and composite films showed a compact and homogenous structure. The tensile strength and elongation at break increased with PVA content. In fact, the highest tensile strength and elongation at break (53.58 MPa and 454 %) occurs with pure PVA film. The results showed that PVA incorporation in the blends contributes to increase the intermolecular interactions, thus improving the mechanical properties. In addition, the prepared films demonstrated high antioxidant activities monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, reducing power, and β-carotene bleaching activity. Nevertheless, PVA addition reduced antioxidant and antibacterial activities against Gram-positive and Gram-negative bacteria tested.

  10. 8-2 fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields.

    PubMed

    Wang, Ning; Szostek, Bogdan; Buck, Robert C; Folsom, Patrick W; Sulecki, Lisa M; Gannon, John T

    2009-05-01

    The biodegradation pathways and metabolite yields of [3-(14)C] 8-2 fluorotelomer alcohol [8-2 FTOH, F(CF(2))(7)(14)CF(2)CH(2)CH(2)OH) in aerobic soils were investigated. Studies were conducted under closed (static) and continuous headspace air flow to assess differences in degradation rate and metabolite concentrations in soil and headspace. Aerobic degradation pathways in soils were in general similar to those in aerobic sludge and bacterial culture. (14)C mass balance was achieved in soils incubated for up to 7 months. Up to 35% (14)C dosed was irreversibly bound to soils and was only recoverable by soil combustion. The average PFOA yield was approximately 25%. Perfluorohexanoic acid (PFHxA) yield reached approximately 4%. (14)CO(2) yield was 6.8% under continuous air flow for 33 days. Three metabolites not previously identified in environmental samples were detected: 3-OH-7-3 acid [F(CF(2))(7)CHOHCH(2)COOH], 7-2 FT ketone [F(CF(2))(7)COCH(3)] and 2H-PFOA [F(CF(2))(6)CFHCOOH]. No perfluorononanoic acid (PFNA) was observed. The formation of 2H-PFOA, PFHxA, and (14)CO(2) shows that multiple -CF(2)- groups were removed from 8-2 FTOH. 7-3 Acid [F(CF(2))(7)CH(2)CH(2)COOH] reached a yield of 11% at day 7 and did not change thereafter. 7-3 Acid was incubated in aerobic soil and did not degrade to PFOA. 7-2 sFTOH [F(CF(2))(7)CH(OH)CH(3)], a transient metabolite, was incubated and degraded principally to PFOA. 7-3 Acid may be a unique metabolite from 8-2 FTOH biodegradation. The terminal ratio of PFOA to 7-3 acid ranged between 1.8-2.5 in soils and 0.6-3.2 in activated sludge, sediment, and mixed bacterial culture. This ratio may be useful in evaluating environmental samples to distinguish the potential contribution of 8-2 FTOH biodegradation to PFOA observed versus PFOA originating from other sources.

  11. FIELD OBSERVATIONS TO RECOGNIZE THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At some gasoline spill sites (perhaps a third of sites nationwide) MTBE in ground water has been biologically degraded to TBA. This natural biodegradation of MTBE contributes to the natural attenuation of MTBE, but it produces TBA as a potential contaminant. Under ordinary cond...

  12. 5-loop Konishi from linearized TBA and the XXX magnet

    NASA Astrophysics Data System (ADS)

    Balog, János; Hegedüs, Árpád

    2010-06-01

    Using the linearized TBA equations recently obtained in arXiv:1002.1711 we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Lüscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  13. Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles.

    PubMed

    Park, Hyunjin; Kim, Soojin; Kim, Sujin; Song, Yiseul; Seung, Kyungryul; Hong, Donghyun; Khang, Gilson; Lee, Dongwon

    2010-08-09

    p-Hydroxybenzyl alcohol (HBA) is one of phenolic compounds in herbal agents and plays a pivotal role in protection against oxidative damage-related diseases due to anti-inflammatory effects. We have developed a new biodegradable and anti-inflammatory peroxalate copolymer in which HBA is chemically incorporated into its backbone. The HBA-incorporated copolyoxalate (HPOX) was synthesized from a condensation reaction of oxalyl chloride, 1,4-cyclohexamethanol and HBA and was capable of releasing pharmaceutically active HBA during hydrolytic degradation. HPOX could be dispersed into a single emulsion for the formulation of nanoparticles which had a mean size approximately 500 nm in diameter. The nanoparticles released HBA which was able to inhibit the production of nitric oxide (NO) by suppressing the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. HPOX nanoparticles also reduced the production of tumor necrosis factor-alpha (TNF-alpha). The remarkable features of HPOX are that the polymer degrades completely into small molecules and one of degradation products is a pharmaceutically active compound. We anticipate that HPOX is highly potent and versatile for the treatment of inflammatory diseases.

  14. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  15. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from

  16. Integrals of motion from TBA and lattice-conformal dictionary

    NASA Astrophysics Data System (ADS)

    Feverati, Giovanni; Grinza, Paolo

    2004-12-01

    The integrals of motion of the tricritical Ising model are obtained by thermodynamic Bethe ansatz (TBA) equations derived from the A integrable lattice model. They are compared with those given by the conformal field theory leading to a unique one-to-one lattice-conformal correspondence. They can also be followed along the renormalization group flows generated by the action of the boundary field φ on conformal boundary conditions in close analogy to the usual TBA description of energies.

  17. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  18. Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten.

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-05-07

    We report the development of wheat gluten as an environmentally friendly sizing agent that can replace poly(vinyl alcohol) (PVA) and make the textile industry more environmentally friendly. Wheat gluten applied onto polyester/cotton (P/C) and polyester as warp sizing agent provided sizing performance and biodegradability in activated sludge necessary to substitute poly(vinyl alcohol) (PVA). PVA is one of the most widely used sizing agents and provides excellent sizing performance to synthetic fibers and their blends but is expensive and difficult to degrade in textile wastewater treatment plants. Although considerable efforts have been made to replace PVA, it has not been possible to develop a warp sizing chemical that can match the sizing performance of PVA and at the same time be cost-effective and biodegrade in effluent treatment plants. At similar % add-on, wheat gluten provided similar cohesion to P/C but much higher abrasion resistance to polyester fabrics compared to PVA. With a biochemical oxygen demand (BOD) to chemical oxygen demand (COD) ratio of 0.7 compared to 0.01 for PVA, wheat gluten was readily degradable in activated sludge. Wheat gluten has the ability to replace PVA for textile warp sizing applications.

  19. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.

    PubMed

    Wang, Jane; Bettinger, Christopher J; Langer, Robert S; Borenstein, Jeffrey T

    2010-01-01

    Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric poly(ester amide). Microfluidic scaffolds constructed from APS exhibit a much lower Young's Modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible, and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds.

  20. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers

    PubMed Central

    Wang, Jane; Bettinger, Christopher J; Langer, Robert S

    2010-01-01

    Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half-life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric polymer. Microfluidic scaffolds constructed from APS exhibit a much lower Young's modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds. PMID:21220957

  1. RK-TBA studies at the RTA test facility

    NASA Astrophysics Data System (ADS)

    Lidia, S.; Anderson, D.; Eylon, S.; Henestroza, E.; Houck, T.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-03-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented.

  2. RK-TBA studies at the RTA test facility

    SciTech Connect

    Lidia, S.; Anderson, D.; Eylon, S.; Henestroza, E.; Houck, T.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-03-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented. {copyright} {ital 1997 American Institute of Physics.}

  3. RK-TBA Studies at the RTA Test Facility

    SciTech Connect

    Lidia, S.; Anderson, D.; Eylon, S.; Reginato, L.; Vanecek, D.; Yu, S.; Henestroza, E.; Houck, T.; Westenskow, G.

    1997-01-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented. 1 fig.

  4. USING STABLE CARBON ISOTOPES TO ESTIMATE THE RATE OF NATURAL BIODEGRADATION OF MTBE AT FIELD SCALE

    EPA Science Inventory

    Natural biodegradation of fuel contaminants in ground water reduces the risk of contamination of drinking water wells. It is very difficult to estimate the natural rate of biodegradation of MTBE in ground water because its primary biodegradation product, TBA, is also a component...

  5. USING STABLE CARBON ISOTOPES TO ESTIMATE THE RATE OF NATURAL BIODEGRADATION OF MTBE AT FIELD SCALE

    EPA Science Inventory

    Natural biodegradation of fuel contaminants in ground water reduces the risk of contamination of drinking water wells. It is very difficult to estimate the natural rate of biodegradation of MTBE in ground water because its primary biodegradation product, TBA, is also a component...

  6. Fully biodegradable airway stents using amino alcohol-based poly(ester amide) elastomers.

    PubMed

    Wang, Jane; Boutin, Kyle G; Abdulhadi, Omar; Personnat, Lyndia D; Shazly, Tarek; Langer, Robert; Channick, Colleen L; Borenstein, Jeffrey T

    2013-10-01

    Airway stents are often used to maintain patency of the tracheal and bronchial passages in patients suffering from central airway obstruction caused by malignant tumors, scarring, and injury. Like most conventional medical implants, they are designed to perform their functions for a limited period of time, after which surgical removal is often required. Two primary types of airway stents are in general use, metal mesh devices and elastomeric tubes; both are constructed using permanent materials, and must be removed when no longer needed, leading to potential complications. This paper describes the development of process technologies for bioresorbable prototype elastomeric airway stents that would dissolve completely after a predetermined period of time or by an enzymatic triggering mechanism. These airway stents are constructed from biodegradable elastomers with high mechanical strength, flexibility and optical transparency. This work combines microfabrication technology with bioresorbable polymers, with the ultimate goal of a fully biodegradable airway stent ultimately capable of improving patient safety and treatment outcomes.

  7. Effect of a commercial alcohol ethoxylate surfactant (C11-15E7) on biodegradation of phenanthrene in a saline water medium by Neptunomonas naphthovorans.

    PubMed

    Li, Jing-Liang; Bai, Renbi

    2005-02-01

    Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.

  8. WILL FLUOROTELOMER ALCOHOL BASED POLYMER FORMULATIONS BIODEGRADE DURING AEROBIC BIOLOGICAL WASTEWATER TREATMENT?

    EPA Science Inventory

    The release of fluorotelomer alcohol (FTOH) based polymer formulations (PFs) to wastewater treatment plants (WWTPs) may be an important source of the perfluoroalkyl carboxylic acids (PFCAs) observed in many environmental matrices. Working with the Office of Pollution, Prevention,...

  9. Effect of redox conditions on MTBE biodegradation in surface water Sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Microbial degradation of methyl tert-butyl ether (MTBE) was observed in surface water-sediment microcosms under anaerobic conditions. The efficiency and products of anaerobic MTBE biodegradation were dependent on the predominant terminal electron-accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to the toxic product, tert-butyl alcohol (TBA). In the absence of significant methanogenic activity, accumulation of [14C]TBA generally decreased, and mineralization of [U-14C]MTBE to 14CO2 generally increased as the oxidative potential of the predominant terminal electron acceptor increased in the order of SO4, Fe(III), Mn(IV) < NO3 < O2. Microbial mineralization of MTBE to CO2 under Mn(IV)or SO4-reducing conditions has not been reported previously. The results of this study indicate that microorganisms inhabiting the sediments of streams and lakes can degrade MTBE effectively under a range of anaerobic terminal electron-accepting conditions. Thus, anaerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States.

  10. IS HCI THAT IS USED AS A PRESERVATIVE CREATING FALSE POSITIVES FOR TBA IN GROUND WATER

    EPA Science Inventory

    Will hydrochloric acid produce false positives for TBA? Yes, if you heat the sample to get a lower detection limit for TBA. Conventional purge and trap methods at ambient temperature have a reporting limit for TBA between 50 and 100 g/liter. This is higher than the provisiona...

  11. IS HCI THAT IS USED AS A PRESERVATIVE CREATING FALSE POSITIVES FOR TBA IN GROUND WATER

    EPA Science Inventory

    Will hydrochloric acid produce false positives for TBA? Yes, if you heat the sample to get a lower detection limit for TBA. Conventional purge and trap methods at ambient temperature have a reporting limit for TBA between 50 and 100 g/liter. This is higher than the provisiona...

  12. ENRICHMENT OF STABLE CARBON AND HYDROGEN ISOTOPES DURING ANAEROBIC BIODEGRADATION OF MTBE-MICROCOSM AND FIELD EVIDENCE

    EPA Science Inventory

    The conventional approach to evaluate biodegradation of organic contaminants in ground water is to demonstrate an increase in the concentration of transformation products. This approach is problematic for MTBE from gasoline spills because the primary transformation product (TBA) ...

  13. ENRICHMENT OF STABLE CARBON AND HYDROGEN ISOTOPES DURING ANAEROBIC BIODEGRADATION OF MTBE-MICROCOSM AND FIELD EVIDENCE

    EPA Science Inventory

    The conventional approach to evaluate biodegradation of organic contaminants in ground water is to demonstrate an increase in the concentration of transformation products. This approach is problematic for MTBE from gasoline spills because the primary transformation product (TBA) ...

  14. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    PubMed

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters.

  15. Biodegradable Sonobuoy Decelerators

    DTIC Science & Technology

    2015-06-01

    material. Two materials studied were polyvinyl alcohol (PVOH) and polyhydroxyalkanoate (PHA). Single and multilayered PVOH films were evaluated as well...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol , polyhydroxyalkanoate, marine...Association PVOH polyvinyl alcohol SPAWARS Space and Naval Warfare Systems Command VIMS Virginia Institute of Marine Science VOC volatile organic

  16. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends.

  17. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites.

    PubMed

    Sabaa, Magdy W; Abdallah, Heba M; Mohamed, Nadia A; Mohamed, Riham R

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time.

  18. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.

    PubMed

    Zuo, Jian-Guo; Hua, Tse-Chao; Liu, Bao-Lin; Zhou, Guo-Yan

    2005-01-01

    The purpose of this work is to investigate the freezing properties of tertiary butyl alcohol (TBA)/sucrose/water ternary system. Differential scanning calorimetry (DSC) is employed to determine the glass transition temperature of the maximally freeze-concentrated solution Tg' and the crystallization (or devitrification) temperature Tr. DSC measurements show that the presence of sucrose hinders the crystallization of TBA during cooling. The residual TBA in the glassy state will cause a decrease in Tg' and will crystallize during heating. An increase in the cooling rate causes a decrease in Tg'. For 10% TBA/10% sucrose/water ternary system, the critical heating rate is approximately 250 degrees C/min. Annealing treatment at temperatures below Tg' causes the crystallization of TBA, which indicates that TBA molecules still have appreciable mobility even at temperatures below Tg'. When the ratio of TBA to sucrose is less than 0.2, TBA cannot crystallize during cooling.

  19. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    PubMed

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. USING δ13C TO PREDICT THE RATE OF BIODEGRADATION OF MTBE

    EPA Science Inventory

    It is difficult to estimate the rate of natural biodegradation of MTBE at field scale. Dispersion in the aquifer or dilution in the well can give a false impression of attenuation along a flow path. The first product of MTBE biodegradation is TBA. Many gasoline spills contain TB...

  1. USING δ13C TO PREDICT THE RATE OF BIODEGRADATION OF MTBE

    EPA Science Inventory

    It is difficult to estimate the rate of natural biodegradation of MTBE at field scale. Dispersion in the aquifer or dilution in the well can give a false impression of attenuation along a flow path. The first product of MTBE biodegradation is TBA. Many gasoline spills contain TB...

  2. Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp.

    PubMed

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2011-09-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed.

  3. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply

    PubMed Central

    Schmidt, Radomir; Klemme, David A.; Scow, Kate; Hristova, Krassimira

    2012-01-01

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, E. coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. PMID:22321859

  4. Formation of Alkenes via Degradation of tert-Alkyl Ethers and Alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. ▿†

    PubMed Central

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H.; Rohwerder, Thore

    2011-01-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed. PMID:21742915

  5. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  6. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  7. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.

    PubMed

    Packhaeuser, C B; Kissel, T

    2007-11-06

    The feasibility to generate in situ forming parenteral depot systems from insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles, was investigated. Biodegradable nanoparticles formed polymeric semi-solid depots upon injection into isotonic phosphate buffered saline (PBS) with no additional initiators. Nanoparticles (NP) prepared from the different amine-modified polyesters displayed a pronounced positive zeta-potential of >25 mV. Diethylaminopropyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DEAPA(68)-PVAL-g-PLGA(1:20)), diethylaminoethyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DEAEA(33)-PVAL-g-PLGA(1:20)), and dimethylaminopropyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) (DMAPA(33)-PVAL-g-PLGA(1:20)), formed in situ depots by an ion-mediated aggregation with subsequent fusion of nanoparticles, related to a decreased glass transition temperature in the presence of PBS. Moreover, two factors, namely, polymer and insulin-nanocomplex concentration, were evaluated using a response surface design with respect to nanoparticles formation and insulin loading. Nanoparticles and implants were investigated by atomic force microscopy (AFM). The in vitro release from implants loaded with 2% insulin was carried out in a flow trough cell and quantified by high performance liquid chromatography (HPLC). The release showed a triphasic profile with an initial burst, pore diffusion and diffusion from the swollen matrix over more than two weeks. Insulin distribution in the implants during the release was followed by confocal laser scanning microscopy (CLSM). These findings combined with the protection of the model peptide against competitive macromolecules and the possibility to get dry powders by lyophilization make these nanoparticles-based depots suitable candidates for the design of controlled release devices for bioactive macromolecules.

  8. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  9. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  10. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes.

    PubMed

    McKelvie, Jennifer R; Mackay, Douglas M; de Sieyes, Nicholas R; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2007-12-07

    Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".

  11. Development of highly porous biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats using electrospinning process for biomedical application.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Yusof, Noordin Mohd; Idris, Ani; Misran, Effaliza; Kurniawan, Denni

    2017-01-01

    The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers. Five factors; nanoparticles content, voltage, flow rate, spinning distance, and rotating speed were varied to produce the electrospun nanofibrous mats with high porosity value. Empirical model was developed using response surface methodology to analyze the effect of these factors to the porosity. The results revealed that the optimum porosity (90.85%) was obtained using 5% w/v nanoparticle content, 35kV of voltage, 1.1ml/h volume flow rate of solution, 8cm spinning distance and 2455rpm of rotating speed. The empirical model was verified successfully by performing confirmation experiments. The properties of optimum PVA/γ-Fe2O3 nanofiber mats such as fiber diameter, mechanical properties, and contact angle were investigated. In addition, cytocompatibility test, in vitro degradation rate, and MTT assay were also performed. Results revealed that high porosity biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats have low mechanical properties but good degradation rates and cytocompatibility properties. Thus, they are suitable for low load bearing biomedical application or soft tissue engineering scaffold. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  13. Alcohol

    MedlinePlus

    ... Parents for Kids for Teens Search Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Español Making a Change – ... this article? Getting the Facts What Is Alcohol? How Does It Affect the Body? Why Do Teens Drink? Why Shouldn't I ...

  14. MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...

  15. MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...

  16. The standing wave FEL/TBA: Realistic cavity geometry and energy extraction

    SciTech Connect

    Kim, Jin-Soo, Henke, H.; Sessler, A.M.; Sharp, W.M.

    1993-05-01

    A set of parameters for standing wave free electron laser two beam accelerators (SWFEL/TBA) is evaluated for realistic cavity geometry taking into account beam-break-up and the sensitivity of output power to imperfections. Also given is a power extraction system using cavity coupled wave guides.

  17. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    EPA Science Inventory

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  18. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    EPA Science Inventory

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  19. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  20. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  1. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  2. Biodegradable plastics from renewable sources.

    PubMed

    Flieger, M; Kantorová, M; Prell, A; Rezanka, T; Votruba, J

    2003-01-01

    Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

  3. Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Mohammad Taghi; Sabouri, Narges

    2013-09-01

    The focus of this work is to study the effect of sodium montmorillonite (MMT-Na) clay content on the rate and extent of enzymatic hydrolysis polyvinyl alcohol (PVA)/starch (S)/carboxymethyl cellulose (CMC) blends using enzyme cellulase. The rate of glucose production from each nanocomposite substrates was most rapid for the substrate without MMT-Na and decreased with the addition of MMT-Na for PVA/S/CMC blend (51.5 μg/ml h), PVA/S/CMC/1% MMT (45.4 μg/ml h), PVA/S/CMC/3% MMT (42.8 μg/ml h), and PVA/S/CMC/5% MMT (39.2 μg/ml h). The results of this study have revealed that films with MMT-Na content at 5 wt.% exhibited a significantly reduced rate and extent of hydrolysis. Enzymatic degradation behavior of MMT-Na containing nanocomposites of PVA/S/CMC was based on the determinations of weight loss and the reducing sugars. The degraded residues have been characterized by various analytical techniques, such as Fourier transform infrared spectroscopy, scanning electronic microscopy, and UV-vis spectroscopy.

  4. Biodegradable Polymers

    PubMed Central

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  5. Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012.

    PubMed

    François, Alan; Mathis, Hugues; Godefroy, Davy; Piveteau, Pascal; Fayolle, Françoise; Monot, Frédéric

    2002-06-01

    A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.

  6. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  7. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors.

    PubMed

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-10

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  8. Computer experiments on aqueous solutions. VI. Potential energy function for tert-butyl alcohol dimer and molecular dynamics calculation of 3 mol % aqueous solution of tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideki; Nakanishi, Koichiro; Touhara, Hidekazu

    1984-11-01

    Molecular dynamics (MD) calculation has been carried out for a dilute aqueous solution of tert-butyl alcohol (TBA) at 298.15 K and with experimental density value by the use of constant temperature technique developed previously. The total number of molecule is 216, seven of which are TBA. The mole fraction of TBA is thus 0.032. For water-water and TBA-water interactions, the MCY (Matsuoka-Clementi-Yoshimine) potential and previously reported potential determined by MO calculation are used. A new potential for TBA-TBA is determined by ab initio LCAO SCF calculations for more than 500 different configurations with an STO-3G basis set and subsequent multiparameter fitting of the MO data to a 12-6-3-1 type potential energy function. The MD calculation is extended up to 84 000 time steps (26 ps) and final 60 000 time steps are used to calculate both static and dynamic properties of the system. Both hydrophobic hydration and interaction due to TBA molecules are proved to be stronger than those of methanol studied previously. Structural promotion of water is clearly observed in radial distribution functions and trajectories of each molecule. The configuration and trajectory of all the molecules in solution indicate clearly the association of TBA molecules. It is also found from pair interaction distribution functions that no hydrogen bonding interaction occurs between two TBA molecules. The self-diffusion coefficient of water in the solution is appreciably smaller than that in pure water.

  9. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative

    PubMed Central

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-01-01

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. PMID:26250112

  10. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.

    PubMed

    Magaña-Reyes, Miguel; Morales, Marcia; Revah, Sergio

    2005-11-01

    Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.

  11. Biodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa.

    PubMed

    Salazar, Margarita; Morales, Marcia; Revah, Sergio

    2012-01-01

    Biodegradation of methyl tert-butyl ether (MTBE) vapors by cometabolism with gaseous hexane (n-hexane > 95%) was investigated using Pseudomonas aeruginosa utilizing short chain aliphatic hydrocarbon (C(5)-C(8)). Kinetic batch experiments showed that MTBE was degraded even when hexane was completely exhausted with a cometabolic coefficient of 1.06 ± 0.16 mg MTBE mg hexane(-1). Intermediate tert-butyl alcohol (TBA) accumulation was observed followed by its gradual consumption. A maximum MTBE elimination capacity (EC(MAX)) of 35 g m(-3) h(-1) and removal efficiency (RE) of 70% were attained in mineral medium amended biofilters having an empty bed residence time (EBRT) of 1 min. For these experimental conditions, a maximum hexane EC of approximately 60 g m(-3) h(-1) was obtained at a load of 75 g m(-3) h(-1). Experiments under transient conditions revealed a competitive substrate interaction between MTBE and hexane. Biomass densities between 5.8 and 12.6 g L(biofilter) (-1) were obtained. Nevertheless, production of biopolymers caused non-uniform distribution flow rates that reduced the performance. Residence time distribution profiles showed an intermediate dispersion flow rate with a dispersion coefficient of 0.8 cm(2) s(-1).

  12. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays

    PubMed Central

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122

  13. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  14. Biodegradable polydepsipeptides.

    PubMed

    Feng, Yakai; Guo, Jintang

    2009-02-01

    This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  15. Biodegradable Polydepsipeptides

    PubMed Central

    Feng, Yakai; Guo, Jintang

    2009-01-01

    This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials. PMID:19333423

  16. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents.

    PubMed

    Talawat, Jaruwan; Sabatini, David A; Tongcumpou, Chantra

    2013-01-01

    This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.

  17. Development of biodegradable materials; balancing degradability and performance

    SciTech Connect

    Mayer, J.M.; Allen, A.L.; Dell, P.A.; McCassie, J.E.; Shupe, A.E.; Stenhouse, P.J. Stenhouse, Welch, E.A.; Kaplan, D.L.

    1993-12-31

    The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.

  18. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  19. Design and control of glycerol-tert-butyl alcohol etherification process.

    PubMed

    Vlad, Elena; Bildea, Costin Sorin; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  20. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    PubMed Central

    Vlad, Elena; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512

  1. Extruded/injection-molded composites containing unripe plantain flour, ethylene vinyl-alcohol and glycerol: Evaluation of color, mechanical property and biodegradability

    USDA-ARS?s Scientific Manuscript database

    Extruded/injection-molded composites were produced from plantain flour blended with ethylene vinyl-alcohol (EVA) and glycerol. Scanning electron microscopy showed composites had a smooth surface and excellent compatibility between plantain flour, EVA and glycerol. The impact of increased plantain fl...

  2. Biodegradation of perfluorinated compounds.

    PubMed

    Parsons, John R; Sáez, Monica; Dolfing, Jan; de Voogt, Pim

    2008-01-01

    The information available in the literature provides evidence for the biodegradation of some poly- and per-fluorinated compounds, but such biodegradation is incomplete and may not result in mineralization. Recent publications have demonstrated that 8:2 fluorotelomer alcohol, for example, can be degraded by bacteria from soil and wastewater treatment plants to perfluorooctanoic acid. Similarly, 2-N-ethyl(perfluorooctane sulfonamido)ethanol can be degraded by wastewater treatment sludge to perfluorooctanesulfonate. It is presently unclear whether these two products are degraded further. Therefore, the question remains as to whether there is a potential for defluorination and biodegradation of PFCs that contributes significantly to their environmental fate. The lack of mineralization observed is probably caused by the stability of the C-F bond, although there are examples of microbially catalyzed defluorination reactions. As is the case with reductive dechlorination or debromination, reductive defluorination is energetically favorable under anaerobic conditions and releases more energy than that available from sulfate reduction or methanogenesis. Consequently, we should consider the possibility that bacteria will adapt to utilize this source of energy, although evolving mechanisms to overcome the kinetic barriers to degradation of these compounds may take some time. The fact that such reactions are absent for some PFCs, to date, may be because too little time has passed for microorganisms to adapt to these potential substrates. Hence, the situation may be comparable to that of chlorinated organic compounds several decades ago. For many years, organochlorine compounds were considered to be catabolically recalcitrant; today, reductive chlorination reactions of many organochlorines, including PCBs and dioxins, are regularly observed in anaerobic environments. Hence, it is opportune and important to continue studying the potential degradation of perfluorinated compounds

  3. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  4. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  5. Decreased toxicity to terrestrial plants associated with a mixture of methyl tert-butyl ether and its metabolite tert-butyl alcohol.

    PubMed

    An, Youn-Joo; Lee, Woo-Mi

    2007-08-01

    The influence of the main fuel oxygenate methyl tert-butyl ether (MTBE) and its key metabolite, tert-butyl alcohol (TBA), on the growth of a plant seedling was studied separately and in combination. The test plants were mung bean (Phaseolus radiatus), cucumber (Cucumis sativus), wheat (Triticum aestivum), sorghum (Sorghum bicolor), kale (Brassica alboglabra), Chinese cabbage (Brassica campestris), and sweet corn (Zea mays). The growth of all the plants was adversely affected by TBA and MTBE. The 5-d median effective concentration (EC50) for the plants exposed to MTBE and TBA were in the range of 680 to 1,000 mg MTBE/kg soil (dry wt) and 1,200 to 3,500 mg TBA/kg soil (dry wt), respectively. The relative order of the sensitivity rankings is almost the same for MTBE and TBA. Methyl tert-butyl ether is more toxic than TBA to most of the test species. Based on the EC50 values, MTBE is approximately 1.5 to 3 times more potent than TBA. The sum of the toxic unit (TU) at 50% inhibition of the mixture (EC50mix) was calculated from the dose (TU-based)-response relationships using the trimmed Spearman-Karber method. The combined effect of MTBE + TBA on the plant growth was less than additive because the EC50mix values were greater than I TU. This phenomenon may be due to the competition of MTBE and TBA in terms of their intake by plants. The combined effects of MTBE and TBA should be taken into account to assess their risk in gasoline-contaminated sites.

  6. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that ... alcohol to feel the same effect With alcohol abuse, you are not physically dependent, but you still ...

  7. Biodegradable thermogels.

    PubMed

    Park, Min Hee; Joo, Min Kyung; Choi, Bo Gyu; Jeong, Byeongmoon

    2012-03-20

    All living creatures respond to external stimuli. Similarly, some polymers undergo conformational changes in response to changes in temperature, pH, magnetic field, electrical field, or the wavelength of light. In one type of stimuli-responsive polymer, thermogel polymers, the polymer aqueous solution undergoes sol-to-gel transition as the temperature increases. Drugs or cells can be mixed into the polymer aqueous solution when it is in its lower viscosity solution state. After injection of the solution into a target site, heating prompts the formation of a hydrogel depot in situ, which can then act as a drug releasing system or a cell growing matrix. In this Account, we describe key materials developed in our laboratory for the construction of biodegradable thermogels. We particularly emphasize recently developed polypeptide-based materials where the secondary structure and nanoassembly play an important role in the determining the material properties. This Account will provide insights for controlling parameters, such as the sol-gel transition temperature, gel modulus, critical gel concentration, and degradability of the polymer, when designing a new thermogel system for a specific biomedical application. By varying the stereochemistry of amino acids in polypeptides, the molecular weight of hydrophobic/hydrophilic blocks, the composition of the polypeptides, the hydrophobic end-capping of the polypeptides, and the microsequences of a block copolymer, we have controlled the thermosensitivity and nanoassembly patterns of the polymers. We have investigated a series of thermogel biodegradable polymers. Polymers such as poly(lactic acid-co-glycolic acid), polycaprolactone, poly(trimethylene carbonate), polycyanoacrylate, sebacic ester, polypeptide were used as hydrophobic blocks, and poly(ethylene glycol) and poly(vinyl pyrrolidone) were used as hydrophilic blocks. To prepare a polymer sensitive to pH and temperature, carboxylic acid or amine groups were introduced

  8. Aggregation in dilute aqueous tert-butyl alcohol solutions: insights from large-scale simulations.

    PubMed

    Gupta, Rini; Patey, G N

    2012-07-21

    Molecular dynamics simulations employing up to 64,000 particles are used to investigate aggregation and microheterogeneity in aqueous tert-butyl alcohol (TBA) solutions for TBA mole fractions X(t) ≤ 0.1. Four different force fields are considered. It is shown that the results obtained can be strongly dependent on the particular force field employed, and can be significantly influenced by system size. Two of the force fields considered show TBA aggregation in the concentration range X(t) ≈ 0.03 - 0.06. For these models, systems of 64,000 particles are minimally sufficient to accommodate the TBA aggregates. The structures resulting from TBA aggregation do not have a well-defined size and shape, as one might find in micellar systems, but are better described as TBA-rich and water-rich regions. All pair correlation functions exhibit long-range oscillatory behavior with wavelengths that are much larger than molecular length scales. The oscillations are not strongly damped and the correlations can easily exceed the size of the simulation cell, even for the low TBA concentrations considered here. We note that these long-range correlations pose a serious problem if one wishes to obtain certain physical properties such as Kirkwood-Buff integrals from simulation results. In contrast, two other force fields that we consider show little sign of aggregation for X(t) ≲ 0.08. In our 64,000 particle simulations all four models considered show demixing-like behavior for X(t) ≳ 0.1, although such behavior is not evident in smaller systems of 2000 particles. The meaning of the demixing-like behavior is unclear. Since real TBA-water solutions do not demix, it might be an indication that all four models we consider poorly represent the real system. Alternatively, it might be an artifact of finite system size. Possibly, the apparent demixing indicates that for X(t) ≳ 0.1, the stable TBA aggregates are simply too large to fit into the simulation cell. Our results provide a view

  9. Aggregation in dilute aqueous tert-butyl alcohol solutions: Insights from large-scale simulations

    NASA Astrophysics Data System (ADS)

    Gupta, Rini; Patey, G. N.

