Science.gov

Sample records for alcohol tba plume

  1. Forensic analysis of tertiary-butyl alcohol (TBA) detections in a hydrocarbon-rich groundwater basin.

    PubMed

    Quast, Konrad W; Levine, Audrey D; Kester, Janet E; Fordham, Carolyn L

    2016-04-01

    Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data.

  2. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    PubMed Central

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2012-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089

  3. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    USGS Publications Warehouse

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2011-01-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.

  4. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends.

  5. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils

    PubMed Central

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J

    2007-01-01

    Background Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Methods Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. Results First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 × 10-3 days-1, respectively (or 2.86 ± 0.05, 3.31 ± 0.03, 5.60 ± 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Conclusion Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature. PMID:17877835

  6. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    PubMed

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  7. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  8. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  9. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  10. Misconceptions concerning the behavior, fate and transport of the fuel oxygenates TBA and MTBE

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Sloan, R.

    2003-04-01

    The release of gasoline from underground storage tanks and the subsequent appearance of dissolved constituents in drinking water has focused attention on the use of MTBE in reformulated fuels. Natural biodegradation of MTBE in soil, photo-oxidation in the atmosphere or chemical oxidation during remediation of gasoline releases can produce the intermediate tertiary butyl alcohol (TBA). TBA is also a fuel oxygenate and can be found as a co-product in MTBE synthesized from methanol and TBA. Because the physical properties of ethers and alcohols differ somewhat from the predominant hydrocarbon compounds in gasoline, misconceptions have developed about the behavior of fuel oxygenates in storage and in the subsurface. Critical review of several misconceptions about MTBE and TBA in gasoline reveals the concepts were conceived to rationalize early field observations and/or incomplete data sets. Closer scrutiny, in light of recent laboratory investigations, field data, case studies and world literature, clarifies these misconceptions and assumptions about the behavior of ether oxygenates and their degradation products in the environment. Commonly held misconceptions focus on four general areas of fuel and fuel oxygenate management: storage/dispensing, hydrology, remediation, and health effects. Storage/dispensing misconceptions address materials stability to ethers and alcohols in fuel and the environmental forensics of fuel systems failure. Groundwater and hydrology misconceptions deal with plume dynamics and the impact of fuel on drinking water resources. Remediation misconceptions focus on the performance of traditional hydrocarbon remediation technologies, recent developments in biodegradation and natural attenuation, drivers of remedial design and remediation costs. Health effects misconceptions address both acute and chronic exposure risk evaluations by national and international health agencies. Generally MTBE and TBA are manageable by the same processes and

  11. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  12. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  13. IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE

    EPA Science Inventory

    MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

  14. IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE

    EPA Science Inventory

    MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...

  15. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  16. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  17. HYDROLYSIS OF MTBE TO TBA IN GROUND WATER SAMPLES WITH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  18. HYDROLYSIS OF MTBE TO TBA IN GROUND WATER SAMPLES WITH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  19. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    NASA Astrophysics Data System (ADS)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  20. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  1. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  2. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  3. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    EPA Science Inventory

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  4. MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...

  5. MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER

    EPA Science Inventory

    Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...

  6. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  7. Comparing the effects of various fuel alcohols on the natural attenuation of Benzene Plumes using a general substrate interaction model

    NASA Astrophysics Data System (ADS)

    Gomez, Diego E.; Alvarez, Pedro J. J.

    2010-04-01

    The effects of five fuel alcohols (methanol, ethanol, 1-propanol, iso-butanol and n-butanol) on the natural attenuation of benzene were compared using a previously developed numerical model (General Substrate Interaction Module — GSIM) and a probabilistic sensitivity analysis. Simulations with a 30 gal dissolving LNAPL (light non-aqueous phase liquid) source consisting of a range of gasoline blends (10% and 85% v:v alcohol content) suggest that all fuel alcohols can hinder the natural attenuation of benzene, due mainly to accelerated depletion of dissolved oxygen and a decrease in the specific degradation rate for benzene (due to catabolite repression and metabolic flux dilution). Simulations for blends with 10% alcohol, assuming a homogeneous sandy aquifer, inferred maximum benzene plume elongations (relative to a regular gasoline release) of 26% for ethanol, 47% for iso-butanol, 147% for methanol, 188% for 1-propanol, and 265% for n-butanol. The corresponding elongation percentages for blends with 85% alcohol were generally smaller (i.e., 25%, 54%, 135%, 163%, and 181%, respectively), reflecting a lower content of benzene in the simulated release. Benzene plume elongation and longevity were more pronounced in the presence of alcohols that biodegrade slower (e.g., propanol and n-butanol), forming longer and more persistent alcohol plumes. Conversely, ethanol and iso-butanol exhibited the lowest potential to hinder the natural attenuation of benzene, illustrating the significant effect that a small difference in chemical structure (e.g., isomers) can have on biodegradation. Overall, simulations were highly sensitive to site-specific biokinetic coefficients for alcohol degradation, which forewarns against generalizations about the level of impact of specific fuel alcohols on benzene plume dynamics.

  8. TBA PRODUCTION BY ACID HYDROLYSIS OF MTBE DURING HEATED HEADSPACE ANALYSIS & EVALUATION OF A BASE AS A PRESERVATIVE

    EPA Science Inventory

    At room temperature (20°±3°C), purge and trap samplers provide poor sensitivity for analysis of the fuel oxygenates that are alcohols, such as tertiary butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, they are not efficiently transferred to a gas chr...

  9. TBA PRODUCTION BY ACID HYDROLYSIS OF MTBE DURING HEATED HEADSPACE ANALYSIS & EVALUATION OF A BASE AS A PRESERVATIVE

    EPA Science Inventory

    At room temperature (20°±3°C), purge and trap samplers provide poor sensitivity for analysis of the fuel oxygenates that are alcohols, such as tertiary butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, they are not efficiently transferred to a gas chr...

  10. MTBE, TBA, and TAME attenuation in diverse hyporheic zones

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.

  11. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  12. MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA

    EPA Science Inventory

    Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...

  13. MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA

    EPA Science Inventory

    Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...

  14. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    EPA Science Inventory

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  15. RK-TBA prototype RF source

    SciTech Connect

    Houck, T.; Anderson, D.; Giordano, G.

    1996-04-11

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail.

  16. 5-loop Konishi from linearized TBA and the XXX magnet

    NASA Astrophysics Data System (ADS)

    Balog, János; Hegedüs, Árpád

    2010-06-01

    Using the linearized TBA equations recently obtained in arXiv:1002.1711 we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Lüscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  17. Integrals of motion from TBA and lattice-conformal dictionary

    NASA Astrophysics Data System (ADS)

    Feverati, Giovanni; Grinza, Paolo

    2004-12-01

    The integrals of motion of the tricritical Ising model are obtained by thermodynamic Bethe ansatz (TBA) equations derived from the A integrable lattice model. They are compared with those given by the conformal field theory leading to a unique one-to-one lattice-conformal correspondence. They can also be followed along the renormalization group flows generated by the action of the boundary field φ on conformal boundary conditions in close analogy to the usual TBA description of energies.

  18. RK-TBA studies at the RTA test facility

    NASA Astrophysics Data System (ADS)

    Lidia, S.; Anderson, D.; Eylon, S.; Henestroza, E.; Houck, T.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-03-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented.

  19. RK-TBA studies at the RTA test facility

    SciTech Connect

    Lidia, S.; Anderson, D.; Eylon, S.; Henestroza, E.; Houck, T.; Reginato, L.; Vanecek, D.; Westenskow, G.; Yu, S.

    1997-03-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented. {copyright} {ital 1997 American Institute of Physics.}

  20. RK-TBA Studies at the RTA Test Facility

    SciTech Connect

    Lidia, S.; Anderson, D.; Eylon, S.; Reginato, L.; Vanecek, D.; Yu, S.; Henestroza, E.; Houck, T.; Westenskow, G.

    1997-01-01

    Construction of a prototype RF power source based on the RK-TBA concept, called the RTA, has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The status of the prototype is presented, specifically the 1-MV, 1.2-kA induction electron gun and the pulsed power system that are in assembly. The RTA program theoretical effort, in addition to supporting the development of the prototype, has been studying optimization parameters for the application of the RK-TBA concept to higher-energy linear colliders. An overview of this work is presented. 1 fig.

  1. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    2002-01-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  2. IS HCI THAT IS USED AS A PRESERVATIVE CREATING FALSE POSITIVES FOR TBA IN GROUND WATER

    EPA Science Inventory

    Will hydrochloric acid produce false positives for TBA? Yes, if you heat the sample to get a lower detection limit for TBA. Conventional purge and trap methods at ambient temperature have a reporting limit for TBA between 50 and 100 g/liter. This is higher than the provisiona...

  3. Natural Anaerobic Biodegradation of TBA in Aquifer Sediments at Gasoline Spill Sites

    EPA Science Inventory

    TBA is an important contaminant at spills sites of gasoline that contains MTBE. The impact of TBA is particularly important in Southern California, where the State Action Level for TBA is 12 μg/L and many communities produce ground water for drinking water from an urban landscape...

  4. IS HCI THAT IS USED AS A PRESERVATIVE CREATING FALSE POSITIVES FOR TBA IN GROUND WATER

    EPA Science Inventory

    Will hydrochloric acid produce false positives for TBA? Yes, if you heat the sample to get a lower detection limit for TBA. Conventional purge and trap methods at ambient temperature have a reporting limit for TBA between 50 and 100 g/liter. This is higher than the provisiona...

  5. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    PubMed

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters.

  6. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.

    PubMed

    Zuo, Jian-Guo; Hua, Tse-Chao; Liu, Bao-Lin; Zhou, Guo-Yan

    2005-01-01

    The purpose of this work is to investigate the freezing properties of tertiary butyl alcohol (TBA)/sucrose/water ternary system. Differential scanning calorimetry (DSC) is employed to determine the glass transition temperature of the maximally freeze-concentrated solution Tg' and the crystallization (or devitrification) temperature Tr. DSC measurements show that the presence of sucrose hinders the crystallization of TBA during cooling. The residual TBA in the glassy state will cause a decrease in Tg' and will crystallize during heating. An increase in the cooling rate causes a decrease in Tg'. For 10% TBA/10% sucrose/water ternary system, the critical heating rate is approximately 250 degrees C/min. Annealing treatment at temperatures below Tg' causes the crystallization of TBA, which indicates that TBA molecules still have appreciable mobility even at temperatures below Tg'. When the ratio of TBA to sucrose is less than 0.2, TBA cannot crystallize during cooling.

  7. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply

    PubMed Central

    Schmidt, Radomir; Klemme, David A.; Scow, Kate; Hristova, Krassimira

    2012-01-01

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, E. coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. PMID:22321859

  8. Splash Plumes

    NASA Astrophysics Data System (ADS)

    Davies, J. H.

    2006-12-01

    I have discovered a new class of thermal upwellings in mantle convection simulations which are not rooted in a thermal boundary layer (ref 1). Since they look a bit like water droplet splashes, I have abbreviated these `plumes not rooted in thermal boundary layers' as `splash plumes'. These mantle convection simulations are high resolution ( ~ 22km spacing) 3D spherical simulations at Earth-like vigour. They have a chondritic rate of internal heating and bottom heating that straddles expected Earth values. There is a realistic depth variation in viscosity, with a lithosphere and lower mantle more viscous than upper mantle. The mantle is compressible with the coefficient of thermal expansion decreasing with depth. Some models have phase transitions. The surface of the models is driven by 119Myr of recent plate motion history. At the end of most simulations (present day) we discover many examples of hot mid-mantle thermal anomalies in the shape of bowls which have hot cylindrical plumes rising from the rim. They originate at a range of depths and are not rooted in thermal boundary layers. These splash plumes are formed from hot mantle collecting beneath the surface, and then a cold instability from the surface descending onto the sheet of hot underlying material pushing it down into the mantle and forming a bowl. The plumes are formed by instabilities coming from the bowl rim edge. In fact the downwellings can push the sheets all the way to the core mantle boundary in certain cases where it is then difficult to tell splash plumes apart from `traditional plumes'. Splash plumes might provide explanations for weak, short-lived plumes that do not seem to have deep roots (e.g. Eifel). If the surface boundary condition is made free-slip (ref 2), rather than be driven by recent plate motion history, we do not discover splash plumes but rather large steady strong thermal boundary layer plumes. Therefore while the discovery of splash plumes is interesting, potentially a more

  9. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  10. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  11. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  12. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  13. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  14. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  15. Alcohol

    MedlinePlus

    ... Parents for Kids for Teens Search Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Español Making a Change – ... this article? Getting the Facts What Is Alcohol? How Does It Affect the Body? Why Do Teens Drink? Why Shouldn't I ...

  16. COMPOUND-SPECIFIC ISOTOPE ANALYSIS OF MTBE AND TBA FOR BIOREMEDIATION STUDIES

    EPA Science Inventory

    The utility of stable isotope ratios to detect biodegradation for a number of chemical compounds including MTBE and TBA has been demonstrated in a number of laboratory or field studies. Chemical reactions tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), ...

  17. COMPOUND-SPECIFIC ISOTOPE ANALYSIS OF MTBE AND TBA FOR BIOREMEDIATION STUDIES

    EPA Science Inventory

    The utility of stable isotope ratios to detect biodegradation for a number of chemical compounds including MTBE and TBA has been demonstrated in a number of laboratory or field studies. Chemical reactions tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), ...

  18. The standing wave FEL/TBA: Realistic cavity geometry and energy extraction

    SciTech Connect

    Kim, Jin-Soo, Henke, H.; Sessler, A.M.; Sharp, W.M.

    1993-05-01

    A set of parameters for standing wave free electron laser two beam accelerators (SWFEL/TBA) is evaluated for realistic cavity geometry taking into account beam-break-up and the sensitivity of output power to imperfections. Also given is a power extraction system using cavity coupled wave guides.

  19. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    EPA Science Inventory

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  20. MONITORED NATURAL ATTENUATION OF TERTIARY BUTYL ALCOHOL (TBA) IN GROUND WATER AT GASOLINE SPILL SITES

    EPA Science Inventory

    The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...

  1. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  2. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  3. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  4. ASSESSMENT OF PLUME DIVING

    EPA Science Inventory

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  5. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  6. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors.

    PubMed

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-10

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  7. Computer experiments on aqueous solutions. VI. Potential energy function for tert-butyl alcohol dimer and molecular dynamics calculation of 3 mol % aqueous solution of tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideki; Nakanishi, Koichiro; Touhara, Hidekazu

    1984-11-01

    Molecular dynamics (MD) calculation has been carried out for a dilute aqueous solution of tert-butyl alcohol (TBA) at 298.15 K and with experimental density value by the use of constant temperature technique developed previously. The total number of molecule is 216, seven of which are TBA. The mole fraction of TBA is thus 0.032. For water-water and TBA-water interactions, the MCY (Matsuoka-Clementi-Yoshimine) potential and previously reported potential determined by MO calculation are used. A new potential for TBA-TBA is determined by ab initio LCAO SCF calculations for more than 500 different configurations with an STO-3G basis set and subsequent multiparameter fitting of the MO data to a 12-6-3-1 type potential energy function. The MD calculation is extended up to 84 000 time steps (26 ps) and final 60 000 time steps are used to calculate both static and dynamic properties of the system. Both hydrophobic hydration and interaction due to TBA molecules are proved to be stronger than those of methanol studied previously. Structural promotion of water is clearly observed in radial distribution functions and trajectories of each molecule. The configuration and trajectory of all the molecules in solution indicate clearly the association of TBA molecules. It is also found from pair interaction distribution functions that no hydrogen bonding interaction occurs between two TBA molecules. The self-diffusion coefficient of water in the solution is appreciably smaller than that in pure water.

  8. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative

    PubMed Central

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-01-01

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. PMID:26250112

  9. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  10. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  11. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.

    PubMed

    Magaña-Reyes, Miguel; Morales, Marcia; Revah, Sergio

    2005-11-01

    Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.

  12. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  13. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  14. Solar Jetlets and Plumes

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Antiochos, Spiro K.; DeVore, C. Richard; Karpen, Judith T.; Kumar, Pankaj; Raouafi, Nour-Eddine; Roberts, Merrill; Uritsky, Vadim; Wyper, Peter

    2017-08-01

    We present results of a careful deep-field (low-noise) analysis of evolution and structure of solar plumes using multiple wavelength channels from SDO/AIA. Using new noise-reduction techniques on SDO/AIA images, we reveal myriad small, heating events that appear to be the primary basis of plume formation and sustenance. These events ("jetlets") comprise a dynamic tapestry that forms the more distributed plume itself. We identify the "jetlets" with ejecta that have been previously observed spectroscopically, and distinguish them from the quasi-periodic slow mode waves that are seen as large collective motions. We speculate that the jetlets themselves, which are consistent with multiple interchange reconnection events near the base of the plume, are the primary energy driver heating plasma in the plume envelope.Solar polar (and low-latitude) plumes have been analyzed by many authors over many years. Plumes are bright, persistent vertical structures embedded in coronal holes over quasi-unipolar magnetic flux concentrations. They are EUV-bright in the ~1MK lines, slightly cooler (by ionization fraction) than the surrounding coronal hole, persistent on short timescales of a few hours, and recurrent on timescales of a few days. Their onset has been associated with large X-ray jets, although not all plumes are formed that way. Plumes appear to comprise myriad small "threads" or "strands", and may (or may not) contribute significantly to the solar wind, though they have been associated with myriad small, frequent eruptive ejection events.Our results are new and interesting because they are the lowest-noise, time-resolved observations of polar plumes to date; and they reveal the deep association between small-scale magnetic activity and the formation of the plumes themselves.

  15. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents.

    PubMed

    Talawat, Jaruwan; Sabatini, David A; Tongcumpou, Chantra

    2013-01-01

    This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.

  16. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  17. Design and control of glycerol-tert-butyl alcohol etherification process.

    PubMed

    Vlad, Elena; Bildea, Costin Sorin; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  18. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    PubMed Central

    Vlad, Elena; Bozga, Grigore

    2012-01-01

    Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512

  19. Entrainment by Lazy Plumes

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Hunt, Gary

    2004-11-01

    We consider plumes with source conditions that have a net momentum flux deficit compared to a pure plume - so called lazy plumes. We examine both the case of constant buoyancy flux and buoyancy flux linearly increasing with height. By re-casting the plume conservation equations (Morton, Taylor & Turner 1956) for a constant entrainment coefficient ((α)) in terms of the plume radius (β) and the dimensionless parameter (Γ=frac5Q^2 B4α M^5/2) we show that the far-field flow in a plume with a linear internal buoyancy flux gain is a constant velocity lazy plume with reduced entrainment and radial growth rate. For highly lazy source conditions we derive first-order approximate solutions which indicate a region of zero entrainment near the source. These phenomena have previously been observed, however, it has often been assumed that reduced entrainment implies a reduced (α). We demonstrate that a constant (α) formulation is able to capture the behaviour of these reduced entrainment flows. Morton, B. R., Taylor, G. I. & Turner, J. S. (1956), Turbulent gravitational convection from maintained and instantaneous sources.', Proc. Roy. Soc. 234, 1-23.

  20. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  1. Methane Plumes on Mars

    NASA Image and Video Library

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  2. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  3. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  4. Enceladus' water vapor plume.

    PubMed

    Hansen, Candice J; Esposito, L; Stewart, A I F; Colwell, J; Hendrix, A; Pryor, W; Shemansky, D; West, R

    2006-03-10

    The Cassini spacecraft flew close to Saturn's small moon Enceladus three times in 2005. Cassini's UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturn's E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system.

  5. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  6. Plume Measurement System (PLUMES) Calibration Experiment

    DTIC Science & Technology

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  7. Plume-induced subduction

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  8. Decreased toxicity to terrestrial plants associated with a mixture of methyl tert-butyl ether and its metabolite tert-butyl alcohol.

    PubMed

    An, Youn-Joo; Lee, Woo-Mi

    2007-08-01

    The influence of the main fuel oxygenate methyl tert-butyl ether (MTBE) and its key metabolite, tert-butyl alcohol (TBA), on the growth of a plant seedling was studied separately and in combination. The test plants were mung bean (Phaseolus radiatus), cucumber (Cucumis sativus), wheat (Triticum aestivum), sorghum (Sorghum bicolor), kale (Brassica alboglabra), Chinese cabbage (Brassica campestris), and sweet corn (Zea mays). The growth of all the plants was adversely affected by TBA and MTBE. The 5-d median effective concentration (EC50) for the plants exposed to MTBE and TBA were in the range of 680 to 1,000 mg MTBE/kg soil (dry wt) and 1,200 to 3,500 mg TBA/kg soil (dry wt), respectively. The relative order of the sensitivity rankings is almost the same for MTBE and TBA. Methyl tert-butyl ether is more toxic than TBA to most of the test species. Based on the EC50 values, MTBE is approximately 1.5 to 3 times more potent than TBA. The sum of the toxic unit (TU) at 50% inhibition of the mixture (EC50mix) was calculated from the dose (TU-based)-response relationships using the trimmed Spearman-Karber method. The combined effect of MTBE + TBA on the plant growth was less than additive because the EC50mix values were greater than I TU. This phenomenon may be due to the competition of MTBE and TBA in terms of their intake by plants. The combined effects of MTBE and TBA should be taken into account to assess their risk in gasoline-contaminated sites.

  9. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that ... alcohol to feel the same effect With alcohol abuse, you are not physically dependent, but you still ...

  10. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  11. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  12. Martian Atmospheric Plumes: Behavior, Detectability and Plume Tracing

    NASA Astrophysics Data System (ADS)

    Banfield, Don; Mischna, M.; Sykes, R.; Dissly, R.

    2013-10-01

    We will present our recent work simulating neutrally buoyant plumes in the martian atmosphere. This work is primarily directed at understanding the behavior of discrete plumes of biogenic tracer gases, and thus increasing our understanding of their detectability (both from orbit and from in situ measurements), and finally how to use the plumes to identify their precise source locations. We have modeled the detailed behavior of martian atmospheric plumes using MarsWRF for the atmospheric dynamics and SCIPUFF (a terrestrial state of the art plume modeling code that we have modified to represent martian conditions) for the plume dynamics. This combination of tools allows us to accurately simulate plumes not only from a regional scale from which an orbital observing platform would witness the plume, but also from an in situ perspective, with the instantaneous concentration variations that a turbulent flow would present to a point sampler in situ instrument. Our initial work has focused on the detectability of discrete plumes from an orbital perspective and we will present those results for a variety of notional orbital trace gas detection instruments. We have also begun simulating the behavior of the plumes from the perspective of a sampler on a rover within the martian atmospheric boundary layer. The detectability of plumes within the boundary layer has a very strong dependence on the atmospheric stability, with plume concentrations increasing by a factor of 10-1000 during nighttime when compared to daytime. In the equatorial regions of the planet where we have simulated plumes, the diurnal tidal “clocking” of the winds is strongly evident in the plume trail, which similarly “clocks” around its source. This behavior, combined with the strong diurnal concentration variations suggests that a rover hunting a plume source would be well suited to approach it from a particular azimuth (downwind at night) to maximize detectability of the plume and the ability to

  13. Plume primary smoke

    NASA Astrophysics Data System (ADS)

    Chastenet, J. C.

    1993-06-01

    The exhaust from a solid propellant rocket motor usually contains condensed species. These particles, also called 'Primary Smoke', are often prejudicial to missile detectability and to the guidance system. To avoid operational problems it is necessary to know and quantify the effects of particles on all aspects of missile deployment. A brief description of the origin of the primary smoke is given. It continues with details of the interaction between particles and light as function of both particles and light properties (nature, size, wavelength, etc). The effects of particles on plume visibility, attenuation of an optical beam propagated through the plume and the contribution of particles on optical signatures of the plume are also described. Finally, various methods used in NATO countries to quantify the primary smoke effects are discussed.

  14. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft.

  15. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  16. Where Plumes Live

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2004-12-01

    From the perspective of fluid dynamics, `Plumes or not?' might be the wrong question. Let me begin by defining a few terms. Plume with a `P' is the well-known thermal structure with thin (order 100 km) tail and large, bulbous head that originates at the core-mantle boundary. The thin tail/large, bulbous-head morphology has been generated in a number of laboratory and numerical experiments. It can be seen, for example, on the cover of the famous fluid dynamics text by Batchelor. There is a clearly-defined range of parameters for which this structure is the preferred solution for instabilities arising from a bottom boundary layer in a convecting fluid. For example, a strong temperature-dependent rheology is needed. By contrast, plume with a `p' is any cylindrical or quasi-cylindrical instability originating from a thermal (or thermo-chemical) boundary layer. In fluid dynamics plume is sometimes used interchangeable with jet. Unless there is a very small temperature drop across the core-mantle boundary or a rather remarkable balance between temperature and composition at the base of the mantle, there are almost certainly plumes. (Note the little p.) Are these plumes the thermal structures with thin (order 100 km) tails and large bulbous heads or could they be broad, hot regions such as the degree 2 pattern seen in global seismic tomography images of the lower mantle, or the disconnected droplets seen in chaotic convection? To study this question, I will present a sequence of numerical `experiments' that illustrate the morphology of instabilities from a basal thermal boundary layer, i.e., plumes. Some of the aspects I will present include: spherical geometry, temperature-and pressure-dependence of rheology, internal heating, pressure-dependent coefficient of thermal expansion, variable coefficient of thermal diffusivity, phase transformations, and compositional layering at the base of the mantle. The goal is to map out the parameters and conditions where Plumes live

  17. Active Volcanic Plumes on Io

    NASA Image and Video Library

    1998-03-26

    This color image, acquired during NASA Galileo ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera volcanic depression named Pillan Patera.

  18. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  19. LAMP Observes the LCROSS Plume

    NASA Image and Video Library

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  20. EUV analysis of polar plumes

    NASA Technical Reports Server (NTRS)

    Ahmad, I. A.; Withbroe, G. L.

    1977-01-01

    Three polar plumes were studied using Skylab Mg X and O VI data. The plumes lie within the boundaries of a polar coronal hole. We find that the mean temperature of the plumes is about 1.1 million K and that they have a small vertical temperature gradient. Densities are determined and found consistent with white light analyses. The variation of density with height in the plumes is compared with that expected for hydrostatic equilibrium. As is the case for other coronal features, polar plumes will be a source of solar wind if the magnetic field lines are open. On the basis of the derived plume model and estimates of the numbers of plumes in polar coronal holes, it appears that polar plumes contain about 15% of the mass in a typical polar hole and occupy about 10% of the volume.

  1. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  2. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  3. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  4. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  5. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  6. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; hide

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  7. Double Diffusive Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Lee, Brace

    2008-11-01

    Sour gas flares attempt to dispose of deadly H2S gas through combustion. What does not burn rises as a buoyant plume. But the gas is heavier than air at room temperature, so as the rising gas cools eventually it becomes negatively buoyant and descends back to the ground. Ultimately, our intent is to predict the concentrations of the gas at ground level in realistic atmospheric conditions. As a first step towards this goal we have performed laboratory experiments examining the structure of a steady state plume of hot and salty water that rises buoyantly near the source and descends as a fountain after it has cooled sufficiently. We call this a double-diffusive plume because its evolution is dictated by the different (turbulent) diffusivities of heat and salt. A temperature and conductivity probe measures both the salinity and temperature along the centreline of the plume. The supposed axisymmetric structure of the salinity concentration as it changes with height is determined by light-attenuation methods. To help interpret the results, a theory has been successfully adapted from the work of Bloomfield and Kerr (2000), who developed coupled equations describing the structure of fountains. Introducing a new empirical parameter for the relative rates of turbulent heat and salt diffusion, the predictions are found to agree favourably with experimental results.

  8. Aggregation in dilute aqueous tert-butyl alcohol solutions: insights from large-scale simulations.

    PubMed

    Gupta, Rini; Patey, G N

    2012-07-21

    Molecular dynamics simulations employing up to 64,000 particles are used to investigate aggregation and microheterogeneity in aqueous tert-butyl alcohol (TBA) solutions for TBA mole fractions X(t) ≤ 0.1. Four different force fields are considered. It is shown that the results obtained can be strongly dependent on the particular force field employed, and can be significantly influenced by system size. Two of the force fields considered show TBA aggregation in the concentration range X(t) ≈ 0.03 - 0.06. For these models, systems of 64,000 particles are minimally sufficient to accommodate the TBA aggregates. The structures resulting from TBA aggregation do not have a well-defined size and shape, as one might find in micellar systems, but are better described as TBA-rich and water-rich regions. All pair correlation functions exhibit long-range oscillatory behavior with wavelengths that are much larger than molecular length scales. The oscillations are not strongly damped and the correlations can easily exceed the size of the simulation cell, even for the low TBA concentrations considered here. We note that these long-range correlations pose a serious problem if one wishes to obtain certain physical properties such as Kirkwood-Buff integrals from simulation results. In contrast, two other force fields that we consider show little sign of aggregation for X(t) ≲ 0.08. In our 64,000 particle simulations all four models considered show demixing-like behavior for X(t) ≳ 0.1, although such behavior is not evident in smaller systems of 2000 particles. The meaning of the demixing-like behavior is unclear. Since real TBA-water solutions do not demix, it might be an indication that all four models we consider poorly represent the real system. Alternatively, it might be an artifact of finite system size. Possibly, the apparent demixing indicates that for X(t) ≳ 0.1, the stable TBA aggregates are simply too large to fit into the simulation cell. Our results provide a view

  9. Aggregation in dilute aqueous tert-butyl alcohol solutions: Insights from large-scale simulations

    NASA Astrophysics Data System (ADS)

    Gupta, Rini; Patey, G. N.

    2012-07-01

    Molecular dynamics simulations employing up to 64 000 particles are used to investigate aggregation and microheterogeneity in aqueous tert-butyl alcohol (TBA) solutions for TBA mole fractions Xt ⩽ 0.1. Four different force fields are considered. It is shown that the results obtained can be strongly dependent on the particular force field employed, and can be significantly influenced by system size. Two of the force fields considered show TBA aggregation in the concentration range Xt ≈ 0.03 - 0.06. For these models, systems of 64 000 particles are minimally sufficient to accommodate the TBA aggregates. The structures resulting from TBA aggregation do not have a well-defined size and shape, as one might find in micellar systems, but are better described as TBA-rich and water-rich regions. All pair correlation functions exhibit long-range oscillatory behavior with wavelengths that are much larger than molecular length scales. The oscillations are not strongly damped and the correlations can easily exceed the size of the simulation cell, even for the low TBA concentrations considered here. We note that these long-range correlations pose a serious problem if one wishes to obtain certain physical properties such as Kirkwood-Buff integrals from simulation results. In contrast, two other force fields that we consider show little sign of aggregation for Xt ≲ 0.08. In our 64 000 particle simulations all four models considered show demixing-like behavior for Xt ≳ 0.1, although such behavior is not evident in smaller systems of 2000 particles. The meaning of the demixing-like behavior is unclear. Since real TBA-water solutions do not demix, it might be an indication that all four models we consider poorly represent the real system. Alternatively, it might be an artifact of finite system size. Possibly, the apparent demixing indicates that for Xt ≳ 0.1, the stable TBA aggregates are simply too large to fit into the simulation cell. Our results provide a view of the

  10. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at

  11. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Chuan; van Keken, Peter E.

    2006-03-01

    The mantle plume hypothesis provides explanations for several major observations of surface volcanism. The dynamics of plumes with purely thermal origin has been well established, but our understanding of the role of compositional variations in the Earth's mantle on plume formation is still incomplete. In this study we explore the structures of plumes originating from a thermochemical boundary layer at the base of the mantle in an attempt to complement fluid dynamical studies of purely thermal plumes. Our numerical experiments reveal diverse characteristics of thermochemical plumes that frequently deviate from the classic features of plumes. In addition, owing to the interplay between the thermal and compositional buoyancy forces, the morphology, temperature, and flow fields in both the plume head and plume conduit are strongly time-dependent. The entrainment of the dense layer and secondary instabilities developed in the boundary layer contribute to lateral heterogeneities and enhance stirring processes in the plume head. Our models show that substantial topography of the compositional layer can develop simultaneously with the plumes. In addition, plumes may be present in the lower mantle for more than 70 million years. These features may contribute to the large low seismic velocity provinces beneath the south central Pacific, the southern Atlantic Ocean, and Africa. Our model results support the idea that the dynamics of mantle plumes is much more complicated than conventional thinking based on studies of purely thermal plumes. The widely used criteria for mapping mantle plumes, such as a vertically continuous low seismic velocity signature and strong surface topography swell, may not be universally applicable. We propose that the intrinsic density contrast of the distinct composition may reduce the associated topography of some large igneous provinces such as Ontong Java.

  12. Sampling by mantle plumes : the legacy of the plume source

    NASA Astrophysics Data System (ADS)

    Brandeis, G.; Touitou, F.; Davaille, A.

