Sample records for alcohol-induced bone loss

  1. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...

  2. Suppression of NADPH oxidases prevents chronic ethanol-induced bone loss

    USDA-ARS?s Scientific Manuscript database

    Since the molecular mechanisms through which chronic excessive alcohol consumption induces osteopenia and osteoporosis are largely unknown, potential treatments for prevention of alcohol-induced bone loss remain unclear. We have previously demonstrated that, chronic ethanol (EtOH) treatment leads to...

  3. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice.

    PubMed

    Yang, Carrie S; Mercer, Kelly E; Alund, Alexander W; Suva, Larry J; Badger, Thomas M; Ronis, Martin J J

    2014-10-01

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy protein-associated phytoestrogens such as genistein (GEN). In this study, male mice were pair-fed (PF), a control diet, an ethanol (EtOH) diet, or EtOH diet supplemented with 250 mg/kg of GEN for 8 weeks to test if GEN protects against bone loss associated with chronic drinking. Interestingly, alcohol consumption reduced cortical area and thickness and trabecular bone volume in both EtOH and EtOH/GEN groups when compared to the corresponding PF and PF/GEN controls, P < 0.05. However, in the trabecular bone compartment, we observed a significant increase in overall trabecular bone density in the PF/GEN group compared to the PF controls. Bone loss in the EtOH-treated mice was associated with the inhibition of osteoblastogenesis as indicated by decreased alkaline phosphatase staining in ex vivo bone marrow cultures, P < 0.05. GEN supplementation improved osteoblastogenesis in the EtOH/GEN cultures compared to the EtOH group, P < 0.05. Vertebral expression of bone-formation markers, osteocalcin, and runt-related transcription factor 2 (Runx2) was also significantly up-regulated in the PF/GEN and EtOH/GEN groups compared to the PF and EtOH-treated groups. GEN supplementation also increased the expression of receptor activator of nuclear factor κ-B ligand (RANKL) in the PF/GEN, an increase that persisted in the EtOH/GEN-treated animals (P < 0.05), and increased basal hydrogen peroxide production and RANKL mRNA expression in primary bone marrow cultures in vitro, P < 0.05. These findings suggest that GEN supplementation increases the overall bone remodeling and, in the context of chronic alcohol consumption, does not protect against the oxidative stress

  4. Vitamin D supplementation protects against bone loss associated with chronic alcohol administration in female mice.

    PubMed

    Mercer, Kelly E; Wynne, Rebecca A; Lazarenko, Oxana P; Lumpkin, Charles K; Hogue, William R; Suva, Larry J; Chen, Jin-Ran; Mason, Andrew Z; Badger, Thomas M; Ronis, Martin J J

    2012-11-01

    Chronic alcohol abuse results in decreased bone mineral density (BMD), which can lead to increased fracture risk. In contrast, low levels of alcohol have been associated with increased BMD in epidemiological studies. Alcohol's toxic skeletal effects have been suggested to involve impaired vitamin D/calcium homeostasis. Therefore, dietary vitamin D supplementation may be beneficial in reducing bone loss associated with chronic alcohol consumption. Six-week-old female C57BL/6J mice were pair-fed ethanol (EtOH)-containing liquid diets (10 or 36% total calories) for 78 days. EtOH exposure at 10% calories had no effects on any measured bone or serum parameter. EtOH consumption at 36% of calories reduced BMD and bone strength (P<0.05), decreased osteoblastogenesis, increased osteoclastogenesis, suppressed 1,25-hydroxyvitamin D3 [1,25(OH)2D3] serum concentrations (P<0.05), and increased apoptosis in bone cells compared with pair-fed controls. In a second study, female mice were pair-fed 30% EtOH diets with or without dietary supplementation with vitamin D3 (cholecalciferol; VitD) for 40 days. VitD supplementation in the EtOH diet protected against cortical bone loss, normalized alcohol-induced hypocalcaemia, and suppressed EtOH-induced expression of receptor of nuclear factor-κB ligand mRNA in bone. In vitro, pretreatment of 1,25(OH)2D3 in osteoblastic cells inhibited EtOH-induced apoptosis. In EtOH/VitD mice circulating 1,25(OH)2D3 was lower compared with mice receiving EtOH alone (P<0.05), suggesting increased sensitivity to feedback control of VitD metabolism in the kidney. These findings suggest dietary VitD supplementation may prevent skeletal toxicity in chronic drinkers by normalizing calcium homeostasis, preventing apoptosis, and suppressing EtOH-induced increases in bone resorption.

  5. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  6. Glucocorticoid: A potential role in microgravity-induced bone loss

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  7. Effect of dietary fat/carbohydrate ratio on progression of alcoholic liver injury and bone loss in rats fed via total enteral nutrition (TEN)

    USDA-ARS?s Scientific Manuscript database

    Few studies have examined the effects of diet on the dynamics of injury progression or on alcohol-induced bone loss. In the current study, 300 g male Sprague-Dawley rats (N = 10/group) were treated with alcohol containing liquid diets via a stomach tube. Dietary fat content was either 5% (high carbo...

  8. Cellular and molecular mechanisms of alcohol-induced osteopenia.

    PubMed

    Luo, Zhenhua; Liu, Yao; Liu, Yitong; Chen, Hui; Shi, Songtao; Liu, Yi

    2017-12-01

    Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.

  9. Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.

    PubMed

    Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M

    2006-10-15

    Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.

  10. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss

    PubMed Central

    Lozano, Alysia; Wright, Courtney; Vardanyan, Anna; King, Tamara; Largent-Milnes, Tally M.; Nelson, Mark; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W; Vanderah, Todd W.

    2010-01-01

    Aims Cannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side-effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. Main Methods A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. Key Findings Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. Significance These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain. PMID:20176037

  11. Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss

    PubMed Central

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895

  12. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  13. Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis

    PubMed Central

    Kim, Woon-Ki; Kim, Jin-Chun; Park, Hyun-Jung; Sul, Ok-Joo; Lee, Mi-Hyun; Kim, Ji-Soon

    2012-01-01

    Platinum nanoparticles (PtNP) exhibit remarkable antioxidant activity. There is growing evidence concerning a positive relationship between oxidative stress and bone loss, suggesting that PtNP could protect against bone loss by modulating oxidative stress. Intragastric administration of PtNP reduced ovariectomy (OVX)-induced bone loss with a decreased level of activity and number of osteoclast (OC) in vivo. PtNP inhibited OC formation by impairing the receptor activator of nuclear factor-κB ligand (RANKL) signaling. This impairment was due to a decreased activation of nuclear factor-κB and a reduced level of nuclear factor in activated T-cells, cytoplasmic 1 (NFAT2). PtNP lowered RANKL-induced long lasting reactive oxygen species as well as intracellular concentrations of Ca2+ oscillation. Our data clearly highlight the potential of PtNP for the amelioration of bone loss after estrogen deficiency by attenuated OC formation. PMID:22525805

  14. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  15. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss.

    PubMed

    Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D

    2014-07-01

    Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone

  16. Yeast-incorporated gallium attenuates glucocorticoid-induced bone loss in rats by inhibition of bone resorption.

    PubMed

    Ren, Zhaozhou; Yang, Liqing; Xue, Feng; Meng, Qingjie; Wang, Kejia; Wu, Xian; Ji, Chao; Jiang, Teng; Liu, Da; Zhou, Long; Zhang, Jing; Fu, Qin

    2013-06-01

    Glucocorticoids (GC) are potent anti-inflammatory agents and widely used for the treatment of many immune-mediated and inflammatory diseases, whereas GC-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis and significantly increases the patients' morbidity and mortality. GIOP is characterized as diminished osteogenesis and accelerated bone resorption. Yeast-incorporated gallium (YG) as an organic compound not only reduces elements-associated toxicity, but also maintains its therapeutic effect on improving bone loss or promoting fracture healing in ovariectomized female rats. The aim of this study was to examine whether YG could prevent GC-induced bone loss. Five-month-old male Sprague-Dawley rats were randomly divided into three groups (n = 6): two groups were administered dexamethasone (0.1 mg/kg/day) or vehicle (PBS) subcutaneously for 5 weeks; one other group was received dexamethasone subcutaneously and YG (120 μg/kg/day) orally. Trabecular bone microarchitectural parameters, bone mineral density (BMD), bone strength, body weight, and serum biochemical markers of bone resorption and formation were examined. Compared to the GC alone group, treatment with YG not only prevented microarchitectural deterioration of trabecular bone volume relative to tissue volume, trabecular number, and trabecular separation, but also significantly improved BMD, mechanical strength, and body weight in GC-treated rats. Moreover, YG decreased tartrate-resistant acid phosphatase 5b level but failed to change alkaline phosphatase level in GC-treated rats. This is the first study to show that YG prominently attenuates bone loss and microarchitectural deterioration and inhibits the increased bone resorption in GIOP. It implies that YG might be an alternative therapy for prevention of GC-induced bone loss in humans.

  17. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    NASA Technical Reports Server (NTRS)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S

  18. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  19. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice

    PubMed Central

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia. PMID:26664256

  20. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    PubMed

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  1. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  2. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; hide

    2011-01-01

    This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.

  3. Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Liu, Yao; Kou, Xiaoxing; Chen, Chider; Yu, Wenjing; Su, Yingying; Kim, Yong; Shi, Songtao; Liu, Yi

    2016-08-01

    Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168. © 2016 AlphaMed Press.

  4. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; hide

    2009-01-01

    Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.

  5. Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice.

    PubMed

    Wendelboe, Mette Høegh; Thomsen, Jesper Skovhus; Henriksen, Kim; Vegger, Jens Bay; Brüel, Annemarie

    2016-06-01

    In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-05

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  8. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  9. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD

  10. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    USDA-ARS?s Scientific Manuscript database

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  11. Synergistic Phytochemicals Fail to Protect Against Ovariectomy Induced Bone Loss in Rats.

    PubMed

    Ambati, Suresh; Miller, Colette N; Bass, Erica F; Hohos, Natalie M; Hartzell, Diane L; Kelso, Emily W; Trunnell, Emily R; Yang, Jeong-Yeh; Della-Fera, Mary Anne; Baile, Clifton A; Rayalam, Srujana

    2018-05-24

    Menopause induces a loss of bone as a result of estrogen deficiency. Despite pharmaceutical options for the treatment of osteopenia and osteoporosis, many aging women use dietary supplements with estrogenic activity to prevent bone loss and other menopausal-related symptoms. Such supplements are yet to be tested for efficacy against a Food and Drug Administration (FDA) approved medication for menopausal bone loss such as zoledronic acid (ZA). The postmenopausal rat model was used to investigate the efficacy of various synergistic phytochemical blends mixed into the diet for 16 weeks. Retired-breeder, Fischer 344 rats were randomly assigned to sham or ovariectomy surgery and 4 treatment groups: ZA; genistein supplementation; and a low dose and high dose blend of genistein, resveratrol, and quercetin. Ovariectomy resulted in a loss of both trabecular and cortical bone which was prevented with ZA. The phytochemical blends tested were unable to reverse these losses. Despite the lack of effectiveness in preventing bone loss, a significant dose-response trend was observed in the phytochemical-rich diets in bone adipocyte number compared to ovariectomized control rats. Data from this study indicate that estrogenic phytochemicals are not as efficacious as ZA in preventing menopausal-related bone loss but may have beneficial effects on bone marrow adiposity in rats.

  12. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  13. The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss.

    PubMed

    Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc; Moriarty, Tara J

    2017-02-01

    Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. Copyright © 2017 Tang et al.

  14. Repression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency

    PubMed Central

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency. PMID:23359549

  15. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    PubMed

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  16. A TNF receptor loop peptide mimic blocks RANK ligand–induced signaling, bone resorption, and bone loss

    PubMed Central

    Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C.; Baron, Roland

    2006-01-01

    Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF. PMID:16680194

  17. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; hide

    2011-01-01

    Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.

  18. Alcohol and bone: review of dose effects and mechanisms.

    PubMed

    Maurel, D B; Boisseau, N; Benhamou, C L; Jaffre, C

    2012-01-01

    Alcohol is widely consumed across the world. It is consumed in both social and cultural settings. Until recently, two types of alcohol consumption were recognized: heavy chronic alcohol consumption or light consumption. Today, there is a new pattern of consumption among teenagers and young adults namely: binge drinking. Heavy alcohol consumption is detrimental to many organs and tissues, including bones, and is known to induce secondary osteoporosis. Some studies, however, have reported benefits from light alcohol consumption on bone parameters. To date, little is known regarding the effects of binge drinking on bone health. Here, we review the effects of three different means of alcohol consumption: light, heavy, and binge drinking. We also review the detailed literature on the different mechanisms by which alcohol intake may decrease bone mass and strength. The effects of alcohol on bone are thought to be both direct and indirect. The decrease in bone mass and strength following alcohol consumption is mainly due to a bone remodeling imbalance, with a predominant decrease in bone formation. Recent studies, however, have reported new mechanisms by which alcohol may act on bone remodeling, including osteocyte apoptosis, oxidative stress, and Wnt signalling pathway modulation. The roles of reduced total fat mass, increased lipid content in bone marrow, and a hypoleptinemia are also discussed.

  19. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits

    PubMed Central

    Bonthius, Daniel J.; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J.

    2014-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS−/− mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS−/− mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS−/− mice and their wild type controls received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days 4–9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS−/− and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS−/− mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS−/− mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS−/− mice, but not

  20. Bisphosphonate as a Countermeasure to Space Flight-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Spector, Elisabeth; LeBlanc, A.; Sibonga, J.; Matsumoto, T.; Jones, J.; Smith, S. M.; Shackelford, L.; Shapiro, J.; Lang, T.; Evans, H.; hide

    2009-01-01

    The purpose of this research is to determine whether anti-resorptive pharmaceuticals such as bisphosphonates, in conjunction with the routine in-flight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density and bone strength and the increased renal stone risk documented on previous long-duration space flights [1-3]. Losses averaged 1 to 2 percent per month in such regions as the lumbar spine and hip. Although losses showed significant heterogeneity among individuals and between bones within a given subject, space flight-induced bone loss was a consistent finding. More than 90 percent of astronauts and cosmonauts on long-duration flights (average 171 days) aboard Mir and the ISS, had a minimum 5 percent loss in at least one skeletal site, 40 percent of them had a 10 percent or greater loss in at least one skeletal site, and 22 percent of the Mir cosmonauts experienced a 15 to 20 percent loss in at least one site. These losses occurred even though the crewmembers performed time-consuming in-flight exercise regimens. Moreover, a recent study of 16 ISS astronauts using quantitative computed tomography (QCT) demonstrated trabecular bone losses from the hip averaging 2.3 percent per month [4]. These losses were accompanied by significant losses in hip bone strength that may not be recovered quickly [5]. This rapid loss of bone mass results from a combination of increased and uncoupled remodeling, as demonstrated by increased resorption with little or no change in bone formation markers [6-7]. This elevated remodeling rate likely affects the cortical and trabecular architecture and may lead to irreversible changes. In addition to bone loss, the resulting hypercalciuria increases renal stone risk. Therefore, it is logical to attempt to attenuate this increased remodeling with anti-resorption drugs such as bisphosphonates. Success with alendronate was demonstrated in a bed rest study [8]. This work has been extended to space

  1. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2011-05-01

    decreased mechanical loading environment (e.g., as occurs in soldiers after spinal cord  injury ) leads to rapid bone loss via enhanced local...induced paralysis of the quadriceps,  hamstrings , and soleus) in one hindlimb of a series of mice  with mutations in Wnt modulators (Sost‐/‐, Dkk1...treatment strategies for overcoming the disuse‐associated bone loss that accompanies spinal cord  injury , and other battlefield‐related  injuries

  2. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wei, E-mail: weiming@xiyi.edu.cn; Department of Pharmacology, Xi’an Medical University, Xi’an 710021; Lu, Gan, E-mail: leonming99@163.com

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, anmore » AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.« less

  3. Cancer treatment-induced bone loss in premenopausal women: a need for therapeutic intervention?

    PubMed

    Hadji, P; Gnant, M; Body, J J; Bundred, N J; Brufsky, A; Coleman, R E; Guise, T A; Lipton, A; Aapro, M S

    2012-10-01

    Current clinical treatment guidelines recommend cytotoxic chemotherapy, endocrine therapy, or both (with targeted therapy if indicated) for premenopausal women with early-stage breast cancer, depending on the biologic characteristics of the primary tumor. Some of these therapies can induce premature menopause or are specifically designed to suppress ovarian function and reduce circulating estrogen levels. In addition to bone loss associated with low estrogen levels, cytotoxic chemotherapy may have a direct negative effect on bone metabolism. As a result, cancer treatment-induced bone loss poses a significant threat to bone health in premenopausal women with breast cancer. Clinical trials of antiresorptive therapies, such as bisphosphonates, have demonstrated the ability to slow or prevent bone loss in this setting. Current fracture risk assessment tools are based on data from healthy postmenopausal women and do not adequately address the risks associated with breast cancer therapy, especially in younger premenopausal women. We therefore recommend that all premenopausal women with breast cancer be informed about the potential risk of bone loss prior to beginning anticancer therapy. Women who experience amenorrhea should have bone mineral density assessed by dual-energy X-ray absorptiometry and receive regular follow-up to monitor bone health. Regular exercise and daily calcium and vitamin D supplementation are recommended. Women with a Z-score <-2.0 or Z-score ≤-1.0 and/or a 5-10% annual decrease in bone mineral density should be considered for bisphosphonate therapy in addition to calcium and vitamin D supplements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  5. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    PubMed

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis

    PubMed Central

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  7. Effects of O-methylated (-)-epigallocatechin gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato

    2017-12-01

    (-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.

  8. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton

    PubMed Central

    Gaddini, Gino W.; Turner, Russell T.; Grant, Kathleen A.; Iwaniec, Urszula T.

    2016-01-01

    Background Alcohol is an important nonessential component of diet, but the overall impact of drinking on bone health, especially at moderate levels, is not well understood. Bone health is important because fractures greatly reduce quality of life and are a major cause of morbidity and mortality in the elderly. Regular alcohol consumption is most common following skeletal maturity, emphasizing the importance of understanding the skeletal consequences of drinking in adults. Method This review focuses on describing the complex effects of alcohol on the adult skeleton. Studies assessing the effects of alcohol on bone in adult humans as well as skeletally-mature animal models published since the year 2000 are emphasized. Results Light to moderate alcohol consumption is generally reported to be beneficial, resulting in higher bone mineral density (BMD) and reduced age-related bone loss, whereas heavy alcohol consumption is generally associated with decreased BMD, impaired bone quality and increased fracture risk. Bone remodeling is the principle mechanism for maintaining a healthy skeleton in adults and dysfunction in bone remodeling can lead to bone loss and/or decreased bone quality. Light to moderate alcohol may exert beneficial effects in older individuals by slowing the rate of bone remodeling but the impact of light to moderate alcohol on bone remodeling in younger individuals is less certain. The specific effects of alcohol on bone remodeling in heavy drinkers is even less certain because the effects are often obscured by unhealthy lifestyle choices, alcohol-associated disease, and altered endocrine signaling. Conclusions Although there have been advances in understanding the complex actions of alcohol on bone, much remains to be determined. Limited evidence implicates age, skeletal site evaluated, duration and pattern of drinking as important variables. Few studies systematically evaluating the impact of these factors have been conducted and should be made a

  9. Vitamin D supplementation protects against bone loss associated with chronic alcohol administration in female mice

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol consumption is detrimental to bone by decreasing bone mineral density (BMD) resulting in increased risk of osteoporosis risk and fracture, particularly in women. In moderation, alcohol is positively associated with increased BMD and reduced fracture risk. Alcohol's toxic effects ha...

  10. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibitionmore » of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.« less

  11. Optimal management of cancer treatment-induced bone loss: considerations for elderly patients.

    PubMed

    Tipples, Karen; Robinson, Anne

    2011-11-01

    Hormone manipulation, commonly used in breast and prostate cancer, can result in significant bone loss. In multiple myeloma (MM), corticosteroids play an important role in therapy but increase the risk of fracture over that expected for any given bone mineral density. These adverse effects on the skeletal system are particularly relevant in the elderly population, in whom osteoporosis can significantly affect not only quality of life but also survival. The associated health and social care costs are becoming increasingly important. Screening with dual energy x-ray absorptiometry (DXA) scans and lifestyle advice on smoking, alcohol and dietary intake are essential parts of the management of patients with cancer treatment-induced bone loss. The value of exercise also cannot be underestimated. A careful drug review should be carried out to eliminate agents that may potentially exacerbate bone toxicity. Therapies to address bone toxicities include bisphosphonates, which have been shown to play an increasingly important role in preventing declines in bone health. The issues of compliance when oral agents are used should not be underestimated. Renal toxicity and osteonecrosis of the jaw are relevant toxicities, especially in the elderly. Cardiac toxicity has not been proven, but there is evidence to suggest that the suppression of bone turnover seen with some, although not all, bisphosphonates is not reversed following cessation of treatment. The implications of this finding need to be borne in mind when treating elderly patients. The possibility of atypical fractures in patients taking bisphosphonates also needs to be given consideration, although this remains a rare complication. Recently, the receptor activator of nuclear factor-κB ligand (RANKL) ligand antibody denosumab has been shown to be of value in fracture prevention, and its subcutaneous route of administration offers a potential advantage. Oncologists should also remember that tamoxifen, which has little

  12. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.

    PubMed

    Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato

    2012-01-01

    Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.

  13. Vitamin K catabolite inhibition of ovariectomy-induced bone loss: structure-activity relationship considerations.

    PubMed

    Soper, Robin J; Oguz, Cenk; Emery, Roger; Pitsillides, Andrew A; Hodges, Stephen J

    2014-08-01

    The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma-carboxylation of the vitamin K-dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5-carbon (CAN5C) and 7-carbon carboxylic acid (CAN7C) aliphatic side-chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis. Osteoblast-like MG63 cell cultures were challenged with lipopolysaccharide and the levels of interleukin-6, an osteoclastogenic cytokine, measured with and without catabolites; low concentrations of CAN7C significantly inhibited interleukin-6 release, but CAN5C did not. In models of bone loss induced by ovariectomy or sciatic neurectomy in C57BL/6 mice, we found that the rarer CAN7C catabolite markedly restricted ovariectomy-induced bone loss and possibly limited sciatic neurectomy-induced bone loss. CAN7C activity depends on a free carboxylic acid and its particular side-chain structure. These in vivo data indicate for the first time that the clinical utility of vitamin K for osteoporosis may reside in an unusual catabolite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats

    PubMed Central

    Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model. PMID:27997588

  15. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    PubMed

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  16. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    PubMed

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  17. Circulating microRNAs Correlated with Bone Loss Induced by 45 Days of Bed Rest

    PubMed Central

    Ling, Shukuan; Zhong, Guohui; Sun, Weijia; Liang, Fengji; Wu, Feng; Li, Hongxing; Li, Yuheng; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Wu, Xiaorui; Song, Hailin; Li, Qi; Li, Yinghui; Chen, Shanguang; Xiong, Jianghui; Li, Yingxian

    2017-01-01

    The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with bone loss induced by bed rest, and testify whether the selected miRNAs could reflect the bone mineral status of human after bed-rest. We analyzed plasma miRNA levels of 16 subjects after 45 days of −6° head-down tilt bed rest, which is a reliable model for the simulation of microgravity. We characterize the circulating miRNA profile in individuals after bed rest and identify circulating miRNAs which can best reflect the level of bone loss induced by bed rest. Expression profiling of circulating miRNA revealed significant downregulation of 37 miRNAs and upregulation of 2 miRNAs, while only 11 of the downregulated miRNAs were further validated in a larger volunteer cohort using qPCR. We found that 10 of these 11 miRNAs (miR-103, 130a, 1234, 1290, 151-5p, 151-3p, 199a-3p, 20a, 363, and 451a) had ROC curve that distinguished the status after bed rest. Importantly, significant positive correlations were identified between bone loss parameters and several miRNAs, eventually miR-1234 showed clinical significance in detecting the bone loss of individuals after 45 days of bed rest. PMID:28261104

  18. Colitis induced bone loss is gender dependent and associated with increased inflammation

    PubMed Central

    Irwin, Regina; Lee, Taehyung; Young, Vincent B.; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Background Patients with inflammatory bowel disease (IBD) are at increase risk for bone loss and fractures. Therefore, in the present study, we examined the effect of experimental IBD on bone health. Methods We used a murine model of colitis, H. hepaticus-infected IL-10 deficient animals. Molecular and histological properties of bone and intestine were examined to identify the immunopathological consequences of colitis in male and female mice. Results At 6 weeks post-infection we observed significant trabecular bone loss in male but surprisingly not in female mice. This was true for both distal femur and vertebral locations. In addition, H. hepaticus infection suppressed osteoblast markers only in males. Consistent with effects on bone health, male mice with H. hepaticus infection had more severe colitis as determined by histology and elevated levels of inflammatory cytokines in the colon. While H. hepaticus levels in the stool appeared similar in male and female mice 1-week after infection, by 6-weeks H. hepaticus levels were greater in male mice, indicating that H. hepaticus survival and virulence within the GI tract could be gender-dependent. Conclusion In summary, H. hepaticus induced colitis severity and associated bone loss is gender regulated, possibly as a result of gender-specific effects on H. hepaticus colonization in the mouse GI tract and the consequent immunopathologic responses. PMID:23702805

  19. Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice.

    PubMed

    Kalam, Abul; Talegaonkar, Sushama; Vohora, Divya

    2017-01-15

    The deleterious effects of letrozole, an aromatase inhibitor, used in the adjuvant treatment of breast cancer in postmenopausal women, on bone are well-documented and represent a major drawback to its clinical use. Raloxifene, a selective estrogen receptor modulator and a clinically approved anti-osteoporotic drug, has been recently demonstrated to be efficacious in women with breast cancer. The present study evaluated the effects of preventive and curative treatment with raloxifene on letrozole-induced alterations of bone microarchitecture and turnover markers in a chemically-induced menopause model in mice. Swiss strain albino female mice were made menopausal by inducing ovotoxicity using vinyl cyclohexene di epoxide (VCD, 160 mg/kg for 15 days followed by 30 days drug-free period) confirmed by ovarian histology and serum estradiol levels. Effects on femoral and lumbar bones were evaluated by micro CT determination of bone volume, trabecular number, separation, thickness, connective density and trabecular pattern factor and bone turnover markers including ALP, TRAP5b, hydroxyproline and RANKL. In addition to these, markers of Wnt signaling (sclerostin and dickkopf-1) were also evaluated. To rule out the involvement of pharmacokinetic interaction, plasma levels of letrozole and raloxifene were measured following drugs alone and in combination. Though bone loss was observed in VCD treated mice (as indicated by micro CT measurements), it was further enhanced with letrozole administration (1 mg/kg) for one month particularly in epiphysis of femoral bones. Raloxifene (15 mg/kg), whether administered concurrently or post-letrozole was able to revert the structural alterations and changes in turnover markers caused by letrozole to varying degrees (p < 0.01 or p < 0.001). Further, estrogen deficiency following letrozole treatment in ovotoxic mice was associated with significant increase in sclerostin and dickkopf-1 in both lumbar and femur bones (p < 0

  20. Formononetin prevents ovariectomy-induced bone loss in rats.

    PubMed

    Ha, Hyekyung; Lee, Ho Young; Lee, Je-Hyun; Jung, Dayoung; Choi, Jiyoon; Song, Kye-Yong; Jung, Hee Jin; Choi, Jae Sue; Chang, Soo-Ik; Kim, Chungsook

    2010-04-01

    The major risk factor of postmenopausal osteoporosis is estrogen deficiency. Hormone replacement therapy is efficacious against osteoporosis, but it induces several significant adverse effects. In this study, therefore, we compared therapeutic potencies of three phytoestrogens: genistein, daidzein, and formononetin. Our result showed that in Saos-2 cells, formononetin and genistein (5 x 10(-7) M) treatment increased alkaline phosphatase activity by 33.0 +/- 5.8% and 21.1 +/- 4.0%. Genistein inhibited osteoclast formation in a dose-dependent manner. In OVX rats, formononetin-treated groups given 1 and 10 mg/kg/day displayed increased trabecular bone areas (TBAs) within the tibia. Genistein- and daidzein-treated groups also displayed increased tibial TBAs. TBAs of the lumbar vertebrae were higher in all treated groups than in the control group. In conclusion, formononetin as well as other isoflavones, such as daidzein and genistein, inhibited bone loss caused by estrogen-deficiency.

  1. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  2. Genistein suppresses Prevotella intermedia lipopolysaccharide-induced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis.

    PubMed

    Choi, Eun-Young; Bae, Seung Han; Ha, Min Hee; Choe, So-Hui; Hyeon, Jin-Yi; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2016-02-01

    Genistein is a major isoflavone subclass of flavonoids found in soybean and a potent tyrosine kinase inhibitor. The present study aimed to assess the effect of genistein on the production of proinflammatory mediators in murine macrophages stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen associated with different forms of periodontal disease, and to evaluate its possible influence on alveolar bone loss in ligature-induced periodontitis using micro-computed tomography (micro-CT) analysis as well. LPS was isolated from P. intermedia ATCC 25611 by using the standard hot phenol-water method. Culture supernatants were analyzed for nitric oxide (NO) and interleukin-6 (IL-6). Inducible NO synthase (iNOS) protein expression was evaluated by immunoblot analysis. Real-time PCR was carried out to measure iNOS and IL-6 mRNA expression. In addition, effect of genistein on alveolar bone loss was evaluated in a rat model of experimental periodontitis using micro-CT analysis. Genistein significantly attenuated P. intermedia LPS-induced production of iNOS-derived NO and IL-6 with attendant decrease in their mRNA expression in RAW264.7 cells. In addition, when genistein was administered to rats, decreases in alveolar bone height and bone volume fraction induced by ligature placement were significantly inhibited. Genistein administration also prevented ligature-induced alterations in the microstructural parameters of trabecular bone, including trabecular thickness, trabecular separation, bone mineral density and structure model index. While additional studies are required, we suggest that genistein could be utilized for the therapy of human periodontitis in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  4. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.

  5. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    PubMed

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  6. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  7. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection.

    PubMed

    Madeira, Mila F M; Queiroz-Junior, Celso M; Montero-Melendez, Trinidad; Werneck, Silvia M C; Corrêa, Jôice D; Soriani, Frederico M; Garlet, Gustavo P; Souza, Daniele G; Teixeira, Mauro M; Silva, Tarcilia A; Perretti, Mauro

    2016-12-01

    Alveolar bone loss is a result of an aggressive form of periodontal disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection. PD is often observed with other systemic inflammatory conditions, including arthritis. Melanocortin peptides activate specific receptors to exert antiarthritic properties, avoiding excessing inflammation and modulating macrophage function. Recent work has indicated that melanocortin can control osteoclast development and function, but whether such protection takes place in infection-induced alveolar bone loss has not been investigated. The purpose of this study was to evaluate the role of melanocortin in Aa-induced PD. Mice were orally infected with Aa and treated with the melanocortin analog DTrp 8 -γMSH or vehicle daily for 30 d. Then, periodontal tissue was collected and analyzed. Aa-infected mice treated with DTrp 8 -γMSH presented decreased alveolar bone loss and a lower degree of neutrophil infiltration in the periodontium than vehicle-treated animals; these actions were associated with reduced periodontal levels of TNF-α, IFN-γ, and IL-17A. In vitro experiments with cells differentiated into osteoclasts showed that osteoclast formation and resorptive activity were attenuated after treatment with DTrp 8 -γMSH. Thus, melanocortin agonism could represent an innovative way to tame overexuberant inflammation and, at the same time, preserve bone physiology, as seen after Aa infection.-Madeira, M. F. M., Queiroz-Junior, C. M., Montero-Melendez, T., Werneck, S. M. C., Corrêa, J. D., Soriani, F. M., Garlet, G. P., Souza, D. G., Teixeira, M. M., Silva, T. A., Perretti, M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection. © FASEB.

  8. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  9. iNOS-Derived Nitric Oxide Stimulates Osteoclast Activity and Alveolar Bone Loss in Ligature-Induced Periodontitis in Rats

    PubMed Central

    Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.

    2012-01-01

    Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589

  10. OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE

    PubMed Central

    Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev

    2014-01-01

    Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229

  11. Effects of Polymethoxyflavonoids on Bone Loss Induced by Estrogen Deficiency and by LPS-Dependent Inflammation in Mice.

    PubMed

    Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2018-01-20

    Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.

  12. Absence of ERRα in Female Mice Confers Resistance to Bone Loss Induced by Age or Estrogen-Deficiency

    PubMed Central

    Rabier, Bénédicte; Monfoulet, Laurent; Dine, Julien; Macari, Claire; Espallergues, Julie; Horard, Béatrice; Giguère, Vincent; Cohen-Solal, Martine; Chassande, Olivier; Vanacker, Jean-Marc

    2009-01-01

    Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis. PMID:19936213

  13. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    PubMed

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of methylprednisolone on bone mineral density in rats with ovariectomy-induced bone loss and suppressed endogenous adrenaline levels by metyrosine

    PubMed Central

    Yilmaz, Mehmet; Isaoglu, Unal; Uslu, Turan; Yildirim, Kadir; Seven, Bedri; Akcay, Fatih; Hacimuftuoglu, Ahmet

    2013-01-01

    Objectives: In this study, effect of methylprednisolone on bone mineral density (BMD) was investigated in rats with overiectomy induced bone lose and suppressed endogenous adrenalin levels, and compared to alendronate. Materials and Methods: Severity of bone loss in the examined material (femur bones) was evaluated by BMD measurement. Results: The group with the highest BMD value was metyrosinemetyrosine + methylprednisolone combination (0.151 g/cm2), while that with the lowest BMD was methylprednisolone (0.123 g/cm2). Alendronate was effective only when used alone in ovariectomized rats (0.144 g/cm2), but not when used in combination with methylprednisolone (0.124 g/cm2). In the ovariectomized rat group which received only metyrosine, BMD value was statistically indifferent from ovariectomized control group. Conclusions: Methylprednisolone protected bone loss in rats with suppressed adrenaline levels because of metyrosinemetyrosine. PMID:24014908

  15. Effect of Korean Red Ginseng on radiation-induced bone loss in C3H/HeN mice

    PubMed Central

    Lee, Jin-Hee; Lee, Hae-June; Yang, Miyoung; Moon, Changjong; Kim, Jong-Choon; Bae, Chun-Sik; Jo, Sung-Kee; Jang, Jong-Sik; Kim, Sung-Ho

    2013-01-01

    This study investigated the effects of Korean Red Ginseng (KRG) on radiation-induced bone loss in C3H/HeN mice. C3H/HeN mice were divided into sham and irradiation (3 Gy, gamma-ray) groups. The irradiated mice were treated for 12 wk with vehicle, KRG (per os, p.o.) or KRG (intraperitoneal). Serum alkaline phosphatase (ALP), tartrate-resistant acid phosphatase, estradiol level, and biomechanical properties were measured. Tibiae were analyzed using micro-computed tomography. Treatment of KRG (p.o., 250 mg/kg of body weight/d) significantly preserved trabecular bone volume, trabecular number, structure model index, and bone mineral density of proximal tibia metaphysic, but did not alter the uterus weight of the mice. Serum ALP level was slightly reduced by KRG treatment. However, grip strength, mechanical property, and cortical bone architecture did not differ among the experimental groups. The results indicate that KRG can prevent radiation-induced bone loss in mice. PMID:24233384

  16. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    PubMed

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  18. Serum markers of bone metabolism show bone loss in hibernating bears

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  19. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis.

    PubMed

    Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua

    2018-02-01

    Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.

  20. IL-17A GENE TRANSFER INDUCES BONE LOSS AND EPIDERMAL HYPERPLASIA ASSOCIATED WITH PSORIATIC ARTHRITIS

    PubMed Central

    ADAMOPOULOS, IANNIS E.; SUZUKI, ERIKA; CHAO, CHENG-CHI; GORMAN, DAN; ADDA, SARVESH; MAVERAKIS, EMANUAL; ZARBALIS, KONSTANTINOS; GEISSLER, RICHARD; ASIO, AGELIO; BLUMENSCHEIN, WENDY M; McCLANAHAN, TERRILL; DE WAAL MALEFYT, RENE; GERSHWIN, M. ERIC; BOWMAN, EDWARD P.

    2014-01-01

    Background Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by clinical features that include bone loss and epidermal hyperplasia. Aberrant cytokine expression has been linked to joint and skin pathology; however, it is unclear which cytokines are critical for disease initiation. IL-17A participates in many pathologic immune responses; however, its role in PsA has not been fully elucidated. Objective To determine the role of IL-17A in epidermal hyperplasia and bone destruction associated with psoriatic arthritis. Design An in vivo gene transfer approach was used to investigate the role of IL-17A in animal models of inflammatory (Collagen-induced arthritis) and non-inflammatory (RANKL-gene transfer) bone loss. Results IL-17A gene transfer induced the expansion of IL-17RA+CD11b+Gr1low osteoclast precursors and a concomitant elevation of biomarkers indicative of bone resorption. This occurred at a time preceding noticeable joint inflammation suggesting that IL-17A is critical for the induction of pathological bone resorption through direct activation of osteoclast precursors. Moreover, IL-17A induced a second myeloid population CD11b+Gr1high neutrophil-like cells which was associated with cutaneous pathology including epidermal hyperplasia, parakeratosis, and Munro’s microabscesses formation. Conclusion Collectively, these data support that IL-17A can play a key role in the pathogenesis of inflammation-associated arthritis and/or skin disease, as observed in PsA. PMID:24567524

  1. Alendronate and Resistive Exercise Countermeasures Against Bed Rest-Induced Bone Loss: Biochemical Markers of Bone and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Nillen, Jeannie L.; Davis-Street, Janis E.; DeKerlegand, Diane E.; LeBlanc, Adrian; Shackelford, Linda C.

    2001-01-01

    Weightlessness-induced bone loss must be counteracted to ensure crew health during extendedduration space missions. Studies were conducted to assess two bone loss countermeasures in a ground-based model: horizontal bed rest. Following a 3-wk ambulatory adaptation period, male and female subjects (aged 21-56 y) completed a 17-wk bed rest protocol. Subjects were assigned to one of three treatments: alendronate (ALEN; 10 mg/d, n=6), resistive exercise (RE; 1.5 h/d, 6 d/wk, n=8), or control (CN; no countermeasure, n=8). Dietary intake was adjusted to maintain body weight. Endocrine and biochemical indices were measured in blood and urine using standard laboratory methods. All data reported are expressed as percent change from individual pre-bedrest data. Serum calcium changed little during bed rest, and tended to decrease (4-8%) in ALEN subjects. In RE subjects, bone alkaline phosphatase and osteocalcin were increased >65 and >30%, respectively, during bed rest, while these were unchanged or decreased in ALEN and CN subjects. Urinary calcium was increased 50% in CN subjects, but was unchanged or decreased in both ALEN and RE groups. Urinary n-telopeptide excretion was increased 40-50% in CN and RE subjects, but decreased 20% in ALEN subjects. Pyridinium crosslink and deoxypyridinoline excretion were increased 20-50% during bed rest. These data suggest that RE countermeasures are effective at increasing markers of bone formation in an analog of weightlessness, while ALEN reduces markers of bone resorption. Counteracting the bone loss of space flight may require both pharmacologic and exercise countermeasures.

  2. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review.

    PubMed

    Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik

    2016-08-01

    Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.

  3. High dietary calcium intake does not counteract disuse-induced bone loss

    NASA Astrophysics Data System (ADS)

    Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.

    Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p

  4. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip BMD induced by weight loss despite decline in bone-active hormones*

    PubMed Central

    Shah, Krupa; Armamento-Villareal, Reina; Parimi, Nehu; Chode, Suresh; Sinacore, David R.; Hilton, Tiffany N.; Napoli, Nicola; Qualls, Clifford; Villareal, Dennis T.

    2011-01-01

    Weight-loss therapy to improve health in obese older adults is controversial because it causes further bone loss. Therefore, it is recommended that weight-loss therapy should include an intervention to minimize bone loss such as exercise training (ET). The purpose of this study was to determine the independent and combined effects of weight loss and ET on bone metabolism in relation to bone mineral density (BMD) in obese older adults. One-hundred-seven older (age >65 yrs) obese (BMI ≥30 kg/m2) adults were randomly assigned to a control group, diet group, exercise group, and diet-exercise group for 1 year. Body weight decreased in the diet (−9.6%) and diet-exercise (−9.4%) groups, not in the exercise (−1%) and control (−0.2%) groups (between-group P<.001). However, despite comparable weight loss, bone loss at the total hip was relatively less in the diet-exercise group (−1.1%) than in the diet group (−2.6%), whereas BMD increased in the exercise group (1.5%) (between-group P<.001) Serum C-terminal telopeptide (CTX) and osteocalcin concentrations increased in the diet group (31% and 24%) while they decreased in the exercise group (−13% and −15%) (between-group P<.001). In contrast, similar to the control group, serum CTX and osteocalcin concentrations did not change in the diet-exercise group. Serum procollagen propeptide concentrations decreased in the exercise group (−15%) compared with the diet group (9%) (P=.04). Serum leptin and estradiol concentrations decreased in the diet (−25% and −15%) and diet-exercise (−38% and −13%) groups, not in the exercise and control groups (between-group P=.001). Multivariate analyses revealed that changes in lean body mass (β=.33), serum osteocalcin (β= −.24), and 1-RM strength (β=.23) were independent predictors of changes in hip BMD (all P<.05). In conclusion, the addition of ET to weight-loss therapy among obese older adults prevents weight-loss-induced increase in bone turnover and attenuates

  5. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice.

    PubMed

    Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M

    2018-05-01

    Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Screening, prevention, detection, and treatment of cancer therapy-induced bone loss in patients with breast cancer.

    PubMed

    Limburg, Connie E

    2007-01-01

    To identify protocols to screen, detect, prevent, and treat cancer therapy-induced bone loss resulting in osteoporosis in patients with breast cancer. Published books and articles. Normal bone remodeling is affected by hormonal stimulation. Breast cancer therapies target hormones that promote cancer cell growth. Chemotherapy regimens and hormone ablation may cause ovarian failure, resulting in decreased hormone levels. A decrease in hormones, in estrogen- and progesterone-positive and -negative patients, introduces an environment for decreased bone remodeling, which may result in thinning bone and osteoporosis. The acceleration of bone loss leading to osteoporosis can result in higher fracture rates among breast cancer survivors. With proper use of screening tools, patient education, and advice about lifestyle changes, all prior to cancer treatment, healthcare professionals may decrease or prevent bone loss in patients with breast cancer. Doing so minimizes healthcare costs and decreases morbidity and mortality rates in breast cancer survivors. As more individuals diagnosed with breast cancer are surviving for extended periods of time, oncology nurses are providing long-term follow-up care. Part of the care should include proper screening and patient education for healthier recovery and prevention of further healthcare complications as a result of cancer treatment.

  7. Alendronate as an Effective Countermeasure to Disuse Induced Bone loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian D.; Driscol, Theda B.; Shackelford, Linda C.; Evans, Harlan J.; Rianon, Nahid J.; Smith, Scott M.; Lai, Dejian

    2002-01-01

    Microgravity, similar to diuse immobilization on earth, causes rapid bone loss. This loss is believed to be an adaptive response to the reduced musculoskelatal forces in space and occurs gradually enough that changes occurring during short duration space flight are not a concern. Bone loss, however, will be a major impediment for long duration missions if effective countermeasures are not developed and implemented. Bed rest is used to simulate the reduced mechanical forces in humans and was used to test the hypothesis that oral alendronate would reduce the effects of long duration (17 weeks) inactivity on bone. Eight male subjects were given daily oral doses of alendronate during 17 weeks of horizontal bed rest and compared with 13 male control subjects not given the drug. Efficacy was evaluated based on measurements of bone markers, calcium balance and bone density performed before, during and after the bed rest. The results show that oral alendronate attenuates most of the characteristic changes associated with long duration bed rest and presumably space flight.

  8. Computational Analysis of Artificial Gravity as a Possible Countermeasure to Spaceflight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Mulugeta, L.; Werner, C. R.; Pennline, J. A.

    2015-01-01

    During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.

  9. Synergistic Effect of Green Tea Polyphenols and Vitamin D on Chronic Inflammation-Induced Bone Loss in Female Rats

    USDA-ARS?s Scientific Manuscript database

    Our recent study demonstrated a bone-protective role of green tea polyphenols (GTPs), extracted from green tea, in chronic inflammation-induced bone loss of female rats through reduction of inflammation and oxidative stress. This study further examines effects of GTPs in conjunction with vitamin D (...

  10. The estrogen-related receptors (ERRs): potential targets against bone loss.

    PubMed

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  11. Mutant CCL2 Protein Coating Mitigates Wear Particle-Induced Bone Loss in a Murine Continuous Polyethylene Infusion Model

    PubMed Central

    Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-hua; Jiang, Xinyi; Gibon, Emmanuel; Córdova, Luis A.; Loi, Florence; Lu, Laura; Jämsen, Eemeli; Egashira, Kensuke; Yang, Fan; Yao, Zhenyu; Goodman, Stuart B

    2016-01-01

    Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis. PMID:27918885

  12. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    PubMed

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  13. Bone-97 Alcohol and Skeletal Adaptation to Mechanical Usage.

