Science.gov

Sample records for alcohol-induced intestinal barrier

  1. THE ROLE OF MIR-212 AND INOS IN ALCOHOL-INDUCED INTESTINAL BARRIER DYSFUNCTION AND STEATOHEPATITIS

    PubMed Central

    Tang, Yueming; Zhang, Lijuan; Forsyth, Christopher B.; Shaikh, Maliha; Song, Shiwen; Keshavarzian, Ali

    2015-01-01

    Background Alcoholic liver disease (ALD) is commonly associated with intestinal barrier dysfunction. Alcohol-induced dysregulation of intestinal tight junction (TJ) proteins, such as Zonula Occludens-1 (ZO-1), plays an important role in alcohol-induced gut leakiness. However, the mechanism of alcohol-induced disruption of TJ proteins is not well established. The goal of this study was to elucidate this mechanism by studying the role of MicroRNA 212 (miR-212) and inducible nitric oxide synthase (iNOS) in alcohol-induced gut leakiness. Methods The permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance (TER) and flux of fluorescein sulfonic acid (FSA). miR-212 was measured by real time PCR. The wild type, iNOS knockout, and miR-212 knockdown mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. The LNA-anti-miR-212 was used to inhibit miR-212 expression in mice. The alcohol-induced intestinal permeability, miR-212 expression and liver injuries in mice were measured. Results Our in vitro monolayer and in vivo mice studies showed that: (1) alcohol-induced over-expression of the intestinal miR-212 and intestinal hyperpermeability is prevented by using miR-212 knock-down techniques; and (2). iNOS is upregulated in the intestine by alcohol and that iNOS signaling is required for alcohol-induced miR-212 over-expression, ZO-1 disruption, gut leakiness and steatohepatis. Conclusions These studies thus support a novel miR-212 mechanism for alcohol-induced gut leakiness and a potential target that could be exploited for therapeutic intervention to prevent leaky gut and liver injury in alcoholics. PMID:26207424

  2. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats.

    PubMed

    Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei; Zhou, Zhanxiang

    2013-12-01

    Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent.

  3. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats

    PubMed Central

    Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei

    2013-01-01

    Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent. PMID:24113767

  4. Role of Snail Activation in Alcohol-induced iNOS-mediated Disruption of Intestinal Epithelial Cell Permeability

    PubMed Central

    Forsyth, Christopher B.; Tang, Yueming; Shaikh, Maliha; Zhang, Lijuan; Keshavarzian, Ali

    2013-01-01

    Background Chronic alcohol use results in many pathological effects including alcoholic liver disease (ALD). ALD pathogenesis requires endotoxemia. Our previous studies showed that increased intestinal permeability is the major cause of endotoxemia and that this gut leakiness is dependent on alcohol stimulation of inducible nitric oxide synthase (iNOS) in both alcoholic subjects and rodent models of alcoholic steatohepatitis (ASH). The mechanism of the alcohol-induced, iNOS-mediated disruption of the intestinal barrier function is not known. We have recently shown that alcohol stimulates activation of the transcription factor Snail and biomarkers of epithelial mesenchymal transition. Since activated Snail disrupts tight junctional proteins , we hypothesized that activation of Snail by iNOS might be one of the key signaling pathways mediating alcohol stimulated intestinal epithelial cell hyperpermeability. Methods We measured intestinal permeability in alcohol-fed C57BL/6 control and iNOS KO mice and measured Snail protein expression in the intestines of these mice. We then examined intestinal epithelial permeability using the Caco-2 cell model of the intestinal barrier ± siRNA inhibition of Snail. We assessed Snail activation by alcohol in Caco-2 cells ± inhibition of iNOS with L-NIL or siRNA. Finally, we assessed Snail activation by alcohol ± inhibition with siRNA for p21-activated kinase (PAK1). Results Our data show that chronic alcohol feeding promotes intestinal hyperpermeability in wild type BL/6 but not in iNOS KO mice. Snail protein expression was increased in the intestines of alcohol-treated wild type mice but not in iNOS KO mice. SiRNA inhibition of Snail significantly inhibited alcohol-induced hyperpermeability in Caco-2 cell monolayers. Alcohol stimulation of SnailpS246 activation was blocked by inhibition of iNOS with L-NIL or with siRNA. SiRNA inhibition of PAK1 significantly inhibited alcohol-mediated activation of Snail in Caco-2 cells

  5. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability.