    2012-07-01

    Molecular dynamics simulations employing up to 64 000 particles are used to investigate aggregation and microheterogeneity in aqueous tert-butyl alcohol (TBA) solutions for TBA mole fractions Xt ⩽ 0.1. Four different force fields are considered. It is shown that the results obtained can be strongly dependent on the particular force field employed, and can be significantly influenced by system size. Two of the force fields considered show TBA aggregation in the concentration range Xt ≈ 0.03 - 0.06. For these models, systems of 64 000 particles are minimally sufficient to accommodate the TBA aggregates. The structures resulting from TBA aggregation do not have a well-defined size and shape, as one might find in micellar systems, but are better described as TBA-rich and water-rich regions. All pair correlation functions exhibit long-range oscillatory behavior with wavelengths that are much larger than molecular length scales. The oscillations are not strongly damped and the correlations can easily exceed the size of the simulation cell, even for the low TBA concentrations considered here. We note that these long-range correlations pose a serious problem if one wishes to obtain certain physical properties such as Kirkwood-Buff integrals from simulation results. In contrast, two other force fields that we consider show little sign of aggregation for Xt ≲ 0.08. In our 64 000 particle simulations all four models considered show demixing-like behavior for Xt ≳ 0.1, although such behavior is not evident in smaller systems of 2000 particles. The meaning of the demixing-like behavior is unclear. Since real TBA-water solutions do not demix, it might be an indication that all four models we consider poorly represent the real system. Alternatively, it might be an artifact of finite system size. Possibly, the apparent demixing indicates that for Xt ≳ 0.1, the stable TBA aggregates are simply too large to fit into the simulation cell. Our results provide a view of the

  10. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  11. Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(L-lactide)s initiated with diverse natural sugar alcohols.

    PubMed

    Hao, Qinghui; Li, Faxue; Li, Qiaobo; Li, Yang; Jia, Lin; Yang, Jing; Fang, Qiang; Cao, Amin

    2005-01-01

    This study presents syntheses, structural characterization, and crystallization kinetic investigation of new structurally well-defined star-shaped poly(l-lactide)s (PLLAs). First, a series of new 3- to 6-arm star-shaped PLLAs were synthesized through SnOct(2) catalyzed ring-opening polymerization of (l)-lactide with natural sugar alcohols of glycerol, erythritol, xylitol, and sorbitol as the favorable initiators. Subsequently, their chemical structures were characterized by means of GPC, NMR, and viscometer with respect to the star-shaped structures, demonstrating the well-defined arm structures as evidenced on the g(1/2)/g' values, where g and g' denote the ratios of mean-square radius of gyration and intrinsic viscosity of a star-shaped polymer to those of a linear structural reference with similar absolute molecular weight. Furthermore, spherulite morphologies and growth rates were studied by a polarized microscopy (POM) for the synthesized star-shaped PLLAs with different molecular weights, and it was found that the more arms of a star-shaped PLLA finally resulted in a lower spherulite growth rate. With regard to the crystallization kinetics of these star-shaped PLLAs, isothermal and nonisothermal crystallization were examined by differential scanning calorimeter (DSC). It was found that Avrami exponent n values of isothermal crystallization were almost independent of the isothermal crystallization temperature T(c) for different series of star-shaped PLLAs. In contrast, the values of Avrami exponent n were observed to strongly depend on the star-shaped structures with different arms, implying their distinct nucleation mechanisms, and the more arms of a star-shaped PLLA led to a slower isothermal crystallization rate. On the basis of a modified Avrami equation, new light was shed on the nonisothermal crystallization kinetics for the star-shaped PLLAs, and the activation energies were found to vary from 146.86 kJ/mol for the linear PLLA EG-3 to 221.23 kJ/mol of

  12. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  13. Towards biodegradable wireless implants.

    PubMed

    Boutry, Clémentine M; Chandrahalim, Hengky; Streit, Patrick; Schinhammer, Michael; Hänzi, Anja C; Hierold, Christofer

    2012-05-28

    A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.

  14. [Biodegradation of polyethylene].

    PubMed

    Yang, Jun; Song, Yi-ling; Qin, Xiao-yan

    2007-05-01

    Plastic material is one of the most serious solid wastes pollution. More than 40 million tons of plastics produced each year are discarded into environment. Plastics accumulated in the environment is highly resistant to biodegradation and not be able to take part in substance recycle. To increase the biodegradation efficiency of plastics by different means is the main research direction. This article reviewed the recent research works of polyethylene biodegradation that included the modification and pretreatment of polyethylene, biodegradation pathway, the relevant microbes and enzymes and the changes of physical, chemical and biological properties after biodegradation. The study directions of exploiting the kinds of life-forms of biodegradation polyethylene except the microorganisms, isolating and cloning the key enzymes and gene that could produce active groups, and enhancing the study on polyethylene biodegradation without additive were proposed.

  15. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI).

    PubMed

    Sultan, Sherif; Tawfick, Wael; Hynes, Niamh

    2013-04-01

    We aim to compare cool excimer laser-assisted angioplasty (CELA) versus tibial balloon angioplasty (TBA) in patients with critical limb ischemia (CLI) with tibial artery occlusive disease. The primary end point is sustained clinical improvement (SCI) and amputation-free survival (AFS). The secondary end points are binary restenosis, target extremity revascularization (TER), and cost-effectiveness. From June 2005 to October 2010, 1506 patients were referred with peripheral vascular disease and 572 with CLI. A total of 80 patients underwent 89 endovascular revascularizations (EVRs) for tibial occlusions, 47 using TBA and 42 using CELA. All patients were Rutherford category 4 to 6. Three-year SCI was enhanced with CELA (81%) compared to TBA (63.8%; P = .013). Three-year AFS significantly improved with CELA (95.2%) versus TBA (89.4%; P = .0165). Three-year freedom from TER was significantly improved with CELA (92.9%) versus 78.7% TBA (P = .026). Three-year freedom from MACE was comparable in both the groups (P = .455). Patients with CELA had significantly improved quality time without symptoms of disease or toxicity of treatment (Q-TWiST) at 3 years (10.5 months; P = .048) with incremental cost of €2073.19 per quality-adjusted life year gained. Tibial EVR provides exceptional outcome in CLI. The CELA has superior SCI, AFS, and freedom from TER, with improved Q-TWiST and cost-effectiveness.

  16. Characterization of biodegraded coals

    SciTech Connect

    Bean, R.M.; Franz, J.A.; Campbell, J.C.; Linehan, J.C.; Stewart, D.L.; Thomas, B.L.

    1988-04-01

    We have been able to accomplish the biodegradation of bituminous Illinois No. 6 coal after a pretreatment consisting of air oxidation, using a culture of the fungus Penicillium sp. We report in this paper results of chemical and spectrometric analyses of the starting materials and products from Illinois No. 6 coal biodegradation, and compare the results with those previously reported from the biodegradation of leonardite. 13 refs., 1 fig., 5 tabs.

  17. Biodegradability of plastics.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  19. Fate of free and linear alcohol-ethoxylate-derived fatty alcohols in activated sludge.

    PubMed

    Federle, Thomas W; Itrich, Nina R

    2006-05-01

    Pure homologues of [1-14C] C12, C14, and C16 alcohols and the linear alcohol ethoxylates, AE [1-14C alkyl] C13E9 and C16E9 were tested in a batch-activated sludge die-away system to assess their biodegradation kinetics and to predict levels of free alcohol derived from AE biodegradation in treated effluent. First-order rates for primary biodegradation were similar for all alcohols (86-113 h(-1)) and were used to predict removal under typical treatment conditions. Predicted removals of fatty alcohols ranged from 99.76% to 99.85%, consistent with published field data. During the biodegradation of the AE homologues, lower than expected levels of fatty alcohol based upon the assumption that biodegradation occurs through central fission were observed. Rather than fatty alcohols, the major metabolites were polar materials resulting from omega oxidation of the alkyl chain prior to or concurrent with central cleavage. The amounts of free fatty alcohols that were formed from AEs in influent and escape into effluent were negligible due both to their rapid degradation and to the finding that formation of free alcohol through central cleavage is only a minor degradation pathway in activated sludge.

  20. Nonmonotonic Hydration Behavior of Bovine Serum Albumin in Alcohol/Water Binary Mixtures: A Terahertz Spectroscopic Investigation.

    PubMed

    Das, Dipak Kumar; Das Mahanta, Debasish; Mitra, Rajib Kumar

    2017-03-01

    We report the experimental observation of nonmonotonic changes in the collective hydration of bovine serum albumin (BSA) in the presence of alcohols of varying carbon-chain lengths, that is, ethanol, 2-propanol, and tert-butyl alcohol (TBA), by using terahertz (THz) time domain spectroscopy. We measured the THz absorption coefficient (α) of the protein solutions, and it was observed that α fluctuated periodically as a function of alcohol concentration at a fixed protein concentration. For a fixed alcohol concentration, an increase in the protein concentration resulted in nonmonotonic changes in α; thus, it first decreased rapidly and then increased, which was followed by a shallow decrease. An alcohol-induced α helix to random coil transition of the protein secondary structure was revealed by circular dichroism spectroscopy measurements, and the effect was most prominent in TBA. The anomalous change in the hydration was found to be a delicate balance between the various interactions present in the three-component system.

  1. Hydrophobic Hydration in Water-tert-Butyl Alcohol Solutions by Extended Depolarized Light Scattering.

    PubMed

    Comez, L; Paolantoni, M; Lupi, L; Sassi, P; Corezzi, S; Morresi, A; Fioretto, D

    2015-07-23

    Molecular dynamics and structural properties of water-tert-butyl alcohol (TBA) mixtures are studied as a function of concentration by extended depolarized light scattering (EDLS) experiments. The wide frequency range, going from fraction to several thousand GHz, explored by EDLS allows distinguishing TBA rotational dynamics from structural relaxation of water and intermolecular vibrational and librational modes of the solution. Contributions to the water relaxation originating from two distinct populations, i.e. hydration and bulk water, are clearly identified. The dynamic retardation factor of hydration water with respect to the bulk, ξ ≈ 4, almost concentration independent, is one of the smallest found by EDLS among a variety of systems of different nature and complexity. This result, together with the small number of water molecules perturbed by the presence of TBA, supports the idea that hydrophobic simple molecules are less effective than hydrophilic and more complex molecules in perturbing the H-bond network of liquid water. At increasing TBA concentrations the average number of perturbed water molecules shows a pronounced decrease and the characteristic frequency of librational motions reduces significantly, both of which are results consistent with the occurrence of self-aggregation of TBA molecules.

  2. Biodegradation of plastics.

    PubMed

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  3. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  4. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  5. Characterization of biodegraded coals

    SciTech Connect

    Bean, R.M.; Franz, J.A.; Campbell, J.A.; Linehan, J.C.; Stewart, D.L.; Thomas, B.L.

    1988-01-01

    Microbial degradation of coals to materials that are soluble in water has been a topic of intensive research for the last few years. The potential for economical recovery of low-grade coals, coupled with possibilities for further upgrading by microbial desulfurization or methanation has spurred intensive research at a number of laboratories. Until very recently, coal biodegradation has been accomplished using low-grade, naturally oxidized coals such as leonardiate, or coals subjected to pretreatment with oxidizing chemicals. The authors have been able to accomplish the biodegradation of bituminous Illinois 6 coal after a pretreatment consisting of air oxidation, using a culture of the fungus Penicillium sp. They report in this paper results of chemical and spectrometric analyses of the starting materials and products from Illinois 6 coal biodegradation, and compare the results with those previously reported from the biodegradation of leonardite.

  6. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-11-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature.

  7. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  8. Biodegradation of fluorinated alkyl substances.

    PubMed

    Frömel, Tobias; Knepper, Thomas P

    2010-01-01

    The incorporation of fluorine into organic molecules entails both positive and adverse effects. Although fluorine imparts positive and unique properties such as water-and oil-repellency and chemical stability, adverse effects often pervade members of this compound class. A striking property of long perfluoroalkyl chains is their very pronounced environmental persistence. The present review is the first one designed to summarize recent accomplishments in the field of biodegradation of fluorine-containing surfactants, their metabolites, and structural analogs. The pronounced scientific and public interest in these chemicals has given impetus to undertake numerous degradation studies to assess the sources and origins of different fluorinated analog chemical known to exist in the environment. It was shown that biodegradation plays an important role in understanding how fluorinated substances reach the environment and, once they do, what their fate is. Today, PFOS and PFOA are ubiquitously detected as environmental contaminants. Their prominence as contaminants is mainly due to their extreme persistence, which is linked to their perfluoroalkyl chain length. It appears that desulfonation of a highly fluorinated surfactants can be achieved if an α-situated H atom, in relation to the sulfonate group, is present, at least under sulfur-limiting conditions. Molecules that are less heavily fluorinated can show very complex metabolic behavior, as is the case for fluorotelomer alcohols. These compounds are degraded via different but simultaneous pathways, which produce different stable metabolites, one of which is the respective perfluoroalkanoate (8:2-FTOH is transformed to PFOA). Preliminary screening tests indicate that fluorinated functional groups, such as the trifluoromethoxy group and the p-(trifluoromethyl)phenoxy group, may be useful implementations in novel, environmentally benign fluorosurfactants. More specifically, trifluoromethoxy groups constitute a substitute

  9. Molecularly Imprinted Biodegradable Nanoparticles.

    PubMed

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-10

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  10. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  11. Molecularly Imprinted Biodegradable Nanoparticles

    PubMed Central

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  12. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  13. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  14. Editorial: Biodegradable Materials

    PubMed Central

    Schaschke, Carl; Audic, Jean-Luc

    2014-01-01

    This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment. PMID:25421242

  15. Directions for environmentally biodegradable polymer research

    SciTech Connect

    Swift, G. )

    1993-03-01

    A major factor promoting interest in biodegradable polymers is the growing concern raised by the recalcitrance and unknown environmental fate of many of the currently used synthetic polymers. These polymers include both water-soluble and water-insoluble types. The former are generally specialty polymers with functional groups that effect water solubility such as carboxyl, hydroxyl, amido, etc.; the latter are usually nonfunctional polymers commonly referred to as commodity plastics. Both types of polymers are widely used in many applications. Water-soluble polymers are used, for example, in cosmetics, water treatment, dispersants, thickeners, detergents, and superabsorbents, and they include poly(acrylic acid), polyacrylamide, poly(vinyl alcohol), and poly(ethylene glycol). Plastics are used in packaging, disposable diaper backing, fishing nets, and agricultural film; they include polymers such as polyethylene, polypropylene, polystyrene, poly(vinyl chloride), poly(ethylene terephthalate), and Nylon 6.6. In this Account, the author presents a personal perspective on definitions and test protocols for biodegradable polymers as well as how they will influence the future direction and developments in the field. However, before doing so he digresses briefly to present a commentary on the role of biodegradable polymers in environmental waste management. This should be useful for those readers unfamiliar with the subject, and it will set the stage for the rest of the discussion. 36 refs., 3 figs.

  16. The influence of structural components of alkyl esters on their anaerobic biodegradation in marine sediment.

    PubMed

    Herman, David; Roberts, Deborah

    2006-10-01

    Ester-based organic compounds are one type of synthetic base fluid added to drilling mud used during off-shore oil-drilling operations in the Gulf of Mexico. Concern over the environmental impact of synthetic base fluid (SBF) contaminated rock cuttings discharged into the Gulf of Mexico has prompted the promulgation of EPA regulations requiring that all SBF be tested for biodegradability in marine sediment prior to their use in the Gulf. In order to allow the design or selection of suitably biodegradable esters, the anaerobic biodegradability of a variety of ester compounds was tested using a marine sediment inoculum to reveal the effect of: (a) increasing the chain length of the acid moiety, (b) increasing the chain length of the alcohol moiety; (c) alternating the relative size of the alcohol and acid moieties, (d) branching in the alcohol moiety, and (e) the presence of an unsaturated bond in the acidic moiety. The chemical structure of esters was found to affect the completeness and rate of anaerobic biodegradation, and would affect their ability to be certified for use as an SBF in the Gulf of Mexico. Recommendations for ester usage include using esters that have a total carbon number of between 12 and 18 and avoiding the use of branched alcohols (or acids by inference). The presence of an unsaturated bond in the acid (or alcohol by inference) increased biodegradability of the ester.

  17. Phthalates biodegradation in the environment.

    PubMed

    Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong

    2008-08-01

    Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.

  18. Fungal biodegradation of lignocelluloses

    Treesearch

    Annele Hatakka; Kenneth E. Hammel

    2010-01-01

    Uncertainties in the basic structures of especially lignin but also other components in lignocellulose make fungal biodegradation studies a challenging task. The following properties are important in terms of microbial or enzymatic attack: (1) lignin polymers have compact structures that are insoluble in water and difficult to penetrate by microbes or enzymes, (2) the...

  19. Systemic approaches to biodegradation.

    PubMed

    Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso

    2009-01-01

    Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.

  20. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  1. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles.

    PubMed

    Aragao-Santiago, Letícia; Hillaireau, Hervé; Grabowski, Nadège; Mura, Simona; Nascimento, Thais L; Dufort, Sandrine; Coll, Jean-Luc; Tsapis, Nicolas; Fattal, Elias

    2016-01-01

    To design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200 nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice. After exposure, analysis of bronchoalveolar lavage (BAL) cell population, protein secretion and cytokine release as well as lung histology were carried out. The inflammatory response was compared to the one induced by non-biodegradable counterparts, namely, TiO2 of rutile and anatase crystal form and polystyrene (PS). PLGA NPs were mostly present in mice lungs, with little passage to other organs. An increase in neutrophil recruitment was observed in mice exposed to PS NPs 24 h after nebulization, which declined at 48 h. This result was supported by an increase in interleukin (IL)-6 and tumor necrosis factor α (TNFα) in BAL supernatant at 24 h. TiO2 anatase NPs were still present in lung cells 48 h after nebulization and induced the expression of pro-inflammatory cytokines and the recruitment of polymorphonuclear cells to BAL. In contrast, regardless of their surface charge, PLGA NPs did not induce significant changes in the inflammation markers analyzed. In conclusion, these results point out to a safe use of PLGA NPs regardless of their surface coating compared to non-biodegradable ones.

  2. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  3. Alcohol Facts

    MedlinePlus

    ... Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ... alcohol in it than beer, malt liquor, or wine. These drink sizes have about the same amount ...

  4. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  5. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups www.al-anon.org National Institute on Alcohol ...

  6. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    NASA Astrophysics Data System (ADS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  7. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  8. Biodegradable mesostructured polymer membranes

    PubMed Central

    Tian, Bozhi; Shankarappa, Sahadev; Chang, Homer H.; Tong, Rong; Kohane, Daniel S.

    2013-01-01

    The extracellular matrix (ECM) has a quasi-ordered reticular mesostructure with feature sizes on the order of tenths of to a few hundred nanometers. Approaches to preparing biodegradable synthetic scaffolds for engineered tissues that have the critical mesostructure to mimic ECM are few. Here we present a simple and general solvent evaporation-induced self-assembly (EISA) approach to preparing concentrically reticular mesostructured polyol-polyester membranes. The mesostructures were formed by a novel self-assembly process without covalent or electrostatic interactions, which yielded feature sizes matching those of ECM. The mesostructured materials were nonionic, hydrophilic, and water-permeable, and could be shaped into arbitrary geometries such as conformally-molded tubular sacs and micropatterned meshes. Importantly, the mesostructured polymers were biodegradable, and were used as ultrathin temporary substrates for engineering vascular tissue constructs. PMID:23964960

  9. Biodegradable mesostructured polymer membranes.

    PubMed

    Tian, Bozhi; Shankarappa, Sahadev A; Chang, Homer H; Tong, Rong; Kohane, Daniel S

    2013-09-11

    The extracellular matrix (ECM) has a quasi-ordered reticular mesostructure with feature sizes on the order of tenths of to a few hundred nanometers. Approaches to preparing biodegradable synthetic scaffolds for engineered tissues that have the critical mesostructure to mimic ECM are few. Here we present a simple and general solvent evaporation-induced self-assembly (EISA) approach to preparing concentrically reticular mesostructured polyol-polyester membranes. The mesostructures were formed by a novel self-assembly process without covalent or electrostatic interactions, which yielded feature sizes matching those of ECM. The mesostructured materials were nonionic, hydrophilic, and water-permeable and could be shaped into arbitrary geometries such as conformally molded tubular sacs and micropatterned meshes. Importantly, the mesostructured polymers were biodegradable and were used as ultrathin temporary substrates for engineering vascular tissue constructs.

  10. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  11. Biodegradable Ureteral Stents

    NASA Astrophysics Data System (ADS)

    Chew, Ben H.; Hadaschik, Boris A.; Paterson, Ryan F.; Lange, Dirk

    2008-09-01

    Ureteral stents have been associated with painful symptoms and require a secondary procedure for removal if the suture tether is removed. Biodegradable stents have been attempted in the past, but are no longer used since they resulted in histological inflammation or unpredictable variability in degradation time. This article reviews past degradable materials used in both the prostatic urethra and ureter as well as identifies a new degradable ureteral stent that lasts between 2 to 4 weeks in a porcine model.

  12. Integration of bioinformatics to biodegradation

    PubMed Central

    2014-01-01

    Bioinformatics and biodegradation are two primary scientific fields in applied microbiology and biotechnology. The present review describes development of various bioinformatics tools that may be applied in the field of biodegradation. Several databases, including the University of Minnesota Biocatalysis/Biodegradation database (UM-BBD), a database of biodegradative oxygenases (OxDBase), Biodegradation Network-Molecular Biology Database (Bionemo) MetaCyc, and BioCyc have been developed to enable access to information related to biochemistry and genetics of microbial degradation. In addition, several bioinformatics tools for predicting toxicity and biodegradation of chemicals have been developed. Furthermore, the whole genomes of several potential degrading bacteria have been sequenced and annotated using bioinformatics tools. PMID:24808763

  13. Biodegradable Polymers for the Environment

    NASA Astrophysics Data System (ADS)

    Gross, Richard A.; Kalra, Bhanu

    2002-08-01

    Biodegradable polymers are designed to degrade upon disposal by the action of living organisms. Extraordinary progress has been made in the development of practical processes and products from polymers such as starch, cellulose, and lactic acid. The need to create alternative biodegradable water-soluble polymers for down-the-drain products such as detergents and cosmetics has taken on increasing importance. Consumers have, however, thus far attached little or no added value to the property of biodegradability, forcing industry to compete head-to-head on a cost-performance basis with existing familiar products. In addition, no suitable infrastructure for the disposal of biodegradable materials exists as yet.

  14. Biodegradable polymers for the environment.

    PubMed

    Gross, Richard A; Kalra, Bhanu

    2002-08-02

    Biodegradable polymers are designed to degrade upon disposal by the action of living organisms. Extraordinary progress has been made in the development of practical processes and products from polymers such as starch, cellulose, and lactic acid. The need to create alternative biodegradable water-soluble polymers for down-the-drain products such as detergents and cosmetics has taken on increasing importance. Consumers have, however, thus far attached little or no added value to the property of biodegradability, forcing industry to compete head-to-head on a cost-performance basis with existing familiar products. In addition, no suitable infrastructure for the disposal of biodegradable materials exists as yet.

  15. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    PubMed

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  16. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    PubMed

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) < 6% at 100 ng L(-1)), sensitive (LOD were 0.2 and 0.4 ng/L for TCA and TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  17. Production of mono- and di-carboxylated polyethylene glycols as a factor obstacle to the successful ozonation-assisted biodegradation of ethoxylated compounds.

    PubMed

    Nakai, Satoshi; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa

    2015-10-01

    Ozonation is believed to improve the biodegradability of organic compounds. In the present study, degradation of nonylphenol ethoxylates (NPEOs) was monitored in hybrid treatment systems consisting of ozonation and microbial degradation processes. We found that ozonation of NPEOs decreased, rather than increased, the biodegradability under certain conditions. The timing of ozonation was a definitive factor in determining whether ozonation increased or decreased the biodegradation rates of NPEOs. Initial ozonation of NPEOs prior to biodegradation reduced the rate of dissolved organic carbon (DOC) removal during the subsequent 14 d of biodegradation, whereas intermediate ozonation at the 9th day of biodegradation improved subsequent DOC removal during 14 d of NPEO biodegradation. Furthermore, reduction of DOC removal was also observed, when initial ozonation prior to biodegradation was subjected to cetyl alcohol ethoxylates. The production of less biodegradable intermediates, such as mono- and dicarboxylated polyethylene glycols (MCPEGs and DCPEGs), was responsible for the negative effect of ozonation on biodegradability of NPEOs. DCPEGs and MCPEGs were produced by biodegradation of polyethylene glycols (PEGs) that were ozonolysis products of the NPEOs, and the biodegradability of DCPEGs and MCPEGs was less than that of the precursor PEGs. The results indicate that, if the target chemicals contain ethoxy chains, production of PEGs may be one of the important factors when ozonation is considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A model for simultaneous crystallisation and biodegradation of biodegradable polymers.

    PubMed

    Han, Xiaoxiao; Pan, Jingzhe

    2009-01-01

    This paper completes the model of biodegradation for biodegradable polymers that was previously developed by Wang et al. (Wang Y, Pan J, Han X, Sinka, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29:3393-401). Crystallisation during biodegradation was not considered in the previous work which is the topic of the current paper. For many commonly used biodegradable polymers, there is a strong interplay between crystallisation and hydrolysis reaction during biodegradation - the chain cleavage caused by the hydrolysis reaction provides an extra mobility for the polymer chains to crystallise and the resulting crystalline phase becomes more resistant to further hydrolysis reaction. This paper presents a complete theory to describe this interplay. The fundamental equations in the Avrami's theory for crystallisation are modified and coupled to the diffusion-reaction equations that were developed in our previous work. The mathematical equations are then applied to three biodegradable polymers for which long term degradation data are available in the literature. It is shown that the model can capture the behavior of the major biodegradable polymers very well.

  19. Computational Framework for Predictive Biodegradation

    PubMed Central

    Finley, Stacey D.; Broadbelt, Linda J.

    2014-01-01

    As increasing amounts of anthropogenic chemicals are released into the environment, it is vital to human health and the preservation of ecosystems to evaluate the fate of these chemicals in the environment. It is useful to predict whether a particular compound is biodegradable and if alternate routes can be engineered for compounds already known to be biodegradable. In this work, we describe a computational framework (called BNICE) that can be used for the prediction of novel biodegradation pathways of xenobiotics. The framework was applied to 4-chlorobiphenyl, phenanthrene, γ-hexachlorocyclohexane, and 1,2,4-trichlorobenzene, compounds representing various classes of xenobiotics with known biodegradation routes. BNICE reproduced the proposed biodegradation routes found experimentally, and in addition, it expanded the biodegradation reaction networks through the generation of novel compounds and reactions. The novel reactions involved in the biodegradation of 1,2,4-trichlorobenzene were studied in depth, where pathway and thermodynamic analyses were performed. This work demonstrates that BNICE can be applied to generate novel pathways to degrade xenobiotic compounds that are thermodynamically feasible alternatives to known biodegradation routes and attractive targets for metabolic engineering. PMID:19650084

  20. Biodegradation of cresol isomers in anoxic aquifers.

    PubMed Central

    Smolenski, W J; Suflita, J M

    1987-01-01

    The biodegradation of o-, m-, and p-cresol was examined in material obtained from a shallow anaerobic alluvial sand aquifer. The cresol isomers were preferentially metabolized, with p-cresol being the most easily degraded. m-Cresol was more persistent than the para-isomer, and o-cresol persisted for over 90 days. Biodegradation of cresol isomers was favored under sulfate-reducing conditions (SRC) compared with that under methanogenic conditions (MC). Slurries that were acclimated to p-cresol metabolism transformed this substrate at 18 and 330 nmol/h per g (dry weight) for MC and SRC, respectively. Inhibition of electron flow to sulfate reduction with 2.0 mM molybdate reduced p-cresol metabolism in incubations containing sulfate. When methanogenesis was blocked with 5 mM bromoethanesulfonic acid in incubations lacking sulfate, p-cresol catabolism was retarded. Under SRC 3.4 mol of sulfate was consumed per mol of p-cresol metabolized. The addition of sulfate to methanogenic incubations stimulated p-cresol degradation. Simultaneous adaptation studies in combination with spectrophotometric and chromatographic analysis of metabolites indicated that p-cresol was oxidized under SRC to p-hydroxybenzoate via the corresponding alcohol and aldehyde. This series of reactions was inhibited under sulfate-limited or aerobic conditions. Therefore, the primary catabolic event for p-cresol decomposition under SRC appears to involve the hydroxylation of the aryl methyl group. PMID:3579279

  1. Preparation of hydrophilic polyhydroxyalkyl glutamine crosslinked films and its biodegradability.

    PubMed

    Pan, Shi-Rong; Wang, Qin-Mei; Yi, Wu

    2007-09-01

    Polybenzyl glutamate (PBLG) or polymethyl glutamate (PMLG) films have been aminolyzed with amino alcohol and crosslinked with aliphatic diamine at 60 degrees C for 48 h simultaneously which led to the formation of crosslinked films of polyhydroxyalkyl glutamine (PHAG). ATR-IR indicates that for the aminolysis of PBLG with 2-amino-1-ethanol or 3-amino-1-propanol, benzyl glutamate almost completely turned to hydroxyalkyl glutamine, however for the aminolysis of PMLG with 5-amino-1-pentanol, methyl glutamate partially turned to hydroxypentanyl glutamine. The water-swelling test shows that water-swelling ratio Q of PHAG films from amino alcohol with longer carbon chain was smaller, the PHAG films crosslinked by 1,2-diamino ethane have the higher water-swelling ratio Q, but the PHAG films crosslinked by 1,8-diamino octane have the lower water swelling ratio Q; and PHAG films with a greater amount of crosslinking agents have high crosslinking density or the low water swelling-ratio Q for same amino alcohol and diamine. It is obvious from in vitro enzymatic hydrolysis test that specimens with smaller swelling ratio Q displayed larger T(1/2), time for half weight digestion of PHAG film, that is, less biodegradability. Therefore, biodegradability of the crosslinked PHAG films can be controlled by changing amino alcohol and diamine.