    DTIC Science & Technology

    1999-10-01

    dose response and time course effects of administered ethanol (Tasks 1 and 2) on blood alcohol levels, serum chemistry and bone metabolism...evaluation of the long-term skeletal effects of ethanol on bone metabolism and strength (Task 4); determination of the effects of ethanol on the skeletal...adaptation resistance exercise training (Task 5); determination of the effects of prior consumption of ethanol or PTH-induced increases in mRNA

  14. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  15. Alcohol Devitalization and Replantation for Primary Malignant Bone Tumors of the Knee Joint

    PubMed Central

    ZHANG, Xihai; CHEN, Ge; WANG, Jun; TANG, Lian; YIN, Yiran

    2017-01-01

    Background: This paper is aimed at studying the therapeutic effects of in situ replantation of alcohol-devitalized bone segments to treat malignant bone tumors of the knee joint. Methods: We retrospectively analyzed clinical data for 45 patients from January 2013 to January 2016 who underwent replantation following alcohol-devitalization of bone segments and 40 who underwent prosthesis implantation. The two groups were comparable in basal clinical biometric data, including gender, age, tumor type and location, Enneking staging, and maximum tumor diameter. Radical tumor resection was combined with neoadjuvant chemotherapy following the two-implantation procedures. Results: The median follow-up time was 25 months, and the outcomes were compared. We found no differences in the length of bone lesions, surgery time, intraoperative blood loss, amount of postoperative drainage, and perioperative complications, which were just three for each method. We also found no significant differences in limb function scores, internal fixation imaging scores, tumor-free survival rate, and overall survival rate between the two groups. Replantation following alcohol-devitalization of tumor-bearing bone segment demonstrated similar clinical outcomes compared with prosthesis implantation in the treatment of primary malignant bone tumors of the knee joint. Conclusion: Both therapies enjoy good application safety and effectiveness. Because alcohol devitalization is inexpensive and easy to apply in the clinic, it should be considered a preferred method in the treatment of bone tumors. PMID:29308374

  16. Involvement of Cot/Tp12 in bone loss during periodontitis.

    PubMed

    Ohnishi, T; Okamoto, A; Kakimoto, K; Bandow, K; Chiba, N; Matsuguchi, T

    2010-02-01

    Periodontitis causes resorption of alveolar bone, in which RANKL induces osteoclastogenesis. The binding of lipopolysaccharide to Toll-like receptors causes phosphorylation of Cot/Tp12 to activate the MAPK cascade. Previous in vitro studies showed that Cot/Tp12 was essential for the induction of RANKL expression by lipopolysaccharide. In this study, we examined whether Cot/Tp12 deficiency reduced the progression of alveolar bone loss and osteoclastogenesis during experimental periodontitis. We found that the extent of alveolar bone loss and osteoclastogenesis induced by ligature-induced periodontitis was decreased in Cot/Tp12-deficient mice. In addition, reduction of RANKL expression was observed in periodontal tissues of Cot/Tp12-deficient mice with experimental periodontitis. Furthermore, we found that Cot/Tp12 was involved in the induction of TNF-alpha mRNA expression in gingiva of mice with experimental periodontitis. Our observations suggested that Cot/Tp12 is essential for the progression of alveolar bone loss and osteoclastogenesis in periodontal tissue during experimental periodontitis mediated through increased RANKL expression.

  17. Modeling Calcium Loss from Bones During Space Flight

    NASA Technical Reports Server (NTRS)

    Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.

  18. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women.

    PubMed

    Villalon, Karen L; Gozansky, Wendolyn S; Van Pelt, Rachael E; Wolfe, Pam; Jankowski, Catherine M; Schwartz, Robert S; Kohrt, Wendy M

    2011-12-01

    Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1-year follow-up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6-month exercise-based weight loss program and returned for follow-up at 18 months. Dual-energy X-ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m(2). They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow-up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (-1.7 ± 3.5%; P = 0.002) and hip (-0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C-terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (-0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: -3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone-deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss.

  19. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats

    PubMed Central

    Yeh, J. K.; Cao, J. J.; Tatum, O. L.; Dagda, R. Y.; Wang, J.-S.

    2010-01-01

    Summary Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation plus alphacalcidol administration increased bone mass via a decrease of oxidative stress and inflammation suggest a significant role of GTP plus alphacalcidol in bone health of patients with chronic inflammation. Introduction Studies have suggested that green tea polyphenols (GTP) or alphacalcidol are promising dietary supplements for preventing bone loss in women. However, the mechanism(s) related to the possible osteo-protective role of GTP plus D3 in chronic inflammation-induced bone loss is not well understood. Methods This study evaluated bioavailability, efficacy, and related mechanisms of GTP in combination with alphacalcidol in conserving bone loss in rats with chronic inflammation. A 12-week study of 2 (no GTP vs. 0.5% GTP in drinking water) × 2 (no alphacalcidol vs. 0.05 μg/kg alphacalcidol, 5×/week) factorial design in lipopolysaccharide-administered female rats was performed. In addition, a group receiving placebo administration was used to compare with a group receiving lipopolysaccharide administration only to evaluate the effect of lipopolysaccharide. Results Lipopolysaccharide administration resulted in lower values for bone mass, but higher values for serum tartrate-resistant acid phosphatase (TRAP), urinary 8-hydroxy-2′-deoxyguanosine, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. GTP supplementation increased urinary epigallocatechin and epicatechin concentrations. Both GTP supplementation and alphacalcidol administration resulted in a significant increase in bone mass, but a significant decrease in serum TRAP levels, urinary 8-hydroxydeoxyguanosine levels, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. A synergistic effect of GTP and alphacalcidol was observed in these parameters. Neither GTP nor alphacalcidol affected

  20. Occupational Noise Exposure and Risk for Noise-Induced Hearing Loss Due to Temporal Bone Drilling.

    PubMed

    Vaisbuch, Yona; Alyono, Jennifer C; Kandathil, Cherian; Wu, Stanley H; Fitzgerald, Matthew B; Jackler, Robert K

    2018-07-01

    Noise-induced hearing loss is one of the most common occupational hazards in the United States. Several studies have described noise-induced hearing loss in patients following mastoidectomy. Although otolaryngologists care for patients with noise-induced hearing loss, few studies in the English literature have examined surgeons' occupational risk. Noise dosimeters and sound level meters with octave band analyzers were used to assess noise exposure during drilling of temporal bones intraoperatively and in a lab setting. Frequency specific sound intensities were recorded. Sound produced using burrs of varying size and type were compared. Differences while drilling varying anatomic structures were assessed using drills from two manufacturers. Pure tone audiometry was performed on 7 to 10 otolaryngology residents before and after a temporal bone practicum to assess for threshold shifts. Noise exposure during otologic drilling can exceed over 100 dB for short periods of time, and is especially loud using large diameter burrs > 4 mm, with cutting as compared with diamond burrs, and while drilling denser bone such as the cortex. Intensity peaks were found at 2.5, 5, and 6.3 kHz. Drilling on the tegmen and sigmoid sinus revealed peaks at 10 and 12.5 kHz. No temporary threshold shifts were found at 3 to 6 kHz, but were found at 8 to 16 kHz, though this did not reach statistical significance. This article examines noise exposure and threshold shifts during temporal bone drilling. We were unable to find previous descriptions in the literature of measurements done while multiple people drilling simultaneously, during tranlabyrinthine surgery and a specific frequency characterization of the change in peach that appears while drilling on the tegmen. Hearing protection should be considered, which would still allow the surgeon to appreciate pitch changes associated with drilling on sensitive structures and communication with surgical team members. As professionals who

  1. β-Hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway.

    PubMed

    Chen, Yonglin; Ouyang, Xinshou; Hoque, Rafaz; Garcia-Martinez, Irma; Yousaf, Muhammad Nadeem; Tonack, Sarah; Offermanns, Stefan; Dubuquoy, Laurent; Louvet, Alexandre; Mathurin, Philippe; Massey, Veronica; Schnabl, Bernd; Bataller, Ramon Alberola; Mehal, Wajahat Zafar

    2018-04-27

    Sterile inflammation resulting in alcoholic hepatitis (AH) occurs unpredictably after many years of excess alcohol intake. The factors responsible for the development of AH are not known but mitochondrial damage with loss of mitochondrial function are common features. Hcar2 is a G-protein coupled receptor which is activated by β-hydroxybutyrate (BHB). We aimed to determine the relevance of the BHB-Hcar2 pathway in alcoholic liver disease. We tested if loss of BHB production can result in increased liver inflammation. We further tested if BHB supplementation is protective in AH through interaction with Hcar2, and analyzed the immune and cellular basis for protection. Humans with AH have reduced hepatic BHB, and inhibition of BHB production in mice aggravated ethanol-induced AH, with higher plasma alanine aminotransferase levels, increased steatosis and greater neutrophil influx. Conversely supplementation of BHB had the opposite effects with reduced alanine aminotransferase levels, reduced steatosis and neutrophil influx. This therapeutic effect of BHB is dependent on the receptor Hcar2. BHB treatment increased liver Il10 transcripts, and promoted the M2 phenotype of intrahepatic macrophages. BHB also increased the transcriptional level of M2 related genes in vitro bone marrow derived macrophages. This skewing towards M2 related genes is dependent on lower mitochondrial membrane potential (Δψ) induced by BHB. Collectively, our data shows that BHB production during excess alcohol consumption has an anti-inflammatory and hepatoprotective role through an Hcar2 dependent pathway. This introduces the concept of metabolite-based therapy for AH. Alcoholic hepatitis is a life-threatening condition with no approved therapy that occurs unexpectedly in people who consume excess alcohol. The liver makes many metabolites, and we demonstrate that loss of one such metabolite β-hydroxybutyrate occurs in patients with alcoholic hepatitis. This loss can increase alcohol-induced

  2. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling

    PubMed Central

    Zheng, Xi; Lee, Sun-Kyeong

    2016-01-01

    Abstract Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  3. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    NASA Astrophysics Data System (ADS)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: p<0.02; hypocaloric: p<0.005). UCaV increased significantly over time (p<0.01) but no difference between HDBR or hypocaloric nutrition or both (p<0.26) occurred. Both CTX and NTX excretion significantly increased with HDBR (CTX: p<0.05; NTX: p<0.05), but were unaffected by hypocaloric nutrition in ambulatory and HDBR phases. In conclusion, moderate energy restriction did not exaggerate bone resorption during HDBR.

  4. Cortical bone is more sensitive to alcohol dose effects than trabecular bone in the rat.

    PubMed

    Maurel, Delphine B; Boisseau, Nathalie; Benhamou, Claude-Laurent; Jaffré, Christelle

    2012-10-01

    While chronic alcohol consumption is known to decrease bone mineral content (BMC), bone mineral density (BMD), and negatively modify trabecular bone microarchitecture, the impact of alcohol on cortical microarchitecture is still unclear. The aim of this study was to investigate the effects of various doses of alcohol on bone density, trabecular and cortical parameters and bone strength in rats. Forty-eight male Wistar rats were divided into four groups: control (C), alcohol 25% v/v (A25), alcohol 30% v/v (A30) and alcohol 35% v/v (A35). Rats in the alcohol groups were fed a solution composed of ethanol and water for 17 weeks while the control group drank only water. Bone quality and quantity were evaluated through the analysis of density, trabecular and cortical bone microarchitectural parameters, osteocalcin and N-Telopeptide concentrations and a 3-point bending test. Bone density along with trabecular and cortical thickness were lower in alcohol groups compared to C. BMD was lower in A35 vs. A30 and cortical thickness was lower in A35 vs. A25 and A30. Pore number was increased by alcohol and the porosity was greater in A35 compared to C. N-Telopeptide concentration was decreased in alcohol groups compared to control whereas no differences were observed in osteocalcin concentrations. Maximal energy to failure was lower in A25 and A35 compared to C. Chronic ethanol consumption increases cortical bone damage in rats and may have detrimental effects on bone strength. These effects were dose-dependent, with greater negative effects proportionate to greater alcohol doses. Copyright © 2011 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  5. Orthopaedic wear particle-induced bone loss and exogenous macrophage infiltration is mitigated by local infusion of NF-κB decoy oligodeoxynucleotide.

    PubMed

    Lin, Tzuhua; Pajarinen, Jukka; Nabeshima, Akira; Córdova, Luis A; Loi, Florence; Gibon, Emmanuel; Lu, Laura; Nathan, Karthik; Jämsen, Eemeli; Yao, Zhenyu; Goodman, Stuart B

    2017-11-01

    Excessive production of wear particles from total joint replacements induces chronic inflammation, macrophage infiltration, and consequent bone loss (periprosthetic osteolysis). This inflammation and bone remodeling are critically regulated by the transcription factor NF-κB. We previously demonstrated that inhibition of NF-κB signaling by using the decoy oligodeoxynucleotide (ODN) mitigates polyethylene wear particle-induced bone loss using in vitro and in vivo models. However, the mechanisms of NF-κB decoy ODN action, and in particular its impact on systemic macrophage recruitment, remain unknown. In the current study, this systemic macrophage infiltration was examined in our established murine femoral continuous particle infusion model. RAW264.7 murine macrophages expressing a luciferase reporter gene were injected into the systemic circulation. Quantification of bioluminescence showed that NF-κB decoy ODN reduced the homing of these reporter macrophages into the distal femurs exposed to continuous particle delivery. Particle-induced reduction in bone mineral density at the distal diaphysis of the femur was also mitigated by infusion of decoy ODN. Histological staining showed that the decoy ODN infusion decreased osteoclast and macrophage numbers, but had no significant effects on osteoblasts. Local infusion of NF-κB decoy ODN reduced systemic macrophage infiltration and mitigated particle-induced bone loss, thus providing a potential strategy to treat periprosthetic osteolysis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3169-3175, 2017. © 2017 Wiley Periodicals, Inc.

  6. Redefining "Critical" Bone Loss in Shoulder Instability: Functional Outcomes Worsen With "Subcritical" Bone Loss.

    PubMed

    Shaha, James S; Cook, Jay B; Song, Daniel J; Rowles, Douglas J; Bottoni, Craig R; Shaha, Steven H; Tokish, John M

    2015-07-01

    Glenoid bone loss is a common finding in association with anterior shoulder instability. This loss has been identified as a predictor of failure after operative stabilization procedures. Historically, 20% to 25% has been accepted as the "critical" cutoff where glenoid bone loss should be addressed in a primary procedure. Few data are available, however, on lesser, "subcritical" amounts of bone loss (below the 20%-25% range) on functional outcomes and failure rates after primary arthroscopic stabilization for shoulder instability. To evaluate the effect of glenoid bone loss, especially in subcritical bone loss (below the 20%-25% range), on outcomes assessments and redislocation rates after an isolated arthroscopic Bankart repair for anterior shoulder instability. Cohort study; Level of evidence, 3. Subjects were 72 consecutive anterior instability patients (73 shoulders) who underwent isolated anterior arthroscopic labral repair at a single military institution by 1 of 3 sports medicine fellowship-trained orthopaedic surgeons. Data were collected on demographics, the Western Ontario Shoulder Instability (WOSI) score, Single Assessment Numeric Evaluation (SANE) score, and failure rates. Failure was defined as recurrent dislocation. Glenoid bone loss was calculated via a standardized technique on preoperative imaging. The average bone loss across the group was calculated, and patients were divided into quartiles based on the percentage of glenoid bone loss. Outcomes were analyzed for the entire cohort, between the quartiles, and within each quartile. Outcomes were then further stratified between those sustaining a recurrence versus those who remained stable. The mean age at surgery was 26.3 years (range, 20-42 years), and the mean follow-up was 48.3 months (range, 23-58 months). The cohort was divided into quartiles based on bone loss. Quartile 1 (n = 18) had a mean bone loss of 2.8% (range, 0%-7.1%), quartile 2 (n = 19) had 10.4% (range, 7.3%-13.5%), quartile 3 (n

  7. Estrogen prevents bone loss through transforming growth factor β signaling in T cells

    PubMed Central

    Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto

    2004-01-01

    Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637

  8. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss

    PubMed Central

    Chen, Weiqiang; Foo, Suan-Sin; Rulli, Nestor E.; Taylor, Adam; Sheng, Kuo-Ching; Herrero, Lara J.; Herring, Belinda L.; Lidbury, Brett A.; Li, Rachel W.; Walsh, Nicole C.; Sims, Natalie A.; Smith, Paul N.; Mahalingam, Suresh

    2014-01-01

    Arthritogenic alphaviruses including Ross River virus (RRV), Sindbis virus, and chikungunya virus cause worldwide outbreaks of musculoskeletal disease. The ability of alphaviruses to induce bone pathologies remains poorly defined. Here we show that primary human osteoblasts (hOBs) can be productively infected by RRV. RRV-infected hOBs produced high levels of inflammatory cytokine including IL-6. The RANKL/OPG ratio was disrupted in the synovial fluid of RRV patients, and this was accompanied by an increase in serum Tartrate-resistant acid phosphatase 5b (TRAP5b) levels. Infection of bone cells with RRV was validated using an established RRV murine model. In wild-type mice, infectious virus was detected in the femur, tibia, patella, and foot, together with reduced bone volume in the tibial epiphysis and vertebrae detected by microcomputed tomographic (µCT) analysis. The RANKL/OPG ratio was also disrupted in mice infected with RRV; both this effect and the bone loss were blocked by treatment with an IL-6 neutralizing antibody. Collectively, these findings provide previously unidentified evidence that alphavirus infection induces bone loss and that OBs are capable of producing proinflammatory mediators during alphavirus-induced arthralgia. The perturbed RANKL/OPG ratio in RRV-infected OBs may therefore contribute to bone loss in alphavirus infection. PMID:24733914

  9. The association of alcohol-induced blackouts and grayouts to blood alcohol concentrations.

    PubMed

    Perry, Paul J; Argo, Tami R; Barnett, Mitchell J; Liesveld, Jill L; Liskow, Barry; Hernan, Jillian M; Trnka, Michael G; Brabson, Mary A

    2006-07-01

    The primary aim of this study was to investigate the association between measured blood alcohol concentration (BAC) and the presence and degree of amnesia (no amnesia, grayout, or blackout) in actively drinking subjects. A secondary aim was to determine potential factors other than BAC that contribute to the alcohol-induced memory loss. An interview questionnaire was administered to subjects regarding a recent alcohol associated arrest with a documented BAC greater than 0.08 g/dL for either public intoxication, driving under the influence, or under age drinking was administered. Demographic variables collected included drinking history, family history of alcoholism, presence of previous alcohol-related memory loss during a drinking episode, and drinking behavior during the episode. Memory of the drinking episode was evaluated to determine if either an alcohol-induced grayout (partial anterograde amnesia) or blackout (complete anterograde amnesia) occurred. Differences in (1) mean total number of drinks ingested before arrest, (2) gulping of drinks, and (3) BAC at arrest were found for those having blackouts compared with no amnesia; while differences in drinking more than planned were found between the no amnesia and grayout groups. A strong linear relationship between BAC and predicted probability of memory loss, particularly for blackouts was obvious. This finding clinically concludes that subjects with BAC of 310 g/dL or greater have a 0.50 or greater probability of having an alcoholic blackout.

  10. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

    PubMed

    Song, Chao; Tan, Peng; Zhang, Zheng; Wu, Wei; Dong, Yonghui; Zhao, Liming; Liu, Huiyong; Guan, Hanfeng; Li, Feng

    2018-01-22

    REV-ERBs (REV-ERBα and REV-ERBβ) are transcription repressors and circadian regulators. Previous investigations have shown that REV-ERBs repress the expression of target genes, including MMP9 and CX3CR1, in macrophages. Because MMP9 and CX3CR1 reportedly participate in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, we inferred that REV-ERBs might play a role in osteoclastogenesis. In the present study, we found that the REV-ERBα level decreased significantly during RANKL-induced osteoclast differentiation from primary bone marrow-derived macrophages (BMMs). REV-ERBα knockdown by small interfering RNA in BMMs resulted in the enhanced formation of osteoclasts, whereas REV-ERBβ knockdown showed no effect on osteoclast differentiation. Moreover, the REV-ERB agonist SR9009 inhibited osteoclast differentiation and bone resorption. Intraperitoneal SR9009 administration prevented ovariectomy-induced bone loss; this effect was accompanied by decreased serum RANKL and C-terminal telopeptide of type I collagen levels and increased osteoprotegerin levels. Further investigation revealed that NF-κB and MAPK activation and nuclear factor of activated T cells, cytoplasmic 1, and c-fos expression were suppressed by SR9009. The level of reactive oxygen species was also decreased by SR9009, with NADPH oxidase subunits also being down-regulated. In addition, an expression microarray showed that FABP4, an intracellular lipid-binding protein, was up-regulated by REV-ERB agonism. BMS309403, an inhibitor of FABP4, partially prevented the suppression of osteoclastogenesis by SR9009 through stabilizing phosphorylation of p65. To summarize, our results proved that the REV-ERB agonism inhibited osteoclastogenesis partially via FABP4 up-regulation.-Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., Liu, H., Guan, H., Li, F. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

  11. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions.

    PubMed

    Shukla, Priyanka; Mansoori, Mohd Nizam; Singh, Divya

    2018-05-01

    Recent studies have identified that Interleukin (IL)-23/IL-17 axis plays crucial role in pathogenesis of inflammation and bone destruction. IL-23 is thought to promote joint destruction in arthritis by stimulating Th17 cells. IL-23 directly mediates bone loss by inducing osteoclastogenesis and receptor activator of kappa B ligand (RANKL) expression in T cells. IL-23 also promotes tartrate-resistant acid phosphatase (TRAP) activity of osteoclast in osteoblast-osteoclast co-culture. The role of IL-23 has not been studied in estrogen deficiency induced bone loss. Here, we study the effect of IL-23 neutralization in ovariectomized (Ovx) estrogen deficient mice on various immune and skeletal parameters. We also determine whether the combination of anti-IL-23 and anti-IL17 has enhanced osteoprotective effects compared to monotherapies. Treatment of anti-IL-23 and its combination with anti-IL-17 suppressed Th17 cell differentiation and promoted development of T regulatory cells. Anti-IL-23 and its combination with anti-IL-17 prevented bone loss. However, the individual monotherapies of anti-IL-23 and anti-IL-17 were more effective than combination therapy. Treatment of IL-17 and IL-23 cytokines to bone marrow stromal cells led to increased differentiation towards osteoblast lineage. Double neutralization of IL-23 and IL-17 might be inhibiting this phenomenon thus producing less potent effects. Our studies thus support bone protective effects of anti-IL-23 and that the monotherapies of neutralizing antibodies against IL-17 and IL-23 may be a more accepted mode of treatment in management of post-menopausal bone loss rather than combination therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Massive Bone Loss Due to Orchidectomy and Localized Disuse: Preventive Effects of a Biosphonsphonate

    NASA Astrophysics Data System (ADS)

    Libouban, H.; Moreau, M. F.; Chappard, D.

    2008-06-01

    Orchidectomy (ORX) and hindlimb paralysis induced by botulinum neurotoxin (BTX) were combined to see if their effects were cumulative and if bone loss could be prevented by an antiresorptive agent (risedronate) or testosterone. Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Bone loss and microarchitecture deterioration were maximized on the immobilized bone. Risedronate but not testosterone prevented trabecular bone loss but was less effective on cortical bone loss. ORX and BTX had additive effects on bone loss which can be prevented by risedronate but not testosterone.

  13. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with eithermore » receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.« less

  14. Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways.

    PubMed

    Wang, Tao; Liu, Qian; Zhou, Lin; Yuan, Jin Bo; Lin, Xixi; Zeng, Rong; Liang, Xiaonan; Zhao, Jinmin; Xu, Jiake

    2015-11-17

    Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP), a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX) mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT). Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk), TRACP (Acp5), and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.

  15. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    PubMed

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  16. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    PubMed

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  18. Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes.

    PubMed

    Macias, B R; Lima, F; Swift, J M; Shirazi-Fard, Y; Greene, E S; Allen, M R; Fluckey, J; Hogan, H A; Braby, L; Wang, Suojin; Bloomfield, S A

    2016-09-01

    Exploration missions to the Moon or Mars will expose astronauts to galactic cosmic radiation and low gravitational fields. Exposure to reduced weightbearing and radiation independently result in bone loss. However, no data exist regarding the skeletal consequences of combining low-dose, high-linear energy transfer (LET) radiation and partial weightbearing. We hypothesized that simulated galactic cosmic radiation would exacerbate bone loss in animals held at one-sixth body weight (G/6) without radiation exposure. Female BALB/cByJ four-month-old mice were randomly assigned to one of the following treatment groups: 1 gravity (1G) control; 1G with radiation; G/6 control; and G/6 with radiation. Mice were exposed to either silicon-28 or X-ray radiation. (28)Si radiation (300 MeV/nucleon) was administered at acute doses of 0 (sham), 0.17 and 0.5 Gy, or in three fractionated doses of 0.17 Gy each over seven days. X radiation (250 kV) was administered at acute doses of 0 (sham), 0.17, 0.5 and 1 Gy, or in three fractionated doses of 0.33 Gy each over 14 days. Bones were harvested 21 days after the first exposure. Acute 1 Gy X-ray irradiation during G/6, and acute or fractionated 0.5 Gy (28)Si irradiation during 1G resulted in significantly lower cancellous mass [percentage bone volume/total volume (%BV/TV), by microcomputed tomography]. In addition, G/6 significantly reduced %BV/TV compared to 1G controls. When acute X-ray irradiation was combined with G/6, distal femur %BV/TV was significantly lower compared to G/6 control. Fractionated X-ray irradiation during G/6 protected against radiation-induced losses in %BV/TV and trabecular number, while fractionated (28)Si irradiation during 1G exacerbated the effects compared to single-dose exposure. Impaired bone formation capacity, measured by percentage mineralizing surface, can partially explain the lower cortical bone thickness. Moreover, both partial weightbearing and (28)Si-ion exposure contribute to a higher proportion of

  19. Weight loss and bone mineral density.

    PubMed

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  20. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    PubMed

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (P<0.05 relative to orchidectomy alone). Using magnetic resonance imaging, the compound was found to partially prevent orchidectomy-induced loss of lean body mass. Our data show that selective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  1. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  2. A crucial role for thiol antioxidants in estrogen-deficiency bone loss

    PubMed Central

    Lean, Jenny M.; Davies, Julie T.; Fuller, Karen; Jagger, Christopher J.; Kirstein, Barrie; Partington, Geoffrey A.; Urry, Zoë L.; Chambers, Timothy J.

    2003-01-01

    The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption. PMID:12975476

  3. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  4. Desalted Duck Egg White Peptides Promote Calcium Uptake and Modulate Bone Formation in the Retinoic Acid-Induced Bone Loss Rat and Caco-2 Cell Model.

    PubMed

    Hou, Tao; Liu, Yanshuang; Kolba, Nikolai; Guo, Danjun; He, Hui

    2017-05-12

    Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups ( p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.

  5. Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2008-01-01

    The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.

  6. Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss.

    PubMed

    Banu, Jameela; Varela, Erika; Guerra, Juan M; Halade, Ganesh; Williams, Paul J; Bahadur, Ali N; Hanaoka, Kokichi; Fernandes, Gabriel

    2012-12-01

    In patients diagnosed with osteoporosis, calcium is lost from bones making them weaker and easily susceptible to fractures. Supplementation of calcium is highly recommended for such conditions. However, the source of calcium plays an important role in the amount of calcium that is assimilated into bone. We hypothesize that naturally occurring coral calcium and zeolite may prevent ovariectomy-induced bone loss. We have measured bone loss in ovariectomized mice supplemented with coral calcium and Zeolite. Female C57BL/6 mice were either sham-operated or ovariectomized and fed diets containing coral calcium or zeolite for 6 months. Serum was analyzed for bone biochemical markers and cytokines. Bones were analyzed using dual x-ray absorbtiometry, peripheral quantitative computed tomography, and micro-computed tomography densitometry. In the distal femoral metaphysis, total bone and cortical bone mass was restored and the endocortical surface was significantly decreased in coral calcium and zeolite fed ovariectomized (OVX) mice. Trabecular number and the ratio of bone volume to total volume was higher in OVX mice after coral calcium and zeolite feeding, while trabecular separation decreased in the different treatment OVX groups. Coral calcium protected bone to a lesser extent in the proximal tibia and lumbar vertebrae. Overall, coral calcium and zeolite may protect postmenopausal bone loss. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    PubMed

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  8. Protective effects of the angiotensin type 1 receptor antagonist losartan in infection-induced and arthritis-associated alveolar bone loss.

    PubMed

    Queiroz-Junior, C M; Silveira, K D; de Oliveira, C R; Moura, A P; Madeira, M F M; Soriani, F M; Ferreira, A J; Fukada, S Y; Teixeira, M M; Souza, D G; da Silva, T A

    2015-12-01

    The angiotensin type 1 (AT1) receptor has been implicated in the pathogenesis of inflammatory bone disorders. This study aimed to investigate the effect of an AT1 receptor antagonist in infection-induced and arthritis-associated alveolar bone loss in mice. Mice were subjected to Aggregatibacter actinomycetemcomitans oral infection or antigen-induced arthritis and treated daily with 10 mg/kg of the prototype AT1 antagonist, losartan. Treatment was conducted for 30 d in the infectious condition and for 17 d and 11 d in the preventive or therapeutic regimens in the arthritic model, respectively. The mice were then killed, and the maxillae, serum and knee joints were collected for histomorphometric and immunoenzymatic assays. In vitro osteoclast assays were performed using RAW 264.7 cells stimulated with A. actinomycetemcomitans lipopolysacharide (LPS). Arthritis and A. actinomycetemcomitans infection triggered significant alveolar bone loss in mice and increased the levels of myeloperoxidase and of TRAP(+) osteoclasts in periodontal tissues. Losartan abolished such a phenotype, as well as the arthritis joint inflammation. Both arthritis and A. actinomycetemcomitans conditions were associated with the release of tumor necrosis factor alpha (TNF-α), interferon-gamma, interleukin-17 and chemokine (C-X-C motif) ligand 1 and an increased RANKL/osteoprotegerin ratio in periodontal tissues, but such expression decreased after losartan treatment, except for TNF-α. The therapeutic approach was as beneficial as the preventive one. In vitro, losartan prevented LPS-induced osteoclast differentiation and activity. The blockade of AT1 receptor exerts anti-inflammatory and anti-osteoclastic effects, thus protecting periodontal tissues in distinct pathophysiological conditions of alveolar bone loss. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Nandrolone slows hindlimb bone loss in a rat model of bone loss due to denervation.

    PubMed

    Cardozo, Christopher P; Qin, Weiping; Peng, Yuanzhen; Liu, Xuan; Wu, Yong; Pan, Jiangping; Bauman, William A; Zaidi, Mone; Sun, Li

    2010-03-01

    Nandrolone is an anabolic steroid that has been demonstrated to reduce the loss of bone and muscle from hindlimb unweighting and to slow muscle atrophy after nerve transection. To determine whether nandrolone has the ability to protect bone against loss due to disuse after denervation, male rats underwent sciatic nerve transaction, followed 28 days later by treatment with nandrolone or vehicle for 28 days. Bone mineral density (BMD) was determined 28 days later or 56 days after nerve transection. Denervation led to reductions in BMD of 7% and 12% for femur and tibia, respectively. Nandrolone preserved 80% and 60% of BMD in femur and tibia, respectively, demonstrating that nandrolone administration significantly reduced loss of BMD from denervation. This study offers a potential novel pharmacological strategy for use of nandrolone to reduce bone loss in severe disuse- and denervation-related bone loss, such as that which occurs after spinal cord injury.

  10. Transplantation of osteoporotic bone marrow stromal cells rejuvenated by the overexpression of SATB2 prevents alveolar bone loss in ovariectomized rats.

    PubMed

    Xu, Rongyao; Fu, Zongyun; Liu, Xue; Xiao, Tao; Zhang, Ping; Du, Yifei; Yuan, Hua; Cheng, Jie; Jiang, Hongbing

    2016-11-01

    Estrogen-deficient osteoporosis is an aging-related disease with high morbidity that not only significantly increases a woman's risk of fragility fracture but is also associated with tooth and bone loss in the supporting alveolar bone of the jaw. Emerging evidence suggests that the aging of bone marrow stromal cells (BMSCs) contributes to the development of osteoporosis. In this study, we aimed to investigate the role of the special AT-rich sequence-binding protein 2 (SATB2), a stemness and senescence regulator of craniofacial BMSCs, in rat ovariectomy-induced alveolar osteoporosis. We also sought to determine whether transplantation of SATB2-modified BMSCs could ameliorate estrogen deficient alveolar bone loss. Our data revealed that BMSCs from ovariectomy-induced alveolar bone exhibited typical senescence phenotypes such as diminished stemness and osteogenic capacity, increased expression of senescence or osteoclastic markers and enhanced adipogenic potential. These phenotypic changes are a result of SATB2-mediated senescence dysregulation as evidenced by nuclear γH2AX foci formation. Moreover, overexpression of SATB2 significantly alleviated the senescence of osteoporotic BMSCs in vitro. Importantly, transplantation of SATB2-modified BMSCs significantly attenuated ovariectomy-induced alveolar bone loss in vivo. Together, our results revealed that SATB2 is a critical regulator of alveolar BMSC senescence, and its overexpression decreases these senescent changes both in vitro and in vivo. SATB2-modified BMSC delivery could be a viable and promising therapeutic strategy for alveolar bone loss induced by estrogen-deficient osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prevention of glucocorticoid induced bone changes with beta-ecdysone

    PubMed Central

    Dai, Weiwei; Jiang, Li; Lay, Yu-An Evan; Chen, Haiyan; Jin, Guoqin; Zhang, Hongliang; Kot, Alex; Ritchie, Robert O.; Lane, Nancy E.; Yao, Wei

    2015-01-01

    Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GCs) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/d) and treated with vehicle control or βEcd (0.5mg/kg/d) for 21 days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss. PMID:25585248

  12. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women.

    PubMed

    Von Thun, Nancy L; Sukumar, Deeptha; Heymsfield, Steven B; Shapses, Sue A

    2014-05-01

    Short-term weight loss is accompanied by bone loss in postmenopausal women. The longer-term impact of weight loss on bone in reduced overweight/obese women compared with women who regained their weight was examined in this study using a case-control design. Postmenopausal women (N = 42; mean [SD] body mass index, 28.3 [2.8] kg/m; mean [SD] age, 60.7 [5.5] y) were recruited 2 years after the start of a 6-month weight loss trial; those who maintained their weight (weight loss maintainer [WL-M] group) were matched to a cohort of women who regained their weight (weight loss regainer [WL-R] group). Serum hormones and bone markers were measured in a subset. Bone mineral density (BMD) at the femoral neck, trochanter, spine, radius, and total body, and soft-tissue composition were taken at baseline, 0.5 years, and 2 years. During weight loss, both groups lost 9.3% (3.4%) of body weight, with no significant difference between the groups. After weight loss, weight change was -0.1% (2.7%) and 6.0% (3.3%) in the WL-M (n = 22) and WL-R (n = 20) groups, respectively. After 2 years, both groups lost BMD at the femoral neck and trochanter (P ≤ 0.01), whereas only the WL-M group reduced BMD at the 1/3 radius (P < 0.001). There was greater BMD loss at the trochanter (-6.8% [5.7%]) and 1/3 radius (-4.5% [3.3%]) in the WL-M group compared with the WL-R group after 2 years. Multiple linear regression showed that change in leg fat mass (but not trunk fat) contributed to trochanter BMD loss (P < 0.05). After 2 years, there is no BMD recovery of weight reduction-induced bone loss, irrespective of weight regain. These data suggest that the period after weight loss may be an important point in time to prevent bone loss for those who maintain weight and those who regain weight.

  13. Rapid Loss of Bone Mass and Strength in Mice after Abdominal Irradiation

    PubMed Central

    Jia, Dan; Gaddy, Dana; Suva, Larry J.; Corry, Peter M.

    2011-01-01

    Localized irradiation is a common treatment modality for malignancies in the pelvic-abdominal cavity. We report here on the changes in bone mass and strength in mice 7–14 days after abdominal irradiation. Male C57BL/6 mice of 10–12 weeks of age were given a single-dose (0, 5, 10, 15 or 20 Gy) or fractionated (3 Gy × 2 per day × 7.5 days) X rays to the abdomen and monitored daily for up to 14 days. A decrease in the serum bone formation marker and ex vivo osteoblast differentiation was detected 7 days after a single dose of radiation, with little change in the serum bone resorption marker and ex vivo osteoclast formation. A single dose of radiation elicited a loss of bone mineral density (BMD) within 14 days of irradiation. The BMD loss was up to 4.1% in the whole skeleton, 7.3% in tibia, and 7.7% in the femur. Fractionated abdominal irradiation induced similar extents of BMD loss 10 days after the last fraction: 6.2% in the whole skeleton, 5.1% in tibia, and 13.8% in the femur. The loss of BMD was dependent on radiation dose and was more profound in the trabecula-rich regions of the long bones. Moreover, BMD loss in the total skeleton and the femurs progressed with time. Peak load and stiffness in the mid-shaft tibia from irradiated mice were 11.2–14.2% and 11.5–25.0% lower, respectively, than sham controls tested 7 days after a single-dose abdominal irradiation. Our data demonstrate that abdominal irradiation induces a rapid loss of BMD in the mouse skeleton. These effects are bone type- and region-specific but are independent of radiation fractionation. The radiation-induced abscopal damage to the skeleton is manifested by the deterioration of biomechanical properties of the affected bone. PMID:21859327

  14. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women.

    PubMed

    Chapurlat, R D; Garnero, P; Sornay-Rendu, E; Arlot, M E; Claustrat, B; Delmas, P D

    2000-01-01

    Bone loss before and around the time of menopause is not well characterized by longitudinal studies. We measured bone mineral density at various skeletal sites--total body, femoral neck, trochanter, anteroposterior (AP) and lateral spine, and forearm--with dual-energy X-ray absorptiometry in a large prospective cohort of 272 untreated pre- and perimenopausal women aged 31-59 years, at 1 year intervals for 3 years. Sex steroids and the following markers of bone remodeling were measured: serum osteocalcin (OC), procollagen I carboxyterminal extension peptide, bone alkaline phosphatase (BAP) and urinary crosslinks (CTX and NTX). Seventy-six women were classified as perimenopausal and 196 as premenopausal. Over the 3 years, premenopausal women had no significant bone loss at any site and a small but significant increase in bone mineral density at the trochanter, total hip, AP spine and radius. Perimenopausal women significantly lost bone from cancellous and cortical sites, i.e., the femoral neck, trochanter and lumbar spine. In perimenopausal women with increased follicle stimulating hormone, the rate of bone loss at the femoral neck correlated negatively with OC and BAP. In perimenopausal women, serum estradiol levels decreased during the 3 years of follow-up and bone loss from the trochanter and the AP spine was correlated with serum estradiol after 3 years. In conclusion, among premenopausal women there is no bone loss. In contrast, there is a rapid and diffuse bone loss in perimenopausal women, related to decreased estrogen secretion. Bone markers may be useful to identify these women losing bone.

  15. Effect of avocado/soybean unsaponifiables on ligature-induced bone loss and bone repair after ligature removal in rats.

    PubMed

    Oliveira, G J P L; Paula, L G F; Souza, J A C; Spin-Neto, R; Stavropoulos, A; Marcantonio, R A C

    2016-06-01

    The aim of this study was to evaluate the effects of administration of avocado/soybean unsaponifiable (ASU), a drug that is commonly used in the treatment of rheumatoid arthritis, on ligature-induced bone loss and bone repair after ligature removal in rats. Eighty-four rats were randomly assigned to four groups of equal size and received a daily gavage of either sterile saline [control (CTR)] or ASU (0.6 mg/kg), starting 7 d before (ASU/-7), on the day of (ASU/0) or 7 d after (ASU/+7) periodontitis induction. Periodontitis was induced by placing silk ligatures into the gingival sulcus of the second maxillary molars for 7 d; after 7 d, the ligatures were removed. Seven rats from each group were sacrificed, 7, 15 or 30 d after ligature removal. Bone resorption was evaluated by histomorphometry and micro-computed tomography (micro-CT). Immunohistochemistry was used to evaluate the expression of TRAP, RANKL and alkaline phosphatase (ALP), and quantitative PCR (qPCR) was used to evaluate the levels of interleukin-1beta (Il1β), tumor necrosis factor alpha (Tnfα), interleukin-6 (Il-6), Rankl and Alp. Statistical analysis was performed using the Shapiro-Wilk test, ANOVA and Tukey's test for normal data, and using the Kruskall-Wallis and Dunnet's tests for non-normal data (p < 0.05). Histomorphometry and micro-CT analysis showed greater bone resorption in the CTR group than in the ASU/0 (15 d) and ASU/+7 (7 and 15 d) groups. The CTR group also presented with a higher expression of TRAP (15 and 30 d) and RANKL (7 and 15 d) compared with ASU/0 and ASU/+7 groups. Similarly, qPCR analysis showed higher levels of Rankl and Il1β mRNAs, and lower levels of Alp mRNA, in the CTR group compared with all other groups (for all periods). ASU exhibited a positive effect on bone repair following ligature-induced periodontitis in rats. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Breast Cancer and Bone Loss

    MedlinePlus

    ... Resource Find an Endocrinologist Search Breast Cancer and Bone Loss July 2010 Download PDFs English Espanol Editors ... What is the link between breast cancer and bone loss? Certain treatments for breast cancer can lead ...

  17. Prevention of glucocorticoid induced bone changes with beta-ecdysone.

    PubMed

    Dai, Weiwei; Jiang, Li; Lay, Yu-An Evan; Chen, Haiyan; Jin, Guoqin; Zhang, Hongliang; Kot, Alexander; Ritchie, Robert O; Lane, Nancy E; Yao, Wei

    2015-05-01

    Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GC) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/day) and treated with vehicle control or βEcd (0.5mg/kg/day) for 21days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on the endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Horizontal alveolar bone loss: A periodontal orphan

    PubMed Central

    Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya

    2010-01-01

    Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for

  19. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuo; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012; Li, Xianan

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with themore » in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.« less

  20. Naringin ameliorates bone loss induced by sciatic neurectomy and increases Semaphorin 3A expression in denervated bone.

    PubMed

    Ma, Xinlong; Lv, Jianwei; Sun, Xiaolei; Ma, Jianxiong; Xing, Guosheng; Wang, Ying; Sun, Lei; Wang, Jianbao; Li, Fengbo; Li, Yanjun; Zhao, Zhihu

    2016-04-25

    Naringin maintains bone mass in various osteoporosis models, while its effect on bone in disuse osteoporosis has not been reported. The present study explores whether naringin can prevent disuse osteoporosis induced by unilateral sciatic neurectomy (USN) and whether the Semaphorin 3A-induced Wnt/β-catenin signalling pathway is involved in the osteoprotection of naringin. Naringin dose-dependently prevented the deterioration of bone mineral density (BMD), trabecular structure and biomechanical strength in femur due to USN. Naringin increased bone formation but inhibited resorption, as indicated by bone-turnover markers in blood and urine and the histological staining of Osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) in femur. Semaphorin 3A (Sema3A) and active β-catenin protein decreased after USN and could be restored by naringin to the levels of the sham-operated rats. In addition, naringin in vitro promoted the differentiation of osteoblasts and inhibited osteoclastic differentiation. Our studies suggest that the down-regulation of Sema3A and the subsequent inactivation of Wnt/β-catenin signalling may be some of the mechanisms involved in USN-induced osteoporosis. Naringin could increase the expression of Sema3A and the activation of Wnt/β-catenin signalling to prevent disuse osteoporosis induced by denervation. Thus, naringin functions in bone maintenance and could be a promising therapeutic alternative in preventing disuse osteoporosis.

  1. Naringin ameliorates bone loss induced by sciatic neurectomy and increases Semaphorin 3A expression in denervated bone

    PubMed Central

    Ma, Xinlong; Lv, Jianwei; Sun, Xiaolei; Ma, Jianxiong; Xing, Guosheng; Wang, Ying; Sun, Lei; Wang, Jianbao; Li, Fengbo; Li, Yanjun; Zhao, Zhihu

    2016-01-01

    Naringin maintains bone mass in various osteoporosis models, while its effect on bone in disuse osteoporosis has not been reported. The present study explores whether naringin can prevent disuse osteoporosis induced by unilateral sciatic neurectomy (USN) and whether the Semaphorin 3A-induced Wnt/β-catenin signalling pathway is involved in the osteoprotection of naringin. Naringin dose-dependently prevented the deterioration of bone mineral density (BMD), trabecular structure and biomechanical strength in femur due to USN. Naringin increased bone formation but inhibited resorption, as indicated by bone-turnover markers in blood and urine and the histological staining of Osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) in femur. Semaphorin 3A (Sema3A) and active β-catenin protein decreased after USN and could be restored by naringin to the levels of the sham-operated rats. In addition, naringin in vitro promoted the differentiation of osteoblasts and inhibited osteoclastic differentiation. Our studies suggest that the down-regulation of Sema3A and the subsequent inactivation of Wnt/β-catenin signalling may be some of the mechanisms involved in USN-induced osteoporosis. Naringin could increase the expression of Sema3A and the activation of Wnt/β-catenin signalling to prevent disuse osteoporosis induced by denervation. Thus, naringin functions in bone maintenance and could be a promising therapeutic alternative in preventing disuse osteoporosis. PMID:27109829

  2. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  3. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?

    PubMed

    Barcia, Jorge M; Portolés, Sandra; Portolés, Laura; Urdaneta, Alba C; Ausina, Verónica; Pérez-Pastor, Gema M A; Romero, Francisco J; Villar, Vincent M

    2017-01-01

    HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.

  4. Does bone loss begin after weight loss ends? Results two years after weight loss or regain in postmenopausal women

    PubMed Central

    Von Thun, Nancy L.; Sukumar, Deeptha; Heymsfield, Steven B.; Shapses, Sue A.