    2013-12-01

    Plumes in the Earth's mantle are considered to be at the origin of intraplate volcanism (or hotspots). They continue to fascinate the scientific community by the heterogeneity of the material they sample on the surface of our planet. To characterize what part of the mantle is sampled by plumes, we have developed a laboratory model for laminar thermal plumes at high Prandtl number, in a fluid whose viscosity depends strongly on the temperature. This study describes the precise phenomenology of the plume and proposes scaling laws for the speed and temperature of the conduit of the plume. We show a strong dependence of these features of the plume with the Rayleigh number and viscosity ratio. Our visualization technique allows for the simultaneous non-intrusive measurements of the temperature, deformation and velocity fields. By calculating numerically the advection of passive markers through the experimental velocity field, we found that (1) the hot center of the plume conduit only consists of fluid which has passed through the thermal boundary layer ("TBL") at the bottom of the tank from which the plume was issued. Moreover, as material is stretched by velocity gradients, it is also in the thermal boundary layer that most of the material stretching occurs (2). The fluid is then transported in the conduit without lateral mixing, and further stretched vertically by the lateral velocity gradients. Since it is only the hot upwelling plume center which melts and therefore is sampled by volcanic activity, (1) implies that the plume geochemical signature is representative of the material located in the deep TBL of the mantle from which the plume is issued. On the other hand, (2) implies that filaments, pancakes, and concentric or bimodal zonation of the plume at the surface all result from different distributions of the heterogeneities in the plume source, filaments being the most generic case. Finally, we apply the scaling laws to the case of Hawaii.

  13. Chemical plume source localization.

    PubMed

    Pang, Shuo; Farrell, Jay A

    2006-10-01

    This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The vehicle is capable of detecting above-threshold chemical concentration and sensing the fluid flow velocity at the vehicle location. This paper reviews instances of biological plume tracing and reviews previous strategies for a vehicle-based plume tracing. The main contribution is a new source-likelihood mapping approach based on Bayesian inference methods. Using this Bayesian methodology, the source-likelihood map is propagated through time and updated in response to both detection and nondetection events. Examples are included that use data from in-water testing to compare the mapping approach derived herein with the map derived using a previously existing technique.

  14. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI).

    PubMed

    Sultan, Sherif; Tawfick, Wael; Hynes, Niamh

    2013-04-01

    We aim to compare cool excimer laser-assisted angioplasty (CELA) versus tibial balloon angioplasty (TBA) in patients with critical limb ischemia (CLI) with tibial artery occlusive disease. The primary end point is sustained clinical improvement (SCI) and amputation-free survival (AFS). The secondary end points are binary restenosis, target extremity revascularization (TER), and cost-effectiveness. From June 2005 to October 2010, 1506 patients were referred with peripheral vascular disease and 572 with CLI. A total of 80 patients underwent 89 endovascular revascularizations (EVRs) for tibial occlusions, 47 using TBA and 42 using CELA. All patients were Rutherford category 4 to 6. Three-year SCI was enhanced with CELA (81%) compared to TBA (63.8%; P = .013). Three-year AFS significantly improved with CELA (95.2%) versus TBA (89.4%; P = .0165). Three-year freedom from TER was significantly improved with CELA (92.9%) versus 78.7% TBA (P = .026). Three-year freedom from MACE was comparable in both the groups (P = .455). Patients with CELA had significantly improved quality time without symptoms of disease or toxicity of treatment (Q-TWiST) at 3 years (10.5 months; P = .048) with incremental cost of €2073.19 per quality-adjusted life year gained. Tibial EVR provides exceptional outcome in CLI. The CELA has superior SCI, AFS, and freedom from TER, with improved Q-TWiST and cost-effectiveness.

  15. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten C.; Schirmer, Mario; Weiß, Holger; Haderlein, Stefan B.

    2004-06-01

    The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic

  16. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  17. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  18. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  19. Structure of axisymmetric mantle plumes

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles

    1993-01-01

    The structure of axisymmetric subsolidus thermal plumes in the earth's lower mantle is inferred from calculations of axisymmetric thermal plumes in an infinite Prandtl number fluid with thermally activated viscosity. The velocity and temperature distribution is determined for axisymmetric convection above a heated disk in an incompressible fluid cylinder 2,400 km in height and 1,200 km in diameter. Several calculations of plumes with heat transport in the range 100-400 GW, similar to the advective heat transport at the Hawaiian hotspot, are presented. Hotspot formation by plumes originating at the base of the mantle requires both large viscosity variations and a minimum heat transport.

  20. Nonmonotonic Hydration Behavior of Bovine Serum Albumin in Alcohol/Water Binary Mixtures: A Terahertz Spectroscopic Investigation.

    PubMed

    Das, Dipak Kumar; Das Mahanta, Debasish; Mitra, Rajib Kumar

    2017-03-01

    We report the experimental observation of nonmonotonic changes in the collective hydration of bovine serum albumin (BSA) in the presence of alcohols of varying carbon-chain lengths, that is, ethanol, 2-propanol, and tert-butyl alcohol (TBA), by using terahertz (THz) time domain spectroscopy. We measured the THz absorption coefficient (α) of the protein solutions, and it was observed that α fluctuated periodically as a function of alcohol concentration at a fixed protein concentration. For a fixed alcohol concentration, an increase in the protein concentration resulted in nonmonotonic changes in α; thus, it first decreased rapidly and then increased, which was followed by a shallow decrease. An alcohol-induced α helix to random coil transition of the protein secondary structure was revealed by circular dichroism spectroscopy measurements, and the effect was most prominent in TBA. The anomalous change in the hydration was found to be a delicate balance between the various interactions present in the three-component system.

  1. Single SCA-plume dynamics

    NASA Astrophysics Data System (ADS)

    Yano, J.-I.; Baizig, Hichem

    2012-11-01

    A fully prognostic prototype of bulk mass-flux convection parameterization is presented. The bulk mass-flux parameterization is formulated by assuming a subgrid-scale system consisting only of a convective plume and environment. Both subcomponents (segments) are assumed to be homogeneous horizontally. This assumption is called the segmentally constant approximation (SCA). The present study introduces this purely geometrical constraint (SCA) into the full nonhydrostatic anelastic system. A continuous-space description of the full system is, thus, replaced by a discretization consisting only of two segments (plume and environment) in the horizontal direction. The resulting discretized system is mathematically equivalent to a 0th order finite volume formulation with the only two finite volumes. The model is presented under a two-dimensional configuration. Interfaces between the plume and the environment segments may either be fixed in time or Lagrangianly advected as two limiting cases. Under this framework, the single-plume dynamics is systematically investigated in a wide phase space of Richardson number, the aspect ratio, and a displacement rate of the plume interfaces relative to the Lagrangian displacement. Advantage of the present model is in evaluating the lateral mixing processes of the plume without invoking an entrainment-detrainment hypothesis. The fractional entrainment-detrainment rate diagnosed from the present model simulations highly varies both over space and time, suggesting a limitation of applying an entrainment-detrainment hypothesis to unsteady plumes, as in the present case, in which circulations of the plume scale dominates over the turbulent mixing process. Furthermore, when the entrainment-plume hypothesis of Morton et al. is adopted for defining the plume-interface displacement rate, the plume continuously expands with time without reaching equilibrium.

  2. Hybrid plume plasma rocket

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R. (Inventor)

    1989-01-01

    A technique for producing thrust by generating a hybrid plume plasma exhaust is disclosed. A plasma flow is generated and introduced into a nozzle which features one or more inlets positioned to direct a flow of neutral gas about the interior of the nozzle. When such a neutral gas flow is combined with the plasma flow within the nozzle, a hybrid plume is constructed including a flow of hot plasma along the center of the nozzle surrounded by a generally annular flow of neutral gas, with an annular transition region between the pure plasma and the neutral gas. The temperature of the outer gas layer is below that of the pure plasma and generally separates the pure plasma from the interior surfaces of the nozzle. The neutral gas flow both insulates the nozzle wall from the high temperatures of the plasma flow and adds to the mass flow rate of the hybrid exhaust. The rate of flow of neutral gas into the interior of the nozzle may be selectively adjusted to control the thrust and specific impulse of the device.

  3. Ash Plume from Shiveluch

    NASA Image and Video Library

    2017-09-27

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  4. Hydrophobic Hydration in Water-tert-Butyl Alcohol Solutions by Extended Depolarized Light Scattering.

    PubMed

    Comez, L; Paolantoni, M; Lupi, L; Sassi, P; Corezzi, S; Morresi, A; Fioretto, D

    2015-07-23

    Molecular dynamics and structural properties of water-tert-butyl alcohol (TBA) mixtures are studied as a function of concentration by extended depolarized light scattering (EDLS) experiments. The wide frequency range, going from fraction to several thousand GHz, explored by EDLS allows distinguishing TBA rotational dynamics from structural relaxation of water and intermolecular vibrational and librational modes of the solution. Contributions to the water relaxation originating from two distinct populations, i.e. hydration and bulk water, are clearly identified. The dynamic retardation factor of hydration water with respect to the bulk, ξ ≈ 4, almost concentration independent, is one of the smallest found by EDLS among a variety of systems of different nature and complexity. This result, together with the small number of water molecules perturbed by the presence of TBA, supports the idea that hydrophobic simple molecules are less effective than hydrophilic and more complex molecules in perturbing the H-bond network of liquid water. At increasing TBA concentrations the average number of perturbed water molecules shows a pronounced decrease and the characteristic frequency of librational motions reduces significantly, both of which are results consistent with the occurrence of self-aggregation of TBA molecules.

  5. Atmospheric chemistry in volcanic plumes

    PubMed Central

    von Glasow, Roland

    2010-01-01

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  6. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  7. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  8. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  9. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  10. Buckling of Chemical Wave Plumes

    NASA Astrophysics Data System (ADS)

    Rogers, Michael C.; Morris, Stephen W.

    2004-03-01

    Chemical wave fronts are found in many autocatalytic chemical reactions, such as the iodate oxidation of arsenous acid. In vertical capillary tubes, ascending chemical wave fronts show convective behavior when a dimensionless driving parameter S exceeds a critical value Sc ˜ 100. S ∝ a^3, where a is the radius of the tube. In the iodate arsenous-acid reaction, the density jump that drives convection is created by both the partial molal density decrease of the product solution and by thermal expansion due to the slight exothermicity of the reaction. We observed strongly supercritical ascending chemical wave plumes in vertical tubes with S 10^7. We report on the motion of these plumes in experiments where both the viscosity and the temperature of the reactant fluid are control parameters. We find experimentally that the background temperature of the reactant fluid has a significant influence on the behavior of the plumes. Above a critical temperature, plumes rise straight up the tube, whereas below this temperature, plumes go through an initial stage of buckling before they surrender to straight rising motion. The flow induced by the chemical plumes can be visualized using tracer particles. The buckling behavior of the plumes may arise from the Kelvin-Helmholtz instability, as in the case of a fluid jet descending through stratified surroundings [Pesci et al., Phys. Rev. E, 68, 056305 (2003)].

  11. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  12. The Saturn hydrogen plume

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Liu, X.; Melin, H.

    2009-12-01

    Images of the Saturn atmosphere and magnetosphere in H Lyα emission during the Cassini spacecraft pre and post Saturn orbit insertion (SOI) event obtained using the UVIS experiment FUV spectrograph have revealed definitive evidence for the escape of H I atoms from the top of the thermosphere. An image at 0.1×0.1 Saturn equatorial radii ( RS) pixel resolution with an edge-on-view of the rings shows a distinctive structure (plume) with full width at half maximum (FWHM) of 0.56RS at the exobase sub-solar limb at ˜-13.5∘ latitude as part of the distributed outflow of H I from the sunlit hemisphere, with a counterpart on the antisolar side peaking near the equator above the exobase limb. The structure of the image indicates that part of the outflowing population is sub-orbital and re-enters the thermosphere in an approximate 5 h time scale. An evident larger more broadly distributed component fills the magnetosphere to beyond 45RS in the orbital plane in an asymmetric distribution in local time, similar to an image obtained at Voyager 1 post encounter in a different observational geometry. It has been found that H2 singlet ungerade Rydberg EUV/FUV emission spectra collected with the H Lyα into the image mosaic show a distinctive resonance property correlated with the H Lyα plume. The inferred approximate globally averaged energy deposition at the top of the thermosphere from the production of the hot atomic hydrogen accounts for the measured atmospheric temperature. The only known process capable of producing the atoms at the required few eV/atom kinetic energy appears to be the direct electron excitation of non-LTE H2XΣg+1( v:J) into the repulsive H2bΣu+3, although details of the processes need to be examined under the constraints imposed by the observations to determine compatibility with the current knowledge of hydrogen rate processes.

  13. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  14. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  15. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from

  16. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    2008-06-01

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  17. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  18. Collapsing plumes and resurrecting fountains

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton; Hunt, Gary

    2012-11-01

    We explore the range of behaviour predicted for steady plumes and fountains that undergo an increase or decrease in buoyancy which arise due to phase changes or chemical reactions. We model these changes in the simplest possible way by assuming a quadratic relationship between the density and the temperature of the fluid. We thereby extend the model of Caulfield & Woods (`95) to include the most recent developments in the literature on steady releases of buoyancy emitted vertically from horizontal area sources in unconfined quiescent environments of uniform density based on the plume model of Morton, Taylor & Turner (`56). We provide closed-form solutions and identify four classes of solution: collapsing plumes, resurrecting fountains, plumes with enhanced buoyancy and fountains with enhanced negative buoyancy. We provide criteria for each category of behaviour in terms of the source-value of two non-dimensional quantities: the Richardson number and a temperature parameter.

  19. Smoke plumes: Emissions and effects

    Treesearch

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  20. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  1. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  2. A plume beneath western Ethiopia!

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Hariharan, A.; Alemayehu, S.; Ayele, A.; Bastow, I. D.

    2016-12-01

    Body-wave tomography, receiver functions, and measurements of seismic anisotropy reveal a profound impact of magmatic systems on the crust and upper mantle beneath the Ethiopian highlands. Finite-frequency tomography (using the method of Schmandt et al., 2010) reveals a low-velocity conduit-like structure in the upper mantle beneath the Ethiopian highlands. We interpret the anomaly as a probable plume stem and the likely source of the Ethiopian flood basalts. This "plume" is located 300-km west of the actively-extending Main Ethiopian Rift (MER) and 700-km southwest of the suggested Afar plume. Within the lithosphere, the anomaly separates into multiple fingers, rising beneath previously enigmatic regions of off-rift Quaternary faulting and volcanism far west of the MER. One finger underlies the Lake Tana graben, within the highlands 400-km from the rift, and another finger rises beneath a lineament of faulting and volcanism known as the Yerer-Tullu Wellel lineament (YTVL). The YTVL runs along the southern edge of the Ethiopian highlands, between the interpreted plume source and the MER. We suggest that the Quaternary volcanism in the YTVL and the Tana regions is related to melt associated with these lithospheric velocity anomalies. At shallower depths, receiver function estimates indicate a concentrated zone of 40-45 km thick crust near the Lake Tana anomaly, thicker than the 30-35 km thick crust elsewhere beneath the Ethiopian Plateau. This crustal thickening, likely from magmatic underplating, and the recent Quaternary volcanism occur within the projected borders of a northwest-southeast trending Mesozoic Blue Nile rift system, suggesting control on magmatic ascent above the plume by the existing rift structure. The MER itself may have been influenced by both the plume beneath the Ethiopian highlands, and by a similar plume stem beneath Afar.

  3. Plumes, orogenesis, and supercontinental fragmentation

    NASA Astrophysics Data System (ADS)

    Dalziel, I. W. D.; Lawver, L. A.; Murphy, J. B.

    2000-05-01

    A time-space relationship between large igneous provinces (LIPS), present day hot spots, and the fragmentation of Pangea has been documented over several decades, but the cause of fragmentation has remained elusive. LIPS are regarded either as the result of impingement of a mantle plume on the base of the lithosphere, or as the initial products of adiabatic decompression melting of anomalously hot mantle. Do LIPS therefore constitute evidence of an active role for plumes from the deep mantle in supercontinental fragmentation, or are they merely the first indications of a large-scale but near-surface tectonic process? Two long recognized and enigmatic orogenic events may offer a solution to this geologically important 'chicken or egg' conundrum. The reconstructed early Mesozoic Gondwanide fold belt of South America, southern Africa, and Antarctica, could have resulted from 'plume-modified orogeny', flattening of a downgoing lithospheric slab due to the buoyancy of a plume rising beneath a continental margin subduction zone. If so, the ˜180 Ma Karroo and Ferrar LIPS associated with the opening of the ocean basin between East and West Gondwanaland at ˜165 Ma resulted from impingement of this plume and are unrelated to the thermal insulation of the shallow mantle beneath Gondwanaland. It would then follow that the plume itself played an active, possibly critical, role in the initial breakup of the supercontinent. The Late Paleozoic 'Ancestral Rockies' deformation in the southwestern United States could be yet another example of orogeny driven by a plume that initiated the break-up of Pangea approximately 15 Myr earlier in the Central Atlantic region.

  4. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  5. Bromine oxidation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Vogel, L.; Kern, C.; Giuffrida, G. B.; Delgado-Granados, H.; Platt, U.

    2009-04-01

    Volcanoes are very strong sources of hydrogen, carbon, sulphur and halogen compounds, as well as of particles. Some gases only behave as passive tracers; others interact and affect the formation, growth or chemical characteristics of aerosol particles in a complex system. Recent measurements of halogen radicals in volcanic plumes showed that volcanic plumes are chemically very active. Kinetic considerations (Oppenheimer et al., 2006) and detailed calculations with an atmospheric chemistry model (Bobrowski et al., 2007) explain the halogen chemistry mainly with photochemical reactions involving both, the gas and particle phase. They reproduce the measured gas-phase concentrations quite well. However, temporal evolution of BrO in the early plume is not well described in the models. The understanding of chemical kinetics of BrO formation is still not complete. Recent measurement results (Vogel et al., 2008) do not fit with initial model calculation. The new data lead to the suggestion that the BrO formation could be much faster during the first few minutes after emission than initially suggested. Old and recent data sets will be confronted, compared and possible causes of their differences discussed. The measurements considered were taken at Mt. Etna (Italy), Villarica (Chile), and Popocatépetl (Mexico) volcanoes. Additionally, at Mt Etna the emission consists of up to four individual plumes from four summit craters. The differences between the individual plumes have been investigated during the last years and will be presented.

  6. High-altitude plume computer code development

    NASA Technical Reports Server (NTRS)

    Audeh, B. J.; Murphy, J. E.

    1985-01-01

    The flowfield codes that have been developed to predict rocket motor plumes at high altitude were used to predict plume properties for the RCS motor which show reasonable agreement with experimental data. A systematic technique was established for the calculation of high altitude plumes. The communication of data between the computer codes was standardized. It is recommended that these outlined procedures be more completed, documented and updated as the plume methodology is applied to the varied problems of plume flow and plume impingement encountered by space station design and operation.

  7. Plume base flow simulation technology

    NASA Technical Reports Server (NTRS)

    Roberts, B. B.; Wallace, R. O.; Sims, J. L.

    1983-01-01

    A combined analytical/empirical approach was studied in an effort to define the plume simulation parameters for base flow. For design purposes, rocket exhaust simulation (i.e., plume simulation) is determined by wind tunnel testing. Cold gas testing was concluded to be a cost and schedule effective data base of substantial scope. The results fell short of the target, although work conducted was conclusive and advanced the state of the art. Comparisons of wind tunnel predictions with Space Transportation System (STS) flight data showed considerable differences. However, a review of the technology program data base has yielded an additional parameter that may correlate flight and cold gas test data. Data from the plume technology program and the NASA test flights are presented to substantiate the proposed simulation parameters.

  8. Modeling Leaking Gas Plume Migration

    SciTech Connect

    Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

    2007-08-20

    In this study, we obtain simple estimates of 1-D plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. Application of the Buckley-Leverett model to describe buoyancy-driven countercurrent flow of two immiscible phases leads to a transparent theory predicting the evolution of the plume. We obtain that the plume does not migrate upward like a gas bubble in bulk water. Rather, it stretches upward until it reaches a seal or until the fluids become immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration that does not lend itself to a simple analytical solution (Silin et al., 2006). The range of applicability of the simplified solution is assessed and provided. This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. One of the potential problems associated with the geologic method of sequestration is leakage of CO{sub 2} from the underground storage reservoir into sources of drinking water. Ideally, the injected green-house gases will stay in the injection zone for a geologically long time and eventually will dissolve in the formation brine and remain trapped by mineralization. However, naturally present or inadvertently created conduits in the cap rock may result in a gas leak from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the indigenous formation brine. Therefore, buoyancy will tend to drive the CO{sub 2} upward unless it is trapped beneath a low permeability seal. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution, are critical for developing technology

  9. Simulation of Europa's water plume .

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Schneider, N. M.; Plainaki, C.; Mazzotta Epifani, E.; Zusi, M.; Palumbo, P.

    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014).

  10. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  11. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  12. Mobile Bay turbidity plume study

    NASA Technical Reports Server (NTRS)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  13. Plume Detection and Plume Top Height Estimation using SLSTR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-04-01

    We present preliminary results on ash and desert dust plume detection and plume top height estimates based on satellite data from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3, launched in 2016. The methods are based on the previously developed AATSR Correlation Method (ACM) height estimation algorithm, which utilized the data of the preceding similar instrument, Advanced Along Track Scanning Radiometer (AATSR). The height estimate is based on the stereo-viewing capability of SLSTR, which allows to determine the parallax between the satellite's 55° backward and nadir views, and thus the corresponding height. The ash plume detection is based on the brightness temperature difference between between thermal infrared (TIR) channels centered at 11 and 12 μm, which show characteristic signals for both desert dust and ash plumes. The SLSTR instrument provides a unique combination of dual-view capability and a wavelength range from visible to thermal infrared, rendering it an ideal instrument for this work. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with other volcanic ash and desert dust retrieval methods and dispersion models. The current work is being carried out as part of the H2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), which started in October 2016.

  14. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  15. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert. Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  16. Large Smoke Plumes, Alberta Canada

    Atmospheric Science Data Center

    2016-12-30

    ...     View Larger Image Devastating wildfires in Alberta Province, Canada, near the city of Fort McMurray began on ... a result of intense thermal heating emanating from surface wildfires. The intense heating drives convection within the smoke plume. At the ...

  17. Smoke Plume Over Eastern Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In late May, a massive smoke plume hundreds of kilometers across blew eastward over New Brunswick toward the Atlantic Ocean. On May 26, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image at 11:40 a.m. local time. By the time MODIS took this picture, the smoke appeared to have completely detached itself from the source, a large fire burning in southwestern Quebec, beyond the western edge of this image. In this image, the smoke appears as a gray-beige opaque mass with fuzzy, translucent edges. The plume is thickest in the southwest and diminishes toward the northeast. Just southwest of the plume is a red outline indicating a hotspot an area where MODIS detected anomalously warm surface temperatures, such as those resulting from fires. This hotspot, however, is not the source for this smoke plume. According to a bulletin from the National Oceanic and Atmospheric Administration, the southwestern Quebec fire was the source. According to reports from the Canadian Interagency Forest Fire Centre on May 29, that fire was estimated at 63,211 hectares (156,197 acres), and it was classified as 'being held.' At the same time, more than 20 wildfires burned in Quebec, news sources reported, and firefighters from other Canadian provinces and the United States had been brought in to provide reinforcements for the area's firefighters.

  18. Types of thermal plumes in coastal waters

    NASA Technical Reports Server (NTRS)

    Green, T.; Madding, R.; Scarpace, F.

    1977-01-01

    A large number of thermal images of the surface temperatures of the thermal plumes associated with the once-through cooling of electric power plants show that four kinds of plume occur sufficiently often to be classified as distinct plume types. Each type has implications for both numerical models and measurement strategies.

  19. Chesapeake Bay plume dynamics from LANDSAT

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  20. Downwelling wind, tides, and estuarine plume dynamics

    NASA Astrophysics Data System (ADS)

    Lai, Zhigang; Ma, Ronghua; Huang, Mingfen; Chen, Changsheng; Chen, Yong; Xie, Congbin; Beardsley, Robert C.

    2016-06-01

    The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.

  1. Heat sources for mantle plumes

    NASA Astrophysics Data System (ADS)

    Beier, C.; Rushmer, T.; Turner, S. P.

    2008-06-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. This excess heat in mantle plumes could reflect either (1) an enrichment of the heat-producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay, (2) material transport from core to mantle (either advective or diffusive), or (3) conductive heat transport across the core-mantle boundary. The advective/diffusive transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g., increased 186Os, 187Os, and Fe concentrations. Geophysical and dynamic modeling indicate that at least Afar, Easter, Hawaii, Louisville, and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 0.9 Mg s-1 (Afar) to 8.7 Mg s-1 (Hawaii), providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat-producing elements are the cause of excess heat we looked for correlations between fractionation-corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th, and U are positively correlated with each other (e.g., Hawaii, Iceland, and Galapagos have significantly lower concentrations than, e.g., Tristan da Cunha, the Canary

  2. Models of the Enceladus Plumes

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Porco, C. C.; Helfenstein, P.; West, R. A.; Cassini ISS Team

    2006-09-01

    The gases in the plumes include H2O, CO2, N2, CH4, and possibly other hydrocarbons, according to the INMS team. The solid particles in the plumes are probably water ice, but the identification is less certain than for the gaseous components. The plumes emanate from warm cracks in the surface near the south pole. The gas has a scale height of 80 km, according to the UVIS team, and the particles have a scale height of 30 km, according to the ISS team. By integrating across the plumes in their images, the ISS team was able to infer the upward flux of particles vs. altitude. Close to the surface, the falloff of density with altitude is much steeper than that of an escaping atmosphere in which both the particles and the gas are moving upward with the thermal velocity of the gas. Thus some of the particles are falling back to the surface and some are escaping. The larger scale height of the gas implies that the escaping fraction is greater for the gas. I will present models that attempt to explain these plume data. The density of the gas and the size of the particles determine the degree of dynamical coupling between gas and particles. There are three models - a sublimating gas that picks up particles as it leaves the surface; sublimating gas that forms particles in flight as the pressure decreases; a boiling liquid that freezes by evaporative cooling as the pressure decreases. Each model has its own range of mass flux, density, particle size, and scale height for both gas and liquid. I will discuss the implications of the observations and models regarding the possibility of liquid water near the surface.

  3. Liquid Booster Module (LBM) plume flowfield model

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  4. Turbulent forces within river plumes affect spread

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  5. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  6. Alcohol Facts

    MedlinePlus

    ... Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ... alcohol in it than beer, malt liquor, or wine. These drink sizes have about the same amount ...

  7. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  8. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups www.al-anon.org National Institute on Alcohol ...

  9. Teaching the Mantle Plumes Debate

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  10. Compositional differentiation of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Khawaja, N.; Postberg, F.; Schmidt, J.

    2014-04-01

    The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled Enceladus' plume ice particles emanated directly from Enceladus' fractured south polar terrain (SPT), the so-called "Tiger Stripes", during two consecutive flybys (E17 and E18) in 2012. The spacecraft passed through the dense plume with a moderate velocity of ~7.5km/s, horizontally to the SPT with a closest approach (CA) at an altitude of ~75km almost directly over the south pole. In both flybys, spectra were recorded during a time interval of ~ ±3 minutes with respect to the closest approach achieving an average sampling rate of about 0.6 sec-1. We assume that the spacecraft passed through the plume during an interval of about ±60(sec) from the CA. Particles encountered before and after this period are predominately from the E-ring background in which Enceladus is embedded. Most CDA TOF-mass spectra are identified as one of three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed from a count database for compositional mapping of the plume along the space-craft trajectory. In BCA, counts of each spectrum type are integrated for a certain interval of time (box size). The integral of counts represents frequencies of compositional types in absolute abundances, which are converted later into proportions. This technique has been proven to be a suitable for inferring the compositional profiles from an earlier flyby (E5) [1]. The inferred compositional profiles show similar trends on E17 and E18. The abundances of different compositional types in the plume clearly differ from the Ering background and imply a compositional differentiation inside the plume. Following up the work of Schmidt et al, 2008 and Postberg et al, 2011 we can link different compositional types to different origins. The E17/E18 results are compared with the E5 flyby in 2008, which yielded the currently best compositional profile [2] but was executed at much

  11. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  12. Aerodynamic interactions with turbulent jet exhaust plumes

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1982-01-01

    The importance of aerodynamic interactions associated with external flow-field effects on turbulent jet exhaust plume structure is discussed. A viscous/inviscid prediction technique is presented which combines the overlaid mixing and inviscid plume components of the JANNAF Standardized Plume Flow-Field (SPF) model with inviscid external flow and boundary-layer analyses for treating nozzle afterbodies at subsonic/transonic speeds. Validation of the technique via comparisons between predictions and experiment for cold-air jet plumes is presented. Predicted spatial temperature distributions for hot, nonafterburning plumes are presented and compared to results obtained from more simplified prediction techniques in order to assess the importance of the aerodynamic interactions associated with external boundary layers and pressure gradients. It is demonstrated that these interactions play a significant role in determining the near-field turbulent mixing and inviscid plume shock structure. The implication of these results to plume radiation predictions is discussed.

  13. Irritants in cigarette smoke plumes

    SciTech Connect

    Ayer, H.E.; Yeager, D.W.

    1982-11-01

    Concentrations of the irritants formaldehyde and acrolein in side stream cigarette smoke plumes are up to three orders of magnitude above occupational limits, readily accounting for eye and nasal irritation. ''Low-tar'' cigarettes appear at least as irritating as other cigarettes. More than half the irritant is associated with the particulate phase of the smoke, permitting deposition throughout the entire respiratory tract and raising the issue of whether formaldehyde in smoke is associated with bronchial cancer.

  14. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  15. Triton's Geyser-like Plumes

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Soderblom, Laurence A.

    In August of 1989, while flying by Neptune's largest satellite Triton, Voyager 2 made another of its stunning discoveries in its epic journey through the outer solar system. First seen by one of us (LAS) and Tammy Becker (also of the USGS), after stereoscopic examination of a group of images taken very near Voyager's closest approach to the satellite, were at least two, geyser-like plumes spewing almost perfectly vertical columns of material 1-km across roughly 8-km high into Triton's atmosphere; there the columns were sheared by stratospheric winds into 100-km-long, dark clouds thought to composed of condensed nitrogen mixed with organic particles. Triton's plumes may be the most unique of all the manifestations of geologic activity on satellites in the outer solar system in that their energy source may be sunlight trapped below Triton's surface in a so-called "solid-state greenhouse". This talk will focus on the physical characteristics of those plumes, and on the various mechanisms proposed to explain their presence and apparent persistence on Triton.

  16. The ice plumes of Europa

    NASA Astrophysics Data System (ADS)

    Sparks, William

    2014-10-01

    It is of extreme interest to NASA and the scientific community that evidence has been found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014) - spectroscopic detection of off-limb line emission from the dissociation products of water. We were awarded Cycle 21 time to seek direct images of the Europa exosphere, including Enceladus-like plumes if present, basing our study on FUV images of Europa as it transits the smooth face of Jupiter. We also obtained a necessary FUV image of Europa out of transit. These observations provide additional evidence for the presence of ice plumes on Europa. Here, we propose to augment our previous imaging work and to seek an initial, efficient characterization of off-limb emission as Europa orbits Jupiter. Such images provide sensitive flux and column density limits, with exceptional spatial resolution. In transit, our strategy can place firm limits on, or measurements of, absorbing columns, their distribution with altitude above the surface of Europa, and constrain their wavelength dependence and hence composition. Out of transit, geometrical and surface brightness considerations can help us distinguish between continuum FUV emission from forward- or back-scattering, from line emission, or, though we might prefer otherwise, from more subtle instrumental artifacts than hitherto understood. If the ice fountains of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System.

  17. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  18. Coastal river plumes: Collisions and coalescence

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Farnsworth, Katherine L.

    2017-02-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world's coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world's smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of

  19. Winds, waves, and the Fraser river plume

    NASA Astrophysics Data System (ADS)

    Kastner, S. E.; Horner-Devine, A.; Thomson, J.

    2016-12-01

    We present observations of winds, waves, and river plume dynamics at the mouth of the Fraser River in the Strait of Georgia during ebb tidal conditions. Measurements were taken using Surface Wave Instrument Floats with Tracking (SWIFT) buoys during a two-week observational field campaign in January 2016 with a variety of forcing conditions. During storm conditions, strong northwesterly winds and waves were incident on a sharp northern plume front generating energetic wave breaking. During the more common southeasterly wind conditions, waves propagated over a thinner, highly sheared plume and did not interact with fronts. We examine the effect of the plume on the waves using a non-dimensional analysis of fetch. During northwesterly wind conditions in the Straight of Georgia, the wind blows over a longer ( 100 km) fetch than during southeasterly wind conditions, creating larger waves. Thomson et al, 2014, found that under similar incident wind and wave conditions, the wind sea peak in the wave energy spectra is blocked by strong horizontal velocity gradients at the river plume front. This blocking effect would result in a lower wave energy level within the plume than predicted by fetch scaling for the northwesterly storm conditions. We assess this simple hypothesis by comparing wave spectra from SWIFTs inside the plume and an Acoustic Waves and Current (AWAC) mooring outside the plume. Furthermore, we use these wave conditions as context for understanding the plume response, in which plume spreading is suppressed by northwesterly storm conditions.

  20. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  1. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    PubMed

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) < 6% at 100 ng L(-1)), sensitive (LOD were 0.2 and 0.4 ng/L for TCA and TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  2. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  3. Constraining the source of mantle plumes

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Crameri, F.; Newsome, W. H.; Lithgow-Bertelloni, C.; Cotel, A.; Hart, S. R.; Whitehead, J. A.