  2. Microbial biosurfactants and biodegradation.

    PubMed

    Ward, Owen P

    2010-01-01

    Microbial biosurfactants are amphipathic molecules having typical molecular weights of 500-1500 Da, made up of peptides, saccharides or lipids or their combinations. In biodegradation processes they mediate solubilisation, mobilization and/or accession of hydrophobic substrates to microbes. They may be located on the cell surface or be secreted into the extracellular medium and they facilitate uptake of hydrophobic molecules through direct cellular contact with hydrophobic solids or droplets or through micellarisation. They are also involved in cell physiological processes such as biofilm formation and detachment, and in diverse biofilm associated processes such as wastewater treatment and microbial pathogenesis. The protection of contaminants in biosurfactants micelles may also inhibit uptake of contaminants by microbes. In bioremediation processes biosurfactants may facilitate release of contaminants from soil, but soils also tend to bind surfactants strongly which makes their role in contaminant desorption more complex. A greater understanding of the underlying roles played by biosurfactants in microbial physiology and in biodegradative processes is developing through advances in cell and molecular biology.

  3. Marine Oil Biodegradation.

    PubMed

    Hazen, Terry C; Prince, Roger C; Mahmoudi, Nagissa

    2016-03-01

    Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.

  4. Marine Oil Biodegradation

    SciTech Connect

    Hazen, Terry C.; Prince, Roger; Mahmoudi, Nagissa

    2015-12-23

    Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to ‘bloom’ in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.

  5. Marine Oil Biodegradation

    DOE PAGES

    Hazen, Terry C.; Prince, Roger; Mahmoudi, Nagissa

    2015-12-23

    Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to ‘bloom’ in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine watersmore » with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.« less

  6. Biodegradation of crude oils.

    PubMed

    Bosecker, K; Teschner, M; Wehner, H

    1989-01-01

    Petroleum from well sites in the Gifhorn Trough (Lower Saxony, NW-Germany) and the Maracaibo Basin (Venezuela) contained various types of microorganisms capable of degrading crude oils. Genetically related oils were inoculated with the isolated microorganisms and the degradation of the oils was followed by chromatographic techniques. Parameters important for the reactions (pH, supply of oxygen, nitrogen and phosphorus, reaction medium) were monitored and optimized. The degradation of n-alkanes was followed closely. Microorganisms active in degradation (yeast, bacteria) easily survived a period of inactivity due to missing nutrients and were reactivated within hours to degrade newly added crude oil. Under substrate-limiting conditions selectivity of degradation was found, destroying medium-chain n-alkanes (C20, C21) at a faster rate than long-chain n-alkanes (C30, C31). During degradation the physical parameters of the crude oils (e.g. density, viscosity, average molecular weight) were altered and shifted into the direction of heavy oil. In vitro degraded oil is very similar to oil degraded in nature. Aromatic hydrocarbons and biomarker molecules (steranes and triterpanes) were not degraded under the conditions used. Pyrolysis-GC analysis of asphaltenes revealed no significant changes in the composition of pyrolyzates during biodegradation. There is sufficient evidence that heavy oils - besides some other effects - are generated by the in situ-biodegradation of conventional oils.

  7. Preparation of a biodegradable oil absorber and its biodegradation.

    PubMed

    Yoo, Su-Yong; Daud, Wan Mohd Ashri Wan; Lee, Min-Gyu

    2012-01-01

    The biodegradable oil absorption resin (B-PEHA) was prepared by suspension polymerization, and its preparation was confirmed by Fourier transform infrared analysis. The oil absorption capacities of the prepared B-PEHA were: chloroform 30.88, toluene 19.75, xylene, 18.78, THF 15.96, octane 11.43, hexane 9.5, diesel oil 12.80, and kerosene 13.79 g/g. The biodegradation of the prepared B-PEHA was also investigated by determination of reduced sugar produced after enzymatic hydrolysis, thermogravimetric analysis, and incubation with Aspergillus niger. The biodegradation of B-PEHA was ~18%.

  8. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    PubMed Central

    Li, Shanshan; Wang, Shan; Yan, Wei

    2016-01-01

    Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE), which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE) was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8), accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L) and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition. PMID:27608032

  9. Biodegradation of Polypropylene Nonwovens

    NASA Astrophysics Data System (ADS)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  10. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    ERIC Educational Resources Information Center

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  11. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    USDA-ARS?s Scientific Manuscript database

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  12. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    ERIC Educational Resources Information Center

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  13. Biodegradation of propellant ingredients

    SciTech Connect

    Zhang, Y.Z.; Sundaram, S.T.; Sharma, A.

    1995-12-31

    This paper summarizes efforts to degrade nitrocellulose (NC) and nitroglycerin (NG) with fungi. Screening experiments were performed to determine the ability of mycelial fungi to biodegrade NC. The greatest amount of NC degradation was obtained with Sclerotium rolfsii ATCC 24459 and Fusarium solani IFO 31093. These fungi were then tested for NG degradation. It was found that the combined culture aerobically degraded 100% of the NG to form a mixture of 55% dinitroglycerin (DNG) and 5% of mononitroglycerin (MNG) in two days, with no further change observed afterward. In the presence of 1.2% glucose and 0.05% ammonium nitrate, NG was completely degraded in two days and a mixture of 20% DNG and 16% MNG was formed after 11 days. Based on these results, it appears that the combination of the fungi in a one to one ratio can be used to degrade both of these energetic compounds.

  14. Black Alcoholism.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  15. Biodegradation of biodiesel fuels

    SciTech Connect

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  16. Taking advantage of natural biodegradation

    SciTech Connect

    Butler, W.A.; Bartlett, C.L.

    1995-12-31

    A chemical manufacturing facility in central New Jersey evaluated alternatives to address low levels of volatile organic compounds (VOCs) in groundwater. Significant natural attenuation of VOCs was observed in groundwater, and is believed to be the result of natural biodegradation, commonly referred to as intrinsic bioremediation. A study consisting of groundwater sampling and analysis, field monitoring, and transport modeling was conducted to evaluate and confirm this phenomenon. The primary conclusion that can be drawn from the study is that observed natural attenuation of VOCs in groundwater is due to natural biodegradation. Based on the concept that natural biodegradation will minimize contaminant migration, bioventing has been implemented to remove the vadose-zone source of VOCs to groundwater. Taking advantage of natural biodegradation has resulted in significant cost savings compared to implementing a conventional groundwater pump-and-treat system, while still protecting human health and the environment.

  17. Biodegradation of kerosene by Aspergillus ochraceus NCIM-1146.

    PubMed

    Saratale, Ganesh; Kalme, Satish; Bhosale, Sanjyot; Govindwar, Sanjay

    2007-10-01

    The filamentous fungus Aspergillus ochraceus NCIM-1146 was found to degrade kerosene, when previously grown mycelium (96 h) was incubated in the broth containing kerosene. Higher levels of NADPH-DCIP reductase, aminopyrine N-demethylase and kerosene biodegradation activities were found to be present after the growth in potato dextrose broth for 96 h, when compared with the activities at different time intervals during the growth phase. NADPH was the preferred cofactor for enzyme activity, which was inhibited by CO, indicating cytochrome P450 mediated reactions. A significant increase in all the enzyme activities was observed when mycelium incubated for 18 h in mineral salts medium, containing cholesterol, camphor, naphthalene, 1,2-dimethoxybenzene, phenobarbital, n-hexane, kerosene or saffola oil as inducers. Acetaldehyde produced by alcohol dehydrogenase could be used as an indicator for the kerosene biodegradation.

  18. Evaluation of biodegradable plastics for rubber seedling applications

    NASA Astrophysics Data System (ADS)

    Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa

    2015-08-01

    The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.

  19. Biodegradable Peptide-Silica Nanodonuts.

    PubMed

    Maggini, Laura; Travaglini, Leana; Cabrera, Ingrid; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-07

    We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated.

  20. Biodegradation of nitroaromatic compounds.

    PubMed

    Spain, J C

    1995-01-01

    Nitroaromatic compounds are released into the biosphere almost exclusively from anthropogenic sources. Some compounds are produced by incomplete combustion of fossil fuels; others are used as synthetic intermediates, dyes, pesticides, and explosives. Recent research revealed a number of microbial systems capable of transforming or biodegrading nitroaromatic compounds. Anaerobic bacteria can reduce the nitro group via nitroso and hydroxylamino intermediates to the corresponding amines. Isolates of Desulfovibrio spp. can use nitroaromatic compounds as their source of nitrogen. They can also reduce 2,4,6-trinitrotoluene to 2,4,6-triaminotoluene. Several strains of Clostridium can catalyze a similar reduction and also seem to be able to degrade the molecule to small aliphatic acids. Anaerobic systems have been demonstrated to destroy munitions and pesticides in soil. Fungi can extensively degrade or mineralize a variety of nitroaromatic compounds. For example, Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene and 2,4,6-trinitrotoluene and shows promise as the basis for bioremediation strategies. The anaerobic bacteria and the fungi mentioned above mostly transform nitroaromatic compounds via fortuitous reactions. In contrast, a number of nitroaromatic compounds can serve as growth substrates for aerobic bacteria. Removal or productive metabolism of nitro groups can be accomplished by four different strategies. (a) Some bacteria can reduce the aromatic ring of dinitro and trinitro compounds by the addition of a hydride ion to form a hydride-Meisenheimer complex, which subsequently rearomatizes with the elimination of nitrite. (b) Monooxygenase enzymes can add a single oxygen atom and eliminate the nitro group from nitrophenols. (c) Dioxygenase enzymes can insert two hydroxyl groups into the aromatic ring and precipitate the spontaneous elimination of the nitro group from a variety of nitroaromatic compounds. (d) Reduction of the nitro group to the corresponding

  1. Biodegradation of Polyethoxylated Nonylphenols

    PubMed Central

    Ruiz, Yassellis; Medina, Luis; Borusiak, Margarita; Ramos, Nairalith; Pinto, Gilberto; Valbuena, Oscar

    2013-01-01

    Polyethoxylated nonylphenols, with different ethoxylation degrees (NPEOx), are incorporated into many commercial and industrial products such as detergents, domestic disinfectants, emulsifiers, cosmetics, and pesticides. However, the toxic effects exerted by their degradation products, which are persistent in natural environments, have been demonstrated in several animal and invertebrate aquatic species. Therefore, it seems appropriate to look for indigenous bacteria capable of degrading native NPEOx and its derivatives. In this paper, the isolation of five bacterial strains, capable of using NPEO15, as unique carbon source, is described. The most efficient NPEO15 degrader bacterial strains were identified as Pseudomonas fluorescens (strain Yas2) and Klebsiella pneumoniae (strain Yas1). Maximal growth rates were reached at pH 8, 27°C in a 5% NPEO15 medium. The NPEO15 degradation extension, followed by viscometry assays, reached 65% after 54.5 h and 134 h incubation times, while the COD values decreased by 95% and 85% after 24 h for the Yas1 and Yas2 systems, respectively. The BOD was reduced by 99% and 99.9% levels in 24 h and 48 h incubations. The viscosity data indicated that the NPEO15 biodegradation by Yas2 follows first-order kinetics. Kinetic rate constant (k) and half life time (τ) for this biotransformation were estimated to be 0.0072 h−1 and 96.3 h, respectively. PMID:23936727

  2. IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) ...

    EPA Pesticide Factsheets

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in comments on the following: Draft literature search strategies The approach for identifying studies The screening process for selecting pertinent studies The resulting list of pertinent studies Preliminary evidence tables The process for selecting studies to include in evidence tables The quality of the studies in the evidence tables The literature search strategy, which describes the processes for identifying scientific literature, contains the studies that EPA considered and selected to include in the evidence tables. The preliminary evidence tables and exposure-response arrays present the key study data in a standardized format. The evidence tables summarize the available critical scientific literature. The exposure-response figures provide a graphical representation of the responses at different levels of exposure for each study in the evidence table. EPA is undertaking a new health assessment for t-butyl alcohol (TBA) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS and IRIS Summary of TBA that will be entered on the IRIS database. IRIS is an EPA da

  3. Biodegradation of sorbed chemicals in soil

    SciTech Connect

    Scow, K.M.; Fan, S.; Johnson, C.; Ma, G.M.

    1995-06-01

    Rates of biodegradation of sorbed chemicals are usually lower in soil than in aqueous systems, in part because sorption reduces the availability of the chemical to microorganisms. Biodegradation, sorption, and diffusion occur simultaneously and are tightly coupled. In soil, the rate of biodegradation is a function of a chemical`s diffusion coefficient, sorption partition coefficient, the distance it must diffuse from the site of sorption to microbial populations that can degrade it, and its biodegradation rate constant. A model (DSB model) was developed that describes biodegradation of chemicals limited in the availability by sorption and diffusion. Different kinetics expressions describe biodegradation depending on whether the reaction is controlled by mass transfer (diffusion and sorption) or the intrinsic biodegradation rate, and whether biodegradation begins during or after the majority of sorption has occurred. We tested the hypothesis that there is a direct relationship between how strongly a chemical is sorbed and the chemical`s biodegradation rate. In six soils with different organic carbon contents, there was no relationship between the extent or rate of biodegradation and the sorption partition coefficient for phenanthrene. Aging of phenanthrene residues in soil led to a substantial reduction in the rate of biodegradation compared to biodegradation rates of recently added phenanthrene. Considerable research has focused on identification and development of techniques for enhancing in situ biodegradation of sorbed chemicals. Development of such techniques, especially those involving inoculation with microbial strains, should consider physical mass transfer limitations and potential decreases in bioavailability over time. 4 refs., 3 figs., 1 tab.

  4. Effects of the Biodegradation on Biodegradable Polymer Blends and Polypropylene

    NASA Astrophysics Data System (ADS)

    Pereira, R. C. T.; Franchetti, S. M. M.; Agnelli, J. A. M.; Mattoso, L. H. C.

    2008-08-01

    The large use of plastics in the world generates a large amount of waste which persists around 200 years in the environment. To minimize this effect is important to search some new polymer materials: the blends of biodegradable polymers with synthetic polymers. It is a large area that needs an intensive research to investigate the blends properties and its behavior face to the different treatments to aim at the biodegradation. The blends used in this work are: some biodegradable polymers such as: poly(hydroxybutyrate) (PHB) and poly(ɛ-polycaprolactone) (PCL) with a synthetic polymer, polypropylene (PP), in lower concentration. These blends were prepared using an internal mixer (Torque Rheometer), and pressed. These films were submitted to fungus biotreatment. The films analyses will be carried out by Fourier Transform Infrared (FTIR), UV-Vis absorption (UV-Vis), Scanning Electronic Microscopy (SEM), DSC and TGA.

  5. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  6. Developments in metallic biodegradable stents.

    PubMed

    Hermawan, H; Dubé, D; Mantovani, D

    2010-05-01

    Interest in metallic degradable biomaterials research has been growing in the last decade. Both scientific journals and patent databases record a high increase in publications in this area. Biomedical implants with temporary function, such as coronary stents, are the targeted applications for this novel class of biomaterials. It is expected that stents made of degradable biomaterials, named biodegradable stents, will provide a temporary opening into a narrowed arterial vessel until the vessel remodels and will progressively disappear thereafter. Biodegradable stents made of metal have recently been progressed into preclinical tests in humans after their first introduction in early 2000s. By referring to patents and journal publications, this paper reviews the developments in biodegradable stents, with emphasis on those made of metals, starting from the first design ideas to validation testing.

  7. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  8. Petroleum biodegradation in marine environments.

    PubMed

    Harayama, S; Kishira, H; Kasai, Y; Shutsubo, K

    1999-08-01

    Petroleum-based products are the major source of energy for industry and daily life. Petroleum is also the raw material for many chemical products such as plastics, paints, and cosmetics. The transport of petroleum across the world is frequent, and the amounts of petroleum stocks in developed countries are enormous. Consequently, the potential for oil spills is significant, and research on the fate of petroleum in a marine environment is important to evaluate the environmental threat of oil spills, and to develop biotechnology to cope with them. Crude oil is constituted from thousands of components which are separated into saturates, aromatics, resins and asphaltenes. Upon discharge into the sea, crude oil is subjected to weathering, the process caused by the combined effects of physical, chemical and biological modification. Saturates, especially those of smaller molecular weight, are readily biodegraded in marine environments. Aromatics with one, two or three aromatic rings are also efficiently biodegraded; however, those with four or more aromatic ring are quite resistant to biodegradation. The asphaltene and resin fractions contain higher molecular weight compounds whose chemical structures have not yet been resolved. The biodegradability of these compounds is not yet known. It is known that the concentrations of available nitrogen and phosphorus in seawater limit the growth and activities of hydrocarbon-degrading microorganisms in a marine environment. In other words, the addition of nitrogen and phosphorus fertilizers to an oil-contaminated marine environment can stimulate the biodegradation of spilled oil. This notion was confirmed in the large-scale operation for bioremediation after the oil spill from the Exxon Valdez in Alaska. Many microorganisms capable of degrading petroleum components have been isolated. However, few of them seem to be important for petroleum biodegradation in natural environments. One group of bacteria belonging to the genus

  9. Facts about Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    Hall, Leonard C.

    Recognition of alcoholism as a treatable illness is a result of public education based on scientific facts. This publication, a digest of a more detailed survey of research about drinking and alcoholism, presents information about alcohol and its effects on individuals and society. It provides facts about the short-term and long-term effects of…

  10. Pressure and temperature effects on 2H spin-lattice relaxation times and 1H chemical shifts in tert-butyl alcohol- and urea-D2O solutions

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Ibuki, Kazuyasu; Ueno, Masakatsu

    1998-01-01

    The pressure and temperature effects of hydrophobic hydration were studied by NMR spectroscopy. The 1H chemical shifts (δ) were measured at 7.7, 29.9, and 48.4 °C under high pressure up to 294 MPa for HDO contained as impurity in neat D2O, 1 mol kg-1 tert-butyl alcohol (TBA)-D2O, and 1 mol kg-1 urea-D2O solutions, for the methyl group of TBA in the TBA-D2O solution, and for the amino group of urea in the urea-D2O solution. The 2H spin-lattice relaxation times (T1) were measured under the same conditions as the chemical shift measurements for D2O in neat D2O, TBA-D2O and urea-D2O solutions with organic contents up to 8 mol%. The following features are observed for the pressure effect on δ (HDO) and 2H-T1 in TBA-D2O solutions: (1) The δ (HDO) exhibits a downfield shift relative to that in neat D2O, and the difference of δ (HDO) between TBA solution and neat D2O becomes larger with increasing pressure at lower temperature. (2) The decrement of the rotational correlation time of water in the hydration shell of TBA (τcs) relative to the value at atmospheric pressure is smaller than that in the bulk (τc0). (3) The pressure coefficients of T1 are positive in dilute solutions but are negative in more than 4 to 5 mol% solutions. These results suggest that the hydrophobic hydration shell of TBA is different than the open structure of water present in bulk, and resists pressure more strongly than the open structure of water in the bulk. In solutions of 4 to 5 mol%, the hydration shell collapses. On the other hand, the τcs in the hydration shell of urea is slightly larger than that in bulk water at lower pressure, but is obviously larger at higher pressure. In view of the rotational motion of water molecules, urea seems to strengthen the water structure slightly rather than weaken it, although δ (HDO) approaches that in the bulk with pressure. It is difficult to classify urea into a structure maker or a breaker.

  11. Biodegradable Pectin/clay Aerogels

    USDA-ARS?s Scientific Manuscript database

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  12. Concomitant aerobic biodegradation of benzene and thiophene

    SciTech Connect

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1998-05-01

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene could act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.

  13. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field.

    PubMed

    Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji

    2013-09-01

    Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparative evaluation of anaerobic biodegradability of hydrocarbons and fatty derivatives currently used as drilling fluids.

    PubMed

    Steber, J; Herold, C P; limia, J M

    1995-08-01

    The examination of a number of potential and currently used carrier fluids for invert emulsion drilling fluids in the ECETOC screening test revealed clear differences with respect to their easy anaerobic biodegradability. Fatty acid- and alcohol-based ester oils exhibited excellent anaerobic degradation to the gaseous final end products of the methanogenic degradation pathway, methane and carbon dioxide. Mineral oils, dialkyl ethers, alpha-olefins, polyalphaolefins, linear alkylbenzenes and an acetal-derivative were not or only slowly degraded. Although the poor degradation results obtained in the stringent ECETOC screening test may not be regarded as final proof of anaerobic recalcitrance, nevertheless, these results were found to be in line with the present understanding of the structural requirements for anaerobic biodegradability of chemicals. The validity of the conclusions drawn is corroborated by published results on the anaerobic biodegradation behaviour of ester oils, mineral oils and alkylbenzenes in marine sediments.

  15. Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus.

    PubMed

    Kurade, Mayur B; Waghmode, Tatoba R; Govindwar, Sanjay P

    2011-09-15

    Biodegradation of a mixture containing seven commercial textile dyes with different structures and color properties has been investigated by an ecofriendly strain--Brevibacillus laterosporus MTCC 2298. It showed 87% decolorization in terms of ADMI removal (American Dye Manufacturing Institute) within 24h. The effective decolorization of dye mixture was attained in the presence of metal salt--CaCl(2) and nitrogen sources. The induction of oxido-reductive enzymes such as veratryl alcohol oxidase, tyrosinase, NADH-DCIP reductase and azo reductase was found to be responsible for biotransformation of dyes. High performance thin layer chromatography exposed the mechanism of preferential biodegradation of dyes at different time periods. Significant change in the high pressure liquid chromatography and Fourier transform infrared spectroscopy of sample before and after treatment confirmed the biodegradation of dye mixture. Phytotoxicity study revealed the much less toxic nature of the metabolites produced after the degradation of dyes mixture.

  16. Identification of Biomarker Genes To Predict Biodegradation of 1,4-Dioxane

    PubMed Central

    Gedalanga, Phillip B.; Pornwongthong, Peerapong; Mora, Rebecca; Chiang, Sheau-Yun Dora; Baldwin, Brett; Ogles, Dora

    2014-01-01

    Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment. PMID:24632253

  17. Enantioselective reductive transformation of climbazole: A concept towards quantitative biodegradation assessment in anaerobic biological treatment processes.

    PubMed

    Brienza, Monica; Chiron, Serge

    2017-06-01

    An efficient chiral method-based using liquid chromatography-high resolution-mass spectrometry analytical method has been validated for the determination of climbazole (CBZ) enantiomers in wastewater and sludge with quantification limits below the 1 ng/L and 2 ng/g range, respectively. On the basis of this newly developed analytical method, the stereochemistry of CBZ was investigated over time in sludge biotic and sterile batch experiments under anoxic dark and light conditions and during wastewater biological treatment by subsurface flow constructed wetlands. CBZ stereoselective degradation was exclusively observed under biotic conditions, confirming the specificity of enantiomeric fraction variations to biodegradation processes. Abiotic CBZ enantiomerization was insignificant at circumneutral pH and CBZ was always biotransformed into CBZ-alcohol due to the specific and enantioselective reduction of the ketone function of CBZ into a secondary alcohol function. This transformation was almost quantitative and biodegradation gave good first order kinetic fit for both enantiomers. The possibility to apply the Rayleigh equation to enantioselective CBZ biodegradation processes was investigated. The results of enantiomeric enrichment allowed for a quantitative assessment of in situ biodegradation processes due to a good fit (R(2) > 0.96) of the anoxic/anaerobic CBZ biodegradation to the Rayleigh dependency in all the biotic microcosms and was also applied in subsurface flow constructed wetlands. This work extended the concept of applying the Rayleigh equation towards quantitative biodegradation assessment of organic contaminants to enantioselective processes operating under anoxic/anaerobic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae.

    PubMed

    Hernandez-Perez, G; Fayolle, F; Vandecasteele, J P

    2001-01-01

    Gordonia terrae strain IFP 2001 was selected from activated sludge for its capacity to grow on ethyl t-butyl ether (ETBE) as sole carbon and energy source. ETBE was stoichiometrically degraded to t-butyl alcohol (TBA) and the activity was inducible. A constitutive strain, G. terrae IFP 2007, derived from strain IFP 2001, was also selected. Methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) were not used as carbon and energy sources by the two strains, but cometabolic degradation of MTBE and TAME was demonstrated, to TBA and t-amyl alcohol (TAA) respectively, in the presence of a carbon source such as ethanol. No two-carbon compound was detected during growth on ETBE, but formate was produced during cometabolic degradation of MTBE or TAME. A monooxygenase was involved in the degradation of ethers, because no degradation of ETBE was observed under anaerobic conditions and the presence of a cytochrome P-450 was demonstrated in G. terrae IFP 2001 after induction by cultivation on ETBE.

  19. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    It is reported that Savannah Foods and Industries, in a joint venture with United States Sugar Corporation have applied for a loan guarantee for the production of alcohol from agricultural commodities. The two phase program calls for research and development, before a prototype plant will be built for the conversion of cellulosic compounds found in bagasse into alcohol for use as a fuel.

  20. Alcoholism & depression.

    PubMed

    Hall, Mellisa

    2012-10-01

    One out of 2 Americans report drinking on a routine basis, making the excessive consumption of alcohol the third leading cause of preventable death in America (). Alcoholism and depression are common comorbidities that home healthcare professionals frequently encounter. To achieve the best patient outcomes, alcoholism should be addressed initially. Although all age groups are at risk, alcoholism and depression occur in more than 8 percent of older adults. Prevention through identifying alcohol use early in adolescence is vital to reduce the likelihood of alcohol dependence. This article provides an overview of the long-term effects of alcohol abuse, including alcoholic cirrhosis and hepatic encephalopathy. The diagnostic criteria for substance dependence and ideas for nonthreatening screening questions to use with patients who are adolescent or older are discussed. While providing patient care, home healthcare nurses share the patient's intimate home environment. This environment is perceived as a safe haven by the patient and home care nurses can take advantage of counseling and treatment opportunities in this nonthreatening environment.

  1. On the origin of mesoscale structures in aqueous solutions of tertiary butyl alcohol: the mystery resolved.

    PubMed

    Sedlák, Marián; Rak, Dmytro

    2014-03-13

    We have performed a detailed experimental study on aqueous solutions of tertiary butyl alcohol which were a subject of long-standing controversies regarding the puzzling presence of virtually infinitely stable large-scale structures in such solutions occurring at length scales exceeding appreciably dimensions of individual molecules, referred to also as mesoscale structures. A combination of static and dynamic light scattering yielding information on solution structure and dynamics and gas chromatography coupled with mass spectrometry yielding information on chemical composition was used. We show that tertiary butyl alcohol clearly exhibiting such structures upon mixing with water does not contain any propylene oxide, which was previously considered as a source of these structures (an impurity expected to be present in all commercial samples of TBA). More importantly, we show that no mesoscale structures are generated upon addition of propylene oxide to aqueous solutions of TBA. The ternary system TBA/water/propylene oxide exhibits homogeneous mixing of the components on mesoscales. We show that the source of the mesoscale structures is a mesophase separation of appreciably more hydrophobic compounds than propylene oxide. These substances are explicitly analytically identified as well as their disappearance upon filtering out the mesoscale structures by nanopore filtration. We clearly show which substances are disappearing upon filtration and which are not. This enables us to estimate with rather high probability the chemical composition of the mesoscale structures. Visualization of large-scale structures via nanoparticle tracking analysis is also presented. Video capturing the mesoscale particles as well as their Brownian motion can be found in the Supporting Information .

  2. Recent advances in biodegradable nanocomposites.

    PubMed

    Pandey, Jitendra K; Kumar, A Pratheep; Misra, Manjusri; Mohanty, Amar K; Drzal, Lawrence T; Singh, Raj Pal

    2005-04-01

    There is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications. Nanocomposites of this category are expected to possess improved strength and stiffness with little sacrifice of toughness, reduced gas/water vapor permeability, a lower coefficient of thermal expansion, and an increased heat deflection temperature, opening an opportunity for the use of new, high performance, lightweight green nanocomposite materials to replace conventional petroleum-based composites. The present review addresses this green material, including its technical difficulties and their solutions.

  3. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24099 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  4. Alcohol and pregnancy

    MedlinePlus

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  5. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  6. Anaerobic Biodegradation of Soybean Biodiesel and Diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads were studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20 petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water. The objective of this study was to investigate the anaerobic biodegradation of soybean biodiesel blends under methanogenic conditions. Biological methane potential (BMP) tests were conducted in serum bottles to determine the anaerobic biodegradation kinetics of biodiesel in the absence and presence of different concentrations of petrod

  7. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  8. Phenanthrene biodegradation kinetics in unsaturated soils

    SciTech Connect

    Johnson, C.R.; Scow, K.M.

    1995-12-31

    Organic compounds when sorbed to soil solids are thought to be unavailable to soil microorganisms. The biodegradation kinetics of sorbed chemicals should thus be influenced by sorption/desorption processes as well as by the metabolic capacities of soil microbes. In the research, phenanthrene, a hydrophobic polyaromatic hydrocarbon, was used as a model compound to investigate the biodegradation kinetics of strongly sorbing organic compounds in soil. Biodegradation kinetics for phenanthrene in seven soils with moisture contents near field capacity were measured during a six and one half month experiment. Phenanthrene biodegradation rates initially increased in all soils and then declined. The declining portion of the biodegradation rate versus time plots exhibited either first order or biphasic kinetics. Both first order and biphasic kinetics are consistent with models which link microbial degradation to substrate sorption/desorption from equilibrium and kinetically controlled sorption sites. No single rate constant or analytical expression adequately captured the complexity of the observed biodegradation rates. This result is again consonant with a process derived from coupled biological and physical systems. Biodegradation kinetics were quantified using a combination of fitted and descriptive parameters. Significant correlations exist between several of the descriptive parameters. The correlations observed between descriptive biodegradation parameters mirror correlations expected from the hypothesized underlying biological process and help evince the influence this underlying process exerts on observed biodegradation kinetics.

  9. A review of plastic waste biodegradation.

    PubMed

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  10. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  11. Alcohol Poisoning

    MedlinePlus

    ... your drinks The rate and amount of alcohol consumption Your tolerance level Complications Severe complications can result ... pressure and fast heart rate. Seizures. Your blood sugar level may drop low enough to cause seizures. ...