    2016-01-01

    Objective Short-term weight loss is accompanied by bone loss in postmenopausal women. The longer-term impact on bone in the reduced overweight/obese woman compared to those who regain their weight was examined in this study using a case-control design. Methods Postmenopausal women (n = 42, body mass index of 28.3 ± 2.8 kg/m2; 60.7 ± 5.5 y) were recruited 2 years after the start of a 6 month weight loss trial and those who maintained their weight (WL-M) were matched to a cohort who regained weight (WL-R). Serum hormones and bone markers were measured in a subset. Bone mineral density (BMD) at the femoral neck (FN), trochanter, spine, radius, and total body and soft tissue composition were taken at baseline, 0.5 and 2 years. Results During WL, both groups lost 9.3 ± 3.4% body weight with no significant difference between groups. After weight loss, weight change was −0.1 ± 2.7 % and 6.0 ± 3.3% in the WL-M (n=22) and WL-R (n=20) groups, respectively. After 2 years, both groups lost BMD at the FN and trochanter (p ≤ 0.01), whereas only the WL-M group reduced BMD at the 1/3 radius (p < 0.001). There was a greater BMD loss at the trochanter (−6.8 ± 5.7%) and the 1/3 radius (−4.5 ± 3.3%) in the WL-M compared to the WL-R group after 2 years. Multiple linear regression showed that change in leg fat mass (but not trunk fat) contributed to trochanter BMD loss (p <0.05). Conclusions After 2 years, there is no BMD recovery of weight reduction-induced bone loss, irrespective of weight-regain. These data suggest that the period after weight loss may be an important point in time to prevent bone loss for both those who maintain or regain weight. PMID:24149920

  5. Resistance exercise as a countermeasure to disuse-induced bone loss.

    PubMed

    Shackelford, L C; LeBlanc, A D; Driscoll, T B; Evans, H J; Rianon, N J; Smith, S M; Spector, E; Feeback, D L; Lai, D

    2004-07-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  6. Resistance exercise as a countermeasure to disuse-induced bone loss

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A. D.; Driscoll, T. B.; Evans, H. J.; Rianon, N. J.; Smith, S. M.; Spector, E.; Feeback, D. L.; Lai, D.

    2004-01-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  7. Intrauterine stress induces bone loss in adult offspring of C3H/HeJ mice having high bone mass phenotype but not C57BL/6J mice with low bone mass phenotype.

    PubMed

    Raygorodskaya, M; Gabet, Y; Shochat, C; Kobyliansky, E; Torchinsky, A; Karasik, D

    2016-06-01

    In this study we examined to what extent and how genetics may modify osteoporosis risk arising due to environmental stresses which act during the antenatal period of life and have the potential to induce bone loss in adulthood. C57Bl/6J (C57) and C3H/HeJ (C3H) mice were used as a model system. The mice were exposed to a single injection of 5-aza-2'-deoxycytidine (5-AZA) on day 10 of pregnancy and the structure and bone mineral density (BMD) of the femur and 3rd lumbar vertebra of 3- and 6-month-old male and female offspring were evaluated by micro-computed tomography (μCT). Besides, we also attempted to evaluate whether 5-AZA affects the expression of some osteogenic genes in the embryonic limb buds. The main observation of this study is that 5-AZA-induced loss of bone quality was registered in 6-mo-old C3H offspring but not in their C57 counterparts. We also observed that C57 and C3H embryos may differ in their response to 5-AZA-induced detrimental stimuli: whereas 5-AZA treated C3H embryos exhibited a decreased expression of Col1a1, C57 embryos exhibit a decreased expression of Sox9. Overall, our study, by thorough characterization of bone homeostasis in 3- and 6-month-old offspring of 5-AZA-exposed C57 and C3H mice, allows hypothesizing that the adaptive response to antenatal insults may be stronger in offspring inherently exhibiting a low bone mass phenotype than in offspring inherently exhibiting a high bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Inhibitory effects of Persicariae Rhizoma aqueous extracts on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats

    PubMed Central

    Kang, Su Jin; Lee, Eun Kyung; Han, Chang Hyun; Lee, Bong Hyo; Lee, Young Joon; Ku, Sae Kwang

    2016-01-01

    Persicariae Rhizoma (PR) is the dried stem parts of Persicaria tinctoria H. Gross (Polygonaceae), and has been traditionally used as anti-inflammatory and detoxifying agent. In the present study, the effects of PR aqueous extracts on ligation-induced experimental periodontitis (EPD) and associated alveolar bone loss in rats were examined. Following the induction of EPD in rats, PR extracts were orally administered once a day for 10 days, and the changes and gains in body weight, alveolar bone loss and total aerobic bacterial counts of buccal gingiva were observed with histopathological analysis. In addition, anti-inflammatory effects were evaluated by monitoring myeloperoxidase (MPO) activities, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α contents, and anti-oxidant effects were investigated by measuring inducible nitric oxide synthase (iNOS) activities and malondialdehyde (MDA) levels. Bacterial proliferation, periodontitis and associated alveolar bone loss induced by ligature placement were significantly and dose-dependently inhibited by the treatment with PR extracts. The inhibitory effects of 200 mg/kg PR were similar to those of 5 mg/kg indomethacin on ligation-induced periodontitis and associated alveolar bone losses in this study. The results suggest that PR effectively inhibits ligature placement-induced periodontitis and alveolar bone loss in rats via antibacterial, antioxidative and anti-inflammatory activities. PMID:27588077

  9. Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawkey, A.

    The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.

  10. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    PubMed Central

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  11. Medicines and Bone Loss

    MedlinePlus

    ... The doses of thyroid hormone used to treat hypothyroidism (underactive thyroid) don’t harm bone and shouldn’t be cause for concern. Only high doses, used for thyroid cancer treatment, can cause bone loss. High doses or long- ...

  12. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  13. INF-γ encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment.

    PubMed

    Agas, Dimitrios; Gusmão Silva, Guilherme; Laus, Fulvio; Marchegiani, Andrea; Capitani, Melania; Vullo, Cecilia; Catone, Giuseppe; Lacava, Giovanna; Concetti, Antonio; Marchetti, Luigi; Sabbieti, Maria Giovanna

    2017-02-01

    IFN-γ is a pleotropic cytokine produced in the bone microenvironment. Although IFN-γ is known to play a critical role on bone remodeling, its function is not fully elucidated. Consistently, outcomes on the effects of IFN-γ recombinant protein on bone loss are contradictory among reports. In our work we explored, for the first time, the role of IFN-γ encoding plasmid (pIFN-γ) in a mouse model of osteopenia induced by ovariectomy and in the sham-operated counterpart to estimate its effects in skeletal homeostasis. Ovariectomy produced a dramatic decrease of bone mineral density (BMD). pINF-γ injected mice showed a pathologic bone and bone marrow phenotype; the disrupted cortical and trabecular bone microarchitecture was accompanied by an increased release of pro-inflammatory cytokine by bone marrow cells. Moreover, mesenchymal stem cells' (MSCs) commitment to osteoblast was found impaired, as evidenced by the decline of osterix-positive (Osx + ) cells within the mid-diaphyseal area of femurs. For instance, a reduction and redistribution of CXCL12 cells have been found, in accordance with bone marrow morphological alterations. As similar effects were observed both in sham-operated and in ovariectomized mice, our studies proved that an increased IFN-γ synthesis in bone marrow might be sufficient to induce inflammatory and catabolic responses even in the absence of pathologic predisposing substrates. In addition, the obtained data might raise questions about pIFN-γ's safety when it is used as vaccine adjuvant. © 2017 Society for Endocrinology.

  14. NELL-1 in the treatment of osteoporotic bone loss

    DOE PAGES

    James, Aaron W.; Shen, Jia; Zhang, Xinli; ...

    2015-06-17

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast: osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to amore » large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Furthermore, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.« less

  15. NELL-1 in the treatment of osteoporotic bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Aaron W.; Shen, Jia; Zhang, Xinli

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast: osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to amore » large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Furthermore, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.« less

  16. The soy-associated phytoestrogen, genistein, does not protect against alcohol induced osteoporosis in male mice

    USDA-ARS?s Scientific Manuscript database

    Alcohol abuse acts as a risk factor for osteoporosis by increasing osteoclast activity and decreasing osteoblast activity in bone. These effects can be reversed by estradiol. Soy diets are also suggested to have protective effects on bone loss in men and women, as a result of the presence of soy pro...

  17. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?

    PubMed Central

    Barcia, Jorge M.; Portolés, Sandra; Portolés, Laura; Urdaneta, Alba C.; Ausina, Verónica; Pérez-Pastor, Gema M. A.; Romero, Francisco J.; Villar, Vincent M.

    2017-01-01

    HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults. PMID:28179886

  18. Glucocorticoid-induced bone loss can be reversed by the actions of PTH and Risedronate on different pathways for bone formation and mineralization

    PubMed Central

    Yao, Wei; Cheng, Zhiqiang; Pham, Aaron; Busse, Cheryl; Zimmermann, Elizabeth A.; Ritchie, Robert O.; Lane, Nancy E.

    2008-01-01

    Glucocorticoid (GC) excess decreases bone mineralization and microarchitecture and lead to reduced bone strength. Both anabolic (PTH) and anti-resorptive agents are used to prevent and treat GC-induced bone loss, yet these bone active agents alter bone turnover by very different mechanisms. Our study objective was to determine how PTH and risedronate (Ris) alter bone quality following GC excess. Five-month-old Swiss-Webster male mice were treated with the glucocorticoid (GC) prednisolone (5 mg/kg 60-day slow-release pellet) or placebo (PL)]. At day 28−56, two groups of GC-treated animals had either PTH (5μg/kg, 5x/wk) or Ris (5μg/kg, 5x/wk) intervention. Bone quality and quantity measurements include x-ray tomography microscopy (XTM) for the degree of bone mineralization (DBM), microCT for bone microarchitecture, compression testing for trabecular bone strength, biochemistry and histomorphometry for bone turnover. In addition, real-time PCR and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. Results Compared to the placebo treated mice, GC treatment decreased trabecular bone volume (BV/TV) and serum osteocalcin, but increased serum CTX and osteoclast surface with a peak at day 28. GC+PTH increased and GC+Ris restored BV/TV to the PL levels after a 28 day treatment period. Average DBM was lowered after GC treatment (−27%), and it was restored to PL level with GC+Ris and GC+PTH. At day 56, RT-PCR revealed that continuous exposure to GC and GC+PTH increased, while GC+Ris decreased the expression of genes that inhibit bone mineralization (Dmp1 and Phex), compared to the PL group. Wnt signaling antagonists Dkk1, Sost and Wif1 were up-regulated by GC treatment but were down-regulated after GC+PTH treatment. Immunohistochemistry of bone sections found GC increased N terminal dmp-1 while PTH treatment increased both N and C terminal dmp-1 staining around osteocytes

  19. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  20. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis.

    PubMed

    Loredo-Pérez, Aleyda A; Montalvo-Blanco, Carlos E; Hernández-González, Luis I; Anaya-Reyes, Maricruz; Fernández Del Valle-Laisequilla, Cecilia; Reyes-García, Juan G; Acosta-González, Rosa I; Martínez-Martínez, Arisai; Villarreal-Salcido, Jaira C; Vargas-Muñoz, Virginia M; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B; Jiménez-Andrade, Juan M

    2016-05-01

    Our aim was to quantify nociceptive spontaneous behaviors, knee edema, proinflammatory cytokines, bone density, and microarchitecture in high-fat diet (HFD)-fed mice with unilateral knee arthritis. ICR male mice were fed either standard diet (SD) or HFD starting at 3 weeks old. At 17 weeks, HFD and SD mice received intra-articular injections either with Complete Freund's Adjuvant (CFA) or saline into the right knee joint every 7 days for 4 weeks. Spontaneous pain-like behaviors and knee edema were assessed for 26 days. At day 26 post-first CFA injection, serum levels of IL-1β, IL-6, and RANKL were measured by ELISA, and microcomputed tomography analysis of knee joints was performed. HFD-fed mice injected with CFA showed greater spontaneous pain-like behaviors of the affected extremity as well as a decrease in the weight-bearing index compared to SD-fed mice injected with CFA. Knee edema was not significantly different between diets. HFD significantly exacerbated arthritis-induced bone loss at the distal femoral metaphysis but had no effect on femoral diaphyseal cortical bone. HFD did not modify serum levels of proinflammatory cytokines. HFD exacerbates pain-like behaviors and significantly increases the magnitude of periarticular trabecular bone loss in a murine model of unilateral arthritis. © 2016 The Obesity Society.

  1. The effect of clomiphene on disuse bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, A.; Marsh, C.; Spira, M.

    1984-01-01

    Clomiphene is a synthetic estrogen agonist/antagonist used for many years to induce ovulation in anovulatory women. A recent study demonstrated that clomiphene had a protective effect against bone loss in ovariectomized aged rats. The purpose was to determine if this drug retards resorption of bone associated with disuse in rats with intact ovaries. Eleven adult (300-350g) female rats received a pedicle bone graft (disuse) in one femur with the opposite limb serving as control. Of these, 6 received weekly 10 mg injections of clomiphone (Rx). Three Rx and three untreated (unRx) were sacrificed at 6 weeks while the remainder (3more » Rx, 2 unRx) were sacrificed at 10 weeks after surgery. All received quantitative injections of MDP 24 hrs. before sacrifice and labeled microspheres (5) just prior to sacrifice. The % uptakes of MDP and S, total bone mineral (BMC) and regional BMC (RBMC) were determined. Results are expressed as a ratio of the pedicle bone to the bone from the opposite limb. At 6 weeks, MDP and S are elevated in both groups indicating that metabolic activity is elevated. The Rx group shows no change in BMC while the unRx lost 13%. At 10 weeks, MDP and S are close to one in both groups. The Rx group lost 13% BMC while the unRx lost 29%. The RBMC indicates that the early loss of mineral is located primarily in the metaphysis, a region rich in trabecular bone. These results indicate that clomiphene retards resorption of bone resulting from disuse.« less

  2. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss

    PubMed Central

    Herbert, Bethany A.; Steinkamp, Heidi M.; Gaestel, Matthias

    2016-01-01

    ABSTRACT Aggregatibacter actinomycetemcomitans is associated with aggressive periodontal disease, which is characterized by inflammation-driven alveolar bone loss. A. actinomycetemcomitans activates the p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) stress pathways in macrophages that are involved in host responses. During the inflammatory process in periodontal disease, chemokines are upregulated to promote recruitment of inflammatory cells. The objective of this study was to determine the role of MK2 signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis. Utilizing a murine calvarial model, Mk2+/+ and Mk2−/− mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture. MK2 positively regulated the following macrophage RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2. Additionally, RNA analysis revealed that MK2 signaling regulated chemokines CCL3 and CCL4 in murine calvarial tissue. Utilizing the chimeric murine air pouch model, MK2 signaling differentially regulated CCL3 and CCL4 in the hematopoietic and nonhematopoietic compartments. Bone resorption pits in calvaria, observed by micro-computed tomography, and osteoclast formation were decreased in Mk2−/− mice compared to Mk2+/+ mice after A. actinomycetemcomitans treatment. In conclusion, these data suggest that MK2 in macrophages contributes to regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss. PMID:27795356

  3. High fat diet attenuates hyperglycemia, body composition changes, and bone loss in male streptozotocin-induced type 1 diabetic mice.

    PubMed

    Carvalho, Adriana Lelis; DeMambro, Victoria E; Guntur, Anyonya R; Le, Phuong; Nagano, Kenichi; Baron, Roland; de Paula, Francisco José Albuquerque; Motyl, Katherine J

    2018-02-01

    There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies. © 2017 Wiley Periodicals, Inc.

  4. Peptidergic Agonists of Activity-Dependent Neurotrophic Factor Protect Against Prenatal Alcohol-Induced Neural Tube Defects and Serotonin Neuron Loss

    PubMed Central

    Zhou, Feng C.; Fang, Yuan; Goodlett, Charles

    2009-01-01

    Introduction Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in

  5. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  6. Potential Role of L-Arginine and Vitamin E Against Bone Loss Induced by Nano-Zinc Oxide in Rats.

    PubMed

    Abdelkarem, Hala M; Fadda, Laila H; El-Sayed, Eman M; Radwan, Omyma K

    2018-05-04

    The purpose of this study was to illustrate the effects of zinc oxide nanoparticles (ZnO-NPs) administration on bone turnover and bone resorbing agents in rats and how L-arginine (L-arg) or vitamin E (vit E) co-administrations might affect them. Fasting rats were randomly divided into four groups (n = 10): G1-normal healthy animals; G2-ZnO-NPs-exposed rats (600 mg/kg - 1/day -1 ); G3-ZnO-NPs-exposed rats co-administrated L-arg (200 mg/kg - 1/day -1 ); G4-ZnO-NPs-exposed rats co-administrated vit E (200 mg/kg - 1/day -1 ). The ingredients were orally administered daily. The body weight and food consumption of rats were recorded during the administration period and the experiment continued for three consecutive weeks. The results demonstrated that ZnO-NPs administration induced bone loss in rats as manifested by reduced activity of bone alkaline phosphatase (B-ALP) and increased level of C-terminal peptide type I collagen (CTx). The increase of inflammatory markers, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) by ZnO-NPs suggests that deleterious effects of ZnO-NPs on bone turnover were, in part, due to inflammation. Confirming to this suggestion, both L-arg and vit E reduced TNF-α and IL-6 levels and consequently decreased bone resorption as indicated by reduced serum CTx level. This study proved that ZnO-NPs can induce bone turnover, which may be reduced by L-arg or vit.E co-administration, partly by anti-inflammatory mechanism.

  7. Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2007-01-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  8. Biologic therapies and bone loss in rheumatoid arthritis.

    PubMed

    Zerbini, C A F; Clark, P; Mendez-Sanchez, L; Pereira, R M R; Messina, O D; Uña, C R; Adachi, J D; Lems, W F; Cooper, C; Lane, N E

    2017-02-01

    Rheumatoid arthritis (RA) is a common systemic autoimmune disease of unknown cause, characterized by a chronic, symmetric, and progressive inflammatory polyarthritis. One of the most deleterious effects induced by the chronic inflammation of RA is bone loss. During the last 15 years, the better knowledge of the cytokine network involved in RA allowed the development of potent inhibitors of the inflammatory process classified as biological DMARDs. These new drugs are very effective in the inhibition of inflammation, but there are only few studies regarding their role in bone protection. The principal aim of this review was to show the evidence of the principal biologic therapies and bone loss in RA, focusing on their effects on bone mineral density, bone turnover markers, and fragility fractures. Using the PICOST methodology, two coauthors (PC, LM-S) conducted the search using the following MESH terms: rheumatoid arthritis, osteoporosis, clinical trials, TNF- antagonists, infliximab, adalimumab, etanercept, certolizumab, golimumab, IL-6 antagonists, IL-1 antagonists, abatacept, tocilizumab, rituximab, bone mineral density, bone markers, and fractures. The search was conducted electronically and manually from the following databases: Medline and Science Direct. The search period included articles from 2003 to 2015. The selection included only original adult human research written in English. Titles were retrieved and the same two authors independently selected the relevant studies for a full text. The retrieved selected studies were also reviewed completing the search for relevant articles. The first search included 904 titles from which 253 titles were selected. The agreement on the selection among researchers resulted in a Kappa statistic of 0.95 (p < 0.000). Only 248 abstracts evaluated were included in the acronym PICOST. The final selection included only 28 studies, derived from the systematic search. Additionally, a manual search in the bibliography of the

  9. Prevention of bone loss in ovariectomized rats: the effect of Salvia miltiorrhiza extracts.

    PubMed

    Chae, H J; Chae, S W; Yun, D H; Keum, K S; Yoo, S K; Kim, H R

    2004-02-01

    The preventive effect of Salvia miltiorrhiza extracts (SMEs) on the progress of bone loss induced by ovariectomy (OVX) was studied in rats. We measured body weight and bone histomorphometry in sham, OVX or SMEs-administered OVX rats. From light microscopic analyses, a porous or erosive appearances were observed on the surface of trabecular bone of tibia in OVX rats, whereas those of the same bone in sham rats and in SMEs-administered rats were composed of fine particles. The trabecular bone area and trabecular thickness in OVX rats decreased by 50% from those in sham rats, these decreases were completely inhibited by administration of SMEs for 7 weeks. In this study, the mechanical strength in femur neck was significantly enhanced by the treatment of SMEs for 7 weeks. In OVX rats, free T3 was normal in all cases, whereas free T4 was significantly increased. Although there was no difference between OVX and SMEs-administered rats in T3 level, we have found significant difference between them in T4 level. These results strongly suggest that SMEs are effective in preventing the development of bone loss induced by OVX in rats.

  10. The relationship of alcohol use to weight loss in the context of behavioral weight loss treatment

    PubMed Central

    Kase, Colleen A.; Piers, Amani D.; Schaumberg, Katherine; Forman, Evan M.; Butryn, Meghan L.

    2016-01-01

    Despite common wisdom that reducing alcohol intake will facilitate weight loss, little research has examined whether participants in behavioral weight loss treatments actually decrease their alcohol intake, or whether reduced alcohol intake relates to weight loss outcomes in this context. This study examined the relationship of alcohol use to energy intake excluding alcohol and to weight in 283 overweight and obese adults participating in a 26-session behavioral weight loss treatment. The majority of participants consumed low to moderate levels of alcohol at baseline. Participants who consumed alcohol at baseline meaningfully reduced their alcohol intake by end-of-treatment. Alcohol use did not relate to weight at baseline or end-of-treatment when controlling for relevant demographic variables, and change in alcohol use was unrelated to weight change in the overall sample during treatment. However, end-of-treatment alcohol intake did relate to end-of-treatment energy intake excluding alcohol. In addition, behavioral impulsivity and change in alcohol intake interacted to predict weight loss, such that decreases in alcohol intake were associated with greater percent weight loss at end-of-treatment for participants with higher levels of impulsivity. Alcohol consumption may lead to overeating episodes, and highly impulsive individuals may be at risk for increased energy intake during or after episodes of drinking. Therefore, the recommendation to reduce alcohol intake in the context of behavioral weight loss treatment seems warranted, particularly for individuals with high levels of impulsivity. PMID:26792773

  11. The relationship of alcohol use to weight loss in the context of behavioral weight loss treatment.

    PubMed

    Kase, Colleen A; Piers, Amani D; Schaumberg, Katherine; Forman, Evan M; Butryn, Meghan L

    2016-04-01

    Despite common wisdom that reducing alcohol intake will facilitate weight loss, little research has examined whether participants in behavioral weight loss treatments actually decrease their alcohol intake, or whether reduced alcohol intake relates to weight loss outcomes in this context. This study examined the relationship of alcohol use to energy intake excluding alcohol and to weight in 283 overweight and obese adults participating in a 26-session behavioral weight loss treatment. The majority of participants consumed low to moderate levels of alcohol at baseline. Participants who consumed alcohol at baseline meaningfully reduced their alcohol intake by end-of-treatment. Alcohol use did not relate to weight at baseline or end-of-treatment when controlling for relevant demographic variables, and change in alcohol use was unrelated to weight change in the overall sample during treatment. However, end-of-treatment alcohol intake did relate to end-of-treatment energy intake excluding alcohol. In addition, behavioral impulsivity and change in alcohol intake interacted to predict weight loss, such that decreases in alcohol intake were associated with greater percent weight loss at end-of-treatment for participants with higher levels of impulsivity. Alcohol consumption may lead to overeating episodes, and highly impulsive individuals may be at risk for increased energy intake during or after episodes of drinking. Therefore, the recommendation to reduce alcohol intake in the context of behavioral weight loss treatment seems warranted, particularly for individuals with high levels of impulsivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  13. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing.

    PubMed

    Duan, Xiao-Bo; Wu, Ting-Xi; Guo, Yu-Chen; Zhou, Xue-Dong; Lei, Yi-Ling; Xu, Xin; Mo, An-Chun; Wang, Yong-Yue; Yuan, Quan

    2017-06-01

    Marginal bone loss during bone healing exists around non-submerged dental implants. The aim of this study was to identify the relationship between different degrees of marginal bone loss during bone healing and the salivary microbiome. One hundred patients were recruited, and marginal bone loss around their implants was measured using cone beam computed tomography during a 3-month healing period. The patients were divided into three groups according to the severity of marginal bone loss. Saliva samples were collected from all subjected and were analysed using 16S MiSeq sequencing. Although the overall structure of the microbial community was not dramatically altered, the relative abundance of several taxonomic groups noticeably changed. The abundance of species in the phyla Spirochaeta and Synergistetes increased significantly as the bone loss became more severe. Species within the genus Treponema also exhibited increased abundance, whereas Veillonella, Haemophilus and Leptotrichia exhibited reduced abundances, in groups with more bone loss. Porphyromonasgingivalis, Treponemadenticola and Streptococcus intermedius were significantly more abundant in the moderate group and/or severe group. The severity of marginal bone loss around the non-submerged implant was associated with dissimilar taxonomic compositions. An increased severity of marginal bone loss was related to increased proportions of periodontal pathogenic species. These data suggest a potential role of microbes in the progression of marginal bone loss during bone healing.

  14. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    USDA-ARS?s Scientific Manuscript database

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  15. Dietary Supplement Attenuates Radiation-Induced Osteoclastogenic and Oxidative Stress-Related Responses and Protects Adult Mice from Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Schreurs, Ann-Sofie; Tahimic, Candice; Shirazi-Fard, Yasaman; Alwood, Joshua; Shahnazari, Mohammed; Halloran, Bernard

    2015-01-01

    Our central hypothesis is that oxidative stress plays a key role in cell dysfunction and progressive bone loss caused by radiation exposure during spaceflight. In animal studies, excess free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. We previously reported that exposure to low or high-LET radiation rapidly increases expression levels of pro-osteoclastogenic and oxidative stress-related genes in bone and marrow, followed by pathological changes in skeletal structure. To screen various antioxidants for radioprotective effects on bone, 4 month old, male C57Bl6/J mice were treated with a dietary antioxidant cocktail, injectable alpha-lipoic acid, or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs total body radiation and one day later marrow cells were collected and the relevant genes analyzed for expression levels. Of the candidates tested, DP was most effective in reducing bone resorption-related gene expression. Microcomputed tomography revealed that DP also prevented the radiation-induced deterioration of skeletal microarchitecture, as indicated by percent bone volume, trabecular spacing and trabecular number. DP had similar protective effects on skeletal structure after sequential exposure to protons (0.5 Gy, 150MeV/n) and 56Fe 0.5Gy, 600 MeV/n). When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerted pro-osteogenic effects apart from previously identified anti-resorptive actions, which may contribute to radioprotection of skeletal tissue. In conclusion, a diet enriched in certain types of antioxidants and polyphenols such as DP may be useful as an intervention to protect tissues from degenerative effects of ionizing radiation.

  16. Zanthoxylum piperitum reversed alveolar bone loss of periodontitis via regulation of bone remodeling-related factors.

    PubMed

    Kim, Mi Hye; Lee, Hye Ji; Park, Jung-Chul; Hong, Jongki; Yang, Woong Mo

    2017-01-04

    Zanthoxylum piperitum (ZP) has been used to prevent toothache in East Asia. In this study, we investigated the effects of ZP on periodontitis along with alveolar bone loss. Twenty-eight male Sprague-Dawley rats were assigned into 4 groups; non-ligated (NOR), ligated and treated vehicle (CTR), ligated and treated 1mg/mL ZP (ZP1), and ligated and treated 100mg/mL ZP (ZP100). Sterilized 3-0 nylon ligature was placed into the subgingival sulcus around the both sides of mandibular first molar. After topical application of 1 and 100mg/mL ZP for 2 weeks, mandibles was removed for histology. In addition, SaOS-2 osteoblast cells were treated 1, 10 and 100μg/mL ZP for 24h to analyze the expressions of alveolar bone-related markers. Several alveolar bone resorption pits, which indicate cementum demineralization were decreased by ZP treatment. Topical ZP treatment inhibited periodontitis-induced alveolar bone loss. In addition, there were significant reduction of osteoclastic activities following topical ZP treatment in periodontium. The expression of RANKL was decreased in SaOS-2 osteoblast cells by treating ZP, while that of OPG was increased. ZP treatment increased the expressions of Runx2 and Osterix in SaOS-2 cells. In summary, ZP treatment inhibited alveolar bone loss as well as maintained the integrity of periodontal structures via regulation of bone remodeling. ZP may be a therapeutic target for treating periodontitis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    PubMed

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  18. Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis.

    PubMed

    Zheng, Xin-Feng; Zhao, En-Dian; He, Ji-Ye; Zhang, Yue-Hui; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2016-11-01

    Substance P signaling regulates the functions of both osteoblast and osteoclast. Available reports on the effects of substance P on bone mass are contradictory. The objective of this study was to determine the change of substance P expression in the osteoporotic bone of OVX mice. The effects of substance P signaling blockade by using its specific receptor antagonist L-703606 on bone remodeling in sham-operated mice and OVX mice were also investigated. Forty-eight nine-week-old female C57BL/6J mice were evenly distributed into three groups with sham surgery, OVX or OVX with estrogen replacement. Substance P expression in the bones of each group of mice was evaluated by immunohistochemistry and enzyme immunoassay. Another thirty-two nine-week-old female C57BL/6J mice were divided into a SHAM group (sham surgery followed by vehicle treatment with DMSO), a SHAM + L group (sham surgery followed by 15 mg/kg/d L-703606 repeated intraperitoneal injections), an OVX group (ovariectomy with the same vehicle treatment) and an OVX + L group (ovariectomy with the same L-703606 injections), with 8 mice in each group. Treatment started 3 weeks after surgery and last for 3 weeks. A 2 × 2 factorial experimental design was used to detect the effects of substance P signaling blockade on bone remodeling in sham-operated mice and OVX mice. Techniques including micro-computed tomography, biomechanical testing, histomorphometric analysis, enzyme immunoassay, and real-time PCR were employed. Immunohistochemistry and enzyme immunoassay revealed that substance P expression significantly decreased in the bones of OVX mice both at 3 weeks and 6 weeks after surgery. Micro-CT tomography demonstrated that application of L-703606 led to bone loss in sham-operated mice, and aggravated the micro-structural deterioration of bones in OVX mice. This was shown by reduced BV/TV (Mean bone volume fraction), Tb.N (Mean trabecular number) and Tb.Th (Mean trabecular thickness), and increased Tb

  19. Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss.

    PubMed

    Gautam, Jyoti; Khedgikar, Vikram; Kushwaha, Priyanka; Choudhary, Dharmendra; Nagar, Geet Kumar; Dev, Kapil; Dixit, Preety; Singh, Divya; Maurya, Rakesh; Trivedi, Ritu

    2017-03-01

    Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.

  20. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    NASA Astrophysics Data System (ADS)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  1. Managing peri-implant bone loss: current understanding.

    PubMed

    Aljateeli, Manar; Fu, Jia-Hui; Wang, Hom-Lay

    2012-05-01

    With the improved macro- and micro-designs, dental implants enjoy a high survival rate. However, peri-implant bone loss has recently emerged to be the focus of implant therapy. As such, researchers and clinicians are in need of finding predictable techniques to treat peri-implant bone loss and stop its progression. Literature search on the currently available treatment modalities was performed and a brief description of each modality was provided. Numerous techniques have been proposed and none has been shown to be superior and effective in managing peri-implant bone loss. This may be because of the complex of etiological factors acting on the implant-supported prosthesis hence the treatment approach has to be individually tailored. Due to the lack of high-level clinical evidence on the management of peri-implant bone loss, the authors, through a literature review, attempt to suggest a decision tree or guideline, based on sound periodontal surgical principles, to aid clinicians in managing peri-implantitis associated bone loss. © 2011 Wiley Periodicals, Inc.

  2. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice.

    PubMed

    McCabe, Laura R; Irwin, Regina; Tekalur, Arjun; Evans, Christian; Schepper, Jonathan D; Parameswaran, Narayanan; Ciancio, Mae

    2018-03-29

    High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss.

    PubMed

    Graham, Lucia S; Parhami, Farhad; Tintut, Yin; Kitchen, Christina M R; Demer, Linda L; Effros, Rita B

    2009-11-01

    Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.

  4. Lipoxin A4 suppresses osteoclastogenesis in RAW264.7 cells and prevents ovariectomy-induced bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changyu; Guan, Hanfeng; Cai, Cong

    Lipoxin A4 (LXA4; 5S, 6R, 15Strihydroxy- 7,9,13-trans-11-eicosatetraenoic acid) is a metabolic product of arachidonic acid under the action of lipoxidase. This lipid molecule plays important roles in several biological functions, especially inflammatory processes. In vivo, LXA4 regulates the inflammatory response through several signaling pathways. Its mechanism suggests that it might have an effect on osteoclastogenesis and bone loss. Using both in vitro and in vivo studies, it was here observed that LXA4 could significantly inhibit the formation and function of osteoclasts and these effects could be blocked by Boc-2, the specific inhibitor of FPR2/ALX (the receptor of LXA4). Meanwhile, LXA4more » reduce the amount of ovariectomy-induced bone loss. These protective effects was found to be associated with inhibition of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), PI3K-AKT, and p-38, ERK, and JNK in MAPKs. The expression of the receptor activator of the NF-κB ligand RANKL:osteoprotegerin ratio and serum levels of TNF-α, IL-1β, and IL-6 were decreased by LXA4. Moreover, LXA4 prevented the production of reactive oxygen species (ROS), the expression of osteoclast-specific genes, including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CK), matrix metalloproteinase (MMP)-9, RANK, and osteoclastic related transcription factors of c-Fos, NFATc1 could also be significantly inhibited by LXA4 in a dose-dependent manner. Studies have demonstrated that LXA4 can inhibit the formation and function of osteoclasts through modulation of several pathways both upstream and downstream of RANKL signaling and FPR2/ALX was involved in the procedures. This shows that LXA4 may be used as a new strategy for the treatment of osteoclast-related diseases. - Highlights: • Lipoxin A4 can significantly inhibit the formation and function of osteoclasts. • Several pathways both upstream and downstream of RANKL signaling can be inhibit by Lipoxin A4. • Lipoxin A4 can

  5. Radiographic sclerotic contour loss in the identification of glenoid bone loss.

    PubMed

    Bornes, Troy D; Jaremko, Jacob L; Beaupre, Lauren A; Bouliane, Martin J

    2016-07-01

    Quantification of glenoid bone loss guides surgical management in the setting of anterior shoulder instability. Glenoid defects resulting in ≥20 % articular area loss require bony reconstruction. The objective of this study was to evaluate the utility of sclerotic glenoid contour loss on true anteroposterior radiography in the detection of varying quantities of simulated glenoid bone loss using a cadaveric model. Eight cadaveric scapulae with full radiographic sclerotic contour were osteotomized to produce glenoid surface area reductions of 10-50 %. Radiography was performed initially and following each osteotomy, and assessed by an orthopedic surgeon and radiologist twice. Quantity of glenoid loss was compared using Fisher's exact test. Sensitivity, specificity, and reliability analyses were performed. On the first radiographic review, sclerotic contour loss was detected in 6 out of 8 scapulae with 50 % area loss, but only 1 out of 8 scapulae with 20 % area loss. There was a significantly higher proportion of radiographs containing sclerotic contour loss for defects with 50 % area loss compared to those with 0-25 % loss (p ≤ 0.02). In the detection of ≥20 % area loss, sclerotic contour loss had a sensitivity of 33-43 % and specificity of 88-100 %. Moderate inter-observer reliability (Cohen's kappa value of 0.42-0.53) and intra-observer reliability (kappa value of 0.46-0.58) were found. Radiographic sclerotic contour loss is commonly observed in radiographs of scapulae with 40-50 % glenoid area loss and less often with smaller lesions. However, this finding lacks utility in discerning specific quantifications of glenoid bone loss. In a clinical setting, sclerotic contour loss suggests the presence of a large glenoid defect that may require bony reconstruction. However, an intact sclerotic contour does not rule out significant bone loss.

  6. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past.

    PubMed

    Beauchesne, Patrick; Agarwal, Sabrina C

    2017-09-01

    One of the hallmarks of contemporary osteoporosis and bone loss is dramatically higher prevalence of loss and fragility in females post-menopause. In contrast, bioarchaeological studies of bone loss have found a greater diversity of age- and sex-related patterns of bone loss in past populations. We argue that the differing findings may relate to the fact that most studies use only a single methodology to quantify bone loss and do not account for the heterogeneity and complexity of bone maintenance across the skeleton and over the life course. We test the hypothesis that bone mass and maintenance in trabecular bone sites versus cortical bone sites will show differing patterns of age-related bone loss, with cortical bone sites showing sex difference in bone loss that are similar to contemporary Western populations, and trabecular bone loss at earlier ages. We investigated this hypothesis in the Imperial Roman population of Velia using three methods: radiogrammetry of the second metacarpal (N = 71), bone histology of ribs (N = 70), and computerized tomography of trabecular bone architecture (N = 47). All three methods were used to explore sex and age differences in patterns of bone loss. The suite of methods utilized reveal differences in the timing of bone loss with age, but all methods found no statistically significant differences in age-related bone loss. We argue that a multi-method approach reduces the influence of confounding factors by building a reconstruction of bone turnover over the life cycle that a limited single-method project cannot provide. The implications of using multiple methods beyond studies of bone loss are also discussed. © 2017 Wiley Periodicals, Inc.

  7. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  8. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation)

    PubMed Central

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Castillo, Alesha B.; Kennedy, Oran; Condon, Keith W.; Auger, Janene; Black, Hal L.; Nelson, O. Lynne; Robbins, Charles T.; Donahue, Seth W.

    2009-01-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606

  9. Bed Rest and Immobilization: Risk Factors for Bone Loss

    MedlinePlus

    ... Loss Bed Rest and Immobilization: Risk Factors for Bone Loss Like muscle, bone is living tissue that ... bones adjust to the state of weightlessness. Maintaining Bone Health In general, healthy people who undergo prolonged ...

  10. Lactation induces increases in the RANK/RANKL/OPG system in maxillary bone.

    PubMed

    Macari, Soraia; Sharma, Lavanya A; Wyatt, Amanda; da Silva, Janine Maíra; Dias, George J; Silva, Tarcília A; Szawka, Raphael E; Grattan, David R

    2018-05-01

    The underlying causes of maxillary bone loss during lactation remain poorly understood. We evaluated the impact of lactation on physiological and mechanically-induced alveolar bone remodeling. Nulliparous non-lactating (N-LAC) and 21-day lactating (LAC) mice underwent mechanically-induced bone remodeling by orthodontic tooth movement (OTM). Micro-computed tomography (microCT) was performed in the maxilla, femur and vertebra. Tartrate-resistant-acid phosphatase (TRAP) and Masson's trichrome labelling was performed in the maxillary bone and gene expression was determined in the periodontal ligament. The effect of prolactin on osteoclast (OCL) and osteoblast (OBL) differentiation was also investigated in N-LAC and LAC mice. Lactation increased alveolar bone loss in the maxilla, femur and vertebra, while OTM was enhanced. The number of OCL and OBL was higher in the maxilla of LAC mice. OTM increased OCL in both groups; while OBL was increased only in N-LAC but not in LAC mice, in which cell numbers were already elevated. The alveolar bone loss during lactation was associated with increased expression of receptor activator of nuclear factor-KappaB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) in the maxilla. OTM induced the same responses in N-LAC mice, whereas it had no further effect in LAC mice. Lactation enhanced differentiation of OCL and OBL from bone marrow cells, and prolactin recapitulated OCL differentiation in N-LAC mice. Thus, lactation increases physiological maxillary bone remodeling and OTM, and both require activation of RANK/RANKL/OPG system. These findings expand our knowledge of lactation-induced osteopenia and have possible impact on clinical practice regarding orthodontic treatments and dental implants in lactating women. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency–induced bone loss

    PubMed Central

    Cao, Chike; Barnett, Adam S.; Mirando, Anthony J.; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L.; Karner, Courtney M.; Hilton, Matthew J.

    2017-01-01

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage–gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts. PMID:29202453

  12. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss.

    PubMed

    Cao, Chike; Ren, Yinshi; Barnett, Adam S; Mirando, Anthony J; Rouse, Douglas; Mun, Se Hwan; Park-Min, Kyung-Hyun; McNulty, Amy L; Guilak, Farshid; Karner, Courtney M; Hilton, Matthew J; Pitt, Geoffrey S

    2017-11-16

    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.

  13. Evaluation of Treadmill Exercise in a Lower Body Negative Pressure Chamber as a Countermeasure for Weightlessness-Induced Bone Loss: a Bed Rest Study with Identical Twins

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Calkins, D. S.; Bawa, Maneesh; Macias, Brandon R.; Meyer, R. Scott; Hargens, Alan R.

    2003-01-01

    Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight. INTRODUCTION: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. MATERIALS AND METHODS: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. RESULTS: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p < 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. CONCLUSIONS: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative

  14. Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation

    PubMed Central

    Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients. PMID:27104563

  15. Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation.

    PubMed

    Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu

    2016-04-20

    Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.

  16. Aromatase Inhibitors and Bone Loss

    PubMed Central

    PEREZ, EDITH A.; M., Serene; Durling, Frances C.; WEILBAECHER, KATHERINE

    2009-01-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor–positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment–related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score < −2.5) and considered on an individual basis for those with osteopenia (T score < −1). Modifiable lifestyle behaviors including adequate calcium and vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor–positive breast cancer. PMID:16986348

  17. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less

  18. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats.

    PubMed

    Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja

    2014-09-01

    Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.

  19. [Bone loss in lactating women and post-pregnancy osteoporosis].

    PubMed

    Hirata, Go; Chaki, Osamu

    2011-09-01

    Measurement of the bone mineral density have shown that lactating women had 1 to 3% decrease in bone mineral density. Post pregnancy osteoporosis is rare condition that causes fragile fracture mostly in vertebrae. The bone loss in lactating women is caused by calcium loss, decrease in estrogen level, and increase in PTHrP (parathyroid hormone related protein) level. Some data have shown that extended lactation and amenorrhea had an association with the degree of bone loss. Mostly, the bone loss of the lactating women recovers to the baseline level, soon after the weaning, and there is no long term effect. Post pregnancy osteoporosis should be concerned, when we see a lactating woman with fragile fracture of the vertebrae.

  20. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuatedmore » the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda

  1. The histopathological and morphometric investigation of the effects of systemically administered boric acid on alveolar bone loss in ligature-induced periodontitis in diabetic rats.

    PubMed

    Balci Yuce, Hatice; Toker, Hulya; Goze, Fahrettin

    2014-11-01

    The purpose of this study was to evaluate the effects of systemically administered boric acid on alveolar bone loss, histopathological changes and oxidant/antioxidant status in ligature-induced periodontitis in diabetic rats. Forty-four Wistar rats were divided into six experimental groups: (1) non-ligated (NL, n = 6) group, (2) ligature only (LO, n = 6) group, (3) Streptozotocin only (STZ, n = 8) group, (4) STZ and ligature (STZ+LO, n = 8) group, (5) STZ, ligature and systemic administration of 15 mg/kg/day boric acid for 15 days (BA15, n = 8) group and (6) STZ, ligature and systemic administration of 30 mg/kg/day boric acid for 15 days (BA30, n = 8) group. Diabetes mellitus was induced by 60 mg/kg streptozotocin. Silk ligatures were placed at the gingival margin of lower first molars of the mandibular quadrant. The study duration was 15 days after diabetes induction and the animals were sacrificed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were histopathologically examined. Serum total antioxidant status (TAS), total oxidant status (TOS), calcium (Ca) and magnesium (Mg) levels and oxidative stress index (OSI) were evaluated. Primary outcome was alveolar bone loss. Seconder outcome (osteoblast number) was also measured. At the end of 15 days, the alveolar bone loss was significantly higher in the STZ+LO group compared to the other groups (p < 0.05). There was no significant difference in alveolar bone loss between the STZ+LO 15 mg/kg boric acid and STZ+LO 30 mg/kg boric acid groups (p > 0.05). Systemically administered boric acid significantly decreased alveolar bone loss compared to the STZ+LO group (p < 0.05). The osteoblast number in the BA30 group was significantly higher than those of the NL, STZ and STZ+LO groups (p < 0.05). Inflammatory cell infiltration was significantly higher in the STZ+LO group the other groups (p < 0.05). Serum TAS levels were significantly higher in the NL and LO groups than the

  2. Alcohol Use among Students with and without Hearing Loss

    ERIC Educational Resources Information Center

    Pinquart, Martin; Pfeiffer, Jens P.

    2015-01-01

    We compared alcohol use among adolescents with and without hearing loss. Adolescents with hearing loss reported consuming less alcohol, less binge drinking, fewer episodes of drunkenness, and a higher age at first drunkenness than their hearing peers. Alcohol use did not vary between students who were deaf or hard of hearing or between students…

  3. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    PubMed

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  4. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss.

    PubMed

    Shinohara, Masahiro; Chang, Betty Y; Buggy, Joseph J; Nagai, Yusuke; Kodama, Tatsuhiko; Asahara, Hiroshi; Takayanagi, Hiroshi

    2014-03-01

    Bone-resorbing osteoclasts play an essential role in normal bone homeostasis, as well as in various bone disorders such as osteoporosis and rheumatoid arthritis. Previously we showed that the Tec family of tyrosine kinases is essential for the differentiation of osteoclasts and the inhibition of Btk is a promising strategy for the prevention of the bone loss in osteoclast-associated bone disorders. Here we demonstrate that an orally available Btk inhibitor, ibrutinib (PCI-32765), suppresses osteoclastic bone resorption by inhibiting both osteoclast differentiation and function. Ibrutinib downregulated the expression of NFATc1, the key transcription factor for osteoclastogenesis, and disrupted the formation of the actin ring in mature osteoclasts. In addition, genome-wide screening revealed that Btk regulates the expression of the genes involved in osteoclast differentiation and function in both an NFATc1-dependent and -independent manner. Finally, we showed that ibrutinib administration ameliorated the bone loss that developed in a RANKL-induced osteoporosis mouse model. Thus, this study suggests ibrutinib to be a promising therapeutic agent for osteoclast-associated bone diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    PubMed Central

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  6. Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul

    2014-09-23

    bone destruction in mice by inhibiting osteoclast differentiation. This study demonstrates that WEAO exhibits a protective effect against bone loss by inhibiting RANKL-induced osteoclast differentiation. These findings suggest that WEAO might be useful for the prevention and treatment of bone diseases associated with excessive bone resorption.

  7. Age-associated bone loss and intraskeletal variability in the Imperial Romans.

    PubMed

    Cho, Helen; Stout, Sam Darrel

    2011-01-01

    An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.

  8. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts.