    2016-02-01

    In order to link the geochemical signature of hot spot basalts to Earth's deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the 'vortex ring bubble' is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, sc. High-sc plumes are composed of material which originated from very deep in the fluid domain, while low-sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260-750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this unsampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.

  4. Aggregate particles in the plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Kopparla, Pushkar; Zhang, Xi; Ingersoll, Andrew P.

    2016-01-01

    Estimates of the total particulate mass of the plumes of Enceladus are important to constrain theories of particle formation and transport at the surface and interior of the satellite. We revisit the calculations of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506), who estimated the particulate mass of the Enceladus plumes from strongly forward scattered light in Cassini ISS images. We model the plume as a combination of spherical particles and irregular aggregates resulting from the coagulation of spherical monomers, the latter of which allows for plumes of lower particulate mass. Though a continuum of solutions are permitted by the model, the best fits to the ISS data consist either of low mass plumes composed entirely of small aggregates or high mass plumes composed of mostly spheres. The high particulate mass plumes have total particulate masses of (166 ± 42) × 103 kg, consistent with the results of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506). The low particulate mass plumes have masses of (25 ± 4) × 103 kg, leading to a solid to vapor mass ratio of 0.07 ± 0.01 for the plume. If indeed the plumes are made of such aggregates, then a vapor-based origin for the plume particles cannot be ruled out. Finally, we show that the residence time of the monomers inside the plume vents is sufficiently long for Brownian coagulation to form the aggregates before they are ejected to space.

  5. 700 South 1600 East PCE Plume

    EPA Pesticide Factsheets

    This Web page contains 700 South 1600 East PCE Plume Superfund site information, site description, site risk, cleanup progress, community involvement, site documents, frequent questions, contacts and links.

  6. Magnetohydrodynamic waves in coronal polar plumes.

    PubMed

    Nakariakov, Valery M

    2006-02-15

    Polar plumes are cool, dense, linear, magnetically open structures that arise from predominantly unipolar magnetic footpoints in the solar polar coronal holes. As the Alfvén speed is decreased in plumes in comparison with the surrounding medium, these structures are natural waveguides for fast and slow magnetoacoustic waves. The simplicity of the geometry of polar plumes makes them an ideal test ground for the study of magnetohydrodynamic (MHD) wave interaction with solar coronal structures. The review covers recent observational findings of compressible and incompressible waves in polar plumes with imaging and spectral instruments, and interpretation of the waves in terms of MHD theory.

  7. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  8. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    NASA Astrophysics Data System (ADS)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  9. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    Volcanic plumes are highly chemically reactive; both in the hot, near-vent plume, and also at ambient temperatures in the downwind plume, as the volcanic gases and aerosol disperse into the background atmosphere. In particular, DOAS (Differential Optical Absortpion Spectroscopy) observations have identified BrO (Bromine Monoxide) in several volcanic plumes degassing into the troposphere. These observations are explained by rapid in-plume autocatalytic BrO-chemistry that occurs whilst the plume disperses, enabling oxidants such as ozone from background air to mix with the acid gases and aerosol. Computer modelling tools have recently been developed to interpret the observed BrO and predict that substantial ozone depletion occurs downwind. Alongside these modelling developments, advances in in-situ and remote sensing techniques have also improved our observational understanding of volcanic plumes. We present simulations using the model, PlumeChem, that predict the spatial distribution of gases in volcanic plumes, including formation of reactive halogens BrO, ClO and OClO that are enhanced nearer the plume edges, and depletion of ozone within the plume core. The simulations also show that in-plume chemistry rapidly converts NOx into nitric acid, providing a mechanism to explain observed elevated in-plume HNO3. This highlights the importance of coupled BrO-NOx chemistry, both for BrO-formation and as a production mechanism for HNO3 in BrO-influenced regions of the atmosphere. Studies of coupled halogen-H2S-chemistry are consistent with in-situ Alphasense electrochemical sensor observations of H2S at a range of volcanoes, and only predict H2S-depletion if Cl is additionally elevated. Initial studies regarding the transformations of mercury within volcanic plumes suggest that significant in-plume conversion of Hg0 to Hg2+ can occur in the downwind plume. Such Hg2+ may impact downwind ecology through enhanced Hg-deposition, and causing enhanced biological uptake of

  10. The MISR Wildfire Smoke Plume Height Project

    NASA Astrophysics Data System (ADS)

    Nelson, D. L.; Garay, M. J.; Diner, D. J.; Kahn, R. A.

    2010-12-01

    Together the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectoradiometer (MODIS) instruments on the Terra satellite observe several characteristics of wildfire smoke plumes. With support from NASA and the EPA, the MISR team is assembling a database of these observations for North America, Africa, Siberia, Indonesia, etc. that extends back to the beginning of the Terra mission in 2000. The thermal infrared channels on MODIS provide the location of fires and their approximate radiative power. By using an interactive visualization program called the MISR INteractive eXplorer (MINX), users interactively digitize wildfire plumes to retrieve accurate plume heights and wind speeds using a new stereo height retrieval algorithm. This information, along with the locations and directions of individual plumes, their areas and aerosol properties derived from the operational MISR aerosol algorithm, are stored in this publicly accessible database for subsequent analysis (http://www-misr2.jpl.nasa.gov/EPA-Plumes/). The plume database currently contains about 4000 smoke plumes and smoke clouds from North America. An equal number of plumes and clouds for other regions around the world has also been digitized. A few thousand additional plumes are in the process of being incorporated. Smoke plumes in this context are considered to be discrete regions of smoke that can be followed to their fire sources at ground level and have a distinctive shape determined by the direction the smoke is driven downwind. Smoke “clouds” are defined here as regions of dense smoke not clearly associated with specific fire sources, and whose direction of transport is not easily determined. Plume height measurements can be used as a surrogate for injection heights, which are important for modeling smoke transport. Examples of height and wind retrievals for specific plumes will be shown. Those chosen have not only been incorporated in statistical analyses of plume

  11. Radiation Chemistry of Potential Europa Plumes

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  12. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  13. New indices for the spatial validation of plume forecasts with observations of smoke plumes from grassfires

    NASA Astrophysics Data System (ADS)

    Blanco, Joaquín E.; Berri, Guillermo J.

    2013-03-01

    The purpose of this work is to propose new indices for the spatial validation of hazardous plumes forecast, and apply and test them with data of a case study. One, the Plume-Overlap-Area Hit index, is a modification of a widely used index that considers the overlap area between observed and forecast plumes. The other one, the Plume-Mean-Orientation Hit index, introduces a new concept in plume forecast validation, i.e., the mean direction of plume propagation. These two indices are combined in a new two-dimensional Combined-Direction-Area Hit index. The new indices are applied to the spatial validation of smoke plume forecast for a case study of uncontrolled grassfires that took place during April and May 2008 in the La Plata River region in South America. Operational models at the Argentine National Meteorological Service (SMN) are employed to produce the plume forecast. The HIRHYLTAD dispersion model is used to forecast the smoke plumes, employing the Eta/SMN meteorological forecast model outputs. The forecast plumes are compared to the observed plumes in high-resolution MODIS imagery from AQUA and TERRA satellites, from which a total of 59 smoke plumes are identified. The study concludes that the presented methodology that employs operational meteorological models and simplified dispersion models can be used to produce reasonably accurate forecasts of the areas affected by the smoke plumes that originate in forest and grassland fires, particularly in cases when limited information is available about the fires. Although the present study is specifically applied to smoke plumes, the validation technique with the proposed indices can be of utility to study pollutant plumes of diverse nature.

  14. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  15. Dynamics of fire plumes in verticle shear

    Treesearch

    Philip Cunningham; Scott L. Goodrick; Hussaini M. Yousuff; Rodman R. Linn; Chunmei Xia

    2003-01-01

    Plumes from wildfires and prescribed fires represent a critical aspect of smoke mangement and aire quality assessment, as as such it is important to understand the structure and dynamics of these plumes, both with respect to a basic understanding of the phenomena and with respect to an assessment of the validity of plumerise parameterizations over a wide variety of...

  16. Io with Loki Plume on Bright Limb

    NASA Image and Video Library

    1996-06-03

    NASA's Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles). http://photojournal.jpl.nasa.gov/catalog/PIA00010

  17. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Wind...

  18. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  19. Io with Loki Plume on Bright Limb

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  20. Io with Loki Plume on Bright Limb

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  1. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Wind...

  2. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  3. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  4. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.

    PubMed

    Dannberg, Juliane; Sobolev, Stephan V

    2015-04-24

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  5. Water Vapor Enhancement in Prescribed Fire Plumes

    NASA Astrophysics Data System (ADS)

    Kiefer, C. M.; Clements, C. B.; Potter, B. E.; Strenfel, S. J.

    2008-12-01

    In situ radiosonde measurements were obtained during multiple prescribed fires at the Joseph W. Jones Ecological Research Center at Ichauway, Georgia in March and July of 2008. Data were obtained from prescribed fires conducted in longleaf pine ecosystems. After significant smoke generation was observed, radiosondes were launched downwind of the fire front and rose directly into the smoke plumes. Radiosondes were also launched before each burn to obtain ambient background conditions. This provided a unique dataset of smoke plume moisture to determine how moisture enhancement from fire smoke alters the dynamics of the smoke plume. Preliminary analysis of results show moisture enhancement occurred in all smoke plumes with relative humidity values increasing by 10 to 30 percent and water vapor mixing ratios increasing by 1 to 4 g kg-1. Understanding the moisture enhancement in prescribed fire smoke plumes will help determine the convective dynamics that occur in major wildland fires and convection columns.

  6. Follow the plume: the habitability of Enceladus.

    PubMed

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  7. Modelling oil plumes from subsurface spills.

    PubMed

    Lardner, Robin; Zodiatis, George

    2017-07-11

    An oil plume model to simulate the behavior of oil from spills located at any given depth below the sea surface is presented, following major modifications to a plume model developed earlier by Malačič (2001) and drawing on ideas in a paper by Yapa and Zheng (1997). The paper presents improvements in those models and numerical testing of the various parameters in the plume model. The plume model described in this paper is one of the numerous modules of the well-established MEDSLIK oil spill model. The deep blowout scenario of the MEDEXPOL 2013 oil spill modelling exercise, organized by REMPEC, has been applied using the improved oil plume module of the MEDSLIK model and inter-comparison with results having the oil spill source at the sea surface are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  9. MISR observations of Etna volcanic plumes

    NASA Astrophysics Data System (ADS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-03-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA's Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  10. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  11. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  12. Black Alcoholism.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  13. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the

  14. Plumes on Enceladus: Lessons for Europa?

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2014-12-01

    The possible detection of a water vapour plume on Europa [1] suggests resemblances to Enceladus, a cryovolcanically active satellite [2]. How does this activity work, and what lesson does Enceladus have for plumes on Europa? The inferred vapour column densities of the Europa [1] and Enceladus [3] plumes are similar, but the inferred velocity and mass flux of the former are higher. At Enceladus, the inferred plume strength is modulated by its orbital position [4,5], suggesting that tides opening and closing cracks control the eruption behaviour [6,7]. An additional source of stress potentially driving eruptions is the effect of slow freezing of the ice shell above[7,8]. The original detection of the Europa plume was close to apocentre, when polar fractures are expected to be in tension [1]. Follow-up observations at the same orbital phase did not detect a plume [9], although the Galileo E12 magnetometer data may provide evidence for an earlier plume [Khurana, pers. comm.]. One possible explanation for the plume's disappearance is that longer-period tidal effects are playing a role; there are hints of similar secular changes in the Enceladus data [4,5]. Another is that detectability of the Europa plumein the aurora observations also depends on variations in electron density (which affects the UV emission flux) [9]. Or it may simply be that eruptive activity on Europa is highly time-variable, as on Io. At Enceladus, the plume scale height is independent of orbital position and plume brightness [5]. This suggests that the vapour velocity does not depend on crack width, consistent with supersonic flow through a near-surface throat. The large scale height inferred for the Europa plume likewise suggests supersonic behaviour. Continuous fallback of solid plume material at Enceladus affects both the colour [10] and surface texture [2] of near-polar regions. Less frequent plume activity would produce subtler effects; whether the sparse available imagery at Europa [11

  15. Dynamics of the Chesapeake Bay outflow plume: Realistic plume simulation and its seasonal and interannual variability

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Xia, Meng

    2016-02-01

    The three-dimensional unstructured-grid Finite Volume Coastal Ocean Model (FVCOM) was implemented for Chesapeake Bay and its adjacent coastal ocean to delineate the realistic Chesapeake Bay outflow plume (CBOP) as well as its seasonal and interannual variability. Applying the appropriate horizontal and vertical resolution, the model exhibited relatively high skill in matching the observational water level, temperature, and salinity from 2003 to 2012. The simulated surface plume structure was verified by comparing output to the HF radar current measurements, earlier field observations, and the MODIS and AVHRR satellite imagery. According to the orientation, shape, and size of the CBOP from both model snapshots and satellite images, five types of real-time plume behavior were detected, which implied strong regulation by wind and river discharge. In addition to the episodic plume modulation, horizontal and vertical structure of the CBOP exhibited variations on seasonal and interannual temporal scales. Seasonally, river discharge with a 1 month lag was primarily responsible for the surface plume area variation, while the plume thickness was mainly correlated to wind magnitude. On the interannual scale, river discharge was the predominant source of variability in both surface plume area and depth; however, the southerly winds also influenced the offshore plume depth. In addition, large-scale climate variability, such as the North Atlantic Oscillation, could potentially affect the plume signature in the long term by altering wind and upwelling dynamics, underlining the need to understand the impacts of climate change on buoyant plumes, such as the CBOP.

  16. Chasing plumes at the Endeavour Segment

    NASA Astrophysics Data System (ADS)

    Book, J. W.; Jeffries, M. A.; Mihaly, S. F.; Jenkyns, R.; Timmerman, R.

    2016-02-01

    The five major hydrothermal vents of the Endeavour Segment along the Juan de Fuca Ridge are estimated to emit the heat energy of a small nuclear power plant. From high temperature vent structures, this energy, along with mineral-rich vent fluids, is emitted chimney-like into the ocean, subsequently mixing with seawater and rising to neutral buoyancy between 150 and 300m above the seafloor. At this elevation, the hydrothermal vent plume is above the protection of the rift valley and is free to be carried away in the ambient ocean currents. In addition to anomalous chemical properties and particulates, the plume also carries planktonic residents of the deep-sea vent area. These larvae are key to the ongoing success of the existing ecosystems and their transport can facilitate the rapid colonization of newly formed venting sites. During Ocean Network Canada's 2015 maintenance expedition at the Endeavour Segment, we surveyed the vent plume both along and across-axis using optical transmission to locate the plume. Analysis of our observations reveals that the plume is retained over the central axis of the valley, thus exhibiting favorable conditions for the promulgation of vent ecosystems. We compare this analysis with earlier surveys conducted by Ocean Networks Canada as well as historic data collected since 1986 by the Institute of Ocean Sciences to estimate the spatial variability of the plume. Using this we propose a "climatology" of plume spreading over the Endeavour Segment.

  17. On Numerically Reproducing the Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2016-12-01

    The Enceladus plume was one of the most exciting discoveries of the NASA Cassini mission. However, a number of fundamental features of the plume have yet to be agreed upon. Schmidt et al. (2008) estimated a mass production rate on the order of 5 kg/s based on data from the Cassini dust detector, while Ingersoll and Ewald (2005) estimated a production rate of 51 kg/s based on plume brightness. Porco et al. (2014) produced a set of jet locations and source strength based on imaging; however, simulations of these sources do not reproduce surface deposition patterns of plume particles across Enceladus. We simulate jet sources across the south polar terrain, particularly along the fractures, accounting for gravitational forces and the Lorentz force, to construct a detailed numerical profile of the Enceladus plume. Recent simulations have led to updated surface deposition maps, which are able to constrain jet source locations and strength, and the recent E21 flyby provides detailed, low-altitude data from the dust detector on spacecraft impact rates. Altogether, dust-detector data, surface heat maps of plume fractures, UV surface deposition maps, and photometry are used in conjunction to better resolve both the mass production rate - and thereby dust-to-gas ratio - and source strength and location for the Enceladus plume.

  18. Io's Active Eruption Plumes: Insights from HST

    NASA Astrophysics Data System (ADS)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  19. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  20. Radiation from advanced solid rocket motor plumes

    NASA Astrophysics Data System (ADS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-12-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  1. No Ocean Source for the Enceladus Plumes

    NASA Astrophysics Data System (ADS)

    Burger, Matthew H.; Schneider, N. M.; Johnson, R. E.; Kargel, J. S.; Schaller, E. L.; Brown, M. E.

    2007-12-01

    One surprising discovery of the Cassini mission to Saturn has been the presence of geyser-like plumes at the south pole of the icy moon Enceladus ejecting >300; kg/s of water into Saturn's magnetosphere. In situ and remote observations (Waite et al. 2006; Hansen et al. 2006) have shown that the primary plume constituent is H2O, and thermal measurements indicate intense heating in cracks believed to be plume vents on the surface (Spencer et al. 2006). These observations have led to speculation that the plumes are fed from a liquid water reservoir beneath Enceladus' surface. We present results from an extremely sensitive, high-resolution spectroscopic search using the Keck and Anglo-Australian Telescopes which place a stringent upper limit on sodium emission in the Enceladus plumes. Large amounts of sodium would be expected if Enceladus' plume material were derived directly from a subsurface liquid reservoir in contact with rocky material. Chemical models predict that sodium would dissolve into such an ocean at mixing ratios relative to water of 10-4 to 10-1 (Zolotov et al., 2007). Our numerical plume models show that such high sodium concentrations would form a detectable torus encircling Saturn. Our detection upper limits fall orders of magnitude below these models, leading us to conclude that the Enceladus plumes do not originate in an ocean or sea. These observations support the alternative theories that the plumes are generated by shear heating of the icy crust resulting in sublimation or melting, or the decomposition of clathrates. This work has been supported by the NASA Postdoctoral Program and the NSF's Planetary Astronomy Program. References: Hansen et al., Science, 311, 1422, 2006. Spencer et al., Science, 311, 1401, 2006. Waite et al., Science, 311, 1419, 2006. Zolotov et al., Presented to the "Enceladus Focus Group Workshop," Boulder, CO, 2007.

  2. Atmospheric chemistry of an Antarctic volcanic plume

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Clive; Kyle, Philip; Eisele, Fred; Crawford, Jim; Huey, Greg; Tanner, David; Kim, Saewung; Mauldin, Lee; Blake, Don; Beyersdorf, Andreas; Buhr, Martin; Davis, Doug

    2010-01-01

    We report measurements of the atmospheric plume emitted by Erebus volcano, Antarctica, renowned for its persistent lava lake. The observations were made in December 2005 both at source, with an infrared spectrometer sited on the crater rim, and up to 56 km downwind, using a Twin Otter aircraft; with the two different measurement platforms, plume ages were sampled ranging from <1 min to as long as 9 h. Three species (CO, carbonyl sulfide (OCS), and SO2) were measured from both air and ground. While CO and OCS were conserved in the plume, consistent with their long atmospheric lifetimes, the downwind measurements indicate a SO2/CO ratio about 20% of that observed at the crater rim, suggesting rapid chemical conversion of SO2. The aircraft measurements also identify volcanogenic H2SO4, HNO3 and, recognized for the first time in a volcanic plume, HO2NO2. We did not find NOx in the downwind plume despite previous detection of NO2 above the crater. This suggests that near-source NOx was quickly oxidized to HNO3 and HO2NO2, and probably NO32-(aq), possibly in tandem with the conversion of SO2 to sulfate. These fast processes may have been facilitated by "cloud processing" in the dense plume immediately downwind from the crater. A further striking observation was O3 depletion of up to ˜35% in parts of the downwind plume. This is likely to be due to the presence of reactive halogens (BrO and ClO) formed through heterogeneous processes in the young plume. Our analysis adds to the growing evidence for the tropospheric reactivity of volcanic plumes and shows that Erebus volcano has a significant impact on Antarctic atmospheric chemistry, at least locally in the Southern Ross Sea area.

  3. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  4. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  5. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  6. Sensitivity of air quality simulation to smoke plume rise

    Treesearch

    Yongqiang Liu; Gary Achtemeier; Scott Goodrick

    2008-01-01

    Plume rise is the height smoke plumes can reach. This information is needed by air quality models such as the Community Multiscale Air Quality (CMAQ) model to simulate physical and chemical processes of point-source fire emissions. This study seeks to understand the importance of plume rise to CMAQ air quality simulation of prescribed burning to plume rise. CMAQ...

  7. Ozone depletion in tropospheric volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vance, Alan; McGonigle, Andrew J. S.; Aiuppa, Alessandro; Stith, Jeffrey L.; Turnbull, Kate; von Glasow, Roland

    2010-11-01

    We measured ozone (O3) concentrations in the atmospheric plumes of the volcanoes St. Augustine (1976), Mt. Etna (2004, 2009) and Eyjafjallajökull (2010) and found O3 to be strongly depleted compared to the background at each volcano. At Mt. Etna O3 was depleted within tens of seconds from the crater, the age of the St. Augustine plumes was on the order of hours, whereas the O3 destruction in the plume of Eyjafjallajökull was maintained in 1-9 day old plumes. The most likely cause for this O3 destruction are catalytic bromine reactions as suggested by a model that manages to reproduce the very early destruction of O3 but also shows that O3 destruction is ongoing for several days. Given the observed rapid and sustained destruction of O3, heterogeneous loss of O3 on ash is unlikely to be important.

  8. Isotopic mapping of groundwater perchlorate plumes.

    PubMed

    Sturchio, Neil C; Hoaglund, John R; Marroquin, Roy J; Beloso, Abelardo D; Heraty, Linnea J; Bortz, Sarah E; Patterson, Thomas L

    2012-01-01

    Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources.

  9. Propagation of an atmospheric pressure plasma plume

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-01

    The "plasma bullet" behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  10. High altitude plumes at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia Muñoz, A.; Garcia Melendo, E.; Perez-Hoyos, S.; Gomez Forrellad, J. M.; Pellier, C.; Delcroix, M.; Lopez Valverde, M. A.; González Galindo, F.; Jaeschke, W.; Parker, D.; Phillips, J.; Peach, D.

    2015-10-01

    In March and April 2012 two extremely high altitude plumes were observed at the Martian terminator reaching 200 -250 km or more above the surface[1]. They were located at about 195o West longitude and 45o South latitude (at Terra Cimmeria) and extended ˜500 -1,000 km in both North-South and East- West, and lasted for about 10 days. Both plumes exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb. Another large plume was captured on Hubble Space Telescope images in May 1997 at 99º West longitude and 3º South latitude, but its altitude cannot be pr ecisely determined.Broad-band photometry was performed of both events in the spectral range 255 nm -1052 nm. Based on the observed properties, we discuss different possible scenarios for the mechanism responsible for the formation of these plumes.

  11. The Plasmaspheric Plume and Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.

    2014-01-01

    We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.

  12. Source Region for Possible Europa Plumes

    NASA Image and Video Library

    2014-02-26

    This map composed of images NASA Galileo and Voyager missions shows the hemisphere of Europa that might be affected by plume deposits. The view is centered at -65 degrees latitude, 183 degrees longitude.

  13. Propagation of an atmospheric pressure plasma plume

    SciTech Connect

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-15

    The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  14. Earth science: Plate motion and mantle plumes

    NASA Astrophysics Data System (ADS)

    Müller, R. Dietmar

    2011-07-01

    A model based on geophysical data from the Indian Ocean suggests that a mantle-plume head may once have coupled the motions of the African and Indian tectonic plates, and determined their respective speeds. See Article p.47

  15. Plume Ascent Tracker: Interactive Matlab software for analysis of ascending plumes in image data

    NASA Astrophysics Data System (ADS)

    Valade, S. A.; Harris, A. J. L.; Cerminara, M.

    2014-05-01

    This paper presents Matlab-based software designed to track and analyze an ascending plume as it rises above its source, in image data. It reads data recorded in various formats (video files, image files, or web-camera image streams), and at various wavelengths (infrared, visible, or ultra-violet). Using a set of filters which can be set interactively, the plume is first isolated from its background. A user-friendly interface then allows tracking of plume ascent and various parameters that characterize plume evolution during emission and ascent. These include records of plume height, velocity, acceleration, shape, volume, ash (fine-particle) loading, spreading rate, entrainment coefficient and inclination angle, as well as axial and radial profiles for radius and temperature (if data are radiometric). Image transformations (dilatation, rotation, resampling) can be performed to create new images with a vent-centered metric coordinate system. Applications may interest both plume observers (monitoring agencies) and modelers. For the first group, the software is capable of providing quantitative assessments of plume characteristics from image data, for post-event analysis or in near real-time analysis. For the second group, extracted data can serve as benchmarks for plume ascent models, and as inputs for cloud dispersal models. We here describe the software's tracking methodology and main graphical interfaces, using thermal infrared image data of an ascending volcanic ash plume at Santiaguito volcano.

  16. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.; Shroyer, E. L.; Nash, J. D.; Sutherland, D. A.; Carroll, D.; Fried, M. J.; Catania, G. A.; Bartholomaus, T. C.; Stearns, L. A.

    2017-07-01

    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near-glacier measurements. Here we present a high-resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3-D structure and transport of a near-surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean-glacier models. Instead, the observations suggest a wider upwelling plume—a "truncated" line plume of ˜200 m width—with higher entrainment and plume-driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.

  17. NRL Satellite Volcanic Ash Plume Monitoring

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Kuciauskas, A. P.; Richardson, K.; Solbrig, J.; Miller, S. D.; Pavolonis, M. J.; Bankert, R.; Lee, T.; Kent, J.; Tsui, T.

    2009-12-01

    The Naval Research Laboratory’s (NRL) Marine Meteorology Division (NRL-MRY) is assembling a unique suite of near real-time digital satellite products geared towards monitoring volcanic ash plumes which can create hazardous aviation conditions. Ash plume detection, areal extent, plume top height and mass loading will be extracted via automated algorithms from a combination of geostationary (GEO) and low earth orbiting (LEO) data sets that take advantage of their complimentary strengths since no one sensor has the required spectral, spatial and temporal attributes needed. This product suite would then be available to the Volcanic Ash Advisory Centers (VAAC) and other interested users via web distribution. Initially, GOES-West and the Japanese MTSAT data will be incorporated to view volcanic plumes within the north Pacific region. Although GEO sensor spectral channels are not optimized for ash detection, temporal changes over limited timeframes can assist in plume extraction, but not for those at the highest latitudes. Examples with multi-channel techniques will be highlighted via animations. LEO sensors provide a suite of spectral channels unmatched on GEO platforms and permit enhanced ash plume monitoring. NRL has exploited the Moderate Resolution Imaging Spectroradiometer (MODIS) and SeaWiFS via a “dust enhancement technique” that has demonstrated positive plume monitoring results. Multi-channel methods using the Advanced Very High Resolution Radiometer (AVHRR) will be highlighted to take advantage of the numerous NOAA LEO satellites carrying this wide swath sensor with frequent volcano overpasses at the higher latitudes. The DMSP Operational Linescan System (OLS) provides daytime visible/infrared, as well as night time visible data which has shown value in spotting ash plumes when sufficient lunar illumination is present. The following suite of products is potentially available for over twenty (20) volcano sites world-wide via our NexSat web site: http

  18. Local stability of axisymmetric plumes

    NASA Astrophysics Data System (ADS)

    R. v. K., Chakravarthy; Lesshafft, Lutz; Huerre, Patrick

    2014-11-01

    A linear stability analysis of a forced plume with non-zero momentum at the inlet is performed for Pr = 1 , Re = 100 and Ri near 1. The steady base flow is obtained as a laminar solution of the steady Navier Stokes equations. The base flow asymptotes to a self-similar solution as it evolves downstream. In the non-self-similar regime close to the inlet, both axisymmetric mode (m = 0) and the helical mode (m = 1) are convectively unstable at sufficiently low Richardson number. In the self-similar regime, only the helical mode is absolutely unstable and the axisymmetric mode is stable. Higher helical modes (m >= 2) are seen to be convectively unstable very close to the inlet and become stable as the flow evolves downstream. The transition from convective to absolute instability makes the flow a good candidate for observing steep nonlinear global modes associated with buoyancy. This work is supported by a PhD scholarship from Ecole polytechnique.

  19. Near Field of Starting Plumes

    NASA Astrophysics Data System (ADS)

    Johari, H.; Gharib, M.; Dabiri, D.

    1997-11-01

    Although steady jets and plumes have been studied extensively in the past, there is relatively little known about the initial stages of starting buoyant jets. The present investigation examined buoyancy-driven flows resulting from cylindrical containers w ith length to diameter ratios (L/D) between 2 and 13. Density ratios up to ten percent were utilized. A technique was developed to release the column of buoyant fluid with minimal disturbance during the discharge. Our observations indicate that the majori ty of the released fluid gets entrained into the starting vortex ring for L/D < 4. Longer columns result in a jet trailing behind the starting vortex. In all cases, the starting vortex ring becomes unstable as a result of the baroclinic torque generation around its perimeter, and disintegrates into a turbulent mass within the first 5 diameters. This fluid mass then gets reorganized into a larger, more diffuse thermal. The thermal formation occurs closer to the source as the length to diameter ratio of th e buoyant column gets smaller. The temporal evolution of the circulation associated with the buoyant fluid, which was derived from the digital particle image velocimetry technique, will be presented.

  20. A modeling of buoyant gas plume migration

    SciTech Connect

    Silin, D.; Patzek, T.; Benson, S.M.

    2008-12-01

    This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher

  1. Numerical Methods for Explosion Plume Predictions

    DTIC Science & Technology

    1993-03-12

    AD-A262 343 6 NAVSWC TR 91-718 A -22~4..v~w•T ,,-., I II It ill/111111 ti(. NUMERICAL METHODS FOR EXPLOSION PLUME PREDICTIONS BY W.G. SZYMCZAK AND A...METHODS FOR EXPLOSION PLUME PREDICTIONS BY W. G. SZYMCZAK AND A. B. WARDLAW RESEARCH AND TECHNOLOGY DEPARTMENT 12 MARCH 1993 Approved for public release...2 TABLES Table Page 3-1 SHALLOW DEPTH EXPLOSION BUBBLE INITIAL DATA

  2. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  3. Puff/Plume for Windows 95-NT

    SciTech Connect

    Snyder, Gary

    1998-05-20

    PFPL-NT is a GUI event-driven scientific application integrating 14 background processes to access the consequences of accidental releases of hazardous materials from production facilities and transportation vehicles. A simple straight-line Gaussian assumption has been employed with observations from meteorological towers to calculate and visually display plume directions, plume width, and dose/concentration estimates in the immediate vicinity of a radiological or chemical release.

  4. Sampling Particles In Hot Gas Plumes

    NASA Technical Reports Server (NTRS)

    Taylor, James F.; Sambamurthi, Jay

    1994-01-01

    Sampling darts and launching apparatus built to collect particles in vertical plume of hot gas. In original application, hot gas plume is rocket-engine exhaust during test firing. Dart passes made at various heights, depending on launch angle and launch-gas pressure. Adaptable to variety of terrestrial uses like research on particulate emissions of volcanoes or determining origin of building fire while still burning.

  5. Remote Diagnostic Measurements of Hall Thruster Plumes

    DTIC Science & Technology

    2009-08-14

    distribution Angle Relative to Thruster Centerline (degrees) Summary and Conclusions 1. Plasma diagnostics designed, developed, and fabricated 2. Calibrated... Thruster Plumes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Casey C. Farnell ( Plasma Controls); Daniel L. Brown (AFRL/RZSS); Garret...measurements of Hall thruster plumes that characterize ion energy distributions and charge state fractions using remotely located plasma diagnostics

  6. OPAD data analysis. [Optical Plumes Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.

    1993-01-01

    Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.

  7. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    NASA Astrophysics Data System (ADS)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  8. Magnetospheric Convection near a Drainage Plume

    NASA Astrophysics Data System (ADS)

    Lin, Chin S.; Yeh, Huey-Ching; Sandel, Bill R.; Goldstein, J.; Rich, Frederick J.; Burke, William J.; Foster, J. C.

    2007-05-01

    We report on equatorial convection associated with a plasmaspheric drainage plume using simultaneous observations from five satellites. During the early recovery phase of the July 2000 Bastille Day magnetic storm, the Extreme Ultraviolet sensor on the Magnetopause-to-Aurora Global Exploration satellite detected the plume near 16:00-17:00 magnetic local time extending outward to L ≈ 2.8. The plasmaspheric boundary was near L = 2 at other local times. We mapped simultaneously measured ionospheric plasma drifts from ROCSAT-1 and three Defense Meteorological Satellite Program (DMSP) spacecraft along magnetic field lines to infer equatorial convection velocities in the inner magnetosphere. The zonal component of convection derived from ROCSAT-1 ion-drift measurements had a sharp, positive azimuthal gradient near the plume's boundaries, reversing direction from westward to eastward. The meridional profile of horizontal velocities deduced from DMSP measurements shows a large, westward-flowing subauroral polarization stream (SAPS) located outside the plasmapause. The peak velocity of the SAPS centered at a radial distance of L ≈ 2.8 with a full width of ˜1 RE. In the inertial frame of reference, equatorial plasmas flowed toward the plume from both its day and evening sides, suggesting a negative gradient in the equatorial azimuthal velocity that was largest near the plume's outermost boundary. These observations provide new evidence about diversion of SAPS plasma flows and distinctive azimuthal velocity patterns in the vicinity of plasmaspheric plumes.