  12. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  13. Alcohol withdrawal

    MedlinePlus

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  14. Alcoholic Hepatitis

    MedlinePlus

    ... alcoholic hepatitis include: Fluid accumulation in your abdomen (ascites) Confusion and behavior changes due to a buildup ... is life-threatening and requires immediate medical care. Ascites. Fluid that accumulates in the abdomen might become ...

  15. Propyl alcohol

    MedlinePlus

    ... clear liquid commonly used as a germ killer (antiseptic). This article discusses poisoning from swallowing propyl alcohol. ... Airway support, including oxygen, breathing tube through the mouth (intubation),and ventilator (breathing machine) Blood and urine ...

  16. Structure-biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals

    SciTech Connect

    Klopman, G.; Tu, M.

    1997-09-01

    It is shown that a combination of two programs, MultiCASE and META, can help assess the biodegradability of industrial organic materials in the ecosystem. MultiCASE is an artificial intelligence computer program that had been trained to identify molecular substructures believed to cause or inhibit biodegradation and META is an expert system trained to predict the aerobic biodegradation products of organic molecules. These two programs can be used to help evaluate the fate of disposed chemicals by estimating their biodegradability and the nature of their biodegradation products under conditions that may model the environment.

  17. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  18. Biodegradable sizing agents from soy protein via controlled hydrolysis and dis-entanglement for remediation of textile effluents.

    PubMed

    Yang, Maiping; Xu, Helan; Hou, Xiuliang; Zhang, Jie; Yang, Yiqi

    2017-03-01

    Fully biodegradable textile sizes with satisfactory performance properties were developed from soy protein with controlled hydrolysis and dis-entanglement to tackle the intractable environmental issues associated with the non-biodegradable polyvinyl alcohol (PVA) in textile effluents. PVA derived from petroleum is the primary sizing agent due to its excellent sizing performance on polyester-containing yarns, especially in increasingly prevailing high-speed weaving. However, due to the poor biodegradability, PVA causes serious environmental pollution, and thus, should be substituted with more environmentally friendly polymers. Soy protein treated with high amount of triethanolamine was found with acceptable sizing properties. However, triethanolamine is also non-biodegradable and originated from petroleum, therefore, is not an ideal additive. In this research, soy sizes were developed from soy protein treated with glycerol, the biodegradable triol that could also be obtained from soy. The soy sizes had good film properties, adhesion to polyester and abrasion resistance close to PVA, rendering them qualified for sizing applications. Regarding desizing, consumption of water and energy for removal of soy size could be remarkably decreased, comparing to removal of PVA. Moreover, with satisfactory degradability, the wastewater containing soy sizes was readily dischargeable after treated in activated sludge for two days. In summary, the fully biodegradable soy sizes had potential to substitute PVA for sustainable textile processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Alcohol experience, alcohol knowledge, and alcohol expectancy in early adolescents].

    PubMed

    Tak, Young-Ran; Yun, E-hwa; An, Ji-Yeon

    2007-02-01

    This study was to explore the prevalence of alcohol experiences and to identify the expectancy on the effects of alcohol and alcohol knowledge in early adolescents. The cross-sectional survey of 1854 students from seven middle schools in one district of Seoul was conducted by convenience sampling. Alcohol experience and early onset of alcohol use were measured by the Youth Risk Behavior Survey. Alcohol expectancy was measured by an Alcohol Effects Questionnaire. Over sixty five percent of adolescents reported that they had previous drinking experiences. The participants with no alcohol drinking experience had a lower level of alcohol knowledge than those with experience(t=2.73, p=.007). In expectancy on effects of alcohol, girls had a more positive alcohol expectation than boys(t=-2.54, p=.011). Alcohol knowledge negatively correlated with alcohol expectancy(r=-.40 p=.000). In regression of alcohol expectancy, gender and alcohol knowledge were significant predictors explaining 17%. The results support that alcohol expectancy is an important link with early drinking experiences and alcohol knowledge, focusing on the importance of gender differences. Therefore, an alcohol prevention program in early adolescence is needed and should be focused on multidimensionality of the alcohol expectancy with developmental and psychosocial factors for early adolescents.

  20. Anaerobic Biodegradation of soybean biodiesel and diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. The objective of this study was to investigate anaerobic biodegradation of soybean biodiesel and petrodiesel blends in a sulfate-reducing environment, which is a prevalent condition in anaerobic sediments.

  1. Nylon biodegradation by lignin-degrading fungi.

    PubMed Central

    Deguchi, T; Kakezawa, M; Nishida, T

    1997-01-01

    The biodegradation of nylon by lignin-degrading fungi was investigated. The fungus IZU-154 significantly degraded nylon-66 membrane under ligninolytic conditions. Nuclear magnetic resonance analysis showed that four end groups, CHO, NHCHO, CH3, and CONH2, were formed in the biodegraded nylon-66 membranes, suggesting that nylon-66 was degraded oxidatively. PMID:8979361

  2. Biodegradation of aliphatic and aromatic polycarbonates.

    PubMed

    Artham, Trishul; Doble, Mukesh

    2008-01-09

    Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.

  3. Getting rid of wastes biodegradation and bioremediation

    SciTech Connect

    Alexander, M.

    1994-12-31

    This book examines the topics of biodegradation and bioremediation of hazardous wastes from the focus of a single author, a microbiologist. Molecular-biology approaches to biodegradation and the engineering approach to degradation are deemphasized, while the kinetics of degradation reactions are covered well. A general approach to the subjects is appropriate for between undergraduate and professional level reading.

  4. Here today, gone tomorrow: biodegradable soft robots

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis

    2016-04-01

    One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.

  5. Current trends in biodegradable polyhydroxyalkanoates.

    PubMed

    Chanprateep, Suchada

    2010-12-01

    The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market.

  6. Biodegradable stents in gastrointestinal endoscopy

    PubMed Central

    Lorenzo-Zúñiga, Vicente; Moreno-de-Vega, Vicente; Marín, Ingrid; Boix, Jaume

    2014-01-01

    Biodegradable stents (BDSs) are an attractive option to avoid ongoing dilation or surgery in patients with benign stenoses of the small and large intestines. The experience with the currently the only BDS for endoscopic placement, made of Poly-dioxanone, have shown promising results. However some aspects should be improved as are the fact that BDSs lose their radial force over time due to the degradable material, and that can cause stent-induced mucosal or parenchymal injury. This complication rate and modest clinical efficacy has to be carefully considered in individual patients prior to placement of BDSs. Otherwise, the price of these stents therefore it is nowadays an important limitation. PMID:24605020

  7. Biodegradable polymers for electrospinning: towards biomedical applications.

    PubMed

    Kai, Dan; Liow, Sing Shy; Loh, Xian Jun

    2014-12-01

    Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Biodegradation of bioplastics in natural environments.

    PubMed

    Emadian, S Mehdi; Onay, Turgut T; Demirel, Burak

    2017-01-01

    The extensive production of conventional plastics and their use in different commercial applications poses a significant threat to both the fossil fuels sources and the environment. Alternatives called bioplastics evolved during development of renewable resources. Utilizing renewable resources like agricultural wastes (instead of petroleum sources) and their biodegradability in different environments enabled these polymers to be more easily acceptable than the conventional plastics. The biodegradability of bioplastics is highly affected by their physical and chemical structure. On the other hand, the environment in which they are located, plays a crucial role in their biodegradation. This review highlights the recent findings attributed to the biodegradation of bioplastics in various environments, environmental conditions, degree of biodegradation, including the identified bioplastic-degrading microorganisms from different microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Deciding to quit drinking alcohol

    MedlinePlus

    ... Alcohol abuse - quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... pubmed/23698791 . National Institute on Alcohol Abuse and Alcoholism. Alcohol and health. www.niaaa.nih.gov/alcohol- ...

  10. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung

    SciTech Connect

    Dailey, L.A. . E-mail: lea_ann.dailey@kcl.ac.uk; Jekel, N.; Fink, L.; Gessler, T.; Schmehl, T.; Wittmar, M.; Kissel, T.; Seeger, W.

    2006-08-15

    Particulate nanocarriers have been praised for their advantageous drug delivery properties in the lung, such as avoidance of macrophage clearance mechanisms and long residence times. However, instilled non-biodegradable polystyrene nanospheres with small diameters and thus large surface areas have been shown to induce pulmonary inflammation. This study examines the potential of biodegradable polymeric nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) and the novel PLGA derivative, diethylaminopropylamine polyvinyl alcohol-grafted-poly(lactic-co-glycolic acid) (DEAPA-PVAL-g-PLGA), to provoke inflammatory responses in the murine lung after intratracheal instillation. Lactate dehydrogenase (LDH) release, protein concentration, MIP-2 mRNA induction, and polymorphonucleocyte (PMN) recruitment in the bronchial alveolar lavage fluid (BALF) were used to evaluate an inflammatory response in Balb-C mice. Two sizes of polystyrene (PS) nanospheres (diameters: 75 nm and 220 nm) were included in the study for comparison. All nanoparticle suspensions were instilled at concentrations of 1 {mu}g/{mu}l and 2.5 {mu}g/{mu}l, representative of an estimated 'therapeutic dose' and a concentrated 'dose' of particles. In all experiments, the 75 nm PS particles exhibited elevated responses for the inflammatory markers investigated. In contrast, biodegradable particles of comparable hydrodynamic diameter showed a significantly lower inflammatory response. The most marked differences were observed in the extent of PMN recruitment. While the 75 nm and 220 nm PS nanospheres exhibited 41 and 74% PMN within the total BALF cell population after 24 h, respectively, PMN recruiting in lungs instilled with both types of biodegradable particles did not exceed values of the negative isotonic glucose control. In conclusion, evidence suggests that biodegradable polymeric nanoparticles designed for pulmonary drug delivery may not induce the same inflammatory response as non-biodegradable

  11. Alcohol withdrawal.

    PubMed

    Manasco, Anton; Chang, Shannon; Larriviere, Joseph; Hamm, L Lee; Glass, Marcia

    2012-11-01

    Alcohol withdrawal is a common clinical condition that has a variety of complications and morbidities. The manifestations can range from mild agitation to withdrawal seizures and delirium tremens. The treatments for alcohol withdrawal include benzodiazepines, anticonvulsants, beta-blockers and antihypertensives. Although benzodiazepines are presently a first-line therapy, there is controversy regarding the efficacies of these medications compared with others. Treatment protocols often involve one of two contrasting approaches: symptom-triggered versus fixed-schedule dosing of benzodiazepines. We describe these protocols in our review and examine the data supporting symptom-triggered dosing as the preferred method for most patients in withdrawal.The Clinical Institute Withdrawal Assessment for Alcohol scoring system for alcohol withdrawal streamlines care, optimizes patient management, and is the best scale available for withdrawal assessment. Quality improvement implications for inpatient management of alcohol withdrawal include increasing training for signs of withdrawal and symptom recognition, adding new hospital protocols to employee curricula, and ensuring manageable patient-to-physician and patient-to-nurse ratios.

  12. Effect of short-term exposure to methyl-tert-butyl ether and tert-butyl alcohol on the hatch rate and development of the African catfish, Clarias gariepinus.

    PubMed

    Moreels, David; Lodewijks, Pieter; Zegers, Hans; Rurangwa, Eugène; Vromant, Nico; Bastiaens, Leen; Diels, Ludo; Springael, Dirk; Merckx, Roel; Ollevier, Frans

    2006-02-01

    Methyl tert-butyl ether (MTBE), a synthetic chemical used as a fuel additive, has been detected more frequently in the environment than previously. In this study, we examine the effects of MTBE (up to 100 mg/L) and its primary metabolite tertbutyl alcohol (TBA) (up to 1,400 mg/L) on the hatch rate and larval development of the African catfish Clarias gariepinus. Exposure to higher MTBE concentrations resulted in deformed eyes, mouthparts, and spinal cord and in increased larval mortality. Methyl tert-butyl ether exposure had no significant impact on egg viability, whereas TBA induced a decline of hatch rate. The MTBE can be regarded as a pollutant with toxicological effects on catfish larvae at concentrations above 50 mg/L. Although such concentrations greatly surpass present-day concentrations found in surface water (0.088 mg/L), concentrations up to 200 mg/L have been detected in groundwater.

  13. Alcoholic sialosis.

    PubMed

    Kastin, B; Mandel, L

    2000-01-01

    Sialosis (sialadenosis) is a term used to describe a disorder that involves both secretory and parenchymal changes of the major salivary glands, most commonly the parotid. Seen often in a dental office, it is recognized as an indolent, bilateral, non-inflammatory, non-neoplastic, soft, symmetrical, painless and persistent enlargement of the parotid glands. Four major entities have commonly been associated with this disorder. They are alcoholism, endocrinopathy (particularly diabetes mellitus), maLnutrition and idiopathic. We are reporting a case of alcoholic sialosis with its clinical and diagnostic aspects. It is important for the dental practitioner to recognize sialosis, because it often indicates the existence of an unsuspected systemic disease.

  14. Alcohol and Hepatitis

    MedlinePlus

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  15. Formulation of microbial cocktails for BTEX biodegradation.

    PubMed

    Nagarajan, Karthiga; Loh, Kai-Chee

    2015-02-01

    BTEX biodegradation by a mixed community of micro-organisms offers a promising approach in terms of cost-effectiveness and elimination of secondary pollution. Two bacterial strains, Pseudomonas putida F1 and Pseudomonas stutzeri OX1 were chosen to formulate synthetic consortia based on their ability to biodegrade the mono-aromatic compounds. Benzene and toluene supported the growth of both the strains; while ethyl benzene and o-xylene were only utilized as growth substrates by P. putida F1 and P. stutzeri OX1, respectively. In a mixed substrate system, P. putida F1 exhibited incomplete removal of o-xylene while P. stutzeri OX1 displayed cometabolic removal of ethyl benzene with dark coloration of the growth medium. The biodegradation potential of the two Pseudomonas species complemented each other and offered opportunities to explore their performance as a co-culture for enhanced BTEX biodegradation. Several microbial formulations were concocted and their BTEX biodegradation characteristics were evaluated. Mixed culture biodegradation ascertained the advantages of the co-culture over the individual Pseudomonas species. This study also emphasized the significance of inoculum density and species proportion while concocting preselected micro-organisms for enhanced BTEX biodegradation.

  16. Microbial Enzymatic Degradation of Biodegradable Plastics.

    PubMed

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Aged refinery hydrocarbon biodegradation in soil

    SciTech Connect

    Drake, E.N.; Stokley, K.E.; Calcavecchio, P.

    1995-12-31

    Aged hydrocarbon biodegradation was investigated as a potential cleanup technology for refinery soil. Well-mixed field soil was amended with water and nutrients and tilled weekly for one year in laboratory mesocosms to stimulate biodegradation. Freon infrared analysis of total petroleum hydrocarbons (TPH), and gas chromatography/mass spectrometry (GC/MS) analysis of polynuclear aromatic hydrocarbons (PAHs) and triterpane biomarkers were used to determine the extent of biodegradation. Significant reductions in TPH (up to 68%) and methylene chloride extractable material (up to 55%) were observed. The combined trimethylated phenanthrene/anthracenes (C3P/A) were even more highly depleted than TPH. Nutrient amendment increased TPH, methylene chloride, and C3P/A removal, but not biomarker concentrations. Significant reduction of two to five ring PAHs occurred. Expected depletion patterns for PAHs were observed except in the case of naphthalene and derivatives, phenanthrene/anthracene and derivatives, and chrysene. A possible explanation is that the more readily degradable PAHs were already highly biodegraded before the study and the remaining portions were less available for biodegradation. These results are consistent with reports on the effects of aging on PAH biodegradation in soil. Biodegradation was influenced by PAH structure and molecular weight.

  18. Design Strategies for Fluorescent Biodegradable Polymeric Biomaterials

    PubMed Central

    Zhang, Yi; Yang, Jian

    2013-01-01

    The marriage of biodegradable polymer and fluorescent imaging has resulted in an important area of polymeric biomaterials: biodegradable fluorescent polymers. Researchers have put significant efforts on developing versatile fluorescent biomaterials due to their promising in biological/biomedical labeling, tracking, monitoring, imaging, and diagnostic applications, especially in drug delivery, tissue engineering, and cancer imaging applications. Biodegradable fluorescent polymers can function not only as implant biomaterials but also as imaging probes. Currently, there are two major classes of biodegradable polymers used as fluorescent materials. The first class is the combination of non-fluorescent biodegradable polymers and fluorescent agents such as organic dyes and quantum dots. Another class of polymers shows intrinsic photoluminescence as polymers by themselves carrying integral fluorescent chemical structures in or pendent to their polymer backbone, such as Green Fluorescent protein (GFP), and the recently developed biodegradable photoluminescent polymer (BPLP). Thus there is no need to conjugate or encapsulate additional fluorescent materials for the latter. In the present review, we will review the fluorescent biodegradable polymers with emphases on material fluorescence mechanism, design criteria for fluorescence, and their cutting-edge applications in biomedical engineering. We expect that this review will provide insightful discussion on the fluorescent biomaterial design and lead to innovations for the development of the next generation of fluorescent biomaterials and fluorescence-based biomedical technology. PMID:23710326

  19. Promoting Diabetic Wound Therapy Using Biodegradable rhPDGF-Loaded Nanofibrous Membranes

    PubMed Central

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Chang, Shang-Hung; Chen, Wei-Jan; Hung, Kuo-Chun; Liu, Shih-Jung; Pang, Jong-Hwei S.; Juang, Jyuhn-Huarng; Chou, Chung-Chuan; Chang, Po-Cheng; Chen, Yi-Ting; Wang, Fu-Shing

    2015-01-01

    Abstract The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work. rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membranes. An elution technique and an enzyme-linked immunosorbent assay kit were used to determine the rhPDGF-BB release rates in vitro and in vivo from this membrane. Eighteen Sprague-Dawley streptozotocin-induced diabetic rats were randomized into 3 groups: rhPDGF-BB-loaded nanofibrous membrane group, PLGA only membrane group, and conventional gauze sponge group for the wound associated with diabetes of rat in each group. The nanofibrous biodegradable membranes released effective concentrations of rhPDGF-BB for over 21 days. The nanofibrous rhPDGF-BB-loaded PLGA membranes contained more water and were further hydrophilic than PLGA only fibers. The rhPDGF-BB-loaded PLGA membranes considerably helped the diabetic wounds repairing. Furthermore, the proliferative cells and angiogenesis of rats associated with diabetes by rhPDGF-BB-loaded nanofibrous membranes were greater than those of other groups, owing to the increased matrix metalloproteinase 9. These biodegradable rhPDGF-BB-loaded membranes were effective in treating diabetic wounds as very advanced accelerators during the initial phases of wound-healing process. PMID:26632682

  20. Simultaneous copper, cobalt and phenol removal from aqueous solutions by alternating biosorption and biodegradation.

    PubMed

    Tsekova, K; Ganeva, S; Hristov, A; Todorova, D; Beschkov, V

    2011-01-01

    A strategy for removal of heavy metals and phenol from wastewaters is proposed. It involves consecutive cation biosorption by fungi, phenol biodegradation by the yeast association Candida sp. 2326 + Candida sp. 2327 and regeneration. Copper and cobalt removal from aqueous solutions containing 80-120 mg/L phenol by biosorption, using Rhizopus archizus cells immobilized onto poly (vinyl alcohol), was investigated by conducting a series of batch experiments. The removal efficiencies were 81% for Cu and 5% for Co. The residual concentrations of Cu (1.9 mg/L) and of Co (9.5 mg/L) did not change the biodegradation dynamics of phenol. A quantitative biodegradation of 120 mg/L phenol proceeded within 22 h. After biodegradation of phenol, the removal efficiencies achieved by biosorption after regeneration were 90% for Cu and 44% for Co. It was found that copper and cobalt form positively charged complexes with phenol. This complex formation hinders the retention of Cu and Co by the biosorbent and reduces the uptake of their cations.

  1. Biodegradable and compostable alternatives to conventional plastics

    PubMed Central

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  2. Biodegradable and compostable alternatives to conventional plastics.

    PubMed

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  3. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  4. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  5. Alcohol Intolerance

    MedlinePlus

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be triggered by ...

  6. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    The Great Western Sugar Company has announced plans for the construction of a $300 million plant for the production of fuel grade alcohol from corn. The plant at Reserve, Lousiana, will also produce high fructose corn syrup and animal feed by-products and will employ an additional 200 people.

  10. Antibiotic releasing biodegradable scaffolds for osteomyelitis.

    PubMed

    Nair, Manitha; Krishnan, Amit

    2014-01-01

    Osteomyelitis is characterized by progressive inflammatory bone degeneration. In the management of chronic osteomyelitis, it is necessary to remove the infected bone tissue followed by implantation of an antibiotic releasing biomaterial that can release antibiotic locally for long periods of time. The main carrier used in clinics for this application is polymethylmethacrylate (PMMA) (Eg. Septopal beads). However, major drawback is the need of an additional surgery to remove the beads after therapy, as PMMA is not biodegradable. This necessitates the requirement of biodegradable carrier systems that can release antibiotics and simultaneously support debrided bone formation. This review summarizes biodegradable carrier systems that have been reported for the localised treatment and prophylaxis of osteomyelitis.

  11. Preparation and degradation mechanisms of biodegradable polymer: a review

    NASA Astrophysics Data System (ADS)

    Zeng, S. H.; Duan, P. P.; Shen, M. X.; Xue, Y. J.; Wang, Z. Y.

    2016-07-01

    Polymers are difficult to degrade completely in Nature, and their catabolites may pollute the environment. In recent years, biodegradable polymers have become the hot topic in people's daily life with increasing interest, and a controllable polymer biodegradation is one of the most important directions for future polymer science. This article presents the main preparation methods for biodegradable polymers and discusses their degradation mechanisms, the biodegradable factors, recent researches and their applications. The future researches of biodegradable polymers are also put forward.

  12. Biodegradable polyesters from renewable resources.

    PubMed

    Tsui, Amy; Wright, Zachary C; Frank, Curtis W

    2013-01-01

    Environmental concerns have led to the development of biorenewable polymers with the ambition to utilize them at an industrial scale. Poly(lactic acid) and poly(hydroxyalkanoates) are semicrystalline, biorenewable polymers that have been identified as the most promising alternatives to conventional plastics. However, both are inherently susceptible to brittleness and degradation during thermal processing; we discuss several approaches to overcome these problems to create a balance between durability and biodegradability. For example, copolymers and blends can increase ductility and the thermal-processing window. Furthermore, chain modifications (e.g., branching/crosslinking), processing techniques (fiber drawing/annealing), or additives (plasticizers/nucleating agents) can improve mechanical properties and prevent thermal degradation during processing. Finally, we examine the impacts of morphology on end-of-life degradation to complete the picture for the most common renewable polymers.

  13. New perspectives in plastic biodegradation.

    PubMed

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution.

  14. Engineered biosynthesis of biodegradable polymers.

    PubMed

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  15. Bacterial synthesis of biodegradable polyhydroxyalkanoates.

    PubMed

    Verlinden, R A J; Hill, D J; Kenward, M A; Williams, C D; Radecka, I

    2007-06-01

    Various bacterial species accumulate intracellular polyhydroxyalkanoates (PHAs) granules as energy and carbon reserves inside their cells. PHAs are biodegradable, environmentally friendly and biocompatible thermoplastics. Varying in toughness and flexibility, depending on their formulation, they can be used in various ways similar to many nonbiodegradable petrochemical plastics currently in use. They can be used either in pure form or as additives to oil-derived plastics such as polyethylene. However, these bioplastics are currently far more expensive than petrochemically based plastics and are therefore used mostly in applications that conventional plastics cannot perform, such as medical applications. PHAs are immunologically inert and are only slowly degraded in human tissue, which means they can be used as devices inside the body. Recent research has focused on the use of alternative substrates, novel extraction methods, genetically enhanced species and mixed cultures with a view to make PHAs more commercially attractive.

  16. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  17. Bacterial Degradation of tert-Amyl Alcohol Proceeds via Hemiterpene 2-Methyl-3-Buten-2-ol by Employing the Tertiary Alcohol Desaturase Function of the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schuster, Judith; Schäfer, Franziska; Hübler, Nora; Brandt, Anne; Rosell, Mònica; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. PMID:22194447

  18. Alcohol cosurfactants in hydrate antiagglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  19. Role of microbial adhesion in phenanthrene biodegradation by Pseudomonas fluorescens LP6a

    NASA Astrophysics Data System (ADS)

    Abbasnezhad, Hassan

    Biodegradation of poorly water soluble hydrocarbons, such as n-alkanes and polycyclic aromatic hydrocarbons (PAHs) is often limited by the low availability of the pollutant to microbes. Adhesion of microorganisms to the oil-water interface can influence this availability. Our approach was to study a range of compounds and mechanisms to promote the adhesion of a hydrophilic PAH degrading bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface and examine the effect on biodegradation of phenanthrene by the bacteria. The cationic surfactants cetylpyridinium chloride (CPC), poly-L-lysine and chlorhexidine gluconate (CHX) and the long chain alcohols 1-dodecanol, 2-dodecanol and farnesol increased the adhesion of P. fluorescens LP6a to n-hexadecane from ca. 30% to ca. 90% of suspended cells adhering. The alcohols also caused a dramatic change in the oil-water contact angle of the cell surface, increasing it from 24° to 104°, whereas the cationic compounds had little effect. In contrast, cationic compounds changed the electrophoretic mobility of the bacteria, reducing the mean zeta potential from --23 to --7 mV in 0.01M potassium phosphate buffer, but the alcohols had no effect on zeta potential. This results illustrate that alcohols acted through altering the cell surface hydrophobicity, whereas cationic surfactants changed the surface charge density. Phenanthrene was dissolved in heptamethylnonane and introduced to the aqueous growth medium, hence forming a two phase system. Introducing 1-dodecanol at concentrations of 217, 820 or 4100 mg/L resulted in comparable increases in phenanthrene biodegradation of about 30% after 120 h incubation with non-induced cultures. After 100 h of incubation with LP6a cultures induced with 2-aminobenzoate, 4.5% of the phenanthrene was mineralized by cultures versus more than 10% by the cultures containing initial 1-dodecanol or 2-dodecanol concentrations of 120 or 160 mg/L. The production and accumulation of metabolites in

  20. OPTIMIZING BTEX BIODEGRADATION UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Mic...

  1. Phyllosphere yeasts rapidly break down biodegradable plastics.

    PubMed

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  2. Polyaspartate scale inhibitors -- Biodegradable alternatives to polyacrylates

    SciTech Connect

    Ross, R.J.; Low, K.C.; Shannon, J.E.

    1996-12-01

    Polyaspartates are highly biodegradable alternatives to polyacrylate based scale inhibitors. This paper presents laboratory testing data on polyaspartate inhibitors of calcium and barium mineral scales. The optimum molecular weight for polyaspartate inhibitors of calcium carbonate, calcium sulfate and barium sulfate mineral scales was determined to be between 1,000 and 4,000 Mw (weight average molecular weight as calculated by Size Exclusion Chromatography). For inhibition of calcium carbonate and barium sulfate, polyaspartates in the range of 3,000-4,000 Mw were most effective. For calcium sulfate inhibition, the optimum molecular weight lies in the 1,000 to 2,000 Mw range. Biodegradability data (OECD 301B Ready Biodegradability) on polyaspartates of a variety of molecular weights is also presented which demonstrates the high biodegradability of this class of mineral scale inhibitors.

  3. ENHANCED BIODEGRADATION THROUGH IN-SITU AERATION

    EPA Science Inventory

    This presentation provided an overview of enhanced aerobic bioremediation using in-situ aeration or venting. The following topics were covered: (1) Basic discussion on biodegradation and respiration testing; (2) Basic discussion on volatilization, rate-limited mass transport, an...

  4. Biodegradation of the anionic surfactant dialkyl sulphosuccinate

    SciTech Connect

    Hales, S.G. . Port Sunlight Lab.)

    1993-10-01

    A range of Organization for Economic Cooperation and Development (OECD) guideline test systems was used to determine the extent and possible mechanisms of biodegradation of dialkyl sulphosuccinate (DASS, C[sub 6]/C[sub 8]). Primary biodegradation of DASS was virtually complete in OECD guideline tests and in simulations of activated sludge sewage treatment systems under both optimal and adverse conditions, and of an anaerobic digester. Ultimate biodegradation increased form about 50% in ready tests to 94% in more powerful inherent tests. [[sup 14]C]DASS was used to determine the fate of the surfactant in activated sludge and in surface waters. Mechanistic studies were performed to ascertain the biodegradative pathway of [[sup 14]C]DASS. A putative degradation pathway for DASS is proposed.

  5. Polyaspartate scale inhibitors -- Biodegradable alternatives to polyacrylates

    SciTech Connect

    Ross, R.J.; Low, K.C.; Shannon, J.E.

    1997-04-01

    Polyaspartates are highly biodegradable alternatives to polyacrylate-based scale inhibitors. This article presents laboratory testing data on polyaspartate inhibitors of calcium and barium mineral scales. The optimum molecular weight (Mw) for polyaspartate inhibitors of calcium carbonate, calcium sulfate, and barium sulfate mineral scales was determined to be between 1,000 Mw and 4,000 Mw. For inhibition of calcium carbonate and barium sulfate, polyaspartates in the range of 3,000 Mw to 4,000 Mw were most effective. For calcium sulfate inhibition, the optimum Mw lies in the 1,000 Mw to 2,000 Mw range. Biodegradability data (OECD 301B Ready Biodegradability) on polyaspartates of a variety of Mw is also presented, which demonstrates the high biodegradability of this class of mineral scale inhibitors.

  6. Biodegradation of rocket propellent waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqui, S. M. Z.

    1975-01-01

    The impact of the biodegradation rate of ammonium perchlorate on the environment was studied in terms of growth, metabolic rate, and total biomass of selected animal and plant species. Brief methodology and detailed results are presented.

  7. MOLECULAR BASIS OF BIODEGRADATION OF CHLOROAROMATIC COMPOUNDS

    EPA Science Inventory

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacter...