    PubMed

    Forsyth, Christopher B; Voigt, Robin M; Shaikh, Maliha; Tang, Yueming; Cederbaum, Arthur I; Turek, Fred W; Keshavarzian, Ali

    2013-07-15

    We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression (Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H₂O₂ with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H₂O₂-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2. PMID:23660503

  6. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability

    PubMed Central

    Voigt, Robin M.; Shaikh, Maliha; Tang, Yueming; Cederbaum, Arthur I.; Turek, Fred W.; Keshavarzian, Ali

    2013-01-01

    We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression (Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H2O2 with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H2O2-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2. PMID:23660503

  7. Role of Intestinal Circadian Genes in Alcohol-induced Gut Leakiness

    PubMed Central

    Swanson, Garth; Forsyth, Christopher B.; Tang, Yueming; Shaikh, Maliha; Zhang, Lijuan; Turek, Fred W.; Keshavarzian, Ali

    2011-01-01

    Background Several studies have indicated that endotoxemia is the required co-factor for alcoholic steatohepatitis (ASH) that is seen in only about 30% of alcoholics. Recent studies have shown that gut leakiness that occurs in a subset of alcoholics is the primary cause of endotoxemia in ASH. The reasons for this differential susceptibility are not known. Since disruption of circadian rhythms occurs in some alcoholics and circadian genes control the expression of several genes that are involved in regulation of intestinal permeability, we hypothesized that alcohol induces intestinal hyperpermeability by stimulating expression of circadian clock gene proteins in the intestinal epithelial cells. Methods We used Caco-2 monolayers grown on culture inserts as an in vitro model of intestinal permeability and performed western blotting, permeability, and siRNA inhibition studies to examine the role of Clock and Per2 circadian genes in alcohol-induced hyperpermeability. We also measured PER2 protein levels in intestinal mucosa of alcohol fed rats with intestinal hyperpermeability. Results Alcohol, as low as 0.2%, induced time dependent increases in both Caco-2 cell monolayer permeability and in CLOCK and PER2 proteins. SiRNA specific inhibition of either Clock or Per2 significantly inhibited alcohol-induced monolayer hyperpermeability. Alcohol-fed rats with increased total gut permeability, assessed by urinary sucralose, also had significantly higher levels of PER2 protein in their duodenum and proximal colon than control rats. Conclusions Our studies: (1) demonstrate a novel mechanism for alcohol-induced intestinal hyperpermeability through stimulation of intestinal circadian clock gene expression, and (2) provide direct evidence for a central role of circadian genes in regulation of intestinal permeability. PMID:21463335

  8. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation.

    PubMed

    Summa, Keith C; Voigt, Robin M; Forsyth, Christopher B; Shaikh, Maliha; Cavanaugh, Kate; Tang, Yueming; Vitaterna, Martha Hotz; Song, Shiwen; Turek, Fred W; Keshavarzian, Ali

    2013-01-01

    The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases - many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness) in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state. PMID:23825629

  9. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation

    PubMed Central

    Forsyth, Christopher B.; Shaikh, Maliha; Cavanaugh, Kate; Tang, Yueming; Vitaterna, Martha Hotz; Song, Shiwen

    2013-01-01

    The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases – many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness) in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state. PMID:23825629

  10. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness

    PubMed Central

    Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali.

    2014-01-01

    Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20–30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for

  11. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness.

    PubMed

    Forsyth, Christopher B; Voigt, Robin M; Keshavarzian, Ali

    2014-01-01

    Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for

  12. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking.

    PubMed

    Swanson, Garth R; Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Kaminsky, Thomas; Van Den Berg, Jolice; Murphy, Terrence; Raeisi, Shohreh; Fogg, Louis; Vitaterna, Martha Hotz; Forsyth, Christopher; Turek, Fred; Burgess, Helen J; Keshavarzian, Ali

    2016-07-01

    Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20-30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption. PMID:27198191

  13. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  14. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  15. [THE INTESTINAL BARRIER, THE MICROBIOTA, MICROBIOME].