  9. Hubble Sees Recurring Plume Erupting From Europa

    NASA Image and Video Library

    2017-04-13

    These composite images show a suspected plume of material erupting two years apart from the same location on Jupiter's icy moon Europa. The images bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite. Both plumes, photographed in ultraviolet light by NASA's Hubble's Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. The newly imaged plume, shown at right, rises about 62 miles (100 kilometers) above Europa's frozen surface. The image was taken Feb. 22, 2016. The plume in the image at left, observed by Hubble on March 17, 2014, originates from the same location. It is estimated to be about 30 miles (50 kilometers) high. The snapshot of Europa, superimposed on the Hubble image, was assembled from data from NASA's Galileo mission to Jupiter. The plumes correspond to the location of an unusually warm spot on the moon's icy crust, seen in the late 1990s by the Galileo spacecraft (see PIA21444). Researchers speculate that this might be circumstantial evidence for water venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. https://photojournal.jpl.nasa.gov/catalog/PIA21443

  10. Confirmation of Europa's water vapor plume activity

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2013-10-01

    STIS spectral UV images of Jupiter's satellite Europa obtained during HST Cycle 20 revealed atomic H and O auroral emissions in intensity ratios which uniquely identify the source as electron impact excitation of water molecules above Europa's south pole and hypothesized to be associated with water vapor plumes as reported in Roth et al., Science, 2014. The plumes were detected when Europa was at apocenter on December 30/31, 2012. Two other sets of STIS observations when Europa was near pericenter did not show plume emission within the sensitivity of STIS. The plume variability is predicted to be correlated with Europa's distance from Jupiter in the observed way. However, the one plume detection at apocenter and the two non-detections near pericenter require confirmation. Therefore we request two visits of 5 orbits each to observe Europa at orbital positions of the predicted maximum plume activity {similar to the December 2012 STIS Europa visit} to provide confirmation of the initial STIS discovery and to consolidate the predicted geophysical variability pattern.

  11. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    SciTech Connect

    Guennou, C.; Hahn, M.; Savin, D. W.

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.

  12. IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) ...

    EPA Pesticide Factsheets

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in comments on the following: Draft literature search strategies The approach for identifying studies The screening process for selecting pertinent studies The resulting list of pertinent studies Preliminary evidence tables The process for selecting studies to include in evidence tables The quality of the studies in the evidence tables The literature search strategy, which describes the processes for identifying scientific literature, contains the studies that EPA considered and selected to include in the evidence tables. The preliminary evidence tables and exposure-response arrays present the key study data in a standardized format. The evidence tables summarize the available critical scientific literature. The exposure-response figures provide a graphical representation of the responses at different levels of exposure for each study in the evidence table. EPA is undertaking a new health assessment for t-butyl alcohol (TBA) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS and IRIS Summary of TBA that will be entered on the IRIS database. IRIS is an EPA da

  13. Chemical Plume Detection with an Iterative Background Estimation Technique

    DTIC Science & Technology

    2016-05-17

    SUMMARY AND CONCLUSIONS Plume contamination of the background parameter estimates remains a difficult problem to address for plume detection systems ...schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be

  14. A global sensitivity analysis of the PlumeRise model of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Woodhouse, Mark J.; Hogg, Andrew J.; Phillips, Jeremy C.

    2016-10-01

    Integral models of volcanic plumes allow predictions of plume dynamics to be made and the rapid estimation of volcanic source conditions from observations of the plume height by model inversion. Here we introduce PlumeRise, an integral model of volcanic plumes that incorporates a description of the state of the atmosphere, includes the effects of wind and the phase change of water, and has been developed as a freely available web-based tool. The model can be used to estimate the height of a volcanic plume when the source conditions are specified, or to infer the strength of the source from an observed plume height through a model inversion. The predictions of the volcanic plume dynamics produced by the model are analysed in four case studies in which the atmospheric conditions and the strength of the source are varied. A global sensitivity analysis of the model to a selection of model inputs is performed and the results are analysed using parallel coordinate plots for visualisation and variance-based sensitivity indices to quantify the sensitivity of model outputs. We find that if the atmospheric conditions do not vary widely then there is a small set of model inputs that strongly influence the model predictions. When estimating the height of the plume, the source mass flux has a controlling influence on the model prediction, while variations in the plume height strongly effect the inferred value of the source mass flux when performing inversion studies. The values taken for the entrainment coefficients have a particularly important effect on the quantitative predictions. The dependencies of the model outputs to variations in the inputs are discussed and compared to simple algebraic expressions that relate source conditions to the height of the plume.

  15. Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp.

    PubMed

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2011-09-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed.

  16. Sulfur chemistry in a copper smelter plume

    NASA Astrophysics Data System (ADS)

    Eatough, D. J.; Christensen, J. J.; Eatough, N. I.; Hill, M. W.; Major, T. D.; Mangelson, N. F.; Post, M. E.; Ryder, J. F.; Hansen, L. D.; Meisenheimer, R. G.; Fischer, J. W.

    Sulfur transformation chemistry was studied in the plume of the Utah smelter of Kennecott Copper Corporation from April to October 1977. Samples were taken at up to four locations from 4 to 60 km from the stacks. Data collected at each station included: SO 2 concentration, low-volume collected total paniculate matter, high-volume collected size fractionated paniculate matter, wind velocity and direction, temperature, and relative humidity. Paniculate samples were analyzed for S(IV). sulfate, strong acid, anions, cations, and elemental concentrations using calorimetric, ion Chromatographie, FIXE, ESCA, ion microprobe, and SEM-ion microprobe techniques. The concentration of As in the paniculate matter was used as a conservative plume tracer. The ratios Mo/As, Pb/As, and Zn/As were constant in particulate matter collected at all sampling sites for any particle size. Strong mineral acid was neutralized by background metal oxide and/or carbonate particulates within 40km of the smelter. This neutralization process is limited only by the rate of incorporation of basic material into the plume. Two distinct metal-S(IV) species similar to those observed in laboratory aerosol experiments were found in the plume. The formation of paniculate S(IV) species occurs by interaction of SO 2 (g) with both ambient and plume derived aerosol and is equilibrium controlled. The extent of formation of S(IV) complexes in the aerosol is directly proportional to the SO 2(g) and paniculate (Cu + Fe) concentration and inversely proportional to the paniculate acidity. S(IV) species were stable in collected paniculate matter only in the neutralized material, but with proper sampling techniques could be demonstrated to also be present in very acidic particles at high ambient SO 2(g) concentrations. Reduction of arsenate to arsenite by the aerosol S(IV) complexes during plume transport is suggested. The SO 2(g)-sulfate conversion process in the plume is described by a mechanism which is first order

  17. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  18. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  19. Microbial populations in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  20. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and

  1. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  2. African Equatorial and Subtropical Ozone Plumes: Recurrence Timescales of the Brown Cloud Trans-African Plume and Other Plumes

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J.

    2004-05-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into eithier easterly equatorial plumes or westerly mid-troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  3. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  4. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    SciTech Connect

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  5. ENVIRONMENTAL RESEARCH BRIEF: INNOVATIVE MEASURES FOR SUBSURFACE CHROMIUM REMEDIATION: SOURCE ZONE, CONCENTRATED PLUME, AND DILUTE PLUME.

    EPA Science Inventory

    This environmental research brief reports on innovative measures for addressing 1) the source zone soils, 2) the concentrated portion of the ground-water plume, and 3) the dilute portion of the ground-water plume. For the source zone, surfactant-enhanced chromium extraction is ev...

  6. Rocket exhaust plume computer program improvement. Volume 1: Summary: Method of characteristics nozzle and plume programs

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.; Smith, S. D.; Penny, N. M.

    1972-01-01

    A summary is presented of the various documents that discuss and describe the computer programs and analysis techniques which are available for rocket nozzle and exhaust plume calculations. The basic method of characteristics program is discussed, along with such auxiliary programs as the plume impingement program, the plot program and the thermochemical properties program.

  7. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  8. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  9. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  10. Facts about Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    Hall, Leonard C.

    Recognition of alcoholism as a treatable illness is a result of public education based on scientific facts. This publication, a digest of a more detailed survey of research about drinking and alcoholism, presents information about alcohol and its effects on individuals and society. It provides facts about the short-term and long-term effects of…

  11. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  12. Wind-Forced Baroclinic Beta-Plumes

    NASA Astrophysics Data System (ADS)

    Belmadani, A.; Maximenko, N. A.; Melnichenko, O.; Schneider, N.; Di Lorenzo, E.

    2011-12-01

    A planetary beta-plume is a classical example of oceanic circulation induced by a localized vorticity source or sink that allows an analytical description in simplistic cases. Its barotropic structure is a zonally-elongated, gyre-like cell governed by the Sverdrup circulation on the beta-plane. The dominant zonal currents, found west of the source/sink, are often referred to as zonal jets. This simple picture describes the depth-integrated flow. Previous studies have investigated beta-plumes in a reduced-gravity framework or using other simple models with a small number of vertical layers, thereby lacking representation of the vertical structure. In addition, most previous studies use a purely linear regime without considering the role of eddies. However, these jets are often associated with strong lateral shear that makes them unstable under increased forcing. The circulation in such a nonlinear regime may involve eddy-mean flow interactions, which modify the time-averaged circulation. Here, the baroclinic structures of linear and nonlinear wind-forced beta-plumes are studied using a continuously-stratified, primitive equation, eddy-permitting ocean model (ROMS). The model is configured in an idealized rectangular domain for the subtropical ocean with a flat bottom. The surface wind forcing is a steady anticyclonic Gaussian wind vortex, which provides a localized vorticity source in the center of the domain. The associated wind stress curl and Ekman pumping comprise downwelling in the vortex center surrounded by a ring of weaker upwelling. Under weak forcing, the simulated steady-state circulation corresponds well with a theoretical linear beta-plume. While its depth-integrated transport exhibits a set of zonal jets, consistent with Sverdrup theory, the baroclinic structure of the plume is remarkably complex. Relatively fast westward decay of the surface currents occurs simultaneously with the deepening of the lower boundary of the plume. This deepening suggests

  13. CALIOP-derived Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Winker, D. M.; Choi, H. D.; Fairlie, T. D.; Westberg, D. J.; Roller, C. M.; Pouliot, G.; Vaughan, M.; Pierce, T. E.; Trepte, C. R.; Rao, V.

    2014-12-01

    Biomass burning is a dominant natural and anthropogenic disturbance that feeds back to the climate system. Fire regimes, ecosystem fuels, fire severity and intensity vary widely, even within the same system, largely under the control of weather and climate. These strongly influence fire plume injection height and thus the transport of related biomass burning emissions, affecting air quality, human health and the climate system. If our knowledge of plume injection height is incorrect, transport models of those emissions will likewise be incorrect, adversely affecting our ability to analyze and predict climate feedbacks (i.e. black carbon to the Arctic, precipitation, cloud-radiation relationships) and public health (air quality forecast). Historically, plume height was based on the pioneering work of G.A. Briggs [1969; 1971] and verified with limited field campaigns. However, we currently have two satellite instruments, Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO (afternoon overpass) and Multi-angle Imaging SpectroRadiometer (MISR) onboard TERRA (morning overpass), that can provide the statistics necessary to verify our assumptions and improve fire plume injection height estimates for use in both small- and large-scale models. We have developed a methodology to assess fire plume injection height using the Langley Trajectory Model (LaTM), CALIOP, Hazard Mapping System (HMS) smoke plume, and MODerate Resolution Imaging Spectrometer (MODIS) thermal anomaly data that is capable of generating two distinct types of verification data. A single CALIOP smoke-filled aerosol envelop can be traced back to numerous fire events, and using multiple CALIOP transects from numerous days, a daily smoke plume injection height evolution from a single fire can be defined. Additionally, we have linked the smoke plumes to ecosystems and the meteorological variables that define fire weather. In concert, CALIOP and MISR data can produce the statistical knowledge

  14. Compressible plume dynamics in the transition zone

    NASA Astrophysics Data System (ADS)

    Bossmann, A. B.; Van Keken, P. E.; Ritsema, J. E.; Goes, S. D.

    2012-12-01

    Plumes rising from the deep mantle may explain hotspot volcanism, but their occurrence in the lower mantle is not unambiguously confirmed by seismological imaging studies. Additionally, the seismologically observed flat topography of the 670 km discontinuity below hotspots disagrees with the elevation expected due to its negative Clapeyron slope and plume excess temperature. Numerical models that account for realistic rheology, compressibility and consistently implemented phase transitions may help reconciling these observations with the mantle plume hypothesis. Here we present numerical mantle plume models in an axisymmetric spherical shell geometry. The Anelastic Liquid Approximation is applied to the governing equations to account for mantle compressibility, viscous dissipation and work done against gravity. Besides this, a depth- and temperature dependent viscosity and the main phase boundaries at 400 and 670 km depth as well as latent heat effects during the phase transitions are considered. The reference state is based on the Birch-Murnaghan equation of state and considers PREM-like density jumps at 400 and 670 km depth and latent heat effects in the temperature profile. We include a dense layer above the core-mantle boundary from which the plume rises. Plume dynamics and morphology is studied for varying Clapeyron slope, especially at the endothermic phase transition, Rayleigh number and different viscosity models. We evaluate the importance of consistently implementing latent heat in the governing equations and reference state. Furthermore we vary excess density and thickness of the dense layer to study the effects on entrainment of the layer and the dynamics in the transition zone. Our models show that the seismologically observed flat topography of the 670 km phase boundary is consistent with a plume origin in the deep mantle and offer an additional explanation independent of previously proposed ones, as we observe a large plume head in the lower mantle

  15. Crater Formation Due to Lunar Plume Impingement

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  16. Nighttime chemistry in the Houston urban plume

    NASA Astrophysics Data System (ADS)

    Luria, Menachem; Valente, Ralph J.; Bairai, Solomon; Parkhurst, William J.; Tanner, Roger L.

    A late afternoon polluted air parcel transported from the Houston metropolitan area was monitored by an instrumented aircraft throughout the night of 21-22 July, 2005. Sampling was conducted during three flight segments over several downwind areas that were identified by a controllable meteorological balloon released from the Houston area at sundown. Samples were taken for approximately 2 h over each area. Using carbon monoxide as a tracer of the urban plume, it was revealed that the dilution inside the plume was relatively small. Ozone levels of up to 120 ppb were found in the plume at the furthest downwind distance, some 250 km northwest of Houston, with plume transport in the direction of the Dallas metropolitan area. The data further suggest that the nighttime conversion of NO x to NO z was very rapid, with complete (˜100%) conversion by the end of the night. At two locations the urban plume mixed with fresh emissions from power plants. At these sampling points ˜50% of the NO y had already been converted to NO z, thus indicating very rapid oxidation at night.

  17. Modeling the Enceladus Plume--Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Fleshman, B. L.; Delamere, P. A.; Bagenal, F.

    2009-12-01

    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. The evolution of a parcel of ambient plasma passing through a prescribed H2O plume is estimated using a physical chemistry model based on the Io torus chemistry but adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. Our results suggest that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We explore the effects on the physical chemistry of (1) a small population of hot electrons and (2) a flow decelerated in response to the pickup of fresh ions near the plumes. Charge exchange dominates the local interaction, leading to an H3O+-dominated local water-group chemistry. Pickup Rate/(kg s-1) Pickup rate from the plasma--plume interaction. We emphasize: (1) The possibility of hot electron beams at Enceladus, given the contraints on charge exchange + impact ionization pickup [0.2--3 kg s-1, Khurana et al. (2007); Saur et al. (2007); Burger et al. (2008)]. (2) Charge exchange dominates the local chemistry.

  18. Particle Characterization in Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Callen, E. Eugene, Jr.; Fisher, J. Scott

    1997-01-01

    A method to characterize particles in rocket exhaust plumes is developed. The particle velocity, size, and material composition are determined from crater characteristics resulting from impacts into aluminum and copper targets passed through the plume. The targets are mounted on a steel arm approximately 21 inches (53 cm) long which is rotated through the plume at sufficient velocity to prevent material failure resulting from thermal effects. A Scanning Electron Microscope (SEM) with secondary x-ray detectors is used to determine the particle material, and a standard optical measurement microscope is used to determine the crater diameter and depth. The crater diameter and depth are used in turn, as inputs to a ballistics computer code to estimate the velocity and size of the particle. The target has a safe residence time in the plume of approximately 50 ms before reaching an unacceptably high temperature. The = must mach a velocity of 104 ft/s (32 m/s) before entering the plume to produce the design residence time of 20 ms. The arm is actuated by a torsion spring with a 5-inch (13 cm) outer diameter, 0.625-inch (16 mm wire diameter, and 11 coils. A prototype of the entire rocket exhaust particle impact characterization system (PICS) was constructed and statically tested.

  19. Reconnaissance of gas plumes offshore Sado Island

    NASA Astrophysics Data System (ADS)

    Fukuoka, H.; Aoyama, C.; Watanabe, H.; Komatsu, H.; Tajima, H.

    2016-12-01

    In late March 2016, an exploration of gas plume offshore Sado Island was conducted to know about their distribution, especially from shallow sea floor of 150 - 400 m. In the Japan Sea, more than thousand of gas plumes had been found in the recent 3 years. Most of them are supposed to be originated from dissolution of submarine methane hydrate on the sea floor surface and/or shallow subsurface. Comparison of the plumes and flux observed by multi-beam sonar and fish-finder record between 2016 and 2013 shows that both of the distribution and the gas flux, evaluated from intensity in echogram has changed. Sub-bottom scanner imagery suggest that the apparently sub-surface gas-chimney-like structure was observed at as many sites. Unlike large-scale seafloor surface type methane-hydrate site, those subsurface chimney did not reach the seafloor, possibly because the temperature-pressure condition was not satisfied on the surface. Authors have sampled sea water near the vent of those plume gas, depressurized to extract dissolved air bubbles, which was subjected to chemical analysis. Atmospheres around above large-scale plume which looks reaching to the sea surface was collected and analyzed. Results show that the air collected from the seafloor near the vent contains slightly higher concentration of methane (CH4) and carbon dioxide (CO2).

  20. Space Shuttle Plume Simulation Effect on Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hair, L. M.

    1978-01-01

    Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

  1. Confirmation of Water Plumes on Europa

    NASA Astrophysics Data System (ADS)

    Sparks, William

    Evidence was found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014a) - FUV detection of off-limb line emission from the dissociation products of water. We find additional evidence for the presence of ice plumes on Europa from HST transit imaging observations (Sparks et al 2016). The evidence for plumes remains marginal, 4-sigma, and there is considerable debate as to their reality. SOFIA can potentially resolve this issue with an unambiguous direct detection of water vapor using EXES. Detection of the fundamental vibrational mode of water vapor at 6 micron, as opposed to the atomic constituents of water, would prove that the plumes exist and inform us of their physical chemistry through quantitative consideration of the balance between water vapor and its dissociation products, hydrogen and oxygen. We propose to obtain spectra of the leading and trailing hemispheres separately, with trailing as the higher priority. These provide two very different physical environments and plausibly different degrees of activity. If the plumes of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System, and clarify an issue of major strategic importance in NASAs planning for its multi-billion dollar mission to Europa.

  2. Intermittent heat instabilities in an air plume

    NASA Astrophysics Data System (ADS)

    Le Mouël, Jean-Louis; Kossobokov, Vladimir G.; Perrier, Frederic; Morat, Pierre

    2016-08-01

    We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.

  3. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  4. Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Blake, D. R.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Mikoviny, T.; Richter, D.; Sachse, G. W.; Vay, S. A.; Walega, J.; Weibring, P.; Weinheimer, A. J.; Wiedinmyer, C.; Wisthaler, A.; Hills, A.; Riemer, D. D.; Apel, E. C.

    2011-11-01

    ketone, MEK) and alcohols (i.e. methanol and ethanol) as the plumes evolve in time, i.e. the production of these compounds is less than the chemical loss. Comparisons of the modeled NEMRs to the observed NEMRs from BB plumes estimated to be three days in age or less indicate overall good agreement.

  5. Pressure and temperature effects on 2H spin-lattice relaxation times and 1H chemical shifts in tert-butyl alcohol- and urea-D2O solutions

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Ibuki, Kazuyasu; Ueno, Masakatsu

    1998-01-01

    The pressure and temperature effects of hydrophobic hydration were studied by NMR spectroscopy. The 1H chemical shifts (δ) were measured at 7.7, 29.9, and 48.4 °C under high pressure up to 294 MPa for HDO contained as impurity in neat D2O, 1 mol kg-1 tert-butyl alcohol (TBA)-D2O, and 1 mol kg-1 urea-D2O solutions, for the methyl group of TBA in the TBA-D2O solution, and for the amino group of urea in the urea-D2O solution. The 2H spin-lattice relaxation times (T1) were measured under the same conditions as the chemical shift measurements for D2O in neat D2O, TBA-D2O and urea-D2O solutions with organic contents up to 8 mol%. The following features are observed for the pressure effect on δ (HDO) and 2H-T1 in TBA-D2O solutions: (1) The δ (HDO) exhibits a downfield shift relative to that in neat D2O, and the difference of δ (HDO) between TBA solution and neat D2O becomes larger with increasing pressure at lower temperature. (2) The decrement of the rotational correlation time of water in the hydration shell of TBA (τcs) relative to the value at atmospheric pressure is smaller than that in the bulk (τc0). (3) The pressure coefficients of T1 are positive in dilute solutions but are negative in more than 4 to 5 mol% solutions. These results suggest that the hydrophobic hydration shell of TBA is different than the open structure of water present in bulk, and resists pressure more strongly than the open structure of water in the bulk. In solutions of 4 to 5 mol%, the hydration shell collapses. On the other hand, the τcs in the hydration shell of urea is slightly larger than that in bulk water at lower pressure, but is obviously larger at higher pressure. In view of the rotational motion of water molecules, urea seems to strengthen the water structure slightly rather than weaken it, although δ (HDO) approaches that in the bulk with pressure. It is difficult to classify urea into a structure maker or a breaker.

  6. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  7. Study of vertical plane turbulent jets and plumes

    NASA Astrophysics Data System (ADS)

    Ramaprian, B. R.; Chandrasekhara, M. S.

    1983-03-01

    Asymptotic, plane, vertical, turbulent plumes and nonbuoyant jets were studied. Simultaneous velocity and temperature were measured using frequency shifted, two component Laser Doppler anemometry (LDA), resistance thermometry and a high speed data acquisition system. Results obtained for two plumes with vastly different initial Richardson numbers indicate that both the plumes exhibit a nearly universal asymptotic behavior. The Richardson number of the asymptotic plume is a universal constant and is about 0.3. The mean velocity and temperature profiles in both jets and plumes are nearly Gaussian. It is found that turbulence levels in plumes are significantly higher than in jets.

  8. Plume size measurements on underexpanded jets in vacuum chambers

    NASA Astrophysics Data System (ADS)

    Dankert, C.; Boettcher, R.-D.; Dettleff, G.; Legge, H.

    1985-06-01

    The subject of investigation is an axisymmetric jet expanding into a low pressure surrounding of a static medium. Such flow conditions are of interest when studying thruster nozzles in ground facilities like vacuum chambers. Especially the maximum plume diameter is important for plume-surface and plume-plume interaction and contamination. Four different nozzles and four test gases are investigated. Most of the plumes are visualized by glow discharge of the flowing molecules in an electric field. The measured data are compared to MOC calculations. Length and diameter of the plumes depend on gas, nozzle divergence angle, exit Mach number, background pressure, and condensation effects.

  9. Evolution of tropical plumes in VAS water vapor imagery

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Ulsh, David J.

    1990-01-01

    Synoptic scale tropical plumes are analyzed using satellite data and outgoing longwave radiation data. The evolution of plumes is described and their precursor signals are examined. The horizontal moisture patterns of the plumes are compared with nonplume climatology, and the predictability of plumes based solely on satellite imagery is assessed. The results show that a plume evolves as a stationary, tropical, dry or moist dipole, separated by an exceptionally strong cloud or moisture gradient. Tropical plume evolution is accompanied by a systematic drying of the tropical eastern Pacific atmosphere before development, and moistening and increased cloudiness with development.

  10. A collisionless plasma thruster plume expansion model

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo

    2015-06-01

    A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.

  11. Simulating Irregular Source Geometries for Ionian Plumes

    SciTech Connect

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-20

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  12. Effects of meteorological conditions on spore plumes.

    PubMed

    Burch, M; Levetin, E

    2002-08-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  13. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  14. Polar Plumes Observed at Extreme Coronal Altitudes

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Plunkett, S. P.

    1999-09-01

    Polar plumes, unipolar high density structures in the polar coronal holes, are key to our understanding of solar wind acceleration and coronal heating. Because unipolar magnetic flux concentrations in the coronal hole account for approximately 50 leaves the coronal hole (DeForest et al., 1996), plumes (which arise from some such concentrations) are tracers of a type of magnetic structure that fills nearly half of the solar system at solar minimum. Plumes have been observed up to altitudes of about 10 solar radii with the LASCO instrument (DeForest et al., 1996), above which they fade into the coronal background. There is some contention (Habbal and Woo, 1997; Paetzold and Bird, 1998) over whether plumes extend into the interplanetary medium or become mixed with the interplume solar wind at altitudes between 10 and 100 solar radii. Several mechanisms, including the Kelvin-Helmholtz two-stream instability and cross-mode resonant wave scattering near the alfvenic point in the wind's acceleration, have been proposed that could break up the structure of the observed plumes. Using the LASCO C-3 instrument aboard SOHO (Brueckner et al, 1995) to accumulate multiple images that we then recombine, we have generated coronal images with effective exposure times in the thousands of seconds and actual durations of less than four hours. These images clearly show polar plumes extending to altitudes of 25 solar radii or more, very close to the outer edge of the C-3 field of view and above the likely alfvenic point of the wind flow.

  15. Cassini Radio Occultation by Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  16. Enceladus Plumes: A Boiling Liquid Model

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Ingersoll, A. P.

    2012-10-01

    Following the discovery of H2O vapor and particle plumes from the tiger stripes at the south pole of Enceladus (Porco et al., 2006), observational and theoretical studies have been conducted to understand the plume mechanism (e.g., Schmidt et al., 2008; Kieffer et al., 2009; Ingersoll and Pankine, 2010). Although the “Ice Chamber Model”, which assumes that ice sublimation under the stripes causes the plumes, has successfully explained the plume mass flux (e.g., Nimmo et al., 2007; Ingersoll and Pankine, 2010), it cannot explain the high salinity in the plume (Postberg et al., 2009). Ice particles condensing from a vapor are relatively salt free, but ice particles derived from a salty liquid can have high salinity. Therefore we have investigated the “Boiling Liquid Model”, which assumes that liquid H2O under the stripes causes the plumes. With conservation of mass, momentum and energy, we built a simple atmospheric model that includes controlled boiling and gas-ice wall interaction. We first assumed that the heat radiated to space comes entirely from the heat generated by condensation of the gas onto the ice wall. We varied the width (0.1-1 m) and the height (5-4000 m) of the crack as parameters. We find that the escaping vapor flux can be relatively close to the observed value (250±100 kg/s, Hansen et al., 2006, 2008) but the radiated heat flux is only 1 GW, which is much less than the observed value (15.8 GW, Howett et al., 2011). Other models (Nimmo et al., 2007; Abramov and Spencer, 2009) also have the same difficulty accounting for the observed value. We then investigated the additional heat radiated by the particles after they come out of the crack. We built a simple model to estimate the size distributions of these condensed ice particles and their radiative properties.

  17. Io Plume Monitoring (frames 1-36)

    NASA Image and Video Library

    1997-11-04

    A sequence of full disk Io images was taken prior to Galileo's second encounter with Ganymede. The purpose of these observations was to view all longitudes of Io and search for active volcanic plumes. The images were taken at intervals of approximately one hour corresponding to Io longitude increments of about ten degrees. Because both the spacecraft and Io were traveling around Jupiter the lighting conditions on Io (e.g. the phase of Io) changed dramatically during the sequence. These images were registered at a common scale and processed to produce a time-lapse "movie" of Io. This movie combines all of the plume monitoring frames obtained by the Solid State Imaging system aboard NASA's Galileo spacecraft. The most prominent volcanic plume seen in this movie is Prometheus (latitude 1.6 south, longitude 153 west). The plume becomes visible as it moves into daylight, crosses the center of the disk, and is seen in profile against the dark of space at the edge of Io. This plume was first seen by the Voyager 1 spacecraft in 1979 and is believed to be a geyser-like eruption of sulfur dioxide snow and gas. Although details of the region around Prometheus have changed in the seventeen years since Voyager's visit, the shape and height of the plume have not changed significantly. It is possible that this geyser has been erupting nearly continuously over this time. Galileo's primary 24 month mission includes eleven orbits around Jupiter and will provide observations of Jupiter, its moons and its magnetosphere. North is to the top of all frames. The smallest features which can be discerned range from 13 to 31 kilometers across. The images were obtained between the 2nd and the 6th of September, 1996. The animation can be viewed at http://photojournal.jpl.nasa.gov/catalog/PIA01073

  18. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profiles of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.

  19. Halogen Chemistry in Volcanic Plumes (Invited)

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2017-04-01

    Volcanoes release vast amounts of gases and particles in the atmosphere. Volcanic halogens (HF, HCl, HBr, HI) are co-emitted alongside SO2, and observations show rapid formation of BrO and OClO in the plume as it disperses into the troposphere. The development of 1D and Box models (e.g. PlumeChem) that simulate volcanic plume halogen chemistry aims to characterise how volcanic reactive halogens form and quantify their atmospheric impacts. Following recent advances, these models can broadly reproduce the observed downwind BrO/SO2 ratios using "bromine-explosion" chemistry schemes, provided they use a "high-temperature initialisation" to inject radicals (OH, Cl, Br and possibly NOx) which "kick-start" the low-temperature chemistry cycles that convert HBr into reactive bromine (initially as Br2). The modelled rise in BrO/SO2 and subsequent plateau/decline as the plume disperses downwind reflects cycling between reactive bromine, particularly Br-BrO, and BrO-HOBr-BrONO2. BrCl is produced when aerosol becomes HBr-depleted. Recent model simulations suggest this mechanism for reactive chlorine formation can broadly account for OClO/SO2 reported at Mt Etna. Predicted impacts of volcanic reactive halogen chemistry include the formation of HNO3 from NOx and depletion of ozone. This concurs with HNO3 widely reported in volcanic plumes (although the source of NOx remains under question), as well as observations of ozone depletion reported in plumes from several volcanoes (Mt Redoubt, Mt Etna, Eyjafjallajokull). The plume chemistry can transform mercury into more easily deposited and potentially toxic forms, for which observations are limited. Recent incorporation of volcanic halogen chemistry in a 3D regional model of degassing from Ambrym (Vanuatu) also predicts how halogen chemistry causes depletion of OH to lengthen the SO2 lifetime, and highlights the potential for halogen transport from the troposphere to the stratosphere. However, the model parameter-space is vast and

  20. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  1. Plume impingement forces on inclined flat plates

    NASA Astrophysics Data System (ADS)

    Legge, H.

    Plume impingement from spacecraft control thrusters on vehicles in space is simulated in wind tunnel scale experiments. Pressure and shear stress are measured on flat plates inclined to the plume axis between 0 and 90 deg. In addition to a nozzle of a 0.5N thruster, a free jet from a thin plate orifice was used, by which the flow regime from nearly free molecular flow to continuum flow was covered. Simple pressure and shear stress laws are given by which the impingement pressure and shear stress can be estimated for engineering applications.

  2. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  3. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2016-09-01

    Methane plumes in the martian atmosphere were previously reported, but their source remains a mystery. We hypothesize a meteor shower source, as we find a correlation between Mars/cometary orbit encounters and detections of plumes.

  4. Plume Characterization of Busek 600W Hall Thruster

    DTIC Science & Technology

    2012-03-09

    through low density gaseous medium, plasma plume for this case, the atoms in the plume absorb incoming light with specific wavelength. This absorption ... spectroscopy . These techniques have been used to quantify plume properties such as plasma density, participle temperature, plume potential...chamber pressure down to 10 -8 torr by 37 attracting atomic particles to cooled cryogenic heads. The cryogenic heads are cooled down to around 16-20

  5. Colloid Formation at Waste Plume Fronts

    SciTech Connect

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  6. Plasma Rocket With Hybrid Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R.

    1987-01-01

    Proposed plasma rocket, described in report, generates hybrid exhaust plume comprising annular layer of relatively cool neutral gas around plasma core. Plasma and gas intermix, providing gradual radial transition between the two. Amount of gas injected adjusted to control propulsive efficiency; relatively cool gas boundary layer at surface of nozzle insulates nozzle from high plasma temperature.

  7. Plume-induced cratonization in Archean Earth

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Sizova, E.; Bogdanova, S. V.; Tackley, P.