  8. In situ surface biodegradation of restorative materials.

    PubMed

    Padovani, Gc; Fúcio, Sbp; Ambrosano, Gmb; Sinhoreti, Mac; Puppin-Rontani, Rm

    2014-01-01

    SUMMARY This study aimed to evaluate the surface characteristics of restorative materials (roughness, hardness, chemical changes by energy-dispersive spectroscopy [EDX], and scanning electron microscopy [SEM]) submitted to in situ biodegradation. Fifteen discs of each material (IPS e.max [EM], Filtek Supreme [FS], Vitremer [VI], Ketac Molar Easymix [KM], and Amalgam GS-80 [AM]) were fabricated in a metallic mold (4.0 mm × 1.5 mm). Roughness, hardness, SEM, and EDX were then evaluated. Fifteen healthy volunteers used a palatal device containing one disc of each restorative material for seven days. After the biodegradation, the roughness, hardness, SEM, and EDX were once again evaluated. Data obtained from the roughness and hardness evaluations were submitted to Kolmogorov-Smirnov and Tukey-Kramer tests (p<0.05). All esthetic restorative materials showed a significant increase in the roughness after biodegradation. Before biodegradation, significant differences in the hardness among the materials were seen: EM>AM>FS>KM>VI. After biodegradation, the hardness was significantly altered among the materials studied: EM>AM>FS=KM>VI, along with a significant increase in the hardness for AM, KM, and VI. SEM images indicated degradation on the surface of all materials, showing porosities, cracks, and roughness. Furthermore, after biodegradation, FS showed the presence of Cl, K, and Ca on the surface, while F was not present on the VI and KM surfaces. EM and AM did not have alterations in their chemical composition after biodegradation. It was concluded that the dental biofilm accumulation in situ on different restorative materials is a material-dependent parameter. Overall, all materials changed after biodegradation: esthetic restorative materials showed increased roughness, confirmed by SEM, and the ionomer materials and silver amalgam showed a significantly higher hardness. Finally, the initial chemical composition of the composite resin and ionomer materials evaluated was

  9. Alcohol use and safe drinking

    MedlinePlus

    ... to alcohol use Get into trouble with the law, family members, friends, school, or dates because of alcohol THE EFFECTS OF ALCOHOL Alcoholic drinks have different amounts of alcohol in them. Beer is about 5% alcohol, although some beers can ...

  10. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  11. Biodegradability of commercial and weathered diesel oils

    PubMed Central

    Mariano, Adriano Pinto; Bonotto, Daniel Marcos; de Franceschi de Angelis, Dejanira; Pirôllo, Maria Paula Santos; Contiero, Jonas

    2008-01-01

    This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 -dichlorophenol indophenol (DCPIP) and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH) in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated. PMID:24031193

  12. Physicochemical properties and biodegradability of crude oil

    SciTech Connect

    Sugiura, Keiji; Ishihara, Masami; Shimauchi, Toshitsugu; Harayama, Shigeaki

    1997-01-01

    The biodegradation of four different crude oil samples, namely, Arabian light, Dubai, Maya, and Shengli, by acinetobacter sp. T4 and by a microbial consortium called SM8 was examined. SM8 exhibited higher activity than Acinetobacter for the biodegradation of all four crude oil samples. The degree of biodegradation of crude oil components differed according to the crude oil, the saturated fraction being more susceptible to biodegradation than the aromatic fraction in all the crude oil samples. The extent of biodegradation by acinetobacter and SM8 was found to be in the order of Arabian light > Dubai > Maya = Shengli; the crude oil samples with higher APl gravity being more susceptible to biodegradation. Saturated compounds of smaller molecular weight were preferentially degraded by both cultures. Acinetobacter could not degrade polycyclic aromatic compounds in the crude oil samples such as (alkyl)naphthalenes, (alky)phenanthrenes, (alkyl)fluorenes, and (alkyl)dibenzothiophenes. However, this strain was capable of degrading more than 10% of the molecules in the aromatic fraction of Arabian light crude oil. An NMR analysis demonstrated that the alkyl side chain of some aromatic molecules was degraded by this organism. In contrast, SM8 degraded the polycyclic aromatic compounds in the crude oil samples, the extent of degradation being in the order of Maya > Shengli > Arabian light > Dubai. 17 refs., 4 figs., 4 tabs.

  13. Substrate inhibition kinetics of phenol biodegradation

    SciTech Connect

    Goudar, C.T.; Ganji, S.H.; Pujar, B.G.; Strevett, K.A.

    2000-02-01

    Phenol biodegradation was studied in batch experiments using an acclimated inoculum and initial phenol concentrations ranging from 0.1 to 1.3 g/L. Phenol depletion an associated microbial growth were monitored over time to provide information that was used to estimate the kinetics of phenol biodegradation. Phenol inhibited biodegradation at high concentrations, and a generalized substrate inhibition model based on statistical thermodynamics was used to describe the dynamics of microbial growth in phenol. For experimental data obtained in this study, the generalized substrate inhibition model reduced to a form that is analogous to the Andrews equation, and the biokinetic parameters {micro}{sub max}, maximum specific growth; K{sub s}, saturation constant; and K{sub i}, inhibition constant were estimated as 0.251 h{sup {minus}1}, 0.011 g/L, and 0.348 g/L, respectively, using a nonlinear least squares technique. Given the wide variability in substrate inhibition models used to describe phenol biodegradation, an attempt was made to justify selection of particular model based on theoretical considerations. Phenol biodegradation data from nine previously published studies were used in the generalized substrate inhibition model to determine the appropriate form of the substrate inhibition model. In all nine cases, the generalized substrate inhibition model reduced to a form analogous to the Andrews equation suggesting the suitability of the Andrews equation to describe phenol biodegradation data.

  14. Anaerobic biodegradation of hexazinone in four sediments.

    PubMed

    Wang, Huili; Xu, Shuxia; Tan, Chengxia; Wang, Xuedong

    2009-05-30

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  15. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment.

    PubMed

    Yang, Ganggang; Xie, Hua; Huang, Yichen; Lv, Yiqing; Zhang, Mingqing; Shang, Yafeng; Zhou, Junmei; Wang, Liping; Wang, Jin-Ye; Chen, Fang

    2017-03-01

    Objective The aim of this study was to develop a novel immersed multilayer biodegradable ureteral stent with reformed biodegradation and evaluate it in vitro. Methods Poly(glycolic-co-lactic acid) (PGLA), microsphere zein and BaSO4 were employed to produce a multilayer biodegradable stent using immersion technology. Tests of the biodegradable stents and conventional control stents were conducted in human urine in vitro to evaluate the biodegradable properties. The biocompatibility was assessed by the morphology and proliferation of urine-derived cells cultured with extracted media from the biodegradable stent and a latex material positive control. Results An immersed multilayer biodegradable stent was successfully produced. It began to degrade in week 2 and was fully degraded by week 4. The mass loss ratio in the first 2 weeks was low (approximately 10.0% at 1 week, 20.0% at 2 weeks) and increased after 3 weeks (approximately 70%) to the end of testing. During the first 2 weeks, the radial compression load performances of the biodegradable stents were better than those of the control stents with statistically significant differences ( p = 0.00, p = 0.01) and the tensile strengths were lower in the biodegradable stents than those in the control stents throughout the experiment. SEM showed that the stents degraded layer by layer from the outer to the inner wall. The influences on the cells of extracted medium from the biodegradable stents were morphologically slight and lower than 10% in relative growth rates. Conclusions This preliminary study demonstrates that the immersed multilayer biodegradable ureteral stent has good radial compression and biocompatible performance and can be degraded in vitro within 4 weeks in a moderate manner.

  16. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  17. Evaluation of biodegradation-promoting additives for plastics.

    PubMed

    Selke, Susan; Auras, Rafael; Nguyen, Tuan Anh; Castro Aguirre, Edgar; Cheruvathur, Rijosh; Liu, Yan

    2015-03-17

    Biodegradation-promoting additives for polymers are increasingly being used around the world with the claim that they effectively render commercial polymers biodegradable. However, there is a lot of uncertainty about their effectiveness in degrading polymers in different environments. In this study, we evaluated the effect of biodegradation-promoting additives on the biodegradation of polyethylene (PE) and polyethylene terephthalate (PET). Biodegradation was evaluated in compost, anaerobic digestion, and soil burial environments. None of the five different additives tested significantly increased biodegradation in any of these environments. Thus, no evidence was found that these additives promote and/or enhance biodegradation of PE or PET polymers. So, anaerobic and aerobic biodegradation are not recommended as feasible disposal routes for nonbiodegradable plastics containing any of the five tested biodegradation-promoting additives.

  18. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    PubMed

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Biodegradation of the Pyrethroid Pesticide Esfenvalerate by Marine-Derived Fungi.

    PubMed

    Birolli, Willian G; Alvarenga, Natália; Seleghim, Mirna H R; Porto, André L M

    2016-08-01

    Esfenvalerate biodegradation by marine-derived fungi is reported here. Esfenvalerate (S,S-fenvalerate) and its main metabolites [3-phenoxybenzaldehyde (PBAld), 3-phenoxybenzoic acid (PBAc), 3-phenoxybenzyl alcohol (PBAlc), and 2-(4-chlorophenyl)-3-methylbutyric acid (CLAc)] were quantitatively analyzed by a validated method in triplicate experiments. All the strains (Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. CBMAI 1675, Acremonium sp. CBMAI 1676, Westerdykella sp. CBMAI 1679, and Cladosporium sp. CBMAI 1678) were able to degrade esfenvalerate, however, with different efficiencies. Initially, 100 mg L(-1) esfenvalerate (Sumidan 150SC) was added to each culture in 3 % malt liquid medium. Residual esfenvalerate (64.8-95.2 mg L(-1)) and the concentrations of PBAc (0.5-7.4 mg L(-1)), ClAc (0.1-7.5 mg L(-1)), and PBAlc (0.2 mg L(-1)) were determined after 14 days. In experiments after 7, 14, 21, and 28 days of biodegradation with the three most efficient strains, increasing concentrations of the toxic compounds PBAc (2.7-16.6 mg L(-1), after 28 days) and CLAc (6.6-13.4 mg L(-1), after 28 days) were observed. A biodegradation pathway was proposed, based on HPLC-ToF results. The biodegradation pathway includes PBAld, PBAc, PBAlc, ClAc, 2-hydroxy-2-(3-phenoxyphenyl)acetonitrile, 3-(hydroxyphenoxy)benzoic acid, and methyl 3-phenoxy benzoate. Marine-derived fungi were able to biodegrade esfenvalerate in a commercial formulation and showed their potential for future bioremediation studies in contaminated soils and water bodies.

  20. ETHANOL BIODEGRADATION FROM GASOLINE RELEASES AND ITS EFFECT ON BTEX BIODEGRADATIONS

    EPA Science Inventory

    How fast will ethanol biodegrade and what impact will it have on the biodegradation of BTEX in a gasoline spill? This session will provide evidence to answer these questions based on laboratory data. Material from UST spills from Long Island, New York, New Jersey, Florida, and ...

  1. [Out of addictions: Alcohol, or alcohol to alcohol].

    PubMed

    Simmat-Durand, L; Vellut, N; Lejeune, C; Jauffret-Roustide, M; Mougel, S; Michel, L; Planche, M

    2016-06-29

    Pathways from alcoholism to recovery are documented; less often are those from drug addiction to alcoholism. Biographical approaches allow analyzing how people change their uses and talk about their trajectories of recovery.

  2. CONTROLLED METHYL TERTIARY BUTYL ETHER (MTBE) EXPOSURE TO HUMANS THROUGH DERMAL, INGESTION, AND INHALATION ROUTES AND THE RESULTANT BIOMARKER TERTIARY BUTYL ALCOHOL (TBA) AS MEASURED IN EXHALED BREATH AND VENOUS BLOOD

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...

  3. Biodegradation of central intermediate compounds produced from biodegradation of aromatic compounds.

    PubMed

    Cinar, Ozer

    2004-10-01

    In this study I consider the incomplete biodegradation of aromatic compounds during the waste- water cycle between aerobic or anaerobic zones in biological nutrient removal processes, including aerobic biodegradation of compounds (such as cyclohex-l-ene-1-carboxyl-CoA) produced during the incomplete anaerobic biodegradation of aromatic compounds, and anaerobic biodegradation of compounds (such as catechol, protocatechuate, and gentisic acid) produced during the incomplete aerobic biodegradation of aromatic compounds. Anaerobic degradation of the aerobic central intermediates that result from the incomplete aero-bic degradation of aromatic compounds usually leads to benzoyl-CoA. On the other hand, aerobic degradation of the anaerobic central intermediates that result from the incomplete anaerobic degradation of aromatic compounds usually leads to protocatechuate.

  4. Hydrocarbon Biodegradation in Hypersaline Environments

    PubMed Central

    Ward, David M.; Brock, T. D.

    1978-01-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-14C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-14C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments. PMID:16345276

  5. Fungal biodegradation of pomegranate ellagitannins.

    PubMed

    Ascacio-Valdés, Juan A; Buenrostro, José J; De la Cruz, Reynaldo; Sepúlveda, Leonardo; Aguilera, Antonio F; Prado, Arely; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2014-01-01

    Ellagitannins (ETs) are phytochemicals derived from secondary metabolism associated to defense system, with complex chemical structures, which have high participation during all stages of protection against microbial infection. In this study, we report the fungal biodegradation of a bioactive ET, named punicaline which was recovered and purified from pomegranate peels and used as carbon source in solid-state culture (SSC) using polyurethane as solid support. SSC was kinetically monitored during 36 h of incubation time. ETs and glycosides consumption were spectrophotometrically determined. Ellagic acid (EA) accumulation was analyzed by HPLC. Several enzymatic activities were assayed (cellulase, xylanase, β-glucosydase, polyphenoloxidase, tannase, and ET hydrolyzing activities). The consumption levels of ETs and glycosides were 66 and 40%, while EA accumulation reached 42.02 mg g(-1). A differential pattern of enzymatic activities was found; evidence from our studies suggests that the ET hydrolyzing activity is directly associated to EA accumulation, and production of this enzyme may represent the most critical step to successfully develop a bioprocess for production of an important bioactive compound, the EA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biodegradation of Phenanthrene Sorbed to Biochars

    NASA Astrophysics Data System (ADS)

    Kang, S.; Choi, Y.; Jung, J.; Ok, Y.

    2016-12-01

    Biochar is a porous organic matter produced from pyrolysis of biomass. Because of its high carbon content and large surface area, biochar has a high potential to sorb organic pollutants from various environments. However, there is limited knowledge on the behavior of organic pollutants sorbed to biochars. The goal of this study is to investigate the biodegradability of a model organic pollutant, phenanthrene, adsorbed to biochars with different physicochemical properties. Biochars were produced from different feedstocks, rice husk, wood chip, soybean stover, and sewage sludge, with pyrolysis temperatures of 500°C, 250°C, 700°C, and 500°C, to obtain those with different physicochemical properties. After sorption of phenanthrene, the biochars were added to a minimal medium inoculated with a phenanthrene-degrading bacterial species Pseudomonas putida. Phenanthrene biodegradation was monitored over time by measuring the CO2 evolution. The fraction of biodegradable phenanthrene ranged from 4.8% to 54% with a maximum value of 54% for the rice husk biochar. The first-order biodegradation rate constant was in the range of 0.035 to 0.096 d-1, which is comparable to the rate constant of 0.049 d-1 for the no-biochar control. Biochar desorption tests were conducted for rice husk and wood chip biochars. The desorption tests indicated that 61% and 59% of phenanthrene could be desorbed from the rice husk and wood chip biochars respectively. The estimated fraction of desorption corresponded relatively well with the biodegradable fraction for the rice husk biochar. However, for the wood chip biochar, the biodegradable fraction was significantly smaller than the fraction of desorption, suggesting inhibited or attenuated degradation of the sorbed phenanthrene. Our results suggest that the biodegradability of phenanthrene sorbed to biochars is limited by resistance to desorption as well as other factors that are currently unknown.

  7. Biomechanical Challenges to Polymeric Biodegradable Stents.

    PubMed

    Soares, Joao S; Moore, James E

    2016-02-01

    Biodegradable implants have demonstrated clinical success in simple applications (e.g., absorbable sutures) and have shown great potential in many other areas of interventional medicine, such as localized drug delivery, engineered tissue scaffolding, and structural implants. For endovascular stenting and musculoskeletal applications, they can serve as temporary mechanical support that provides a smooth stress-transfer from the degradable implant to the healing tissue. However, for more complex device geometries, in vivo environments, and evolving load-bearing functions, such as required for vascular stents, there are considerable challenges associated with the use of biodegradable materials. A biodegradable stent must restore blood flow and provide support for a predictable appropriate period to facilitate artery healing, and subsequently, fail safely and be absorbed in a controllable manner. Biodegradable polymers are typically weaker than metals currently employed to construct stents, so it is difficult to ensure sufficient strength to keep the artery open and alleviate symptoms acutely while keeping other design parameters within clinically acceptable ranges. These design challenges are serious, given the general lack of understanding of biodegradable polymer behavior and evolution in intimal operating conditions. The modus operandi is mainly empirical and relies heavily on trial-and-error methodologies burdened by difficult, resource-expensive, and time-consuming experiments. We are striving for theoretical advancements systematizing the empirical knowledge into rational frameworks that could be cast into in silico tools for simulation and product development optimization. These challenges are evident when one considers that there are no biodegradable stents on the US market despite more than 30 years of development efforts (and currently only a couple with CE mark). This review summarizes previous efforts at implementing biodegradable stents, discusses the

  8. Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data

    SciTech Connect

    Loonen, H.; Lindgren, F.; Hansen, B.

    1999-08-01

    Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EU ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.

  9. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  10. Alcoholic liver disease

    MedlinePlus

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  11. Fetal Alcohol Syndrome

    MedlinePlus

    ... disorders with similar signs and symptoms. Fetal alcohol spectrum disorders The range of consequences from drinking alcohol during pregnancy are collectively called fetal alcohol spectrum disorders, as not all signs and symptoms are ...

  12. Biodegradability of ethylenediamine-based complexing agents.

    PubMed

    Sýkora, V; Pitter, P; Bittnerová, I; Lederer, T

    2001-06-01

    Biological degradability of ethylenediamine derivatives depends on the type and number of substituents. The susceptibility to biodegradation decreases in the sequence of substituents -COCH3, -CH3, -C2H5, -CH2CH2OH, -CH2COOH and with polysubstitution. The biodegradability depends also on the kind and number of nitrogen atoms. Complexing agents with a single-nitrogen atom in the molecule (e.g. NTA) succumb relatively readily to biodegradation whereas, compounds with two or more tertiary amino groups are biologically highly stable and do not undergo biodegradation even in experiments with activated sludge adapted at an age of up to 30 days (EDTA, DTPA, PDTA, HEDTA). A lowering of the degree of substitution brings about an increased susceptibility to biodegradation. This holds, e.g., for replacement of tertiary amino groups with secondary ones; thus the symmetrically disubstituted ethylenediamine-N,N'-diacetic acid (EDDA) possesses still sufficient complexing ability while belonging already to the group of potentially degradable substances.

  13. Ultimate biodegradation of dialkyl phthalate ester plasticizers

    SciTech Connect

    Lee, C.L.; Sinko, C.J.; Winkelmann, D.A.; Peterson, D.R.; Parkerton, T.F.

    1995-12-31

    Phthalate Esters (PEs) are primarily used as plasticizers in the polymer industry to impart the desired degree of flexibility to plastic products. The single isomer, di-2-ethylhexyl phthalate (DEHP) is the most common plasticizer. However, other commercially important PE plasticizers possess branched alkyl chains of a mixed isomeric nature. The purpose of this study was to compare the ultimate biodegradability of mixed isomer PEs dihexyl (DHP), diisoheptyl (DIHP), diisononyl (DINP), diisodecyl (DIDP), and diisoundecyl (DIUP) phthalate to DEHP using the standardized OECD test (301 F) which is based on mannometric respirometry. Ultimate biodegradation results after 28 days under unacclimated conditions at 25 C were as follows: DHP (80 {+-} 10%), DIHP (82 {+-} 13%), DEHP (63 {+-} 18%), DINP (70 {+-} 11%), DIDP (67 {+-} 13%), DUP (57 {+-} 14%). These data confirm the readily biodegradable nature of DEHP and mixed isomer PEs reported in previous studies and provide additional data to contradict the misperception that PEs are environmentally persistent. The influence of alkyl chain structure on the rate and extent of biodegradation observed in this and other biodegradation studies are discussed.

  14. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  15. Biodegradable lignin/polyolefin composite films

    SciTech Connect

    Kosikova, B.; Demjanova, V.; Mikulasova, M.; Lora, J.H.

    1993-12-31

    From the view point of environmental protection, the plastic wastes, especially from packing materials, represent a potential waste problem. Various approaches were examined to develop partially or completely biodegradable plastics. New type of partially biodegradable polyolefins was prepared by blending of polypropylene with lignin, which was recovered in the ALCELL process, an organosolv pulping process that uses ethanol-water as the delignifying agent. Films of blends with up to 10% wt ALCELL lignin, prepared in absence of commercial stabilizers, had acceptable mechanical strengths. The effect of lignin on biodegradability of the composite films was examined by comparison of behaviour of both pure and lignin containing films during treatment with fungus Phanerochaete chrysosporium. It was found that this fungus is able to grow and to produce lignolytic enzymes in the presence of the films containing lignin. Biodegradation of lignin in the composite film was confirmed by the releasing of lignin fragments into the extracellular fluid. Because of measurement of mechanical properties offers a mean of direct estimation of polymer degradation, the degree of biodegradation of the films tested was followed by monitoring of elongation at break. The changes of break at elongation in the course of enzymatic treatment revealed that the lignin/PP composite films are potentially environmentally nonpersisting. The micrographs of the lignin containing films obtained by scanning electron microscopy show the significant changes of the film surface upon degradation with Phanerochaete chrysosporium in contrast to unchanged lignin free film.

  16. Renal histopathology in toxicity and carcinogenicity studies with tert-butyl alcohol administered in drinking water to F344 rats: a pathology working group review and re-evaluation.

    PubMed

    Hard, Gordon C; Bruner, Richard H; Cohen, Samuel M; Pletcher, John M; Regan, Karen S

    2011-04-01

    An independent Pathology Working Group (PWG) re-evaluated the kidney changes in National Toxicology Program (NTP) toxicology/carcinogenicity studies of tert-butyl alcohol (TBA) in F344/N rats to determine possible mode(s) of action underlying renal tubule tumors in male rats at 2-years. In the 13-week study, the PWG confirmed that the normal pattern of round hyaline droplets in proximal convoluted tubules was replaced by angular droplet accumulation, and identified precursors of granular casts in the outer medulla, changes typical of alpha(2u)-globulin (α(2u)-g) nephropathy. In the 2-year study, the PWG confirmed the NTP observation of increased renal tubule tumors in treated male groups. Linear papillary mineralization, another hallmark of the α(2u)-g pathway was present only in treated male rats. Chronic progressive nephropathy (CPN) was exacerbated in high-dose males and females, with a relationship between advanced grades of CPN and renal tumor occurrence. Hyperplasia of the papilla lining was a component of CPN in both sexes, but there was no pelvic urothelial hyperplasia. High-dose females showed no TBA-related nephrotoxicity. The PWG concluded that both α(2u)-g nephropathy and exacerbated CPN modes of action were operative in TBA renal tumorigenicity in male rats, neither of which has relevance for human cancer risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Development of a biochemical process for production of alcohol fuel from peat. Final technical report, June 1, 1981-June 30, 1983

    SciTech Connect

    Levy, P.F.; de Riel, S.R.; Heneghan, E.P.; Cheng, L.K.; Sanderson, J.E.

    1983-07-29

    This report relates progress in the development of a process for production of mixed alcohol fuel from peat. The process has four steps - pretreatment of peat to promote biodegradability, anaerobic fermentation to produce organic acids, electrolytic oxidation of organic acids to olefins, and hydration of the olefins to alcohols. Since production of alcohols by hydration of olefins is an acknowledged technology, the development program focuses on demonstrating technical feasibility of the other three steps. 70 references, 70 figures, 61 tables.

  18. Biodegradability of organic nanoparticles in the aqueous environment.

    PubMed

    Kümmerer, Klaus; Menz, Jakob; Schubert, Thomas; Thielemans, Wim

    2011-03-01

    Synthetic nanoparticles have already been detected in the aquatic environment. Therefore, knowledge on their biodegradability is of utmost importance for risk assessment but such information is currently not available. Therefore, the biodegradability of fullerenes, single, double, multi-walled as well as COOH functionalized carbon nanotubes and cellulose and starch nanocrystals in aqueous environment has been investigated according to OECD standards. The biodegradability of starch and cellulose nanoparticles was also compared with the biodegradability of their macroscopic counterparts. Fullerenes and all carbon nanotubes did not biodegrade at all, while starch and cellulose nanoparticles biodegrade to similar levels as their macroscopic counterparts. However, neither comfortably met the criterion for ready biodegradability (60% after 28 days). The cellulose and starch nanoparticles were also found to degrade faster than their macroscopic counterparts due to their higher surface area. These findings are the first report of biodegradability of organic nanoparticles in the aquatic environment, an important accumulation environment for manmade compounds.

  19. Evaluating the primary and ready biodegradability of dianilinodithiophosphoric acid.

    PubMed

    Lin, Weixiong; Sun, Shuiyu; Xu, Pingting; Dai, Yongkang; Ren, Jie

    2016-04-01

    Dianilinodithiophosphoric acid (DDA) is widely used as sulfide mineral flotation collector in China. It is necessary to investigate the biodegradability of DDA to provide the fundamental knowledge to assess the environmental fate in the risk assessment of DDA and to design and operate the DDA flotation wastewater biological treatment plant. In the present study, the primary and ready aerobic biodegradations of DDA were studied and the primary biodegradation kinetic model of DDA was developed. The results show that DDA displays a good primary biodegradability and its biodegradation ratio reaches 99.8 % in 7 days. In contrast, DDA is not easily ready biodegradable; hence, it is a partially biodegradable organic compound. The primary aerobic biodegradation kinetics can be described using the first-order reaction kinetics equation: C = 19.72191e(-0.01513t).

  20. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    PubMed Central

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (EdK) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept EdK was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated EdK was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the EdK values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of EdK for each material. The EdK values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the EdK was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  1. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers.

    PubMed

    Guo, Wenbin; Tao, Jian; Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter ((Ed)K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept (Ed)K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated (Ed)K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the (Ed)K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of (Ed)K for each material. The (Ed)K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the (Ed)K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment.

  2. Alcohol Alert: Link Between Stress and Alcohol

    MedlinePlus

    ... Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA Journal Alcohol Alert Bulletin ... Cortisol also has a role in cognition, including learning and memory. In particular, it has been found ...

  3. National Institute on Alcohol Abuse and Alcoholism

    MedlinePlus

    ... Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA Journal Alcohol Alert Bulletin Professional Education Materials Classroom Resources Presentations & Videocasts Video Bank Publicaciones en Español ...

  4. Alcoholism and Alcohol Abuse - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Alcoholism and Alcohol Abuse URL of this page: https://medlineplus.gov/languages/alcoholismandalcoholabuse.html Other topics A-Z Expand Section ...

  5. Novel biodegradable nanocarriers for enhanced drug delivery.

    PubMed

    Gagliardi, Mariacristina

    2016-12-01

    With the refinement of functional properties, the interest around biodegradable materials, in biorelated applications and, in particular, in their use as controlled drug-delivery systems, increased in the last decades. Biodegradable materials are an ideal platform to obtain nanoparticles for spatiotemporal controlled drug delivery for the in vivo administration, thanks to their biocompatibility, functionalizability, the control exerted on delivery rates and the complete degradation. Their application in systems for cancer treatment, brain and cardiovascular diseases is already a consolidated practice in research, while the bench-to-bedside translation is still late. This review aims at summarizing reported applications of biodegradable materials to obtain drug-delivery nanoparticles in the last few years, giving a complete overview of pros and cons related to degradable nanomedicaments.

  6. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery.

    PubMed

    Tu, Yingfeng; Peng, Fei; André, Alain A M; Men, Yongjun; Srinivas, Mangala; Wilson, Daniela A

    2017-02-28

    We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs.

  7. Experimental studies on waste paper pulp biodegradation.

    PubMed

    Sharma, R; Sharma, D; Rao, K S; Jain, R C

    2002-07-01

    In continuation of their studies on Biodegradation of cellulosic waste materials, the authors have presented their experimental data on biodegradation on waste paper pulp. Greater efficiency in the cow dung and M3 culture experimental setups have been pointed out and discussed. Necessity of detailed data evaluation of temperature, pH, dry weight, cellulose, protein, carbohydrate, Nitrate, Phosphate & Potassium levels is suggested. Derivation of %, absolute and increase/decrease % of BOO, COD and VS have been pointed out for the first time in solid waste Biodegradation. Further data evaluation and derivation of critical reaction rate kinetics have been recommended for further studies in solid waste-degradation to achieve quicker Bioconversion of cellulosic wastes into compost.

  8. Biodegradability of wheat gluten based bioplastics.

    PubMed

    Domenek, Sandra; Feuilloley, Pierre; Gratraud, Jean; Morel, Marie-Hélène; Guilbert, Stéphane

    2004-01-01

    A large variety of wheat gluten based bioplastics, which were plasticized with glycerol, were subjected to biodegradation. The materials covered the total range available for the biochemical control parameter Fi, which expresses the percentage of aggregated proteins. This quantity can be related to the density of covalent crosslinks in the wheat gluten network, which are induced by technological treatments. The biodegradability tests were performed in liquid medium (modified Sturm test) and in farmland soil. All gluten materials were fully degraded after 36 days in aerobic fermentation and within 50 days in farmland soil. No significant differences were observed between the samples. The mineralization half-life time of 3.8 days in the modified Sturm test situated gluten materials among fast degrading polymers. The tests of microbial inhibition experiments revealed no toxic effects of the modified gluten or of its metabolites. Thus, the protein bulk of wheat gluten materials is non-toxic and fully biodegradable, whatever the technological process applied.

  9. Biodegradable Photonic Melanoidin for Theranostic Applications.

    PubMed

    Lee, Min-Young; Lee, Changho; Jung, Ho Sang; Jeon, Mansik; Kim, Ki Su; Yun, Seok Hyun; Kim, Chulhong; Hahn, Sei Kwang

    2016-01-26

    Light-absorbing nanoparticles for localized heat generation in tissues have various biomedical applications in diagnostic imaging, surgery, and therapies. Although numerous plasmonic and carbon-based nanoparticles with strong optical absorption have been developed, their clearance, potential cytotoxicity, and long-term safety issues remain unresolved. Here, we show that "generally regarded as safe (GRAS)" melanoidins prepared from glucose and amino acid offer a high light-to-heat conversion efficiency, biocompatibility, biodegradability, nonmutagenicity, and efficient renal clearance, as well as a low cost for synthesis. We exhibit a wide range of biomedical photonic applications of melanoidins, including in vivo photoacoustic mapping of sentinel lymph nodes, photoacoustic tracking of gastrointestinal tracts, photothermal cancer therapy, and photothermal lipolysis. The biodegradation rate and renal clearance of melanoidins are controllable by design. Our results confirm the feasibility of biodegradable melanoidins for various photonic applications to theranostic nanomedicines.

  10. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  11. Materials derived from biomass/biodegradable materials.

    PubMed Central

    Luzier, W D

    1992-01-01

    Interest in biodegradable plastics made from renewable resources has increased significantly in recent years. PHBV (polyhydroxybutyrate-polyhydroxyvalerate) copolymers are good examples of this type of materials. This paper provides an overview of the manufacturing process, properties, biodegradability, and application/commercial issues associated with PHBV copolymers. They are naturally produced by bacteria from agricultural raw materials, and they can be processed to make a variety of useful products, where their biodegradability and naturalness are quite beneficial. PHBV copolymers are still in the first stage of commercialization. But they are presented in this paper as an example of how new technology can help meet society's needs for plastics and a clean environment. Images PMID:1736301

  12. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery

    PubMed Central

    2017-01-01

    We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs. PMID:28187254

  13. Biodegradable Polymers and Stem Cells for Bioprinting.

    PubMed

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  14. Kinetics of monomer biodegradation in soil.