    PubMed

    Mar'yanovich, A T

    2016-01-01

    The review examined modern condition of development directions physiology of digestion, like structure and function of the intestinal barrier, the microbiota of the digestive tract in its relations with the microorganism.

  16. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    PubMed

    Bull-Otterson, Lara; Feng, Wenke; Kirpich, Irina; Wang, Yuhua; Qin, Xiang; Liu, Yanlong; Gobejishvili, Leila; Joshi-Barve, Swati; Ayvaz, Tulin; Petrosino, Joseph; Kong, Maiying; Barker, David; McClain, Craig; Barve, Shirish

    2013-01-01

    Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD). Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v) for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG) from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  17. Nutritional Keys for Intestinal Barrier Modulation

    PubMed Central

    De Santis, Stefania; Cavalcanti, Elisabetta; Mastronardi, Mauro; Jirillo, Emilio; Chieppa, Marcello

    2015-01-01

    The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier. PMID:26697008

  18. Exercise, intestinal barrier dysfunction and probiotic supplementation.

    PubMed

    Lamprecht, Manfred; Frauwallner, Anita

    2012-01-01

    Athletes exposed to high-intensity exercise show an increased occurrence of gastrointestinal (GI) symptoms like cramps, diarrhea, bloating, nausea, and bleeding. These problems have been associated with alterations in intestinal permeability and decreased gut barrier function. The increased GI permeability, a so-called 'leaky gut', also leads to endotoxemia, and results in increased susceptibility to infectious and autoimmune diseases, due to absorption of pathogens/toxins into tissue and the bloodstream. Key components that determine intestinal barrier function and GI permeability are tight junctions, protein structures located in the paracellular channels between epithelial cells of the intestinal wall. The integrity of tight junctions depends on sophisticated interactions between the gut residents and their expressed substances, the intestinal epithelial cell metabolism and the activities of the gut-associated lymphoid tissue. Probiotic supplements are an upcoming group of nutraceuticals that could offer positive effects on athlete's gut and entire health. Some results demonstrate promising benefits for probiotic use on the athlete's immune system. There is also evidence that probiotic supplementation can beneficially influence intestinal barrier integrity in acute diseases. With regard to exercise-induced GI permeability problems, there is still a lack of studies with appropriate data and a gap to understand the underlying mechanisms to support such health beneficial statements implicitly. This article refers (i) to exercise-induced intestinal barrier dysfunction, (ii) provides suggestions to estimate increased gut barrier permeability in athletes, and (iii) discusses the potential of probiotic supplementation to counteract an exercise-induced leaky gut. PMID:23075554

  19. Intestinal barrier homeostasis in inflammatory bowel disease.

    PubMed

    Goll, Rasmus; van Beelen Granlund, Atle

    2015-01-01

    The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.

  20. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    PubMed

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis

  1. Role of microRNAs in Alcohol-Induced Multi-Organ Injury.

    PubMed

    Natarajan, Sathish Kumar; Pachunka, Joseph M; Mott, Justin L

    2015-11-20

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption.

  2. Role of microRNAs in Alcohol-Induced Multi-Organ Injury

    PubMed Central

    Natarajan, Sathish Kumar; Pachunka, Joseph M.; Mott, Justin L.

    2015-01-01

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption. PMID:26610589

  3. IBD Candidate Genes and Intestinal Barrier Regulation

    PubMed Central

    McCole, Declan F.

    2015-01-01

    Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn’s disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution. PMID:25215613

  4. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  5. Regulation of the Intestinal Barrier Function by Host Defense Peptides.

    PubMed

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  6. Regulation of the Intestinal Barrier Function by Host Defense Peptides

    PubMed Central

    Robinson, Kelsy; Deng, Zhuo; Hou, Yongqing; Zhang, Guolong

    2015-01-01

    Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity. PMID:26664984

  7. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  8. Alcohol and the Intestine.

    PubMed

    Patel, Sheena; Behara, Rama; Swanson, Garth R; Forsyth, Christopher B; Voigt, Robin M; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches.

  9. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  10. Alcohol and the Intestine.