    2016-12-01

    Cratons are the oldest stabilized parts of Earth's continents that have multi-stage history and are characterized by thick heterogeneous (on the scale of tens to hundreds km) mantle roots with variable degree of depletion and metasomatic reworking. Several distinct proto-cratonic units of hundreds km size differing in crustal and mantle structure could be often found within large cratons. Geodynamic mechanisms of cratons formation remain debatable and combine both plate-tectonics-related and plume-related processes. Based on recent numerical experiments, we propose a new concept of Archean cratonization intrinsically related to the operation of plume-lid tectonics by which proto-continental and proto-oceanic lithospheric domains spontaneously formed before the onset of global plate tectonics. In contrast to present day, hot felsic proto-continental domains had thinner, more deformable and less depleted mantle lithosphere compared to their cold mafic proto-oceanic counterparts formed by ultraslow spreading atop hot mantle upwellings. Numerical models show feasibility of short-lived deep subduction of the depleted proto-oceanic lithosphere to core-mantle boundary driven by eclogitization of the thick mafic crust. Subsequent heating and buoyancy-driven separation of the eclogite and harzburgite triggered formation of strongly depleted harzburgite plumes. Rising and accretion of these chemically buoyant refractory plumes to the bottom of proto-continental domains created relatively small (hundreds km) proto-cratons. After onset of global plate tectonics, assembling of smaller proto-cratonic terrains formed actual large cratons.

  8. DSMC simulation of Europa water vapor plumes

    NASA Astrophysics Data System (ADS)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  9. Plume dynamics in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Huppert, Herbert E.

    2008-11-01

    Buoyancy driven flows in layered porous media are present in many geological settings and play an important role in the mixing of fluids, from the dispersal of pollutants in underground aquifers to enhanced oil recovery techniques and, of more recent importance, the sequestration of carbon dioxide (CO2). Seismic images of the rise of a buoyant CO2 plume at Sleipner in the North Sea indicate that these plumes are greatly influenced by a vertical array of thin lenses of relatively low permeability material. We model propagation of CO2 at each layer as a gravity current in a porous medium which propagates along, and drains through, a thin, low permeability seal. Drainage, driven both by hydrostatic pressure and the body force on the draining fluid, leads to an initial rapid advance followed by a gradual retreat of the current to a steady-state. By incorporating a vertical array of these single layer models we are able to capture the rise of the buoyant plume in layered reservoirs. We find that the plume is characterized by a broad head with a tail given by the steady state extent.

  10. Smoke plume behavior - what the data say

    Treesearch

    Gary L. Achtemeier; Luke Naeher

    2005-01-01

    a comprehensive smoke project, now ongoing for four years, is designed in part to investigate plume behavior from southern prescribed burns with respect to atmospheric stability and to document ground-level smoke concentrations with PM2.5 data from a network of samplers specially constructed for the project. Project management goals are to find ways to increase the...

  11. Preliminary plume characteristics of an arcjet thruster

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Curran, Francis M.; Myers, Roger M.; Zube, Dieter M.

    1990-01-01

    An experimental investigation of a low power arcjet plume was conducted using emission spectroscopy. A laboratory model arcjet incorporating a segmented anode was run on simulated hydrazine at a flow rate of 5 x 10(exp -5) kg/s. The complete visible spectrum measured in the exit plane of the arcjet showed the presence of N2, N2(+), NH, and H. Radial intensity profiles for the H alpha, H sub beta, and the NH A(sup 3)Pi yields X(sup 3)Sigma(0,0) transitions at four different axial locations were measured. These line of sight intensity measurements, spaced 0.05 mm apart, were deconvoluted to give the radial intensity distribution using an inverse Abel transformation. The ratio between the intensities from the H sub alpha and H sub beta transitions indicated a non-Boltzmann energy distribution between excited states in the plume. Axial intensity profiles taken on center line indicated the decay rate of excited states in the plume. An electron number density of 2 x 10(exp 13)/cu cm at the exit plane was determined based on Stark broadening of the H sub beta line. Rotational temperatures of 750 K, 1750 K, and 2500 K were determined for N2, N2(+), and NH respectively. The results demonstrate that the location of the current attachment on the anode has a measurable effect on the electronically excited species in the plume and that dissociation is the dominant frozen flow loss mechanism in low power arcjets.

  12. Electromagnetic tracking of low resistivity pollution plumes

    SciTech Connect

    Montgomery, J.R.; Phillips, T.A.; Adams, D.J.

    1995-12-31

    Currently, the primary technique for locating pollution plumes is drilling many observation wells. When relying only on drilling, it is difficult and expensive to map the complete extent of pollution plumes and be sure all branches have been identified. Since some pollution plumes are composed of conductive materials, it was decided to modify an electromagnetic (EM) technology for mapping deep conductive ore bodies and determine if it could be used to map conducting groundwater pollution. The modified technology was used to map the flow of underground acidic water at an abandoned mine which is producing water at several locations at the toe of the spoils. Special electrode configurations were used to directly energize the acidic water plume. Surface EM field changes were used to track the progression, branching, and spread of solutions in the subsurface. The survey provided an accurate map of the flow patterns within the mine spoils. The extent, branches, ponding areas, and constriction zones of acidic waters were outlined by the survey. This technology provides sufficient knowledge about subsurface flows and indicates that extensive exploratory drilling can be eliminated. Drilling can be limited to producing productive intercept and monitoring wells.

  13. Compression technique for plume hyperspectral images

    NASA Astrophysics Data System (ADS)

    Feather, B. K.; Fulkerson, S. A.; Jones, J. H.; Reed, R. A.; Simmons, M. A.; Swann, D. G.; Taylor, W. E.; Bernstein, L. S.

    2005-06-01

    The authors recently developed a hyperspectral image output option for a standardized government code designed to predict missile exhaust plume infrared signatures. Typical predictions cover the 2- to 5-m wavelength range (2000 to 5000 cm-1) at 5 cm-1 spectral resolution, and as a result the hyperspectral images have several hundred frequency channels. Several hundred hyperspectral plume images are needed to span the full operational envelope of missile altitude, Mach number, and aspect angle. Since the net disk storage space can be as large as 100 GB, a Principal Components Analysis is used to compress the spectral dimension, reducing the volume of data to just a few gigabytes. The principal challenge was to specify a robust default setting for the data compression routine suitable for general users, who are not necessarily specialists in data compression. Specifically, the objective was to provide reasonable data compression efficiency of the hyperspectral imagery while at the same time retaining sufficient accuracy for infrared scene generation and hardware-in-the-loop test applications over a range of sensor bandpasses and scenarios. In addition, although the end users of the code do not usually access the detailed spectral information contained in these hyperspectral images, this information must nevertheless be of sufficient fidelity so that atmospheric transmission losses between the missile plume and the sensor could be reliably computed as a function of range. Several metrics were used to determine how far the plume signature hyperspectral data could be safely compressed while still meeting these end-user requirements.

  14. Cluster formation in rarefied water vapour plume

    NASA Astrophysics Data System (ADS)

    Bykov, Nikolay Y.; Gorbachev, Yuriy E.

    2017-07-01

    Mathematical model of water cluster formation has been developed and applied for the Direct Simulation Monte Carlo of water vapour expansion from the reservoir with constant stagnation parameters. The influence of flow rarefaction on plume parameters and on peculiarities of cluster formation process are analyzed. Comparison of simulation results with experimental data is performed.

  15. DSMC simulation of Io's unsteady Tvashtar plume

    NASA Astrophysics Data System (ADS)

    Hoey, W. A.; Ackley, P. C.; Trafton, L. M.; Goldstein, D. B.; Varghese, P. L.

    2016-11-01

    Jupiter's moon Io supports its rarefied atmosphere with prolific tidally-driven episodic volcanism. Its largest volcanic plumes erupt violently and exhibit intricate structure, their canopies rising to hundreds of km above the Ionian surface. In early 2007, the NASA New Horizons (NH) spacecraft captured the active Tvashtar plume in a time sequence of panchromatic images at high spatial resolution and observed both discrete "filamentary" patterns in the descending particulate structure, and a prominent traveling canopy wave. These are transient and asymmetric features, indicative of Tvashtar's unresolved and complex vent processes. In this work, we introduce a methodology for identifying vent spatial and temporal scales in the rarefied plume. Three-dimensional DSMC simulations of the collisional gas flowfield are combined with a flow-tracking dust particle model, enabling a broad exploration of parameter space in pursuit of the critical frequencies that qualitatively reproduce the dynamical phenomena observed in Tvashtar's collisional canopy and providing insight into the dynamics of transient extra-terrestrial volcanic plumes.

  16. Modelling of thruster plume induced erosion

    NASA Astrophysics Data System (ADS)

    Alred, John; Boeder, Paul; Mikatarian, Ron; Pankop, Courtney; Schmidl, William

    2003-09-01

    One source of external induced contamination on the International Space Station (ISS) is thruster plume exhausts. The contamination from these plumes onto ISS sensitive surfaces is due to liquid drops of unreacted or partially reacted propellants. However, the drag acceleration of these particles (drops) from the exhaust gases produces high velocity (~km/s) drops that will mechanically damage surfaces in the exhaust. Previous space flight experiments on the Space Shuttle Orbiter which studied thruster plume induced contamination also demonstrated the pitting nature of these particles. The External Contamination/Plasma Team of the Boeing ISS Program Office in Houston has developed an approach to modeling the mechanical erosion on surfaces due to the impact of particles in thruster plumes. This approach melds damage simulation data from a smooth particle hydrodynamics (SPH) code from Los Alamos National Laboratory (LANL) into Boeing's own contamination computer tool (NASAN-II). The Boeing team has conducted several analyses simulating bipropellant thruster droplets impacting ISS sensitive surfaces. Computational results of various thrusters firing onto the ISS, at different build-stages, were completed and show a concern for particular solar array orientations during attitude control firings. Mitigation techniques for minimizing the erosion effects have also been determined and are presented.

  17. Imaging Fourier transform spectrometry of chemical plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.

  18. Detection of contaminant plumes released from landfills

    NASA Astrophysics Data System (ADS)

    Yenigül, N. B.; Hendsbergen, A. T.; Elfeki, A. M. M.; Dekking, F. M.

    2006-06-01

    Contaminant leaks released from landfills are a significant threat to groundwater quality. The groundwater detection monitoring systems installed in the vicinity of such facilities are vital. In this study the detection probability of a contaminant plume released from a landfill has been investigated by means of both a simulation and an analytical model for both homogeneous and heterogeneous aquifer conditions. The results of the two models are compared for homogeneous aquifer conditions to illustrate the errors that might be encountered with the simulation model. For heterogeneous aquifer conditions contaminant transport is modelled by an analytical model using effective (macro) dispersivities. The results of the analysis show that the simulation model gives the concentration values correctly over most of the plume length for homogeneous aquifer conditions, and that the detection probability of a contaminant plume at given monitoring well locations match quite well. For heterogeneous aquifer conditions the approximating analytical model based on effective (macro) dispersivities yields the average concentration distribution satisfactorily. However, it is insufficient in monitoring system design since the discrepancy between the detection probabilities of contaminant plumes at given monitoring well locations computed by the two models is significant, particularly with high dispersivity and heterogeneity.

  19. Reed Watkins: A Passion for Plume Moths

    USDA-ARS?s Scientific Manuscript database

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  20. Transmittance and Radiance Computations for Rocket Engine Plume Environments

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.

    2003-01-01

    Emission and absorption characteristics of several atmospheric and combustion species have been studied and are presented with reference to rocket engine plume environments. The effects of clous, rain, and fog on plume radiance/transmittance has also been studied.Preliminary results for the radiance from the exhaust plume of the space shuttle main engine are shown and discussed.

  1. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  2. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  3. Enceladus Plumes: Causes of Decadal Variability

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Ewald, Shawn P.

    2016-10-01

    The Enceladus plumes have decreased over the decade that Cassini has been observing them. This long-term variation is superposed on the much shorter-term variation tied to the position of Enceladus in its orbit around Saturn. The observations are ISS and VIMS images, which reveal the particles in the plumes but not the gas. The decadal variability largely consists of a 2-fold decline in the mass of plume material, but there is a hint of a recent turnaround. Here we offer three hypotheses, each with its strengths and weaknesses, to explain the long-term variability. The first is seasonal change, from summer to fall in the southern hemisphere. The loss of sunlight could increase the build-up of ice around the tiger stripes. The weakness is that the sunlight is likely to have a small effect, e.g., decreasing the sublimation rate of the ice by only ~1 cm/year. The second hypothesis is a statistical fluctuation in the number of active plumes, which tend to turn themselves off due to build-up of ice at the throat of the vent. The weakness is that the plumes are likely to fluctuate independently, and if there are ~100 plumes, their sum will only fluctuate by 10%. The third hypothesis is that the variation is part of a well-known decadal cycle of orbital eccentricity, which varies by ±2.5% around a mean of 0.0047. The peak eccentricity occurred in 2009-2010, and the minimum occurred in 2015. Since eccentricity controls the short-term orbital cycle variations, it could also control the longer-term decadal variations. The weakness is that the eccentricity variation is small, from 0.0046 to 0.0048. It is not certain that such a small variation could cause a 2-fold variation in the strength of the plumes. An independent study, still in its infancy, is the possibility that liquid water reaches the surface during part of the orbital cycle.

  4. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression

  5. The thin hot plume beneath Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    1999-01-01

    We present the results of a seismological investigation of the frequency-dependent amplitude variations across Iceland using data from the HOTSPOT array currently deployed there. The array is composed of 30 broad-band PASSCAL instruments. We use the parameter t(*), defined in the usual manner from spectral ratios (Halderman and Davis 1991), to compare observed S-wave amplitude variations with those predicted due to both anelastic attenuation and diffraction effects. Four teleseismic events at a range of azimuths are used to measure t(*). A 2-D vertical cylindrical plume model with a Gaussian-shaped velocity anomaly is used to model the variations. That part of t(*) caused by attenuation was estimated by tracing a ray through IASP91, then superimposing our plume model velocity anomaly and calculating the path integral of 1/vQ. That part of t(*) caused by diffraction was estimated using a 2-D finite difference code to generate synthetic seismograms. The same spectral ratio technique used for the data was then used to extract a predicted t(*). The t(*) variations caused by anelastic attenuation are unable to account for the variations we observe, but those caused by diffraction do. We calculate the t(*) variations caused by diffraction for different plume models and obtain our best-fit plume, which exhibits good agreement between the observed and measured t(*). The best-fit plume model has a maximum S-velocity anomaly of - 12 per cent and falls to 1/e of its maximum at 100 km from the plume centre. This is narrower than previous estimates from seismic tomography, which are broadened and damped by the methods of tomography. This velocity model would suggest greater ray theoretical traveltime delays than observed. However, we find that for such a plume, wave-front healing effects at frequencies of 0.03-0.175 Hz (the frequency range used to pick S-wave arrivals) causes a 40 per cent reduction in traveltime delay, reducing the ray theoretical delay to that observed.

  6. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  7. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    It is reported that Savannah Foods and Industries, in a joint venture with United States Sugar Corporation have applied for a loan guarantee for the production of alcohol from agricultural commodities. The two phase program calls for research and development, before a prototype plant will be built for the conversion of cellulosic compounds found in bagasse into alcohol for use as a fuel.

  8. Alcoholism & depression.

    PubMed

    Hall, Mellisa

    2012-10-01

    One out of 2 Americans report drinking on a routine basis, making the excessive consumption of alcohol the third leading cause of preventable death in America (). Alcoholism and depression are common comorbidities that home healthcare professionals frequently encounter. To achieve the best patient outcomes, alcoholism should be addressed initially. Although all age groups are at risk, alcoholism and depression occur in more than 8 percent of older adults. Prevention through identifying alcohol use early in adolescence is vital to reduce the likelihood of alcohol dependence. This article provides an overview of the long-term effects of alcohol abuse, including alcoholic cirrhosis and hepatic encephalopathy. The diagnostic criteria for substance dependence and ideas for nonthreatening screening questions to use with patients who are adolescent or older are discussed. While providing patient care, home healthcare nurses share the patient's intimate home environment. This environment is perceived as a safe haven by the patient and home care nurses can take advantage of counseling and treatment opportunities in this nonthreatening environment.

  9. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  10. Plume Electrification: Laboratory and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Dufek, J.

    2012-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Chaiten, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including triboelectric charging, charging from the brittle failure of rock, and charging due to phase change as material is carried aloft. While the overall electrification of the plume likely results from a combination of these processes, in the following work we focus on triboelectric charging—how a plume charges as particles collide with each other. To explore the role of triboelectric effects in plume charging we have conducted a number of small scale laboratory experiments similar to those designed by Forward et al (2009). Succinctly, the experiments consist of fluidizing an ash bed with nitrogen and monitoring the resulting currents induced by the moving particles. It is important to note that the reaction chamber only allows particle-particle interactions. The entire experimental setup is enclosed in a vacuum chamber, allowing us to carefully control the environment during experiments. Runs were carried out for different ash compositions, and driving pressures. We particularly focused on natural grain size distributions of ash and on quantifying not only the net charge but also the charging rate. Furthermore, we report on our progress to incorporate the collected data, namely charging rates, into a large eularian-eularian-lagrangian multiphase eruption dynamic model. Finally, to validate these results, we present our plans to deploy a large wireless sensor network of electrometers and magnetometers around active volcanoes to directly map the overhead E- and M-fields as an eruption occurs.

  11. Two views of Hawaiian plume structure

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.; Farnetani, Cinzia G.

    2013-12-01

    Fundamentally contradictory interpretations of the isotopic compositions of Hawaiian basalts persist, even among authors who agree that the Hawaiian hotspot is caused by a deep-mantle plume. One view holds that the regional isotopic pattern of the volcanoes reflects large-scale heterogeneities in the basal thermal boundary layer of the mantle. These are drawn into the rising plume conduit, where they are vertically stretched and ultimately sampled by volcanoes. The alternative view is that the plume resembles a "uniformly heterogeneous plum pudding," with fertile plums of pyroxenite and/or enriched peridotite scattered in a matrix of more refractory peridotite. In a rising plume, the plums melt before the matrix, and the final melt composition is controlled significantly by the bulk melt fraction. Here we show that the uniformly heterogeneous plum pudding model is inconsistent with several geochemical observations: (1) the relative melt fractions inferred from La/Yb ratios in shield-stage basalts of the two parallel (Kea- and Loa-) volcanic chains, (2) the systematic Pb-isotopic differences between the chains, and the absence of such differences between shield and postshield phases, (3) the systematic shift to uniformly depleted Nd-isotopic compositions during rejuvenated volcanism. We extend our previous numerical simulation to the low melt production rates calculated far downstream (200-400 km) from shield volcanism. Part of these melts, feeding rejuvenated volcanism, are formed at pressures of ˜5 GPa in the previously unmelted underside of the plume, from material that originally constituted the uppermost part of the thermal boundary layer at the base of the mantle.

  12. On the origin of mesoscale structures in aqueous solutions of tertiary butyl alcohol: the mystery resolved.

    PubMed

    Sedlák, Marián; Rak, Dmytro

    2014-03-13

    We have performed a detailed experimental study on aqueous solutions of tertiary butyl alcohol which were a subject of long-standing controversies regarding the puzzling presence of virtually infinitely stable large-scale structures in such solutions occurring at length scales exceeding appreciably dimensions of individual molecules, referred to also as mesoscale structures. A combination of static and dynamic light scattering yielding information on solution structure and dynamics and gas chromatography coupled with mass spectrometry yielding information on chemical composition was used. We show that tertiary butyl alcohol clearly exhibiting such structures upon mixing with water does not contain any propylene oxide, which was previously considered as a source of these structures (an impurity expected to be present in all commercial samples of TBA). More importantly, we show that no mesoscale structures are generated upon addition of propylene oxide to aqueous solutions of TBA. The ternary system TBA/water/propylene oxide exhibits homogeneous mixing of the components on mesoscales. We show that the source of the mesoscale structures is a mesophase separation of appreciably more hydrophobic compounds than propylene oxide. These substances are explicitly analytically identified as well as their disappearance upon filtering out the mesoscale structures by nanopore filtration. We clearly show which substances are disappearing upon filtration and which are not. This enables us to estimate with rather high probability the chemical composition of the mesoscale structures. Visualization of large-scale structures via nanoparticle tracking analysis is also presented. Video capturing the mesoscale particles as well as their Brownian motion can be found in the Supporting Information .

  13. A comparison of the turbulent entrainment process in line plumes and wall plumes

    NASA Astrophysics Data System (ADS)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2016-11-01

    Flows driven by sources of buoyancy appear in a large number of geophysical and industrial applications. The process of turbulent entrainment in these flows is key to understanding how they evolve and how one might model them. It has been observed that the entrainment is reduced when a line source of buoyancy is positioned immediately adjacent to a wall. To gain insight into the effect of the wall on the entrainment process we perform simultaneous PIV and LIF on both line plumes, in the absence of any boundary, and when the source is adjacent to a vertical boundary forming a wall plume. The experiments are designed to isolate the effect of the wall by using the same experimental setup and parameters for both flows with the addition of the wall and half the buoyancy flux used in the wall plume case. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume, a technique we have recently used to analyse similar effects in an axisymmetric plume, the significance of this large scale engulfment will be quantified.

  14. Formation of Alkenes via Degradation of tert-Alkyl Ethers and Alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. ▿†

    PubMed Central

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H.; Rohwerder, Thore

    2011-01-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed. PMID:21742915

  15. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  16. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24099 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  17. Alcohol and pregnancy

    MedlinePlus

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... lead to lifelong damage. DANGERS OF ALCOHOL DURING PREGNANCY Drinking a lot of alcohol during pregnancy can ...

  18. Total plankton respiration in the Chesapeake Bay plume

    NASA Technical Reports Server (NTRS)

    Robertson, C. N.; Thomas, J. P.

    1981-01-01

    Total plankton respiration (TPR) was measured at 17 stations within the Chesapeake Bay plume off the Virginia coast during March, June, and October 1980. Elevated rates of TPR, as well as higher concentrations of chlorophyll a and phaeopigment a, were found to be associated with the Bay plume during each survey. The TPR rates within the Bay plume were close to those found associated with the Hudson River plume for comparable times of the year. The data examined indicate that the Chesapeake Bay plume stimulates biological activity and is a source of organic loading to the contiguous shelf ecosystem.

  19. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  20. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  1. Two classes of volcanic plumes on Io

    USGS Publications Warehouse

    McEwen, A.S.; Soderblom, L.A.

    1983-01-01

    Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ???1400 km in diameter formed around the Aten Patera caldera (311??W, 48??S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338??W, 45??N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255??W, 18??S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ???0.5 km sec-1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ???1.0 km sec-1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240?? to 360??W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ???650??K are associated with the large plumes and temperatures 650??K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone

  2. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  3. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  4. Diagnostic budgets of analyzed and modelled tropical plumes

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Vest, Gerry W.

    1993-01-01

    Blackwell et al. successfully simulated tropical plumes in a global barotropic model valid at 200 mb. The plume evolved in response to strong equatorial convergence which simulated a surge in the Walker Circulation. The defining characteristics of simulated plumes are: a subtropical jet with southerlies emanating from the deep tropics; a tropical/mid-latitude trough to the west; a convergence/divergence dipole straddling the trough; and strong cross contour flow at the tropical base of the jet. Diagnostic budgets of vorticity, divergence, and kinetic energy are calculated to explain the evolution of the modelled plumes. Budgets describe the unforced (basic) state, forced plumes, forced cases with no plumes, and ECMWF analyzed plumes.

  5. Statistical characterization of thermal plumes in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Xie, Yi-Chao; Sun, Chao; Xia, Ke-Qing

    2016-09-01

    We report an experimental study on the statistical properties of the thermal plumes in turbulent thermal convection. A method has been proposed to extract the basic characteristics of thermal plumes from temporal temperature measurement inside the convection cell. It has been found that both plume amplitude A and cap width w , in a time domain, are approximately in the log-normal distribution. In particular, the normalized most probable front width is found to be a characteristic scale of thermal plumes, which is much larger than the thermal boundary layer thickness. Over a wide range of the Rayleigh number, the statistical characterizations of the thermal fluctuations of plumes, and the turbulent background, the plume front width and plume spacing have been discussed and compared with the theoretical predictions and morphological observations. For the most part good agreements have been found with the direct observations.

  6. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  7. Hydrothermal outflow plume of Valles caldera, New Mexico, and a comparison with other outflow plumes

    SciTech Connect

    Goff, F.; Shevenell, L.; Gardner, J.N.; Vuataz, F.; Grigsby, C.O.

    1988-06-10

    Stratigraphic, temperature gradient, hydrogeochemical, and hydrologic data have been integrated with geologic data from previous studies to show the structural configuration of the Valles caldera hydrothermal outflow plume. Hydrologic data suggest that 25--50% of the discharge of the Valles outflow is confined to the Jemez fault zone, which predates caldera formation. Thermal gradient data from bores penetrating the plume show that shallow gradients are highest in the vicinity of the Jemez fault zone (up to 190 /sup 0/C/km). Shallow heat flow above the hydrothermal plume is as high as 500 mW m/sup -2/ near core hole VC-1 (Jemez fault zone) to 200 mW m/sup -2/ at Fenton Hill (Jemez Plateau). Chemical and isotopic data indicate that two source reservoirs within the caldera (Redondo Creek and Sulphur Springs reservoirs) are parents to mixed fluids flowing in the hydrothermal plume. However, isotopic data, borehole data, basic geology, and inverse relations between temperature and chloride content at major hot springs indicate that no single reservoir fluid and no single diluting fluid are involved in mixing. The Valles caldera hydrothermal plume is structurally dominated by lateral flow through a belt of vertical conduits (Jemez fault zone) that strike away from the source reservoir. Stratigraphically confined flow is present but dispersed over a wide area in relatively impermeable rocks. The Valles configuration is contrasted with the configuration of the hydrothermal plume at Roosevelt Hot Springs, which is dominated by lateral flow through a near-surface, widespread, permeable aquifer. Data from 12 other representative geothermal systems show that outflow plumes occur in a variety of magmatic and tectonic settings, have varying reservoir compositions, and have different flow characteristics.

  8. A bi-directional river plume: The Columbia in summer

    NASA Astrophysics Data System (ADS)

    Hickey, B.; Geier, S.; Kachel, N.; MacFadyen, A.

    2005-09-01

    Freshwater plumes have important effects on marine ecosystems: in the presence of a plume, stratification, nutrient pathways, light and circulation patterns are significantly altered from patterns that occur under the influence of wind and ambient currents alone. The historical picture of the plume from the Columbia River is of a freshwater plume oriented southwest offshore of the Oregon shelf in summer and north or northwest along the Washington shelf in winter. Recent CTD data and new data from moored sensors support a picture quite different from the historical seasonal pattern. Specifically, the plume is frequently present up to 150 km north of the river mouth on the Washington shelf from spring to fall, even during periods of upwelling. The plume is frequently bi-directional, with branches both north and south of the river mouth. During a downwelling event, the southwest plume moves onshore over the Oregon shelf. At the same time, a new plume forms north of the river mouth over the Washington shelf, trapped within ˜20-30 km of the coast. This plume propagates and also is advected northward by inner shelf currents that reverse during downwelling. When winds return to upwelling-favorable, inner shelf currents reverse immediately to flow to the south and the shallow plume is advected offshore in the wind-driven Ekman layer. Once over the central shelf, the plume is advected farther south by the seasonal mean ambient flow. Overall, freshwater from the Columbia plume overlies the Washington shelf ˜50% or more of the summer. Capping of upwelling on the inner shelf by the Columbia freshwater plume is illustrated, where the "capping potential" is related to stratification and wind magnitude and duration. Evidence is also presented to suggest that the seaward front of the Columbia River plume may provide a barrier to the transport of harmful algal blooms to coastal beaches in summer and early fall.

  9. Downstream extent of the N Reactor plume

    SciTech Connect

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  10. Cruise Ship Plume Tracking Survey Report

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The U. S. Environmental Protection Agency (EPA) is developing a Cruise Ship Discharge Assessment Report in response to a petition the agency received in March 2000. The petition requested that EPA assess and where necessary control discharges from cruise ships. Comments received during public hearings, in 2000, resulted in the EPA agreeing to conduct a survey to assess the discharge plumes resulting from cruise ships, operating in ocean waters off the Florida coast and to compare the results to the Alaska dispersion models. This survey report describes the daily activities of August 2001 Cruise Ship Plume Tracking Survey, and provides a synopsis of the observations from the survey. It also provides data that can be used to assess dispersion of cruise ship wastewater discharges, while in transit. A description of the survey methods is provided in Section 2. Survey results are presented in Section 3. Findings and conclusions are discussed in Section 4.

  11. Improvement of Rocket Engine Plume Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1982-01-01

    A nozzle plume flow field code was developed. The RAMP code which was chosen as the basic code is of modular construction and has the following capabilities: two phase with two phase transonic solution; a two phase, reacting gas (chemical equilibrium reaction kinetics), supersonic inviscid nozzle/plume solution; and is operational for inviscid solutions at both high and low altitudes. The following capabilities were added to the code: a direct interface with JANNAF SPF code; shock capturing finite difference numerical operator; two phase, equilibrium/frozen, boundary layer analysis; a variable oxidizer to fuel ratio transonic solution; an improved two phase transonic solution; and a two phase real gas semiempirical nozzle boundary layer expansion.

  12. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  13. Electrical charging of explosive volcanic plumes (Invited)

    NASA Astrophysics Data System (ADS)

    James, M. R.; Lane, S. J.; Gilbert, J. S.

    2010-12-01

    The lightning that accompanies many silicate-rich volcanic plumes is only one indicator of the electrical charging activity that occurs during explosive eruptions. Perturbations to the atmospheric electric gradient and direct measurements of electrical charge on sedimenting particles also indicate that, even in plumes not associated with lightning, significant electrical charging does occur. For a charging process to produce macro-scale electrification and detectable electric fields, the initial charge generation (representing atomic- or micro-scale separation of charge) must be followed by subsequent charge separation. In common with thunderclouds, the gravitational separation of particles or droplets with different fall velocities is assumed to dominate the charge separation process. However, charge generation is much less understood because the complex and poly-phase nature of plumes, which contain solid particles, liquid drops and gases of various chemical compositions, over wide ranges of temperatures and pressures, offers many possibilities in terms of charging mechanisms. We can consider charge generation processes as either primary (i.e. directly associated with the eruption process and dominantly located at the vent) or secondary (i.e. associated with in-plume and dispersion processes, and dominantly at some distance from the vent). For primary charge generation, both observations and measurements have indicated that high degrees of electrification are strongly correlated with events involving either vigorous water boiling or extensive magma fragmentation, or both. Neglecting boiling, since only a relatively few eruptions involve large amounts of external water, primary charging is dominantly attributed to solid-solid processes resulting from magma fragmentation. The most likely charging mechanism is fractoemission, in which charged atomic particles are released from fresh material surfaces during brittle fracture. During magma fragmentation to generate

  14. Plume RF interference calculations for space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Rajasekhar, P. S.

    1978-01-01

    During a static ground test of a full-scale SRM, measurements of attenuation of the UHF 416.5 MHz Range Safety Signal, the VHF voice link (230 MHz), and of S-band (c. 2.2. GHz) communications links were undertaken. Analyses of these results indicate that measurable attenuation did occur at all test frequencies. The measured attenuation levels are compared with a simple model in which the received signal is identified as that diffracted about the edge of the highly absorbing plume and the signal level in the shadow zone is evaluated using the formula for diffraction at a straight edge. The comparison is satisfactory at VHF and UHF frequencies, and slightly less so at S-band. Reasons for the discrepancies found at higher frequencies are discussed. A revised procedure which appears to relieve the accuracy problem was developed. This procedure is discussed along with applications to high altitude SRM plume attenuation.

  15. Alcohol Poisoning

    MedlinePlus

    ... your drinks The rate and amount of alcohol consumption Your tolerance level Complications Severe complications can result ... pressure and fast heart rate. Seizures. Your blood sugar level may drop low enough to cause seizures. ...

  16. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  17. Alcohol withdrawal

    MedlinePlus

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  18. Alcoholic Hepatitis

    MedlinePlus

    ... alcoholic hepatitis include: Fluid accumulation in your abdomen (ascites) Confusion and behavior changes due to a buildup ... is life-threatening and requires immediate medical care. Ascites. Fluid that accumulates in the abdomen might become ...

  19. Propyl alcohol

    MedlinePlus

    ... clear liquid commonly used as a germ killer (antiseptic). This article discusses poisoning from swallowing propyl alcohol. ... Airway support, including oxygen, breathing tube through the mouth (intubation),and ventilator (breathing machine) Blood and urine ...

  20. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  1. Volcanic Plumes on Io and Mars

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Senske, David (Technical Monitor)

    2001-01-01

    Proxemy research is under contract to NASA to perform science research of volcanic plumes on Mars and Io. This report is submitted in accordance with contract NASW-00013 and contains a summary of activities. In addition to a synopsis of science research conducted, any manuscripts submitted for publication in this time period are also attached. Abstracts to scientific conferences may also be included if appropriate.