    PubMed

    Uluçkan, Özge; Jimenez, Maria; Karbach, Susanne; Jeschke, Anke; Graña, Osvaldo; Keller, Johannes; Busse, Björn; Croxford, Andrew L; Finzel, Stephanie; Koenders, Marije; van den Berg, Wim; Schinke, Thorsten; Amling, Michael; Waisman, Ari; Schett, Georg; Wagner, Erwin F

    2016-03-16

    Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Δep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone degradation. We show that under inflammatory conditions, skin-resident cells such as keratinocytes, γδ T cells, and innate lymphoid cells were able to express IL-17A, which acted systemically to inhibit osteoblast and osteocyte function by a mechanism involving Wnt signaling. IL-17A led to decreased Wnt signaling in vitro, and importantly, pharmacological blockade of IL-17A rescued Wnt target gene expression and bone formation in vivo. These data provide a mechanism where IL-17A affects bone formation by regulating Wnt signaling in osteoblasts and osteocytes. This study suggests that using IL-17A blocking agents in psoriasis could be beneficial against bone loss in these patients. Copyright © 2016, American Association for the Advancement of Science.

  9. Targeting skeletal endothelium to ameliorate bone loss.

    PubMed

    Xu, Ren; Yallowitz, Alisha; Qin, An; Wu, Zhuhao; Shin, Dong Yeon; Kim, Jung-Min; Debnath, Shawon; Ji, Gang; Bostrom, Mathias P; Yang, Xu; Zhang, Chao; Dong, Han; Kermani, Pouneh; Lalani, Sarfaraz; Li, Na; Liu, Yifang; Poulos, Michael G; Wach, Amanda; Zhang, Yi; Inoue, Kazuki; Di Lorenzo, Annarita; Zhao, Baohong; Butler, Jason M; Shim, Jae-Hyuck; Glimcher, Laurie H; Greenblatt, Matthew B

    2018-06-01

    Recent studies have identified a specialized subset of CD31 hi endomucin hi (CD31 hi EMCN hi ) vascular endothelium that positively regulates bone formation. However, it remains unclear how CD31 hi EMCN hi endothelium levels are coupled to anabolic bone formation. Mice with an osteoblast-specific deletion of Shn3, which have markedly elevated bone formation, demonstrated an increase in CD31 hi EMCN hi endothelium. Transcriptomic analysis identified SLIT3 as an osteoblast-derived, SHN3-regulated proangiogenic factor. Genetic deletion of Slit3 reduced skeletal CD31 hi EMCN hi endothelium, resulted in low bone mass because of impaired bone formation and partially reversed the high bone mass phenotype of Shn3 -/- mice. This coupling between osteoblasts and CD31 hi EMCN hi endothelium is essential for bone healing, as shown by defective fracture repair in SLIT3-mutant mice and enhanced fracture repair in SHN3-mutant mice. Finally, administration of recombinant SLIT3 both enhanced bone fracture healing and counteracted bone loss in a mouse model of postmenopausal osteoporosis. Thus, drugs that target the SLIT3 pathway may represent a new approach for vascular-targeted osteoanabolic therapy to treat bone loss.

  10. Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats

    PubMed Central

    King, Tristan J.; Shandala, Tetyana; Lee, Alice M.; Foster, Bruce K.; Chen, Ke-Ming; Howe, Peter R.; Xian, Cory J.

    2015-01-01

    Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg) were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc) of MTX (0.75 mg/kg). MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001), increased osteoclast density on the trabecular bone surface (p < 0.05), and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001). Genistein supplementation preserved body weight gain (p < 0.05) and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001). However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage. PMID:26258775

  11. Accelerated bone loss in older men: Effects on bone microarchitecture and strength.

    PubMed

    Cauley, J A; Burghardt, A J; Harrison, S L; Cawthon, P M; Schwartz, A V; Connor, E Barrett; Ensrud, Kristine E; Langsetmo, Lisa; Majumdar, S; Orwoll, E

    2018-05-11

    Accelerated bone loss (ABL) shown on routine dual-energy X-ray absorptiometry (DXA) may be accompanied by microarchitectural changes, increased cortical porosity and lower bone strength. To test this hypothesis, we performed a cross-sectional study and used high resolution peripheral quantitative computed tomography (HR-pQCT) scans (SCANCO, Inc., Switzerland) to measure estimated bone strength and microarchitecture in the distal radius and distal and diaphyseal tibia. We studied 1628 men who attended the Year 14 exam of the Osteoporotic Fractures in Men (MrOS) study. We retrospectively characterized areal (a) bone mineral density (BMD) change from the Year 7 to Year 14 exam in 3 categories: "accelerated" >10% loss at either the total hip or femoral neck, (N = 299, 18.4%); "expected" loss, <10%, (N = 1061, 65.2%) and "maintained" BMD, ≥0%, (N = 268, 16.5%). The ABL cutoff was a safety alert established for MrOS. We used regression models to calculate adjusted mean HR-pQCT parameters in men with ABL, expected loss or maintained BMD. Men who experienced ABL were older and had a lower body mass index and aBMD and experienced greater weight loss compared to other men. Total volumetric BMD and trabecular and cortical volumetric BMD were lower in men with ABL compared to the expected or maintained group. Men with ABL had significantly lower trabecular bone volume fraction (BV/TV), fewer trabeculae and greater trabecular separation at both the distal radius and tibia than men with expected loss or who maintained aBMD, all p trend <0.001. Men with ABL had lower cortical thickness and lower estimated bone strength but there was no difference in cortical porosity except at the tibia diaphyseal site In summary, men with ABL have lower estimated bone strength, poorer trabecular microarchitecture and thinner cortices than men without ABL but have similar cortical porosity. These impairments may lead to an increased risk of fracture. This article is protected by

  12. High-Dose α-Tocopherol Supplementation Does Not Induce Bone Loss in Normal Rats

    PubMed Central

    Kasai, Shunji; Ito, Akemi; Shindo, Kaori; Toyoshi, Tohru; Bando, Masahiro

    2015-01-01

    Oxidative stress affects bone turnover. Preventative effects of antioxidants such as vitamin E on reduced bone mineral density and fractures associated with aging, osteoporosis, and smoking have been examined in animals and humans. The effects of vitamin E (α-tocopherol; αT) on bone health have yielded conflicting and inconclusive results from animal studies. In this study, to determine the bone effects of αT, we investigated the in vivo effects of αT on the bone mineral density, bone mass, bone microstructure, bone resorption, and osteogenesis through peripheral quantitative computed tomography (pQCT) measurements, micro-computed tomography (micro-CT) analyses, and bone histomorphometry of lumbar vertebrae and femurs in normal female Wistar rats fed diets containing αT in different quantities (0, 30, 120, or 600 mg/kg diet) for 8 weeks. To validate our hypotheses regarding bone changes, we examined ovariectomized rats as an osteoporosis model and control sham-operated rats in parallel. As expected, ovariectomized rats had reduced bone mineral density in lumbar vertebrae and the distal metaphyses of their femurs, reduced bone mass and deteriorated microstructure of cancellous bones in the vertebral body and distal femur metaphyses, and reduced bone mass due to resorption-dominant enhanced bone turnover in secondary cancellous bones in these sites. In comparison, αT administered to normal rats, even at the highest dose, did not induce reduced bone mineral density of lumbar vertebrae and femurs or a reduced bone mass or fragile microstructure of cancellous bones of the vertebral body and distal femur metaphyses. Instead, αT-fed rats showed a tendency for an osteogenesis-dominant bone mass increase in secondary cancellous bones in the vertebral body, in which active bone remodeling occurs. Thus, αT consumption may have beneficial effects on bone health. PMID:26147575

  13. Rhizoma Dioscoreae Extract Protects against Alveolar Bone Loss in Ovariectomized Rats via microRNAs Regulation

    PubMed Central

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-01-01

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID

  14. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    PubMed

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-02-16

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation.

  15. Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats.

    PubMed

    Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin

    2016-12-01

    Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Bone mass, depressive and anxiety symptoms in adolescent girls: Variation by smoking and alcohol use

    PubMed Central

    Dorn, L.D.; Pabst, S.; Sontag, L.M.; Kalkwarf, H.; Hillman, J.B.; Susman, E.J.

    2011-01-01

    PURPOSE The purpose of the study was to examine (a) the association between depressive and anxiety symptoms with bone health, (b) the association of smoking or alcohol use with bone health, and, in turn, (c) whether the association between depressive and anxiety symptoms with bone health varied by smoking or alcohol use individually or by combined use. Bone health included total body bone mineral content (TB BMC) and bone mineral density (BMD) of the lumbar spine, total hip, and femoral neck. Previous literature has not examined these issues in adolescence, a time when more than 50% of bone mass is accrued. METHODS An observational study enrolled 262 healthy adolescent girls by age cohort (11, 13, 15, and 17 years). Participants completed questionnaires and interviews on substance use, depressive symptoms, and anxiety. BMC and BMD were measured by dual energy x-ray absorptiometry. RESULTS Higher depressive symptoms were associated with lower TB BMC and BMD (total hip, femoral neck). Those with the lowest level of smoking had higher BMD of the hip and femoral neck whereas no differences were noted by alcohol use. Regular users of both cigarettes and alcohol demonstrated a stronger negative association between depressive symptoms and TB BMC compared with non-users/experimental users and regular alcohol users. Findings were parallel for anxiety symptoms. CONCLUSION Depressive and anxiety symptoms may negatively influence bone health in adolescent girls. Consideration of multiple substances, rather than cigarettes or alcohol separately, may be particularly informative with respect to the association of depression with bone health. PMID:22018564

  17. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  18. Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair

    PubMed Central

    Gao, Liang; Orth, Patrick; Müller-Brandt, Kathrin; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2017-01-01

    Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques. PMID:28345610

  19. Alcohol pharmacokinetics and risk-taking behaviour following exercise-induced dehydration.

    PubMed

    Irwin, Christopher; Goodwin, Alison; Leveritt, Michael; Davey, Andrew K; Desbrow, Ben

    2012-06-01

    This study investigated the influence of exercise-induced dehydration on alcohol pharmacokinetics, subjective ratings of impairment, and risk-taking behaviours. Twelve male volunteers participated in 3 experimental trials completed in a randomised cross over design separated by at least 7 days. In one trial, participants exercised to cause dehydration of ~2.5% body weight loss. For the other trials, participants were required to be in a rested and euhydrated state. A set volume of alcohol was then consumed in each trial and participants were monitored over a 4h period. Blood (BAC) and breath (BrAC) alcohol samples were collected throughout and analysed to calculate pharmacokinetic variables associated with the blood alcohol curve. Total urine production, estimates of BrAC, and subjective ratings of intoxication and impairment were also recorded throughout each trial. No difference was found in the pharmacokinetics of alcohol between any of the trial conditions. BrACs were higher than BACs for 2h following alcohol consumption, but lower at measures taken 3 and 4 h post ingestion. Participants' ratings of confusion and intoxication were significantly lower, and they were more willing to drive in the dehydration trial compared with one of the euhydration trials. These findings suggest that dehydration or other physiological changes associated with exercise may have an ability to influence the subjective effects of alcohol and increase the likelihood of risk-taking behaviours such as drink-driving. However, further research is required to examine the effects of alcohol under conditions of exercise-induced fluid loss in order to clarify these findings. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Alcohol impairs brain reactivity to explicit loss feedback.

    PubMed

    Nelson, Lindsay D; Patrick, Christopher J; Collins, Paul; Lang, Alan R; Bernat, Edward M

    2011-11-01

    Alcohol impairs the brain's detection of performance errors as evidenced by attenuated error-related negativity (ERN), an event-related potential (ERP) thought to reflect a brain system that monitors one's behavior. However, it remains unclear whether alcohol impairs performance-monitoring capacity across a broader range of contexts, including those entailing external feedback. This study sought to determine whether alcohol-related monitoring deficits are specific to internal recognition of errors (reflected by the ERN) or occur also in external cuing contexts. We evaluated the impact of alcohol consumption on the feedback-related negativity (FRN), an ERP thought to engage a similar process as the ERN but elicited by negative performance feedback in the environment. In an undergraduate sample randomly assigned to drink alcohol (n = 37; average peak BAC = 0.087 g/100 ml, estimated from breath alcohol sampling) or placebo beverages (n = 42), ERP responses to gain and loss feedback were measured during a two-choice gambling task. Time-frequency analysis was used to parse the overlapping theta-FRN and delta-P3 and clarified the effects of alcohol on the measures. Alcohol intoxication attenuated both the theta-FRN and delta-P3 brain responses to feedback. The theta-FRN attenuation was stronger following loss than gain feedback. Attenuation of both theta-FRN and delta-P3 components indicates that alcohol pervasively attenuates the brain's response to feedback in this task. That theta-FRN attenuation was stronger following loss trials is consistent with prior ERN findings and suggests that alcohol broadly impairs the brain's recognition of negative performance outcomes across differing contexts.

  1. Chronic alcoholism and bone remodeling processes: Caveats and considerations for the forensic anthropologist.

    PubMed

    Michael, Amy R; Bengtson, Jennifer D

    2016-02-01

    Clinical literature provides substantial information on the effects of chronic alcohol abuse on bone remodeling and related skeletal disease processes. This biomedical information is seldom considered in detail by forensic anthropologists, who often rely on normative macroscopic models of bone remodeling and traditional macroscopic age estimation methods in the creation of biological profiles. The case study presented here considers the ways that alcoholism disrupts normal bone remodeling processes, thus skewing estimations of age-at-death. Alcoholism affects bone macroscopically, resulting in a porous appearance and an older estimation of age, while simultaneously inhibiting osteoblastic activity and resulting in a younger microscopic appearance. Forensic anthropologists must also be cognizant of pathological remodeling stemming from alcoholism in cases where trauma analysis is critical to the reconstruction of events leading up to death, as fracture healing rates can be affected. Beyond the case study, we also consider how forensic anthropologists and practitioners can recognize and account for osteological signatures of alcoholism in medico-legal contexts. In order to best estimate age at death, a combined macroscopic and microscopic approach should be employed whenever possible alcohol and drug abuse is known or suspected. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. [Ethnic origin and alveolar bone loss in Israeli adults].

    PubMed

    Zadik, Y; Bechor, R; Shochat, Z; Galor, S

    2008-04-01

    The aim of this study was to evaluate the association of alveolar bone loss and ethnic origin among Israeli adults. The study population consisted of 815 male military personnel, aged 25 to 60 years (average 38.1 +/- 7.0 yr), who arrived at a military dental clinic for routine dental examination during 2004-5. The distance between CEJ and alveolar bone crest was measure on pair of standardized posterior bitewing radiographs. Associations between the periodontal score and place of birth, the father ethnic origin and the mother ethnic origin were evaluated using the chi2-test. The individual's place of birth had no influence on the radiographic alveolar bone loss. Father of Yemenite-, North-African- or Mediterranean-origin, and mother of Yemenite-, North-African- or Asian-origin have associated to the occurrence and severity of alveolar bone loss, whereas sons to father or mother from Israeli or European descent were found to have less bone loss (p < 0.001). Ethnic origin has an influence on the alveolar bone loss in Israeli adults. However, more research is needed on the role of the potentially confounders in the association between origin and periodontal health.

  3. Photobiomodulation on alcohol induced dysfunction

    NASA Astrophysics Data System (ADS)

    Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang

    2007-05-01

    Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.

  4. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    PubMed

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  5. Raloxifen prevents bone loss in castrated male mice.

    PubMed

    Broulík, P D; Broulíková, K

    2007-01-01

    Raloxifen is a selective estrogen receptor modulator which prevents bone loss in ovariectomized female mice in a fashion similar to estrogens. Since testosterone-deficient male mice also lose bone mass, we were interested in testing the effects of raloxifen on bones in intact and castrated male mice. Bone density was significantly reduced in castrated animals (1.36+/-0.04 g/ml) as compared to intact animals (1.42+/-0.03 g/ml) (p<0.01). When castrated mice with extraordinarily low concentrations of testosterone and with reduced weight of seminal vesicles were treated with raloxifen, the changes in bone density and bone minerals resulting from castration (1.36+/-0.04 g/ml) were entirely prevented (1.40+/-0.01 g/ml). Cortical bone was lost in orchidectomized mice, and this decrease in cortical thickness of the femur was prevented by raloxifen administration. Raloxifen in a dose used in humans for treatment of osteoporosis decreased the weight of seminal vesicles, an organ which is highly sensitive to the androgenic effect, decreased the concentration of testosterone (12.5+/-2.8 micromol/l) (p<0.01) but not to the same level as in the case of castrated animals (0.6+/-0.3 micromol/l), and did not have any effect on bone density or mineral content in intact mice. The results of the present study may thus be interpreted as supporting the hypothesis that raloxifen is an effective agent against the deleterious effects of castration-induced osteopenia in male mice and also support the hypothesis that estrogens may have physiological skeletal effects in male mice.

  6. Antibiotic administration alleviates the aggravating effect of orthodontic force on ligature-induced experimental periodontitis bone loss in mice.

    PubMed

    Shi, J; Liu, Z; Kawai, T; Zhou, Y; Han, X

    2017-08-01

    It is recognized that orthodontic force (OF) has an aggravating effect on the progression of destructive periodontitis if periodontitis have not been well controlled. However, the underlying mechanism is not completely clear. This study was to investigate the effect of antibiotic administration on OF-aggravated, ligature-induced experimental periodontitis in mice. C57BL/6 mice (male, 8 wk old) were divided into three groups (n = 8). Silk ligatures (SL) were tied around the maxillary right (group 1) or both (groups 2 and 3) first molars on day 0, removed on day 8 and systemic antibiotics was administered through drinking water (group 3) since day 8. OF was applied on the maxillary right first molars since day 13 (groups 2 and 3). All mice were killed on day 20. Total oral bacteria load was significantly higher in group 2 when compared to group 1 on day 20, whereas such count was greatly reduced in group 3 when antibiotics were administered. Periodontal bone loss was significantly increased on SL side vs. control side in group 1. Periodontal bone loss was significantly increased on OF + SL side vs. SL side in group 2 (p < 0.05) but not in group 3 when systemic antibiotics were administered. Gingival mRNA and protein expressions of receptor activator of nuclear factor kappa-B ligand/osteoprotegerin were significantly increased on OF + SL side vs. SL side in group 2 (p < 0.01) but not in group 3. However, comparable levels of tartrate-resistant acid phosphatase-positive cell formation within periodontal space and tooth movement were observed on OF + SL side in groups 2 and 3. Our results suggest that reduction of oral bacterial load by antibiotic administration alleviate orthodontic force-aggravated periodontitis bone loss. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling.

    PubMed

    Ping, Zichuan; Wang, Zhirong; Shi, Jiawei; Wang, Liangliang; Guo, Xiaobin; Zhou, Wei; Hu, Xuanyang; Wu, Xiexing; Liu, Yu; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Gu, Ye; Geng, Dechun

    2017-10-15

    Wear debris-induced peri-implant osteolysis challenges the longevity of implants. The host response to wear debris causes chronic inflammation, promotes bone resorption, and impairs bone formation. We previously demonstrated that melatonin enhances bone formation and attenuates wear debris-induced bone loss in vivo. However, whether melatonin inhibits chronic inflammation and bone resorption at sites of wear debris-induced osteolysis remains unclear. In this study, we examined the potential inhibitory effects of melatonin on titanium particle-induced inflammatory osteolysis in a murine calvarial model and on RANKL-induced osteoclastic formation in bone marrow-derived macrophages. We found that the exogenous administration of melatonin significantly inhibited wear debris-induced bone resorption and the expression of inflammatory cytokines in vivo. Additionally, melatonin inhibited RANKL-induced osteoclast differentiation, F-actin ring formation, and osteoclastic resorption in a concentration-dependent manner in vitro. We also showed that melatonin blocked the phosphorylation of IκB-α and p65, but not IKKα, and significantly inhibited the expression of NFATc1 and c-Fos. However, melatonin had no effect on MAPK or PI3K/AKT signaling pathways. These results provide novel mechanistic insight into the anti-inflammatory and anti-bone resorptive effects of melatonin on wear debris-induced bone loss and provide an evidence-based rationale for the protective effects of melatonin as a treatment for peri-implant osteolysis. Wear debris-induced chronic inflammation, osteoclastic activation and osteoblastic inhibition have been identified as critical factors of peri-implant bone loss. We previously demonstrated that melatonin, a bioactive indolamine secreted mainly by the pineal gland, activates Wnt/β-catenin signaling pathway and enhances bone regeneration at osteolytic site in vivo. In the current study, we further demonstrated that melatonin significantly suppresses wear

  8. Loss of Cbl-PI3K interaction in mice prevents significant bone loss following ovariectomy

    PubMed Central

    Adapala, Naga Suresh; Holland, Danielle; Piccuillo, Vanessa; Barbe, Mary F.; Langdon, Wallace Y.; Tsygankov, Alexander Y.; Lorenzo, Joseph A.; Sanjay, Archana

    2014-01-01

    Cbl and Cbl-b are E3 ubiquitin ligases and adaptor proteins, which perform regulatory roles in bone remodeling. Cbl−/− mice have delayed bone development due to decreased osteoclast migration. Cbl-b−/− mice are osteopenic due to increased bone resorbing activity of osteoclasts. Unique to Cbl, but not present in Cbl-b, is tyrosine 737 in the YEAM motif, which upon phosphorylation provides a binding site for the regulatory p85 subunit of PI3K. Substitution of tyrosine 737 with phenylalanine (Y737F, CblYF/YF mice) prevents Y737 phosphorylation and abrogates the Cbl-PI3K interaction. We have previously reported that CblYF/YF mice had increased bone volume due to defective bone resorption and increased bone formation. Here we show that the lumbar vertebra from CblYF/YF mice did not have significant bone loss following ovariectomy. Our data also suggests that abrogation of Cbl-PI3K interaction in mice results in the loss of coupling between bone resorption and formation, since ovariectomized CblYF/YF mice did not show significant changes in serum levels of c-terminal telopeptide (CTX), whereas the serum levels of pro-collagen type-1 amino-terminal pro-peptide (P1NP) were decreased. In contrast, following ovariectomy, Cbl−/− and Cbl-b−/− mice showed significant bone loss in tibiae and L2 vertebrae, concomitant with increased serum CTX and P1NP levels. These data indicate that while lack of Cbl or Cbl-b distinctly affects bone remodeling, only the loss of Cbl-PI3K interaction protects mice from significant bone loss following ovariectomy. PMID:24994594

  9. Loss of Cbl-PI3K interaction in mice prevents significant bone loss following ovariectomy.

    PubMed

    Adapala, Naga Suresh; Holland, Danielle; Scanlon, Vanessa; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Lorenzo, Joseph A; Sanjay, Archana

    2014-10-01

    Cbl and Cbl-b are E3 ubiquitin ligases and adaptor proteins, which perform regulatory roles in bone remodeling. Cbl-/- mice have delayed bone development due to decreased osteoclast migration. Cbl-b-/- mice are osteopenic due to increased bone resorbing activity of osteoclasts. Unique to Cbl, but not present in Cbl-b, is tyrosine 737 in the YEAM motif, which upon phosphorylation provides a binding site for the regulatory p85 subunit of PI3K. Substitution of tyrosine 737 with phenylalanine (Y737F, CblYF/YF mice) prevents Y737 phosphorylation and abrogates the Cbl-PI3K interaction. We have previously reported that CblYF/YF mice had increased bone volume due to defective bone resorption and increased bone formation. Here we show that the lumbar vertebra from CblYF/YF mice did not have significant bone loss following ovariectomy. Our data also suggests that abrogation of Cbl-PI3K interaction in mice results in the loss of coupling between bone resorption and formation, since ovariectomized CblYF/YF mice did not show significant changes in serum levels of c-terminal telopeptide (CTX), whereas the serum levels of pro-collagen type-1 amino-terminal pro-peptide (P1NP) were decreased. In contrast, following ovariectomy, Cbl-/- and Cbl-b-/- mice showed significant bone loss in the tibiae and L2 vertebrae, concomitant with increased serum CTX and P1NP levels. These data indicate that while lack of Cbl or Cbl-b distinctly affects bone remodeling, only the loss of Cbl-PI3K interaction protects mice from significant bone loss following ovariectomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane

    2016-09-01

    Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. Copyright © 2016. Published by Elsevier Inc.

  12. Comparison of bone density in amenorrheic women due to athletics, weight loss, and premature menopause.

    PubMed

    Jones, K P; Ravnikar, V A; Tulchinsky, D; Schiff, I

    1985-07-01

    Studied was the peripheral bone density of 39 women (ages 18 to 43) with the diagnosis of secondary amenorrhea in an effort to define the population of amenorrheic women at risk for osteoporosis. Eight women had exercise-induced amenorrhea (athletes), 20 women had amenorrhea associated with weight loss, and 11 women had premature menopause. These diagnoses were made on the basis of history, physical examination, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin levels, and failure to have withdrawal bleeding after the administration of progestin. Twenty-five nonathletic, normally menstruating women served as control subjects. The peripheral bone density of the amenorrheic athletes (0.738 g/cm2 +/- 0.047) was not significantly different from that of the controls (0.726 g/cm2 +/- 0.044). The average bone density of the group with weight loss-associated amenorrhea (0.672 g/cm2 +/- 0.066) was significantly less than controls (P less than .005) as was that of the women with premature menopause (0.616 g/cm2 +/- 0.048, P less than .001). There was a significant correlation between months of amenorrhea and decrease in bone density (r = 0.506, P less than .001). From this study it was concluded that women with exercise-associated amenorrhea are not at significant risk for cortical bone loss as measured by direct photon absorptiometry. Women with weight loss-associated amenorrhea and women with premature menopause are at significant risk for bone loss when compared with normal controls.

  13. Alcohol-Induced Blackouts: A Review of Recent Clinical Research with Practical Implications and Recommendations for Future Studies.

    PubMed

    Wetherill, Reagan R; Fromme, Kim

    2016-05-01

    Alcohol-induced blackouts, or memory loss for all or portions of events that occurred during a drinking episode, are reported by approximately 50% of drinkers and are associated with a wide range of negative consequences, including injury and death. As such, identifying the factors that contribute to and result from alcohol-induced blackouts is critical in developing effective prevention programs. Here, we provide an updated review (2010 to 2015) of clinical research focused on alcohol-induced blackouts, outline practical and clinical implications, and provide recommendations for future research. A comprehensive, systematic literature review was conducted to examine all articles published between January 2010 through August 2015 that focused on vulnerabilities, consequences, and possible mechanisms for alcohol-induced blackouts. Twenty-six studies reported on alcohol-induced blackouts. Fifteen studies examined prevalence and/or predictors of alcohol-induced blackouts. Six publications described the consequences of alcohol-induced blackouts, and 5 studies explored potential cognitive and neurobiological mechanisms underlying alcohol-induced blackouts. Recent research on alcohol-induced blackouts suggests that individual differences, not just alcohol consumption, increase the likelihood of experiencing an alcohol-induced blackout, and the consequences of alcohol-induced blackouts extend beyond the consequences related to the drinking episode to include psychiatric symptoms and neurobiological abnormalities. Prospective studies and a standardized assessment of alcohol-induced blackouts are needed to fully characterize factors associated with alcohol-induced blackouts and to improve prevention strategies. Copyright © 2016 by the Research Society on Alcoholism.

  14. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  15. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    PubMed Central

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-01-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722

  16. Alcohol-induced blackouts: A review of recent clinical research with practical implications and recommendations for future studies

    PubMed Central

    Wetherill, Reagan R.; Fromme, Kim

    2016-01-01

    Background Alcohol-induced blackouts, or memory loss for all or portions of events that occurred during a drinking episode, are reported by approximately 50% of drinkers and are associated with a wide range of negative consequences, including injury and death. As such, identifying the factors that contribute to and result from alcohol-induced blackouts is critical in developing effective prevention programs. Here, we provide an updated review (2010–2015) of clinical research focused on alcohol-induced blackouts, outline practical and clinical implications, and provide recommendations for future research. Methods A comprehensive, systematic literature review was conducted to examine all articles published between January 2010 through August 2015 that focused on examined vulnerabilities, consequences, and possible mechanisms for alcohol-induced blackouts. Results Twenty-sex studies reported on alcohol-induced blackouts. Fifteen studies examined prevalence and/or predictors of alcohol-induced blackouts. Six publications described consequences of alcohol-induced blackouts, and five studies explored potential cognitive and neurobiological mechanisms underlying alcohol-induced blackouts. Conclusions Recent research on alcohol-induced blackouts suggests that individual differences, not just alcohol consumption, increase the likelihood of experiencing an alcohol-induced blackout, and the consequences of alcohol-induced blackouts extend beyond the consequences related to the drinking episode to include psychiatric symptoms and neurobiological abnormalities. Prospective studies and a standardized assessment of alcohol-induced blackouts are needed to fully characterize factors associated with alcohol-induced blackouts and to improve prevention strategies. PMID:27060868

  17. Bone and hormonal changes induced by skeletal unloading in the mature male rat

    NASA Technical Reports Server (NTRS)

    Dehority, W.; Halloran, B. P.; Bikle, D. D.; Curren, T.; Kostenuik, P. J.; Wronski, T. J.; Shen, Y.; Rabkin, B.; Bouraoui, A.; Morey-Holton, E.

    1999-01-01

    To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.

  18. Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia.

    PubMed

    Ferreri, Suzanne L; Talish, Roger; Trandafir, Titi; Qin, Yi-Xian

    2011-05-01

    This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four 16-week-old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) control, OVX+5mW/cm(2) ultrasound (US), OVX+30mW/cm(2) US and OVX+100mW/cm(2) US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gel-coupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5MHz sine waves repeating at 1kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm(2), was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV (+33%) compared to OVX controls for the 100mW/cm(2) treated group. SMI and Tb.N showed significant improvements compared with OVX for the 100mW/cm(2) treated group and Tb.Th was significantly improved in the 30 and 100mW/cm(2) treated groups. Improvements in bone's microstructural characteristics with 100mW/cm(2) US treatment translated into improved load bearing characteristics, including a significant 42% increase in apparent level elastic modulus compared to OVX controls. Significant improvement of trabecular mechanical strength was also observed in the treated animals, e.g., principal compressive stress (represent bone's ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm(2) US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that localized ultrasound treatment, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss. Copyright

  19. Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs.

    PubMed

    Hamed, Sherifa A

    2016-01-01

    Data from cross-sectional and prospective studies revealed that patients with epilepsy and on long-term treatment with antiepileptic drugs (AEDs) are at increased risk for metabolic bone diseases. Bone diseases were reported in about 50% of patients on AEDs. Low bone mineral density, osteopenia/osteoporosis, osteomalacia, rickets, altered concentration of bone turnover markers and fractures were reported with phenobarbital, phenytoin, carbamazepine, valproate, oxcarbazepine and lamotrigine. The mechanisms for AEDs-induced bone diseases are heterogeneous and include hypovitaminosis D, hypocalcemia and direct acceleration of bone loss and/or reduction of bone formation. This article reviews the evidence, predictors and mechanisms of AEDs-induced bone abnormalities and its clinical implications. For patients on AEDs, regular monitoring of bone health is recommended. Prophylactic administration of calcium and vitamin D is recommended for all patients. Treatment doses of calcium and vitamin D and even anti-resorptive drug therapy are reserved for patients at high risk of pathological fracture.

  20. In vivo osteoprotegerin gene therapy preventing bone loss induced by periodontitis.

    PubMed

    Tang, H; Mattheos, N; Yao, Y; Jia, Y; Ma, L; Gong, P

    2015-08-01

    The objective of this study was to investigate the effects of osteoprotegerin (OPG) gene therapy on alveolar bone resorption caused by experimental periodontitis in rats, thus forming a foundation for potential clinical applications of OPG gene therapy in the treatment of periodontitis and peri-implantitis. To study the effects of OPG on alveolar bone protection, an experimental periodontitis model was used by placing a bacterial plaque retentive silk ligature in the gingival sulcus around the maxillary second molar tooth, injection of Porphyromonas gingivalis and high carbohydrate diet. A total of 30 Sprague-Dawley rats were randomly divided into three groups, with 10 rats in each group: group I (control) was treated with 10 μL normal saline injection; group II with 10 μL mock vector; and group III with 10 μL local OPG gene transfer by transfection with in vitro constructed pcDNA3.1-human OPG (pcDNA3.1-hOPG). A subperiosteal injection was done adjacent to the second molars on days 0, 7, 14 and 21. Four weeks later, all animals were killed and radiographic, histological and immunohistochemical examinations were performed. Statistical analysis included ANOVA and LSD-Bonferroni test. Group III (OPG gene therapy) had significantly enhanced (p < 0.05) integrated optical density of OPG, had significantly decreased alveolar bone resorption volume and active osteoclast number (p < 0.05) through descriptive histological examination when compared with the other two groups at week 4. Local recombinant OPG plasmid-mediated gene therapy suppresses osteoclastogenesis in vivo and inhibits alveolar bone height reduction caused by experimental periodontitis in rats. OPG gene therapy may be beneficial in preventing progressive periodontal bone loss. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats

    USDA-ARS?s Scientific Manuscript database

    Summary: Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation in the drinking water plus alphacalcidol administration resulted in increased bone mass via a decrease of oxidative stress and inflammation sugges...

  2. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    PubMed

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.

  3. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats.

    PubMed

    Qi, Shanshan; Zheng, Hongxing; Chen, Chen; Jiang, Hai

    2018-05-09

    The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean

  4. Bone density in limb-immobilized beagles: An animal model for bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1987-01-01

    Prolonged weightlessness is man in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. In order to seek and test preventative measures an appropriate ground based animal model simulating weightlessness is necessary. Use of the mature Beagle in limb immobilization has been documented as an excellent model for orthopedic research since this animal most closely simulates the phenomenom of bone loss with regards to growth, remodeling, structure, chemistry and mineralization. The purpose of this project is to develop a research protocol for the study of bone loss in Beagles during and after cast immobilization of a hindleg; research will then be initiated.

  5. Vitamin D insufficiency reduces the protective effect of bisphosphonate on ovariectomy-induced bone loss in rats.

    PubMed

    Mastaglia, Silvina R; Pellegrini, Gretel G; Mandalunis, Patricia M; Gonzales Chaves, Macarena M; Friedman, Silvia M; Zeni, Susana N

    2006-10-01

    The present study was carried out to obtain an experimental model of vitamin D (vit D) insufficiency and established osteopenia (experiment 1) to then investigate whether vit D status, i.e. normal or insufficient, interferes with bone mass recovery resulting from bisphosphonate therapy (experiment 2). Rats (n = 40) underwent OVX (n = 32) or a sham operation (n = 8). The first 15 days post-surgery, all groups were kept under fluorescent tube lighting and fed a diet containing 200 IU% vit D (+D). They were then assigned during an additional 45 days to receive either +D or a diet lacking vit D (-D) and kept under 12 h light/dark cycles using fluorescent or red lighting. Serum 25HOD was significantly lower in -D rats (P < 0.0001). The type of lighting did not induce differences in 25OHD, calcium (sCa), phosphorus (sP), bone alkaline phosphatase (b-AL), CTX, bone density or histology. No osteoid was observed in undecalcified bone sections. Experiment 2 (105 days): rats were fed either +D or -D according to experiment 1 and were treated with either placebo or 16 mug olpadronate (OPD)/100 g rat/week during the last 45 days. Whereas 25HOD was significantly lower (P < 0.0001) in -D/OPD than in +D/OPD rats, no significant differences in sCa, sP, b-AL or CTX were observed. OPD prevented the loss of lumbar spine (LS) and proximal tibia (PT) BMD and the decrease in bone volume (BV/TV) (P < 0.05) and in the number of trabeculae observed in untreated rats. However, +D/OPD animals presented significantly higher values of LS BMD, PT BMD and BV/TV than -D/OPD rats (P < 0.05). No osteoid was observed in undecalcified sections of bone. In summary, this is the first experimental study to provide evidence that differences in vit D status may affect the anticatabolic response to bisphosphonate treatment. However, the molecular mechanism through which vit D insufficiency reduces the effect of the aminobisphosphonate remains to be defined.

  6. Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis.

    PubMed

    Mulvihill, Brianne M; McNamara, Laoise M; Prendergast, Patrick J

    2008-10-06

    Osteoporosis is characterized by rapid and irreversible loss of trabecular bone tissue leading to increased bone fragility. In this study, we hypothesize two causes for rapid loss of bone trabeculae; firstly, the perforation of trabeculae is caused by osteoclasts resorbing a cavity so deep that it cannot be refilled and, secondly, the increases in bone tissue elastic modulus lead to increased propensity for trabecular perforation. These hypotheses were tested using an algorithm that was based on two premises: (i) bone remodelling is a turnover process that repairs damaged bone tissue by resorbing and returning it to a homeostatic strain level and (ii) osteoblast attachment is under biochemical control. It was found that a mechano-biological algorithm based on these premises can simulate the remodelling cycle in a trabecular strut where damaged bone is resorbed to form a pit that is subsequently refilled with new bone. Furthermore, the simulation predicts that there is a depth of resorption cavity deeper than which refilling of the resorption pits is impossible and perforation inevitably occurs. However, perforation does not occur by a single fracture event but by continual removal of microdamage after it forms beneath the resorption pit. The simulation also predicts that perforations would occur more easily in trabeculae that are more highly mineralized (stiffer). Since both increased osteoclast activation rates and increased mineralization have been measured in osteoporotic bone, either or both may contribute to the rapid loss of trabecular bone mass observed in osteoporotic patients.

  7. Testosterone Dose Dependently Prevents Bone and Muscle Loss in Rodents after Spinal Cord Injury

    PubMed Central

    Conover, Christine F.; Beggs, Luke A.; Beck, Darren T.; Otzel, Dana M.; Balaez, Alexander; Combs, Sarah M.; Miller, Julie R.; Ye, Fan; Aguirre, J. Ignacio; Neuville, Kathleen G.; Williams, Alyssa A.; Conrad, Bryan P.; Gregory, Chris M.; Wronski, Thomas J.; Bose, Prodip K.; Borst, Stephen E.

    2014-01-01

    Abstract Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit

  8. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia.

    PubMed

    Bonetto, Andrea; Kays, Joshua K; Parker, Valorie A; Matthews, Ryan R; Barreto, Rafael; Puppa, Melissa J; Kang, Kyung S; Carson, James A; Guise, Theresa A; Mohammad, Khalid S; Robling, Alexander G; Couch, Marion E; Koniaris, Leonidas G; Zimmers, Teresa A

    2016-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and Apc Min/+ . The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the Apc Min/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia.

  9. Improved nutritional status and bone health after diet-induced weight loss in sedentary osteoarthritis patients: a prospective cohort study.

    PubMed

    Christensen, P; Bartels, E M; Riecke, B F; Bliddal, H; Leeds, A R; Astrup, A; Winther, K; Christensen, R

    2012-04-01

    Obese subjects are commonly deficient in several micronutrients. Weight loss, although beneficial, may also lead to adverse changes in micronutrient status and body composition. The objective of the study is to assess changes in micronutrient status and body composition in obese individuals after a dietary weight loss program. As part of a dietary weight loss trial, enrolling 192 obese patients (body mass index >30 kg/m2) with knee osteoarthritis (>50 years of age), vitamin D, ferritin, vitamin B12 and body composition were measured at baseline and after 16 weeks. All followed an 8-week formula weight-loss diet 415-810 kcal per day, followed by 8 weeks on a hypo-energetic 1200 kcal per day diet with a combination of normal food and formula products. Statistical analyses were based on paired samples in the completer population. A total of 175 patients (142 women), 91%, completed the 16-week program and had a body weight loss of 14.0 kg (95% confidence interval: 13.3-14.7; P<0.0001), consisting of 1.8 kg (1.3-2.3; P<0.0001) lean body mass (LBM) and 11.0 kg (10.4-11.6; P<0.0001) fat mass. Bone mineral content (BMC) did not change (-13.5 g; P=0.18), whereas bone mineral density (BMD) increased by 0.004 g/cm2 (0.001-0.008 g/cm2; P=0.025). Plasma vitamin D and B(12) increased by 15.3 nmol/l (13.2-17.3; P<0.0001) and 43.7 pmol/l (32.1-55.4; P<0.0001), respectively. There was no change in plasma ferritin. This intensive program with formula diet resulted in increased BMD and improved vitamin D and B12 levels. Ferritin and BMC were unchanged and loss of LBM was only 13% of the total weight loss. This observational evidence supports use of formula diet-induced weight loss therapy in obese osteoarthritis patients.

  10. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    PubMed

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  11. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088

  12. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments.

    PubMed

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.

  13. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck.

    PubMed

    Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M

    2017-08-10

    Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis

    PubMed Central

    Wang, Haitao; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Egan, Kevin P.; Chen, Qijun; Israelite, Craig; Schultz, David C.; Johnson, Frederick B.; Pignolo, Robert J.

    2013-01-01

    Bone tissue adapts to its functional environment by optimizing its morphology for mechanical demand. Among the mechanosensitive cells that recognize and respond to forces in the skeleton are osteocytes, osteoblasts, and mesenchymal progenitor cells (MPCs). Therefore, the ability to use mechanical signals to improve bone health through exercise and devices that deliver mechanical signals is an attractive approach to age-related bone loss; however, the extracellular or circulating mediators of such signals are largely unknown. Using SDS-PAGE separation of proteins secreted by MPCs in response to low magnitude mechanical signals and in-gel trypsin digestion followed by HPLC and mass spectroscopy, we identified secreted proteins up-regulated by vibratory stimulation. We exploited a cell senescence-associated secretory phenotype screen, and reasoned that a subset of vibration-induced proteins with diminished secretion by senescent MPCs will have the capacity to promote bone formation in vivo. We identified one such vibration-induced bone-enhancing (vibe) gene as R-Spondin 1, a Wnt pathway modulator, and demonstrated that it has the capacity to promote bone formation in three mouse models of age-related bone loss. By virtue of their secretory status, some vibe proteins may be candidates for pre-clinical development as anabolic agents for the treatment of osteoporosis. PMID:23974989

  15. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia

    PubMed Central

    Bonetto, Andrea; Kays, Joshua K.; Parker, Valorie A.; Matthews, Ryan R.; Barreto, Rafael; Puppa, Melissa J.; Kang, Kyung S.; Carson, James A.; Guise, Theresa A.; Mohammad, Khalid S.; Robling, Alexander G.; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia. PMID:28123369

  16. Ficus deltoidea Prevented Bone Loss in Preclinical Osteoporosis/Osteoarthritis Model by Suppressing Inflammation.

    PubMed

    Che Ahmad Tantowi, Nur Adeelah; Lau, Seng Fong; Mohamed, Suhaila

    2018-05-28

    Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats' bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p < 0.05) mitigated these bone microstructural and biomarker changes by dose-dependently down-regulating pro-inflammatory NF-κβ, TNF-α, and IL-6 mRNA expressions. The FD extract demonstrated good anti-osteoporotic properties in this OP/OA preclinical model by stimulating bone formation and suppressing bone resorption via anti-inflammatory pathways. This is among the few reports relating the subchondral bone plate and trabecular thickening with the metaphyseal trabecular osteopenic bone loss under osteoporotic-osteoarthritis conditions, providing some insights on the debated inverse relationship between osteoporosis and osteoarthritis.

  17. Aging and bone loss: new insights for the clinician

    PubMed Central

    Demontiero, Oddom; Vidal, Christopher

    2012-01-01

    It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496

  18. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts.

    PubMed

    Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M

    2010-05-01

    NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.

  19. Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II

    PubMed Central

    Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten

    2013-01-01

    Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423

  20. A High-Saturated-Fat, High-Sucrose Diet Aggravates Bone Loss in Ovariectomized Female Rats.

    PubMed

    Dong, Xiao-Li; Li, Chun-Mei; Cao, Si-Si; Zhou, Li-Ping; Wong, Man-Sau

    2016-06-01

    Estrogen deficiency in women and high-saturated fat, high-sucrose (HFS) diets have both been recognized as risk factors for metabolic syndrome. Studies on the combined actions of these 2 detrimental factors on the bone in females are limited. We sought to determine the interactive actions of estrogen deficiency and an HFS diet on bone properties and to investigate the underlying mechanisms. Six-month-old Sprague Dawley sham or ovariectomized (OVX) rats were pair fed the same amount of either a low-saturated-fat, low-sucrose (LFS) diet (13% fat calories; 15% sucrose calories) or an HFS diet (42% fat calories; 30% sucrose calories) for 12 wk. Blood, liver, and bone were collected for correspondent parameters measurement. Ovariectomy decreased bone mineral density in the tibia head (TH) by 62% and the femoral end (FE) by 49% (P < 0.0001). The HFS diet aggravated bone loss in OVX rats by an additional 41% in the TH and 37% in the FE (P < 0.05). Bone loss in the HFS-OVX rats was accompanied by increased urinary deoxypyridinoline concentrations by 28% (P < 0.05). The HFS diet induced cathepsin K by 145% but reduced osteoprotegerin mRNA expression at the FE of the HFS-sham rats by 71% (P < 0.05). Ovariectomy significantly increased peroxisome proliferator-activated receptor γ mRNA expression by 136% and 170% at the FE of the LFS- and HFS-OVX rats, respectively (P < 0.05). The HFS diet aggravated ovariectomy-induced lipid deposition and oxidative stress (OS) in rat livers (P < 0.05). Trabecular bone mineral density at the FE was negatively correlated with rat liver malondialdehyde concentrations (R(2) = 0.39; P < 0.01). The detrimental actions of the HFS diet and ovariectomy on bone properties in rats occurred mainly in cancellous bones and were characterized by a high degree of bone resorption and alterations in OS. © 2016 American Society for Nutrition.

  1. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice.

    PubMed

    Adebayo, O O; Ko, F C; Wan, P T; Goldring, S R; Goldring, M B; Wright, T M; van der Meulen, M C H

    2017-12-01

    Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    PubMed

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  3. Partial Protection by Dietary Antioxidants Against Ethanol-Induced Osteopenia and Changes in Bone Morphology in Female Mice.