    PubMed

    Patel, Sheena; Behara, Rama; Swanson, Garth R; Forsyth, Christopher B; Voigt, Robin M; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  11. Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection Against Colitis in Mice

    PubMed Central

    Wu, Xiujuan; Conlin, Victoria S.; Morampudi, Vijay; Ryz, Natasha R.; Nasser, Yasmin; Bhinder, Ganive; Bergstrom, Kirk S.; Yu, Hong B.; Waterhouse, Chris C. M.; Buchan, Allison M. J.; Popescu, Oana E.; Gibson, William T.; Waschek, James A.; Vallance, Bruce A.; Jacobson, Kevan

    2015-01-01

    Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP’s role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP’s role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis. PMID:25932952

  12. Metabolic regulation of intestinal epithelial barrier during inflammation

    PubMed Central

    Colgan, Sean P; Curtis, Valerie F; Lanis, Jordi M; Glover, Louise E

    2014-01-01

    The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit. PMID:25838978

  13. Campylobacter infection in chickens modulates the intestinal epithelial barrier function.

    PubMed

    Awad, Wageha A; Molnár, Andor; Aschenbach, Jörg R; Ghareeb, Khaled; Khayal, Basel; Hess, Claudia; Liebhart, Dieter; Dublecz, Károly; Hess, Michael

    2015-02-01

    Asymptomatic carriage of Campylobacter jejuni is highly prevalent in chicken flocks. Thus, we investigated whether chronic Campylobacter carriage affects chicken intestinal functions despite the absence of clinical symptoms. An experiment was carried out in which commercial chickens were orally infected with C. jejuni (1 × 10(8) CFU/bird) at 14 days of life. Changes in ion transport and barrier function were assessed by short-circuit current (I(sc)) and transepithelial ion conductance (G(t)) in Ussing chambers. G(t) increased in cecum and colon of Campylobacter-infected chicken 7 d post-infection (DPI), whereas G t initially decreased in the jejunum at 7 DPI and increased thereafter at 14 DPI. The net charge transfer across the epithelium was reduced or tended to be reduced in all segments, as evidenced by a decreased I sc. Furthermore, the infection induced intestinal histomorphological changes, most prominently including a decrease in villus height, crypt depth and villus surface area in the jejunum at 7 DPI. Furthermore, body mass gain was decreased by Campylobacter carriage. This study demonstrates, for the first time, changes in the intestinal barrier function in Campylobacter-infected chickens and these changes were associated with a decrease in growth performance in otherwise healthy-appearing birds.

  14. The role of intestinal epithelial barrier function in the development of NEC

    PubMed Central

    Halpern, Melissa D; Denning, Patricia W

    2015-01-01

    The intestinal epithelial barrier plays an important role in maintaining host health. Breakdown of intestinal barrier function is known to play a role in many diseases such as infectious enteritis, idiopathic inflammatory bowel disease, and neonatal inflammatory bowel diseases. Recently, increasing research has demonstrated the importance of understanding how intestinal epithelial barrier function develops in the premature neonate in order to develop strategies to promote its maturation. Optimizing intestinal barrier function is thought to be key to preventing neonatal inflammatory bowel diseases such as necrotizing enterocolitis. In this review, we will first summarize the key components of the intestinal epithelial barrier, what is known about its development, and how this may explain NEC pathogenesis. Finally, we will review what therapeutic strategies may be used to promote optimal development of neonatal intestinal barrier function in order to reduce the incidence and severity of NEC. PMID:25927016

  15. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  16. [Maintenance of intestinal barrier function in patients with chronic critical illness].

    PubMed

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2016-07-01

    The syndrome known as chronic critical illness (CCI) is defined as that critically ill patients survive their initial acute illness but go on to experience persistent organ failures necessitating prolonged intensive care. Intestinal barrier is the physical barrier that separates the internal and external environments and prevents the invasion of pathogenic antigens. Due to its pathogenesis, many CCI patients have injured intestinal barrier. Gut is the motor organ of stress responses, and gut-associated infections may initiate multiple organ dysfunction. In this way, it is important to maintain intestinal barrier of such patients. Apart from treatment for underlying diseases, resuscitation aiming at improving tissue perfusion, appropriate nutritional support, protection of normal intestinal flora, and provision of probiotics can maintain intestinal barrier of CCI patients. The maintenance and support of barrier function requires attention. PMID:27452748

  17. Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning.