  2. Plume temperature emitted from metered dose inhalers.

    PubMed

    Brambilla, G; Church, T; Lewis, D; Meakin, B

    2011-02-28

    The temperature of the drug cloud emitted from a pressurised metered dose inhaler (pMDI) may result in patient discomfort and inconsistent or non-existent dose delivery to the lungs. The effects of variations in formulation (drug, propellant, co-solvent content) and device hardware (metering volume, actuator orifice diameter, add-on devices) upon the temperature of pMDI plumes, expressed as replicate mean minimum values (MMPT), collected into a pharmacopoeial dose unit sampling apparatus (DUSA), have been investigated. Ten commercially available and two development products, including chlorofluorocarbon (CFC) suspensions and hydrofluoroalkane (HFA) solutions or suspensions, were examined together with a number of drug products in late stage development and a variety of HFA 134a placebo pMDIs. Plume temperatures were observed to be lowest in the proximity of the product's actuator mouthpiece where rapid flashing and evaporation of the formulation's propellant and volatile excipients cause cooling. The ability to control plume temperature by judicious choice of formulation co-solvent content, metering volume and the actuator orifice diameter is identified. An ethanol based HFA 134a formulation delivered through a fine orifice is inherently warmer than one with 100% HFA 134a vehicle delivered through a coarse actuator orifice. Of the 10 commercial products evaluated, MMPTs ranged from -54 to +4°C and followed the formulation class rank order, HFA suspensionsplume temperature to that of the ambient surroundings by use of an add-on or integrated spacer device.

  3. Space Station flexible dynamics under plume impingement

    NASA Technical Reports Server (NTRS)

    Williams, Trevor

    1993-01-01

    Assembly of the Space Station requires numerous construction flights by the Space Shuttle. A particularly challenging problem is that of control of each intermediate station configuration when the shuttle orbiter is approaching it to deliver the next component. The necessary braking maneuvers cause orbiter thruster plumes to impinge on the station, especially its solar arrays. This in turn causes both overall attitude errors and excitation of flexible-body vibration modes. These plume loads are predicted to lead to CMG saturation during the approach of the orbiter to the SC-5 station configuration, necessitating the use of the station RCS jets for desaturation. They are also expected to lead to significant excitation of solar array vibrations. It is therefore of great practical importance to investigate the effects of plume loads on the flexible dynamics of station configuration SC-5 as accurately as possible. However, this system possesses a great many flexible modes (89 below 5 rad/s), making analysis time-consuming and complicated. Model reduction techniques can be used to overcome this problem, reducing the system model to one which retains only the significant dynamics, i.e. those which are strongly excited by the control inputs or plume disturbance forces and which strongly couple with the measured outputs. The particular technique to be used in this study is the subsystem balancing approach which was previously developed by the present investigator. This method is very efficient computationally. Furthermore, it gives accurate results even for the difficult case where the structure has many closed-spaced natural frequencies, when standard modal truncation can give misleading results. Station configuration SC-5 is a good example of such a structure.

  4. New Cassini UVIS Observations of Enceladus' Plume

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Hendrix, A.; Esposito, L.; Meinke, B.

    2007-10-01

    In 2005 Cassini made the startling discovery of an enormous plume of water vapor coming from the south polar region of Enceladus [1, 2]. High resolution images revealed numerous individual jets of fine material coming from the "tiger stripe” rifts across Enceladus’ south pole [3]. On October 24, 2007 an occultation of zeta Orionis by the plume will take place, enabling UVIS to detect opacity variations in the gas vapor due to higher pressure streams. If these variations are substantial enough to be detectable then we can provide key new data to the effort to model the largest particle size that can be lofted by the plumes. Cassini spacecraft health is the limiting factor in how close the spacecraft will be allowed to get to Enceladus in the extended mission. The water vapor being spewed out in Enceladus’ plume photo-dissociates to OH and O, detectable as neutral products flooding Saturn's system. UVIS has previously observed significant variability in this system oxygen, both in spatial distribution and overall content. We have asserted that remote observations of system-level oxygen can be used as a proxy for observing Enceladus’ eruptive variability. This allows us to track activity levels on Enceladus even when the spacecraft is not close to Enceladus, which happens only rarely. The results of our observing campaign over the last year will be reported. This work was partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. [1] Dougherty, M. K., et al., Science 311:1406-1409 (2006). [2] Hansen, C. J. et al., Science 311:1422-1425 (2006). [3] Porco, C. C. et al., Science 311:1393-1401 (2006).

  5. Volcanic Plumes on Venus and Io

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Grant, John (Technical Monitor)

    2000-01-01

    Proxemy Research is under contract to NASA to perform science research of volcanic plumes on Venus and lo. This report is submitted in accordance with contract NASW -98012 and contains a summary of activities conducted over the time period indicated. In addition to a synopsis of science research conducted, any manuscripts submitted for publication in this time period are also attached. Abstracts to scientific conferences may also be included if appropriate.

  6. Monte Carlo Simulation of Plumes Spectral Emission

    DTIC Science & Technology

    2005-06-07

    Table 1 Calculatio n series phN , %ε Figure 1 105 11.0 2 2 106 4.9 3 3 107 0.6 5 The relative error ε was calculated with respect to the mean...is presented in Table 2. Table 2 Monte-Carlo Simulation of Plumes Spectral Emission 19 Calculatio n series phN , %ε Figure 1 5×103 0.475 6

  7. 40 Million Years of the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N.; Henstock, T.; Maclennan, J.; Murton, B. J.; Jones, S. M.

    2011-12-01

    The V-shaped ridges, straddling the mid oceanic ridges to the North and South of Iceland, provide us with a linear record of transient mantle convective circulation. Surprisingly, we know little about the structure of these ridges: prior to this study, the most recent regional seismic reflection profiles were acquired in the 1960s. During the Summer of 2010, we acquired over 3,000 km of seismic reflection data across the oceanic basin South of Iceland. The cornerstones of this programme are two 1000 km flowlines, which traverse the basin from Greenland to the European margin. The geometry of young V-shaped ridges near to the oceanic spreading center has been imaged in fine detail; older ridges, otherwise obscured in gravity datasets by sediment cover, have been resolved for the first time. We have mapped the sediment-basement interface, transformed each profile onto an astronomical time scale, and removed the effects of long wavelength plate cooling. The resulting chronology of Icelandic plume activity provides an important temporal frame of reference for plume flux over the past 40 million years. The profiles also cross major contourite drift deposits, notably the Gardar, Bjorn and Eirik drifts. Fine-scale sedimentary features imaged here demonstrate distinct episodes of drift construction; by making simple assumptions about sedimentation rates, we can show that periods of drift formation correspond to periods of enhanced deep water circulation which is in turn moderated by plume activity. From a regional point of view, this transient behaviour manifests itself in several important ways. Within sedimentary basins fringing the North Atlantic, short lived regional uplift events periodically interrupt thermal subsidence from Eocene times to the present day. From a paleoceanographic perspective, there is good correlation between V-shaped ridge activity and changes in overflow of the ancient precursor to North Atlantic Deep Water. This complete history of the Iceland

  8. Plume Mechanics and Aerosol Growth Processes.

    DTIC Science & Technology

    1987-07-01

    UNIT ELEMENT NO. NO NO ACCESSION NO %. Aberdeen Proving Ground, MD 21010-5423 II 11 TITLE (include Security Classification) Plume Mechanics and...formulation and a finite element sc hem e ......... ..................... 192 c. Diffusion of aerosols in laminar flow in a cylindrical tube...The principal elements are the liquid oil and carrier gas metering systems, the oil vaporizer, coaxial jet system, and the sampling and aerosol

  9. Shuttle system ascent aerodynamic and plume heating

    NASA Technical Reports Server (NTRS)

    Foster, L. D.; Greenwood, T. F.; Lee, D. B.

    1985-01-01

    The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed.

  10. Information Content of Turbulent Chemical Plumes

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Roberts, P. J. W.; Rahman, S.; Dasi, L. P.

    1999-11-01

    The rapid decrease in concentration contaminants released into the natural environment due to turbulent diffusion has traditionally been modeled based on time-averaged quantities. In contrast to the time-averaged concentration characteristics, the instantaneous characteristics and information content are poorly understood. Instantaneous peak levels are important in many contexts, including the impact of contaminants on organisms and the local ecosystem. The current work is motivated by the need to understand how aquatic organisms, such as blue crabs, search for and locate turbulent chemical odor plume sources. A fundamental question is what information is available to an animal or observer indicating its relative position to the plume source. In this study, the chemical plume is released iso-kinetically into a fully-developed, uniform open channel flow at 50 mm/s. Instantaneous concentration and velocity fields are simultaneously measured using planar laser induced fluorescence (PLIF) and digital particle tracking velocimetry (DPTV), respectively. In addition to the mean and variance, quantities of interest include intermittency, the temporal rise slope of chemical concentration and spatial correlations.

  11. Fog Plumes over the Great Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A southerly flow of unseasonably warm, moist air (temperatures of +20o to +26o C, dew points of +14o to +16o C) over the relatively cool (generally +2o to +5o C ) water of Lake Michigan and Lake Huron contributed to the development of large advection fog plumes (caused by the horizontal motion of air) during the day on April 16, 2002. These fog plumes moved northward during the day, eventually interacting with various land features to produce patterns of wave diffraction and packets of reflected waves (resembling 'shock waves') as the fog plumes impinged upon the rugged coastline of Wisconsin, the Upper Peninsula of Michigan, and Ontario. These waves remained trapped within the strong marine layer temperature inversion which was sustained by the continued flow of warm air across the cool water surface. The above image was acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellite. Red = .645um (red), green = 1.627um, (shortwave infrared), blue = 2.13um (shortwave infrared). Image courtesy Space Science and Engineering Center, University of Wisconsin

  12. Laser ablation plume dynamics in nanoparticle synthesis

    SciTech Connect

    Osipov, V V; Platonov, V V; Lisenkov, V V

    2009-06-30

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO{sub 2} laser pulse with a duration of {approx}500 {mu}s (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 {mu}s after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large ({approx}10 {mu}m) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes. (interaction of laser radiation with matter. laser plasma)

  13. Two classes of volcanic plumes on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.

    1983-01-01

    Results of an analysis of the properties, source regions and deposits of volcanic plumes on Io are presented which suggest the presence of two plume types. Eruptions at the Aten Patera caldera in the south polar region and the Surt caldera in the far north, which were deduced to have taken place between the times of the Voyager 1 and Voyager 2 encounters from evidence of surface changes, are similar to the Pele eruption. These Pele-type eruptions are characterized by durations of from a few days to a few weeks, dark-red annular deposits of about 1400 km in diameter, temperatures of about 650 K and locations restricted to areas with large, silicate landforms. Smaller, more numerous eruptions of the Prometheus type were observed on both encounters, being characterized by durations in excess of several years, bright ringed deposits about 250 km in diameter, restriction to an equatorial location high in SO2 and temperatures less than 400 K. In addition, an intermediate type of feature was noted at either end of the linear feature Loki. Two separate mechanisms, involving SO2 and sulfur as driving sources, are proposed to account for the Pele- and Prometheus-type eruptions, respectively, and the discrete temperatures of the plumes are suggested to reflect the temperatures at which sulfur is a low-viscosity fluid.

  14. Spanwise plumes in wakes behind heated cylinder

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ajith; Lal, S. Anil; Sameen, A.

    2013-11-01

    3D wake transition in flow past cylinder is interesting theoretically and industrially. A three dimensional Finite volume computation has been performed on an incompressible flow past heated cylinder to understand the wake behavior behind the cylinder, under the Boussinesq assumption. We study the heat transfer characteristics and the coherent structures behind the cylinder at different Prandtl numbers. In forced convection, the 3D transition occurs above Reynolds number, Re = 180-190 (Re is based on the cylinder diameter). However, the present 3D computational analyses show that in mixed convection, the so called ``mode-E'' instability (3D transition of wake behind the cylinder caused by the heating of the cylinder) happens at a much lower Reynolds number. The co-existence of mushroom like coherent structures called the plumes along with the shed vortices is observed for a range of heating conditions. These plumes originates from the core of the upper vortex rows at a definite span wise wavelengths. The dependence of Prandtl number on the span wise wavenumber of these plumes is also analyzed.

  15. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  16. Groundwater contaminant plume ranking. [UMTRA Project

    SciTech Connect

    Not Available

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs.

  17. Gasdynamic approach to small plumes computation

    NASA Astrophysics Data System (ADS)

    Genkin, L.; Baer, M.; Falcovitz, J.

    1993-07-01

    The semi-inverse marching characteristics scheme SIMA was extended to treat rotational flows; it is applied to computation of free plumes, starting out from non-uniform nozzle exit flow that reflects substantial viscous effects. For lack of measurements of exit flow in small nozzles, the exit plane flow is approximated by introducing a Power Law Interpolation (PLI) between the exit plane center and lip values. Exit plane flow variables thus approximated, are Mach number, pressure, flow angle and stagnation temperature. This choice is guided by gasdynamic considerations of exhaust flow from small nozzles into vacuum. The PLI is adjusted so as to obtain a match between computations and measurements at intermediate range from the nozzle. Computed plumes were found to be in good agreement with five different sets of small plume experiments. Comparative computations were performed using two alternate methods: the Boynton-Simons point-source approximation, and SIMA computation that started out from a uniform exit flow. It is demonstrated that for small nozzles having an exit flow dominated by viscous effects, the combined SIMA/PLI computational method is reasonably accurate and is dearly superior to either of the two alternate methods.

  18. Numerical modeling of the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Nikiema, Oumarou; Devenon, Jean-Luc; Baklouti, Malika

    2007-04-01

    Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m 3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.

  19. Cassini INMS measurements of Enceladus plume density

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Teolis, B. D.; Hurley, D. M.; Magee, B. A.; Waite, J. H.; Brockwell, T. G.; Perryman, R. S.; McNutt, R. L.

    2015-09-01

    During six encounters between 2008 and 2013, the Cassini Ion and Neutral Mass Spectrometer (INMS) made in situ measurements deep within the Enceladus plumes. Throughout each encounter, those measurements contained density variations that reflected the nature of the source, particularly of the high-velocity jets. Since the dominant constituent of the vapor, H2O, interacted with the walls of the INMS inlet, we track changes in the external vapor density by using more-volatile species that responded promptly to those changes. However, the most-abundant volatiles, at 28 u and 44 u, behaved differently from each other in the plume. At least a portion of their differences may be attributed to mass-dependent thermal velocity that affects Mach number in the high-velocity jets. Variations between volatiles place an emphasis on modeling as a means to construct overall plume density from the volatile densities and to investigate the velocity, gas temperature, and location of the jets. Ice grains, entering the INMS aperture add complexity and uncertainty to the physical interpretation of the data because the grains modified the INMS measurements. A comparison of data from the last three encounters, E14, E17, and E18, are consistent with the VIMS observation of variability in jet production and a slower, more diffuse gas flux from the four sulci or tiger stripes. We provide and describe the INMS data, its processing, and its uncertainty.

  20. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  1. [Alcohol experience, alcohol knowledge, and alcohol expectancy in early adolescents].

    PubMed

    Tak, Young-Ran; Yun, E-hwa; An, Ji-Yeon

    2007-02-01

    This study was to explore the prevalence of alcohol experiences and to identify the expectancy on the effects of alcohol and alcohol knowledge in early adolescents. The cross-sectional survey of 1854 students from seven middle schools in one district of Seoul was conducted by convenience sampling. Alcohol experience and early onset of alcohol use were measured by the Youth Risk Behavior Survey. Alcohol expectancy was measured by an Alcohol Effects Questionnaire. Over sixty five percent of adolescents reported that they had previous drinking experiences. The participants with no alcohol drinking experience had a lower level of alcohol knowledge than those with experience(t=2.73, p=.007). In expectancy on effects of alcohol, girls had a more positive alcohol expectation than boys(t=-2.54, p=.011). Alcohol knowledge negatively correlated with alcohol expectancy(r=-.40 p=.000). In regression of alcohol expectancy, gender and alcohol knowledge were significant predictors explaining 17%. The results support that alcohol expectancy is an important link with early drinking experiences and alcohol knowledge, focusing on the importance of gender differences. Therefore, an alcohol prevention program in early adolescence is needed and should be focused on multidimensionality of the alcohol expectancy with developmental and psychosocial factors for early adolescents.

  2. Evidence for Little Shallow Entrainment in Starting Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Lohmann, F. C.; Phipps Morgan, J.; Hort, M.

    2005-12-01

    Basalts from intraplate or hotspot ocean islands show distinct geochemical signatures. Their diversity in composition is generally believed to result from the upwelling plume entraining shallow mantle material during ascent, while potentially also entraining other deep regions of the mantle. Here we present results from analogue laboratory experiments and numerical modelling that there is evidence for little shallow entrainment into ascending mantle plumes, i.e. most of the plume signature is inherited from the source. We conducted laboratory experiments using glucose syrup contaminated with glass beads to visualize fluid flow and origin. The plume is initiated by heating from below or by injecting hot, uncontaminated syrup. Particle movement is captured by a CCD camera. In our numerical experiments we solve the Stokes equations for a viscous fluid at infinite Prandtl number with passive tracer particles being used to track fluid flow and entrainment rates, simulating laboratory as well as mantle conditions. In both analogue experiments and numerical models we observe the classical plume structure being embedded in a `sheath' of material from the plume source region that retains little of the original temperature anomaly of the plume source. Yet, this sheath ascends in the `slipstream' of the plume at speeds close to the ascent speed of the plume head, and effectively prevents the entrainment of surrounding material into the plume head or plume tail. We find that the source region is most effectively sampled by an ascending plume and that compositional variations in the source region are preserved during plume ascent. The plume center and plume sheath combined are composed of up to 85% source material. However, there is also evidence of significant entrainment of up to 30% of surrounding material into the outer layers of the plume sheath. Entrainment rates are found to be influenced by mantle composition and structure, with the radial viscosity profile of the

  3. Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Xia, Yu

    2014-07-01

    In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide- S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

  4. Deciding to quit drinking alcohol

    MedlinePlus

    ... Alcohol abuse - quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... pubmed/23698791 . National Institute on Alcohol Abuse and Alcoholism. Alcohol and health. www.niaaa.nih.gov/alcohol- ...

  5. Species separation in rocket exhaust plumes and analytic plume flow models

    NASA Astrophysics Data System (ADS)

    Koppenwallner, G.

    2001-08-01

    Species separation in the exhaust plume of control thrusters of satellites is of main importance for the contamination analysis. Contamination concerns mainly scientific instruments or sensitive surfaces.. In continuum fluid dynamics a multi- component gas mixture can be treated as mixture with mean properties and with a flow field independent composition. This basic feature of continuum flow ceases to be valid in the rarefied flow regimes. In this regime there are two main mechanism which cause a separation of species in the flow field. a. Strong velocity gradients or streamline curvature. Strong stream line curvatures with large centrifugal forces exist close to the nozzle throat of sonic free jets [Sherman] or at the nozzle lip. Heavy gas constituents will not be able to follow these strong stream line curvatures. b. Different thermal velocity or thermal diffusivity of heavy and light gas constituents The transition from continuum to free molecular plume expansion can approximately be described by the sudden freeze model of Bird. At the freezing point molecular collisions suddenly cease and the further expansion is given by the velocity vector of the individual molecules at this freezing point. As light molecules have a larger thermal speed c than the heavy ones their spreading potential is also higher. This mechanism will also produce an enrichment of the plume boundary with light molecules. The approaches to model species separation in exhaust plumes as result of the above mechanism will be reviewed. To gain more insight into the separation the following cases are analyzed in detail: [B ]The free molecular supersonic expansion from a freezing plane. □ The various analytic plume flow models and their capability to predict the lateral spreading at the plume boundary (e.g. Simmons, Boynton, Brook, DLR) □ DSMC test case calculations of single and two-species plumes with mass separation. (M. Ivanov, ITAM) Based on this analysis a new 3 region model for species

  6. Alcohol withdrawal.

    PubMed

    Manasco, Anton; Chang, Shannon; Larriviere, Joseph; Hamm, L Lee; Glass, Marcia

    2012-11-01

    Alcohol withdrawal is a common clinical condition that has a variety of complications and morbidities. The manifestations can range from mild agitation to withdrawal seizures and delirium tremens. The treatments for alcohol withdrawal include benzodiazepines, anticonvulsants, beta-blockers and antihypertensives. Although benzodiazepines are presently a first-line therapy, there is controversy regarding the efficacies of these medications compared with others. Treatment protocols often involve one of two contrasting approaches: symptom-triggered versus fixed-schedule dosing of benzodiazepines. We describe these protocols in our review and examine the data supporting symptom-triggered dosing as the preferred method for most patients in withdrawal.The Clinical Institute Withdrawal Assessment for Alcohol scoring system for alcohol withdrawal streamlines care, optimizes patient management, and is the best scale available for withdrawal assessment. Quality improvement implications for inpatient management of alcohol withdrawal include increasing training for signs of withdrawal and symptom recognition, adding new hospital protocols to employee curricula, and ensuring manageable patient-to-physician and patient-to-nurse ratios.

  7. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied-field MPD thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 x 10 to the 18th to 8 x 10 to the 18th cu m and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  8. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  9. Development of a shuttle plume radiation heating indicator

    NASA Technical Reports Server (NTRS)

    Reardon, John E.

    1988-01-01

    The primary objectives were to develop a Base Heating Indicator Code and a new plume radiation code for the Space Shuttle. Additional work included: revision of the Space Shuttle plume radiation environment for changes in configuration and correction of errors, evaluation of radiation measurements to establish a plume radiation model for the SRB High Performance Motor (HPM) plume, radiation predictions for preliminary designs, and participation in hydrogen disposal analysis and testing for the VAFB Shuttle launch site. The two most significant accomplishments were the development of the Base Heating Indicator Code and the Shuttle Engine Plume Radiation (SEPRAD) Code. The major efforts in revising the current Shuttle plume radiation environment were for the Orbiter base heat shield and the ET components in the Orbiter-ET interface region. The work performed is summarized in the technical discussion section with references to the documents containing detailed results. The technical discussion is followed by a summary of conclusions and recommendations for future work.

  10. Sedimentation from particle-bearing plumes in a stratified ambient

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce R.; Hong, Youn Sub Dominic

    2016-11-01

    Laboratory experiments are performed to examine the sedimentation of particles that initially rise in a plume, then spread radially and settle in uniformly stratified fluid. Using light attenuation, the depth of the sediment bed is measured nonintrusively as a function of radius from the center of the plume. To gain some insight into these dynamics, an idealized model is developed by adapting well-established plume theory and a theory that accounts for sedimentation from surface gravity currents emanating from a plume impacting a rigid lid. We also account for recycling of falling particles that are re-entrained into the plume. With a suitable choice of parameters determining the intrusion height, entrainment during fountain collapse, and the radius at which settling from the intrusion begins, in most cases for which particles are predicted to be drawn back into the plume and recycled. The predictions for intrusion height, particle mound height, and spread agree within 20% of observations.

  11. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  12. Plume rise, entrainment and dispersion in turbulent winds

    NASA Astrophysics Data System (ADS)

    Netterville, Dennett D. J.

    This paper describes a new analytical model which combines within one theoretical framework several aspects of the phenomena of plume rise, dispersion, thermal stratification and ambient turbulence. The model is based in part on knowledge gained from recent investigations of flow within free shear layers. The observations suggest a simple model for the turbulent mixing process, which accounts for the known entrainment of air into smoke plumes by plume-generated turbulence. More importantly, the model also predicts a path by which ambient turbulence causes reverse entrainment of plume material into the surrounding fluids. This gives rise to a new 'extrainment' term in each of the plume momentum and buoyancy equations. These equations are solved for a turbulent atmosphere of arbitrary thermal stability, and yield plume trajectories which gradually level off at final rise heights that depend on the degree of thermal stratification and on the scale and intensity of ambient turbulence. A link between plume rise and dispersion is identified by means of the concentration species equation, which is solved to show that the plume acts along its length as a distributed source of passively dispersing material. The new theory, specialized for an adiabatic atmosphere, plus the familiar x2/3 law and a semi-empirical final rise theory from the literature, are all compared against full-scale data on plume rise in turbulent winds. The new theory significantly improves the accuracy of estimates of plume trajectory and final plume height. The price for this improved predictive ability is the need to evaluate the air temperature and its gradient at plume level, and the corresponding intensity and scale of turbulent air movement. This is no longer a technical obstacle since recently developed SODAR and RASS remote sensors have this capability.

  13. Plume tectonics and cratons formation in the early Earth

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Stern, R. J.; Baes, M.; Fischer, R.; Sizova, E.; Sobolev, S. V.; Whattam, S. A.

    2015-12-01

    Modern geodynamics and continental growth are critically driven by subduction and plate tectonics, however how this tectonic regime started and what geodynamic regime was before remains controversial. Most present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves the consequence of plate tectonics. Here, we focus on plume-lithosphere interactions and spontaneous plume-induced subduction initiation, which does not require pre-existing lithospheric fabric and is viable for both stagnant lid and mobile/deformable lid conditions. We present results of 2D and 3D numerical modeling of plume-induced deformation and associated crustal growth resulting from tectono-magmatic interaction of ascending mantle plumes with oceanic-type lithosphere. We demonstrate that weakening of the lithosphere by plume-induced magmatism is the key factor allowing for its internal deformation and differentiation resulting in continental crust growth. We also show that plume-lithosphere interaction can enable subduction and rudimentary plate tectonics initiation at the margins of a crustal plateau growing above the plume head. We argue that frequent plume-arc interactions recorded in Archean crust could reflect either short-term plume-induced subduction or plume-induced episodic lithospheric drips. We furthermore suggest a distinct plume-tectonics regime operated on Earth before plate tectonics, which was associated with widespread tectono-magmatic heat and mass exchange between the crust and the mantle. This regime was characterized by weak deformable plates with low topography, massive juvenile crust production from mantle derived melts, mantle-flows-driven crustal deformation, magma-assisted crustal convection and widespread development of lithospheric delamination and crustal drips. Plume tectonics also resulted in growth of hot depleted chemically buoyant subcrustal proto-cratonic mantle layer. Later

  14. Modeling of Homogeneous Condensation in High Density Thruster Plumes

    DTIC Science & Technology

    2010-06-04

    Density Thruster Plumes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ryan Jansen (USC); Natalia Gimelshein & Sergey Gimelshein...N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Modeling of Homogeneous Condensation in High Density Thruster Plumes Ryan...related to thruster plume expansion into surrounding rarefied atmosphere.1 It is well known that particulates of different kind are the main contributor to

  15. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  16. Effect of short-term exposure to methyl-tert-butyl ether and tert-butyl alcohol on the hatch rate and development of the African catfish, Clarias gariepinus.

    PubMed

    Moreels, David; Lodewijks, Pieter; Zegers, Hans; Rurangwa, Eugène; Vromant, Nico; Bastiaens, Leen; Diels, Ludo; Springael, Dirk; Merckx, Roel; Ollevier, Frans

    2006-02-01

    Methyl tert-butyl ether (MTBE), a synthetic chemical used as a fuel additive, has been detected more frequently in the environment than previously. In this study, we examine the effects of MTBE (up to 100 mg/L) and its primary metabolite tertbutyl alcohol (TBA) (up to 1,400 mg/L) on the hatch rate and larval development of the African catfish Clarias gariepinus. Exposure to higher MTBE concentrations resulted in deformed eyes, mouthparts, and spinal cord and in increased larval mortality. Methyl tert-butyl ether exposure had no significant impact on egg viability, whereas TBA induced a decline of hatch rate. The MTBE can be regarded as a pollutant with toxicological effects on catfish larvae at concentrations above 50 mg/L. Although such concentrations greatly surpass present-day concentrations found in surface water (0.088 mg/L), concentrations up to 200 mg/L have been detected in groundwater.

  17. Alcoholic sialosis.

    PubMed

    Kastin, B; Mandel, L

    2000-01-01

    Sialosis (sialadenosis) is a term used to describe a disorder that involves both secretory and parenchymal changes of the major salivary glands, most commonly the parotid. Seen often in a dental office, it is recognized as an indolent, bilateral, non-inflammatory, non-neoplastic, soft, symmetrical, painless and persistent enlargement of the parotid glands. Four major entities have commonly been associated with this disorder. They are alcoholism, endocrinopathy (particularly diabetes mellitus), maLnutrition and idiopathic. We are reporting a case of alcoholic sialosis with its clinical and diagnostic aspects. It is important for the dental practitioner to recognize sialosis, because it often indicates the existence of an unsuspected systemic disease.

  18. Satellite assessment of Mississippi River plume variability: Causes and predictability

    SciTech Connect

    Walker, N.D.

    1996-10-01

    The Mississippi River is the largest river in North America and 6th largest worldwide in terms of discharge. In this study, 5 years (1989--1993) of NOAA Advanced Very High Resolution Radiometer satellite data were used to investigate the variability of the Mississippi River sediment plume and the environmental forcing factors responsible for its variability. Plume variability was determined by extracting information on plume area and plume length from 112 cloud-free satellite images. Correlation and multiple regression techniques were used to quantify these relationships for possible predictive applications. River discharge and wind forcing were identified as the main factors affecting plume variability. Seasonal and interannual variabilities in plume area were similar in magnitude and corresponded closely with large changes in river discharge. However, day-to-day variability in plume size and morphology was more closely associated with changes in the wind field. The plume parameters best predicted by the multiple regression models were plume area, east and west of the delta. Predictive models were improved by separating the data into summer and winter seasons.

  19. Gas plume quantification in downlooking hyperspectral longwave infrared images

    NASA Astrophysics Data System (ADS)

    Turcotte, Caroline S.; Davenport, Michael R.

    2010-10-01

    Algorithms have been developed to support quantitative analysis of a gas plume using down-looking airborne hyperspectral long-wave infrared (LWIR) imagery. The resulting gas quantification "GQ" tool estimates the quantity of one or more gases at each pixel, and estimates uncertainty based on factors such as atmospheric transmittance, background clutter, and plume temperature contrast. GQ uses gas-insensitive segmentation algorithms to classify the background very precisely so that it can infer gas quantities from the differences between plume-bearing pixels and similar non-plume pixels. It also includes MODTRAN-based algorithms to iteratively assess various profiles of air temperature, water vapour, and ozone, and select the one that implies smooth emissivity curves for the (unknown) materials on the ground. GQ then uses a generalized least-squares (GLS) algorithm to simultaneously estimate the most likely mixture of background (terrain) material and foreground plume gases. Cross-linking of plume temperature to the estimated gas quantity is very non-linear, so the GLS solution was iteratively assessed over a range of plume temperatures to find the best fit to the observed spectrum. Quantification errors due to local variations in the camera-topixel distance were suppressed using a subspace projection operator. Lacking detailed depth-maps for real plumes, the GQ algorithm was tested on synthetic scenes generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software. Initial results showed pixel-by-pixel gas quantification errors of less than 15% for a Freon 134a plume.

  20. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    SciTech Connect

    Laase, A.D.; Clausen, J.L.

    1998-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

  1. Subduction initiation by thermal chemical plumes: Numerical studies

    NASA Astrophysics Data System (ADS)

    Ueda, Kosuke; Gerya, Taras; Sobolev, Stephan V.

    2008-12-01

    Prior suggestions for the initiation of subduction have included sediment loading, compression, and plate reconfiguration as potential triggers. Here, we investigate the possibility of subduction initiation by the interaction of the lithosphere with a buoyant mantle plume. Numerical testing of this hypothesis has been conducted in 2D with the I2VIS thermo-mechanical code accounting for phase transitions and a viscoplastic model of a thin oceanic lithosphere hit by a partially molten thermal-chemical or purely thermal plume. We demonstrate that a mantle plume can break the lithosphere and initiate self-sustaining subduction, provided the plume causes a critical local weakening of the lithospheric material above it. The intensity of the required weakening depends on the plume volume, plume buoyancy, and the thickness of the lithosphere and is the highest for the least buoyant purely thermal plumes. Another necessary condition is the presence of high-pressure fluids at the slab upper interface, reducing the effective friction coefficient there to very low values. Based on our results, we suggest that sheet-like instabilities of the Archean mantle convection could have initiated subduction on Earth where ocean was already present in less stable tectonic settings, provided that mantle plumes (sheets) at that time were rich in water and melt, which could drastically reduce the effective friction coefficient in the lithosphere above the plume. Our numerical models are also in good agreement with suggested concepts for corona formation on Venus.

  2. Research Study: Space Shuttle Main Engine Plume Flowfield Model

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.

    1988-01-01

    The initial research effort was an in-depth analysis of the shuttle main engine plumes in an effort to improve the flowfield model and to enhance shuttle base heating equipment predictions during ascent. A prediction methodology code was developed incorporating the improved plume model into a predictive tool which could consider different trajectoreis and engine perfromance variables. Various plume flow model improvement studies were ongoing at the time of the 51-L accident. Since that time, base heating and plume methodology improvements have continued as part of the overall emphasis on Shuttle design assurance before resuming flight schedule.

  3. Transient Hotspot Motion Induced by Plume-Migrating Ridge Interaction

    NASA Astrophysics Data System (ADS)

    Hall, P. S.; Farahat, N. X.; Kundargi, R.