    PubMed

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Injectable biodegradable materials for orthopedic tissue engineering.

    PubMed

    Temenoff, J S; Mikos, A G

    2000-12-01

    The large number of orthopedic procedures performed each year, including many performed arthroscopically, have led to great interest in injectable biodegradable materials for regeneration of bone and cartilage. A variety of materials have been developed for these applications, including ceramics, naturally derived substances and synthetic polymers. These materials demonstrate overall biocompatibility and appropriate mechanical properties, as well as promote tissue formation, thus providing an important step towards minimally invasive orthopedic procedures. This review provides a comparison of these materials based on mechanical properties, biocompatibility and regeneration efficacy. Advantages and disadvantages of each material are explained and design criteria for injectable biodegradable systems are provided.

  16. Biodegradable containers from green waste materials

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  17. Improvement of biodegradability of PVA-containing wastewater by ionizing radiation pretreatment.

    PubMed

    Sun, Weihua; Tian, Jinping; Chen, Lujun; He, Shijun; Wang, Jianlong

    2012-09-01

    Polyvinyl alcohol (PVA) has been widely used as sizing agents in textile and manufacturing industry, and it is a refractory compound with low biodegradability. The objective of this paper was to treat the PVA-containing wastewater using gamma irradiation as a pretreatment strategy to improve its biodegradability and to determine the roles of different kinds of radical species played during pretreatment. Gamma radiation was carried out in a (60)Cobalt source station, PVA concentration was analyzed by using a visible spectrophotometer and specific oxygen uptake rate (SOUR, milligram of O(2) per gram of mixed liquor volatile suspended solids (MLVSS) per hour) was measured by a microrespirometer. The results showed that the biodegradability of PVA-containing wastewater with low initial concentration (e.g., 327.8 mg/l) could be improved greatly with increasing irradiation dose. However, PVA gel formation was observed at higher initial PVA concentration (e.g., 3,341.6 mg/l) and higher irradiation dose, which inhibited PVA degradation by aerobic microorganisms. However, the formed gel could be separated by microfiltration, which led to more than 90% total organic carbon (TOC) removal. Ionizing radiation could be used as a pretreatment technology for PVA-containing wastewater, and its combination with biological process is feasible.

  18. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    NASA Astrophysics Data System (ADS)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  19. Effect of benzene and ethylbenzene on the transcription of methyl-tert-butyl ether degradation genes of Methylibium petroleiphilum PM1.

    PubMed

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2016-09-01

    Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

  20. Children of Alcoholics.

    ERIC Educational Resources Information Center

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  1. Nurses' Attitudes towards Alcoholics.

    ERIC Educational Resources Information Center

    Speer, Rita D.

    Nurses' attitudes toward the alcoholic can have a profound impact on the person suffering from alcoholism. These attitudes can affect the alcoholic's care and even whether the alcoholic chooses to recover. This study investigated attitudes of approximately 68 nurses employed in hospitals, 49 nurses in treatment facilities, 58 nursing students, and…

  2. Children of Alcoholics.

    ERIC Educational Resources Information Center

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  3. Alcoholic metabolic emergencies.

    PubMed

    Allison, Michael G; McCurdy, Michael T

    2014-05-01

    Ethanol intoxication and ethanol use are associated with a variety of metabolic derangements encountered in the Emergency Department. In this article, the authors discuss alcohol intoxication and its treatment, dispel the myth that alcohol intoxication is associated with hypoglycemia, comment on electrolyte derangements and their management, review alcoholic ketoacidosis, and end with a section on alcoholic encephalopathy.

  4. A review of biodegradation of synthetic plastic and foams.

    PubMed

    Gautam, R; Bassi, A S; Yanful, E K

    2007-04-01

    Synthetic polymeric foams have pervaded every aspect of modern life. Although foams provide numerous benefits, they also cause a significant environmental litter problem because of their recalcitrant and xenobiotic nature. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation process of synthetic plastic and plasticbased foams. This review has been written to provide an overview of the current state of plastic foam biodegradation. Several biodegradation pathways of a few select synthetic polymers are also presented along with a discussion on some of the physico-chemical factors that can influence the biodegradation of plastic foams.

  5. Internet Alcohol Marketing and Underage Alcohol Use

    PubMed Central

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  6. Internet Alcohol Marketing and Underage Alcohol Use.

    PubMed

    McClure, Auden C; Tanski, Susanne E; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D

    2016-02-01

    Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13-2.78 and odds ratio 2.15; 95% confidence interval, 1.06-4.37 respectively) but not with initiation of ever drinking. Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. Copyright © 2016 by the American Academy of Pediatrics.

  7. Alcohol and bone.

    PubMed

    Mikosch, Peter

    2014-01-01

    Alcohol is widely consumed across the world in different cultural and social settings. Types of alcohol consumption differ between (a) light, only occasional consumption, (b) heavy chronic alcohol consumption, and (c) binge drinking as seen as a new pattern of alcohol consumption among teenagers and young adults. Heavy alcohol consumption is detrimental to many organs and tissues, including bones. Osteoporosis is regularly mentioned as a secondary consequence of alcoholism, and chronic alcohol abuse is established as an independent risk factor for osteoporosis. The review will present the different mechanisms and effects of alcohol intake on bone mass, bone metabolism, and bone strength, including alcoholism-related "life-style factors" such as malnutrition, lack of exercise, and hormonal changes as additional causative factors, which also contribute to the development of osteoporosis due to alcohol abuse.

  8. Biodegradation Of thermoplastic polyurethanes from vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Thermoplastic urethanes based on polyricinoleic acid soft segments and MDI/BD hard segments with varied soft segment concentration were prepared. Soft segment concentration was varied fro, 40 to 70 wt %. Biodegradation was studied by respirometry. Segmented polyurethanes with soft segments based ...

  9. Biodegradable polymers derived from amino acids.

    PubMed

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications.

  10. Diisopropanolamine biodegradation potential at sour gas plants

    SciTech Connect

    Gieg, L.M.; Greene, E.A.; Coy, D.L.; Fedorak, P.M.

    1998-12-31

    The potential for aerobic and anaerobic biodegradation of a sour gas treatment chemical, diisopropanolamine (DIPA), was studied using contaminated aquifer materials from three sour gas treatment sites in western Canada. DIPA was found to be readily consumed under aerobic conditions at 8 C and 28 C in shake flask cultures incubated with aquifer material from each of the sites, and this removal was characterized by first-order kinetics. In addition, DIPA biodegradation was found to occur under nitrate-, Mn(IV)-, and Fe(III)-reducing conditions at 28 C, and in some cases at 8 C, in laboratory microcosms. DIPA loss corresponded to consumption of nitrate, and production of Mn(II) and Fe(II) in viable microcosms compared to corresponding sterile controls. A threshold DIPA concentration near 40 mg/L was observed in the anaerobic microcosms. This report provides the first evidence that DIPA is biodegraded under anaerobic conditions, and the data suggest that biodegradation may contribute to DIPA attenuation under aerobic and anaerobic conditions in aquifers contaminated with this sour gas treatment chemical.

  11. Biodegradable Shape Memory Polymers in Medicine.

    PubMed

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-09-21

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Neuronal growth and differentiation on biodegradable membranes.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Messina, Antonietta; Salerno, Simona; Al-Fageeh, Mohamed B; Drioli, Enrico; De Bartolo, Loredana

    2015-02-01

    Semipermeable polymeric membranes with appropriate morphological, physicochemical and transport properties are relevant to inducing neural regeneration. We developed novel biodegradable membranes to support neuronal differentiation. In particular, we developed chitosan, polycaprolactone and polyurethane flat membranes and a biosynthetic blend between polycaprolactone and polyurethane by phase-inversion techniques. The biodegradable membranes were characterized in order to evaluate their morphological, physicochemical, mechanical and degradation properties. We investigated the efficacy of these different membranes to promote the adhesion and differentiation of neuronal cells. We employed as model cell system the human neuroblastoma cell line SHSY5Y, which is a well-established system for studying neuronal differentiation. The investigation of viability and specific neuronal marker expression allowed assessment that the correct neuronal differentiation and the formation of neuronal network had taken place in vitro in the cells seeded on different biodegradable membranes. Overall, this study provides evidence that neural cell responses depend on the nature of the biodegradable polymer used to form the membranes, as well as on the dissolution, hydrophilic and, above all, mechanical membrane properties. PCL-PU membranes exhibit mechanical properties that improve neurite outgrowth and the expression of specific neuronal markers.

  13. ENGINEERING BULLETIN: IN SITU BIODEGRADATION TREATMENT

    EPA Science Inventory

    In situ biodegradation may be used to treat low-to-intermediate concentrations of organic contaminants in place without disturbing or displacing the contaminated media. Although this technology has been used to degrade a limited number of inorganics, specifically cyanide and nitr...

  14. Biodegradation of o-Benzyl-p-Chlorophenol

    PubMed Central

    Swisher, R. D.; Gledhill, W. E.

    1973-01-01

    The extent of biodegradation of o-benzyl-p-chlorophenol, marketed as a germicide under the name Santophen® 1 (Monsanto Co.), in river water, sewage, and activated sludge was determined. Biodegradation was assessed by use of a colorimetric procedure for phenolic materials, carbon analysis, and CO2 evolution. In unacclimated river water, 0.1 mg of Santophen 1 per liter was degraded within 6 days. In sewage, 0.5 and 1.0 mg/liter levels of Santophen 1 were degraded in 1 day. Acclimated activated sludge achieved 80% biodegradation of 1.0 mg/liter Santophen 1 in 8 h and 100% in 24 h. When effluent from a semicontinuous activated sludge unit, acclimated to 20 mg of Santophen 1 per liter was used as the inoculum for the CO2 evolution procedure, 60% of the total theoretical CO2 was evolved from Santophen 1. Based on the results of these studies, indicating Santophen 1 to be readily biodegraded in at least four biological systems, the continued use of present levels of Santophen 1 should present no significant environmental problems. PMID:4356462

  15. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  16. Phyllosphere yeasts rapidly break down biodegradable plastics

    PubMed Central

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  17. ENGINEERING BULLETIN: IN SITU BIODEGRADATION TREATMENT

    EPA Science Inventory

    In situ biodegradation may be used to treat low-to-intermediate concentrations of organic contaminants in place without disturbing or displacing the contaminated media. Although this technology has been used to degrade a limited number of inorganics, specifically cyanide and nitr...

  18. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  19. Migration of BTEX and Biodegradation in Shallow Underground Water through Fuel Leak Simulation.

    PubMed

    Cheng, Yaping; Chen, Yudao; Jiang, Yaping; Jiang, Lingzhi; Sun, Liqun; Li, Liuyue; Huang, Junyu

    2016-01-01

    To provide more reasonable references for remedying underground water, fuel leak was simulated by establishing an experimental model of a porous-aquifer sand tank with the same size as that of the actual tank and by monitoring the underground water. In the tank, traditional gasoline and ethyl alcohol gasoline were poured. This study was conducted to achieve better understanding of the migration and distribution of benzene, toluene, ethyl benzene, and xylene (BTEX), which are major pollutants in the underground water. Experimental results showed that, compared with conventional gasoline, the content peak of BTEX in the mixture of ethyl alcohol gasoline appeared later; BTEX migrated along the water flow direction horizontally and presented different pollution halos; BTEX also exhibited the highest content level at 45 cm depth; however, its content declined at the 30 and 15 cm depths vertically because of the vertical dispersion effect; the rise of underground water level increased the BTEX content, and the attenuation of BTEX content in underground water was related to the biodegradation in the sand tank, which mainly included biodegradation with oxygen, nitrate, and sulfate.

  20. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene.

    PubMed

    Vail, Andrew W; Wang, Ping; Uefuji, Hirotaka; Samac, Deborah A; Vance, Carroll P; Wackett, Lawrence P; Sadowsky, Michael J

    2015-06-01

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and groundwater in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradation pathway of Pseudomonas sp. strain ADP, which is initiated by atzA, encoding atrazine chlorohydrolase. Here we explored the use of enhanced expression of a modified bacterial atrazine chlorohydrolase, p-AtzA, in transgenic grasses (tall fescue, perennial ryegrass, and switchgrass) and the legume alfalfa for the biodegradation of atrazine. Enhanced expression of p-AtzA was obtained by using combinations of the badnavirus promoter, the maize alcohol dehydrogenase first intron, and the maize ubiquitin promoter. For alfalfa, we used the first intron of the 5'-untranslated region tobacco alcohol dehydrogenase gene and the cassava vein mosaic virus promoter. Resistance of plants to atrazine in agar-based and hydroponic growth assays was correlated with in vivo levels of gene expression and atrazine degradation. The in planta expression of p-atzA enabled transgenic tall fescue to transform atrazine into hydroxyatrazine and other metabolites. Results of our studies highlight the potential use of transgenic plants for bioremediating atrazine in the environment.

  1. Inhibition of Biodegradation of Hydraulic Fracturing Compounds by Glutaraldehyde: Groundwater Column and Microcosm Experiments.

    PubMed

    Rogers, Jessica D; Ferrer, Imma; Tummings, Shantal S; Bielefeldt, Angela R; Ryan, Joseph N

    2017-09-05

    The rapid expansion of unconventional oil and gas development has raised concerns about the potential contamination of aquifers; however, the groundwater fate and transport of hydraulic fracturing fluid compounds and mixtures remains a significant data gap. Degradation kinetics of five hydraulic fracturing compounds (2-propanol, ethylene glycol, propargyl alcohol, 2-butoxyethanol, and 2-ethylhexanol) in the absence and presence of the biocide glutaraldehyde were investigated under a range of redox conditions using sediment-groundwater microcosms and flow-through columns. Microcosms were used to elucidate biodegradation inhibition at varying glutaraldehyde concentrations. In the absence of glutaraldehyde, half-lives ranged from 13 d to >93 d. Accurate mass spectrometry indicated that a trimer was the dominant aqueous-phase glutaraldehyde species. Microbial inhibition was observed at glutaraldehyde trimer concentrations as low as 5 mg L(-1), which demonstrated that the trimer retained some biocidal activity. For most of the compounds, biodegradation rates slowed with increasing glutaraldehyde concentrations. For many of the compounds, degradation was faster in the columns than the microcosms. Four compounds (2-propanol, ethylene glycol, propargyl alcohol, and 2-butoxyethanol) were found to be both mobile and persistent in groundwater under a range of redox conditions. The glutaraldehyde trimer and 2-ethylhexanol were more rapidly degraded, particularly under oxic conditions.

  2. Migration of BTEX and Biodegradation in Shallow Underground Water through Fuel Leak Simulation

    PubMed Central

    2016-01-01

    To provide more reasonable references for remedying underground water, fuel leak was simulated by establishing an experimental model of a porous-aquifer sand tank with the same size as that of the actual tank and by monitoring the underground water. In the tank, traditional gasoline and ethyl alcohol gasoline were poured. This study was conducted to achieve better understanding of the migration and distribution of benzene, toluene, ethyl benzene, and xylene (BTEX), which are major pollutants in the underground water. Experimental results showed that, compared with conventional gasoline, the content peak of BTEX in the mixture of ethyl alcohol gasoline appeared later; BTEX migrated along the water flow direction horizontally and presented different pollution halos; BTEX also exhibited the highest content level at 45 cm depth; however, its content declined at the 30 and 15 cm depths vertically because of the vertical dispersion effect; the rise of underground water level increased the BTEX content, and the attenuation of BTEX content in underground water was related to the biodegradation in the sand tank, which mainly included biodegradation with oxygen, nitrate, and sulfate. PMID:27882327

  3. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy.

    PubMed

    Gong, Haibo; Wang, Kun; Strich, Randy; Zhou, Jack G

    2015-11-01

    Zinc-Magnesium (Zn-Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn-Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn-1 wt % Mg (Zn-1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn-1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn-1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn-1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn-1Mg alloy was biocompatible. Therefore, hot extruded Zn-1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application.

  4. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy

    PubMed Central

    Gong, Haibo; Wang, Kun; Strich, Randy; Zhou, Jack G.

    2017-01-01

    Zinc–Magnesium (Zn–Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn–Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn–1 wt % Mg (Zn–1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn–1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn–1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn–1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn–1Mg alloy was biocompatible. Therefore, hot extruded Zn–1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application. PMID:25581552

  5. Does Bioavailability Limit Biodegradability? A Comparison of Hydrocarbon Biodegradation and Desorption Rates in Aged Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2004-08-01

    In order to determine whether bioavailability limits the biodegradability of petroleum hydrocarbons in aged soils, both the biodegradation and abiotic desorption rates of PAHs and n-alkanes were measured at various time points in six different aged soils undergoing slurry bioremediation treatment. Alkane biodegradation rates were always much greater than the respective desorption rates, indicating that these saturated hydrocarbons do not need to be transferred into the aqueous phase prior to metabolism by soil microorganisms. The biodegradation of PAHs was generally not mass-transfer rate limited during the initial phase, while it often became so at the end of the treatment period when biodegradation rates equaled abiotic desorption rates. However, in all cases where PAH biodegradation was not observed or PAH removal temporarily stalled, bioavailability limitations were not deemed responsible for this recalcitrance since these PAHs desorbed rapidly from the soil into the aqueous phase. Consequently, aged PAHs that are often thought to be recalcitrant due to bioavailability limitations may not be so and therefore may pose a greater risk to environmental receptors than previously thought.

  6. Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils.

    PubMed

    Huesemann, Michael H; Hausmann, Tom S; Fortman, Tim J

    2004-08-01

    In order to determine whether bioavailability limits the biodegradability of petroleum hydrocarbons in aged soils, both the biodegradation and abiotic desorption rates of PAHs and n-alkanes were measured at various time points in six different aged soils undergoing slurry bioremediation treatment. Alkane biodegradation rates were always much greater than the respective desorption rates, indicating that these saturated hydrocarbons apparently do not need to be dissolved into the aqueous phase prior to metabolism by soil microorganisms. The biodegradation of PAHs was generally not mass-transfer rate limited during the initial phase, while it often became so at the end of the treatment period when biodegradation rates equaled abiotic desorption rates. However, in all cases where PAH biodegradation was not observed or PAH removal temporarily stalled, bioavailability limitations were not deemed responsible for this recalcitrance since these PAHs desorbed rapidly from the soil into the aqueous phase. Consequently, aged PAHs that are often thought to be recalcitrant due to bioavailability limitations may not be so and therefore may pose a greater risk to environmental receptors than previously thought.

  7. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (ɛ) for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  8. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  9. Synthesis and characterization of sugar-bearing chitosan derivatives: aqueous solubility and biodegradability.

    PubMed

    Park, Jae Hyung; Cho, Yong Woo; Chung, Hesson; Kwon, Ick Chan; Jeong, Seo Young

    2003-01-01

    The extended use of chitosan in biomedical fields has been limited by its insoluble nature in a biological solution. To endow the water solubility in a broad range of pH, chitosan derivatives were prepared by the covalent attachment of a hydrophilic sugar moiety, gluconic acid, through the formation of an amide bond. These sugar-bearing chitosans (SBCs) were further modified by the N-acetylation in an alcoholic aqueous solution. Thereafter, the effect of the gluconyl group and the degree of N-acetylation (DA) on the water solubility at different pHs and on the biodegradability of chitosan were investigated. The SBCs showed the water solubility in a broader range of pH than chitosan, whereas they were still insoluble at neutral and alkali pH. The N-acetylation of SBCs significantly affected the water solubility, for example, the SBCs with the DA, ranging from 29% to 63%, were soluble in the whole range of pH. This might result from the improved hydrophilicity by the gluconyl group, accompanied by the role of the N-acetyl group that disturbed the hydrogen bonding between amino groups of chitosan. From the biodegradation tests, determined by the decrease in the viscosity of a polymer solution exposed to lysozyme, it was evident that the gluconyl group attached to chitosan improved the biodegradability. Thus, it was possible to control the biodegradability of chitosan by adjusting the amounts of gluconyl and N-acetyl groups in the chitosan backbone. The N-acetylated SBCs, soluble in the broad range of pH, might be useful for various biomedical applications.

  10. Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate.

    PubMed

    Kurade, Mayur B; Waghmode, Tatoba R; Khandare, Rahul V; Jeon, Byong-Hun; Govindwar, Sanjay P

    2016-04-01

    Bioremediation is one of the milestones achieved by the biotechnological innovations. It is generating superior results in waste management such as removal of textile dyes, which are considered xenobiotic compounds and recalcitrant to biodegradation. In the present bioremedial approach, Brevibacillus laterosporus was used as an effective microbial tool to decolorize disperse dye Disperse Red 54 (DR54). Under optimized conditions (pH 7, 40°C), B. laterosporus led to 100% decolorization of DR54 (at 50 mg L(-1)) within 48 h. Yeast extract and peptone, supplemented in medium enhanced the decolorization efficiency of the bacterium. During the decolorization process, activities of enzymes responsible for decolorization, such as tyrosinase, veratryl alcohol oxidase and NADH--DCIP reductase were induced by 1.32-, 1.51- and 4.37-fold, respectively. The completely different chromatographic/spectroscopic spectrum of metabolites obtained after decolorization confirmed the biodegradation of DR54 as showed by High pressure liquid chromatography, High pressure thin layer chromatography and Fourier transform infrared spectroscopy. Gas chromatography-Mass spectroscopy studies suggested the parent dye was biodegraded into simple final product, N-(1λ(3)-chlorinin-2-yl)acetamide. Phytotoxicity study suggested that the metabolites obtained after biodegradation of DR54 were non-toxic as compared to the untreated dye signifying the detoxification of the DR54 by B. laterosporus. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  12. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  13. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  14. Assessing the aquatic hazard of some branched and linear nonionic surfactants by biodegradation and toxicity

    SciTech Connect

    Dorn, P.B.; Salanitro, J.P.; Evans, S.H.; Kravetz, L. . Westhollow Research Center)

    1993-10-01

    An aquatic hazard assessment was conducted for branched and linear nonionic surfactants using toxicity and biodegradation measurements. Four nonionic alcohol ethoxylate surfactants with different degrees of branching were evaluated for neat surfactant toxicity, degradation in laboratory sewage treatment units, and aquatic toxicity of treated effluents. Acute testing with neat surfactants showed ranges for EC50s of 1.3 to 11.6 mg/L for Daphnia, 1.6 to 6.1 mg/L for Pimephales promelas (fathead minnow), and 1.5 to 11.4 mg/L for Microtox[reg sign]. Chronic testing of algae showed NOECs of 1 to 10 mg/L and maximum acceptable toxicant concentrations (MATCs) of 0.8 to 14.2 mg/L. Seven-day chronic estimation tests showed MATCs of 0.6 to 41.4 mg/L for Pimephales promelas and 1 to 14 mg/L for Daphnia. Effluents collected from treatment units receiving a 50-mg/L surfactant feed at 25 C showed no acute toxicity to either Daphnia or fathead minnows, with the exception of a unit containing nonylphenol ethoxylate. Chronic effluent toxicity was greatest in effluent from the nonylphenol ethoxylate unit and least in the effluent from the linear alcohol ethoxylate unit. Chronic toxicity of the highly branched C[sub 13] alcohol ethoxylate effluent was greater than that for the linear alcohol ethoxylate unit effluent.

  15. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    PubMed

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  16. Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure-biodegradation relationship.

    PubMed

    Yu, Yinghao; Lu, Xingmei; Zhou, Qing; Dong, Kun; Yao, Hongwei; Zhang, Suojiang

    2008-01-01

    It has been confirmed that commonly used ionic liquids are not easily biodegradable. When ultimately disposed of or accidentally released, they would accumulate in the environment, which strongly restricts large-scale industrial applications of ionic liquids. Herein, ten biodegradable ionic liquids were prepared by a single, one-pot neutralization of choline and surrogate naphthenic acids. The structures of these naphthenic acid ionic liquids (NAILs) were characterized and confirmed by (1)H and (13)C NMR spectroscopy, IR spectroscopy, and elemental analysis, and their physical properties, such as densities, viscosities, conductivities, melting points (T(m)), glass transition points (T(g)), and the onset temperatures of decomposition (T(d)), were determined. More importantly, studies showed that these NAILs would be rapidly and completely biodegraded in aquatic environments under aerobic conditions, which would make them attractive candidates to be utilized in industrial processes. To explore the underlying mechanism involved in the NAIL biodegradation reaction and seek prediction of their biodegradability under environmental conditions, four molecular descriptors were chosen: the logarithm of the n-octanol/water partition coefficient (log P), van der Waals volume (V(vdW)), energies of the highest occupied molecular orbital (E(HOMO)), and energies of the lowest unoccupied molecular orbital (E(LUMO)). Through multiple linear regression, a general and qualified model including the biodegradation percentage for NAILs after the 28-day OECD 301D test (%B(28)) and molecular descriptors was developed. Regression analysis showed that the model was statistically significant at the 99 % confidence interval, thus indicating that the %B(28) of NAILs could be explained well by the quantum chemical descriptor E(HOMO), which might give some important clues in the discovery of biodegradable ionic liquids of other kinds.

  17. The biochemistry of alcohol and alcohol abuse.

    PubMed

    Palmer, T N

    1989-01-01

    The vast majority of the adult population of most societies consume alcohol to some degree. In the U.K., although average alcohol consumption is moderate, it is not generally appreciated that the per capita consumption varies markedly within the population: approximately one-twentieth of the adult population accounts for half of the total alcohol consumed. Alcohol abuse is consequently a major health problem affecting 1-1.5 million people in this country. The most obvious effects of excessive alcohol consumption are on the central nervous system and on social behaviour. However, alcohol is metabolized predominantly in the liver and it can impair and impede the liver's capacity to metabolize other substances including nutrients, steroids, vitamins, and certain organic compounds foreign to the body (referred to as xenobiotics). It is possible therefore, from the biochemical perspective, to explain many of the effects of alcohol on the body on the basis of its interaction with essential liver metabolism. What remains obscure is the mechanism whereby chronic alcohol abuse leads to permanent damage to the liver and other organs. Recent research suggests that acetaldehyde (a metabolite of alcohol) may play a key role in this process.

  18. Current knowledge on biodegradable microspheres in drug delivery.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  19. [Biodegradable catheters and urinary stents. When?

    PubMed

    Soria, F; Morcillo, E; López de Alda, A; Pastor, T; Sánchez-Margallo, F M

    2016-10-01

    One of the main wishes in the field of urinary catheters and stents is to arm them with biodegradable characteristics because we consider a failure of these devices the need for retrieval, the forgotten catheter syndrome as well as the adverse effects permanent devices cause after fulfilling their aim. The efforts focused in new designs, coatings and biomaterials aim to increase the biocompatibility of theses internal devices. Lately, there have been correct advances to answer the main challenges regarding biodegradable ureteral devices. Thus, modulation of the rate of degradation has been achieved thanks to new biomaterials and the use of copolymers that enable to choose the time of permanence as it is programmed with conventional double J catheters. Biocompatibility has improved with the use of new polymers that adapt better to the urine. Finally, one of the main problems is elimination of degraded fragments and experimentally it has be demonstrated that new designs elicit controlled degradation, from distal to proximal; using stranding and combination of copolymers degradation may be caused by dilution, reducing fragmentation to the last stages of life of the prosthesis. Moreover, it has been demonstrated that biodegradable catheters potentially may cause less urinary tract infection, less encrustation and predictably they will diminish catheter morbidity, since their degradation process reduces adverse effects. Regarding the development of biodegradable urethral stents, it is necessary to find biomaterials that enable maintaining their biomechanical properties in the long term, keeping open the urethral lumen both in patients with BPH and urethral stenosis. Modulation of the time of degradation of the prosthesis has been achieved, but the appearance of urothelial hyperplasia is still a constant in the initial phases after implantation. The development of drug eluting stents, anti-proliferative or anti-inflammatory, as well as biodegradable stents biocoated is a

  20. Amino alcohol-based degradable poly(ester amide) elastomers

    PubMed Central

    Bettinger, Christopher J.; Bruggeman, Joost P.; Borenstein, Jeffrey T.; Langer, Robert S.

    2009-01-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young’s modulus on the order of 1 MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo. PMID:18295329

  1. Amino alcohol-based degradable poly(ester amide) elastomers.

    PubMed

    Bettinger, Christopher J; Bruggeman, Joost P; Borenstein, Jeffrey T; Langer, Robert S

    2008-05-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young's modulus on the order of 1MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo.

  2. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567

  3. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1984-01-10

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent, comprising a higher aliphatic alcohol in major amount and an aliphatic hydrocarbon in minor amount, especially suited to such extraction and to subsequent removal. The solvent alcohol desirably has a branched chain, or the hydrocarbon an unsaturated bond, or both. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (usually met with fossil fuel). Optional addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  4. Alcoholism and reproduction.

    PubMed

    Heine, M W

    1981-01-01

    A brief overview of the reproductive capacities of both men and women in alcoholism is presented. A historical evaluation indicates a resurgence of interest in this area. The effect of chronic alcohol consumption on both male fertility and potency is reported in conjunction with alcohol-mediated effects on the female subject. Emphasis is placed on pharmacokinetics, metabolism and drinking behavior of the alcoholic female. The adverse actions of some therapeutic drugs and chronic alcohol consumption is discussed in relationship to fetal alcohol syndrome and the accompanied mental and somatic abnormalities.

  5. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    MedlinePlus

    ... this page: About CDC.gov . FASD Homepage Facts Secondary Conditions Videos Alcohol Use in Pregnancy Questions & Answers Quiz Alcohol Screening & Brief Intervention Diagnosis Treatments Data & Statistics Alcohol Consumption Rates Research & Tracking Monitoring Alcohol ...

  6. Synergic effect of acetal-based resin by blending with poly[4-hydroxy styrene-co-tert-butyl acrylate-co-4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene)] (P(HS-TBA-CBPS)) on the profiles of 248 nm chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jin; Chung, Yoon-Sik; Lee, Dong H.; Cho, Sook H.; Im, Kwang H.; Yim, Yun-Gill; Kim, Deog-Bae; Kim, Jae-Hyun

    2002-07-01

    We prepared ter-polymer of hydroxystyrene, tert-butyl acrylate and 4-(3-cyano-1,5-di-tert-butyl carbonyl pentyl styrene) (P(HS-TBA-CBPS)) and discussed a characteristic of prepared polymer. As TBA, newly introduced monomer increases, contrast of resist is improved. And the prepared polymer was blended with poly(4-hydroxystyrene-co-4-(1-ethylethoxystyrene)) (EE-PHS). The synergic effect on a resist performance in KrF lithography by the combination of high and low activation energy system was shown. A resist using blending polymer was shown a good performance on resolution and LER(Line Edge Roughness) than resist using polymer separately. Based on the results, it was found that high performance KrF resist could be obtained by optimization of polymer blending.

  7. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions.