    PubMed

    Awad, Wageha A; Ghareeb, Khaled; Paßlack, Nadine; Zentek, Jürgen

    2013-08-01

    An experiment was conducted to study the effects of dietary inulin supplementation on the electrophysiological properties of small intestine of suckling and weaned piglets as indicators for glucose absorption and barrier function. Ten sows were divided into two groups, receiving either a control diet, or a diet with 3% inulin. The diets were fed from 3 weeks ante partum to 6 weeks post partum. In the first 2 weeks of life, piglets received only sow's milk. Irrespective to sex and without castration of males, four piglets (one piglet of each litter) from each group were selected and sacrificed on day 10 of age. The gastrointestinal tract of each piglet was removed and segments were immediately taken from the mid-jejunum and mounted in Ussing chambers. Furthermore, at weaning (6 weeks old) 8 piglets were randomly selected irrespective to sex and males were un-castrated (4 animals from sows received control diet and 4 animals from sows received 3% inulin supplemented diet) and fed for 2 weeks either control weaning diet or inulin supplemented diet. Thereafter segments of the mid-jejunum were used to investigate the effect of inulin on the gut electrophysiology of weaned piglets. The increase in short-circuit current (Isc) after the addition of glucose is an indicator of higher glucose absorption and the higher tissue conductance (Gt) of the epithelium suggested a higher intestinal permeability to paracellular Na(+). In suckling piglets, the addition of d-glucose on the luminal side of the isolated jejunal mucosa increased (P<0.001) the Isc in the inulin-supplemented and control groups compared to basal values. Electrogenic glucose transport (ΔIsc) was similar in suckling piglets from sows fed inulin or control diet, suggesting that feeding of inulin to the mother sows had no effect on glucose absorption across the jejunal mucosa of suckling piglets. However, the dietary inulin supplementation after weaning increased the ΔIsc (P<0.001) compared with the controls

  18. The role of immunomodulators on intestinal barrier homeostasis in experimental models.

    PubMed

    Andrade, Maria Emília Rabelo; Araújo, Raquel Silva; de Barros, Patrícia Aparecida Vieira; Soares, Anne Danieli Nascimento; Abrantes, Fernanda Alves; Generoso, Simone de Vasconcelos; Fernandes, Simone Odília Antunes; Cardoso, Valbert Nascimento

    2015-12-01

    The intestinal epithelium is composed of specialized epithelial cells that form a physical and biochemical barrier to commensal and pathogenic microorganisms. However, dysregulation of the epithelial barrier function can lead to increased intestinal permeability and bacterial translocation across the intestinal mucosa, which contributes to local and systemic immune activation. The increase in these parameters is associated with inflammatory bowel disease, physical exercise under heat stress, intestinal obstruction, ischemia, and mucositis, among other conditions. Lately, there has been growing interest in immunomodulatory nutrients and probiotics that can regulate host immune and inflammatory responses and possibly restore the intestinal barrier. Immunomodulators such as amino acids (glutamine, arginine, tryptophan, and citrulline), fatty acids (short-chain and omega-3 fatty acids and conjugated linoleic acids), and probiotics (Bifidobacterium, Saccharomyces, and Lactobacillus) have been reported in the literature. Here, we review the critical roles of immunomodulatory nutrients in supporting gut barrier integrity and function. PMID:25660317

  19. Photobiomodulation on alcohol induced dysfunction

    NASA Astrophysics Data System (ADS)

    Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang

    2007-05-01

    Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.

  20. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release.

    PubMed

    Haorah, James; Knipe, Bryan; Gorantla, Santhi; Zheng, Jialin; Persidsky, Yuri

    2007-01-01

    The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.

  1. Intestinal Diffusion Barrier: Unstirred Water Layer or Membrane Surface Mucous Coat?

    NASA Astrophysics Data System (ADS)

    Smithson, Kenneth W.; Millar, David B.; Jacobs, Lucien R.; Gray, Gary M.