    2013-12-01

    Paleomagnetic data obtained from the Emperor Seamount Chain shows that the Hawaiian hotspot moved rapidly (~40 mm/yr) southward relative to the Earth's magnetic poles during the period of 81- 47 Ma before coming to rest at its present latitude, suggesting that this abrupt change in the motion of the hotspot created the prominent bend in the Hawaii-Emperor Seamount Chain (HESC) [Tarduno et al., 2003]. Tarduno et al. [2009] proposed that this period of rapid hotspot motion might have been the surface expression of the conduit of the presumed Hawaiian plume being entrained and tilted by the passage of a migrating mid-ocean ridge (the Pacific-Kula ridge system) over the plume. While geophysical and geochemical observations have suggested that ridges can influence the dispersion of plumes in the upper mantle at great distances (>1000 km), much about the interaction between mantle plumes and mid-ocean ridges remains poorly understood. We report on a series of 2-D numerical and 3-D analog geodynamic experiments in which a mid-ocean ridge migrates over a mantle plume. These experiments were undertaken to characterize variations in the location of plume-derived melt as the system evolves through time. A range of values for plume excess temperature, plume conduit width, spreading rate and ridge migration rate were investigated so as to fully evaluate the behavior of the system. We find that both the location of the maximum flux of plume-derived melt and the total area over which plume melt is generated vary systemically over the course of the experiments. Most notably, as the ridge moves away from the plume conduit, the area from which plume-derived melts are generated gradually expands in the direction of ridge migration until it reaches a maximum extent, after which it rapidly collapses back towards the plume conduit. The edge of this zone of plume-derived melting can extend as much as 1500 km from the plume conduit, and upon reaching its maximum extent it retreats towards

  4. Naval weapons center plume radar frequency interference code

    NASA Astrophysics Data System (ADS)

    Pearce, B. E.; McCullough, R. W.

    1982-10-01

    A description of the Naval Weapons Center Plume Radar Frequency Interference Code (PRFIC) is given. The methods used to predict the attenuation and phase shifts contributed by the mean plume flowfield, and the scattering and Doppler shift due to turbulent fluctuations, are defined. Examples of the predictions of the plume RF interference using the flowfield predictions of a modified JANNAF Standard Plume Flowfield code are given. The capabilities and limitations of PRFIC are listed and improvements are proposed. A code user's manual and software description are included.

  5. Experiments on point plumes in a rotating environment

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    Motivated by the Deepwater Horizon oil spill in the Gulf of Mexico we study the dynamics of point plumes in a stratified and homogeneous rotating environment. To this end, we conduct small-scale experiments in the laboratory on salt water and bubble plumes over a wide range of Rossby numbers. The rotation modifies the entrainment into the plume and also inhibits the lateral spreading of the plume fluid which leads to various instabilities in the flow. In particular, we focus on the plume behaviour in the near-source region (where the plume is dominated by the source conditions) and at intermediate water depths, e.g., lateral intrusions at the neutral buoyancy level in the stratified environment. One of the striking features in the rotating environment is the anticyclonic precession of the plume axis which leads to an enhanced dispersion of the plume fluid in the ambient and which is absent in the non-rotating system. In this talk, we present our experimental results and develop simple models to explain the observed plume dynamics.

  6. Numerical study of the lateral interactions of two plasma plumes

    NASA Astrophysics Data System (ADS)

    Yadav, Sharad K.; Patel, Bhavesh G.; Singh, R. K.; Das, Amita; Kaw, Predhiman K.; Kumar, Ajai

    2017-09-01

    A theoretical investigation of interaction between two laterally colliding laser-blow-off plasma plumes in the presence of ambient gas has been carried out. In an earlier work (Patel et al 2012 Phys. Plasmas 19 073105) it has been shown that the dynamics of the expanding laser-blow-off plume against the ambient background gas can be effectively modeled with the help of a simplified hydrodynamic evolution. The same model is adopted here to understand the interaction of the two plumes. It is observed that the qualitative behaviour of the plume dynamics compares reasonably well with the recent experimental work (Kumar et al 2015 Phys. Plasmas 22 063505).

  7. Circular plumes in Lake Pontchartrain estuary under wind straining

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Walker, Nan; Hou, Aixin; Georgiou, Ioannis; Roberts, Harry; Laws, Ed; McCorquodale, J. Alex; Weeks, Eddie; Li, Xiaofeng; Crochet, Jessica

    2008-10-01

    Circular shaped density plumes of low turbidity, low fecal indicator ( Escherichia coli and enterococci) concentrations, and high salinity have been observed near the Industrial Canal in Lake Pontchartrain, north of the City of New Orleans. A conceptual model in polar coordinates and a numerical model are developed, together with data analysis, to illustrate the dense plume. It is demonstrated that the northward expansion of the plume occurs under northerly winds. The northward expansion of the plume occurs under northerly winds that drive downwind flow at the surface and upwind radial flow at the bottom. Northerly wind-induced straining, similar to tidal straining, promotes vertical stratification. As a result, the water becomes stratified near a thin bottom layer (<1 m), within which density currents are facilitated. The stability of the stratified plume suppresses wind-induced turbulent mixing inside the plume. The bottom water outside of the plume is more effectively stirred by the wind, the result being that the suspended sediment concentration outside of the plume area is much higher than inside. This contrast in mixing makes the plume visible from the surface by satellites even though the stratification is at the bottom. Laterally, wind stress produces a torque (vorticity) in areas of non-uniform depth such that upwind flow is developed in deep water and downwind flow in shallow water. The continuity requirement produces an upwind flow along the axis of the Industrial Canal (IC). The upwind flow is balanced by the downwind flow over the shallower peripheral areas along the coast.

  8. Algorithms and analysis for underwater vehicle plume tracing.

    SciTech Connect

    Byrne, Raymond Harry; Savage, Elizabeth L.; Hurtado, John Edward; Eskridge, Steven E.

    2003-07-01

    The goal of this research was to develop and demonstrate cooperative 3-D plume tracing algorithms for miniature autonomous underwater vehicles. Applications for this technology include Lost Asset and Survivor Location Systems (L-SALS) and Ship-in-Port Patrol and Protection (SP3). This research was a joint effort that included Nekton Research, LLC, Sandia National Laboratories, and Texas A&M University. Nekton Research developed the miniature autonomous underwater vehicles while Sandia and Texas A&M developed the 3-D plume tracing algorithms. This report describes the plume tracing algorithm and presents test results from successful underwater testing with pseudo-plume sources.

  9. Magnetic Structure and Formation of On-disk Coronal Plumes

    NASA Astrophysics Data System (ADS)

    Antonsson, S.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R.

    2015-12-01

    "Plumes" are feather-like features found on the solar disk, in the plage-like field concentrations of quiet regions. On-disk plumes are analogous to polar/coronal-hole plumes but have not been studied in detail in the past. We research their formation and characteristics, such as lifetime, intensity and magnetic setting at the feet. Atmospheric Imaging Assembly (AIA) images in the 171 Å filter and Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms, both from the Solar Dynamics Observatory (SDO), are analyzed with the IDL SolarSoftWare package and used to study the plumes. We find that on-disk plumes form at the places of converging magnetic fields, and disappear when those fields disperse. However, plumes disappear after nearby events, such as flares, or with the emergence of opposite polarity. The lifetime of each plume tends to be several days, although some appear and disappear within several hours. On-disk plumes outline magnetic fields close to the sun, allowing a better understanding of fine magnetic structures than before. Additionally, since plumes must be heated to around 600,000 K to be visible in 171 Å, their formation and characteristics could tell about how they, and therefore the corona, are heated.

  10. Plume dispersion of the exhaust from a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Lassiter, William S.

    1987-01-01

    An analytical model was developed to predict the behavior of the plume exhausting from the cryogenic National Transonic Facility. Temperature, visibility, oxygen concentration, and flow characteristics of the plume are calculated for distance downwind of the stack exhaust. Negative buoyancy of the cold plume is included in the analysis. Compared to photographic observations, the model predicts the centerline trajectory of the plume fairly accurately, but underpredicts the extent of fogging. The diffusion coefficient is revised to bring the model into better agreement with observations.

  11. Alcohol and Hepatitis

    MedlinePlus

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  12. Visualizing plumes of heavy metals and radionuclides

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Liu, T.; Bryant, S. L.; Hesse, M. A.

    2015-12-01

    The understanding of the transport behaviors in porous media resides on the ability to reproduce fundamental phenomena in a lab setting. Experiments with quasi 2D tanks filled with beads are performed to study physical phenomena induced by chemical and fluid dynamic processes. When an alkaline solution containing heavy metals or radionuclides invades a low pH region, mixing due to longitudinal dispersion induces destabilization of the front forming a fast travelling pulse [1]. When the two fluids travel in parallel, instead, mixing induced by transverse dispersion creates a continuous leakage from the alkaline region into the acidic one forming a fast travelling plume [2] (Figure 1). Impact of these phenomena are on aquifers upon leaking of alkaline fluids, rich in heavy metals and radionuclides, from waste storage sites. Here, we report the results from a study where experiments with a quasi 2D tank are performed to analyze the effect of transverse mixing on strontium (Sr2+) transport. To visualize the leaking plume, a fluorescent dye (Fura-2) is added the acidic solution, which has been widely used in biomedical applications [3]. It is the aim of this work to optimize its application under the conditions relevant to this work. Spectrometric measurements of absorption and fluorescence show sensitivity of the dye to the presence of Sr2+ throughout a broad range of pH and Sr2+ concentration (Figure 2). In the absence of Sr2+, no significant absorption and fluorescence was measured, but as Sr2+ was added the relevant peaks increase significantly and sample dilution of tenfold was required to remain within the measuring threshold. These results show a strong sensitivity of the dye to the cation opening the opportunity to use Fura-2 as a tool to visualize heavy metals and radionuclides plumes. References[1] Prigiobbe et al. (2012) GRL 39, L18401. [2] Prigiobbe and Hesse (2015) in preparation. [3] Xu-Friedman and Regehr (2000) J. Neurosci. 20(12) 4414-4422.

  13. Modeling of Interactions of Ablated Plumes

    DTIC Science & Technology

    2008-02-01

    C). B. The governing equations and the numerical method The developed model is based on the compressible two-species Euler and Navier - Stokes equations ...heat transfer at 20 km are obtained by solving the inviscid Euler and viscous Navier - Stokes equations (see Fig. 2). Note that in this and subsequent...altitude 20kmn: a-b) plume concentration -t 45l) and c-d) heat transfer coefficient, where a,c) Euler equations and b,d) Navier - Stokes equations . III

  14. Remote monitoring of a thermal plume

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Talay, T. A.

    1979-01-01

    A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.

  15. Aircraft plume signature suppression and stealth

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Gao, Jiaobo; Wang, Weina; Wang, Jilong; Xie, Junhu

    2005-01-01

    How to turning down the heat of aircraft infrared picture, how to get stealthy. To make a stealthy aircraft, designers had to consider a lot of key ingredients. This paper mainly introduces aircraft stealthy and discussed the efficiency of aircraft signature suppression. We describe testing process, measure and analyze the characteristics of aerosol scattering and absorption and present testing data of aircraft plume signature suppression. It covers the waveband from 2μm to 14μm. Another, infrared radiation temperature be minimized by a combination of temperature reduction and masking radiation temperature.

  16. NASA/LaRC jet plume research

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Ponton, Michael K.; Manning, James C.

    1992-01-01

    The following provides a summary for research being conducted by NASA/LaRC and its contractors and grantees to develop jet engine noise suppression technology under the NASA High Speed Research (HSR) program for the High Speed Civil Transport (HSCT). The objective of this effort is to explore new innovative concepts for reducing noise to Federally mandated guidelines with minimum compromise on engine performance both in take-off and cruise. The research program is divided into four major technical areas: (1) jet noise research on advanced nozzles; (2) plume prediction and validation; (3) passive and active control; and (4) methodology for noise prediction.

  17. Cooling tower plume - model and experiment

    NASA Astrophysics Data System (ADS)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  18. Reaction front formation in contaminant plumes.

    PubMed

    Cribbin, Laura B; Winstanley, Henry F; Mitchell, Sarah L; Fowler, Andrew C; Sander, Graham C

    2014-12-15

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.

  19. Acid precipitation chemistry in an urban plume

    SciTech Connect

    Saxena, P.; Arcado, T.D.; Marler, B.L.; Altshuler, S.L. )

    1987-01-01

    In this paper the authors present the results of an ongoing study performed by the Pacific Gas and Electric Company (PGandE) to: investigate the formation, transport and deposition of acidic species in the urban plume from the San Francisco Bay Area (SFBA) and assess the role of two gas-fired electric generation facilities located on the eastern boundary of the SFBA. They present a brief summary of their study area's climate. The network used in this study and our experimental methods are also described. An analysis of wet deposition data collected by our network is presented along with a discussion of the major findings, to date, of our study.

  20. Initiation and Development of Creeping Thermal Plumes

    DTIC Science & Technology

    1992-01-01

    photographically (figures 4c, 5c, and 6b). The experiments were run repeatedly for various viscosity contrasts, which were induced by changing the ambient...the sphere rise when compared to the no diffusion case, so 16 heig ht( cm) 50 40 _ _0N 20 rise rat -7 agrees with Griffiths (1986) -- heater of f...the Tnb - 0.1C case, the viscosity contrast of 105 was higher than in previous numerical studies of plumes. These improvement, however, did not allow

  1. Space shuttle plume/simulation application

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.; Bell, G.

    1979-01-01

    An analysis of pressure and strain-gage data from space shuttle wind tunnel test IA119 and IA138 was performed to define the influence on aerodynamic characteristics resulting from the main propulsion system and solid rocket booster plumes. Aerodynamic characteristics of each of the elements, the components and total vehicle of the space shuttle vehicle during ascent flight was considered. Pressure data were obtained over the aft portions of the space shuttle wind tunnel model in addition to wing and elevon gage data.

  2. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  3. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  4. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  5. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  6. Alcohol Intolerance

    MedlinePlus

    ... ingredients commonly found in alcoholic beverages, especially in beer or wine, can cause intolerance reactions. These include: Sulfites or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some cases, reactions can be triggered by ...

  7. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  9. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  10. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    The Great Western Sugar Company has announced plans for the construction of a $300 million plant for the production of fuel grade alcohol from corn. The plant at Reserve, Lousiana, will also produce high fructose corn syrup and animal feed by-products and will employ an additional 200 people.

  11. Plume or no Plume, the Case of the Siberian Trap Formation

    NASA Astrophysics Data System (ADS)

    Reichow, M. K.; Saunders, A. D.; White, R. V.; Al'Mukhamedov, A. I.; Medvedev, A. I.; Inger, S.

    2003-12-01

    The generation mechanism of continental large igneous provinces, such as the Siberian Traps, are matters of recent debate, particularly their relation to mantle plumes derived from the Earth's interior. Alternative models relate the formation of large igneous provinces to bolide impacts or small-scale convection at the boundary of asymmetric lithospheres. Neither of these models is without criticism and each model cannot explain all characteristics of continental flood basalt formation alone. However, strong support for the involvement of a mantle plume comes from the observation that large volumes of basaltic melts ( ˜3 x 106 km3) erupted within a short period of time (< 1 My). Such high magma flux rates can only realistically be produced by decompression melting in the head of an uprising mantle plume. Although several areas surrounding the Siberian craton have been attributed to the Siberian Traps volcanic activity, the entire extent remains conjectural. Basaltic and gabbroic rocks occur throughout the West Siberian Basin (WSB) beneath a thick succession of Mesozoic and Cenozoic sediments. Further to the north of the Siberian craton, on the Taimyr Peninsula, are also basalt and dolerite rocks. We have obtained more than 100 samples from both areas and compared chemical data with data from the Siberian Traps. The basalts have chemical characteristics typical of fractionated, contaminated continental flood basalts (e.g. low Mg#, negative Nb anomaly). Trace element modelling suggests that the basalts represent different degrees of partial melting and crustal contamination. The major and trace element data from the WSB and Taimyr basalts show strong affinities with Siberian Trap basalts that precede the main pulse of volcanism extruded over large areas of the Siberian craton. Although the major and trace element data are consistent with a plume origin for the Siberian Traps, they cannot prove it; however, magma volume and timing constraints do strongly suggest that

  12. Mantle plume capture, anchoring and outflow during ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Richards, M. A.; Geist, D.

    2015-12-01

    Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume

  13. Birth, life, and death of a solar coronal plume

    SciTech Connect

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  14. River plume patterns and dynamics within the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  15. Numerical modeling of the Patos Lagoon coastal plume, Brazil

    NASA Astrophysics Data System (ADS)

    Marques, W. C.; Fernandes, E. H.; Monteiro, I. O.; Möller, O. O.

    2009-03-01

    The Southern Brazilian Shelf (SBS) is a freshwater-influenced region, but studies on the dynamics of coastal plumes are sparse and lack in space-time resolution. Studies on the dynamics of the Patos Lagoon plume are even more limited. The aim of this paper is to investigate the influence of the principal physical forcing for the formation and behavior of the Patos Lagoon coastal plume. The study is carried out through 3D numerical modeling experiments and empirical orthogonal function (EOF) analysis. Results showed that the amount of freshwater is the principal physical forcing controlling the plume formation. The Coriolis effect enhances the northward transport over the shelf, while the tidal effects contribute to intensify horizontal and vertical mixing, which are responsible for spreading the freshwater over the shelf. The wind effect, on the other hand, is the main mechanism controlling the behavior of the Patos Lagoon coastal plume over the inner SBS in synoptic time scales. Southeasterly and southwesterly winds contribute to the northeastward displacement of the plume, breaking the vertical stratification of the inner continental shelf. Northeasterly and northwesterly winds favor ebb conditions in the Patos Lagoon, contributing to the southwestward displacement of the plume enhancing the vertical stratification along and across-shore. The EOF analysis reveals two modes controlling the variability of the plume on the surface. The first mode (explaining 70% of the variability) is associated to the southwestward transportation of the plume due to the dominance of north quadrant winds, while the second mode (explaining 19% of the variability) is associated to the intermittent migration of the plume northeastward due to the passage of frontal systems over the area. Large scale plumes can be expected during winter and spring months, and are enhanced during El Niño events.

  16. Solar rocket plume/mirror interactions

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Chang, Chau-Lyan; Merkle, Charles L.

    1991-01-01

    The extent to which the plume from a solar thermal rocket will impinge on the solar collector is studied by flow field analysis. Such interaction can adversely affect collector performance through fouling, excessive heat loading, or pressure loads that deform the delicate structures. The geometrical shape of the collector is such that only the flow from the nozzle boundary layer can reach it, but the thrust levels of interest lead to very viscous nozzle flows with thick boundary layers. Reasonable accuracy in solving these flows requires a fully coupled viscous-inviscid procedure. Results show that the fraction of the plume that hits the collector can be well estimated by continuum theory, but that transitional and rarefied phenomena will have some impact on how it is distributed over the surface. Initial results for one representative condition show that approx. 4 percent of the total flow in the jet makes its way to the collector. The pressures on the collector, however, remain quite low because of its distance from the engine. Additional work is needed to document the effect of thrust scaling and wall cooling on impingement.

  17. NSTAR Ion Thruster Plume Impact Assessments

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Pencil, Eric J.; Rawlin, Vincent K.; Kussmaul, Michael; Oden, Katessha

    1995-01-01

    Tests were performed to establish 30-cm ion thruster plume impacts, including plume characterizations via near and farfield ion current measurements, contamination, and sputtering assessments. Current density measurements show that 95% of the beam was enclosed within a 22 deg half-angle and that the thrust vector shifted by less than 0.3 deg during throttling from 2.3 to 0.5 kW. The beam flatness parameter was found to be 0.47, and the ratio of doubly charged to singly charged ion current density decreased from 15% at 2.3 kW to 5% at 0.5 kW. Quartz sample erosion measurements showed that the samples eroded at a rate of between 11 and 13 pm/khr at 25 deg from the thruster axis, and that the rate dropped by a factor of four at 40 deg. Good agreement was obtained between extrapolated current densities and those calculated from tantalum target erosion measurements. Quartz crystal microbalance and witness plate measurements showed that ion beam sputtering of the tank resulted in a facility material backflux rate of -10 A/hr in a large space simulation chamber.

  18. Method of hybrid plume plasma propulsion

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R. (Inventor)

    1990-01-01

    A technique for producing thrust by generating a hybrid plume plasma exhaust is disclosed. A plasma flow is generated and introduced into a nozzle which features one or more inlets positioned to direct a flow of neutral gas about the interior of the nozzle. When such a neutral gas flow is combined with the plasma flow within the nozzle, a hybrid plume is constructed including a flow of hot plasma along the center of the nozzle surrounded by a generally annular flow of neutral gas, with an annular transition region between the pure plasma and the neutral gas. The temperature of the outer gas layer is below that of the pure plasma and generally separates the pure plasma from the interior surfaces of the nozzle. The neutral gas flow both insulates the nozzle walls from the high temperatures of the plasma flow and adds to the mass flow rate of the hybrid exhaust. The rate of flow of neutral gas into the interior of the nozzle may be selectively adjusted to control the thrust and specific impulse of the device.

  19. Density and optical properties of SPARCS plumes

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Kumer, J. B.; Cooper, C. E., Jr.

    1972-01-01

    Propellant gases emitted by attitude control systems such as SPARCS (Solar Pointing Aerobee Rocket Control System) and possible interference with experiments aboard the payloads are discussed. The optical properties of seven actual and potential gases emitted by propellant systems (CF4, N2H4, NH3, N2, CO2, Ar, and He) are presented. A compilation of absorption coefficients from 1 Angstrom to 50 microns and a summary of fluorescent spectra and efficiencies are provided. Since Freon-14 (CF4) is of primary importance to SPARCS, an experimental search for the fluorescent spectrum of CF4 was performed by exciting the gas with 920 Angstrom UV photons. The result was compared with an electron impact induced spectrum of CF4, and conclusions drawn about the nature of the radiating species. A detailed study of the CF4 flow fields and plume densities for typical SPARCS controlled payloads was made using gas dynamic codes which included the effects of vehicle shading and condensation. The importance of the optical properties of CF4 plumes was investigated and it is concluded that absorption is negligible but fluoresence may be significant in some cases.

  20. Pyroxenite causes fat plumes and stagnant slabs

    NASA Astrophysics Data System (ADS)

    Adam, Claudia; Caddick, Mark J.; King, Scott D.

    2017-05-01

    Conventional wisdom holds that there is a change in the pattern of mantle convection between 410 and at 660 km, where structural transformations convert olivine into its high-pressure polymorphs. In this regard, recent tomographic studies have been a complete surprise, revealing (i) rapid broadening of slow seismic anomalies beneath hotspots from hundreds of kilometers wide at shallow depths to 2000-3000 km wide deeper than 800 km, and (ii) fast seismic anomalies associated with subducted lithosphere that appear to flounder at 800-1000 km. It is difficult to reconcile these observations with the conventional view of a mantle that experiences limited mineralogical change below 660 km. Here we propose that plumes and slabs contain significant proportions of lithologies that experience an entirely different suite of mineral reactions, demonstrating that both subducted basalt and pyroxenite upwelling in plumes experience substantial changes in mineralogy and thus physical properties at 800 km depth. We show the importance of this for mantle rheology and dynamics and how it can explain hitherto puzzling mantle tomographic results.

  1. Plume connection of carbonatites: geodynamic Implication

    NASA Astrophysics Data System (ADS)

    Kogarko, Liya; Veselovskiy, Roman

    2017-04-01

    Geodynamic position of the carbonatites is actively discussed question during the last decades. Some researches link their formation with ascend of the large volumes of mantle melts from the CMB. There is certain evidence for temporal and spatial correlation of the carbonatites and LIPs, whose origin is certainly related with mantle plumes [1], as it was shown for carbonatites of the Polar Siberia (Maymecha- Kotuy province) which were formed simultiniusly with the Siberian superplume 250 Ma [2]. We used the recent absolute plate kinematic model [2] to reconstruct locations of Phanerozoic carbonatites at the time of their origin (Fig. 1). We have found that 118 out of 180 carbonatites (66%) are projecting onto central or peripheral parts of African Large Low Shear-wave Velocity Province and this can be viewed as an evidence for linking the carbonatites with mantle plumes. [1] Ernst R.E. Large Igneous Provinces. Cambridge University Press. 2014. 666 p [2]. Kogarko L., Zartman R.(2007) Min Petrol.89,113-132 [3] Torsvik T.H. et al. (2014) Proceedings of the National Academy of Sciences of the United States.111 ,8735-8740. Supported by RSCF grant 15- 17-30019.

  2. Triton's plumes - The dust devil hypothesis

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Tryka, Kimberly A.

    1990-01-01

    Triton's plumes are narrow columns 10 km in height, with tails extending horizontally for distances over 100 km. This structure suggests that the plumes are an atmospheric rather than a surface phenomenon. The closest terrestrial analogs may be dust devils, which are atmospheric vortices originating in the unstable layer close to the ground. Since Triton has such a low surface pressure, extremely unstable layers could develop during the day. Patches of unfrosted ground near the subsolar point could act as sites for dust devil formation because they heat up relative to the surrounding nitrogen frost. The resulting convection would warm the atmosphere to temperatures of 48 k or higher, as observed by the Voyager radio science team. Assuming that velocity scales as the square root of temperature difference times the height of the mixed layer, a velocity of 20 m/sec is derived for the strongest dust devils on Triton. Winds of this speed could raise particles provided they are a factor of 1000 to 10,000 less cohesive than those on earth.

  3. Delta 2 Explosion Plume Analysis Report

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.

    2000-01-01

    A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

  4. The Structure of Round Buoyant Turbulent Plumes.

    NASA Astrophysics Data System (ADS)

    Dai, Zhongtao

    1995-01-01

    An experimental and theoretical study of round buoyant turbulent plumes in still and unstratified environment was conducted, emphasizing self-preserving conditions. The experiments involved downward flowing round negatively -buoyant turbulent plumes created by injecting carbon dioxide and sulfur hexafluoride into still and unstratified air. The mixture fraction and velocity properties were measured using laser-induced iodine fluorescence (LIF) and laser -Doppler velocimetry (LDV), respectively, while the combined mixture fraction/velocity properties were measured using combined LIF/LDV. The present measurements were exploited to evaluate k-varepsilon-g and Reynolds stress models of buoyant turbulent flows, by direct comparisons between model approximations and measurements. In addition, predictions of the models for the self-preserving region of round buoyant turbulent plumes were compared with measurements in order to assess overall model performance. The self-preserving conditions of round buoyant turbulent plumes were observed relatively far from the source under the present test conditions: rm (x - x_0)/d = 87~151 and rm (x - x_0)/{it l}_ {M} =12~43. Present measurements yielded distributions of mean mixture fractions and streamwise velocities in the self-preserving region that were up to 40% narrower, with appropriately scaled values near the axis up to 30% larger than earlier measurements in the literature, indicating that the earlier measurements actually involved transitional plumes. Large mixture fraction fluctuations and turbulence mass fluxes were observed in the self-preserving region due to the strong correlation between mixture fraction and velocity fluctuations. However, present measurements of velocity fluctuations and the Reynolds stress were similar to round nonbuoyant turbulent jets. Other properties reported include: probability density functions and temporal power spectral densities of mixture fraction and velocity fluctuations, integral time

  5. Bacterial Degradation of tert-Amyl Alcohol Proceeds via Hemiterpene 2-Methyl-3-Buten-2-ol by Employing the Tertiary Alcohol Desaturase Function of the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schuster, Judith; Schäfer, Franziska; Hübler, Nora; Brandt, Anne; Rosell, Mònica; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. PMID:22194447

  6. The Structure of Enceladus' Plume from Cassini Occultation Observations

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Esposito, L. W.; Buffington, B. B.; Colwell, J.; Hendrix, A. R.; Meinke, B. K.; Shemansky, D. E.; Stewart, I.; West, R. A.

    2011-12-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed 2 stellar and one solar occultation by Enceladus' water vapor plume. These observations have established that water is the primary constituent of the plume, allowed us to calculate the flux of water coming from the plume, and detected super-sonic jets of gas imbedded within the plume [1]. On 19 October 2011 two stars (epsilon and zeta Orionis) will simultaneously be occulted by the plume, and the signal of the two will be in separate pixels on the detector. This is a tangential occultation that will provide a horizontal cut through the plume at two altitudes. The two stars are separated by 24 mrad, or ~20 km, with the lower altitude star 18 km above the limb at its closest point. The groundtrack is similar to the 2010 solar occultation, but viewed from the other side of the plume. Results from this new data set with implications for the vertical structure of the plume and jets will be presented.

  7. Effect of Soot Particles on Supersonic Rocket Plume Properties

    NASA Astrophysics Data System (ADS)

    Gaissinski, Igor; Levy, Yeshayahou; Lev, Mikhael; Sherbaum, Valery

    2012-06-01

    Plumes from hydrocarbon-fueled rockets usually contain some amount of soot. In spite of the small amount, such soot particles can play a critical role in the characteristics of the infrared radiation emission since soot radiates a continuous, near-blackbody spectrum. The contribution of the soot to the plume radiation depends on the amount of soot, the physical properties of the particles, their concentration, and their temperature distribution in the flow field. The trajectories of solid particles and their temperatures can differ from those of the gas due to the particle mechanical and thermal inertia. CFD FLUENT code for solving two-phase Navier-Stokes equations coupled with chemical reactions and soot particle combustion was applied for exhaust plume simulations. Exhaust plumes with soot mass loading of 2% were simulated for three altitudes of 2 km, 8 km and 16 km. Radial distributions of the cloud particle density were obtained for different distances downstream the exhaust nozzle. As a result of the particle deceleration at the boundary layer inside the nozzle the particle concentration increased at the plume periphery. The particle temperature was higher than the gaseous temperature of the plume. The temperature difference between the soot particle and gas along corresponding trajectories was about 5-10%. The infrared radiation from the plumes with carbon soot was calculated. Its intensity was found to be dependent on the particle distribution in the plume.

  8. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  9. Mantle plume interaction with an endothermic phase change

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald; Anderson, Charles; Goldman, Peggy

    1995-01-01

    High spatial resolution numerical simulations of mantle plumes impinging from below on the endothermic phase change at 660-km depth are used to investigate the effects of latent heat release on the plume-phase change interaction. Both axisymmetric and planar upflows are considered, and the strong temperature dependence of mantle viscosity is taken into account. For plume strengths considered, a Clapeyron slope of -4 MPa/K prevents plume penetration of the phase change. Plumes readily penetrate the phase change for a Clapeyron slope of -2 MPa/K and arrive in the upper mantle considerably hotter than if they had not traversed the phase change. For the same amount of thermal drive, i.e., the same excess basal temperature, axisymmetric plumes are hotter upon reaching the upper mantle than are planar upwellings. Heating of plumes by their passage through the spinel-perovskite endothermic phase change can have important consequences for the ability of the plume to thermally thin the lithosphere and cause melting and volcanism.

  10. Validation of smoke plume rise models using ground based lidar

    Treesearch

    Cyle E. Wold; Shawn Urbanski; Vladimir Kovalev; Alexander Petkov; Wei Min Hao

    2010-01-01

    Biomass fires can significantly degrade regional air quality. Plume rise height is one of the critical factors determining the impact of fire emissions on air quality. Plume rise models are used to prescribe the vertical distribution of fire emissions which are critical input for smoke dispersion and air quality models. The poor state of model evaluation is due in...

  11. Important parameters for smoke plume rise simulation with Daysmoke

    Treesearch

    L. Liu; G.L. Achtemeier; S.L. Goodrick; W. Jackson

    2010-01-01

    Daysmoke is a local smoke transport model and has been used to provide smoke plume rise information. It includes a large number of parameters describing the dynamic and stochastic processes of particle upward movement, fallout, fluctuation, and burn emissions. This study identifies the important parameters for Daysmoke simulations of plume rise and seeks to understand...

  12. Satellite detection of smoke plumes and inadvertant weather modification

    Treesearch

    Wayne A. Pettyjohn; John B. McKeon

    1976-01-01

    Satellite imagery provides a convenient and inexpensive means for monitoring smoke plumes and evaluating inadvertant weather modification. Visual examination of LANDSAT-1 imagery for two sites in east-central Ohio indicates that, at times, a plume may extend nearly 48 km downwind and reach a width of six km. Density slicing techniques provide clues as to the...

  13. CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES

    SciTech Connect

    Wang, Y.-M.; Warren, H. P.; Muglach, K. E-mail: harry.warren@nrl.navy.mil

    2016-02-20

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimes barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the ∼1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.

  14. Plume induced environments on future lunar mission vehicles

    NASA Technical Reports Server (NTRS)

    Rochelle, Bill; Hughes, Ruston; Fitzgerald, Steve

    1992-01-01

    The objective of this presentation is to identify potential plume heating/impingement problem areas on vehicles used for future lunar missions. This is accomplished by comparison with lunar module plume investigations performed during 1968-1971. All material is presented in viewgraph format.

  15. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    PubMed

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  16. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  17. Dynamic Data-Driven UAV Network for Plume Characterization

    DTIC Science & Technology

    2016-05-23

    loop. 15. SUBJECT TERMS micro-UAV network; pollutant plume detection; ISR Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Page 1 of 2FORM...Automation (ICRA), pages 3347–3351, Shanghai, China , May9-13 2011. [10] L. Peng, M. Silic, and K. Mohseni. A DDDAS plume monitoring system with reduced

  18. Interactions among plumes, mantle circulation and mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S.; Masterton, S. M.; Afonso, J. C.; Seton, M.; Landgrebe, T. C.; Coffin, M. F.; Müller, D.