    PubMed

    Alund, Alexander W; Mercer, Kelly E; Pulliam, Casey F; Suva, Larry J; Chen, Jin-Ran; Badger, Thomas M; Ronis, Martin J J

    2017-01-01

    Chronic alcohol consumption leads to increased fracture risk and an elevated risk of osteoporosis by decreasing bone accrual through increasing osteoclast activity and decreasing osteoblast activity. We have shown that this mechanism involves the generation of reactive oxygen species (ROS) produced by NADPH oxidases. It was hypothesized that different dietary antioxidants, N-acetyl cysteine (NAC; 1.2 mg/kg/d), and α-tocopherol (Vit.E; 60 mg/kg/d) would be able to attenuate the NADPH oxidase-mediated ROS effects on bone due to chronic alcohol intake. To study the effects of these antioxidants, female mice received a Lieber-DeCarli liquid diet containing ethanol (EtOH) with or without additional antioxidant for 8 weeks. Tibias displayed decreased cortical bone mineral density in both the EtOH and EtOH + antioxidant groups compared to pair-fed (PF) and PF + antioxidant groups (p < 0.05). However, there was significant protection from trabecular bone loss in mice fed either antioxidant (p < 0.05). Microcomputed tomography analysis demonstrated a significant decrease in bone volume (bone volume/tissue volume) and trabecular number (p < 0.05), along with a significant increase in trabecular separation in the EtOH compared to PF (p < 0.05). In contrast, the EtOH + NAC and EtOH + Vit.E did not statistically differ from their respective PF controls. Ex vivo histologic sections of tibias were stained for nitrotyrosine, an indicator of intracellular damage by ROS, and tibias from mice fed EtOH exhibited significantly more staining than PF controls. EtOH treatment significantly increased the number of marrow adipocytes per mm as well as mRNA expression of aP2, an adipocyte marker in bone. Only NAC was able to reduce the number of marrow adipocytes to PF levels. EtOH-fed mice exhibited reduced bone length (p < 0.05) and had a reduced number of proliferating chondrocytes within the growth plate. NAC and Vit.E prevented this (p < 0.05). These data show

  4. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture.

    PubMed Central

    Bhattacharyya, M H; Whelton, B D; Stern, P H; Peterson, D P

    1988-01-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which 45Ca release from 45Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with 45Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption, from 27 +/- 2% (mean +/- SEM) 45Ca release in cultures with no added cadmium to 68 +/- 6% release in cultures containing cadmium (n = 4). These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke. Images PMID:3186759

  5. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    PubMed

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins.

    PubMed

    Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M

    2007-02-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.

  7. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins

    PubMed Central

    Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.

    2007-01-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743

  8. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer.

    PubMed

    Adjei, Isaac M; Sharma, Blanka; Peetla, Chiranjeevi; Labhasetwar, Vinod

    2016-06-28

    Advanced-stage prostate cancer usually metastasizes to bone and is untreatable due to poor biodistribution of intravenously administered anticancer drugs to bone. In this study, we modulated the surface charge/composition of biodegradable nanoparticles (NPs) to sustain their blood circulation time and made them small enough to extravasate through the openings of the bone's sinusoidal capillaries and thus localize into marrow. NPs with a neutral surface charge, achieved by modulating the NP surface-associated emulsifier composition, were more effective at localizing to bone marrow than NPs with a cationic or anionic surface charge. These small neutral NPs (~150nm vs. the more usual ~320nm) were also ~7-fold more effective in localizing in bone marrow than large NPs. We hypothesized that NPs that effectively localize to marrow could improve NP-mediated anticancer drug delivery to sites of bone metastasis, thereby inhibiting cancer progression and preventing bone loss. In a PC-3M-luc cell-induced osteolytic intraosseous model of prostate cancer, these small neutral NPs demonstrated greater accumulation in bone within metastatic sites than in normal contralateral bone as well as co-localization with the tumor mass in marrow. Significantly, a single-dose intravenous administration of these small neutral NPs loaded with paclitaxel (PTX-NPs), but not anionic PTX-NPs, slowed the progression of bone metastasis. In addition, neutral PTX-NPs prevented bone loss, whereas animals treated with the rapid-release drug formulation Cremophor EL (PTX-CrEL) or saline (control) showed >50% bone loss. Neutral PTX-NPs did not cause acute toxicity, whereas animals treated with PTX-CrEL experienced weight loss. These results indicate that NPs with appropriate physical and sustained drug-release characteristics could be explored to treat bone metastasis, a significant clinical issue in prostate and other cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulation of IL-6/STAT3 signaling.

    PubMed

    Zhang, Zhi-Guo; Chen, Yan-Jing; Xiang, Li-Hua; Pan, Jing-Hua; Wang, Zhen; Xiao, Gary Guishan; Ju, Da-Hong

    2017-11-01

    The aim of the present study was to assess the effectiveness of Rhizoma Dioscoreae extract (RDE) on preventing rat alveolar bone loss induced by ovariectomy (OVX), and to determine the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in this effect. Female Wistar rats were subjected to OVX or sham surgery. The rats that had undergone OVX were treated with RDE (RDE group), vehicle (OVX group) or 17β-estradiol subcutaneous injection (E2 group). Subsequently, bone metabolic activity was assessed by analyzing 3-D alveolar bone construction, bone mineral density, as well as the plasma biomarkers of bone turnover. The gene expression of alveolar bone in the OVX and RDE groups was evaluated by IL-6/STAT3 signaling pathway polymerase chain reaction (PCR) arrays, and differentially expressed genes were determined through reverse transcription-quantitative PCR. The inhibitory effect of RDE on alveolar bone loss in the OVX group was demonstrated in the study. In comparison with the OVX group, the RDE group exhibited 19 downregulated genes and 1 upregulated gene associated with the IL-6/STAT3 signaling pathway in alveolar bone. Thus, RDE was shown to relieve OVX-induced alveolar bone loss in rats, an effect which was likely associated with decreased abnormal bone remodeling via regulation of the IL-6/STAT3 signaling pathway.

  10. Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.

    PubMed

    Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze

    2017-10-01

    As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.

  11. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. © 2015 American Society for Bone and Mineral Research.

  12. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases

    PubMed Central

    Sato, Amy Y.; Richardson, Danielle; Cregor, Meloney; Davis, Hannah M.; Au, Ernie D.; McAndrews, Kevin; Zimmers, Teresa A.; Organ, Jason M.; Peacock, Munro; Plotkin, Lilian I.

    2017-01-01

    Glucocorticoid excess, either endogenous with diseases of the adrenal gland, stress, or aging or when administered for immunosuppression, induces bone and muscle loss, leading to osteopenia and sarcopenia. Muscle weakness increases the propensity for falling, which, combined with the lower bone mass, increases the fracture risk. The mechanisms underlying glucocorticoid-induced bone and muscle atrophy are not completely understood. We have demonstrated that the loss of bone and muscle mass, decreased bone formation, and reduced muscle strength, hallmarks of glucocorticoid excess, are accompanied by upregulation in both tissues in vivo of the atrophy-related genes atrogin1, MuRF1, and MUSA1. These are E3 ubiquitin ligases traditionally considered muscle-specific. Glucocorticoids also upregulated atrophy genes in cultured osteoblastic/osteocytic cells, in ex vivo bone organ cultures, and in muscle organ cultures and C2C12 myoblasts/myotubes. Furthermore, glucocorticoids markedly increased the expression of components of the Notch signaling pathway in muscle in vivo, ex vivo, and in vitro. In contrast, glucocorticoids did not increase Notch signaling in bone or bone cells. Moreover, the increased expression of atrophy-related genes in muscle, but not in bone, and the decreased myotube diameter induced by glucocorticoids were prevented by inhibiting Notch signaling. Thus, glucocorticoids activate different mechanisms in bone and muscle that upregulate atrophy-related genes. However, the role of these genes in the effects of glucocorticoids in bone is unknown. Nevertheless, these findings advance our knowledge of the mechanism of action of glucocorticoids in the musculoskeletal system and provide the basis for novel therapies to prevent glucocorticoid-induced atrophy of bone and muscle. PMID:28359087

  13. Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women.

    PubMed

    Slemenda, C; Longcope, C; Peacock, M; Hui, S; Johnston, C C

    1996-01-01

    Although bone loss around the time of menopause is driven by estrogen deficiency, the roles of estrogens and androgens in the preservation of skeletal mass at other stages of life are less well understood. To address this issue we studied 231 women between the ages of 32 and 77 with multiple measurements of sex steroids and bone mass over a period of 2-8 yr. In all women bone mass was negatively associated with concentrations of sex-hormone binding globulin, and positively associated with weight. Bone loss occurred from all skeletal sites in peri- and postmenopausal women, but premenopausal women lost bone only from the hip (-0.3%/yr) and had positive rates of change in the radius and spine. Bone loss was significantly associated with lower androgen concentrations in premenopausal women, and with lower estrogens and androgens in peri- and postmenopausal women. Sex steroids are important for the maintenance of skeletal integrity before menopause, and for as long as 20-25 yr afterwards.

  14. ZIP4 silencing improves bone loss in pancreatic cancer

    PubMed Central

    Yang, Jingxuan; Ding, Hao; LeBrun, Drake; Ding, Kai; Houchen, Courtney W.; Postier, Russell G.; Ambrose, Catherine G.; Li, Zhaoshen; Bi, Xiaohong; Li, Min

    2015-01-01

    Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders. PMID:26305676

  15. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  16. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Osteoporosis and bone fractures in alcoholic liver disease: a meta-analysis.

    PubMed

    Bang, Chang Seok; Shin, In Soo; Lee, Sung Wha; Kim, Jin Bong; Baik, Gwang Ho; Suk, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2015-04-07

    To evaluate the association between alcoholic liver disease (ALD) and bone fractures or osteoporosis. Non-randomized studies were identified from databases (PubMed, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included "alcoholic liver diseases", "osteoporosis", or "bone fractures". The prevalence of any fractures or osteoporosis, and bone mineral density (BMD) were extracted and analyzed using risk ratios and standardized mean difference (SMD). A random effects model was applied. In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944 (95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849 (95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD (SMD in femur-BMD: -0.172, 95%CI: -0.453-0.110; SMD in spine-BMD: -0.169, 95%CI: -0.476-0.138). Sensitivity analyses showed consistent results. Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis.

  18. Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH.

    PubMed

    Khan, F; Khan, R H; Muzammil, S

    2000-09-29

    Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.

  19. Improved nutritional status and bone health after diet-induced weight loss in sedentary osteoarthritis patients: a prospective cohort study

    PubMed Central

    Christensen, P; Bartels, E M; Riecke, B F; Bliddal, H; Leeds, A R; Astrup, A; Winther, K; Christensen, R

    2012-01-01

    BACKGROUND/OBJECTIVES: Obese subjects are commonly deficient in several micronutrients. Weight loss, although beneficial, may also lead to adverse changes in micronutrient status and body composition. The objective of the study is to assess changes in micronutrient status and body composition in obese individuals after a dietary weight loss program. SUBJECTS/METHODS: As part of a dietary weight loss trial, enrolling 192 obese patients (body mass index >30 kg/m2) with knee osteoarthritis (>50 years of age), vitamin D, ferritin, vitamin B12 and body composition were measured at baseline and after 16 weeks. All followed an 8-week formula weight-loss diet 415–810 kcal per day, followed by 8 weeks on a hypo-energetic 1200 kcal per day diet with a combination of normal food and formula products. Statistical analyses were based on paired samples in the completer population. RESULTS: A total of 175 patients (142 women), 91%, completed the 16-week program and had a body weight loss of 14.0 kg (95% confidence interval: 13.3–14.7; P<0.0001), consisting of 1.8 kg (1.3–2.3; P<0.0001) lean body mass (LBM) and 11.0 kg (10.4–11.6; P<0.0001) fat mass. Bone mineral content (BMC) did not change (-13.5 g; P=0.18), whereas bone mineral density (BMD) increased by 0.004 g/cm2 (0.001–0.008 g/cm2; P=0.025). Plasma vitamin D and B12 increased by 15.3 nmol/l (13.2–17.3; P<0.0001) and 43.7 pmol/l (32.1–55.4; P<0.0001), respectively. There was no change in plasma ferritin. CONCLUSIONS: This intensive program with formula diet resulted in increased BMD and improved vitamin D and B12 levels. Ferritin and BMC were unchanged and loss of LBM was only 13% of the total weight loss. This observational evidence supports use of formula diet-induced weight loss therapy in obese osteoarthritis patients. PMID:22190136

  20. Autophagy in alcohol-induced liver diseases

    PubMed Central

    Dolganiuc, Angela; Thomes, Paul G.; Ding, Wen-Xing; Lemasters, John J.; Donohue, Terrence M.

    2013-01-01

    Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately-folded proteins and damaged high energy-generating intracellular organelles are prominent targets of autophagy in pathologic conditions. Coincidentally, inadequately-folded proteins accumulate and high energy-generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004

  1. Marginal Bone Loss after Ten Years in an Adult Danish Population: A Radiographic Study.

    PubMed

    Bahrami, Golnosh; Vaeth, Michael; Wenzel, Ann; Isidor, Flemming

    To evaluate marginal bone loss over a 10-year period in individuals and in tooth groups in relation to age and level of marginal bone. In 1997, 616 randomly selected individuals (mean age: 42 years, range: 21-63 years) underwent a full-mouth radiographic survey. In 2008, the survey was repeated in 362 of the same individuals (182 women and 180 men). The marginal bone level of each tooth was measured in mm from the cementoenamel junction to the marginal bone. These measurements were used to calculate marginal bone loss during the 10-year period for individuals and tooth groups in relation to age and to baseline marginal bone level, calculated as the average between measurements in 1997 and 2008 to circumvent regression towards the mean. The average annual marginal bone loss was 0.09 mm (SD ± 0.04 mm) during the 10-year study period. The association between marginal bone loss and baseline marginal bone level was more pronounced in the youngest age group, compared to the other age groups. Molars displayed the most severe bone loss during the study period. Marginal bone loss over a 10-year period is associated with age and baseline marginal bone level. Younger individuals with a reduced marginal bone level were at higher risk for further bone loss. Molars lose marginal bone more rapidly than other tooth groups.

  2. Mitigation of Bone Loss with Ultrasound Induced Dynamic Mechanical Signals in an OVX Induced Rat Model of Osteopenia

    PubMed Central

    Ferreri, Suzanne L.; Talish, Roger; Trandafir, Titi; Qin, Yi-Xian

    2011-01-01

    This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four, sixteen week old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) OVX control, OVX + 5 mW/cm2 ultrasound (US), OVX + 30 mW/cm2 US and OVX + 100 mW/cm2 US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gelcoupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5 MHz sine waves repeating at 1 kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm2, was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV 33% compared to OVX controls for the 100mW/cm2 treated group. SMI, and Tb.N showed significant improvements compared with OVX for the 100mW/cm2 treated group and Tb.Th was significantly improved in the 30 and 100mW/cm2 treated groups. Improvements in bone’s microstructural characteristics with 100mW/cm2 US treatment translated into improved load bearing characteristics, including a significant, 42% increase in apparent level Elastic Modulus compared to OVX controls. Significant improvement of trabecular mechanical strength is also observed in the treated animals, e.g., principal compressive stress (represent bone’s ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm2 US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that ultrasound, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss. PMID:21241838

  3. Prevention of aromatase inhibitor-induced bone loss with alendronate in postmenopausal women: The BATMAN Trial.

    PubMed

    Lomax, Anna J; Yee Yap, Saw; White, Karen; Beith, Jane; Abdi, Ehtesham; Broad, Adam; Sewak, Sanjeev; Lee, Chooi; Sambrook, Philip; Pocock, Nicholas; Henry, Margaret J; Yeow, Elaine G; Bell, Richard

    2013-12-01

    Postmenopausal women on aromatase inhibitors (AI) are at risk of aromatase inhibitor-associated bone loss (AIBL) and fractures. In 2005 Osteoporosis Australia proposed an algorithm for bisphosphonate intervention. Three hundred and three postmenopausal women with early breast cancer (EBC) were enrolled (osteoporotic, n=25; osteopaenic, n=146; normal bone mineral density (BMD), n=126). Weekly alendronate (70 mg) treatment efficacy as triggered by the algorithm in preventing bone loss was evaluated. All patients received anastrozole (1 mg daily), calcium and vitamin D. All osteoporotic patients received alendronate at baseline. Eleven out of the 146 (7.5%) osteopaenic patients commenced alendronate within 18 months of participation and eleven commenced after. One hundred and twenty four out of the 146 (84.9%) osteopaenic patients and all 126 with normal baseline BMD did not trigger the algorithm. At three years, lumbar spine mean BMD increased (15.6%, p<0.01) in the osteoporotic group. BMD in the osteopaenic group with early intervention significantly increased at three years (6.3%, p=0.02). No significant change was seen in the late intervention group. No change was observed in those with osteopaenia without alendronate. There was a significant drop in lumbar spine (-5.4%) and hip (-4.5%) mean BMD, in the normal BMD group, none of whom received alendronate. Fracture data will be presented. In postmenopausal women with endocrine-responsive EBC, BMD improved over time when a bisphosphonate is administered with anastrozole in osteoporotic patients using an osteoporosis schedule. Subjects with normal baseline BMD experienced the greatest BMD loss, although none became osteoporotic.

  4. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  5. Chronic and intermittent exposure to alcohol vapors: a new model of alcohol-induced osteopenia in the rat.

    PubMed

    Maurel, Delphine B; Jaffré, Christelle; O'Brien, Emmanuelle Simon; Tournier, Carine C; Houchi, Hakim; Benhamou, Claude-Laurent; Naassila, Mickael

    2013-01-01

    Different models are used to study the effects of chronic alcohol consumption on bone tissue in the rat. However, the current models take several months to show indices of osteopenia as observed in chronic drinkers. Numerous studies have supported that chronic and intermittent exposure to ethanol vapors has predictive validity as a model of alcohol dependence in humans. However, this model has never been applied to bone research to study its effects on the parameters that define osteopenia. This was the goal of this study in the rat. Male Wistar rats were exposed to ethanol vapor inhalation (n = 6) or air (controls, n = 6). Animals were exposed to chronic (11 weeks) and intermittent (14 hours a day) ethanol vapor reaching stable blood alcohol levels (BALs; 150 to 250 mg/dl) at the end of the third week of inhalation. After the sacrifice, right and left femur and tibia were dissected free of fat and connective tissue and bone mineral density (BMD) was assessed by dual X-ray absorptiometry. The microarchitecture of the femur was studied using microcomputed tomography. The BMD of the left and right femurs and the left tibia was lower in the ethanol group compared with the control group. The bone volume fraction (BV/TV) and the bone surface density (BS/TV) were lower in the ethanol group compared with control animals. The trabecular number (Tb.N) was lower in the ethanol group while the trabecular spacing was higher. The decrease in the BMD, BV/TV, and Tb.N is in the same range as what is observed in human drinkers and what is reported with other animal alcohol models (Lieber-DeCarli liquid diet, ethanol in the tap water). Therefore, this model could be useful to study the effects of chronic alcohol consumption in the bone research field and has the advantage of controlling easily targeted BALs. Copyright © 2012 by the Research Society on Alcoholism.

  6. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    PubMed

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  7. Acute alcohol intoxication-induced microvascular leakage.

    PubMed

    Doggett, Travis M; Breslin, Jerome W

    2014-09-01

    Alcohol intoxication can increase inflammation and worsen injury, yet the mechanisms involved are not clear. We investigated whether acute alcohol intoxication increases microvascular permeability and investigated potential signaling mechanisms in endothelial cells that may be involved. Conscious rats received a 2.5 g/kg alcohol bolus via gastric catheters to produce acute intoxication. Microvascular leakage of intravenously administered fluorescein isothiocyanate (FITC)-conjugated albumin (FITC-albumin) from the mesenteric microcirculation was assessed by intravital microscopy. Endothelial-specific mechanisms were studied using cultured endothelial cell monolayers. Transendothelial electrical resistance (TER) served as an index of barrier function, before and after treatment with alcohol or its metabolite acetaldehyde. Pharmacologic agents were used to test the roles of alcohol metabolism, oxidative stress, p38 mitogen-activated protein kinase (MAPK), myosin light-chain kinase (MLCK), rho kinase (ROCK), and exchange protein activated by cAMP (Epac). VE-cadherin localization was investigated to assess junctional integrity. Rac1 and RhoA activation was assessed by ELISA assays. Alcohol significantly increased FITC-albumin extravasation from the mesenteric microcirculation. Alcohol also significantly decreased TER and disrupted VE-cadherin organization at junctions. Acetaldehyde significantly decreased TER, but inhibition of alcohol dehydrogenase or application of a superoxide dismutase mimetic failed to prevent alcohol-induced decreases in TER. Inhibition of p38 MAPK, but not MLCK or ROCK, significantly attenuated the alcohol-induced barrier dysfunction. Alcohol rapidly decreased GTP-bound Rac1 but not RhoA during the drop in TER. Activation of Epac increased TER, but did not prevent alcohol from decreasing TER. However, activation of Epac after initiation of alcohol-induced barrier dysfunction quickly resolved TER to baseline levels. Our results suggest that

  8. Spaceflight-Induced Bone Loss Alters Failure Mode and Reduces Bending Strength in Murine Spinal Segments

    PubMed Central

    Berg-Johansen, Britta; Liebenberg, Ellen C.; Li, Alfred; Macias, Brandon R.; Hargens, Alan R.; Lotz, Jeffrey C.

    2017-01-01

    Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts. PMID:26285046

  9. Association between alcohol consumption and bone mineral density in elderly Korean men and women.

    PubMed

    Cho, Yoosun; Choi, Seulggie; Kim, Kyuwoong; Lee, Gyeongsil; Park, Sang Min

    2018-04-25

    In this cross-sectional study based on Korean elderly men and women, heavy alcohol intake for men was related to low whole-body BMD and light alcohol intake for women was associated with high whole-body, lumbar, and total femur BMD. Alcohol is a risk factor of osteoporosis but previous studies on its effect on bone health has been controversial. The aim of this study was to evaluate the association between alcohol intake and bone mineral density in Korean elderly men and women. Based on the Fourth and Fifth Korean National Health and Nutrition Examination Surveys (KNHANES), 2657 men and 2080 women 50 to 79 years of age were included. Bone mineral density (BMD) was measured using dual energy X-ray absorptiometry (DXA). Alcohol consumption was determined by self-administered questionnaires and classified into four groups according to sex: non-drinkers (0 g/day), light drinking (1-19 g/day men, 1-9 g/day women), moderate drinking (20-39 g/day men, 10-29 g/day women), and heavy drinking (≥ 40 g/day men, ≥ 20 g/day women). The adjusted mean values calculated by linear regression analysis for BMD were determined according to the amount of alcohol consumed. Light drinkers had the highest whole-body BMD for both men (mean 1.164, SD 0.047-1.281) and women (mean 1.046, SD 0.912-1.180). Among men, mean whole-body BMD for heavy drinkers was significantly lower than that among light drinkers (P = 0.031). Among women, BMD for light drinkers was significantly higher in the whole body, lumbar, and total femur than that for non-drinkers (P < 0.001, P = 0.026, P = 0.040, respectively). Heavy alcohol intake may be associated with lower BMD in men while light alcohol intake may associate with higher BMD among women. Future longitudinal studies investigating the effect of alcohol consumption on bone mineral density are needed to validate the findings of this study.

  10. Retinaldehyde Dehydrogenase 1 Deficiency Inhibits PPARγ-Mediated Bone Loss and Marrow Adiposity

    PubMed Central

    Nallamshetty, Shriram; Le, Phuong T.; Wang, Hong; Issacsohn, Maya J.; Reeder, David J.; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Rosen, Clifford J.; Plutzky, Jorge

    2014-01-01

    PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1−/−) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1−/− mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1−/− HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. PMID:25064526

  11. Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.

    PubMed

    Nallamshetty, Shriram; Le, Phuong T; Wang, Hong; Issacsohn, Maya J; Reeder, David J; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Rosen, Clifford J; Plutzky, Jorge

    2014-10-01

    PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Influence of fat/carbohydrate ratio on progression of fatty liver disease and on development of osteopenia in male rats fed alcohol via total enteral nutrition (TEN)

    USDA-ARS?s Scientific Manuscript database

    Alcohol abuse is associated with the development of fatty liver disease and also with significant bone loss in both genders. In this study, we examined ethanol (EtOH)-induced pathology in response to diets with differing fat/carbohydrate ratios. Male Sprague-Dawley rats were fed intragastrically wit...

  13. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    NASA Technical Reports Server (NTRS)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  14. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia.

    PubMed

    Niziolek, Paul J; Bullock, Whitney; Warman, Matthew L; Robling, Alexander G

    2015-01-01

    The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.

  15. Osteoporosis and bone fractures in alcoholic liver disease: A meta-analysis

    PubMed Central

    Bang, Chang Seok; Shin, In Soo; Lee, Sung Wha; Kim, Jin Bong; Baik, Gwang Ho; Suk, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2015-01-01

    AIM: To evaluate the association between alcoholic liver disease (ALD) and bone fractures or osteoporosis. METHODS: Non-randomized studies were identified from databases (PubMed, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included “alcoholic liver diseases”, “osteoporosis”, or “bone fractures”. The prevalence of any fractures or osteoporosis, and bone mineral density (BMD) were extracted and analyzed using risk ratios and standardized mean difference (SMD). A random effects model was applied. RESULTS: In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944 (95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849 (95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD (SMD in femur-BMD: -0.172, 95%CI: -0.453-0.110; SMD in spine-BMD: -0.169, 95%CI: -0.476-0.138). Sensitivity analyses showed consistent results. CONCLUSION: Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis. PMID:25852292

  16. Bisphosphonates inhibit pain, bone loss, and inflammation in a rat tibia fracture model of complex regional pain syndrome

    PubMed Central

    Wang, Liping; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S

    2016-01-01

    BACKGROUND Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that anti-resorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, post-fracture cutaneous cytokine up-regulation, and adaptive immune responses in this CRPS model. METHODS Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by uCT and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed and skin cytokine (TNF, IL-1, IL-6) and nerve growth factor (NGF) levels were determined by EIA. Skin and sciatic nerve immunoglobulin levels were determined by EIA. RESULTS Tibia fracture rats developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression, trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by uCT, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression and elevated immunocomplex deposition in skin and nerve. Alendronate (60 μg/kg/day s.c.) or zoledronate (3 mg/kg/day p.o.) treatment for 28 days, started

  17. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  18. Bone mineral loss in young women with amenorrhoea.

    PubMed Central

    Davies, M C; Hall, M L; Jacobs, H S

    1990-01-01

    OBJECTIVE--To examine the impact of amenorrhoea on bone mineral density in women of reproductive age. DESIGN--Cross sectional study of 200 amenorrhoeic women compared with normally menstruating controls. SETTING--Teaching hospital outpatient clinic specialising in reproductive medicine. SUBJECTS--200 Women aged 16-40 with a past or current history of amenorrhoea from various causes and of a median duration of three years, and a control group of 57 age matched normal volunteers with no history of menstrual disorder. MAIN OUTCOME MEASURE--Bone mineral density in the lumbar spine (L1-L4) as measured by dual energy x ray absorptiometry. RESULTS--The amenorrhoeic group showed a mean reduction in bone mineral density of 15% (95% confidence interval 12% to 18%) as compared with controls (mean bone mineral density 0.89 (SD 0.12) g/cm2 v 1.05 (0.09) g/cm2 in controls). Bone loss was related to the duration of amenorrhoea and the severity of oestrogen deficiency rather than to the underlying diagnosis. Patients with a history of fracture had significantly lower bone density than those without a history of fracture. Ten patients had suffered an apparently atraumatic fracture. CONCLUSIONS--Amenorrhoea in young women should be investigated and treated to prevent bone mineral loss. Menopausal women with a past history of amenorrhoea should be considered to be at high risk of osteoporosis. PMID:2224267

  19. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    PubMed

    Schwarz, Frank; Herten, Monika; Sager, Martin; Bieling, Katrin; Sculean, Anton; Becker, Jürgen

    2007-04-01

    The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to advanced peri-implant infections were included in this study (n=40 implants). Furthermore, peri-implantitis was induced by ligature placement and plaque accumulation in five beagle dogs for three months following implant insertion (n=15 implants). The ligatures were removed when about 30% of the initial bone was lost. During open flap surgery, configuration and defect characteristics of the peri-implant bone loss were recorded in both humans and dogs. Open flap surgery generally revealed two different classes of peri-implant bone defects. While Class I defects featured well-defined intrabony components, Class II defects were characterized by consistent horizontal bone loss. The allocation of intrabony components of Class I defects regarding the implant body allowed a subdivision of five different configurations (Classes Ia-e). In particular, human defects were most frequently Class Ie (55.3%), followed by Ib (15.8%), Ic (13.3%), Id (10.2%), and Ia (5.4%). Similarly, bone defects in dogs were also most frequently Class Ie (86.6%), while merely two out of 15 defects were Classes Ia and Ic (6.7%, respectively). Within the limits of the present study, it might be concluded that configurations and sizes of ligature-induced peri-implantitis bone defects in dogs seemed to resemble naturally occurring lesions in humans.

  20. Exercise during energy restriction mitigates bone loss but not alterations in estrogen status or metabolic hormones.

    PubMed

    Metzger, C E; Baek, K; Swift, S N; De Souza, M J; Bloomfield, S A

    2016-09-01

    Energy restriction causes bone loss, increasing stress fracture risk. The impact of exercise during energy restriction on bone and endocrine factors is examined. Exercise with energy restriction did not influence endocrine factors, but did mitigate some bone loss seen with energy restriction in sedentary rats. Chronic dietary energy restriction (ER) leads to bone loss and increased fracture risk. Strictly controlled trials of long-term ER with and without vigorous exercise are required to determine whether exercise loading can counterbalance ER-induced bone loss. The aim of this current project is to elucidate the impact of exercise and ER on bone mass, estrogen status, and metabolic hormones. Twenty-four virgin female Sprague-Dawley rats (n = 8/group) were divided into three groups-ad libitum fed + exercise (Adlib + EX), 40 % energy restricted + exercise (ER + EX), and 40 % energy restricted + sedentary (ER + SED). Energy availability between ER groups was equal. Treadmill running was performed 4 days/week at 70 % VO2max for 12 weeks. Fat and lean mass and areal bone mineral density (aBMD) were lower after 12 weeks (p < 0.05) for ER + EX vs Adlib + EX, but ER + EX aBMD was higher than ER + SED (p < 0.0001). Serum leptin and a urinary estrogen metabolite, estrone-1-glucuronide (E1G), were lower at week 12 (p = 0.0002) with ER, with no impact of exercise. Serum insulin-like growth factor I (IGF-I) declined (p = 0.02) from baseline to week 12 in both ER groups. ER + EX exhibited higher cortical volumetric bone mineral density (vBMD) at the midshaft tibia (p = 0.006) vs ER + SED. Exercise during ER mitigated some, but not all, of the bone loss observed in sedentary ER rats, but had little impact on changes in urinary E1G and serum IGF-I and leptin. These data highlight the importance of both adequate energy intake and the mechanical loading of exercise in maintaining bone mass.

  1. Bone Loss During Spaceflight: Available Models and Counter-Measures

    NASA Technical Reports Server (NTRS)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  2. Bone loss in Crohn's disease: exercise as a potential countermeasure.

    PubMed

    Lee, Naomi; Radford-Smith, Graham; Taaffe, Dennis R

    2005-12-01

    Crohn's disease (CD) is associated with a number of secondary conditions including osteoporosis, which increases the risk of bone fracture. The cause of metabolic bone disease in this population is believed to be multifactorial and may include the disease itself and associated inflammation, high-dose corticosteroid use, weight loss and malabsorption, a lack of exercise and physical activity, and an underlying genetic predisposition to bone loss. Reduced bone mineral density has been reported in between 5% to 80% of CD sufferers, although it is generally believed that approximately 40% of patients suffer from osteopenia and 15% from osteoporosis. Recent studies suggest a small but significantly increased risk of fracture compared with healthy controls and, perhaps, sufferers of other gastrointestinal disorders such as ulcerative colitis. The role of physical activity and exercise in the prevention and treatment of CD-related bone loss has received little attention, despite the benefits of specific exercises being well documented in healthy populations. This article reviews the prevalence of and risk factors for low bone mass in CD patients and examines various treatments for osteoporosis in these patients, with a particular focus on physical activity.

  3. A novel role for dopamine signaling in the pathogenesis of bone loss from the atypical antipsychotic drug risperidone in female mice.

    PubMed

    Motyl, Katherine J; Beauchemin, Megan; Barlow, Deborah; Le, Phuong T; Nagano, Kenichi; Treyball, Annika; Contractor, Anisha; Baron, Roland; Rosen, Clifford J; Houseknecht, Karen L

    2017-10-01

    Atypical antipsychotic (AA) drugs, including risperidone (RIS), are used to treat schizophrenia, bipolar disorder, and autism, and are prescribed off-label for other mental health issues. AA drugs are associated with severe metabolic side effects of obesity and type 2 diabetes. Cross-sectional and longitudinal data also show that risperidone causes bone loss and increases fracture risk in both men and women. There are several potential mechanisms of bone loss from RIS. One is hypogonadism due to hyperprolactinemia from dopamine receptor antagonism. However, many patients have normal prolactin levels; moreover we demonstrated that bone loss from RIS in mice can be blocked by inhibition of β-adrenergic receptor activation with propranolol, suggesting the sympathetic nervous system (SNS) plays a pathological role. Further, when, we treated ovariectomized (OVX) and sham operated mice daily for 8weeks with RIS or vehicle we demonstrated that RIS causes significant trabecular bone loss in both sham operated and OVX mice. RIS directly suppressed osteoblast number in both sham and OVX mice, but increased osteoclast number and surface in OVX mice alone, potentially accounting for the augmented bone loss. Thus, hypogonadism alone cannot explain RIS induced bone loss. In the current study, we show that dopamine and RIS are present in the bone marrow compartment and that RIS can exert its effects directly on bone cells via dopamine receptors. Our findings of both direct and indirect effects of AA drugs on bone are relevant for current and future clinical and translational studies investigating the mechanism of skeletal changes from AA drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Combined effects of chronic alcohol consumption and physical activity on bone health: study in a rat model.

    PubMed

    Maurel, Delphine B; Boisseau, Nathalie; Ingrand, Isabelle; Dolleans, Eric; Benhamou, Claude-Laurent; Jaffre, Christelle

    2011-12-01

    Chronic alcohol consumption may be deleterious for bone tissue depending on the amount of ethanol consumed, whereas physical activity has positive effects on bone. This study was designed to analyze the effects of moderate alcohol consumption on bone in trained rats. 48 male Wistar rats were divided into four groups: control (C), alcohol (A), exercise (E) and alcohol + exercise (AE). A and AE groups drank a solution composed of water and ethanol. E and AE groups were trained for 2 months (treadmill: 40 min/day, 5 times/week). Body composition and bone mineral density (BMD) were assessed by dual X-ray absorptiometry and microarchitectural parameters using micro-computed tomography. Serum osteocalcin and CTx were determined by ELISA assays. The body weight and lean mass gain were lower in group A, while the fat mass gain was lower in exercised groups. BMD and BMC were higher with alcohol after body weight adjustment. Trabecular thickness was significantly higher in AE and A groups compared to C and E; cross-sectional area was larger in A and C groups compared to AE and E. CTx levels were higher in A compared to C and in AE and E versus C and A. Osteocalcin levels were significantly greater in AE and E groups versus C and A. In conclusion, the light to moderate alcohol consumption over a short period increased the trabecular thickness, BMC and BMD in A and AE groups. However, we observed alterations in bone remodeling and body composition with alcohol, at the end of the protocol, which did not appear when alcohol was combined to exercise.

  5. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation

    PubMed Central

    Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James

    2016-01-01

    Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p<0.05) in inflammation and inflammatory bone loss by LPS co-challenge with Cobalt vs. Cobalt alone was evident, even at high levels of LPS (i.e. levels commiserate with hematogenous levels in fatal sepsis, >500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the

  6. Methoxyisoflavones formononetin and isoformononetin inhibit the differentiation of Th17 cells and B-cell lymphopoesis to promote osteogenesis in estrogen-deficient bone loss conditions.

    PubMed

    Mansoori, Mohd N; Tyagi, Abdul M; Shukla, Priyanka; Srivastava, Kamini; Dev, Kapil; Chillara, Raju; Maurya, Rakesh; Singh, Divya

    2016-05-01

    Recent studies have shown that immune system plays a major role in pathophysiology of postmenopausal osteoporosis. Previously we have shown that phytoestrogens like daidzein and medicarpin exhibit immunoprotective effects, by virtue of which they alleviate bone loss. With this background, methoxyisoflavones like formononetin (formo) and isoformononetin (isoformo) that have been studied for preventing bone loss in ovariectomized rats were tested for their immunomodulatory effects in estrogen-deficient bone loss mice model. Adult Balb/c mice (N = 8/group) were given oral dose of formo and isoformo at 10 mg/kg body weight, post ovariectomy (Ovx) daily for 6 weeks. Animals were autopsied and long bones were harvested to study bone microarchitecture. Peripheral blood mononuclear cells were isolated for fluorescence-activated cell sorting and RNA analysis. Serum was collected for enzyme-linked immunosorbent assay. It was observed that formo and isoformo treatment to Ovx mice led to significant restoration of Ovx-induced deterioration of trabecular microarchitecture. Pro-osteoclastogenic subset Th17 and B cells were decreased in formo/isoformo-treated Ovx mice in comparison with vehicle-treated Ovx group. Formo and isoformo treatment to Ovx mice also led to decreased expression of Th17 diffentiation factors and promoted T-regulatory cell differentiation. Formo was more effective in enhancing the FOXP3 expression compared with isoformo. IL-17A-induced osteoclastogenesis and inhibition of osteoblast apoptosis were also suppressed by formo and isoformo treatment, with formo having a more potent effect. Our study demonstrates the immunomodulatory activity of methoxyisoflavones, formo, and isoformo, which translate into improved skeletal parameters, thereby preventing Ovx-induced bone loss.

  7. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation.

    PubMed

    Schwartz, Z; Mellonig, J T; Carnes, D L; de la Fontaine, J; Cochran, D L; Dean, D D; Boyan, B D

    1996-09-01

    Demineralized freeze-dried bone allograft (DFDBA) has been used extensively in periodontal therapy. The rationale for use of DFDBA includes the fact that proteins capable of inducing new bone; i.e., bone morphogenetic proteins, can be isolated from bone grafts. Commercial bone banks have provided DFDBA to the dental practitioner for many years; however, these organizations have not verified the osteoinductive capacity of their DFDBA preparations. The aim of this study was to determine the ability of commercial DFDBA preparations to induce new bone formation. DFDBA with particle sizes ranging from 200 to 500 microns was received from six bone banks using various bone production methods. Different lots of DFDBA from the same tissue bank were sometimes available. A total of 14 lots were examined. The surface area of bone particles in each sample was measured morphometrically and the pH of a solution containing the particles after suspension in distilled water determined. Samples from each DFDBA lot were implanted intramuscularly (10 mg) or subcutaneously (20 mg) into three different animals and tissue biopsies harvested after 4 weeks. One sample from each tissue bank was implanted and harvested after 8 weeks. At harvest, each area where DFDBA had been implanted was excised and examined by light microscopy. The ability of DFDBA to produce new bone was evaluated and the amount of residual bone particles measured. The results show that bone particles from all tissue banks had a variety of shapes and sizes, both before implantation and after 1 or 2 months of implantation. The pH of particle suspensions also varied between batches, as well as between tissue banks. None of the DFDBA induced new bone formation when implanted subcutaneously. Intramuscular implants from three banks induced new bone formation after 1 and 2 months. DFDBA from two banks caused new bone formation only after 2 months. However, DFDBA from one bank did not induce new bone at all. Particle size before

  8. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  9. The Protective Effect of Rhizoma Dioscoreae Extract against Alveolar Bone Loss in Ovariectomized Rats via Regulating Wnt and p38 MAPK Signaling

    PubMed Central

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-01-01

    Aim: The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Methods: Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Results: Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). Conclusion: These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation. PMID:25514564

  10. The protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulating Wnt and p38 MAPK signaling.

    PubMed

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-12-12

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.

  11. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  12. Vitamin C reverses hypogonadal bone loss

    USDA-ARS?s Scientific Manuscript database

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  13. Mechanisms of Radiation-Induced Bone Loss and Effects on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2013-06-01

    and in vivo bone imaging [months 6-10]. b. Determine apoptosis of bone cells (OT, OB & OC) by quantifying TUNEL staining [months 6-10]. Animal...Zoledronic acid will be used as positive control for inhibition of apoptosis and also inhibition of resorption [month 10]. c. Perform in vivo bone imaging ...described and presented in Task 3. Task 5: Image calvarial osteocytes in real-time after single dose exposure of 2 Gy [months 6-12] A single dose of

  14. Genetic influences on bone loss in the San Antonio Family Osteoporosis Study

    PubMed Central

    Shaffer, John R.; Kammerer, Candace M.; Bruder, Jan M.; Cole, Shelley A.; Dyer, Thomas D.; Almasy, Laura; MacCluer, Jean W.; Blangero, John; Bauer, Richard L.; Mitchell, Braxton D.

    2009-01-01

    Summary The genetic contribution to age-related bone loss is not well understood. We estimated that genes accounted for 25–45% of variation in 5-year change in bone mineral density in men and women. An autosome-wide linkage scan yielded no significant evidence for chromosal regions implicated in bone loss. Introduction The contribution of genetics to acquisition of peak bone mass is well documented, but little is know about the influence of genes on subsequent bone loss with age. We therefore measured 5-year change in bone mineral density (BMD) in 300 Mexican Americans (>45 years of age) from the San Antonio Family Osteoporosis Study to identify genetic factors influencing bone loss. Methods Annualized change in BMD was calculated from measurements taken 5.5 years apart. Heritability (h2) of BMD change was estimated using variance components methods and autosome-wide linkage analysis was carried out using 460 microsatellite markers at a mean 7.6 cM interval density. Results Rate of BMD change was heritable at the forearm (h2=0.31, p=0.021), hip (h2 =0.44, p=0.017), spine (h2=0.42, p=0.005), but not whole body (h2=0.18, p=0.123). Covariates associated with rapid bone loss (advanced age, baseline BMD, female sex, low baseline weight, postmenopausal status, and interim weight loss) accounted for 10% to 28% of trait variation. No significant evidence of linkage was observed at any skeletal site. Conclusions This is one of the first studies to report significant heritability of BMD change for weight-bearing and non-weight-bearing bones in an unselected population and the first linkage scan for change in BMD. PMID:18414963

  15. Glycemic control and alveolar bone loss progression in type 2 diabetes.

    PubMed

    Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M

    1998-07-01

    This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 < 9%. Data from the longitudinal study of the oral health of residents of the Gila River Indian Community were analyzed. Of the 359 subjects, aged 15 to 57 with less than 25% radiographic bone loss at baseline, 338 did not have type 2 DM, 14 were BC, and 7 were PC. Panoramic radiographs were used to assess interproximal bone level. Bone scores (scale 0-4) corresponding to bone loss of 0%, 1% to 24%, 25% to 49%, 50% to 74%, or > or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better

  16. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss

    PubMed Central

    Jeney, Viktória

    2017-01-01

    Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766

  17. Vitamin D and nutritional status are related to bone fractures in alcoholics.

    PubMed

    González-Reimers, Emilio; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco; Candelaria Martín-González, M; Hernández-Betancor, Iván; Fernández-Rodríguez, Camino M; Viña-Rodríguez, J; González-Díaz, Antonieta

    2011-01-01

    Bone fractures are common in alcoholics. To analyse which factors (ethanol consumption; liver function impairment; bone densitometry; hormone changes; nutritional status, and disrupted social links and altered eating habits) are related to bone fractures in 90 alcoholic men admitted to our hospitalization unit because of organic problems. Bone homoeostasis-related hormones were measured in patients and age- and sex-matched controls. Whole-body densitometry was performed by a Hologic QDR-2000 (Waltham, MA, USA) densitometer, recording bone mineral density (BMD) and fat and lean mass; nutritional status and liver function were assessed. The presence of prevalent fractures was assessed by anamnesis and chest X-ray film. Forty-nine patients presented at least one fracture. We failed to find differences between patients with and without fractures regarding BMD parameters. Differences regarding fat mass were absent, but lean mass was lower among patients with bone fracture. The presence of fracture was significantly associated with impaired subjective nutritional evaluation (χ² = 5.79, P = 0.016), lower vitamin D levels (Z = 2.98, P = 0.003) and irregular eating habits (χ² = 5.32, P = 0.02). Reduced lean mass and fat mass, and altered eating habits were more prevalent among patients with only rib fractures (n = 36) than in patients with multiple fractures and/or fractures affecting other bones (n = 13). These last were more closely related to decompensated liver disease. Serum vitamin D levels showed a significant relationship with handgrip strength (ρ = 0.26, P = 0.023) and lean mass at different parts of the body, but not with fat mass. By logistic regression analysis, only vitamin D and subjective nutritional evaluation were significantly, independently related with fractures. Prevalent fractures are common among heavy alcoholics. Their presence is related more closely to nutritional status, lean mass and vitamin D levels than to BMD. Lean mass is more reduced

  18. Betaine Attenuates Alcohol-Induced Pancreatic Steatosis.

    PubMed

    Yang, Wenjuan; Gao, Jinhang; Tai, Yang; Chen, Meng; Huang, Luming; Wen, Shilei; Huang, Zhiyin; Liu, Rui; Li, Jing; Tang, Chengwei

    2016-07-01

    To explore the effect of betaine on alcoholic pancreatic steatosis and its mechanism. Rats were randomly assigned to control, ethanol, or ethanol + betaine groups. Changes in pancreatic morphology; serum lipid levels; and pancreatic lipid, amylase and lipase levels were determined. The serum and adipose tissue adiponectin level was measured by an enzyme-linked immunoassay. Adiponectin receptor-1 (AdipoR1), AdipoR2, sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, and fatty acid synthetase expression levels were quantified. The SREBP-1c expression in SW1990 cells treated with various concentrations of ethanol or ethanol plus betaine and/or adiponectin was assessed. Alcohol-induced changes in pancreatic morphology were attenuated by betaine. Pancreatic triglyceride, free fatty acid and expression levels of SREBP-1c and fatty acid synthetase were elevated after ethanol feeding but remained at control levels after betaine supplementation. Alcohol-induced decreases in serum and adipose tissue adiponectin, pancreatic AdipoR1, amylase, and lipase were attenuated by betaine. Serum triglyceride and free fatty acid levels were elevated after alcohol consumption and remained higher after betaine supplementation compared with controls. Betaine and/or adiponectin suppressed alcohol-induced SREBP-1c upregulation in vitro. Betaine attenuated alcoholic-induced pancreatic steatosis most likely by suppressing pancreatic SREBP-1c both directly and through the restoration of adiponectin signaling.