    PubMed

    Mohee, R; Unmar, G D; Mudhoo, A; Khadoo, P

    2008-01-01

    A study was conducted on two types of plastic materials, Mater-Bi Novamont (MB) and Environmental Product Inc. (EPI), to assess their biodegradability under aerobic and anaerobic conditions. For aerobic conditions, organic fractions of municipal solid wastes were composted. For the anaerobic process, anaerobic inoculum from a wastewater treatment plant was used. Cellulose filter papers (CFP) were used as a positive control for both mediums. The composting process was monitored in terms of temperature, moisture and volatile solids and the biodegradation of the samples were monitored in terms of mass loss. Monitoring results showed a biodegradation of 27.1% on a dry basis for MB plastic within a period of 72 days of composting. Biodegradability under an anaerobic environment was monitored in terms of biogas production. A cumulative methane gas production of 245 ml was obtained for MB, which showed good degradation as compared to CFP (246.8 ml). However, EPI plastic showed a cumulative methane value of 7.6 ml for a period of 32 days, which was close to the blank (4.0 ml). The EPI plastic did not biodegrade under either condition. The cumulative carbon dioxide evolution after 32 days was as follows: CFP 4.406 cm3, MB 2.198 cm3 and EPI 1.328 cm3. The cumulative level of CO2 varying with time fitted sigmoid type curves with R2 values of 0.996, 0.996 and 0.995 for CFP, MB and EPI, respectively.

  8. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus. Copyright © 2015 by the American Academy of Pediatrics.

  9. Urban Soot Black Carbon Biodegradation Rates

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.; Hamilton, G.

    2016-12-01

    Black carbon has long been considered inherently recalcitrant and unavailable to microbes, but recent work indicates that black carbon is more reactive than previously thought. Here we present results of biological degradation studies using soot black carbon (isolated using the CTO375 method) from soils in metropolitan Phoenix, AZ. Carbon-limited bacteria were able to respire soot black carbon. Rates of CO­2 production were low ( 10-20 ppm/day), but significant. The chemical composition of the dissolved soot black carbon, as indicated by 3D-fluorescence spectroscopy, was shifted toward more oxidized components over the course of the biodegradation experiments. These results suggest that black carbon from urban and desert environments is bioavailable and that soot biodegradation needs to be considered in future studies.

  10. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months.

  11. Biodegradable foam plastics based on castor oil.

    PubMed

    Wang, Hong Juan; Rong, Min Zhi; Zhang, Ming Qiu; Hu, Jing; Chen, Hui Wen; Czigány, Tibor

    2008-02-01

    In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.

  12. Biodegradable, hydrophobic coatings based on crosslinked polycaprolactone

    SciTech Connect

    Koenig, M.F.

    1993-12-31

    Crosslinked poly(caprolactone) (PCL) has been explored as a hydrophobic and biodegradable coating for hydrophilic substrates. Crosslinking of PCL is known to retard its degradation rate, but does not affect its biodegradability. The cross-linking efficiencies of several organic peroxides have been determined for PCL. This has been accomplished by calculating the crosslink density (M{sub c} from dynamic mechanical data) for a given molar concentration of organic peroxide. Various thicknesses of crosslinked PCL have been coated on several different hydrophilic substrates, including paper, MaterBi (regsign), and PCL/starch composites. The hydrophobicity of the coating has been measured by following the weight gain of the coated samples upon exposure to water and a high relative humidity for various lengths of time. Results show that a coating as thin as 10 {mu}m reduces water absorption of paper by a factor of five, and thicker coatings (0.25 mm) by more than two orders of magnitude.

  13. Enhanced biodegradation resistance of biomodified jute fibers.

    PubMed

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam; Das, Sancharini

    2013-04-02

    A bio-catalyzed process has been developed for treating jute fibers to enhance their tensile strength and resistance against biodegradation. Lipolytic bacteria were used in the process to transesterify jute fibers by replacing hydrophilic hydroxyl groups within cellulose chains with hydrophobic fatty acyl chains. Transesterification of some of the hydroxyl groups within the fiber was confirmed with FTIR, UV-vis spectroscopy, (13)C solid state NMR, gas chromatography and analytical determination of ester content. Biomodified fibers exhibited remarkably smaller affinity to water and moisture and retained 62% of their initial tensile strengths after being exposed to a composting environment over 21 days. The corresponding figure for untreated fibers was only 30%. Efficacy of the process reported herein in terms of tensile strength and biodegradation resistance enhancement of fibers achieved after treatment appears to be comparable with similar chemical processes and better than the enzyme-catalyzed alternatives.

  14. [Development of biodegradable magnesium-based biomaterials].

    PubMed

    Zhu, Shengfa; Xu, Li; Huang, Nan

    2009-04-01

    Magnesium is a macroelement which is indispensable to human bodies. As a lightweight metal with high specific strength and favorable biocompatibility, magnesium and its alloys have been introduced in the field of biomedical materials research and have a broad application prospect. It is possible to develop new type of biodegradable medical magnesium alloys by use of the poor corrosion resistance of magnesium. Bioabsorbable magnesium stents implanted in vivo could mechanically support the vessel in a short term, effectly prevent the acute coronary occlusion and in-stent restenosis, and then be gradully biodegraded and completely absorbed in a long term. Osteoconductive bioactivity in magnesium-based alloys could promote the apposition growth of bone tissue. This paper reviews the progress of magnesium and its alloys applied in bone tissue and cardiovascular stents, and the prospect of the future research of magnesium-based biomaterials is discussed.

  15. Biodegradable Epoxy Networks Cured with Polypeptides

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeo; Kramer, Edward J.

    2006-03-01

    Epoxy resins are used widely for adhesives as well as coatings. However, once cured they are usually highly cross-linked and are not biodegradable. To obtain potentially biodegradable polypeptides that can cure with epoxy resins and achieve as good properties as the conventional phenol novolac hardeners, poly(succinimide-co-tyrosine) was synthesized by thermal polycondensation of L-aspartic acid and L-tyrosine with phosphoric acid under reduced pressure. The tyrosine/succinimide ratio in the polypeptide was always lower than the tyrosine/(aspartic acid) feed ratio and was influenced by the synthesis conditions. Poly(succinimide-tyrosine- phenylalanine) was also synthesized from L-aspartic acid, L- tyrosine and L-phenylalanine. The thermal and mechanical properties of epoxy resins cured with these polypeptides are comparable to those of similar resins cured with conventional hardeners. In addition, enzymatic degradability tests showed that Chymotrypsin or Subtilisin A could cleave cured films in an alkaline borate buffer.

  16. Study of biodegradable polymers for ``green'' devices

    NASA Astrophysics Data System (ADS)

    Perez, Carlos; Jiang, Xiaomei; Jiang Group Team

    2015-03-01

    Π - conjugated polymers such as polythiophenes are conventional picks for cost-effective organic solar cells. However, these organic semiconductors are not environment-friendly since the polymer back bones require temperature higher than 3000C to be decomposed, thus will cause potential environment problems upon disposal. In this work, the optical and electronic properties of biodegradable polymers, conjugated poly(disulfidediamine), were examined via continuous wave laser spectroscopy, FTIR spectroscopy and conductivity measurement. We found that the attachment of a side chain to aromatic ring increases both photo and thermal stability, as well as higher conductivity. Thermal annealing improved the film morphological, photophysical and electronic properties. Photo-Induced Absorption (PIA) reveals different features comparing with conventional pi-conjugated polymers. No observation of long-lived photoexcitations such as polarons or triplets which are common with pi-conjugated polymers. Instead, we found the formation of low energy species upon thermal annealing in these biodegradable polymers.

  17. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  18. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  19. Alcohol Use and Older Adults

    MedlinePlus

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  20. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    PubMed

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  1. Anaerobic biodegradation of surrogate naphthenic acids.

    PubMed

    Clothier, Lindsay N; Gieg, Lisa M

    2016-03-01

    Surface bitumen extraction from the Alberta's oil sands region generates large settling basins known as tailings ponds. The oil sands process-affected water (OSPW) stored in these ponds contain solid and residual bitumen-associated compounds including naphthenic acids (NAs) that can potentially be biodedgraded by indigenous tailings microorganisms. While the biodegradation of some NAs is known to occur under aerobic conditions, little is understood about anaerobic NA biodegradation even though tailings ponds are mainly anoxic. Here, we investigated the potential for anaerobic NA biodegradation by indigenous tailings microorganisms. Enrichment cultures were established from anoxic tailings that were amended with 5 single-ringed surrogate NAs or acid-extractable organics (AEO) from OSPW and incubated under nitrate-, sulfate-, iron-reducing, and methanogenic conditions. Surrogate NA depletion was observed under all anaerobic conditions tested to varying extents, correlating to losses in the respective electron acceptor (sulfate or nitrate) or the production of predicted products (Fe(II) or methane). Tailings-containing cultures incubated under the different electron-accepting conditions resulted in the enrichment and putative identification of microbial community members that may function in metabolizing surrogate NAs under the various anoxic conditions. In addition, more complex NAs (in the form of AEO) was observed to drive sulfate and iron reduction relative to controls. Overall, this study has shown that simple surrogate NAs can be biodegraded under a variety of anoxic conditions, a key first step in understanding the potential anaerobic metabolism of NAs in oil sands tailings ponds and other industrial wastewaters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Polymer blends with biodegradable components and reinforcements

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Polymeric blends based on ethylene vinyl acetate rubbers filled with high mol. wt. carboxymethyl cellulose were investigated in view of possible employment as biodegradable materials. The effect of vinyl acetate content and of addition of transesterification agent to increase interaction between EVA and cellulosic components was considered. Blends reinforced with cellulose microfibers in different amounts were also characterized in their mechanical, rheological and thermal behavior.

  3. Behaviour of biodegradable plastics in composting facilities.

    PubMed

    Körner, I; Redemann, K; Stegmann, R

    2005-01-01

    Composting is a preferred treatment strategy for biodegradable plastics (BDPs). In this sense, the collection of BDPs together with organic household wastes is a highly discussed possibility. Under the aspect of the behaviour of BDPs in composting facilities, a telephone survey was carried out with selected composting facility operators. They were interviewed with respect to treated wastes, content of impurities, processes for impurity separation, experiences with biodegradable plastics and assumptions to the behaviour of biodegradable plastics in their facility. Forty percent of the facilities had some experiences with BDPs due to test runs, and also since the occurrence of BDPs in their waste was known. The majority of the operators expressed apprehension regarding an increase of impurities resulting from a combined collection of biowaste and BDPs. In the facilities, measures for the impurity separation from the biowaste were used in common practice - in 33% of the cases, separation of disturbing plastics was done before composting, in 33% after composting, and in 13% before and after composting. The most important separation processes for conventional plastics were sieving and manual sorting. In two cases air classification was also used. When asked about the separation possibility of the conventional but not of the biodegradable plastics in their facilities, the majority of operators were not in a position to comment or they replied that it was not an option. No problems were seen in most cases if the impurity separation follows composting. If impurity separation takes place before composting it was often assumed that the BDPs are mainly separated by sieving. In conclusion, in more than half of the cases, BDPs would not be composted if delivered to a composting facility. Under the actual conditions regarding the collection and the treatment/disposal possibilities, an application of BDPs seems to only be reasonable for clean (i.e., source separated on their own

  4. Polymers from plants to develop biodegradable plastics.

    PubMed

    Conrad, Udo

    2005-11-01

    Katrin Neumann et al. have recently shown that transgenic tobacco and potato plants can accumulate high levels of cyanophycin, a possible source for poly-aspartate. This work opens the way to the future production of biodegradable plastics using a plant-based production system. Several problems need to be overcome first, such as growth retardation as a result of cyanophycin accumulating in the cytosol, and a co-production system needs to be developed for economical reasons.

  5. Natural biodegradation of organic contaminants in groundwater

    SciTech Connect

    McNab, W W; Rice, D W

    1998-09-23

    There has recently been a growing awareness that natural processes are degrading contaminants of concern, and that the contribution these natural processes make to achieving cleanup goals needs to be formally considered during site-specific cleanup. Historical case data from a large number of releases has been used to evaluate the expectation for natural attenuation to contribute to the cleanup of petroleum hydrocarbons and chlorinated solvents. The use of historical case data has several advantages, among them: 1) sites can reduce characterization costs by sharing information on key hydrogeologic parameters controlling contaminant fate and transport, and 2) standard reference frameworks can be developed that individual sites can use as a basis of comparison regarding plume behavior. Definition of cleanup times must take into account basic constraints imposed by natural laws governing the transport and natural degradation process of petroleum hydrocarbons. The actual time to reach groundwater cleanup goals is determined by these laws and the limitations on residual subsurface contamination attenuation rates, through either active or natural biological processes. These limitations will practically constrain the time to achieve low concentration cleanup goals. Recognition is needed that sites will need to be transitioned to remediation by natural processes at some point following implementation of active remediation options. The results of an analysis of approximately 1800 California and 600 Texas fuel hydrocarbon (FHC) releases and 2.50 chlorinated volatile organic compound (CVOC) plumes will be summarized. Plume lengths and natural biodegradation potential were evaluated. For FHC releases, 90% of benzene groundwater plumes were less than 280 feet in length and evidence of natural biodegradation was found to be present at all sites studied in detail. For CVOC releases, source strength and groundwater flow velocity are dominant factors controlling groundwater plume

  6. Polyethylene bio-degradation by caterpillars?

    PubMed

    Weber, Carina; Pusch, Stefan; Opatz, Till

    2017-08-07

    In their recent paper on the degradation of polyethylene by caterpillars of the wax moth Galleria melonella, Bombelli et al.[1] report various experiments, including microscopic and spectroscopic data which the authors believe support the chemical digestion of the polymers by these insects. While the biodegradation of mostly inert artificial polymers is definitely a very interesting research field, we must respectfully disagree with the methodology and conclusions from this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthetic biodegradable polymers for orthopaedic applications.

    PubMed

    Behravesh, E; Yasko, A W; Engel, P S; Mikos, A G

    1999-10-01

    Synthetic biodegradable polymers offer an alternative to the use of autografts, allografts, and nondegradable materials for bone replacement. They can be synthesized with tailored mechanical and degradative properties. They also can be processed to porous scaffolds with desired pore morphologic features conducive to tissue ingrowth. Moreover, functionalized polymers can modulate cellular function and induce tissue ingrowth. This review focuses on four classes of polymers that hold promise for orthopaedic applications: poly alpha-hydroxy esters, polyphosphazenes, polyanhydrides, and polypropylene fumarate crosslinked networks.

  8. Ammonium Perchlorate Biodegradation for Industrial Wastewater Treatment

    DTIC Science & Technology

    2000-06-01

    Treatment Plant KCl Potassium Chloride KP Potassium Perchlorate NPDES National Pollutant Discharge Elimination System OB/OD Open Burning/Open...biodegradation treatment plant at Thiokol destroyed 15,400 pounds of perchlorate. Conversion from the yeast-whey nutrient blend to CBP took place in May 1999...a full-scale plant to treat up to 4 gpm of diluted perchlorate brine at the productivity of the Thiokol prototype was $225 million. Estimated

  9. Neutralization and Biodegradation of Sulfur Mustard.

    DTIC Science & Technology

    1997-02-01

    obtained from activated sludge (Back River Wastewater Treatment Plant, Baltimore, MD). Initial mixed liquor suspended solids (MLSS) levels were...BIODEGRADATION OF SULFUR MUSTARD Steven P. Harvey Linda L. Szafraniec William T. Beaudry RESEARCH AND TECHNOLOGY DIRECTORATE James T. Earley SBR TECHNOLOGIES, INC... SBR Technologies, Inc.); and Irvine, Robert L. (University of Notre Dame) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  10. Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation.

    PubMed

    Hongwei, Yang; Zhanpeng, Jiang; Shaoqi, Shi

    2006-02-01

    The anaerobic biodegradability of 23 nitrogenous compounds, including nitrogenous heterocyclic compounds and aliphatic amines, was tested and assessed in integration. These nitrogenous compounds were classified into readily, partially, and poorly biodegradable compounds after calculation of their integrated assessment indices (IAIs), Rules for anaerobic biodegradation of these compounds were also drawn. Stepwise regression and backpropagation artificial neural network (BP-ANN) methods were applied to establish quantitative structure-biodegradability relationships (QSBRs) based on the assessment results. In QSBR models, three molecular structure descriptors-second-order molecular connectivity index (2chi(V3)chi(v)p), and energy of the highest occupied molecular orbital (EHOMO)--were included. After analysis of the sensitivity of variables in QSBR models, it was found that the key molecular structure descriptor affecting anaerobic biodegradability of nitrogenous compounds is EHOMO, which is directly proportional to the anaerobic biodegradability of nitrogenous compounds.

  11. Biodegradability Evaluation of Polymers by ISO 14855-2

    PubMed Central

    Funabashi, Masahiro; Ninomiya, Fumi; Kunioka, Masao

    2009-01-01

    Biodegradabilities of polymers and their composites in a controlled compost were described. Polycaprolactone (PCL) and poly(lactic acid) (PLA) were employed as biodegradable polymers. Biodegradabilities of PCL and PLA samples in a controlled compost were measured using a Microbial Oxidative Degradation Analyzer (MODA) according to ISO 14855-2. Sample preparation method for biodegradation test according to ISO/DIS 10210 was also described. Effects of sizes and shapes of samples on biodegradability were studied. Reproducibility of biodegradation test of ISO 14855-2 by MODA was confirmed. Validity of sample preparation method for polymer pellets, polymer film, and polymer products of ISO/DIS 10210 for ISO 14855-2 was confirmed. PMID:20111676

  12. Non-biodegradable biopolymers from renewable resources: perspectives and impacts.

    PubMed

    Steinbüchel, Alexander

    2005-12-01

    In recent years the biotechnological production of bulk biopolymers has focused on the synthesis of biodegradable polymers to replace their non-biodegradable counterparts derived from fossil resources. Examples include polyhydroxyalkanoates and polylactic acid, which act as substitutes for polyolefins. By contrast, the biotechnological production of non-biodegradable polymers from renewable resources has so far been scarcely considered, probably because this idea contradicts the paradigm that all natural compounds are biodegradable. Polythioesters, which were recently described as new biopolymers, do not follow this paradigm because although they are produced by bacteria, they are persistent to microbial degradation. Mankind has a need for both non-biodegradable and biodegradable polymers and methods to produce them from renewable resources will be of great value.

  13. Translational Studies of Alcoholism

    PubMed Central

    Zahr, Natalie M.; Sullivan, Edith V.

    2008-01-01

    Human studies are necessary to identify and classify the brain systems predisposing individuals to develop alcohol use disorders and those modified by alcohol, while animal models of alcoholism are essential for a mechanistic understanding of how chronic voluntary alcohol consumption becomes compulsive, how brain systems become damaged, and how damage resolves. Our current knowledge of the neuroscience of alcohol dependence has evolved from the interchange of information gathered from both human alcoholics and animal models of alcoholism. Together, studies in humans and animal models have provided support for the involvement of specific brain structures over the course of alcohol addiction, including the prefrontal cortex, basal ganglia, cerebellum, amygdala, hippocampus, and the hypothalamic–pituitary–adrenal axis. PMID:20041042

  14. Overview of Alcohol Consumption

    MedlinePlus

    ... Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA Journal Alcohol Alert Bulletin Professional Education Materials Classroom Resources Presentations & Videocasts Video Bank Publicaciones en Español ...

  15. Alcohol Use Disorders

    MedlinePlus

    ... Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA Journal Alcohol Alert Bulletin Professional Education Materials Classroom Resources Presentations & Videocasts Video Bank Publicaciones en Español ...

  16. Older Adults and Alcohol

    MedlinePlus

    ... Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA Journal Alcohol Alert Bulletin Professional Education Materials Classroom Resources Presentations & Videocasts Video Bank Publicaciones en Español ...

  17. Alcohol use disorder

    MedlinePlus

    ... Psychology, such as being impulsive or having low self-esteem Drinking an excessive amount of alcohol can put ... or schizophrenia Can easily obtain alcohol Have low self-esteem Have problems with relationships Live a stressful lifestyle ...

  18. Children of Alcoholics.

    ERIC Educational Resources Information Center

    Chafetz, Morris E.

    1979-01-01

    It is estimated that 29 million American children have alcoholic parents. The author documents the unstable environment and psychological consequences suffered by these children, who are at great risk to become alcoholics themselves. (Editor)

  19. Alcohol Use Screening

    MedlinePlus

    ... Centers Mental Health Medical Library Alcohol Use Screening (AUDIT-C) - Instructions The following questions are a screening ... is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following questions are a ...

  20. Epidemiology of Alcoholism.

    ERIC Educational Resources Information Center

    Helzer, John E.

    1987-01-01

    Reviews the application of epidemiology to alcoholism. Discusses measurement and diagnostic issues and reviews studies of the prevalence of alcoholism, its risk factors, and the contributions of epidemiology to our knowledge of treatment and prevention. (Author/KS)

  1. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Find out the number of beer and hard alcohol calories you are consuming. Simply ... calories) Average Drinks Per Week Monthly Subtotal Calories Beer Regular 12 149 Regular Beer Light 12 110 ...

  2. Women and Alcohol

    MedlinePlus

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  3. Myths about drinking alcohol

    MedlinePlus

    ... gov/ency/patientinstructions/000856.htm Myths about drinking alcohol To use the sharing features on this page, ... We know much more about the effects of alcohol today than in the past. Yet, myths remain ...

  4. Benzyl Alcohol Topical

    MedlinePlus

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  5. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... Daily life skills, such as feeding and bathing Fetal alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, including wide-set and narrow ...

  6. Fetal alcohol syndrome

    MedlinePlus

    ... resources for information on alcoholism: Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups -- www.al-anon. ... exposures to the fetus. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin's Neonatal-Perinatal ...

  7. Antidepressants and Alcohol

    MedlinePlus

    ... depressive disorder) Why is it bad to mix antidepressants and alcohol? Answers from Daniel K. Hall-Flavin, M.D. It's best to avoid combining antidepressants and alcohol. It may worsen your symptoms, and ...

  8. Alcohol - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Alcohol URL of this page: https://medlineplus.gov/languages/alcohol.html Other topics A-Z Expand Section ...

  9. Alcohol advertising and alcohol consumption by adolescents.

    PubMed

    Saffer, Henry; Dave, Dhaval

    2006-06-01

    This study investigates the effects of alcohol advertising on adolescent alcohol consumption. The theory of an industry response function and evidence from prior studies indicate the importance of maximizing the variance in advertising measures. Monitoring the Future (MTF) and National Longitudinal Survey of Youth 1997 (NLSY97) data are augmented with alcohol advertising, originating on the market level, for five media. The large sample of the MTF allows estimation of race and gender-specific models. The longitudinal nature of the NLSY97 allows controls for unobserved heterogeneity with state-level and individual fixed effects. Price and advertising effects are generally larger for females relative to males. Controls for individual heterogeneity yield larger advertising effects, implying that the MTF results may understate the effects of alcohol advertising. Results from the NLSY97 suggest that a 28% reduction in alcohol advertising would reduce adolescent monthly alcohol participation from 25% to between 24 and 21%. For binge participation, the reduction would be from 12% to between 11 and 8%. The past month price-participation elasticity is estimated at -0.26, consistent with prior studies. The results show that reduction of alcohol advertising can produce a modest decline in adolescent alcohol consumption, though effects may vary by race and gender.

  10. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    NASA Astrophysics Data System (ADS)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  11. Water-curable and biodegradable prepolymers.

    PubMed

    Kobayashi, H; Hyon, S H; Ikada, Y

    1991-12-01

    In an attempt to develop biodegradable polymers which can be shaped in situ and adhere to living tissues, we synthesized esterurethane prepolymers which can be cured upon contact with water in living tissues. First, D,L-lactide polymerization or D,L-lactide-epsilon-caprolactone (50:50) copolymerization was carried out using ethylene glycol or poly(ethylene glycol) as initiator to obtain hydroxyl-terminated biodegradable polyesters. They were then reacted with an excess of diisocyanate such as hexamethylene diisocyanate, toluylene diisocyanate, and diphenylmethane diisocyanate to introduce a reactive isocyanate group to both of the end groups of the polyesters. The isocyanate-terminated prepolymers could be cured in the presence of water and the cured polymers were degraded by hydrolysis both in vitro and in vivo. It was found that the presence of appropriate amounts of hydrophilic units in the main chain was essential for giving a high curing rate and a high degradation rate for the biodegradable urethane prepolymers. The tissue responses to the cured polymers were not severe.

  12. Petroleum biodegradation and oil spill bioremediation

    SciTech Connect

    Atlas, R.M.

    1993-12-31

    Bioremediation for the cleanup of different oil spills has employed either the application of fertilizer to enhance the abilities of the indigenous hydrocarbon-utilizing bacteria or the addition of naturally occurring adapted microbial hydrocarbon degraders by seeding. Laboratory experiments that closely model environmental conditions are helpful for demonstrating the potential applicability of bioremediation. Field demonstrations of enhanced numbers of hydrocarbon degraders and depressed levels of oxygen are useful indicators of hydrocarbon degradation activities, but chemical analyses of residues ultimately are necessary to establish that bioremediation enhances the natural rates of oil biodegradation. Owing to the patchy distribution of oil in the environment following a spill, an internal standard that is not biodegraded is necessary to serve as a reference for statistical analyses of compositional changes that can be attributed to biodegradation. Well designed and extensive experiments, with appropriate controls, are necessary to establish the efficacy of oil spill bioremediation. Only in a few cases has there been rigorous proof of the effectiveness of bioremediation. As a result fertilization has been shown to be an effective bioremediation treatment of oil spills, with rate enhancements of about 5 times, but seeding has not yet been shown to work in the field.

  13. Biodegradation of tert-butylphenyl diphenyl phosphate

    SciTech Connect

    Heitkamp, M.A.; Freeman, J.P.; Cerniglia, C.E.

    1986-02-01

    The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of (/sup 14/C)BPDP was monitored in the environmental microcosms by measuring the evolution of /sup 14/CO/sub 2/. Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to /sup 14/CO/sub 2/ in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to /sup 14/CO/sub 2/ in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP. The authors observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals.

  14. Biodegradation potential of a modified natural product

    SciTech Connect

    Sajjad, W.

    1996-12-31

    Biodegradation potential of a modified natural product for treating petroleum contaminated soils was investigated along with some commercially available microbial cultures in three different scales from a laboratory to pilot to case studies. The modified natural product is lignocellulosic in nature and proprietary product of a company in Iowa. The production process of this product involves mechanical size reduction, blending/coating, and aerobic digestion of hay, corn cob residue, straw or crop residue in presence of poultry manure. The degradation kinetics of the petroleum products in the contaminated soils were measured both directly and indirectly. Residual petroleum products in different soils (treated and untreated) at various time periods were quantified by gas chromatographic (GC) analysis on extracted samples. The indirect assessment of the kinetics of biological activity involved the measurement of CO{sub 2} evolved from flasks (250 ml capacity) containing contaminated soil (about 50 ml) with various treatments. The results indicated that the biodegradation kinetics of petroleum products in the contaminated soils were significantly improved by treatment with this modified natural product. In most cases tested, this product performed significantly better than the available commercial bacterial cultures for biological removal of petroleum products from contaminated soils. This study also demonstrated the significance of temperature and moisture content in biodegradation kinetics.

  15. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    PubMed

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    EPA Pesticide Factsheets

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  17. Systematic approach for modeling tetrachloroethene biodegradation

    SciTech Connect

    Bagley, D.M.

    1998-11-01

    The anaerobic biodegradation of tetrachloroethene (PCE) is a reasonably well understood process. Specific organisms capable of using PCE as an electron acceptor for growth require the addition of an electron donor to remove PCE from contaminated ground waters. However, competition from other anaerobic microorganisms for added electron donor will influence the rate and completeness of PCE degradation. The approach developed here allows for the explicit modeling of PCE and byproduct biodegradation as a function of electron donor and byproduct concentrations, and the microbiological ecology of the system. The approach is general and can be easily modified for ready use with in situ ground-water models or ex situ reactor models. Simulations conducted with models developed from this approach show the sensitivity of PCE biodegradation to input parameter values, in particular initial biomass concentrations. Additionally, the dechlorination rate will be strongly influenced by the microbial ecology of the system. Finally, comparison with experimental acclimation results indicates that existing kinetic constants may not be generally applicable. Better techniques for measuring the biomass of specific organisms groups in mixed systems are required.

  18. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources.

    PubMed

    Li, Ke; Hokanson, David R; Crittenden, John C; Trussell, Rhodes R; Minakata, Daisuke

    2008-12-01

    In this paper, we evaluate the efficiency of UV/H2O2 process to remove methyl tert-butyl ether (MtBE) and tertiary butyl alcohol (tBA) from a drinking water source. Kinetic models were used to evaluate the removal efficiency of the UV/H2O2 technologies with different pretreatment options and light sources. Two commercial UV light sources, i.e. low pressure, high intensity lamps and medium pressure, high intensity lamps, were evaluated. The following pretreatment alternatives were evaluated: (1) ion exchange softening with seawater regeneration (NaIX); (2) Pellet Softening; (3) weak acid ion exchange (WAIX); and (4) high pH lime softening followed by reverse osmosis (RO). The presence or absence of a dealkalization step prior to the UV/H2O2 Advanced Oxidation Process (AOP) was also evaluated for each pretreatment possibility. Pretreatment has a significant impact on the performance of UV/H2O2 process. The NaIX with dealkalization was shown to be the most cost effective. The electrical energy per order (EEO) values for MtBE and tBA using low pressure high output UV lamps (LPUV) and 10mg/LH2O2 are 0.77 and 3.0 kWh/kgal-order, or 0.20 and 0.79 kWh/m3-order, respectively. For medium pressure UV high output lamps (MPUV), EEO values for MtBE and tBA are 4.6 and 15 kWh/kgal-order, or 1.2 and 4.0 kWh/m3-order, for the same H2O2 dosage.

  19. Distillation for alcohol

    SciTech Connect

    Kawase, T.; Sawai, K.

    1983-02-22

    A new distillation equipment for alcohol which consists mainly of a brief concentrating column a, a concentrating column b, a compressor C to compress alcohol vapor generated in column B and water evaporator D heated by the compressed alcohol vapor is developed and this especially fits for a distillation source of a glue like solution obtained by alcohol fermentation because steam generated in the water evaporator D is directly blown into the solution in the concentrating column A.