    2013-12-01

    Mantle plumes are generally considered to have little influence on surface processes beyond the formation of large igneous provinces (LIPs) and hotspot tracks at locations independent of tectonic setting. We show that major oceanic LIPs, which have typically been attributed to rapid, voluminous plume-head eruptions, form predominantly where a mid-ocean ridge and a deeply sourced plume interact. This indicates that both deep (plume) and shallow (plate) processes are required to form major oceanic LIPs. Further, long-standing (10's of millions of years) interactions between a plume and a mid-ocean ridge are associated with relatively short mid-ocean ridge migration distances (<500 km in 100 Myr). This suggests that the ridges are ';pinned' where a plume and a ridge interact. High upper mantle extraction rates occur at where the mid-ocean ridges have remained migrated little over long time periods, with the effect exacerbated by faster spreading rates. For ridge segments located more than 1000 km from the closest mantle plumes, geochemical analyses (eg, Na, Fe, Si) of samples where there has been significant extraction differ to those of basalts sampled where extraction has been much lower. The geochemistry of slowly migrating, non-plume influenced ridges is consistent with hotter upwelling mantle. Together, these results indicate that plate tectonic and mantle circulation systems are much more strongly coupled than previously recognised.

  19. Stack plume characterization and model assessment with lidar data

    NASA Technical Reports Server (NTRS)

    Weil, J. C.; Altman, J. L.

    1978-01-01

    A mobile lidar system was used to obtain plume rise and dispersion measurements for validating plume models. Predictions of rise and spread from the two-thirds law were found to agree well with observations. These predictions were used in combination with Lamb's results for neutrally buoyant particle diffusion in the mixed layer to estimate dispersion when convective turbulence became important.

  20. Role of Internal Heat Source for Eruptive Plumes on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1996-01-01

    For the first time the role of the internal heat source, due to radioactive decay in Triton's core, is investigate with respect to geyser-like plumes...A new mechanism of energy supply to the Tritonian eruptive plumes is proposed...We present the critical values of these parameters for Triton. A possible origin of the subsurface vents on Triton is also suggested.

  1. Analysis of volcanic plume detection on Mount Etna through GPS

    NASA Astrophysics Data System (ADS)

    Aranzulla, Massimo; Cannavò, Flavio; Scollo, Simona; Puglisi, Giuseppe; Immé, Giuseppina

    2013-04-01

    A permanent and continuous GPS network developed by Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy) was used to study its capability in detecting volcanic plumes produced during Etna explosive eruptions. Indeed, the electron plasma and neutral atmosphere, water vapor, hydrometeors and particulates induce propagation path delays in the GPS signal. The existing GPS network consists of 35 permanent stations located on the volcano flanks and is currently used to detect ground displacements of the volcano. We processed the GPS data coming from the Etna network using the GAMIT package developed by Massachusetts Institute of Technology. We used the undifferenced post-fit phase residuals as input in testing for the presence of a volcanic plume. Four robust cross-statistics were applied to assert the plume detection by GPS signals with 99% of confidence. The GPS network was able to detect the volcanic plume occurred on 4 September 2007. Here, we extend the proposed method to the lava fountains of Etna recorded in 2012. During this period Mount Etna produced more than twenty lava fountain episodes, forming volcanic plumes from few to tens kilometers of altitude. Starting from the previous experiences in which we considered a simplified paraboloid model to represent the geometry of the volcanic plume in atmosphere to evaluate the GPS satellite-station paths that crossed the plume, here we improve the method taking into account the results of simulations of volcanic ash dispersal in order to have a more realistic volcanic plume representation.

  2. Volcanic origin of the eruptive plumes on Io

    USGS Publications Warehouse

    Cook, A.F.; Shoemaker, E.M.; Smith, B.A.; Danielson, G.E.; Johnson, T.V.; Synnott, S.P.

    1981-01-01

    A quadruple long exposure of Io in eclipse exhibits faint auroral emission from the eruptive plumes. No luminous spots in the vents, predicted by Gold, were observed. Heat from the interior of Io appears to be the predominant source of energy in the plumes. Copyright ?? 1981 AAAS.

  3. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  4. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  5. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  6. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  7. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  8. Plume induced environments on future lunar mission vehicles

    NASA Technical Reports Server (NTRS)

    Rochelle, Bill; Hughes, Ruston; Fitzgerald, Steve

    1992-01-01

    The objective of this presentation is to identify potential plume heating/impingement problem areas on vehicles used for future lunar missions. This is accomplished by comparison with lunar module plume investigations performed during 1968-1971. All material is presented in viewgraph format.

  9. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  10. Determining resolvability of mantle plumes with synthetic seismic modeling

    NASA Astrophysics Data System (ADS)

    Maguire, R.; Van Keken, P. E.; Ritsema, J.; Fichtner, A.; Goes, S. D. B.

    2014-12-01

    Hotspot volcanism in locations such as Hawaii and Iceland is commonly thought to be associated with plumes rising from the deep mantle. In theory these dynamic upwellings should be visible in seismic data due to their reduced seismic velocity and their effect on mantle transition zone thickness. Numerous studies have attempted to image plumes [1,2,3], but their deep mantle origin remains unclear. In addition, a debate continues as to whether lower mantle plumes are visible in the form of body wave travel time delays, or whether such delays will be erased due to wavefront healing. Here we combine geodynamic modeling of mantle plumes with synthetic seismic waveform modeling in order to quantitatively determine under what conditions mantle plumes should be seismically visible. We model compressible plumes with phase changes at 410 km and 670 km, and a viscosity reduction in the upper mantle. These plumes thin from greater than 600 km in diameter in the lower mantle, to 200 - 400 km in the upper mantle. Plume excess potential temperature is 375 K, which maps to seismic velocity reductions of 4 - 12 % in the upper mantle, and 2 - 4 % in the lower mantle. Previous work that was limited to an axisymmetric spherical geometry suggested that these plumes would not be visible in the lower mantle [4]. Here we extend this approach to full 3D spherical wave propagation modeling. Initial results using a simplified cylindrical plume conduit suggest that mantle plumes with a diameter of 1000 km or greater will retain a deep mantle seismic signature. References[1] Wolfe, Cecily J., et al. "Seismic structure of the Iceland mantle plume." Nature 385.6613 (1997): 245-247. [2] Montelli, Raffaella, et al. "Finite-frequency tomography reveals a variety of plumes in the mantle." Science 303.5656 (2004): 338-343. [3] Schmandt, Brandon, et al. "Hot mantle upwelling across the 660 beneath Yellowstone." Earth and Planetary Science Letters 331 (2012): 224-236. [4] Hwang, Yong Keun, et al

  11. Alcohol use and safe drinking

    MedlinePlus

    ... to alcohol use Get into trouble with the law, family members, friends, school, or dates because of alcohol THE EFFECTS OF ALCOHOL Alcoholic drinks have different amounts of alcohol in them. Beer is about 5% alcohol, although some beers can ...

  12. Basaltic fissure eruptions, plume heights, and atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Wolff, J. A.; Self, S.; Rampino, M. R.

    1986-01-01

    Convective plumes that rise above Hawaiian-style fire fountains consist of volcanic gases, aerosols, fine ash, and entrained heated air. Plume theory has been applied to observational estimates of the rate of thermal energy release from large fire fountains. The theoretically predicted heights of maintained plumes agree very well with the heights found from actual observations. Predicted plume heights for both central-vent (point-source) and fissure (line-source) eruptions indicate a stratospheric penetration by plumes that form over vents with very high magma-production rates. Flood basalt fissure eruptions that produce individual lava flows with volumes greater than 100 cu km at very high mass eruption rates are capable of injecting large quantities of sulfate aerosols into the lower stratosphere, with potentially drastic short-term atmospheric consequences, like acid precipitation, darkening of the sky, and climatic cooling.

  13. A study on UV missile plume emission model

    NASA Astrophysics Data System (ADS)

    Lou, Ying; Bai, Ting-zhu

    2006-01-01

    With the development of UV missile warning systems, there is a need to assess or predict the UV signature for missile. This paper shows an emission model for UV missile plume signature. The model computes the missile plume flow field distribution, takes into account CO-O chemiluminescence and hot particles emission in the plume, and analyses the influences of the alumina particles scattering. Plume flow field is computed by the RNG k-ɛ turbulence model with non-equilibrium wall functions. Alumina particles optical properties are calculated by using Mie theory and the particles are assumed a log-normal size distribution. Radiative transfer equation is solved by the discrete-ordinates method. The model is applied to a user-defined test case and compared with other UV plume emission signature models based on different algorithms, the result of comparison is coincident and satisfied.

  14. Turbulence statistics in a negatively buoyant particle plume - laboratory measurement

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur; Clark, Laura; Veliz, Gerardo; Heath, Michael; Variano, Evan

    2016-11-01

    Negatively buoyant plumes of nylon particles are investigated in quiescent salt-water solution using flow visualization and stereoscopic PIV. Particles of the size 2 mm are continuously released through a nozzle from the top inside a water tank using a screw-conveyor based release mechanism. The plume propagates downward due to gravity, and by virtue of interacting particle wakes, becomes turbulent. The two phases are refractive index matched, so that the velocity field in the interstitial fluid can be quantified using PIV. We examine the velocity fields in the fluid phase to characterize turbulence statistics, such as turbulent kinetic energy, Reynolds stresses in the fully developed region of the plume. Further, we develop an image processing method to obtain particle distribution and particle slip inside the plume. In the presentation, we will discuss these results in the light of existing literature for rising plumes of bubbles under similar experimental conditions.

  15. Dynamic pressure loads associated with twin supersonic plume resonance

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Ponton, M. K.

    1986-01-01

    The phenomenon of twin supersonic plume resonance is defined and studied as it pertains to high level dynamic loads in the inter-nozzle region of aircraft like the F-15 and B1-A. Using a 1/40th scale model twin jet nacelle with powered choked nozzles, it is found that intense internozzle dynamic pressures are associated with the synchrophased coupling of each plume's jet flapping mode. This condition is found most prevalent when each plume's jet flapping mode has constituent elements composed of the B-type helical instability. Suppression of these fatigue bearing loads was accomplished by simple geometric modifications to only one plume's nozzle. These modifications disrupt the natural selection of the B-type mode and thereby decouple the plumes.

  16. Dynamics of suspended sediment plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Enhancement of ERTS-1 imagery yielded excellent quality 35-mm color slides and prints of several prominent turbidity plumes in Lake Ontario. Selected ERTS-1 frames of the Welland Canal and Genesee River plumes will be used to develop time-lapse sequences showing the impact of wind stress on each plume. Unusually high lake levels during the spring resulted in extensive beach erosion along the entire Lake Ontario shoreline. The resulting high concentrations of suspended matter generated highly turbid (up to 420 JTU) nearshore conditions that appeared milky white in the imagery obtained April 12 and 29th, 1973. During the shipping season, both the Welland Canal and a diversion channel at Port Dalhousie, Ontario, produced readily identifiable turbidity plumes in Lake Ontario. However, in the winter neither plume was visible in the ERTS-1 imagery suggesting sharply lower sediment discharge into Lake Ontario from these sources.

  17. Determination of stack plume properties from satellite imagery

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.

    1977-01-01

    LANDSAT imagery data were analyzed to determine the quantitative properties of a stack plume emitted from a moderate-sized pulp mill. Overlapping, consecutive-day MSS data provided plume/no plume radiances upwelling from the area of interest. These values from both the plume and its shadow were used to evaluate plume radius, height, particle concentration and scattering function, and total particle loading. Imagery data from a 10 by 10 km region in the vicinity of the mill were normalized to correct for minor atmospheric, solar and viewing angle changes for the two observation days, and cloud shadow data were used to evaluate sky radiance. The effects of the Sun angle, surface reflectance, SNR and spatial resolution are treated in the paper.

  18. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  19. Experiments on a round turbulent buoyant plume

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir; George, William K.

    1992-01-01

    This paper reports a comprehensive set of hot-wire measurements of a round buoyant plume which was generated by forcing a jet of hot air vertically up into quiescent environment. The boundary conditions of the experiment were measured, and are documented in the present paper in an attempt to sort out the contradictory mean flow results from the earlier studies. The ambient temperature was monitored to insure that the facility was not stratified and that the experiment was conducted in a neutral environment. The axisymmetry of the flow was checked by using a planar array of sixteen thermocouples and the mean temperature measurements from these are used to supplement the hot-wire measurements. The source flow conditions were measured so as to ascertain the rate at which the buoyancy was added to the flow. The measurements conserve buoyancy within 10 percent. The results are used to carry out the balances of the mean energy and momentum differential equations. In the mean energy equation it is found that the vertical advection of the energy is primarily balanced by the radial turbulent transport. In the mean momentum equation the vertical advection of momentum and the buoyancy force balance the radial turbulent transport. The buoyancy force is the second largest term in this balance and is responsible for the wider (and higher) velocity profiles in plumes as compared to jets. Budgets of the temperature variance and turbulence kinetic energy are also carried out in which thermal and mechanical dissipation rates are obtained as the closing terms. Similarities and differences between the two balances are discussed. It is found that even though the direct affect of buoyancy on turbulence, as evidenced by the buoyancy production term, is substantial, most of the turbulence is produced by shear. This is in contrast to the mean velocity field where the affect of buoyancy force is quite strong. Therefore, it is concluded that in a buoyant plume the primary affect of buoyancy

  20. Plume Structures in the Central Aleutian Basin

    NASA Astrophysics Data System (ADS)

    Yankovsky, E. A.; Terry, D. A.; Knapp, C. C.

    2013-12-01

    It is widely accepted that deep ocean basins are suitable for gas hydrate formation with appropriate temperature and pressure conditions but the assumption has been that they lack a sufficient source of methane and thus cannot generate gas hydrates. The Aleutian Basin of the Bering Sea, however, may be an exception due to the influx of methane-generating sediment in the region. The basin is unique in this respect because it is enclosed by the Aleutian Arc on the south as well as land on the north. Terrigenous sediments from these land masses reach the basin, and through accumulation over time, become sources of methane. In this study, we are analyzing a newly acquired seismic data set (Scholl et al, 2012) from the central Aleutian Basin to test for the presence of gas hydrates in the region. Previous seismic evidence from the region led to the discovery of VAMPs - velocity amplitude anomaly structures - characterized by pull-ups and push-downs in the seismic horizons. This study is aimed at testing the hypothesis first proposed by Scholl and Hart (1993) that methane plumes are responsible for the velocity push-downs, while gas hydrates (which condense above the plume) cause the pull-ups. We have constructed geologic models based on a velocity analysis obtained from performing inversions on the pre-stack CMP gathers (using GDMI, a recently developed inversion code from the Naval Research Laboratory). We present a one-dimensional geologic model of rock properties for a region within the study area adjacent to a VAMP structure (but itself lacking the characteristic velocity anomalies). We also show a two-dimensional geologic model for the region in which the VAMP structure is present. The interpretation of a flat-lying geology incorporating a methane hydrate plume guided the creation of the two-dimensional model from the velocity analysis. Our next goal, using full-waveform forward seismic modeling (TESSERAL software), is to generate a synthetic seismic section that

  1. Remote sensing of aerosol plumes: a semianalytical model.

    PubMed

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-10

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 microm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0 degrees and 60 degrees whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  2. Colloid Formation and Transport at Waste Plume Fronts

    NASA Astrophysics Data System (ADS)

    Wan, J.; Tokunaga, T. K.; Larsen, J. T.; Zheng, Z.

    2004-12-01

    We have recently identified the phenomenon of massive colloid formation and transport within moving waste plume fronts during infiltration of high-salinity waste solutions into sediments. Colloid formation and transport was thousands of times higher within a narrow zone at the moving plume front than in the plume body and the leaching stage. The newly formed plume front colloids were primarily in the size range from tens of nm to a few micron meters. The underlying process begins with rapid and completed cation exchange of Na+ from the infiltrating waste solution replacing Ca2+ and Mg2+ from the sediments, coupled with flow of the infiltrating waste solution enriched these divalent cations within the moving plume front. Subsequent precipitation of colloids containing these divalent cations released protons and reduced the plume front pH to as low as neutral. This substantially reduced pH in turn promoted precipitation of other pH sensitive minerals and amorphous phases as colloids. This plume front colloid generation phenomenon can occur under a wide range of conditions including sediment type, waste solution pH, temperature, and chemical composition, with the only necessary condition being that of a high ionic strength waste solution. Because of the large mass of suspended colloids generated, this phenomenon could significantly affect the fate and transport of the contaminant trace elements contained within the waste plumes. Depending on the chemical properties of the individual radionuclide or toxic metal, it can co-precipitate with or adsorb onto the plume front colloids. As an example, uranium was predicted and found preferentially precipitated as a mobile colloid phase within a uranium waste plume front. Funding of this research was provided by the Geosciences Research Program of Basic Energy Science, U.S. Department of Energy.

  3. Recycled crust and the secular cooling of mantle plumes

    NASA Astrophysics Data System (ADS)

    Gazel Dondi, E.; Herzberg, C. T.; Vidito, C. A.

    2012-12-01

    Current models suggest that the massive basaltic production responsible for the emplacement of Large Igneous Provinces (LIPS) during the Permian-Paleocene may represent the initial phases of some of the mantle plumes that feed the current ocean island basalts (OIB). In some cases this magmatism was so voluminous that it produced global environmental impacts. Recent petrological, geochemical and geophysical studies of some of these localities like Samoa, Hawaii, Galapagos provide evidence that melting is related to a true mantle plume that originates from a boundary layer beneath the upper mantle. Thus, plume-related magmas produced in OIB and LIPS and their connecting plume tracks provide evidence on mantle temperature, size and composition of heterogeneities, and deep geochemical cycles. Although a lot of work has been done on LIPS and OIB, no complete record of the evolution of a mantle plume is available to this point. Galapagos-related lavas provide a complete record of the evolution of a mantle plume since the plume's initial stages in the Cretaceous. In the case of the Galapagos, our work suggests a decrease from TP(max) of 1650 °C in the Cretaceous to 1500 °C in the present day. Our recent work on the Galapagos Islands and the preliminary work on older Galapagos-related terranes suggest that this secular cooling is related with increasing amounts of recycled crust in the plume. Detailed olivine chemistry shows that although peridotite is the dominant source lithology of the Galapagos Plume, a recycled pyroxenite component is also significant in both isotopically enriched and depleted domains of the archipelago. We suggest that this possibly represents two separate bodies of recycled crust within the Galapagos mantle plume.

  4. Rollback subduction: the great killer of mantle plumes

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Kincaid, C. R.; Griffiths, R. W.

    2010-12-01

    Subduction driven mantle flow is shown to stall and decapitate buoyant upwellings, thereby severely limiting vertical heat and mass transport. Ongoing debate tends to focus on the expected surface expression of plumes rising independently of the background circulation, however we present 3-D laboratory results that suggest rollback subduction greatly alters this classic plume model. A Phenolic sheet and temperature dependent glucose fluid, are used to model the subducting plate and upper ~2000 km of the mantle, respectively. Experiments varied style and rate of rollback subduction as well as plume temperature and position. Results show that buoyant upwellings located as far as 1500 km behind the trench fall under two regimes, (I) plate dominated or (II) plume dominated. In either regime, down-dip sinking of the slab initially stalls vertical plume motion and the combination of down-dip sinking and trench rollback redistributes material throughout the system. Plumes with as much as 400°C excess temperature behave as passive features in the subduction-induced 3-D flow (Regime I). Less than 10% of plume material in this regime is capable of reaching zones for melt generation, with rollback subduction trapping or re-subducting the majority of plume material at depth. Only plumes of 600°C excess temperature (or more) are able to overcome the dominant 3-D flow and transport heat and mass to the surface (Regime II). Regardless of plume temperature, conduit velocities (proxy for melt generation) show cycles of high and low hotspot activity also due to distortion from subduction-induced flow. As a result of both the sinking and rollback motions, the temporal hotspot trend is variable and differs from conventional plate-conduit interaction.

  5. West Antarctic Mantle Plume Hypothesis and Basal Water Generation

    NASA Astrophysics Data System (ADS)

    Ivins, Erik; Seroussi, Helene; Wiens, Doug; Bondzio, Johannes

    2017-04-01

    The hypothesis of a deep mantle plume that manifests Pliocene and Quaternary volcanism and present-day seismicity in West Antarctica has been speculated for more than 30 years. Recent seismic images support the plume hypothesis as the cause of Marie Byrd Land (MBL) volcanism and geophysical structure [ Lloyd et al., 2015; Ramirez et al., 2016]. Mantle plumes can more that double the geothermal heat flux, qGHF, above nominal continental values at their axial peak position and raise qGHF in the surrounding plume head to 60 mW/m2 or higher. Unfortunately, there is a dearth of in-situ basal ice sheet data that sample the heat flux. Consequently, we examine a realistic distribution of heat flux associated with a late-Cenozoic mantle plume in West Antarctica and explore its impact on thermal and melt conditions near the ice sheet base. The solid Earth model assumes a parameterized deep mantle plume and head. The 3-D ice flow model includes an enthalpy framework and full-Stokes stress balance. Both the putative plume location and extent are uncertain. Therefore, we perform broadly scoped experiments to characterize plume related basal conditions. The experiments show that mantle plumes have an important local impact on the ice sheet, with basal melting rates reaching several centimeters per year directly above the hotspot. The downstream active lake system of Whillans Ice Stream suggests a rift-related source of anomalous mantle heat. However, the lack of lake and stream activity in MBL suggests a relatively weak plume: one that delivers less flux by 35% below the heat flux to the crustal surface at the site of the Yellowstone hotspot [e.g., DeNosaquo et al., 2009], with peak value no higher than about 145 mW/m2.

  6. The Chemistry of Hydrothermal Plumes Along the Galapagos Spreading Center

    NASA Astrophysics Data System (ADS)

    Resing, J.; Baker, E.; Lebon, G.; Walker, S.; Haymon, R.; Nakamura, K.; Lupton, J.

    2006-12-01

    During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 300 n.m.-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot between 94.5° and 89.5°W. Hydrothermal plumes were located by placing a variety of sensors on the clump weight of the DSL-120, which was towed approximately 100 m above the seafloor. These sensors included the vents in situ analyzer (nee SUAVE), which measured Fe, Mn, and pH; a redox potential (Eh) sensor; an optical backscatter sensor; a METs methane analyzer; and a CTD. These sensors were uploaded in real time allowing us to monitor for plumes during the tow. In addition, the tow line of the DSL-120 carried a vertical array of optical backscatter sensors (MAPRs). Almost all of the plumes found were identified solely from the data uploaded to the ship in real time and were confirmed from the vertical MAPR array. The MAPR array provided information on the rise height and vertical extent of the plumes. Many plumes were then also located and sampled by vertical and towed CTD hydrocasts. The CTD hydrocast samples were sampled for Fe, Mn, pH, helium isotopes, methane, and total suspended matter composition. Many of the plumes were characterized by fairly low amounts of total dissolved metals and variable Fe:Mn ratios. Plumes over the discovered black smoker vents carried elevated total dissolved metals and Fe:Mn ratios typical of other midocean ridge plumes. Data will be presented on the chemical makeup of the plumes from the sensors on the DSL-120 clump weight and from the CTD hydrocast samples.

  7. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2000-01-01

    The amount of metabolic energy available for primary production by chemolithoautotrophic microorganisms in a submarine hydrothermal plume is evaluated using geochemical models. Oxidation of elemental sulfur and metal sulfides precipitated in the hydrothermal plume represent the largest potential sources of metabolic energy in the plume (˜600 cal/kg vent fluid from each source). Among dissolved substrates, oxidation of H 2 potentially provides the greatest amount of energy (˜160 cal/kg). Smaller, but still significant, amounts of energy are also available from sulfate reduction (54 cal/kg), methanogenesis (17 cal/kg), and methanotrophy (13 cal/kg). Only negligible amounts of energy are available from oxidation of Fe(II) or Mn(II) compounds or Fe 3+ reduction (<1 cal/kg vent fluid). The models suggest that most primary production in the plume should occur in the early stages of plume development from sulfur- and H 2-oxidizers entrained in the plume or colonizing the surfaces of minerals settling from the plume. The total primary productivity potential in the plume is estimated to be about 50 mg dry wt biomass/kg vent fluid. This translates to a global annual biomass production in hydrothermal plumes on the order of 10 12 g dry wt/yr, which represents only a small fraction of the total photosynthetic biomass production in the oceans (˜10 17 g dry wt/yr). Nevertheless, biomass generated in hydrothermal plumes may represent a significant fraction of the organic matter in the deep ocean as well as that deposited in sediments in ocean basins.

  8. Citizen CATE Experiment and Polar Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Mitchell, Adriana; Penn, Matt; Baer, Robert; Bosh, Robert; Garrison, David; Gelderman, Richard; Hare, Honor; Isberner, Fred; Jensen, Logan; Kovac, Sarah; McKay, Myles; Pierce, Michael; Thompson, Patricia; Ursache, Andrei; Varsik, John R.; Walter, Donald; Watson, Zachary; Young, David; Citizen CATE Team

    2017-01-01

    During the summer of 2017, a total solar eclipse will pass over the continental United States, allowing millions of citizens the opportunity to experience a beautiful celestial event. The Citizen Continental-America Telescopic Eclipse (CATE) Experiment plans to harness the power of these many viewers by using volunteers from sites across the US to observe and record the total solar eclipse. The data acquired from each of these sites will be composed into a continuous 90-minute video, allowing the inner solar corona to be studied for an unprecedented length of time.Observations in Indonesia of the March 2016 total solar eclipse allowed initial testing and analysis of the inner corona polar plume dynamics. Using MATLAB, a routine was developed to identify the polar coronal threads and their angle relative to the radial direction to analyze the field line behavior at the boundary of the polar coronal holes.

  9. Monopropellant thruster exhaust plume contamination measurements

    NASA Technical Reports Server (NTRS)

    Baerwald, R. K.; Passamaneck, R. S.

    1977-01-01

    The potential spacecraft contaminants in the exhaust plume of a 0.89N monopropellant hydrazine thruster were measured in an ultrahigh quartz crystal microbalances located at angles of approximately 0 deg, + 15 deg and + or - 30 deg with respect to the nozzle centerline. The crystal temperatures were controlled such that the mass adhering to the crystal surface at temperatures of from 106 K to 256 K could be measured. Thruster duty cycles of 25 ms on/5 seconds off, 100 ms on/10 seconds off, and 200 ms on/20 seconds off were investigated. The change in contaminant production with thruster life was assessed by subjecting the thruster to a 100,000 pulse aging sequence and comparing the before and after contaminant deposition rates. The results of these tests are summarized, conclusions drawn, and recommendations given.

  10. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  11. A plume spectroscopy system for flight applications

    NASA Astrophysics Data System (ADS)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-06-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  12. A plume spectroscopy system for flight applications

    NASA Technical Reports Server (NTRS)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-01-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  13. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  14. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  15. Detecting Volcanic Ash Plumes with GNSS Signals

    NASA Astrophysics Data System (ADS)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  16. Dust Plume off the Coast of Egypt

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dwarfing the Nile, a river of dust flowed out of the deserts of northern Egypt on May 19, 2007. As the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite passed overhead at 12:05 p.m. local time in Cairo, the sensor captured this image of the dust spreading northward over the Mediterranean Sea from the sandy deserts that span the country. At the margins of the plume, ribbons and ripples of dust are translucent, allowing a glimpse of the desert and water beneath, but in the center, the cloud is opaque, revealing nothing of the surface below. The part of north-central Egypt hidden by the dust plume is the Qattara Depression, the country's lowest point. Dipping down to 133 meters below sea level (436 feet), the depression is home to sandy deserts and dry lake beds that occasionally flood. The sand and fine, lake bed sediments are easily lofted into the air by strong winds that scour the area in late winter and early spring. In the eastern (right-hand) part of the image, the Nile River is lined by narrow ribbons of dull green vegetation. The fan-shaped delta is dotted with tan-colored spots, marking the location of cities and towns. The Nile Valley and Delta make up only a small fraction of the country's total land area, yet they support almost the entire population. The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides this image in additional resolutions. The Earth Observatory also provides a 250-meter-resolution KMZ file of this image for use with Google Earth.

  17. Volcanic Plumes Tower over Mount Etna [annotated

    NASA Image and Video Library

    2017-09-27

    Twin volcanic plumes—one of ash, one of gas—rose from Sicily’ Mount Etna on the morning of October 26, 2013. L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) Osservatorio Etneo (National Institute of Geophysics and Volcanology Etna Observatory) reported that Etna was experiencing its first paroxysm in six months. Multiple eruption columns are common at Etna, a result of complex plumbing within the volcano. The Northeast Crater, one of several on Etna’s summit, was emitting the ash column, while the New Southeast Crater was simultaneously venting mostly gas. This natural-color image collected by Landsat 8 shows the view from space at 11:38 a.m. local time. The towering, gas-rich plume cast a dark shadow over the lower, ash-rich plume and Etna’s northwestern flank. Relatively fresh lava flows (less than a century or so old) are dark gray; vegetation is green; and the tile-roofed buildings of Bronte and Biancavilla lend the towns an ochre hue. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the USGS Earth Explorer. Photograph ©2013, Boris Behncke. Caption by Robert Simmon with contributions from Boris Behncke. Instrument: Landsat 8 - OLI More info: 1.usa.gov/1cEcOFi Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Volcanic Plumes Tower over Mount Etna

    NASA Image and Video Library

    2017-09-27

    Twin volcanic plumes—one of ash, one of gas—rose from Sicily’ Mount Etna on the morning of October 26, 2013. L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) Osservatorio Etneo (National Institute of Geophysics and Volcanology Etna Observatory) reported that Etna was experiencing its first paroxysm in six months. Multiple eruption columns are common at Etna, a result of complex plumbing within the volcano. The Northeast Crater, one of several on Etna’s summit, was emitting the ash column, while the New Southeast Crater was simultaneously venting mostly gas. This natural-color image collected by Landsat 8 shows the view from space at 11:38 a.m. local time. The towering, gas-rich plume cast a dark shadow over the lower, ash-rich plume and Etna’s northwestern flank. Relatively fresh lava flows (less than a century or so old) are dark gray; vegetation is green; and the tile-roofed buildings of Bronte and Biancavilla lend the towns an ochre hue. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the USGS Earth Explorer. Photograph ©2013, Boris Behncke. Caption by Robert Simmon with contributions from Boris Behncke. Instrument: Landsat 8 - OLI More info: 1.usa.gov/1cEcOFi Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Dust Plume off the Coast of Egypt

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dwarfing the Nile, a river of dust flowed out of the deserts of northern Egypt on May 19, 2007. As the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite passed overhead at 12:05 p.m. local time in Cairo, the sensor captured this image of the dust spreading northward over the Mediterranean Sea from the sandy deserts that span the country. At the margins of the plume, ribbons and ripples of dust are translucent, allowing a glimpse of the desert and water beneath, but in the center, the cloud is opaque, revealing nothing of the surface below. The part of north-central Egypt hidden by the dust plume is the Qattara Depression, the country's lowest point. Dipping down to 133 meters below sea level (436 feet), the depression is home to sandy deserts and dry lake beds that occasionally flood. The sand and fine, lake bed sediments are easily lofted into the air by strong winds that scour the area in late winter and early spring. In the eastern (right-hand) part of the image, the Nile River is lined by narrow ribbons of dull green vegetation. The fan-shaped delta is dotted with tan-colored spots, marking the location of cities and towns. The Nile Valley and Delta make up only a small fraction of the country's total land area, yet they support almost the entire population. The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides this image in additional resolutions. The Earth Observatory also provides a 250-meter-resolution KMZ file of this image for use with Google Earth.

  20. Apollinaris Patera: An Early Martian Mantle Plume?

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2015-12-01

    Apollinaris Patera is one of the largest volcanos on Mars outside of the Tharsis volcanic province (summit relief 5.4 km, volume 7.3x1013 m3). The mapped crater densities on Apollinaris indicate that volcanic activity ended 3.5 to 3.8 billion years ago. Apollinaris is located on the northern (lowland) side of the martian hemispheric dichotomy. Because it is an isolated, relatively point-like source of volcanism, it is plausibly interpreted as an early example of a martian mantle plume. Plume structure and conditions in the mantle can be constrained using finite element mantle convection simulations combined with a variety of petrological, geophysical, and geologic observations. (1) Basalts studied by the MER Spirit rover in nearby Gusev crater are similar in age and possibly physically connected to Apollinaris Patera. Petrologic modeling of the Gusev crater basalt compositions indicates that the thermal lithosphere was about 100 km thick with a mantle potential temperature of 1480-1530 °C. This requires a mantle thermal Rayleigh number of about 2x108 at the time of volcanism, based on the volume-averaged mantle viscosity. (2) Pyroclastic deposits at Apollinaris indicate that at least a portion of the volcanism occurred in the presence of a high concentration of water or other volatiles. This lowers the solidus temperature and increases the magma production rate but has only a limited effect on the minimum depth of melting. (3) There is a localized magnetic anomaly beneath Apollinaris that indicates that the martian core dynamo persisted until at least the earliest stage of Apollinaris volcanism, which in turn sets a lower bound on the core heat flux of 5-10 mW m-2. Preservation of the magnetic field may be the result of formation of magnetic minerals such as magnetite due to volcanically-driven hydrothermal alteration of crustal rocks beneath Apollinaris.