  19. Association Between Dietary Fiber Intake and Bone Loss in the Framingham Offspring Study.

    PubMed

    Dai, Zhaoli; Zhang, Yuqing; Lu, Na; Felson, David T; Kiel, Douglas P; Sahni, Shivani

    2018-02-01

    Dietary fiber may increase calcium absorption, but its role in bone mineralization is unclear. Furthermore, the health effect of dietary fiber may be different between sexes. We examined the association between dietary fiber (total fiber and fiber from cereal, fruits, vegetables, nuts, and legumes) and bone loss at the femoral neck, trochanter, and lumbar spine (L 2 to L 4 ) in older men and women. In the Framingham Offspring Study, at baseline (1996-2001), diet was assessed using the Willett food-frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Follow-up BMD was measured in 2001-2005 and 2005-2008 among 792 men (mean age 58.1 years; BMI 28.6 kg/m 2 ) and 1065 women (mean age 57.3 years; BMI 27.2 kg/m 2 ). We used sex-specific generalized estimating equations in multivariable regressions to estimate the difference (β) of annualized BMD change in percent (%ΔBMD) at each skeletal site per 5 g/d increase in dietary fiber. We further estimated the adjusted mean for bone loss (annualized %ΔBMD) among participants in each higher quartile (Q2, Q3, or Q4) compared with those in the lowest quartile (Q1) of fiber intake. Higher dietary total fiber (β = 0.06, p = 0.003) and fruit fiber (β = 0.10, p = 0.008) was protective against bone loss at the femoral neck in men but not in women. When examined in quartiles, men in Q2-Q4 of total fiber had significantly less bone loss at the femoral neck versus those in Q1 (all p < 0.04). For women, we did not observe associations with hip bone loss, although fiber from vegetables appeared to be protective against spine bone loss in women but not men. There were no associations with cereal fiber or nut and legume fiber and bone loss in men or women. Our findings suggest that higher dietary fiber may modestly reduce bone loss in men at the hip. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral

  20. Muscle changes can account for bone loss after botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P < 0.05). BTX-TEN experienced the greatest muscle loss (23-45% lower than other groups) and bone loss (20-30% lower bone volume fraction than other groups). BTX-sham had significantly lower MCSA and bone volume fraction than TEN and sham. After adjusting for differences in MCSA, there were no significant between-group differences in bone properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  1. Alcohol-Induced Histone Acetylation Reveals a Gene Network Involved in Alcohol Tolerance

    PubMed Central

    Ghezzi, Alfredo; Krishnan, Harish R.; Lew, Linda; Prado, Francisco J.; Ong, Darryl S.; Atkinson, Nigel S.

    2013-01-01

    Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol. PMID:24348266

  2. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) andmore » bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.« less

  3. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    PubMed

    Manske, Sarah L; Good, Craig A; Zernicke, Ronald F; Boyd, Steven K

    2012-01-01

    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  4. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  5. Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice.

    PubMed

    Uchida, Raina; Chiba, Hiroshige; Ishimi, Yoshiko; Uehara, Mariko; Suzuki, Kazuharu; Kim, Hyounju; Matsumoto, Akiyo

    2011-07-01

    Both soy isoflavone and n-3 polyunsaturated fatty acids are known to reduce the levels of bone-resorbing cytokines; however, the synergistic effects of these food ingredients have not been examined yet. This study was performed to elucidate the effect of concomitant intake of soy isoflavone and fish oil on bone mass in ovariectomized mice. Eight-week-old ddY female mice were subjected to ovariectomy (OVX) or sham surgery, and then fed an AIN-93G with safflower oil (So) as a control lipid source, isoflavone-supplemented safflower oil (So + I), fish oil instead of safflower oil (Fo) or isoflavone-supplemented fish oil (Fo + I) for 4 weeks. Femoral bone mineral density was significantly decreased by OVX; however, this decrease was inhibited by the intake of isoflavone and/or fish oil. Histomorphometric analyses showed that bone volume and trabecular thickness in the distal femoral trabecular bone were significantly lower in the So group than in the sham group, but those were restored in the Fo + I groups. The number of osteoclasts was significantly decreased by isoflavone intake. The increased rate of bone resorption after OVX was inhibited by isoflavone and/or fish oil. The serum concentration of tumor necrosis factor alpha was increased after OVX, but was significantly lower with the combination of isoflavone with fish oil than isoflavone or fish oil alone. The results of this study indicated that the intakes of soy isoflavone and/or fish oil might have ameliorating effects on bone loss due to OVX. Further, the concomitant intake of soy isoflavone and fish oil at a low dose showed better effects on cytokines related with bone resorption.

  6. Alterations in markers of bone metabolism and adipokines following a 3-month lifestyle intervention induced weight loss in obese prepubertal children.

    PubMed

    Gajewska, J; Weker, H; Ambroszkiewicz, J; Szamotulska, K; Chełchowska, M; Franek, E; Laskowska-Klita, T

    2013-08-01

    Adipokines may influence bone metabolism in children, but this phenomenon is not well understood. Therefore, we studied the relationships between bone markers and adipokines during weight loss in obese children. We determined serum leptin, soluble leptin receptor (sOB-R), adiponectin, BALP (bone alkaline phosphatase), CTX-I (C-terminal telopeptide of type I collagen), body composition and bone mineral density (by dual-energy X-ray absorptiometry) in 100 obese prepubertal children before and after 3 months of lifestyle intervention (low-energy diet, physical activity). The control group consisted of 70 non-obese children. Obese children had higher BALP activity by about 20% (p<0.001) and similar value of CTX-I compared with non-obese children. After weight loss (-0.96 BMI-SDS mean change), the BALP value in obese patients decreased (p<0.001), whereas CTX-I concentration was unchanged. Changes in BALP were positively correlated with changes in BMI (Body Mass Index) (r=0.352, p<0.001), but not associated with adipokine levels. Trend analysis using SDS-BMI subgroups showed that greater reduction of body mass was associated with a greater decrease of BALP (p=0.035) and leptin values (p<0.001), as well as a greater increase of sOB-R (p<0.003). Obesity during the prepubertal period is associated with an alteration in the adipokines profile and greater whole-body bone mass as a result of increased bone formation rather than reduced bone resorption. Changes in bone metabolism during lifestyle intervention seem to be related to weight loss but not to changes in adipokines. Further studies should elucidate the influence of long-term therapy on bone mass in childhood. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Prevention for College Students Who Suffer Alcohol-Induced Blackouts Could Deter High-Cost Emergency Department Visits

    PubMed Central

    Mundt, Marlon P.; Zakletskaia, Larissa I.

    2012-01-01

    Fifty percent of college students who drink report alcohol-induced blackouts, and alcohol abusers in general put a heavy burden on the medical care system. Using data drawn from a randomized, controlled alcohol intervention trial at five university sites, our study quantified the costs of visits to emergency departments by college students who experienced blackouts from drinking alcohol. Of 954 students in the study, 52 percent of males and 50 percent of females at the outset of the study had experienced an alcohol-induced blackout in the past year. Of 404 emergency department visits among the study participants over a two-year observation period, about one in eight were associated with blackout drinking. Injuries ranged from broken bones to head and brain injuries requiring computed tomography. We calculate that on a large university campus having more than 40,000 students, blackout-associated emergency department visit costs would range from $469,000 to $546,000 per year. We conclude that blackouts are a strong predictor of emergency department visits for college drinkers and that prevention efforts aimed at students with a history of blackouts might reduce injuries and emergency department costs. PMID:22422503

  8. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    PubMed

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  9. Composite Bone and Soft Tissue Loss Treated with Distraction Histiogenesis

    DTIC Science & Technology

    2010-01-01

    their frames removed had healed docking sites, and the fourth whose frame remained in place had a healing fracture without evidence of delayed union ...interventions (3–8). The goals of limb salvage surgery in this setting are to restore length and alignment, regenerate bone loss, obtain fracture union ...angulation to manage composite bone and soft tissue loss associated with combat-related type IIIB open tibia fractures . Four patients underwent placement

  10. An improved cost-effective, reproducible method for evaluation of bone loss in a rodent model.

    PubMed

    Fine, Daniel H; Schreiner, Helen; Nasri-Heir, Cibele; Greenberg, Barbara; Jiang, Shuying; Markowitz, Kenneth; Furgang, David

    2009-02-01

    This study was designed to investigate the utility of two "new" definitions for assessment of bone loss in a rodent model of periodontitis. Eighteen rats were divided into three groups. Group 1 was infected by Aggregatibacter actinomycetemcomitans (Aa), group 2 was infected with an Aa leukotoxin knock-out, and group 3 received no Aa (controls). Microbial sampling and antibody titres were determined. Initially, two examiners measured the distance from the cemento-enamel-junction to alveolar bone crest using the three following methods; (1) total area of bone loss by radiograph, (2) linear bone loss by radiograph, (3) a direct visual measurement (DVM) of horizontal bone loss. Two "new" definitions were adopted; (1) any site in infected animals showing bone loss >2 standard deviations above the mean seen at that site in control animals was recorded as bone loss, (2) any animal with two or more sites in any quadrant affected by bone loss was considered as diseased. Using the "new" definitions both evaluators independently found that infected animals had significantly more disease than controls (DVM system; p<0.05). The DVM method provides a simple, cost effective, and reproducible method for studying periodontal disease in rodents.

  11. A mechanism of bone tissue loss in monkeys (BION - 11).

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.; Oganov, V. S.

    The elucidation of mechanisms of bone tissue loss under the spaceflight conditions remains an actual problem until now It was established that primary reactions to a mechanical stress evolve at the cellular level therefore the main attention of the researchers was aimed at studying bone tissue cells and their interactions With the use of electron microscopy we studied osteoblasts osteocytes osteoclasts and stromal cells in bioptats of the iliac bone crest from monkeys flown on board the satellite guillemotleft BION - 11 guillemotright during 2 weeks The flight samples were compared with the vivarium and simulation controls The functional state of cells was evaluated by the degree of development of organelles for specific biosyntheses rough endoplasmic reticulum Golgy complex nucleus state interrelation with a mineralized matrix The analysis of the obtained results and data of other authors Klein -- Nulend et al 2003 etc permits to suppose that the following sequence of cell interactions underlies the bone tissue loss during mechanical stress microgravity reaction of mechano-sensitive osteocytes to a mechanical stimulus consisting in enhancement of osteolytic processes in cells which results in a partial bone tissue loss along the local unloading Simultaneously the modulating signals are transmitted through a system of canals and processes towards active osteoblasts surface osteocytes and bone marrow stromal cells as well As a reply to a mechanical stimulus there occurs a reduction slowing down of proliferation

  12. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation

    PubMed Central

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-01-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation. PMID:25971590

  13. Black rice (Oryza sativa L.) extracts induce osteoblast differentiation and protect against bone loss in ovariectomized rats.

    PubMed

    Jang, Woo-Seok; Seo, Cho-Rong; Jang, Hwan Hee; Song, No-Joon; Kim, Jong-Keun; Ahn, Jee-Yin; Han, Jaejoon; Seo, Woo Duck; Lee, Young Min; Park, Kye Won

    2015-01-01

    Osteoporosis, an age associated skeletal disease, exhibits increased adipogenesis at the expense of osteogenesis from common osteoporotic bone marrow cells. In this study, black rice (Oryza sativa L.) extracts (BRE) were identified as osteogenic inducers. BRE stimulated the alkaline phosphatase (ALP) activity in both C3H10T1/2 and primary bone marrow cells. Similarly, BRE increased mRNA expression of ALP and osterix. Oral administration of BRE in OVX rats prevented decreases in bone density and strength. By contrast, BRE inhibited adipocyte differentiation of mesenchymal C3H10T1/2 cells and prevented increases in body weight and fat mass in high fat diet fed obese mice, further suggesting the dual effects of BRE on anti-adipogenesis and pro-osteogenesis. UPLC analysis identified cyanidin-3-O-glucoside and peonidin-3-O-glucoside as main anti-adipogenic effectors but not for pro-osteogenic induction. In mechanism studies, BRE selectively stimulated Wnt-driven luciferase activities. BRE treatment also induced Wnt-specific target genes such as Axin2, WISP2, and Cyclin D1. Taken together, these data suggest that BRE is a potentially useful ingredient to protect against age related osteoporosis and diet induced obesity.

  14. Association between fat mass, lean mass, and bone loss: the Dubbo Osteoporosis Epidemiology Study.

    PubMed

    Yang, S; Center, J R; Eisman, J A; Nguyen, T V

    2015-04-01

    Lower body fat mass is a risk factor for bone loss at lumbar spine in postmenopausal women, but not in men. Body lean mass and fat mass were not associated with femoral neck bone loss in either gender. Bone density and body mass are closely associated. Whole body lean mass (LM) and fat mass (FM) together account for approximately 95 % of body mass. Bone loss is associated with loss of body mass but which of the components of body mass (FM or LM) is related to bone loss is not well understood. Therefore, in this study, we sought to assess whether baseline FM or LM has predictive value for future relative rate of bone mineral density (BMD) changes (%/year). The present population-based cohort study was part of the ongoing Dubbo Osteoporosis Epidemiology Study (DOES). BMD, FM, and LM were measured with dual energy X-ray absorptiometry (GE-LUNAR Corp, Madison, WI). BMD measurements were taken in approximately every 2 years between 2000 and 2010. We only included the participants with at least two BMD measurements at the femoral neck and lumbar spine. In total, 717 individuals (204 men and 513 women) aged 50 years or older were studied. Rate of bone loss at femoral neck and lumbar spine was faster in women than in men (all P < 0.01). In bivariable regression analysis, each 5 kg greater FM in women was associated with 0.4 %/year (P = 0.003) lower bone loss at lumbar spine. This magnitude of association remained virtually unchanged after adjusting for LM and/or other covariates (P = 0.03). After adjusting for covariates, variation of FM accounted for ∼1.5 % total variation in lumbar spine bone loss. However, there was no significant association between FM and change in femoral neck BMD in either men or women. Lower FM was an independent but modest risk factor for greater bone loss at the lumbar spine in women but not in men. If further studies confirm our findings, FM can help predict lumbar spine bone loss in women.

  15. Morphometric and histopathological evaluation of the effect of grape seed proanthocyanidin on alveolar bone loss in experimental diabetes and periodontitis.

    PubMed

    Toker, H; Balci Yuce, H; Lektemur Alpan, A; Gevrek, F; Elmastas, M

    2018-06-01

    Grape seed proanthocyanidine extract (GSPE) is a strong antioxidant derived from the grape seeds (Vitis vinifera, Terral J.F.) and has a polyphenolic structure with a wide range of biological activity. The aim of the present study was to evaluate the effects of GSPE on alveolar bone loss and histopathological changes in rats with diabetes mellitus and ligature-induced periodontitis. Forty rats were divided into 6 study groups. Control (C, 6 rats) group, periodontitis (P, 6 rats) group, diabetes (D, 6 rats) group, diabetes and periodontitis (D+P, 6 rats) group, diabetes, periodontitis and 100 mg/kg/day GSPE (GSPE-100, 8 rats), and diabetes, periodontitis and 200 mg/kg/day GSPE (GSPE-200, 8 rats) group. Diabetes mellitus was induced by intraperitoneal injection of a single dose of streptozotocin (60 mg/kg). Periodontitis was induced via ligation method. Silk ligatures were placed at the mandibular right first molars. GSPE was administered by oral gavage. After 30 days, all rats were killed. Alveolar bone loss was measured morphometrically via a stereomicroscope. For histopathological analyses, Alizarin red staining, and matrix metalloproteinase (MMP)-8, vascular endothelial growth factor and hypoxia inducible factor (HIF)-1α immunohistochemistry were performed. Tartrate-resistant acid phosphatase-positive osteoclast cells and relative total inflammatory cells were also determined. The highest alveolar bone loss was observed in the D+P group (P < .05). GSP-200 group decreased alveolar bone loss (P < .05). The D+P group had the highest osteoclast counts, but the difference was not significant compared to the P, GSPE-100 and GSPE-200 groups (P > .05). The inflammation in the D+P group was also higher than the other groups (P < .05). The osteoblast numbers increased in the GSPE-100 and GSPE-200 groups compared to the P and D+P groups (P < .05). MMP-8 and HIF-1α levels were highest in the D+P group and GSPE significantly decreased these levels (P < .05

  16. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  17. Quantitative assessment and characterization of glenoid bone loss in a spectrum of patients with glenohumeral osteoarthritis.

    PubMed

    Lombardo, D J; Khan, J; Prey, B; Zhang, L; Petersen-Fitts, G R; Sabesan, V J

    2016-12-01

    Eccentric posterior bone loss and associated glenoid retroversion represent challenges to glenoid placement during total shoulder arthroplasty. This bone loss can lead to poor stability and perforation of the glenoid during arthroplasty. The purpose of this study was to evaluate the morphology of glenoid bone loss for a spectrum of osteoarthritis patients using 3D computed tomography imaging and simulation software. This study included 29 patients with glenohumeral osteoarthritis treated with shoulder arthroplasty. Three-dimensional reconstruction of preoperative CT images was performed. Glenoid bone loss was measured at ten, vertically equidistant axial planes along the glenoid surface at four distinct anterior-posterior points on each plane. The images were fitted with modeled pegged glenoid implants to predict glenoid perforation. The 3D maps demonstrated greatest average bone loss posteriorly in the AP plane at the central axis of the glenoid in the SI plane. The average amount of bone loss was 3.85 mm. Walch A2 and B1 shoulders showed more central bone loss, while Walch B2 shoulders displayed more posterior and inferior bone loss. Patients with predicted peg perforation displayed significantly greater bone loss than those without predicted peg perforation (p = 0.037). Peg perforation was most common in Walch B2 shoulders occurring in the posterior direction involving the central and posterior-inferior peg. These data demonstrate an anatomic pattern of glenoid bone loss for different classes of glenohumeral arthritis. These findings can be used to develop various models of glenoid bone loss to guide surgeons, predict failures, and develop better glenoid implants. This study has been approved by the Cleveland Clinic IRB: Number 6235.

  18. Minimum Abutment Height to Eliminate Bone Loss: Influence of Implant Neck Design and Platform Switching.

    PubMed

    Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide

    This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.

  19. Reverse total shoulder glenoid baseplate stability with superior glenoid bone loss.

    PubMed

    Martin, Elise J; Duquin, Thomas R; Ehrensberger, Mark T

    2017-10-01

    Superior wear of the glenoid bone is common in patients with rotator cuff arthropathy. This can become a treatment challenge for patients who require shoulder arthroplasty. In reverse shoulder arthroplasty (RSA), glenoid bone loss may affect the stability of baseplate fixation. The primary purpose of this biomechanical laboratory study was to assess the initial fixation stability of RSA glenosphere baseplates in the presence of variable amounts of superior glenoid bone loss. High-density solid rigid polyurethane foam (30 pounds/cubic foot) was machined to model the glenoid with variable superior defects that provided different levels of support (100%, 90%, 75%, and 50%) for the glenosphere baseplate. The samples were cyclically loaded (0-750 N at 1 Hz for 5000 cycles) at a 60° glenohumeral angle. The micromotion and migration of the baseplate were calculated from displacement data captured during the loading tests with an array of 3 linear variable differential transformers mounted around the baseplate. Micromotion was significantly greater in samples with 50% defects compared with those with smaller defects. Migration was significantly greater after testing for all defect sizes. Initial fixation of RSA glenosphere baseplates was significantly reduced in models with 50% bone loss on the superior edge compared with models with less bone loss in this high-density bone foam model. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Pharmacologically induced alcohol craving in treatment seeking alcoholics correlates with alcoholism severity, but is insensitive to acamprosate

    PubMed Central

    Umhau, John C; Schwandt, Melanie L; Usala, Julie; Geyer, Christopher; Singley, Erick; George, David T; Heilig, Markus

    2011-01-01

    Modulation of alcohol craving induced by challenge stimuli may predict the efficacy of new pharmacotherapies for alcoholism. We evaluated two pharmacological challenges, the α2-adrenergic antagonist yohimbine, which reinstates alcohol seeking in rats, and the serotonergic compound meta-chlorophenylpiperazine (mCPP), previously reported to increase alcohol craving in alcoholics. To assess the predictive validity of this approach, the approved alcoholism medication acamprosate was evaluated for its ability to modulate challenge-induced cravings. A total of 35 treatment seeking alcohol dependent inpatients in early abstinence were randomized to placebo or acamprosate (2997 mg daily). Following two weeks of medication, subjects underwent three challenge sessions with yohimbine, mCPP or saline infusion under double blind conditions, carried out in counterbalanced order, and separated by at least 5 days. Ratings of cravings and anxiety, as well as biochemical measures were obtained. In all, 25 subjects completed all three sessions and were included in the analysis. Cravings were modestly, but significantly higher following both yohimbine and mCPP challenge compared with saline infusion. The mCPP, but not yohimbine significantly increased anxiety ratings. Both challenges produced robust ACTH, cortisol and prolactin responses. There was a significant correlation between craving and the degree of alcoholism severity. Acamprosate administration did not influence craving. Both yohimbine and mCPP challenges lead to elevated alcohol craving in a clinical population of alcoholics, and these cravings correlate with alcoholism severity. Under the experimental conditions used, alcohol cravings induced by these two stimuli are not sensitive to acamprosate at clinically used doses. PMID:21289601

  1. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia

    PubMed Central

    Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone

    2013-01-01

    Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258

  2. The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women

    PubMed Central

    Johnston, Bryan D.; Ward, Wendy E.

    2015-01-01

    In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed. PMID:26060817

  3. Use of ossein-hydroxyapatite complex in the prevention of bone loss: a review.

    PubMed

    Castelo-Branco, C; Dávila Guardia, J

    2015-02-01

    The ossein-hydroxyapatite complex (OHC) is a microcrystalline form of calcium which provides a number of additional minerals (magnesium, phosphorus, potassium, zinc), and proteins (osteocalcin, type I collagen, type I insulin growth factor I and II, transforming growth factor beta) associated with bone metabolism. The objective of this review is to examine the role of OHC in preventing bone loss in different conditions. A review of clinical trials assessing the relationship between OHC and bone loss was made using the following data sources: Medline (from 1966 to December 2013), the Cochrane Controlled Clinical Trials Register, Embase (up to December 2013), contact with companies marketing the supplements studied, and reference lists. Different randomized, clinical trials and meta-analysis suggest that OHC is more effective than calcium supplements in maintaining bone mass in postmenopausal women and in different conditions related to bone loss. In addition, OHC improves pain symptoms and accelerates fracture consolidation in patients with osteopenia or osteoporosis. The ossein-hydroxyapatite complex is significantly more effective in preventing bone loss than calcium carbonate.

  4. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy.

    PubMed

    Madan, Babita; McDonald, Mitchell J; Foxa, Gabrielle E; Diegel, Cassandra R; Williams, Bart O; Virshup, David M

    2018-01-01

    Dysregulated Wnt signaling is associated with the pathogenesis of cancers, fibrosis, and vascular diseases. Inhibition of Wnt signaling has shown efficacy in various pre-clinical models of these disorders. One of the key challenges in developing targeted anti-cancer drugs is to balance efficacy with on-target toxicity. Given the crucial role Wnts play in the differentiation of osteoblasts and osteoclasts, acute inhibition of Wnt signaling is likely to affect bone homeostasis. In this study, we evaluated the skeletal effect of small molecule inhibitor of an o-acyl transferase porcupine (PORCN) that prevents Wnt signaling by blocking the secretion of all Wnts. Micro-computed tomography and histomorphometric evaluation revealed that the bones of mice treated with two structurally distinct PORCN inhibitors LGK974 and ETC-1922159 (ETC-159) had loss-of-bone volume and density within 4 weeks of exposure. This decreased bone mass was associated with a significant increase in adipocytes within the bone marrow. Notably, simultaneous administration of a clinically approved anti-resorptive, alendronate, a member of the bisphosphonate family, mitigated loss-of-bone mass seen upon ETC-159 treatment by regulating activity of osteoclasts and blocking accumulation of bone marrow adipocytes. Our results support the addition of bone protective agents when treating patients with PORCN inhibitors. Mitigation of bone toxicity can extend the therapeutic utility of Wnt pathway inhibitors.

  5. Induced theta oscillations as biomarkers for alcoholism.

    PubMed

    Andrew, Colin; Fein, George

    2010-03-01

    Studies have suggested that non-phase-locked event-related oscillations (ERO) in target stimulus processing might provide biomarkers of alcoholism. This study investigates the discriminatory power of non-phase-locked oscillations in a group of long-term abstinent alcoholics (LTAAs) and non-alcoholic controls (NACs). EEGs were recorded from 48 LTAAs and 48 age and gender comparable NACs during rest with eyes open (EO) and during the performance of a three-condition visual target detection task. The data were analyzed to extract resting power, ERP amplitude and non-phase-locked ERO power measures. Data were analyzed using MANCOVA to determine the discriminatory power of induced theta ERO vs. resting theta power vs. P300 ERP measures in differentiating the LTAA and NAC groups. Both groups showed significantly more theta power in the pre-stimulus reference period of the task vs. the resting EO condition. The resting theta power did not discriminate the groups, while the LTAAs showed significantly less pre-stimulus theta power vs. the NACs. The LTAAs showed a significantly larger theta event-related synchronization (ERS) to the target stimulus vs. the NACs, even after accounting for pre-stimulus theta power levels. ERS to non-target stimuli showed smaller induced oscillations vs. target stimuli with no group differences. Alcohol use variables, a family history of alcohol problems, and the duration of alcohol abstinence were not associated with any theta power measures. While reference theta power in the task and induced theta oscillations to target stimuli both discriminate LTAAs and NACs, induced theta oscillations better discriminate the groups. Induced theta power measures are also more powerful and independent group discriminators than the P3b amplitude. Induced frontal theta oscillations promise to provide biomarkers of alcoholism that complement the well-established P300 ERP discriminators.

  6. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulatedmore » with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells.

  7. Effect of memantine on cue-induced alcohol craving in recovering alcohol-dependent patients.

    PubMed

    Krupitsky, Evgeny M; Neznanova, Olga; Masalov, Dimitry; Burakov, Andrey M; Didenko, Tatyana; Romanova, Tatyana; Tsoy, Marina; Bespalov, Anton; Slavina, Tatyana Y; Grinenko, Alexander A; Petrakis, Ismene L; Pittman, Brian; Gueorguieva, Ralitza; Zvartau, Edwin E; Krystal, John H

    2007-03-01

    Ethanol blocks N-methyl-d-aspartic acid (NMDA) glutamate receptors. Increased NMDA receptor function may contribute to motivational disturbances that contribute to alcoholism. The authors assessed whether the NMDA receptor antagonist memantine reduces cue-induced alcohol craving and produces ethanol-like subjective effects. Thirty-eight alcohol-dependent inpatients participated in three daylong testing sessions in a randomized order under double-blind conditions. On each test day, subjects received 20 mg of memantine, 40 mg of memantine, or placebo, and subjective responses to treatment were assessed. The level of alcohol craving was assessed before and after exposure to an alcohol cue. Memantine did not stimulate alcohol craving before exposure to an alcohol cue, and it attenuated alcohol cue-induced craving in a dose-related fashion. It produced dose-related ethanol-like effects without adverse cognitive or behavioral effects. These data support further exploration of whether well-tolerated NMDA receptor antagonists might have a role in the treatment of alcoholism.

  8. Skipping meals and alcohol consumption. The regulation of energy intake and expenditure among weight loss participants.

    PubMed

    Carels, Robert A; Young, Kathleen M; Coit, Carissa; Clayton, Anna Marie; Spencer, Alexis; Wagner, Marissa

    2008-11-01

    Research suggests that specific eating patterns (e.g., eating breakfast) may be related to favorable weight status. This investigation examined the relationship between eating patterns (i.e., skipping meals; consuming alcohol) and weight loss treatment outcomes (weight loss, energy intake, energy expenditure, and duration of exercise). Fifty-four overweight or obese adults (BMI> or =27 kg/m(2)) participated in a self-help or therapist-assisted weight loss program. Daily energy intake from breakfast, lunch, dinner, and alcoholic beverages, total daily energy intake, total daily energy expenditure, physical activity, and weekly weight loss were assessed. On days that breakfast or dinner was skipped, or alcoholic beverages were not consumed, less total daily energy was consumed compared to days that breakfast, dinner, or alcoholic beverages were consumed. On days that breakfast or alcohol was consumed, daily energy expenditure (breakfast only) and duration of exercise were higher compared to days that breakfast or alcohol was not consumed. Individuals who skipped dinner or lunch more often had lower energy expenditure and exercise duration than individuals who skipped dinner or lunch less often. Individuals who consumed alcohol more often had high daily energy expenditure than individuals who consumed alcohol less often. Skipping meals or consuming alcoholic beverages was not associated with weekly weight loss. In this investigation, weight loss program participants may have compensated for excess energy intake from alcoholic beverages and meals with greater daily energy expenditure and longer exercise duration.

  9. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    PubMed Central

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss, however HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. PMID:26826014

  10. Calcium and bone metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Heer, Martina

    2002-01-01

    Weightlessness induces bone loss. Understanding the nature of this loss and developing means to counteract it are significant challenges to potential human exploration missions. This article reviews the existing information from studies of bone and calcium metabolism conducted during space flight. It also highlights areas where nutrition may play a specific role in this bone loss, and where countermeasures may be developed to mitigate that loss.

  11. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  12. Intestinal fungi contribute to development of alcoholic liver disease.

    PubMed

    Yang, An-Ming; Inamine, Tatsuo; Hochrath, Katrin; Chen, Peng; Wang, Lirui; Llorente, Cristina; Bluemel, Sena; Hartmann, Phillipp; Xu, Jun; Koyama, Yukinori; Kisseleva, Tatiana; Torralba, Manolito G; Moncera, Kelvin; Beeri, Karen; Chen, Chien-Sheng; Freese, Kim; Hellerbrand, Claus; Lee, Serene Ml; Hoffman, Hal M; Mehal, Wajahat Z; Garcia-Tsao, Guadalupe; Mutlu, Ece A; Keshavarzian, Ali; Brown, Gordon D; Ho, Samuel B; Bataller, Ramon; Stärkel, Peter; Fouts, Derrick E; Schnabl, Bernd

    2017-06-30

    Chronic liver disease with cirrhosis is the 12th leading cause of death in the United States, and alcoholic liver disease accounts for approximately half of all cirrhosis deaths. Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice. Treating mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan translocation, and ameliorated ethanol-induced liver disease. Using bone marrow chimeric mice, we found that β-glucan induces liver inflammation via the C-type lectin-like receptor CLEC7A on Kupffer cells and possibly other bone marrow-derived cells. Subsequent increases in IL-1β expression and secretion contributed to hepatocyte damage and promoted development of ethanol-induced liver disease. We observed that alcohol-dependent patients displayed reduced intestinal fungal diversity and Candida overgrowth. Compared with healthy individuals and patients with non-alcohol-related cirrhosis, alcoholic cirrhosis patients had increased systemic exposure and immune response to mycobiota. Moreover, the levels of extraintestinal exposure and immune response correlated with mortality. Thus, chronic alcohol consumption is associated with an altered mycobiota and translocation of fungal products. Manipulating the intestinal mycobiome might be an effective strategy for attenuating alcohol-related liver disease.

  13. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats

    USDA-ARS?s Scientific Manuscript database

    Despite plausible biological mechanisms, the differential abilities of phylloquinone (PK) and menaquinones (MKn) to prevent bone loss remain controversial. The objective of the current study was to compare the effects of PK, menaquinone-4 (MK-4) and menaquinone-7(MK-7) on the rate of bone loss in o...

  14. The Use of Structural Allograft in Primary and Revision Knee Arthroplasty with Bone Loss

    PubMed Central

    Kuchinad, Raul A.; Garbedian, Shawn; Rogers, Benedict A.; Backstein, David; Safir, Oleg; Gross, Allan E.

    2011-01-01

    Bone loss around the knee in the setting of total knee arthroplasty remains a difficult and challenging problem for orthopaedic surgeons. There are a number of options for dealing with smaller and contained bone loss; however, massive segmental bone loss has fewer options. Small, contained defects can be treated with cement, morselized autograft/allograft or metal augments. Segmental bone loss cannot be dealt with through simple addition of cement, morselized autograft/allograft, or metal augments. For younger or higher demand patients, the use of allograft is a good option as it provides a durable construct with high rates of union while restoring bone stock for future revisions. Older patients, or those who are low demand, may be better candidates for a tumour prosthesis, which provides immediate ability to weight bear and mobilize. PMID:21991418

  15. The impact of smoking on marginal bone loss in a 10-year prospective longitudinal study.

    PubMed

    Bahrami, Golnosh; Vaeth, Michael; Kirkevang, Lise-Lotte; Wenzel, Ann; Isidor, Flemming

    2016-09-21

    The aim of this epidemiologic study was to determine the impact of smoking on marginal bone loss in a subsample derived from an original randomly selected adult sample, after adjusting for oral and general factors. The number of participants at baseline in this 10-year longitudinal study was 616 (mean age: 42 years, range 21-63 years). The participants underwent a full-mouth radiographic survey. After recall in 2003, 473 (77%) of the participants accepted and completed an identical survey. In 2008, the survey was repeated, and 301 (48.9%) individuals were included in this study. The marginal bone level of each tooth was measured in mm. Age, gender, smoking habits, number of teeth, apical periodontitis, crowns and initial marginal bone level were also recorded for each individual. Only individuals who did not report a change in smoking habits during the 10-year period were included in the study. Multiple regression analyses were used to evaluate crude and adjusted associations between smoking and marginal bone loss. At the first, radiographic survey smokers had a statistically significantly more reduced marginal bone level (in average 0.9 mm) than nonsmokers. After 10 years, a progression of a mean marginal bone loss of > 2 mm was statistically significantly more common in smokers than in nonsmokers (7.1% and 0%, respectively). Furthermore, a marginal bone loss of 1-2 mm was observed in 29% of the smokers and 19% of the nonsmokers, and ≤ 1 mm marginal bone loss was found in 69% of smokers and 81% of nonsmokers. Even after adjusting for initial marginal bone level, gender, age, and also presence of apical periodontitis and crowns, the difference in progression of marginal bone loss was still statistically higher in smokers (on average 0.36 mm). The smokers started out with a more reduced marginal bone level than nonsmokers. However, even after adjusting for the initial marginal bone level, the progression of marginal bone loss in smokers was more pronounced than in

  16. Time dependent loss of trabecular bone in human tibial plateau fractures.

    PubMed

    Solomon, Lucian Bogdan; Kitchen, David; Anderson, Paul Hamill; Yang, Dongqing; Starczak, Yolandi; Kogawa, Masakazu; Perilli, Egon; Smitham, Peter Jonathan; Rickman, Mark Sean; Thewlis, Dominic; Atkins, Gerald James

    2018-05-22

    We investigated if time between injury and surgery affects cancellous bone properties in patients suffering tibial plateau fractures (TPF), in terms of structural integrity and gene expression controlling bone loss. A cohort of 29 TPF, operated 1-17 days post-injury, had biopsies from the fracture and an equivalent contralateral limb site, at surgery. Samples were assessed using micro-computed tomography and real-time RT-PCR analysis for the expression of genes known to be involved in bone remodeling and fracture healing. Significant decreases in the injured vs control side were observed for bone volume fraction (BV/TV, -13.5 ± 6.0%, p = 0.011), trabecular number (Tb.N, -10.5 ± 5.9%, p = 0.041) and trabecular thickness (Tb.Th, -4.6 ± 2.5%, p = 0.033). Changes in these parameters were more evident in patients operated 5-17 days post-injury, compared to those operated in the first 4 days post injury. A significant negative association was found between Tb.Th (r = -0.54, p < 0.01) and BV/TV (r = -0.39, p < 0.05) in relation to time post-injury in the injured limb. Both BV/TV and Tb.Th were negatively associated with expression of key molecular markers of bone resorption, CTSK, ACP5 and the ratio of RANKL:OPG mRNA. These structure/gene expression relationships did not exist in the contralateral tibial plateau of these patients. This study demonstrated that there is a significant early time-dependent bone loss in the proximal tibia after TPF. This bone loss was significantly associated with altered expression of genes typically involved in the process of osteoclastic bone resorption but possibly also by osteocytes. The mechanism of early bone loss in such fractures should be a subject of further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Dried plum diet protects from bone loss caused by ionizing radiation

    PubMed Central

    Schreurs, A.-S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Limoli, C. L.; Turner, N. D.; Halloran, B.; Globus, R. K.

    2016-01-01

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth. PMID:26867002

  18. Gaze-evoked nystagmus induced by alcohol intoxication.

    PubMed

    Romano, Fausto; Tarnutzer, Alexander A; Straumann, Dominik; Ramat, Stefano; Bertolini, Giovanni

    2017-03-15

    The cerebellum is the core structure controlling gaze stability. Chronic cerebellar diseases and acute alcohol intoxication affect cerebellar function, inducing, among others, gaze instability as gaze-evoked nystagmus. Gaze-evoked nystagmus is characterized by increased centripetal eye-drift. It is used as an important diagnostic sign for patients with cerebellar degeneration and to assess the 'driving while intoxicated' condition. We quantified the effect of alcohol on gaze-holding using an approach allowing, for the first time, the comparison of deficits induced by alcohol intoxication and cerebellar degeneration. Our results showed that alcohol intoxication induces a two-fold increase of centripetal eye-drift. We establish analysis techniques for using controlled alcohol intake as a model to support the study of cerebellar deficits. The observed similarity between the effect of alcohol and the clinical signs observed in cerebellar patients suggests a possible pathomechanism for gaze-holding deficits. Gaze-evoked nystagmus (GEN) is an ocular-motor finding commonly observed in cerebellar disease, characterized by increased centripetal eye-drift with centrifugal correcting saccades at eccentric gaze. With cerebellar degeneration being a rare and clinically heterogeneous disease, data from patients are limited. We hypothesized that a transient inhibition of cerebellar function by defined amounts of alcohol may provide a suitable model to study gaze-holding deficits in cerebellar disease. We recorded gaze-holding at varying horizontal eye positions in 15 healthy participants before and 30 min after alcohol intake required to reach 0.6‰ blood alcohol content (BAC). Changes in ocular-motor behaviour were quantified measuring eye-drift velocity as a continuous function of gaze eccentricity over a large range (±40 deg) of horizontal gaze angles and characterized using a two-parameter tangent model. The effect of alcohol on gaze stability was assessed analysing: (1

  19. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission.

  20. Cadium-induced bone loss: Effects in ovariectomized mice and osteoclast-like cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, M.H.; Seed, T.M.; Peterson, D.P.

    1988-01-01

    The research reported here was conducted to investigate the possibility that cadmium might be a factor that increases bone loss after the menopause. In our first study, we exposed female CF1 mice to a purified diet containing CdCl2 at either 0.25, 5.0, or 50 ppM Cd starting at 70 days of age. After 12 months of exposure, mice were ovariectomized (OV) or sham-operated (SO). After surgery, they remained on their respective diets for an additional six months before sacrifice. Results showed that neither ovariectomy alone nor dietary Cd exposure alone significantly decrease bone calcium content. However, dietary Cd at 50more » ppM in combination with ovariectomy caused a striking decrease in the calcium content of mouse bones. The mice in the above study were quite old (435 days old at ovariectomy; 617 days old at sacrifice) and had been exposed to dietary cadmium for one year prior to removal of the ovaries. Consequently, the follow-up study reported here was conducted in mice whose skeletons were pre-labelled with UVCa. This study was designed to determine whether cadmium exposure would cause as increased release of UVCa from the skeletons of OV mice immediately after the start of cadmium exposure and in the absence of the one-year pre-exposure period present in our first study. Such results would indicate that cadmium might act directly on bone rather than indirectly by way of damage to another organ such as the kidney. 14 refs., 1 fig.« less

  1. Dietary Sodium Effects on Bone Loss and Calcium Metabolism During Bed Rest

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Arnaud, Sara B.; Abrams, Steven A.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The acceleration of age-related bone loss is one of the most detrimental effects of space flight. The ability to understand and counteract this loss will be critical for crew health and safety during and after long-duration missions. Studies in healthy ambulatory individuals have linked high salt (sodium) diets, hypercalciuria, and increased renal stone risk. Dietary salt may modulate bone loss through changes in calcium metabolism and the calcium endocrine system. The research proposed here will determine the role of dietary salt in the loss of bone during simulated space flight. Calcium metabolism will be determined through calcium kinetics studies, endocrine and biochemical measurements; and estimates of the mass, distribution and mechanical properties of bone, in subjects fed low (100 mmol sodium/day) or high (250 mmol sodium/day) levels of dietary salt during 28 days of headdown tilt bedrest. This research addresses the role of dietary salt in the loss of bone and calcium in space flight, and integrates the changes in calcium metabolism with those occurring in other physiologic systems. These data will be critical for both countermeasure development, and in determination of nutritional requirements for extended-duration space flight. The potential countermeasures resulting from this research will reduce health risks due to acceleration of age-related osteoporosis and increased risk of renal stone formation..

  2. Management of Humeral and Glenoid Bone Loss in Recurrent Glenohumeral Instability

    PubMed Central

    Rusen, Jamie; Leiter, Jeff; Chahal, Jaskarndip; MacDonald, Peter

    2014-01-01

    Recurrent shoulder instability and resultant glenoid and humeral head bone loss are not infrequently encountered in the population today, specifically in young, athletic patients. This review on the management of bone loss in recurrent glenohumeral instability discusses the relevant shoulder anatomy that provides stability to the shoulder joint, relevant history and physical examination findings pertinent to recurrent shoulder instability, and the proper radiological imaging choices in its workup. Operative treatments that can be used to treat both glenoid and humeral head bone loss are outlined. These include coracoid transfer procedures and allograft/autograft reconstruction at the glenoid, as well as humeral head disimpaction/humeroplasty, remplissage, humeral osseous allograft reconstruction, rotational osteotomy, partial humeral head arthroplasty, and hemiarthroplasty on the humeral side. Clinical outcomes studies reporting general results of these techniques are highlighted. PMID:25136461

  3. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    PubMed

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    PubMed

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830

  6. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    PubMed

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  7. Alcohol-induced memory blackouts as an indicator of injury risk among college drinkers.

    PubMed

    Mundt, Marlon P; Zakletskaia, Larissa I; Brown, David D; Fleming, Michael F

    2012-02-01

    An alcohol-induced memory blackout represents an amnesia to recall events but does not involve a loss of consciousness. Memory blackouts are a common occurrence among college drinkers, but it is not clear if a history of memory blackouts is predictive of future alcohol-related injury above and beyond the risk associated with heavy drinking episodes. To determine whether baseline memory blackouts can prospectively identify college students with alcohol-related injury in the next 24 months after controlling for heavy drinking days. Data were analysed from the College Health Intervention Project Study (CHIPS), a randomised controlled trial of screening and brief physician intervention for problem alcohol use among 796 undergraduate and 158 graduate students at four university sites in the USA and one in Canada, conducted from 2004 to 2009. Multivariate analyses used generalised estimating equations with the logit link. The overall 24-month alcohol-related injury rate was 25.6%, with no significant difference between men and women (p=0.51). Alcohol-induced memory blackouts at baseline exhibited a significant dose-response on odds of alcohol-related injury during follow-up, increasing from 1.57 (95% CI 1.13 to 2.19) for subjects reporting 1-2 memory blackouts at baseline to 2.64 (95% CI 1.65 to 4.21) for students acknowledging 6+ memory blackouts at baseline. The link between memory blackouts and injury was mediated by younger age, prior alcohol-related injury, heavy drinking, and sensation-seeking disposition. Memory blackouts are a significant predictor of future alcohol-related injury among college drinkers after adjusting for heavy drinking episodes.

  8. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    PubMed Central

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  9. Development, Prevention, and Treatment of Alcohol-Induced Organ Injury: The Role of Nutrition

    PubMed Central

    Barve, Shirish; Chen, Shao-Yu; Kirpich, Irina; Watson, Walter H.; McClain, Craig

    2017-01-01

    Alcohol and nutrition have the potential to interact at multiple levels. For example, heavy alcohol consumption can interfere with normal nutrition, resulting in overall malnutrition or in deficiencies of important micronutrients, such as zinc, by reducing their absorption or increasing their loss. Interactions between alcohol consumption and nutrition also can affect epigenetic regulation of gene expression by influencing multiple regulatory mechanisms, including methylation and acetylation of histone proteins and DNA. These effects may contribute to alcohol-related organ or tissue injury. The impact of alcohol–nutrition interactions has been assessed for several organs and tissues, including the intestine, where heavy alcohol use can increase intestinal permeability, and the liver, where the degree of malnutrition can be associated with the severity of liver injury and liver disease. Alcohol–nutrition interactions also play a role in alcohol-related lung injury, brain injury, and immune dysfunction. Therefore, treatment involving nutrient supplementation (e.g., with zinc or S-adenosylmethionine) may help prevent or attenuate some types of alcohol-induced organ damage. PMID:28988580

  10. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  11. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  12. Gaze‐evoked nystagmus induced by alcohol intoxication

    PubMed Central

    Tarnutzer, Alexander A.; Straumann, Dominik; Ramat, Stefano; Bertolini, Giovanni

    2017-01-01

    Key points The cerebellum is the core structure controlling gaze stability. Chronic cerebellar diseases and acute alcohol intoxication affect cerebellar function, inducing, among others, gaze instability as gaze‐evoked nystagmus.Gaze‐evoked nystagmus is characterized by increased centripetal eye‐drift. It is used as an important diagnostic sign for patients with cerebellar degeneration and to assess the ‘driving while intoxicated’ condition.We quantified the effect of alcohol on gaze‐holding using an approach allowing, for the first time, the comparison of deficits induced by alcohol intoxication and cerebellar degeneration.Our results showed that alcohol intoxication induces a two‐fold increase of centripetal eye‐drift.We establish analysis techniques for using controlled alcohol intake as a model to support the study of cerebellar deficits.The observed similarity between the effect of alcohol and the clinical signs observed in cerebellar patients suggests a possible pathomechanism for gaze‐holding deficits. Abstract Gaze‐evoked nystagmus (GEN) is an ocular‐motor finding commonly observed in cerebellar disease, characterized by increased centripetal eye‐drift with centrifugal correcting saccades at eccentric gaze. With cerebellar degeneration being a rare and clinically heterogeneous disease, data from patients are limited. We hypothesized that a transient inhibition of cerebellar function by defined amounts of alcohol may provide a suitable model to study gaze‐holding deficits in cerebellar disease. We recorded gaze‐holding at varying horizontal eye positions in 15 healthy participants before and 30 min after alcohol intake required to reach 0.6‰ blood alcohol content (BAC). Changes in ocular‐motor behaviour were quantified measuring eye‐drift velocity as a continuous function of gaze eccentricity over a large range (±40 deg) of horizontal gaze angles and characterized using a two‐parameter tangent model. The effect of

  13. Bone mineral loss and recovery after 17 weeks of bed rest

    NASA Technical Reports Server (NTRS)

    Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)

    1990-01-01

    The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.