    1981-12-01

    The dimensions of the small intestinal diffusion barrier interposed between luminal nutrients and their membrane receptors were determined from kinetic analysis of substrate hydrolysis by integral surface membrane enzymes. The calculated equivalent thickness of the unstirred water layer was too large to be compatible with the known dimensions of rat intestine. The discrepancy could be reconciled by consideration of the mucous coat overlying the intestinal surface membrane. Integral surface membrane proteins could not be labeled by an iodine-125 probe unless the surface coat was first removed. The mucoprotein surface coat appears to constitute an important diffusion barrier for nutrients seeking their digestive and transport sites on the outer intestinal membrane.

  2. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease.

    PubMed

    Wang, Kuan; Wu, Lu-Yi; Dou, Chuan-Zi; Guan, Xin; Wu, Huan-Gan; Liu, Hui-Rong

    2016-01-01

    To date, the etiology and pathogenesis of Crohn's disease (CD) have not been fully elucidated. It is widely accepted that genetic, immune, and environment factors are closely related to the development of CD. As an important defensive line for human body against the environment, intestinal mucosa is able to protect the homeostasis of gut bacteria and alleviate the intestinal inflammatory and immune response. It is evident that the dysfunction of intestinal mucosa barriers plays a crucial role in CD initiation and development. Yet researches are insufficient on intestinal mucosal barrier's action in the prevention of CD onset. This article summarizes the research advances about the correlations between the disorders of intestinal mucosal barriers and CD. PMID:27651792

  3. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease

    PubMed Central

    Dou, Chuan-zi; Guan, Xin; Wu, Huan-gan

    2016-01-01

    To date, the etiology and pathogenesis of Crohn's disease (CD) have not been fully elucidated. It is widely accepted that genetic, immune, and environment factors are closely related to the development of CD. As an important defensive line for human body against the environment, intestinal mucosa is able to protect the homeostasis of gut bacteria and alleviate the intestinal inflammatory and immune response. It is evident that the dysfunction of intestinal mucosa barriers plays a crucial role in CD initiation and development. Yet researches are insufficient on intestinal mucosal barrier's action in the prevention of CD onset. This article summarizes the research advances about the correlations between the disorders of intestinal mucosal barriers and CD.

  4. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease

    PubMed Central

    Dou, Chuan-zi; Guan, Xin; Wu, Huan-gan

    2016-01-01

    To date, the etiology and pathogenesis of Crohn's disease (CD) have not been fully elucidated. It is widely accepted that genetic, immune, and environment factors are closely related to the development of CD. As an important defensive line for human body against the environment, intestinal mucosa is able to protect the homeostasis of gut bacteria and alleviate the intestinal inflammatory and immune response. It is evident that the dysfunction of intestinal mucosa barriers plays a crucial role in CD initiation and development. Yet researches are insufficient on intestinal mucosal barrier's action in the prevention of CD onset. This article summarizes the research advances about the correlations between the disorders of intestinal mucosal barriers and CD. PMID:27651792

  5. Increased intestinal barrier function in the small intestine of formula-fed neonatal piglets.

    PubMed

    Huygelen, V; De Vos, M; Willemen, S; Tambuyzer, B; Casteleyn, C; Knapen, D; Van Cruchten, S; Van Ginneken, C

    2012-12-01

    Within-litter birth weight variation is adversely correlated to piglet survival and postnatal growth. A less efficient epithelial barrier function in light piglets may partly explain this inverse relationship between birth weight and zootechnical performance. A compromised epithelial barrier increases paracellular permeability; consequently, toxins, allergenic compounds, or bacteria may enter systemic circulation and induce inflammatory responses. Dietary effects on function of gut epithelium of piglet are largely unknown. This study investigated epithelial barrier function of the small intestine of normal birth weight (NBW) piglets (1.46 ± 0.10 kg) and low birth weight (LBW) piglets (<1 kg at birth) in relation to their diet. Sixteen pairs of 3-d-old LBW and NBW piglets were randomly assigned to 3 groups: a sow-fed control group euthanized at day 3 of age (SOW3), piglets sow fed until day 10 (SOW10), and formula-fed piglets fed formula from day 3 until day 10 (FOR10). To measure gut permeability, piglets were dosed intragastrically with 0.75 g lactulose/kg BW and 0.3 g mannitol/kg BW 4 h before euthanasia. Urinary sugar excretion was measured using enzymatic spectrophotometry. Irrespective of birth weight, lactulose levels of FOR10 (4.4 ± 2.3 mmol/L) tended to be lower (P = 0.07) than SOW10 (26.4 ± 10.2 mmol/L) indicating a reduced paracellular intestinal permeability in FOR10. This reduction was associated with a 6-fold elevated (P < 0.01) protein expression of occludin, an important tight junction protein, in FOR10 compared to SOW10. Mannitol levels in FOR10 (31.0 ± 18.2 mmol/L) did not differ (P = 0.28) from SOW10 (61.1 ± 10.2 mmol/L). However, shorter villi (P < 0.01) in FOR10 indicated a reduced absorptive capacity. In conclusion, formula feeding caused minor symptoms of gastrointestinal dysfunction compared to sow-fed piglets irrespective of their birth weight.