  20. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1981-12-22

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent especially suited to such extraction and to subsequent removal. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (Usually met with fossil fuel). Addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  1. Biodegradable Grease Technology for Future Army Combat Systems

    DTIC Science & Technology

    2004-12-01

    CHNS-932 Elemental Tester [LECO, 1992]. The sewage inoculum (i.e., bacteria, yeast , fungi) was carefully prepared from the mixed liquor...rapeseed oil) which bacteria like to eat due to its natural ester flavor may substantially improve the biodegradation process of a lubricant. Also...The BLG (2) with 20% rapeseed oil provides a similar biodegradation profile to rapeseed- BLG, while the biodegradation behavior of BLG (1) with 10

  2. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    PubMed

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically

  3. Biodegradation of Alpha TNT and Its Production Isomers

    DTIC Science & Technology

    1974-07-01

    1 ^*"* **».-._ BIODEGRADATION OF ALPHA TNT ANT) ITS PRODUCTION ISOMERS Annual Report-U by: Richard W. Traxler University of Rhode Island...associated with the burning process. If these nitrobodies are found to be biodegradable , they could be rendered ecologically safe by biological...molecules are biodegradable by some microbial form whereas the truly recalcitrant molecules are found in broad classes of the synthetic organic compounds

  4. Alcohol and plasma triglycerides.

    PubMed

    Klop, Boudewijn; do Rego, Ana Torres; Cabezas, Manuel Castro

    2013-08-01

    This study reviews recent developments concerning the effects of alcohol on plasma triglycerides. The focus will be on population, intervention and metabolic studies with respect to alcohol and plasma triglycerides. Alcohol consumption and fat ingestion are closely associated and stimulated by each other via hypothalamic signals and by an elevated cephalic response. A J-shaped relationship between alcohol intake and plasma triglycerides has been described. A normal body weight, polyphenols in red wine and specific polymorphisms of the apolipoprotein A-V and apolipoprotein C-III genes may protect against alcohol-associated hypertriglyceridemia. In contrast, obesity exaggerates alcohol-associated hypertriglyceridemia and therefore the risk of pancreatitis. High alcohol intake remains harmful since it is associated with elevated plasma triglycerides, but also with cardiovascular disease, alcoholic fatty liver disease and the development of pancreatitis. Alcohol-induced hypertriglyceridemia is due to increased very-low-density lipoprotein secretion, impaired lipolysis and increased free fatty acid fluxes from adipose tissue to the liver. However, light to moderate alcohol consumption may be associated with decreased plasma triglycerides, probably determined by the type of alcoholic beverage consumed, genetic polymorphisms and lifestyle factors. Nevertheless, patients should be advised to reduce or stop alcohol consumption in case of hypertriglyceridemia.

  5. Alcoholism and Lesbians

    ERIC Educational Resources Information Center

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  6. Alcohol and Aggression.

    ERIC Educational Resources Information Center

    Gustafson, Roland

    1994-01-01

    Reviews the acute effects of alcohol on aggressive responding. From experimental studies that use human subjects, it is concluded that a moderate dose of alcohol does not increase aggression if subjects are unprovoked. Under provocative situations, aggression is increased as a function of alcohol intoxication, provided that subjects are restricted…

  7. Alcohol and Family Violence.

    ERIC Educational Resources Information Center

    Covington, Stephanie S.

    There is growing acknowledgement of the association between family violence and alcohol use. A study was conducted to examine the role that abuse plays in the lives of women and to investigate the relationship between alcohol and violence. Data were collected from 35 recovering female alcoholics and 35 nonalcoholic women on their sexual experience…

  8. Alcohol and the law.

    PubMed

    Karasov, Ariela O; Ostacher, Michael J

    2014-01-01

    Society has had an interest in controlling the production, distribution, and use of alcohol for millennia. The use of alcohol has always had consequences, be they positive or negative, and the role of government in the regulation of alcohol is now universal. This is accomplished at several levels, first through controls on production, importation, distribution, and use of alcoholic beverages, and second, through criminal laws, the aim of which is to address the behavior of users themselves. A number of interventions and policies reduce alcohol-related consequences to society by regulating alcohol pricing, targeting alcohol-impaired driving, and limiting alcohol availability. The legal system defines criminal responsibility in the context of alcohol use, as an enormous percentage of violent crime and motor death is associated with alcohol intoxication. In recent years, recovery-oriented policies have aimed to expand social supports for recovery and to improve access to treatment for substance use disorders within the criminal justice system. The Affordable Care Act, also know as "ObamaCare," made substantial changes to access to substance abuse treatment by mandating that health insurance include services for substance use disorders comparable to coverage for medical and surgical treatments. Rather than a simplified "war on drugs" approach, there appears to be an increasing emphasis on evidence-based policy development that approaches alcohol use disorders with hope for treatment and prevention. This chapter focuses on alcohol and the law in the United States. © 2014 Elsevier B.V. All rights reserved.

  9. Biological Vulnerability to Alcoholism.

    ERIC Educational Resources Information Center

    Schuckit, Marc A.

    1987-01-01

    Reviews the role of biological factors in the risk for alcoholism. Notes the importance of the definition of primary alcoholism and highlights data indicating that this disorder is genetically influenced. In studies of men at high risk for the future development of alcoholism, vulnerability shows up in reactions to ethanol brain wave amplitude and…

  10. Television: Alcohol's Vast Adland.

    ERIC Educational Resources Information Center

    2002

    Concern about how much television alcohol advertising reaches underage youth and how the advertising influences their attitudes and decisions about alcohol use has been widespread for many years. Lacking in the policy debate has been solid, reliable information about the extent of youth exposure to television alcohol advertising. To address this…

  11. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six…

  12. Biological Vulnerability to Alcoholism.

    ERIC Educational Resources Information Center

    Schuckit, Marc A.

    1987-01-01

    Reviews the role of biological factors in the risk for alcoholism. Notes the importance of the definition of primary alcoholism and highlights data indicating that this disorder is genetically influenced. In studies of men at high risk for the future development of alcoholism, vulnerability shows up in reactions to ethanol brain wave amplitude and…

  13. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six…

  14. Alcohol on Campus.

    ERIC Educational Resources Information Center

    ACU-I Bulletin, 1984

    1984-01-01

    Alcohol use on campus and strategies colleges are using to educate students about alcohol are considered in two articles. In "When Alternatives Aren't," Ruth Bradford Burnham and Stephen J. Nelson explore the role alcoholic beverages play in young people's social lives and some of the implications for planning social events. They offer a balanced…

  15. Alcoholism and Lesbians

    ERIC Educational Resources Information Center

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  16. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.

    PubMed

    Liu, Xiaohua; Holzwarth, Jeremy M; Ma, Peter X

    2012-07-01

    Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.

  17. Critical evaluation of biodegradable polymers used in nanodrugs

    PubMed Central

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  18. Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.

    PubMed

    Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E

    2015-10-06

    Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.

  19. Surfactant-mediated Biodegradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Li, Jing-Liang; Chen, Bing-Hung

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promising alternative. The presence of surfactants can increase the solubility of PAHs and hence potentially increase their bioavailability. However, inconclusive results have been reported on the effects of surfactant on the biodegradation of PAHs. In this work, surfactant-mediated biodegradation of PAHs is reviewed.

  20. Study of fuel oxygenates solubility in aqueous media as a function of temperature and tert-butyl alcohol concentration.

    PubMed

    Gonzalez-Olmos, R; Iglesias, M

    2008-05-01

    Methyl tert-butyl ether (MTBE) is the most widely used oxygenate in gasoline blending and has become one of the world's most widespread groundwater and surface water pollutants. Alternative oxygenates to MTBE, namely ethyl tert-butyl ether (ETBE), tert-amyl ether (TAME) and diisopropyl ether (DIPE) have been hardly studied yet. The solubility of these chemicals is a key thermodynamic information for the assessment of the fate and transport of these pollutants. This work reports experimental data of water solubility at the range from 278.15 to 313.15K and atmospheric pressure of ethers used in fuels (MTBE, ETBE, TAME and DIPE) due to the strong influence of temperature on its trend. From the experimental data, temperature dependent polynomials were fitted, thermodynamic parameters were calculated and theoretical models were used for prediction. Finally, the tert-butyl alcohol (TBA) influence in the solubility of MTBE and ETBE in aqueous media was studied.

  1. Children of alcoholics.

    PubMed

    Adler, R; Raphael, B

    1983-03-01

    The familial nature of alcoholism is well established, but the interaction of nature and nurture remains unresolved. Other effects of alcoholic parents on the psychopathology of their children are poorly documented, with studies variably claiming that there is no discernible impact or that there is a significantly higher incidence of problems, particularly in the area of antisocial and aggressive behaviour. The relative importance of family disharmony and disruption which so often accompanies alcohol abuse, as against the impact of the alcohol abuse itself, is rarely considered. The literature on the psychopathology of children of alcoholic parents is reviewed and the relevance of the last two issues explored.

  2. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  3. Genetics and alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  4. [Alcohol induced cognitive deficits].

    PubMed

    Weiss, Elisabeth; Singewald, Evelin M; Ruepp, Beatrix; Marksteiner, Josef

    2014-01-01

    Previous studies could show a complex relationship between alcohol consumption and cognition but also with processes of ageing both social and biological. Acute effects of alcohol during intoxication include clinical signs such as excitation and reduced inhibition, slurred speech, and increased reaction time but also cognitive dysfunction, especially deficits in memory functions. However, these cognitive deficits during alcohol intoxication are reversible while patients with alcohol addiction and chronic alcohol intake show severe impairments of cognitive functions especially deficits in executive functions. Frontal executive impairments in these patients include deficits in problem solving, abstraction, planning, organizing, and working memory.Additionally, gender specific deficits are relevant for the course of the disease and its concomitant health problems with female alcoholics showing a higher vulnerability for cognitive dysfunction and brain atrophy at earlier stages of alcoholism history.

  5. [Physical diseases in alcoholism].

    PubMed

    Takase, Kojiro

    2015-09-01

    Rapid excessive alcohol drinking frequently causes disturbance of consciousness due to head trauma, brain edema, hypoglycemia, hyponatremia, hepatic coma and so on, provoked by acute alcohol intoxication. Rapid differential diagnosis and management are extremely important to save a life. On the other hands, the chronic users of alcohol so called alcoholism has many kinds of physical diseases such as liver diseases (i.e., fatty liver, alcoholic hepatitis, alcoholic liver cirrhosis and miscellaneous liver disease), diabetes mellitus, injury to happen in drunkenness, pancreas disease (i.e., acute and chronic pancreatitis and deterioration of chronic pancreatitis), gastrontestinal diseases (i.e., gastroduodenal ulcer), and so on. Enough attention should be paid to above mentioned diseases, otherwise they would turn worse more with continuation and increase in quantity of the alcohol. It should be born in its mind that the excessive drinking becomes the weapon threatening life.

  6. Alcoholic and non-alcoholic steatohepatitis.

    PubMed

    Neuman, Manuela G; French, Samuel W; French, Barbara A; Seitz, Helmut K; Cohen, Lawrence B; Mueller, Sebastian; Osna, Natalia A; Kharbanda, Kusum K; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J; McKillop, Iain H; Kirpich, Irina A; McClain, Craig J; Bataller, Ramon; Nanau, Radu M; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomes, Paul G; Ganesan, Murali; Malnick, Steve

    2014-12-01

    This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  7. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  8. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  9. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.

    PubMed

    Wang, Ying; Han, Xiaoxiao; Pan, Jingzhe; Sinka, Csaba

    2010-01-01

    This paper presents a model for the change in Young's modulus of biodegradable polymers due to hydrolysis cleavage of the polymer chains. The model is based on the entropy spring theory for amorphous polymers. It is assumed that isolated polymer chain cleavage and very short polymer chains do not affect the entropy change in a linear biodegradable polymer during its deformation. It is then possible to relate the Young's modulus to the average molecular weight in a computer simulated hydrolysis process of polymer chain sessions. The experimental data obtained by Tsuji [Tsuji, H., 2002. Autocatalytic hydrolysis of amorphous-made polylactides: Effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymers 43, 1789-1796] for poly(L-lactic acid) and poly(D-lactic acid) are examined using the model. It is shown that the model can provide a common thread through Tsuji's experimental data. A further numerical case study demonstrates that the Young's modulus obtained using very thin samples, such as those obtained by Tsuji, cannot be directly used to calculate the load carried by a device made of the same polymer but of various thicknesses. This is because the Young's modulus varies significantly in a biodegradable device due to the heterogeneous nature of the hydrolysis reaction. The governing equations for biodegradation and the relation between the Young's modulus and average molecular weight can be combined to calculate the load transfer from a degrading device to a healing bone.

  10. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Reif, Rubén; Gan, Jay

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP₁₉₃a/b, NP₁₁₀a and NP₁₉₄ in the effluent. Moreover, biodegradability was related to the bulkiness of α-substituents and followed α-dimethyl > α-ethyl-α-methyl > α-methyl-α-n-propyl > α-iso-propyl-α-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.

  11. [Biodegradation of pyridine under UV irradiation].

    PubMed

    Fang, Miao-Miao; Yan, Ning; Zhang, Yong-Ming

    2012-02-01

    Pyridine, a complex nitrogen-containing heterocyclic compounds, is usually difficult to degrade by means of single biological method. The internal loop photobiodegradation reactor (ILPBR) was used for degradation of pyridine in batch and continuous experiments following three protocols: photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B) to investigate the regularity of pyridine degradation. The experimental results indicated that pyridine removal rate by P&B was fastest among three protocols in batch experiment, in which protocol B was faster than P. For initial pyridine concentration of 100 mg L(-1), the pyridine removal rates were respectively 4.95, 10.2 and 14.58 mg (L x h)(-1) corresponding to protocol P, B and P&B. Pyridine degradation kinetic equations were established based on Monod model, and the saturation constants decreased from 1920.4 mg x L(-1) for protocol B to 1094.1 mg x L(-1) for protocol P&B. Protocols P, B and P&B were also used for pyridine degradation in continuous flow and influent pyridine concentration increased from 50 to 300 mg x L(-1), and their average removal rates were respectively 15.8 mg (L x h)(-1) for protocol P, 23.1 mg x (L x h)(-1) for protocol B and 24.9 mg x (L x h)(-1) for protocol P&B, in which the removal rates were higher than that in batch. Experiments suggested that the inhibition of pyridine to biofilm could be relieved due to UV irradiation in process of intimately coupled UV photolysis and biodegradation, and biofilm had kept its bioactivity degrading pyridine and enhanced pyridine removal rates.

  12. Biodegradation of polyester polyurethane by Aspergillus tubingensis.

    PubMed

    Khan, Sehroon; Nadir, Sadia; Shah, Zia Ullah; Shah, Aamer Ali; Karunarathna, Samantha C; Xu, Jianchu; Khan, Afsar; Munir, Shahzad; Hasan, Fariha

    2017-03-15

    The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.

  13. Enhanced biodegradation of creosote-contaminated soil

    SciTech Connect

    Carriere, P.P.E.; Mesania, F.A.

    1995-12-31

    Bioremediation, a viable option for treatment of creosote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1,102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.

  14. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration.

    PubMed

    Wei, Yan; Zhang, Xuehui; Song, Yu; Han, Bing; Hu, Xiaoyang; Wang, Xinzhi; Lin, Yuanhua; Deng, Xuliang

    2011-10-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe(3)O(4)/chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe(3)O(4) nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe(3)O(4) nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe(3)O(4)/CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe(3)O(4), CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe(3)O(4) loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe(3)O(4) nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe(3)O(4) nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe(3)O(4) nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe(3)O(4)/CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  15. SCREENING OF BACTERIAL PRODUCTS FOR THEIR CRUDE OIL BIODEGRADATION EFFECTIVENESS

    EPA Science Inventory

    Although petroleum hydrocarbons have been known to be biodegradable for decades (1-5), use of microbial cultures to enhance natural biodegradation (bioaugmentation) has met with limited success (6-10). Despite the paucity of controlled field studies demonstrating the effectivene...

  16. Biodegradation of Petroleum Hydrocarbon in the Vadose Zone

    EPA Science Inventory

    There are two major impediments to a better understanding of the influence of biodegradation on the risk of intrusion of petroleum vapors. We describe the contribution of biodegradation as an attenuation factor between the source and the receptor. The use of attenuation factors...

  17. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  18. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  19. Biodegradation of Petroleum Hydrocarbon in the Vadose Zone

    EPA Science Inventory

    There are two major impediments to a better understanding of the influence of biodegradation on the risk of intrusion of petroleum vapors. We describe the contribution of biodegradation as an attenuation factor between the source and the receptor. The use of attenuation factors...

  20. Biodegradability of tannin-containing wastewater from leather industry.

    PubMed

    He, Qiang; Yao, Kai; Sun, Danhong; Shi, Bi

    2007-08-01

    Tannins occur commonly in the wastewaters from forestry, plant medicine, paper and leather industries. The treatment of this kind of wastewaters, including settling and biodegradation, is usually difficult because tannins are highly soluble in water and would inhibit the growth of microorganisms in activated sludge. The objective of this study is to investigate biodegradability of tannin-containing wastewaters, so as to characterize the pollution properties of such wastewaters and provide a reference for their biological treatment in wastewater treatment plants. The research was typified by using the wastewater collected from vegetable tanning process in leather industry. A model was developed to describe the activated sludge process, and the biodegradation kinetics of vegetable tanning wastewater (VET wastewater) was studied. It was found that the biodegradability of tannin-containing wastewater varies heavily with the content of tannins in wastewater. The biodegradation of VET wastewater with tannin content around 4,900 mg/l occurred inefficiently due to the inhibition of tannins to the activated sludge process, and only 34.7% of biodegradation extent was reached in 14 days of incubation. The optimal biodegradability of VET wastewater was observed when its tannin content was diluted to 490 mg/l, where the COD and tannin removals reached 51.3% and 45.1% respectively in 6 days. Hence, it is suggested that a proper control of tannin content is necessary to achieve an effective biodegradation of tannin-containing wastewaters in wastewater treatment plants.

  1. SCREENING OF BACTERIAL PRODUCTS FOR THEIR CRUDE OIL BIODEGRADATION EFFECTIVENESS

    EPA Science Inventory

    Although petroleum hydrocarbons have been known to be biodegradable for decades (1-5), use of microbial cultures to enhance natural biodegradation (bioaugmentation) has met with limited success (6-10). Despite the paucity of controlled field studies demonstrating the effectivene...

  2. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    PubMed

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.

  3. Biodegradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  4. Biodegradation of petroleum hydrocarbons in hypersaline environments.

    PubMed

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-07-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  5. Biosynthesis and biodegradation of wood components

    SciTech Connect

    Higuchi, T.

    1985-01-01

    A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.

  6. Biodegradable and Renal Clearable Inorganic Nanoparticles

    PubMed Central

    Ehlerding, Emily B.

    2015-01-01

    Personalized treatment plans for cancer therapy have been at the forefront of oncology research for many years. With the advent of many novel nanoplatforms, this goal is closer to realization today than ever before. Inorganic nanoparticles hold immense potential in the field of nano‐oncology, but have considerable toxicity concerns that have limited their translation to date. In this review, an overview of emerging biologically safe inorganic nanoplatforms is provided, along with considerations of the challenges that need to be overcome for cancer theranostics with inorganic nanoparticles to become a reality. The clinical and preclinical studies of both biodegradable and renal clearable inorganic nanoparticles are discussed, along with their implications. PMID:27429897

  7. Alcohol and suicidal behavior.

    PubMed

    Hufford, M R

    2001-07-01

    Alcohol dependence and alcohol intoxication are important risk factors for suicidal behavior. However, the mechanism for the relationship remains unclear. This review presents a conceptual framework relating alcohol to suicidal behavior. Distal risk factors create a statistical potential for suicide. Alcohol dependence, as well as associated comorbid psychopathology and negative life events, act as distal risk factors for suicidal behavior. Proximal risk factors determine the timing of suicidal behavior by translating the statistical potential of distal risk factors into action. The acute effects of alcohol intoxication act as important proximal risk factors for suicidal behavior among the alcoholic and nonalcoholic alike. Mechanisms responsible for alcohol's ability to increase the proximal risk for suicidal behavior include alcohol's ability to: (1) increase psychological distress, (2) increase aggressiveness, (3) propel suicidal ideation into action through suicide-specific alcohol expectancies, and (4) constrict cognition which impairs the generation and implementation of alternative coping strategies. Moreover, the proximal risk factors associated with acute intoxication are consistent with Baumeister's (1990) escape theory of suicide. Suggestions for additional research are discussed, including the possibility that a nonlinear cusp catastrophe model characterizes the relationship between alcohol intoxication and suicidal behavior.

  8. Genetics of alcoholism.

    PubMed

    Schuckit, M A; Li, T K; Cloninger, C R; Deitrich, R A

    1985-12-01

    Great progress has been made by research on the contribution genetic factors make to a vulnerability toward alcoholism. Animal studies have demonstrated the importance of genetics in ethanol preference and levels of consumption, and human family, twin, and adoption research have revealed a 4-fold higher risk for offspring of alcoholics, even if they were adopted out at birth. The work presented in this symposium reviews the ongoing search for genetic trait markers of a vulnerability toward alcoholism. Dr. Li has used both animal and human research to demonstrate the possible importance of the genetic control of enzymes involved in ethanol metabolism and has worked to help develop an animal model of alcoholism. The possible importance of subgroups with different levels of predisposition toward alcoholism is emphasized by Dr. Cloninger. An overview of the studies of sons of alcoholics, given by Dr. Schuckit, reveals the potential importance of a decreased intensity of reaction to ethanol as part of a predisposition toward alcoholism and discusses the possible impact of some brain waves and ethanol metabolites to an alcoholism vulnerability. Dr. Deitrich reviews interrelationships between studies of animals and humans in the search for factors involved in a genetic vulnerability toward alcoholism. Taken together, these presentations underscore the importance of genetic factors in alcoholism, review animal and human research attempting to identify markers of a vulnerability, and reveal the high level of interaction between human and animal research.

  9. ADOLESCENTS AND ALCOHOL

    PubMed Central

    Spear, Linda Patia

    2014-01-01

    The high levels of alcohol consumption characteristic of adolescence may be in part biologically based, given that elevated consumption levels are also evident during this developmental transition in other mammalian species as well. Studies conducted using a simple animal model of adolescence in the rat has shown adolescents to be more sensitive than adults to social facilitatory and rewarding effects of alcohol, but less sensitive to numerous alcohol effects that may serve as cues to limit intake. These age-specific alcohol sensitivities appear related to differential rates of development of neural systems underlying different alcohol effects as well as to an ontogenetic decline in rapid brain compensations to alcohol, termed “acute tolerance”. In contrast, these adolescent-typical sensitivities to alcohol do not appear to be notably influenced by pubertally-related increases in gonadal hormones. Although data are sparse, there are hints that similar alcohol sensitivities may also be seen in human adolescents, with this developmentally decreased sensitivity to alcohol’s intoxicating effects possibly exacerbated by genetic vulnerabilities also characterized by an insensitivity to alcohol intoxication, thereby perhaps permitting especially high levels of alcohol consumption among vulnerable youth. PMID:25309054

  10. [Alcohol and crime].

    PubMed

    Lévay, Boglárka

    2006-01-01

    The role alcohol abuse plays in criminality has been a matter of primary concern for scholars for decades, as indicated by numerous studies and research projects. Most of these studies focus on determining the presence of a relationship between criminal behaviour and alcohol use, and whether criminal inclinations increase with the consumption of alcohol. Research shows that alcohol use indeed increases the risk of criminal behaviour, and that there is an especially strong and consistent correlation between alcohol abuse and violent crimes. However, researchers still disagree on the exact extent to which alcohol use effects criminality, and on the mechanisms causing alcohol to induce violent behaviour. A significant proportion of studies have focused in recent years on aggressive behaviour as a result of drinking alcohol. One of the most important means of measurement is the study of violent behaviour in places where alcohol is on sale. Studying the forms and frequency of violence in pubs and near off-licence stores greatly enables experts to understand the general context of the problem. This is the reason for the increasing interest in the topic throughout the past few decades. The present study focuses mainly on the literature published in English and German in leading journals of criminology since 1980, as well as on the most recent and fundamental publications on the topic, with special regard to results concerning drinking habits, and the relationship between drinking alcohol and violent or criminal behaviour, respectively.

  11. Neuropharmacology of alcohol addiction

    PubMed Central

    Vengeliene, V; Bilbao, A; Molander, A; Spanagel, R

    2008-01-01

    Despite the generally held view that alcohol is an unspecific pharmacological agent, recent molecular pharmacology studies demonstrated that alcohol has only a few known primary targets. These are the NMDA, GABAA, glycine, 5-hydroxytryptamine 3 (serotonin) and nicotinic ACh receptors as well as L-type Ca2+ channels and G-protein-activated inwardly rectifying K+ channels. Following this first hit of alcohol on specific targets in the brain, a second wave of indirect effects on a variety of neurotransmitter/neuropeptide systems is initiated that leads subsequently to the typical acute behavioural effects of alcohol, ranging from disinhibition to sedation and even hypnosis, with increasing concentrations of alcohol. Besides these acute pharmacodynamic aspects of alcohol, we discuss the neurochemical substrates that are involved in the initiation and maintenance phase of an alcohol drinking behaviour. Finally, addictive behaviour towards alcohol as measured by alcohol-seeking and relapse behaviour is reviewed in the context of specific neurotransmitter/neuropeptide systems and their signalling pathways. The activity of the mesolimbic dopaminergic system plays a crucial role during the initiation phase of alcohol consumption. Following long-term, chronic alcohol consumption virtually all brain neurotransmission seems to be affected, making it difficult to define which of the systems contributes the most to the transition from controlled to compulsive alcohol use. However, compulsive alcohol drinking is characterized by a decrease in the function of the reward neurocircuitry and a recruitment of antireward/stress mechanisms comes into place, with a hypertrophic corticotropin-releasing factor system and a hyperfunctional glutamatergic system being the most important ones. PMID:18311194

  12. Alcohol and alcohol problems research. 17. Malta.

    PubMed

    Baldacchino, A M

    1991-08-01

    This article is an enquiry into the current status of alcohol in Maltese culture. The responses of society to alcoholism depend on the way members of the community perceive the problems incurred by the use and abuse of a dependence producing substance like alcohol. These perceptions and subsequent responses are very much influenced by prevailing attitudes and beliefs. Malta is a melting point of cultures. This factor, together with a high density population and Malta's geopolitical strategic position, combine to make Malta a tolerant society. There is a laissez-faire response to alcoholism, at least partly due to the present inability to identify the need to take appropriate measures. The police force, medical profession and politicians still do not feel the responsibility or the need to provide effective laws and regulations, specialized treatment services or educative programmes on alcohol-related issues. A systematic enquiry is needed urgently to determine the severity and degree of the problems posed by alcohol abuse among the Maltese. Such an enquiry should be followed by a well planned national policy which includes local approaches and interventions. Finally, these interventions must be evaluated frequently and developed to achieve better results in the future.

  13. Exposure to Televised Alcohol Ads and Subsequent Adolescent Alcohol Use

    ERIC Educational Resources Information Center

    Stacy, Alan W.; Zogg, Jennifer B.; Unger, Jennifer B.; Dent, Clyde W.

    2004-01-01

    Objective : To assess the impact of televised alcohol commercials on adolescents' alcohol use. Methods : Adolescents completed questionnaires about alcohol commercials and alcohol use in a prospective study. Results : A one standard deviation increase in viewing television programs containing alcohol commercials in seventh grade was associated…

  14. Exposure to Televised Alcohol Ads and Subsequent Adolescent Alcohol Use

    ERIC Educational Resources Information Center

    Stacy, Alan W.; Zogg, Jennifer B.; Unger, Jennifer B.; Dent, Clyde W.

    2004-01-01

    Objective : To assess the impact of televised alcohol commercials on adolescents' alcohol use. Methods : Adolescents completed questionnaires about alcohol commercials and alcohol use in a prospective study. Results : A one standard deviation increase in viewing television programs containing alcohol commercials in seventh grade was associated…

  15. Alcohol Expectancies in Young Adult Sons of Alcoholics and Controls.

    ERIC Educational Resources Information Center

    Brown, Sandra A.; And Others

    Adolescent offspring of alcoholics have been found to have higher alcohol reinforcement expectancies than do teenagers from nonalcoholic families. In particular, those with a positive family history of alcoholism expect more cognitive and motor enhancement with alcohol consumption. This study examined the alcohol expectancies of 58 matched pairs…

  16. Best conditions for biodegradation of diesel oil by chemometric tools

    PubMed Central

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane. PMID:24948922

  17. Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging

    PubMed Central

    Yoon, Soon Joon; Murthy, Avinash; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    The photothermal stability of plasmonic nanoparticles is critically important to perform reliable photoacoustic imaging and photothermal therapy. Recently, biodegradable nanoclusters composed of sub-5 nm primary gold particles and a biodegradable polymer have been reported as clinically-translatable contrast agents for photoacoustic imaging. After cellular internalization, the nanoclusters degrade into 5 nm primary particles for efficient excretion from the body. In this paper, three different sizes of biodegradable nanoclusters were synthesized and the optical properties and photothermal stability of the nanoclusters were investigated and compared to that of gold nanorods. The results of our study indicate that 40 nm and 80 nm biodegradable nanoclusters demonstrate higher photothermal stability compared to gold nanorods. Furthermore, 40 nm nanoclusters produce higher photoacoustic signal than gold nanorods at a given concentration of gold. Therefore, the biodegradable plasmonic nanoclusters can be effectively used for photoacoustic imaging and photothermal therapy. PMID:23388774

  18. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.

    PubMed

    Kang, Seok-Whan; Kim, Young-Bum; Shin, Jae-Dong; Kim, Eun-Ki

    2010-03-01

    Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

  19. Biodegradable plastic agricultural mulches and key features of microbial degradation.

    PubMed

    Brodhagen, Marion; Peyron, Mark; Miles, Carol; Inglis, Debra Ann

    2015-02-01

    The development of biodegradable plastic mulch films for use in agriculture has been ongoing for decades. These films consist of mixtures of polymers with various additives. As a result, their physical and chemical properties differ from those of the pure polymers often used for in vitro enzymatic and microbial degradation studies, raising questions about the biodegradation capability of mulch films. Currently, standards exist for the biodegradation of plastics in composting conditions but not in soil. Biodegradation in soil or compost depends on a complex synergy of biological and abiotic degradative processes. This review discusses the physicochemical and structural properties of biodegradable plastic mulches, examines their potential for on-site decomposition in light of site-to-site variance due to environmental and biological conditions, and considers the potential for long-term effects on agroecosystem sustainability and functionality.

  20. Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging.

    PubMed

    Yoon, Soon Joon; Murthy, Avinash; Johnston, Keith P; Sokolov, Konstantin V; Emelianov, Stanislav Y

    2012-12-31

    The photothermal stability of plasmonic nanoparticles is critically important to perform reliable photoacoustic imaging and photothermal therapy. Recently, biodegradable nanoclusters composed of sub-5 nm primary gold particles and a biodegradable polymer have been reported as clinically-translatable contrast agents for photoacoustic imaging. After cellular internalization, the nanoclusters degrade into 5 nm primary particles for efficient excretion from the body. In this paper, three different sizes of biodegradable nanoclusters were synthesized and the optical properties and photothermal stability of the nanoclusters were investigated and compared to that of gold nanorods. The results of our study indicate that 40 nm and 80 nm biodegradable nanoclusters demonstrate higher photothermal stability compared to gold nanorods. Furthermore, 40 nm nanoclusters produce higher photoacoustic signal than gold nanorods at a given concentration of gold. Therefore, the biodegradable plasmonic nanoclusters can be effectively used for photoacoustic imaging and photothermal therapy.