  14. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less

  15. Management bone loss of the proximal femur in revision hip arthroplasty: Update on reconstructive options

    PubMed Central

    Sakellariou, Vasileios I; Babis, George C

    2014-01-01

    The number of revision total hip arthroplasties is expected to rise as the indications for arthroplasty will expand due to the aging population. The prevalence of extensive proximal femoral bone loss is expected to increase subsequently. The etiology of bone loss from the proximal femur after total hip arthroplasty is multifactorial. Stress shielding, massive osteolysis, extensive loosening and history of multiple surgeries consist the most common etiologies. Reconstruction of extensive bone loss of the proximal femur during a revision hip arthroplasty is a major challenge for even the most experienced orthopaedic surgeon. The amount of femoral bone loss and the bone quality of the remaining metaphyseal and diaphyseal bone dictate the selection of appropriate reconstructive option. These include the use of impaction allografting, distal press-fit fixation, allograft-prosthesis composites and tumor megaprostheses. This review article is a concise review of the current literature and provides an algorithmic approach for reconstruction of different types of proximal femoral bone defects. PMID:25405090

  16. Hitting rock bottom? Resource loss as a predictor of alcoholism treatment completion.

    PubMed

    Gruszczyńska, Ewa; Kaczmarek, Małgorzata; Chodkiewicz, Jan

    2016-07-01

    Background Efforts to better understand the phenomenon of the 'bottom', the beginning of the process of turning away from alcohol, are important for both theoretical and practical goals. The conservation of resources theory by Hobfoll may represent a suitable framework to base these attempts around. Aim The aim of the study was to examine the role of resource loss in completing alcoholism treatment on the basis of Hobfoll's conservation of resources theory. Methods The study included 86 patients undergoing inpatient alcoholism treatment. An assessment of resource loss and gain during the previous year, as well as of the decisional balance regarding the pros and cons of drinking alcohol, took place at the beginning of therapy. Results The results of hierarchical binary logistic regression confirmed that resource loss was the only significant predictor of therapy completion, after adjustment for decisional balance, demographics and basic clinical data. Additionally, gender moderated the relationship between resource gain and therapy completion: while an increase in gain was related to a decreased chance of completing therapy in men, the opposite effect was noted in women. Conclusions Resource loss has more influence than decisional balance in predicting therapy completion, which can be translated into clinically valid recommendations based on gender differences.

  17. Dried plum diet protects from bone loss caused by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less

  18. Dried plum diet protects from bone loss caused by ionizing radiation

    DOE PAGES

    Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; ...

    2016-02-11

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less

  19. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    PubMed

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation.

    PubMed

    Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng

    2015-12-01

    Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the

  1. Quantitative trait locus on chromosome X affects bone loss after maturation in mice.

    PubMed

    Okudaira, Shuzo; Shimizu, Motoyuki; Otsuki, Bungo; Nakanishi, Rika; Ohta, Akira; Higuchi, Keiichi; Hosokawa, Masanori; Tsuboyama, Tadao; Nakamura, Takashi

    2010-09-01

    Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.

  2. Early consumption of blueberry diet protects against sex steroid deficiency-induced bone loss in adult female rats

    USDA-ARS?s Scientific Manuscript database

    We studied the effects of blueberry consumption in early development on bone loss in ovariectomized (OVX) female rats later in life. Weanling female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder from PND 21 to PND34 (short-term group), or PND21 to PND81 (chro...

  3. Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes.

    PubMed

    Tu, Su; Cao, Fu-Tao; Fan, Xiao-Chun; Yang, Cheng-Jian

    2017-06-01

    Excessive alcohol consumption provides risk to cardiomyopathy with unknown mechanisms. Resveratrol, a plant polyphenol, is widely reported for its cardiovascular benefits, while its effect on alcohol-induced impairments in cardiomyocytes largely remains unknown. Effects of resveratrol on the cardiomyocytes under ethanol insult were studied in vitro. Ethanol exposure in mouse neonatal cardiomyocytes increased cell death and induced a specific loss of tight junction protein, connexin 43. In spite of adverse effects at higher concentrations, resveratrol at 10 μM improved cell viability of cardiomyocytes in the presence of a deleterious dose of ethanol. Importantly, the co-treatment of resveratrol with ethanol exhibited the restoration of connexin 43 protein. Further assays showed that these effects were likely associated with the antioxidative actions of resveratrol, and correlated with the alleviation of MAP kinase activation in cultured cardiomyocytes in response to ethanol. Our data suggests a novel mechanism of cardiomyocyte cell loss under ethanol exposure and provides new evidence of protective effects of resveratrol in the cardiomyocytes.

  4. Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial.

    PubMed

    Jesudason, David; Nordin, Be Christopher; Keogh, Jennifer; Clifton, Peter

    2013-11-01

    It has been hypothesized that hip-fracture rates are higher in developed than in developing countries because high-protein (HP) Western diets induce metabolic acidosis and hypercalciuria. Confounders include interactions between dietary protein and calcium, sodium, and potassium. We determined whether an HP or a high-normal-protein (HNP) weight-loss diet caused greater loss in bone mineral density (BMD) over 24 mo. The Weight Loss, Protein and Bone Density Study was conducted from 2008 to 2011 in 323 overweight [body mass index (BMI; in kg/m(2)) >27] postmenopausal women, with a total hip BMD t score less than -2.0. Subjects were randomly assigned to receive an isocaloric calcium-replete HP (≥90 g protein/d) or HNP (<80 g protein/d) weight-loss diet, with the aim of a difference of 20 g protein/d. A total of 186 subjects (90 subjects in the HP group, 96 subjects in the HNP group) completed 12 mo, and 137 subjects (69 subjects in the HP group, 68 subjects in the HNP group) completed 24 mo. Biomarkers confirmed a difference in protein intake of 16 and 13.1 g at 12 and 24 mo, respectively. Mean (±SE) weight loss was equal; HP subjects lost 7.9 ± 0.9 kg and HNP subjects lost 8.9 ± 0.9 kg at 24 mo. Subjects lost 1-2% BMD annually at lumbar spine vertebrae 2-4, the forearm, the femoral neck, and hip. ANCOVA showed no effect of the HP or HNP diet (P > 0.05 for diet and diet-time interactions). A diet-by-time analysis showed that the HNP diet increased C-terminal telopeptide and osteocalcin (P ≤ 0.001 for each) despite hypercalciuria (P = 0.029). High dietary protein intake during weight loss has no clinically significant effect on bone density but slows bone turnover. This trial was registered at the Australian and New Zealand Clinical Trials Registry (http://www.anzctr.org.au) as ACTRN12608000229370.

  5. Neuroimmune Basis of Alcoholic Brain Damage

    PubMed Central

    Crews, Fulton T.; Vetreno, Ryan P.

    2017-01-01

    Alcohol-induced brain damage likely contributes to the dysfunctional poor decisions associated with alcohol dependence. Human alcoholics have a global loss of brain volume that is most severe in the frontal cortex. Neuroimmune gene induction by binge drinking increases neurodegeneration through increased oxidative stress, particularly NADPH oxidase-induced oxidative stress. In addition, HMGB1-TLR4 and innate immune NF-κB target genes are increased leading to persistent and sensitized neuroimmune responses to ethanol and other agents that release HMGB1 or directly stimulate TLR receptors and/or NMDA receptors. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of adolescent alcohol abuse lead to significant frontal cortical degeneration and show the most severe loss of hippocampal neurogenesis. Adolescence is a period of high risk for ethanol-induced neurodegeneration and alterations in brain structure, gene expression, and maturation of adult phenotypes. Together, these findings support the hypothesis that adolescence is a period of risk for persistent and long-lasting increases in brain neuroimmune gene expression that promote persistent and long-term increases in alcohol consumption, neuroimmune gene induction, and neurodegeneration that we find associated with alcohol use disorders. PMID:25175868

  6. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction

    PubMed Central

    Morse, Leslie R.

    2015-01-01

    Background: Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. Methods: We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Conclusions: Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail. PMID:26689691

  7. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    PubMed Central

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  8. Impact of cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats.

    PubMed

    Nogueira-Filho, Getulio R; Todescan, Sylvia; Shah, Adnan; Rosa, Bruno T; Tunes, Urbino da R; Cesar Neto, Joao B

    2011-11-01

    Cannabis sativa (marijuana) can interfere with bone physiopathology because of its effect on osteoblast and osteoclast activity. However, its impact on periodontal tissues is still controversial. The present study evaluates whether marijuana smoke affects bone loss (BL) on ligature-induced periodontitis in rats. Thirty male Wistar rats were used in the study. A ligature was placed around one of the mandible first molars (ligated teeth) of each animal, and they were then randomly assigned to one of two groups: control (n = 15) or marijuana smoke inhalation ([MSI] for 8 minutes per day; n = 15). Urine samples were obtained to detect the presence of tetrahydrocannabinol. After 30 days, the animals were sacrificed and decalcified sections of the furcation area were obtained and evaluated according to the following histometric parameters: bone area (BA), bone density (BD), and BL. Tetrahydrocannabinol was positive in urine samples only for the rats of the MSI group. Non-significant differences were observed for unligated teeth from both groups regarding BL, BA, and BD (P >0.05). However, intragroup analysis showed that all ligated teeth presented BL and a lower BA and BD compared to unligated teeth (P <0.05). The intergroup evaluation of the ligated teeth showed that the MSI group presented higher BL and lower BD (P <0.05) compared to ligated teeth from the control group. Considering the limitations of this animal study, cannabis smoke may impact alveolar bone by increasing BL resulting from ligature-induced periodontitis.

  9. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  10. Naringin protects against bone loss in steroid-treated inflammatory bowel disease in a rat model.

    PubMed

    Li, Chengli; Zhang, Jun; Lv, Fang; Ge, Xingtao; Li, Gang

    2018-07-15

    We observed the effects of naringin on bone loss in glucocorticoid-treated inflammatory bowel disease (IBD) in a rat model. The IBD model was established in Sprague-Dawley rats by administering 5.0% dextran sodium sulfate. Dexamethasone (DEX) and naringin were given at the second week. Blood, colon and bone samples were collected for biomarker assay, histological analysis or microCT analysis. Superoxide dismutase, catalase and malonaldehyde were measured in bone. A significant decrease of procollagen type 1 N-terminal propeptide (P1NP) level was observed in DEX-treated IBD groups compared with the control (p < 0.05). P1NP levels were dose-dependently increased in the presence of naringin intervention. Bone loss and decreased bone biomechanical properties were observed in DEX-treated IBD rats compared with control rats (p < 0.01). Naringin intervention protected against bone loss and decreased bone biomechanical properties. Bone formation related gene mRNA expressions were significantly decreased in DEX-treated IBD rats compared with control rats. Naringin administration reversed the down-regulation of the expressions of those genes. Naringin treatment reduced the oxidative stress in bone from DEX-treated IBD rats. Our data indicated that naringin may have great potential for the treatment of bone loss in glucocorticoid-treated IBD patients via blocking oxidative stress and promoting bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Alcohol-Induced Memory Blackouts as an Indicator of Injury Risk among College Drinkers

    PubMed Central

    Mundt, Marlon P.; Zakletskaia, Larissa I.; Brown, David D.; Fleming, Michael F.

    2011-01-01

    Objective An alcohol-induced memory blackout represents an amnesia to recall events but does not involve a loss of consciousness. Memory blackouts are a common occurrence among college drinkers, but it is not clear if a history of memory blackouts is predictive of future alcohol-related injury above and beyond the risk associated with heavy drinking episodes. This analysis sought to determine if baseline memory blackouts can prospectively identify college students with alcohol-related injury in the next 24 months after controlling for heavy drinking days. Methods Data were analyzed from the College Health Intervention Project Study (CHIPS), a randomized controlled trial of screening and brief physician intervention for problem alcohol use among 796 undergraduate and 158 graduate students at four university sites in the US and one in Canada, conducted from 2004 to 2009. Multivariate analyses used generalized estimating equations (GEE) with the logit link. Results The overall 24-month alcohol-related injury rate was 25.6%, with no significant difference between males and females (p=.51). Alcohol-induced memory blackouts at baseline exhibited a significant dose-response on odds of alcohol-related injury during follow-up, increasing from 1.57 (95% CI: 1.13–2.19) for subjects reporting 1–2 memory blackouts at baseline to 2.64 (95% CI: 1.65–4.21) for students acknowledging 6+ memory blackouts at baseline. The link between memory blackouts and injury was mediated by younger age, prior alcohol-related injury, heavy drinking, and sensation-seeking disposition. Conclusions Memory blackouts are a significant predictor of future alcohol-related injury among college drinkers after adjusting for heavy drinking episodes. PMID:21708813

  12. Autologous distal clavicle versus autologous coracoid bone grafts for restoration of anterior-inferior glenoid bone loss: a biomechanical comparison.

    PubMed

    Petersen, Steve A; Bernard, Johnathan A; Langdale, Evan R; Belkoff, Stephen M

    2016-06-01

    Treating anterior glenoid bone loss in patients with recurrent shoulder instability is challenging. Coracoid transfer techniques are associated with neurologic complications and neuroanatomic alterations. The purpose of our study was to compare the contact area and pressures of a distal clavicle autograft with a coracoid bone graft for the restoration of anterior glenoid bone loss. We hypothesized that a distal clavicle autograft would be as effective as a coracoid graft. In 13 fresh-frozen cadaveric shoulder specimens, we harvested the distal 1.0 cm of each clavicle and the coracoid bone resection required for a Latarjet procedure. A compressive load of 440 N was applied across the glenohumeral joint at 30° and 60° of abduction, as well as 60° of abduction with 90° of external rotation. Pressure-sensitive film was used to determine normal glenohumeral contact area and pressures. In each specimen, we created a vertical, 25% anterior bone defect, reconstructed with distal clavicle (articular surface and undersurface) and coracoid bone grafts, and determined the glenohumeral contact area and pressures. We used analysis of variance for group comparisons and a Tukey post hoc test for individual comparisons (with P <.05 indicating a significant difference). The articular distal clavicle bone graft provided the lowest mean pressure in all testing positions. The coracoid bone graft provided the greatest contact area in all humeral positions, but the difference was not significant. An articular distal clavicle bone graft is comparable in glenohumeral contact area and pressures to an optimally placed coracoid bone graft for restoring glenoid bone loss. Basic Science Study; Biomechanics. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis

    PubMed Central

    Goettsch, Claudia; Babelova, Andrea; Trummer, Olivia; Erben, Reinhold G.; Rauner, Martina; Rammelt, Stefan; Weissmann, Norbert; Weinberger, Valeska; Benkhoff, Sebastian; Kampschulte, Marian; Obermayer-Pietsch, Barbara; Hofbauer, Lorenz C.; Brandes, Ralf P.; Schröder, Katrin

    2013-01-01

    ROS are implicated in bone diseases. NADPH oxidase 4 (NOX4), a constitutively active enzymatic source of ROS, may contribute to the development of such disorders. Therefore, we studied the role of NOX4 in bone homeostasis. Nox4–/– mice displayed higher bone density and reduced numbers and markers of osteoclasts. Ex vivo, differentiation of monocytes into osteoclasts with RANKL and M-CSF induced Nox4 expression. Loss of NOX4 activity attenuated osteoclastogenesis, which was accompanied by impaired activation of RANKL-induced NFATc1 and c-JUN. In an in vivo model of murine ovariectomy–induced osteoporosis, pharmacological inhibition or acute genetic knockdown of Nox4 mitigated loss of trabecular bone. Human bone obtained from patients with increased osteoclast activity exhibited increased NOX4 expression. Moreover, a SNP of NOX4 was associated with elevated circulating markers of bone turnover and reduced bone density in women. Thus, NOX4 is involved in bone loss and represents a potential therapeutic target for the treatment of osteoporosis. PMID:24216508

  14. Deficiency of ATP6V1H Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway

    PubMed Central

    Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen

    2016-01-01

    Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156

  15. Exercise-induced amenorrhea and bone health in the adolescent athlete.

    PubMed

    Warren, Michelle P; Chua, Abigail T

    2008-01-01

    Female participation in high school athletics has increased 800% in the last 30 years. The problem of exercise-induced amenorrhea was initially thought to be analogous to hypoestrogenism, but recent studies suggest that nutritional issues underlie most of the pathophysiology and that the mechanism is different from that seen in the primary hypogonadal state. Exercise-induced amenorrhea can be an indicator of an energy drain, and the presence of the other components of the female athlete triad-bone density loss and eating disorders-must be determined as well. Addressing skeletal problems related to nutritional and hormonal deficiencies in this population is of very high priority.

  16. Evaluating Bone Loss in ISS Astronauts.

    PubMed

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  17. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes.

    PubMed

    Algate, K; Haynes, D R; Bartold, P M; Crotti, T N; Cantley, M D

    2016-10-01

    Periodontitis is the most common bone loss pathology in adults and if left untreated is responsible for premature tooth loss. Cytokines, such as tumour necrosis factor-α (TNFα), involved in the chronic inflammatory response within the periodontal gingiva, significantly influence the normal bone remodelling processes. In this review, the effects of TNFα on bone metabolism in periodontitis are evaluated in relation to its direct and indirect actions on bone cells including osteoclasts, osteoblasts and osteocytes. Evidence published to date suggests a potent catabolic role for TNFα through the stimulation of osteoclastic bone resorption as well as the suppression of osteoblastic bone formation and osteocytic survival. However, the extent and timing of TNFα exposure in vitro and in vivo greatly influences its effect on skeletal cells, with contradictory anabolic activity observed with TNFα in a number of studies. None the less, it is evident that managing the chronic inflammatory response in addition to the deregulated bone metabolism is required to improve periodontal and inflammatory bone loss treatments‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis

    PubMed Central

    Roos, Alison; Satterfield, Laura; Zhao, Shuying; Fuja, Daniel; Shuck, Ryan; Hicks, M John; Donehower, Lawrence A; Yustein, Jason T

    2015-01-01

    Background: Osteosarcoma (OS) is the most common bone malignancy in the paediatric population, principally affecting adolescents and young adults. Minimal advancements in patient prognosis have been made over the past two decades because of the poor understanding of disease biology. Runx2, a critical transcription factor in bone development, is frequently amplified and overexpressed in OS. However, the molecular and biological consequences of Runx2 overexpression remain unclear. Methods: si/shRNA and overexpression technology to alter Runx2 levels in OS cells. In vitro assessment of doxorubicin (doxo)-induced apoptosis and in vivo chemosensitivity studies. Small-molecule inhibitor of c-Myc transcriptional activity was used to assess its role. Results: Loss of Runx2 sensitises cells to doxo-induced apoptosis both in vitro and in vivo. Furthermore, in conjunction with chemotherapy, decreasing Runx2 protein levels activates both the intrinsic and extrinsic apoptotic pathways. Transplanted tumour studies demonstrated that loss of endogenous Runx2 protein expression enhances caspase-3 cleavage and tumour necrosis in response to chemotherapy. Finally, upon doxo-treated Runx2 knockdown OS cells there was evidence of enhanced c-Myc expression and transcriptional activity. Inhibition of c-Myc under these conditions resulted in decreased activation of apoptosis, therefore insinuating a role for c-Myc in dox-induced activation of apoptotic pathways. Conclusions: Therefore, we have established a novel molecular mechanism by which Runx2 provides a chemoprotective role in OS, indicating that in conjunction to standard chemotherapy, targeting Runx2 may be a new therapeutic strategy for patients with OS. PMID:26528706

  19. Protective effect of artemisinin on chronic alcohol induced-liver damage in mice.

    PubMed

    Zhao, Xiaoyan; Wang, Liqing; Zhang, Hao; Zhang, Duoduo; Zhang, Zhihao; Zhang, Jie

    2017-06-01

    The liver disease related to chronic alcohol consumption is one of the leading causes of death for alcoholics. The efficient drug to ameliorate the alcoholic liver injury was needed urgently. The present study was performed to investigate whether artemisinin possessed the protective effect against chronic alcohol consumption. 50 male Kunming mice were divided into 5 groups: control group (C): 10ml/kg saline+10ml/kg saline, alcohol group (A): 10ml/kg 56%(v/v) alcohol+10ml/kg saline, low dose group of artemisinin (L): 10ml/kg 56%(v/v) alcohol+30mg/kg/day artemisinin, medium dose group of artemisinin (M): 10ml/kg 56%(v/v) alcohol+60mg/kg/day artemisinin, high dose group of artemisinin (H): 10ml/kg 56%(v/v) alcohol+120mg/kg/day artemisinin. Drugs were given orally every day. The general state of mice was observed and the levels of serum activities of AST and ALT were detected after treatment with drugs for 30days. Besides, the liver weight index was calculated and histopathological analysis was performed. We successfully demonstrated that treatment with high dose of artemisinin significantly decreased the elevated levels of AST (p<0.05) and ALT (p<0.01) in plasma, as well as the liver weight index (p<0.01). The loss of body weight, tissue injury, oedema and inflammatory cell infiltration in the hepatocytes were found in the A group. These symptoms were remarkably alleviated in animals treated with artemisinin. Artemisinin can inhibit the activation of NF-кB and the expression of inflammatory cytokines inducible nitric oxide synthase. Besides, it can also enhance the stability of liver cell membrane, and reduce the damage of liver cell membrane and liver cell. Artemisinin showed a protective effect against chronic alcohol poisoning and it has a great potential for the clinical application to treat the liver injury induced by alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    NASA Technical Reports Server (NTRS)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  1. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?

    PubMed Central

    Leung, J.; Zhang, Y. F.; Bauer, D.; Ensrud, K. E.; Barrett-Connor, E.; Leung, P. C.

    2013-01-01

    Summary In a prospective cohort study of 5,995 older American men (MrOS), users of angiotensin-converting enzyme (ACE) inhibitors had a small but significant increase in bone loss at the hip over 4 years after adjustment for confounders. Use of angiotensin II AT1 receptor blockers (ARB) was not significantly associated with bone loss. Introduction Experimental evidence suggests that angiotensin II promotes bone loss by its effects on osteoblasts. It is therefore plausible that ACE inhibitor and ARB may reduce rates of bone loss. The objective of this study is to examine the independent effects of ACE inhibitor and ARB on bone loss in older men. Methods Out of 5,995 American men (87.2%) aged ≥65 years, 5,229 were followed up for an average of 4.6 years in a prospective six-center cohort study—The Osteoporotic Fractures in Men Study (MrOS). Bone mineral densities (BMD) at total hip, femoral neck, and trochanter were measured by Hologic densitometer (QDR 4500) at baseline and year 4. Results Out of 3,494 eligible subjects with complete data, 1,166 and 433 subjects reported use of ACE inhibitors and ARBs, respectively. When compared with nonusers, continuous use of ACE inhibitors was associated with a small (0.004 g/cm2) but significant increase in the average rate of BMD loss at total hip and trochanter over 4 years after adjustment for confounders. Use of ARB was not significantly associated with bone loss. Conclusion Use of ACE inhibitors but not ARB may marginally increase bone loss in older men. PMID:22080379

  2. Outcomes of curettage and anhydrous alcohol adjuvant for low-grade chondrosarcoma of long bone.

    PubMed

    Kim, Wanlim; Han, Ilkyu; Kim, Eo Jin; Kang, Seungcheol; Kim, Han-Soo

    2015-06-01

    Low-grade chondrosarcoma of long bones can be treated successfully with extended intralesional curettage using adjuvants. However, there is no study reporting the use of anhydrous alcohol as an adjuvant in the treatment of low-grade chondrosarcoma. We asked (1) whether intralesional curettage and anhydrous alcohol adjuvant for low-grade chondrosarcoma is associated with good oncologic outcomes; and we report (2) the complications of the procedure. Thirty-six patients (13 men, 23 women) with a mean age of 46 years (range, 18-67 years) were treated for low-grade chondrosarcoma and followed up for a median of 62 months (range, 24-169 months). After intralesional curettage, and additional burring, anhydrous alcohol was used as an adjuvant therapy. At the time of last follow-up, there were no local recurrences or distant metastases. Six patients developed complications: 4 postoperative fractures (11%), 1 intra-articular loose body (3%) and 1 postoperative joint stiffness (3%). Anhydrous alcohol is a reasonable adjuvant for the curettage of low-grade chondrosarcoma of long bones. A long-term follow-up study is necessary, considering the slow biological progression of low-grade chondrosarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Trisacryl Gelatin Microspheres Versus Polyvinyl Alcohol Particles in the Preoperative Embolization of Bone Neoplasms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basile, Antonio; Rand, Thomas; Lomoschitz, Fritz

    2004-09-15

    The aim of this study was to compare the efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles (PVA) in the preoperative embolization of bone neoplasms, on the basis of intraoperative blood loss quantified by the differences in preoperative and postoperative hematic levels of hemoglobin, hematocrit and erythrocytes count. From January 1997 to December 2002, preoperative embolization of bone tumors (either primary or secondary) was carried out in 49 patients (age range 12/78), 20 of whom were treated with trysacril gelatin microspheres (group A) and 29 with PVA particles (group B). The delay between embolization and surgery ranged from 1more » to 13 days in group A and 1 to 4 days in group B. As used in international protocols, we considered hematic levels of hemoglobin, hematocrit and erythrocytes count for the measurement of intraoperative blood loss then the differences in pre- and postoperative levels were used as statistical comparative parameters. We compared the values of patients treated with embospheres (n = 10) and PVA (n = 18) alone, and patients treated with (group A = 10; group B = 11) versus patients treated without other additional embolic materials in each group (group A = 10; group B = 18). According to the Student's t-test (p < 0.05), the difference of hematic parameters between patients treated by embospheres and PVA alone were significant; otherwise there was no significant difference between patients treated with only one embolic material (embospheres and PVA) versus those treated with other additional embolic agents in each group. The patients treated with microspheres had a minor quantification of intraoperative blood loss compared to those who received PVA particles. Furthermore, they had a minor increase of bleeding related to the delay time between embolization and surgery. The use of additional embolic material did not improve the efficacy of the procedure in either group of patients.« less

  4. Synchrotron Ultraviolet Microspectroscopy on Rat Cortical Bone: Involvement of Tyrosine and Tryptophan in the Osteocyte and Its Environment

    PubMed Central

    Pallu, Stéphane; Rochefort, Gael Y.; Jaffre, Christelle; Refregiers, Matthieu; Maurel, Delphine B.; Benaitreau, Delphine; Lespessailles, Eric; Jamme, Frédéric; Chappard, Christine; Benhamou, Claude-Laurent

    2012-01-01

    Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately. PMID:22937127

  5. FES-Rowing versus Zoledronic Acid to Improve BoneHealth in SCI

    DTIC Science & Technology

    2016-12-01

    SUPPLEMENTARY NOTES 14. ABSTRACT There is no established treatment to prevent bone loss or to induce new bone formation following SCI, although the... no established treatment to prevent bone loss or to induce new bone formation following SCI. The goal of this clinical trial -- FES-Rowing versus...Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No . 0704-0188 Public

  6. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis.

    PubMed

    Haze, Amir; Taylor, Angela L; Haegewald, Stefan; Leiser, Yoav; Shay, Boaz; Rosenfeld, Eli; Gruenbaum-Cohen, Yael; Dafni, Leah; Zimmermann, Bernd; Heikinheimo, Kristiina; Gibson, Carolyn W; Fisher, Larry W; Young, Marian F; Blumenfeld, Anat; Bernimoulin, Jean P; Deutsch, Dan

    2009-06-01

    Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM(+)), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM(+) induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM(+).

  7. Effects of local vibration on bone loss in -tail-suspended rats.

    PubMed

    Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B

    2014-06-01

    We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  9. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth

    PubMed Central

    Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel

    2014-01-01

    Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488

  10. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Oxidation-specific epitopes restrain bone formation.

    PubMed

    Ambrogini, Elena; Que, Xuchu; Wang, Shuling; Yamaguchi, Fumihiro; Weinstein, Robert S; Tsimikas, Sotirios; Manolagas, Stavros C; Witztum, Joseph L; Jilka, Robert L

    2018-06-06

    Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.

  12. Mammary tumorigenesis causes bone loss and dietary selenium supplementation does not affect such bone loss in male MMTV-PyMT mice

    USDA-ARS?s Scientific Manuscript database

    Cancer progression is accompanied by wasting that eventually results in cachexia characterized by significant weight loss and multi-organ functional failures. Limited clinical trials indicate that bone is adversely affected by cancer-associated wasting. To determine the effects of breast cancer on...

  13. Cancer-associated bone disease.

    PubMed

    Rizzoli, R; Body, J-J; Brandi, M-L; Cannata-Andia, J; Chappard, D; El Maghraoui, A; Glüer, C C; Kendler, D; Napoli, N; Papaioannou, A; Pierroz, D D; Rahme, M; Van Poznak, C H; de Villiers, T J; El Hajj Fuleihan, G

    2013-12-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  14. Cancer-associated bone disease

    PubMed Central

    Body, J.-J.; Brandi, M.-L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; Pierroz, D.D.; Rahme, M.; Van Poznak, C.H.; de Villiers, T.J.; El Hajj Fuleihan, G.

    2016-01-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  15. A Computational Model for Simulating Spaceflight Induced Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem

    2014-01-01

    An overview of an initial development of a model of bone loss due to skeletal unloading in weight bearing sites is presented. The skeletal site chosen for the initial application of the model is the femoral neck region because hip fractures can be debilitating to the overall performance health of astronauts. The paper begins with the motivation for developing such a model of the time course of change in bone in order to understand the mechanism of bone demineralization experienced by astronauts in microgravity, to quantify the health risk, and to establish countermeasures. Following this, a general description of a mathematical formulation of the process of bone remodeling is discussed. Equations governing the rate of change of mineralized bone volume fraction and active osteoclast and osteoblast are illustrated. Some of the physiology of bone remodeling, the theory of how imbalance in remodeling can cause bone loss, and how the model attempts to capture this is discussed. The results of a preliminary validation analysis that was carried out are presented. The analysis compares a set of simulation results against bone loss data from control subjects who participated in two different bed rest studies. Finally, the paper concludes with outlining the current limitations and caveats of the model, and planned future work to enhance the state of the model.

  16. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  17. Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults.

    PubMed

    Madeira, Eduardo; Madeira, Miguel; Guedes, Erika Paniago; Mafort, Thiago Thomaz; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; Neto, Leonardo Vieira; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss

    2018-03-21

    The historical concept that obesity protects against bone fractures has been questioned. Weight loss appears to reduce bone mineral density (BMD); however, the results in young adults are inconsistent, and data on the effects of weight loss on bone microstructure are limited. This study aimed to evaluate the impact of weight loss using an intragastric balloon (IGB) on bone density and microstructure. Forty obese patients with metabolic syndrome (mean age 35.1 ± 7.3 yr) used an IGB continuously for 6 mo. Laboratory tests, areal BMD, and body composition measurements via dual-energy X-ray absorptiometry, and volumetric BMD and bone microstructure measurements via high-resolution peripheral quantitative computed tomography were conducted before IGB placement and after IGB removal. The mean weight loss was 11.5%. After 6 mo, there were significant increases in vitamin D and carboxyterminal telopeptide of type 1 collagen levels. After IGB use, areal BMD increased in the spine but decreased in the total femur and the 33% radius. Cortical BMD increased in the distal radius but tended to decrease in the distal tibia. The observed trabecular bone loss in the distal tibia contributed to the decline in the total volumetric BMD at this site. There was a negative correlation between the changes in leptin levels and the measures of trabecular quality in the tibia on high-resolution peripheral quantitative computed tomography. Weight loss may negatively impact bone microstructure in young patients, especially for weight-bearing bones, in which obesity has a more prominent effect. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  18. Sexual Dimorphism in Periapical Inflammation and Bone Loss from MAP Kinase Phosphatase-1 Deficient Mice

    PubMed Central

    McAbee, Justin; Li, Qiyan; Yu, Hong; Kirkwood, Keith L.

    2012-01-01

    Introduction Mitogen Activating Protein (MAPK) kinase phosphatase-1 (MKP-1) has been shown to be a key negative regulator of the MAP kinase pathways of the innate immune system. The impact of MKP-1 in an endodontic model has yet to be studied. Thus, the purpose of this study was to determine the role of MKP-1 in a bacterial-driven model of pathological endodontic bone loss. Methods Pulps were exposed in both lower 1st molars of 10-week old mkp-1+/+ and mkp-1−/− mice and left open to the oral environment for either 3 or 8 weeks. At sacrifice, mandibles were harvested and scanned by microcomputed tomography (μCT) to determine periapical bone loss. Histopathological scoring was then performed on the samples to determine the amount of inflammatory infiltrate within the periapical microenvironment. Results Significant bone loss and inflammatory infiltrate were found in all experimental groups when compared to control. No statistical difference was found between mkp-1+/+ and mkp-1−/− at either time point with respect to bone loss or inflammatory infiltrate. At 8 weeks, male mkp-1−/− mice were found to have significantly more bone loss and inflammatory infiltrate when compared to female mkp-1−/− mice. There was also a significant correlation between an increase in bone loss and increase in inflammatory infiltrate. Conclusions A sexual dimorphism exists in the periapical inflammatory process, where male mkp-1−/− mice have more inflammation than female mkp-1−/− mice. The increase in inflammatory infiltrate correlates to more bone loss in the male mice. PMID:22794213

  19. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    NASA Technical Reports Server (NTRS)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  20. Influence of chronic alcoholism and oestrogen deficiency on the variation of stoichiometry of hydroxyapatite within alveolar bone crest of rats.

    PubMed

    Marchini, Adriana M P S; Deco, Camila P; Lodi, Karina B; Marchini, Leonardo; Santo, Ana M E; Rocha, Rosilene F

    2012-10-01

    Previous findings suggest that chronic alcoholism and oestrogenic deficiency may affect bones in general (including alveolar bone) and increase individuals' susceptibility to the development of periodontal disease. The aim of this study was to assess possible alterations in the chemical composition of alveolar bone in rats subjected to chronic alcoholism, oestrogen deficiency or both. Fifty-four rats were initially divided into two groups: ovariectomized (Ovx), and Sham operated (Sham). A month after surgery, the groups were sub-divided and received the following dietary intervention for eight weeks: 20% alcohol, isocaloric diet and ad libitum diet. Samples of the mandible, in the alveolar bone crest region, were analyzed to verify possible changes in the stoichiometric composition of bone hydroxyapatite, by measuring the relationship between the concentration of calcium and phosphorus (Ca/P ratios), using micro X-ray fluorescence spectrometry. The ad libitum groups presented the highest average values of Ca/P ratios, while the groups with dietary restrictions presented the smallest average values. The Ovx ad libitum group presented the highest values of Ca/P ratios (2.03 ± 0.04). However, these values were not considered statistically different (p>0.05) from the Sham ad libitum group (2.01 ± 0.01). The Ovx alcohol group presented lower values for Ca/P ratios (1.92 ± 0.06), being the only group statistically different (p<0.001) from the Sham ad libitum group. Potential confounding variables are discussed. Ovariectomy associated with alcohol consumption at 20% significantly changed the stoichiometry composition of hydroxyapatite in the alveolar bone crest, leading to a reduction in Ca/P ratios. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Alcohol- and light-induced electro-oculographic responses in age-related macular degeneration & central serous chorioretinopathy. alcohol- and light-induced EOG responses in ARMD & CSC.

    PubMed

    Wu, Kathy H C; Marmor, Michael F

    2005-01-01

    The non-photic electro-oculographic (EOG) response induced by alcohol has been proposed as an indicator of retinal pigment epithelial (RPE) integrity, and reported to be abnormal in age-related macular degeneration (ARMD). To evaluate this proposal, we have measured the alcohol-EOG as well as the ISCEV-standard EOG in patients with ARMD (n=11 patients, 4 eyes with drusen, 8 eyes with 'dry' and 7 eyes with 'wet' lesions) and central serous chorioretinopathy (CSC, n=11 patients, 7 eyes with active and 6 eyes with inactive lesions), compared with 29 normal controls. We recorded the alcohol-induced EOG response after a single oral administration of ethanol at 160 mg/kg, followed by an ISCEV-standard EOG. Blood alcohol levels were monitored with a breath analyzer. We found that neither the alcohol-EOG nor the light-induced EOG response showed any difference between either ARMD or CSC patients and normal controls. Nor was there difference among eyes of different ARMD or CSC subgroups. In addition, blood alcohol concentrations near the time of the alcohol-EOG peak showed no obvious relationship with peak/baseline ratios. These data suggest that neither the alcohol- nor the light-induced EOG is a sensitive indicator of these diseases.

  2. Loss of bone strength in HLA-B27 transgenic rats is characterized by a high bone turnover and is mainly osteoclast-driven.

    PubMed

    Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C

    2015-06-01

    Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts.

    PubMed

    McGee-Lawrence, Meghan E; McCleary-Wheeler, Angela L; Secreto, Frank J; Razidlo, David F; Zhang, Minzhi; Stensgard, Bridget A; Li, Xiaodong; Stein, Gary S; Lian, Jane B; Westendorf, Jennifer J

    2011-05-01

    Histone deacetylase (Hdac) inhibitors are used clinically to treat cancer and epilepsy. Although Hdac inhibition accelerates osteoblast maturation and suppresses osteoclast maturation in vitro, the effects of Hdac inhibitors on the skeleton are not understood. The purpose of this study was to determine how the pan-Hdac inhibitor, suberoylanilide hydroxamic acid (SAHA; a.k.a. vorinostat or Zolinza(TM)) affects bone mass and remodeling in vivo. Male C57BL/6J mice received daily SAHA (100mg/kg) or vehicle injections for 3 to 4weeks. SAHA decreased trabecular bone volume fraction and trabecular number in the distal femur. Cortical bone at the femoral midshaft was not affected. SAHA reduced serum levels of P1NP, a bone formation marker, and also suppressed tibial mRNA levels of type I collagen, osteocalcin and osteopontin, but did not alter Runx2 or osterix transcripts. SAHA decreased histological measures of osteoblast number but interestingly increased indices of osteoblast activity including mineral apposition rate and bone formation rate. Neither serum (TRAcP 5b) nor histological markers of bone resorption were affected by SAHA. P1NP levels returned to baseline in animals which were allowed to recover for 4weeks after 4weeks of daily SAHA injections, but bone density remained low. In vitro, SAHA suppressed osteogenic colony formation, decreased osteoblastic gene expression, induced cell cycle arrest, and caused DNA damage in bone marrow-derived adherent cells. Collectively, these data demonstrate that bone loss following treatment with SAHA is primarily due to a reduction in osteoblast number. Moreover, these decreases in osteoblast number can be attributed to the deleterious effects of SAHA on immature osteoblasts, even while mature osteoblasts are resistant to the harmful effects and demonstrate increased activity in vivo, indicating that the response of osteoblasts to SAHA is dependent upon their differentiation state. These studies suggest that clinical use of

  4. [Hearing loss and idoneity--the segnalation of noise-induced hearing loss hearing Loss].

    PubMed

    Albera, Roberto; Dagna, Federico; Cassandro, Claudia; Canale, Andrea

    2011-01-01

    Work idoneity in hearing loss must be related to working ability and evolution risks. Working ability is referred to the difficulties found in speech comprehension and in signals perception. As regards hearing loss evolution it is necessary to define if the subject is affected by conductive or neurosensorial hearing loss. In conductive hearing loss it is necessary to evaluate entity and frequential distribution of the deficit. In neurosensorial hearing loss it is necessary to distinguish between noise-induced hearing loss and extraprofessional hearing loss. In noise-induced hearing loss the evolution risk is high if the noise exposure is less than 10-15 years or the actual noise exposure is louder than the former. In case of extraprofessional hearing loss the evolution risk is higher in presbycusis, endolymphatic hydrops and toxic hearing loss. The necessity to report the presence on professionale noise-induced hearing loss arises if audiometric threshold is more than 25 dB at 0.5-1-2-3-4 kHz and if it is verified the professional origine of hearing loss.

  5. Anabolic Vitamin D Analogs as Countermeasures to Bone Loss

    NASA Technical Reports Server (NTRS)

    Li, Wei; Duncan, Randall L.; Karin, Norman J.; Farach-Carson, Mary C.

    1997-01-01

    We demonstrated for the first time that vitamin D3 influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D3 and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Chronic exposure of cultured osteoblasts to vitamin D, altered the number of voltage-sensitive Ca(+2) channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.

  6. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender.

    PubMed

    Schwartz, Z; Somers, A; Mellonig, J T; Carnes, D L; Dean, D D; Cochran, D L; Boyan, B D

    1998-04-01

    Demineralized freeze-dried bone allografts (DFDBA) have been used extensively in periodontal therapy. DFDBA is used because it contains bone morphogenetic protein (BMP), which induces new bone formation during the healing process. Most commercial bone banks do not verify the presence or activity of BMP in DFDBA nor the ability of DFDBA to induce new bone. Recently, we showed that different bone bank preparations of DFDBA, even from the same bank, varied considerably in their ability to induce new bone, suggesting inherent differences in the quality of the material. Therefore, we examined whether donor age or gender contributed to the variability seen with these preparations. Twenty-seven batches of DFDBA from different donors were donated by one bone bank which had been shown previously to supply DFDBA that was consistently able to induce new bone formation. Each batch was implanted bilaterally in the thigh muscle of nude mice. After 56 days, the implants were excised and examined by light microscopy and histomorphometry. Seventy percent of the preparations tested induced new bone formation. Most of these preparations produced ossicles containing cortical bone surrounding bone marrow-like tissue. The ability to induce bone appears to be age-dependent, with DFDBA from older donors being less likely to have strong bone-inducing activity. By contrast, no difference in ability to induce new bone was noticed between male or female donors. The results of this study confirm that commercial preparations of DFDBA differ in their ability to induce new bone formation. In fact, some of the batches had no activity at all. The ability of DFDBA to induce new bone formation is suggested to be age-dependent, but not gender-dependent by our study. These results indicate that commercial bone banks need to verify the ability of DFDBA to induce new bone formation and should reconsider the advisability of using bone from older donors.

  7. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    PubMed Central

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  8. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment

    PubMed Central

    Spirlandeli, Adriano L.; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N.Z.; Nogueira-Barbosa, Marcello H.; Volpon, Jose B.; Jordão, Alceu A.; Cunha, Fernando Q.; Fukada, Sandra Y.; de Paula, Francisco J.A.

    2017-01-01

    OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice. PMID:28492723

  9. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment.

    PubMed

    Spirlandeli, Adriano L; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N Z; Nogueira-Barbosa, Marcello H; Volpon, Jose B; Jordão, Alceu A; Cunha, Fernando Q; Fukada, Sandra Y; de Paula, Francisco J A

    2017-04-01

    The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.

  10. Depressive symptoms and rates of bone loss at the hip in older men.

    PubMed

    Diem, S J; Harrison, S L; Haney, E; Cauley, J A; Stone, K L; Orwoll, E; Ensrud, K E

    2013-01-01

    In this prospective cohort study, depressive symptoms were associated with higher rates of bone loss in older men. Poorer performance on physical function tests partly explained the association between depressive symptoms and bone loss, suggesting that efforts to increase exercise and improve physical performance in depressed men may be beneficial. The aim of this study was to ascertain whether depressive symptoms are associated with increased rates of bone loss at the hip in older men. A population-based prospective cohort study of 2,464 community-dwelling men, aged 68 and older, enrolled in the Osteoporosis in Men Sleep Ancillary Study had depressive symptoms assessed by the Geriatric Depression Scale (GDS). Subjects were categorized as depressed if GDS ≥6 at the initial examination. Bone mineral density (BMD) at the hip was measured using dual-energy X-ray absorptiometry at the initial and follow-up examination (average 3.4 years between exams). Use of antidepressant medications was assessed by interview and verified from medication containers at the two examinations. A computerized dictionary was used to categorize type of medication. In a base model adjusted for age, race/ethnicity, and clinic site, the mean total hip BMD decreased 0.70 %/year in 136 men with a GDS score of ≥6 compared to 0.39 %/year in 2,328 men with a GDS score of <6 (p = 0.001). Walking speed and timed chair stand partly explained the association between depressive symptoms and rates of bone loss. Depression, as defined by a score of 6 or greater on the Geriatric Depression Scale, is associated with an increased rate of bone loss at the hip in this cohort of older men. Adjustment for walking speed and timed chair stand attenuated the strength of the association, suggesting that differences in physical functioning do partially explain the observed association.

  11. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  12. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  13. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    PubMed

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  14. A statistical method (cross-validation) for bone loss region detection after spaceflight

    PubMed Central

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  15. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  16. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice

    PubMed Central

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence. PMID:29721087

  17. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice.

    PubMed

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.