  6. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    PubMed

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application.

  7. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    PubMed

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. PMID:26617183

  8. Ginsenoside Rb1 protects the intestinal mucosal barrier following peritoneal air exposure

    PubMed Central

    Zhou, Feng; Zhang, Peichen; Chen, Xiaoxi; Yan, Jingyi; Yao, Jiangao; Yu, Zhen; Chen, Xiaolei

    2016-01-01

    Ginsenoside Rb1 (GRb1), which is one of the main ingredients derived from Panax ginseng, has been widely used to treat various gastrointestinal disorders. The present study aimed to determine whether GRb1 was able to prevent intestinal mucosal barrier damage in rats following peritoneal air exposure for 3 h. GRb1 (5, 10, and 20 mg/kg) was orally administrated via gavage four times prior to and following surgery. Blood and terminal ileum were sampled 24 h following surgery. Levels of serum D-lactate (D-LA) were detected using an enzyme-linked immunosorbent assay kit. Intestinal permeability was assessed by determining the intestinal clearance of fluorescein isothiocyanate-dextran (FD4). Activity of intestinal myeloperoxidase was measured to assess intestinal inflammation, and intestinal histopathology was assessed by light microscopy. The results showed that GRb1 reduced the level of serum D-LA, intestinal clearance of FD4, and the activity of intestinal myeloperoxidase. Intestinal edema and inflammation were also ameliorated by GRb1, and the Chiu's scores employed for assessing intestinal mucosal damage were also reduced in the GRb1-treated peritoneal air exposure group. In addition, GRb1 induced a significant difference at 10 and 20 mg/kg, indicating a dose-dependent effect. The results of the present study suggest that GRb1 may be able to protect the intestinal mucosal barrier against damage induced by peritoneal air exposure, which may be associated with its anti-inflammatory action. PMID:27703510

  9. Stobadine attenuates impairment of an intestinal barrier model caused by 4-hydroxynonenal.

    PubMed

    Cindric, Marina; Cipak, Ana; Zapletal, Emilija; Jaganjac, Morana; Milkovic, Lidija; Waeg, Georg; Stolc, Svorad; Zarkovic, Neven; Suzana Borovic, Sunjic

    2013-02-01

    Alterations in the intestinal barrier permeability occur in a broad spectrum of abdominally related pathologies, mostly due to disturbed oxidative homeostasis and increased lipid peroxidation. 4-Hydroxynonenal (HNE), a major lipid peroxidation product, is physiologically present in healthy gastric mucosa, but is increased in early stages of colon cancer and patients with duodenal peptic ulcer. Nevertheless, such supraphysiological levels of HNE have not yet been associated with increased intestinal permeability, even though, as we have described in this paper, they could play important role. In vitro model of intestinal barrier was established by growing Caco-2 cell line on cell culture permeable inserts. The pyridoindole derivative stobadine in hydrophilic and lipophilic form was used for barrier model protection. Both forms of stobadine were able to prevent damaging HNE effects, and reduce generation of reactive oxygen species and permeability of the intestinal barrier. Immunocytochemical analysis has confirmed beneficial effect of stobadine in reducing the formation of HNE-protein conjugates in the cells. Lipophilic form of stobadine proved to be more efficient than hydrophilic, implying importance of lipids in maintaining barrier function. The results obtained indicate that HNE might be important factor affecting intestinal barrier integrity, while stobadine could efficiently protect intestinal cells against harmful HNE effects.