  18. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling

    PubMed Central

    Sun, Li; Pan, Jiangping; Peng, Yuanzhen; Wu, Yong; Li, Jianghua; Liu, Xuan; Qin, Yiwen; Bauman, William A.; Cardozo, Christopher; Zaidi, Mone; Qin, Weiping

    2013-01-01

    Background Spinal cord injury (SCI) causes severe bone loss. At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common in men after SCI and may exacerbate bone loss. The anabolic steroid nandrolone reduces bone loss due to microgravity or nerve transection. Objective To determine whether nandrolone reduced bone loss after SCI and, if so, to explore the mechanisms of nandrolone action. Methods Male rats with complete transection of the spinal cord were administered nandrolone combined with a physiological replacement dose of testosterone, or vehicle, beginning on day 29 after SCI and continued for 28 days. Results SCI reduced distal femoral and proximal tibial bone mineral density (BMD) by 25 and 16%, respectively, at 56 days. This bone loss was attenuated by nandrolone. In ex vivo osteoclasts cultures, SCI increased mRNA levels for tartrate-resistant acid phosphatase (TRAP) and calcitonin receptor; nandrolone-normalized expression levels of these transcripts. In ex vivo osteoblast cultures, SCI increased receptor activator of NF-kB ligand (RANKL) mRNA levels but did not alter osteoprotegerin (OPG) mRNA expression; nandrolone-increased expression of OPG and OPG/RANKL ratio. SCI reduced mRNA levels of Wnt signaling-related genes Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), Fzd5, Tcf7, and ectodermal-neural cortex 1 (ENC1) in osteoblasts, whereas nandrolone increased expression of each of these genes. Conclusions The results demonstrate that nandrolone reduces bone loss after SCI. A potential mechanism is suggested by our findings wherein nandrolone modulates genes for differentiation and activity of osteoclasts and osteoblasts, at least in part, through the activation of Wnt signaling. PMID:24090150

  20. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    PubMed

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.

  1. Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density.

    PubMed

    Gautam, Jyoti; Choudhary, Dharmendra; Khedgikar, Vikram; Kushwaha, Priyanka; Singh, Ravi Shankar; Singh, Divya; Tiwari, Swasti; Trivedi, Ritu

    2014-05-28

    The relationship between fat and bone mass at distinct trabecular and cortical skeletal compartments in a high-fat diet (HFD) model was studied. For this, C57BL/6 mice were assigned to four groups of eight animals each. Two groups, each of males and females, received a standard chow diet while the remaining other two groups received the HFD for a period of 10 weeks. Male mice on the HFD were heavier and gained more weight (15·8 %; P<  0·05) v. those on the control diet or when compared with the female rats fed the HFD. We observed an increased lipid profile in both males and females, with significantly higher lipid levels (about 20-25 %; P< 0·01) in males. However, glucose intolerance was more pronounced in females than males on the HFD (about 30 %; P< 0·05). The micro-architectural assessment of bones showed that compared with female mice on the HFD, male mice on the HFD showed more deterioration at the trabecular region. This was corroborated by plasma osteocalcin and carboxy-terminal collagen crosslinks (CTx) levels confirming greater loss in males (about 20 %; P< 0·01). In both sexes cortical bone parameters and strength remained unchanged after 10 weeks of HFD treatment. The direct effect of the HFD on bone at the messenger RNA level in progenitor cells isolated from femoral bone marrow was a significantly increased expression of adipogenic marker genes v. osteogenic genes. Overall, the present data indicate that obesity induced by a HFD aggravates bone loss in the cancellous bone compartment, with a greater loss in males than females, although 10 weeks of HFD treatment did not alter cortical bone mass and strength in both males and females.

  2. Long-term parenteral administration of 2-hydroxypropyl-β-cyclodextrin causes bone loss.

    PubMed

    Kantner, Ingrid; Erben, Reinhold G

    2012-07-01

    Cyclodextrins are oligosaccharides which are used in the pharmaceutical industry and research as vehicles for application of apolar substances such as steroids. The aim of this study was to examine the long-term effects of parenteral administration of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on bone. Sham-operated (SHAM) or ovariectomized (OVX) adult rats were subcutaneously injected with physiological saline, 50, or 200 mg/kg HP-β-CD daily. After 4 months, body weight in OVX rats and uterine weight in SHAM rats were significantly lower after administration of 200 mg/kg HP-β-CD, relative to vehicle controls. At 200 mg/kg, HP-β-CD was hepatotoxic as measured by increased serum transaminases, and reduced serum albumin. Moreover, 200 mg/kg HP-β-CD led to decreased vertebral and tibial bone mineral density (BMD), and to cortical thinning at the tibial shaft. Bone loss in HP-β-CD-treated rats was associated with increased bone resorption as measured by increased renal deoxypyridinoline excretion. Although 50 mg/kg HP-β-CD was devoid of overt signs of organ toxicity and did not impair BMD, bone resorption was already increased. In summary, subcutaneous long-term administration of HP-β-CD at a daily dose of 200 mg/kg led to increased bone resorption and subsequent bone loss. Minor alterations in bone metabolism were also seen at 50 mg/kg.

  3. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose

    PubMed Central

    Tomaszewska, Ewa; Muszyński, Siemowit; Blicharski, Tomasz; Pierzynowski, Stefan G

    2017-01-01

    Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength (P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13–45%) decreased compared to the control (P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2

  4. The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.

    PubMed

    Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M

    2013-01-01

    The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.

  5. IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation

    PubMed Central

    Gao, Yuhao; Grassi, Francesco; Ryan, Michaela Robbie; Terauchi, Masakazu; Page, Karen; Yang, Xiaoying; Weitzmann, M. Neale; Pacifici, Roberto

    2006-01-01

    T cell–produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-γ is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-γ has variable effects in bone is unknown. Here we show that IFN-γ blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-α. Analysis of the in vivo effects of IFN-γ in 3 mouse models of bone loss — ovariectomy, LPS injection, and inflammation via silencing of TGF-β signaling in T cells — reveals that the net effect of IFN-γ in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-γ has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-γ signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis. PMID:17173138

  6. Dose–response study of chronic alcohol induced changes in sleep patterns in rats

    PubMed Central

    Mukherjee, Sanjib; Kazerooni, Morvarid; Simasko, Steven M.

    2008-01-01

    The goal of the present study was to determine an optimum exposure regimen for alterations in sleep induced by chronic alcohol treatments in rats. We used two different exposure routes (alcohol in water and alcohol in liquid diet at two different doses in each regimen (6% and 12% alcohol in water and 3% and 6% alcohol in liquid diet)). All treatments were for 6 weeks. We found the effects of the 6% and 12% in water and 3% in liquid diet to be very similar; all three produced increases in slow-wave sleep (SWS) only in the dark period with no changes in rapid-eye-movement sleep (REMS). On the other hand 6% alcohol in liquid diet caused much more dramatic changes, with alterations in both SWS and REMS in both the dark and light periods. These animals spent less time in SWS and REMS during the light period but more time in SWS and REMS in the dark period. Additionally, the variation of slow-wave amplitude (SWA) across day and night in this group of alcoholic animals is blunted with the loss of the peak of SWA at the beginning of light onset compared to the other groups. We conclude that future alcohol treatment regimens used to investigate the effects of alcohol on sleep in adult rats should use an exposure protocol of at least 6 weeks with 6% alcohol in liquid diet. PMID:18387599

  7. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages.

    PubMed

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-05-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.

  8. Ultrasonically-induced electrical potentials in demineralized bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Mori, Shunki; Makino, Taiki; Koyama, Daisuke; Takayanagi, Shinji; Yanagitani, Takahiko; Matsukawa, Mami

    2018-04-01

    While the low-intensity pulsed ultrasound technique has proved useful for healing of bone fractures, the ultrasound healing mechanism is not yet understood. To understand the initial physical effects of the ultrasound irradiation process on bone, we have studied the anisotropic piezoelectric properties of bone in the MHz range. Bone is known to be composed of collagen and hydroxyapatite (HAp) and shows strong elastic anisotropy. In this study, the effects of HAp on the piezoelectricity were investigated experimentally. To remove the HAp crystallites from the bovine cortical bone, demineralization was performed using ethylene diamine tetra-acetic acid (EDTA) solutions. To investigate the piezoelectricity, we have fabricated ultrasound transducers using the cortical bone or demineralized cortical bone. The induced electrical potentials due to the piezoelectricity were observed as the output of these transducers under pulsed ultrasound irradiation in the MHz range. The cortical bone transducer (before mineralization) showed anisotropic piezoelectric behavior. When the ultrasound irradiation was applied normal to the transducer surface, the observed induced electrical potentials had minimum values. The potential increased under off-axis ultrasound irradiation with changes in polarization. In the demineralized bone transducer case, however, the anisotropic behavior was not observed in the induced electrical potentials. These results therefore indicate that the HAp crystallites affect the piezoelectric characteristics of bone.

  9. Combined flurbiprofen and cyclosporin-A does not attenuate bone loss and exaggerates renal impairment.

    PubMed

    Sass, D A; Rucinski, B; Bryer, H P; Mann, G N; Yuan, Z; Ma, Y; Jee, W S; Epstein, S

    1996-10-01

    Cyclosporine (CsA) is a potent immunosuppressant that has revolutionized the success of organ transplantation. Flurbiprofen (FB), a propionic acid derivative NSAID, has been demonstrated in vivo to reduce osteoclast numbers in normal rats. The aim of this experiment was to determine whether addition of FB to CsA-treated rats could prevent the bone changes associated with CsA therapy. Forty-eight 10-12-week-old male Sprague-Dawley rats were randomized to receive, daily for 28 days: (1) CsA vehicle p.o. plus FB vehicle sc; (2) CsA (15 mg/kg) p.o. plus FB vehicle sc, (3) CsA vehicle p.o. plus FB (1.5 mg/kg) sc; and (4) CsA (15 mg/kg) p.o. plus FB (1.5 mg/kg) sc. Rats were weighed and venous blood sampled at baseline, 14 days, and 28 days for determination of glucose, Ca+2, BUN, creatinine, PTH, osteocalcin, and 1,25(OH)2 vitamin D. Tibiae were removed following killing, after double labeling for histomorphometry. Body mass was significantly lower than control in all rats receiving CsA on days 14 and 28 while blood glucose was only elevated in the CsA alone group. Day 28 BUN and creatinine were significantly elevated in the CsA group and the combination of CsA and FB revealed an exacerbation of this trend. Vitamin D and osteocalcin were consistently increased in the CsA and CsA/FB groups. Bone histomorphometry showed evidence of trabecular osteopenia in CsA and CsA/FB groups. CsA alone resulted in elevated bone turnover. FB was unable to prevent the trabecular bone loss induced by CsA therapy. This experiment indicates no role for FB as a therapeutic option in CsA-induced bone disease at the given doses and duration of treatment by virtue of its lack of bone sparing ability and adverse renal effects when the two drugs are administered concurrently.

  10. Low to moderate alcohol consumption on serum vitamin D and other indicators of bone health in postmenopausal women in a controlled feeding study

    USDA-ARS?s Scientific Manuscript database

    Heavy alcohol drinking adversely affects vitamin D status and bone health. However, data from randomized, placebo-controlled trials (RCTs) on the effects of low to moderate alcohol consumption on vitamin D status and bone health in humans is unavailable. The objective of this cross-over RCT was to e...

  11. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration

    PubMed Central

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517

  12. Vitamin K’s role in age-related bone loss: A critical review

    USDA-ARS?s Scientific Manuscript database

    The protective role of vitamin K in age-related bone loss continues to be controversial. The results of observational analyses are inconsistent with respect to associations between vitamin K status and bone, which arguably may be related to the limitations of observational study designs and analyt...

  13. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    PubMed

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  14. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    PubMed

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  15. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  16. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats.

    PubMed

    Conley, Melissa N; Roberts, Cooper; Sharpton, Thomas J; Iwaniec, Urszula T; Hord, Norman G

    2017-05-01

    Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age-related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Six-month-old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham-operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low-dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high-dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose-dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats

    PubMed Central

    Conley, Melissa N.; Roberts, Cooper; Sharpton, Thomas J.; Iwaniec, Urszula T.

    2017-01-01

    Scope Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age‐related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Methods and results Six‐month‐old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham‐operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low‐dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high‐dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose‐dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. Conclusion These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. PMID:28087899

  18. Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice*

    PubMed Central

    Dudakovic, Amel; Camilleri, Emily T.; Riester, Scott M.; Paradise, Christopher R.; Gluscevic, Martina; O'Toole, Thomas M.; Thaler, Roman; Evans, Jared M.; Yan, Huihuang; Subramaniam, Malayannan; Hawse, John R.; Stein, Gary S.; Montecino, Martin A.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2016-01-01

    Perturbations in skeletal development and bone degeneration may result in reduced bone mass and quality, leading to greater fracture risk. Bone loss is mitigated by bone protective therapies, but there is a clinical need for new bone-anabolic agents. Previous work has demonstrated that Ezh2 (enhancer of zeste homolog 2), a histone 3 lysine 27 (H3K27) methyltransferase, suppressed differentiation of osteogenic progenitors. Here, we investigated whether inhibition of Ezh2 can be leveraged for bone stimulatory applications. Pharmacologic inhibition and siRNA knockdown of Ezh2 enhanced osteogenic commitment of MC3T3 preosteoblasts. Next generation RNA sequencing of mRNAs and real time quantitative PCR profiling established that Ezh2 inactivation promotes expression of bone-related gene regulators and extracellular matrix proteins. Mechanistically, enhanced gene expression was linked to decreased H3K27 trimethylation (H3K27me3) near transcriptional start sites in genome-wide sequencing of chromatin immunoprecipitations assays. Administration of an Ezh2 inhibitor modestly increases bone density parameters of adult mice. Furthermore, Ezh2 inhibition also alleviated bone loss in an estrogen-deficient mammalian model for osteoporosis. Ezh2 inhibition enhanced expression of Wnt10b and Pth1r and increased the BMP-dependent phosphorylation of Smad1/5. Thus, these data suggest that inhibition of Ezh2 promotes paracrine signaling in osteoblasts and has bone-anabolic and osteoprotective potential in adults. PMID:27758858

  19. Vitamin D threshold to prevent aromatase inhibitor-related bone loss: the B-ABLE prospective cohort study.

    PubMed

    Prieto-Alhambra, Daniel; Servitja, Sonia; Javaid, M Kassim; Garrigós, Laia; Arden, Nigel K; Cooper, Cyrus; Albanell, Joan; Tusquets, Ignasi; Diez-Perez, Adolfo; Nogues, Xavier

    2012-06-01

    Aromatase inhibitor (AI)-related bone loss is associated with increased fracture rates. Vitamin D might play a role in minimising this effect. We hypothesised that 25-hydroxy-vitamin D concentrations [25(OH)D] after 3 months supplementation might relate to bone loss after 1 year on AI therapy. We conducted a prospective cohort study from January 2006 to December 2011 of a consecutive sample of women initiating AI for early breast cancer who were ineligible for bisphosphonate therapy and stayed on treatment for 1 year (N = 232). Serum 25(OH)D was measured at baseline and 3 months, and lumbar spine (LS) bone mineral density at baseline and 1 year. Subjects were supplemented with daily calcium (1 g) and vitamin D(3) (800 IU) and additional oral 16,000 IU every 2 weeks if baseline 25(OH)D was <30 ng/ml. Linear regression models were fitted to adjust for potential confounders. After 1 year on AI therapy, 232 participants experienced a significant 1.68 % [95 % CI 1.15-2.20 %] bone loss at LS (0.017 g/cm(2) [0.012-0.024], P < 0.0001). Higher 25(OH)D at 3 months protected against LS bone loss (-0.5 % per 10 ng/ml [95 % CI -0.7 to -0.3 %], adjusted P = 0.0001), and those who reached levels ≥40 ng/ml had reduced bone loss by 1.70 % [95 % CI 0.4-3.0 %; adjusted P = 0.005] compared to those with low 25(OH)D levels (<30 ng/ml). We conclude that improved vitamin D status using supplementation is associated with attenuation of AI-associated bone loss. For this population, the current Institute of Medicine target recommendation of 20 ng/ml might be too low to ensure good bone health.

  20. Estrogen-Related Receptors and the control of bone cell fate.

    PubMed

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2016-09-05

    Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Salt-Inducible Kinase 1 (SIK1) is Induced by Alcohol and Suppresses Microglia Inflammation via NF-κB Signaling.

    PubMed

    Zhang, Yu; Gao, Weida; Yang, Kongbin; Tao, Haiquan; Yang, Haicheng

    2018-06-19

    Alcohol consumption has been shown to cause neuroinflammation and increase a variety of immune-related signaling processes. Microglia are a crucial part of alcohol-induced neuroinflammation and undergo apoptosis. Even though the importance of these inflammatory processes in the effects of alcohol-related neurodegeneration have been established, the mechanism of alcohol-induced microglia apoptosis is unknown. In prior research, we discovered that alcohol increases expression of salt-inducible kinase 1 (SIK1) in rodent brain tissue. In this study, we sought to determine what role SIK1 expression plays in alcohol-induced neuroinflammation as well as whether and by what mechanism it regulates microglia apoptosis. Adult C57BL/6 mice were divided into four groups and for 3 weeks treated with either 0%, 5%, 10%, or 15% alcohol during 3 hour periods. The mice were sacrificed and their brains excised for analysis. Additionally, primary microglia were isolated from neonatal mice. SIK1 expression in alcohol-treated brain tissue and microglia was analyzed via RT-PCR and western blotting. TUNEL staining, caspase-3, and caspase-9 activity assays were performed to evaluate microglial apoptosis. Cell fluorescence staining and NF-κB luciferase activity assays were used to evaluate the effects of SIK1 expression on the NF-κB signaling pathway. SIK1 expression was increased in the brains of mice that consumed alcohol, and this effect was seen in mouse primary microglia. SIK1 knockdown in microglia increased alcohol-induced apoptosis in these cells. Furthermore, SIK1 reduced NF-κB signaling pathway factors, and SIK1 knockdown in microglia promoted alcohol-induced NF-κB activity. TUNEL staining, caspase-3, and caspase-9 activity assays consistently revealed that alcohol-induced microglial apoptosis was inhibited by depletion of p65. Finally, we determined that NF-κB signaling is required for alcohol-induced, SIK1-mediated apoptosis in microglia. This study establishes for the

  2. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  3. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    PubMed

    Settem, Rajendra P; Honma, Kiyonobu; Sharma, Ashu

    2014-01-01

    Alveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  4. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth.

    PubMed

    Deutsch, Harel

    2010-02-01

    Infuse [bone morphogenetic protein (BMP)] is increasingly used in spinal fusion surgery. The authors report a rare complication of BMP use. This is a case report. A 55-year-old male underwent a thoracic T8 to the pelvis fusion for degenerative lumbar disc disease and pseudarthrosis at another institution. The procedure involved an anterior and posterior approach with the use of multiple units of BMP. The patient presented to our institution with complaints of weight loss, pain, tenderness, and increasing solid growth in the left lower quadrant several months after his surgery. A computed tomography revealed ectopic bone growth in the retroperitoneal area and pelvis contiguous to the anterior lumbar exposure. The anterior wound was re-explored, and a large sheet of ectopic bone was removed from the retroperitoneal space. We report a rare case of extraspinal ectopic bone growth because of the use of multiple packages of BMP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws.

    PubMed

    Carlsson, Gunnar E

    2014-08-01

    To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results.

  6. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    PubMed Central

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. CONCLUSION In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results. PMID:25177466

  7. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  8. Rib fractures in chronic alcoholic men: Relationship with feeding habits, social problems, malnutrition, bone alterations, and liver dysfunction.

    PubMed

    González-Reimers, Emilio; García-Valdecasas-Campelo, Elena; Santolaria-Fernández, Francisco; Milena-Abril, Antonio; Rodríguez-Rodríguez, Eva; Martínez-Riera, Antonio; Pérez-Ramírez, Alina; Alemán-Valls, María Remedios

    2005-10-01

    Rib fractures are common in alcoholics. This high prevalence might be due to ethanol-associated malnutrition, bone disease, liver dysfunction, or the peculiar lifestyle of the alcoholic with frequent trauma and altercations. In this study we try to discern the role of these factors on rib fracture (assessed on a plain thoracic X-ray film) in 81 consecutive alcoholic patients, 25 of them cirrhotics. Serum albumin, prothrombin aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), gamma-glutamyl transpeptidase, C-terminal cross-linking telopeptide of type 1 collagen, osteocalcin, insulin growth factor 1, 1,25-dihydroxyvitamin D, parathyroid hormone, estradiol, free testosterone, and corticosterone were measured, and the patients also underwent assessment of bone mineral density by a HOLOGIC QDR-2000 bone densitometer (Waltham, MA, USA). Body mass index, triceps skinfold, and brachial perimeter were also determined, and the patients and their families were asked about tobacco consumption, social and familial links, consumption of ethanol by other members of the family, kind of job, and feeding habits. Forty-two male nondrinker sanitary workers of similar age served as controls. Forty of the 81 patients showed rib fractures. There was a statistically significant association between rib fractures and disruption of social and familial links, irregular feeding habits (in bars or pubs, not at home), ethanol consumption by close relatives, and intensity of tobacco consumption, but not between rib fractures and liver function tests, nutritional parameters, or bone mineral density, besides a nearly significant trend (p = .053) with the presence of osteopenia at the femoral neck. Patients with major withdrawal symptoms at admission also presented more frequent rib fractures. We conclude that rib fractures in alcoholics are related to the peculiar lifestyle of these patients rather than to bone alterations, liver dysfunction, or nutritional status.

  9. Osteopenia in anorexia nervosa: specific mechanisms of bone loss.

    PubMed

    Lennkh, C; de Zwaan, M; Bailer, U; Strnad, A; Nagy, C; el-Giamal, N; Wiesnagrotzki, S; Vytiska, E; Huber, J; Kasper, S

    1999-01-01

    Osteopenia is a well recognized medical complication of anorexia nervosa (AN). The mechanism of bone loss is not fully understood and there is uncertainty about its management. New markers of bone turnover have been developed. C-terminal type 1 propeptide (PICP) is a measure of bone formation and urinary pyridinolines such as deoxypyridinoline (DPYRX) and serum carboxyterminal crosslinked telopeptide (ICTP) are markers of bone resorption. The aim of this study was to examine these bone markers in patients with AN. Twenty female patients with AN and 12 healthy controls were included in the study. Bone mineral density (BMD) of AN patients was measured by dual energy X-ray absorptiometry (DEXA). Lumbar bone density was significantly reduced in the AN group compared to standardised values of thirty year old adults (t-score 83.2%, S.D. 12.1). Femoral neck bone density showed an even greater reduction (t-score 79.4%, S.D. 13.5). We found a significant negative correlation between femoral BMD and the duration of the illness. Femoral BMD correlated significantly with minimal body weight (r(16) = 0.504, p = 0.033). The markers of bone resorption were significantly higher in the patients with AN compared to the values of the control group (ICTP t(30) = -2.15, p = 0.04, DPYRX t(25) = -2.26, p = 0.033), whereas the markers of bone formation did not differ significantly between the groups. AN appears to be a low turn over state associated with increased bone resorption without concomitant bone formation. This pattern differs from osteopenia in menopausal women and should, therefore, lead to the development of specific therapeutic strategies in AN associated osteopenia. Hormone replacement therapy as well as calcium and vitamine D-supplementation are so far discussed controversially. Long-term treatment studies are warranted.

  10. Amplification of transcutaneous and percutaneous bone-conduction devices with a test-band in an induced model of conductive hearing loss.

    PubMed

    Park, Marn Joon; Lee, Jae Ryung; Yang, Chan Joo; Yoo, Myung Hoon; Jin, In Suk; Choi, Chi Ho; Park, Hong Ju

    2016-11-01

    Transcutaneous devices have a disadvantage, the dampening effect by soft tissue between the bone and devices. We investigated hearing outcomes with percutaneous and transcutaneous devices using test-bands in an induced unilateral conductive hearing loss. Comparison of hearing outcomes of two devices in the same individuals. The right ear was plugged in 30 subjects and a test-band with devices (Cochlear™ Baha® BP110 Power and Sophono® Alpha-2 MPO™) was applied on the right mastoid tip with the left ear masked. Sound-field thresholds, speech recognition thresholds (SRTs), and word recognition scores (WRSs) were compared. Aided thresholds of Sophono were significantly better than those of Baha at most frequencies. Sophono WRSs (86 ± 12%) at 40 dB SPL and SRTs (14 ± 5 dB HL) were significantly better than those (73 ± 24% and 23 ± 8 dB HL) of Baha. However, Sophono WRSs (98 ± 3%) at 60 dB SPL did not differ from Baha WRSs (95 ± 12%). Amplifications of the current transcutaneous device were not inferior to those of percutaneous devices with a test-band in subjects with normal bone-conduction thresholds. Since the percutaneous devices can increase the gain when fixed to the skull by eliminating the dampening effect, both devices are expected to provide sufficient hearing amplification.

  11. Effects of β-Glucans Ingestion on Alveolar Bone Loss, Intestinal Morphology, Systemic Inflammatory Profile, and Pancreatic β-Cell Function in Rats with Periodontitis and Diabetes

    PubMed Central

    Silva, Viviam de O.; Lobato, Raquel V.; Orlando, Débora R.; Borges, Bruno D.B.; de Sousa, Raimundo V.

    2017-01-01

    This study aimed to evaluate the effects of β-glucan ingestion (Saccharomyces cerevisiae) on the plasmatic levels of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), alveolar bone loss, and pancreatic β-cell function (HOMA-BF) in diabetic rats with periodontal disease (PD). Besides, intestinal morphology was determined by the villus/crypt ratio. A total of 48 Wistar rats weighing 203 ± 18 g were used. Diabetes was induced by the intraperitoneal injection of streptozotocin (80 mg/kg) and periodontal inflammation, by ligature. The design was completely randomized in a factorial scheme 2 × 2 × 2 (diabetic or not, with or without periodontitis, and ingesting β-glucan or not). The animals received β-glucan by gavage for 28 days. Alveolar bone loss was determined by scanning electron microscopy (distance between the cementoenamel junction and alveolar bone crest) and histometric analysis (bone area between tooth roots). β-glucan reduced plasmatic levels of TNF-α in diabetic animals with PD and of IL-10 in animals with PD (p < 0.05). β-glucan reduced bone loss in animals with PD (p < 0.05). In diabetic animals, β-glucan improved β-cell function (p < 0.05). Diabetic animals had a higher villus/crypt ratio (p < 0.05). In conclusion, β-glucan ingestion reduced the systemic inflammatory profile, prevented alveolar bone loss, and improved β-cell function in diabetic animals with PD. PMID:28906456

  12. Digital radiographic evaluation of alveolar bone loss, density and lamina dura integrity on post splinting mandibular anterior with chronic periodontitis

    NASA Astrophysics Data System (ADS)

    Rafini, F.; Priaminiarti, M.; Sukardi, I.; Lessang, R.

    2017-08-01

    The healing of periodontal splinting can be detected both with clinical and radiographic examination. In this study, the alveolar bone was evaluated by radiographic digital periapical analysis. Periodontal tooth splinting is periodontal support therapy used to prevent periodontal injury during repair and regeneration of periodontal therapy. Radiographic digital periapical analysis of alveolar bone in the mandibular anterior region with chronic periodontitis and 2/3 cervical bone loss after three months of periodontal splinting. Eighty four proximal site (43 mesial and 41 distal) from 16 patients with chronic periodontitis and treated with spinting were examined by taking periapical digital radiographic at day 1 and 91. The bone loss, bone density and utility of lamina dura were evaluated. The statistical analysis after three months evaluation using T-test for bone loss, Wilcoxon sign rank test for bone density and utility lamina dura showed no significantly differences (p<0.05) (p=0.44, 0.256 and 0.059). No radiographic change in bone loss, bone density and utility of lamina dura from chronic periodontitis with 2/3 alveolar bone loss after three months splinting.

  13. Type 1 Diabetes in Young Rats Leads to Progressive Trabecular Bone Loss, Cessation of Cortical Bone Growth, and Diminished Whole Bone Strength and Fatigue Life

    PubMed Central

    Silva, Matthew J.; Brodt, Michael D.; Lynch, Michelle A.; McKenzie, Jennifer A.; Tanouye, Kristi M.; Nyman, Jeffry S.; Wang, Xiaodu

    2009-01-01

    People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague-Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4–8 wk in diabetic rats but continued to increase in controls. Postmortem μCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced ∼30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were ∼25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest (∼10%) declines in yield stress for diabetic bone. These changes were associated with a ∼50% increase in the nonenzymatic collagen cross-link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross-links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size. PMID:19338453

  14. Oral health status and alveolar bone loss in treated leprosy patients of central India.

    PubMed

    Rawlani, S M; Rawlani, S; Degwekar, S; Bhowte, R R; Motwani, M

    2011-01-01

    A descriptive cross sectional study was carried out, in a group of 160 leprosy patients treated with multi drug therapy. The patients with age group of 25 to 60 year were considered. Out of 160 patients 50 patients were selected by simple random sampling technique for radiological assessments. Intra-oral periapical radiographs (6 for each patient) were taken. The paralleling long cone technique was used and radiographs were attached with grids so as to enable measuring the bone height. The grid was spaced in 1 mm marking and placed directly over the film. Clinical examination revealed that Prevalence of dental caries was 76.25% and periodontal disease was 78.75%. Mean DMFT score was 2.26. Mean OHI-S score was 3.50. Score for Gingival index was 1.60 and average loss of gingival attachment was 1.2 mm. Radiographic findings showed mean alveolar bone loss in maxillary anterior region to be 5.05 mm and in maxillary posterior region it was 4.92 mm. Alveolar bone loss in mandibular anterior region was 4.35 mm and in mandibular posterior region was 5.14 mm. Overall Dental Health Status of the leprosy patients was poor and needed more attention for dental care. There was also an increase in the alveolar bone loss, which was generalized. This bone loss could be due to advance stage of the disease or late approach to rehabilitation center, these patients also had peripheral neuropathy leading to hand and feet deformity in the form of claw hand or ulcer on hand, making maintenance of oral hygiene difficult.

  15. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  16. Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-Like Receptors and MyD88-dependent signalling

    PubMed Central

    Corrigan, Frances; Wu, Yue; Tuke, Jonathan; Coller, Janet K.; Rice, Kenner C.; Diener, Kerrilyn R.; Hayball, John D.; Watkins, Linda R.; Somogyi, Andrew A.; Hutchinson, Mark R.

    2015-01-01

    Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signalling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the µ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5 g/kg) and alcohol (2.5 g/kg) interaction with morphine (5 mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. Wild-type male Balb/c mice and matched genetically-deficient TLR2, TLR4, and MyD88 strains were utilized, together with pharmacological manipulation of MOR, NF-κB, TLR4 and Interleukin-1β. Alcohol induced significant LORR in wild-type mice; this was halved by MyD88 and TLR4 deficiency, and surprisingly nearly completely eliminated by TLR2 deficiency. In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction. PMID:25542736

  17. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause.

    PubMed

    Sowers, MaryFran R; Zheng, Huiyong; Jannausch, Mary L; McConnell, Daniel; Nan, Bin; Harlow, Sioban; Randolph, John F

    2010-05-01

    The objective of the study was to describe bone loss rates across the transmenopause related to FSH staging and the final menstrual period (FMP). This was a population-based cohort of 629 women (baseline age 24-44 yr) with annual data points over 15 yr. Measures were bone mineral density (BMD), FSH to define four FSH stages, and menstrual bleeding cessation to define the FMP. Bone loss rates were reported by obesity status. Annualized rates of lumbar spine bone loss began in FSH stage 3, which occurs approximately 2 yr prior to the FMP (1.67%/yr); bone loss continued into FSH stage 4 (1.21%/yr). Mean spine BMD in FSH stage 4 was 6.4% less than spine BMD value in FSH stage 1. Annualized rates of femoral neck (FN) bone loss began in FSH stage 3 (0.55%/yr) and continued into FSH stage 4 (0.72%/yr). The FN difference between mean values in FSH stage 1 and FSH stage 4 was 5%. Annualized rates of spine bone loss in the 2 yr prior to the FMP were 1.7%/yr, 3.3%/yr in the 2 yr after the FMP, and 1.1%/yr in the 2- to 7-yr period after the FMP. Nonobese women had lower BMD levels and greater bone loss rates. Spine and FN bone loss accelerates in FSH stage 3. Bone loss also began to accelerate 2 yr before the FMP with the greatest loss occurring in the 2 yr after the FMP. Bone loss rates in both spine and FN BMD were greater in nonobese women than obese women.

  18. Body fat loss induced by calcium in co-supplementation with conjugated linoleic acid is associated with increased expression of bone formation genes in adult mice.

    PubMed

    Chaplin, Alice; Palou, Andreu; Serra, Francisca

    2015-12-01

    The potential of conjugated linoleic acids (CLA) and calcium in weight management in animal models and human studies has been outlined, as well as their use to prevent bone loss at critical stages. In addition, it has been suggested that bone remodeling and energy metabolism are regulated by shared pathways and involve common hormones such as leptin. We have previously shown that supplementation with CLA and calcium in adult obese mice decreases body weight and body fat. The aim of the present study was to assess the effects of these two compounds on bone and energy metabolism markers on bone. Mice (C57BL/6J) were divided into five groups according to diet and treatment (up to 56 days): control (C), high-fat diet (HF), HF+CLA (CLA), HF+calcium (Ca) and HF with both compounds (CLA+Ca). At the end of treatment, bone formation markers were determined in plasma and expression of selected bone and energy markers was determined in tibia by quantitative polymerase chain reaction. Results show that CLA was associated with decreased tibia weight and minor impact on bone markers, whereas calcium, either alone or co-supplemented with CLA, maintained bone weight and promoted the expression of bone formation genes such as bone gamma-carboxyglutamate protein 2 (Bglap2) and collagen Iα1 (Col1a1). Furthermore, it had a significant effect on key players in energy metabolism, in particular leptin and adiponectin tibia receptors. Overall, in addition to the weight loss promoting properties of calcium, on its own or co-supplemented with CLA, our results support beneficial effects on bone metabolism in mice. Copyright © 2015. Published by Elsevier Inc.

  19. Noise-Induced Hearing Loss (NIHL).

    ERIC Educational Resources Information Center

    Seidman, Michael D.

    1999-01-01

    This article provides an overview of noise-induced hearing loss (NIHL), the leading cause of occupationally induced hearing loss in industrialized countries. It discusses causes of NIHL and compelling evidence that reactive oxygen metabolites and cochlear hypoprefusion are responsible for the destruction of cochlear hair cells. Prevention is also…

  20. Single-nucleotide polymorphisms of MMP2 in MMP/TIMP pathways associated with the risk of alcohol-induced osteonecrosis of the femoral head in Chinese males: A case-control study.

    PubMed

    Yu, Yan; Xie, Zhilan; Wang, Jihan; Chen, Chu; Du, Shuli; Chen, Peng; Li, Bin; Jin, Tianbo; Zhao, Heping

    2016-12-01

    The proportion of alcohol-induced osteonecrosis of the femoral head (ONFH) in all ONFH patients was 30.7%, with males prevailing among the ONFH patients in mainland China (70.1%). Matrix metalloproteinase 2 (MMP2), a member of the MMP gene family, encodes the enzyme MMP2, which can promote osteoclast migration, attachment, and bone matrix degradation. In this case-control study, we aimed to investigate the association between MMP2 and the alcohol-induced ONFH in Chinese males.In total, 299 patients with alcohol-induced ONFH and 396 healthy controls were recruited for a case-control association study. Five single-nucleotide polymorphisms within the MMP2 locus were genotyped and examined for their correlation with the risk of alcohol-induced ONFH and treatment response using Pearson χ test and unconditional logistic regression analysis. We identified 3 risk alleles for carriers: the allele "T" of rs243849 increased the risk of alcohol-induced ONFH in the allele model, the log-additive model without adjustment, and the log-additive model with adjustment for age. Conversely, the genotypes "CC" in rs7201 and "CC" in rs243832 decreased the risk of alcohol-induced ONFH, as revealed by the recessive model. After the Bonferroni multiple adjustment, no significant association was found. Furthermore, the haplotype analysis showed that the "TT" haplotype of MMP2 was more frequent among patients with alcohol-induced ONFH by unconditional logistic regression analysis adjusted for age.In conclusion, there may be an association between MMP2 and the risk of alcohol-induced ONFH in North-Chinese males. However, studies on larger populations are needed to confirm this hypothesis; these data may provide a theoretical foundation for future studies.

  1. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model.

    PubMed

    Kim, I S; Lee, B; Yoo, S J; Hwang, S J

    2014-07-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)-mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro-computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (-25.8%) and bone mineral density (-33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. © International & American Associations for Dental Research.

  2. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model

    PubMed Central

    Kim, I.S.; Lee, B.; Yoo, S.J.; Hwang, S.J.

    2014-01-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)–mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro–computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (−25.8%) and bone mineral density (−33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. PMID:24810275

  3. Gender and Impulsivity: Effects on Cue-Induced Alcohol Craving.

    PubMed

    Yarmush, Devorah E; Manchery, Linda; Luehring-Jones, Peter; Erblich, Joel

    2016-05-01

    Numerous studies have demonstrated that trait impulsivity is linked to increased risk of developing alcohol-use disorders and other substance abuse. Impulsivity has also been shown in some studies to potentiate cue-induced drug cravings. Despite considerable evidence of gender differences in impulsivity and drug craving among individuals suffering from alcohol dependence and other drug use, little research has focused on these processes in healthy young men and women who may be at risk for developing alcohol-use disorders. The objective of this study was to investigate the relationship between impulsivity and cue-induced craving, as well as possible gender differences in these effects among healthy young adults. To that end, female (n = 22) and male (n = 14) social drinkers aged 18 to 25, recruited from an urban university campus, completed the Barratt Impulsiveness Scale and reported their alcohol cravings immediately before and after laboratory exposure to alcohol cues. Findings indicated that exposure to cues elicited increased alcohol cravings, but these effects did not differ by gender. Interestingly, a significant interaction of impulsivity and gender revealed that impulsivity predicted significantly higher cue-induced cravings in women, but not men. Findings underscore the importance of better understanding the interaction of situational factors (e.g., exposure to alcohol cues) and dispositional factors (e.g., impulsivity) as potential contributors to drinking motivation. Future prospective research is needed to identify gender-specific risk factors for the development of problem drinking. Copyright © 2016 by the Research Society on Alcoholism.

  4. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss.

    PubMed

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-04-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention.

  5. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis.

    PubMed

    Yan, Xiaochen; Pan, Bo; Lv, Tiewei; Liu, Lingjuan; Zhu, Jing; Shen, Wen; Huang, Xupei; Tian, Jie

    2017-01-05

    Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.

  6. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells.

    PubMed

    Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning

    2017-01-01

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2'-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    PubMed

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  8. The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

    PubMed Central

    Cho, Sun-Mi; Choi, Sung-Hwan; Sung, Sang-Jin; Yu, Hyung-Seog

    2016-01-01

    Objective The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss. PMID:27668194

  9. Bone and glucocorticoids.

    PubMed

    Briot, Karine

    2018-06-01

    Corticosteroid-induced osteoporosis is the most common form of secondary osteoporosis and the most frequent cause of osteoporosis in young people. Bone loss and fracture risk increase rapidly after the initiation of corticosteroid therapy and are proportional to dose and treatment duration. The increase in fracture risk is not fully assessed by bone mineral density measurement, as it is also related to impaired bone quality and increased risk of falls. Prevention should be considered in all patients beginning corticosteroid therapy, especially as the underlying inflammation in itself impairs bone quality. Bisphosphonates and teriparatide have shown efficacy in the treatment of corticosteroid-induced osteoporosis. Several national and international guidelines are available to improve management of corticosteroid-induced osteoporosis, which remains inadequate. Duration of anti-osteoporotic treatment should be discussed at the individual level, depending on the subject's characteristics and on the progression of the underlying inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD.

    PubMed

    Ciucci, Thomas; Ibáñez, Lidia; Boucoiran, Agathe; Birgy-Barelli, Eléonore; Pène, Jérôme; Abou-Ezzi, Grazia; Arab, Nadia; Rouleau, Matthieu; Hébuterne, Xavier; Yssel, Hans; Blin-Wakkach, Claudine; Wakkach, Abdelilah

    2015-07-01

    Under both physiological and pathological conditions, bone volume is determined by the rate of bone formation by osteoblasts and bone resorption by osteoclasts. Excessive bone loss is a common complication of human IBD whose mechanisms are not yet completely understood. Despite the role of activated CD4(+) T cells in inflammatory bone loss, the nature of the T cell subsets involved in this process in vivo remains unknown. The aim of the present study was to identify the CD4(+) T cell subsets involved in the process of osteoclastogenesis in vivo, as well as their mechanism of action. CD4(+) T cells were studied in IL10-/- mice and Rag1-/- mice adoptively transferred with naive CD4(+)CD45RB(high) T cells, representing two well-characterised animal models of IBD and in patients with Crohn's disease. They were phenotypically and functionally characterised by flow cytometric and gene expression analysis, as well as in in vitro cocultures with osteoclast precursors. In mice, we identified bone marrow (BM) CD4(+) T cells producing interleukin (IL)-17 and tumour necrosis factor (TNF)-α as an osteoclastogenic T cell subset referred to as Th17 TNF-α(+) cells. During chronic inflammation, these cells migrate to the BM where they survive in an IL-7-dependent manner and where they promote the recruitment of inflammatory monocytes, the main osteoclast progenitors. A population equivalent to the Th17 TNF-α(+) cells was also detected in patients with Crohn's disease. Our results highlight the osteoclastogenic function of the Th17 TNF-α(+) cells that contribute to bone loss in vivo in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    PubMed Central

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726

  12. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection

    PubMed Central

    Titanji, Kehmia; Vunnava, Aswani; Sheth, Anandi N.; Delille, Cecile; Lennox, Jeffrey L.; Sanford, Sara E.; Foster, Antonina; Knezevic, Andrea; Easley, Kirk A.

    2014-01-01

    HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction. PMID:25393853

  13. Pueraria mirifica alleviates cortical bone loss in naturally menopausal monkeys.

    PubMed

    Kittivanichkul, Donlaporn; Charoenphandhu, Narattaphol; Khemawoot, Phisit; Malaivijitnond, Suchinda

    2016-11-01

    Since the in vitro and in vivo anti-osteoporotic effects of Pueraria mirifica (PM) in rodents have been verified, its activity in menopausal monkeys was evaluated as required before it can be applicable for human use. In this study, postmenopausal osteoporotic monkeys were divided into two groups (five per group), and fed daily with standard diet alone (PMP0 group) or diet mixed with 1000 mg/kg body weight (BW) of PM powder (PMP1000 group) for 16 months. Every 2 months, the bone mineral density (BMD), bone mineral content (BMC) and bone geometry parameters (cortical area and thickness and periosteal and endosteal circumference) at the distal radius and proximal tibia were determined using peripheral quantitative computed tomography together with plasma and urinary bone markers. Compared with the baseline (month 0) values, the cortical, but not trabecular, BMDs and BMCs and the cortical area and thickness at the metaphysis and diaphysis of the radius and tibia of the PMP0 group continuously decreased during the 16-month study period. In contrast, PMP1000 treatment ameliorated the bone loss mainly at the cortical diaphysis by decreasing bone turnover, as indicated by the lowered plasma bone-specific alkaline phosphatase and osteocalcin levels. Generally, changes in the cortical bone geometry were in the opposite direction to the cortical bone mass after PMP1000 treatment. This study indicated that postmenopausal monkeys continuously lose their cortical bone compartment, and they have a higher possibility for long bone fractures. Oral PMP treatment could improve both the bone quantity (BMC and BMD) and quality (bone geometry). © 2016 Society for Endocrinology.

  14. Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice

    PubMed Central

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil

    2013-01-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs. PMID:23215868

  15. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted thatmore » in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.« less

  17. Lipid metabolism abnormalities in alcohol-treated rabbits: a morphometric and haematologic study comparing high and low alcohol doses.

    PubMed

    Ikemura, Satoshi; Yamamoto, Takuaki; Motomura, Goro; Iwasaki, Kenyu; Yamaguchi, Ryosuke; Zhao, Garida; Iwamoto, Yukihide

    2011-08-01

    The pathogenesis of alcohol-induced osteonecrosis remains unclear. The purpose of the present study was to evaluate the morphological changes in bone marrow fat cells and the changes in the serum lipid levels in alcohol-treated rabbits. Fifteen rabbits were randomly assigned into three groups: Four rabbits intragastrically received low-dose alcohol (LDA) (15 ml/kg per day) containing 15% ethanol for 4 weeks, five rabbits received high-dose alcohol (HDA) (30 ml/kg per day) for 4 weeks and six rabbits received physiologic saline for 4 weeks as a control group. Six weeks after the initial alcohol administration, all rabbits were sacrificed. The mean size of the bone marrow fat cells in rabbits treated with HDA was significantly larger than that in the control group (P = 0.0001). Haematologically, the levels of triglycerides and free fatty acids in the rabbits treated with both low-dose and HDA were significantly higher than those in the control group (P = 0.001 for both comparisons). The results of this study are that there are lipid metabolism abnormalities, both morphologically and haematologically, after alcohol administration. Also these findings were more apparent in rabbits treated with HDA than those treated with LDA. © 2011 The Authors. International Journal of Experimental Pathology © 2011 International Journal of Experimental Pathology.

  18. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    PubMed

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p < 0.05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema.

  19. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-06-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  20. Calcium and Bone Metabolism During Spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    The ability to understand and counteract weightlessness-induced bone loss will be critical for crew health and safety during and after space station or exploration missions lasting months or years, respectively. Until its deorbit in 2001 , the Mir Space Station provided a valuable platform for long-duration space missions and life sciences research. Long-duration flights are critical for studying bone loss, as the 2- to 3-week Space Shuttle flights are not long enough to detect changes in bone mass. This review will describe human spaceflight data, focusing on biochemical surrogates of bone and calcium metabolism. This subject has been reviewed previously. 1-