  10. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?

    PubMed Central

    Brandl, Katharina

    2016-01-01

    Changes in the intestinal microbiota composition contribute to the pathogenesis of many disorders including gastrointestinal and liver diseases. Recent studies have broadened our understanding of the “gut-liver” axis. Dietary changes, other environmental and genetic factors can lead to alterations in the microbiota. Dysbiosis can further disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In this article, the authors dissect the different steps involved in disease pathogenesis to further refine approaches for the medical management of liver diseases. The authors will specifically discuss the role of dysbiosis in inducing intestinal inflammation and increasing intestinal permeability. PMID:26088524

  11. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  12. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  13. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  14. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier.

    PubMed

    Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M

    2012-04-15

    Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to

  15. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression.

    PubMed

    Pinton, Philippe; Nougayrède, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  16. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    SciTech Connect

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  17. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis.

    PubMed

    Gerlach, Katharina; McKenzie, Andrew N; Neurath, Markus F; Weigmann, Benno

    2015-01-01

    As previous studies suggested that IL-9 may control intestinal barrier function, we tested the role of IL-9 in experimental T cell-mediated colitis induced by the hapten reagent 2,4,6-trinitrobenzenesulfonic acid (TNBS). The deficiency of IL-9 suppressed TNBS-induced colitis and led to lower numbers of PU.1 expressing T cells in the lamia propria, suggesting a regulatory role for Th9 cells in the experimental TNBS colitis model. Since IL-9 is known to functionally alter intestinal barrier function in colonic inflammation, we assessed the expression of tight junction molecules in intestinal epithelial cells of TNBS-inflamed mice. Therefore we made real-time PCR analyses for tight junction molecules in the inflamed colon from wild-type and IL-9 KO mice, immunofluorescent stainings and investigated the expression of junctional proteins directly in intestinal epithelial cells of TNBS-inflamed mice by Western blot studies. The results demonstrated that sealing proteins like occludin were up regulated in the colon of inflamed IL-9 KO mice. In contrast, the tight junction protein Claudin1 showed lower expression levels when IL-9 is absent. Surprisingly, the pore-forming molecule Claudin2 revealed equal expression in TNBS-treated wild-type and IL-9-deficient animals. These results illustrate the pleiotropic functions of IL-9 in changing intestinal permeability in experimental colitis. Thus, modulation of IL-9 function emerges as a new approach for regulating barrier function in intestinal inflammation.

  18. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  19. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms

    PubMed Central

    Schwarz, Brad T.; Wang, Fengjun; Shen, Le; Clayburgh, Daniel R.; Su, Liping; Wang, Yingmin; Fu, Yang-Xin; Turner, Jerrold R.

    2009-01-01

    BACKGROUND & AIMS LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpes virus entry on T cells) is a TNF core family member that regulates T cell activation and causes experimental inflammatory bowel disease. Additional data suggest that LIGHT may be involved in the pathogenesis of human inflammatory bowel disease. The aim of this study was to determine if LIGHT was capable of signaling directly to intestinal epithelia and to define the mechanisms and consequences of such signaling. METHODS The effects of LIGHT and interferon-γ (IFN-γ) on barrier function, cytoskeletal regulation, and tight junction structure were assessed in mice and intestinal epithelial monolayers. RESULTS LIGHT induced barrier loss in cultured epithelia via myosin II regulatory light chain (MLC) phosphorylation; both barrier loss and MLC phosphorylation were reversed by MLC kinase (MLCK) inhibition. IFN-γ pretreatment, which induced lymphotoxin β receptor (LTβR) expression, was required for these effects and neither barrier dysfunction nor intestinal epithelial MLC phosphorylation occurred in LTβR-knockout mice. In cultured monolayers, endocytosis of the tight junction protein occludin correlated with barrier loss. Internalized occludin co-localized with caveolin-1. LIGHT-induced occludin endocytosis and barrier loss were both prevented by inhibition of caveolar endocytosis. CONCLUSIONS T cell-derived LIGHT activates intestinal epithelial LTβR to disrupt barrier function. This requires MLCK activation and caveolar endocytosis. These data suggest a novel role for LIGHT in disease pathogenesis and suggest that inhibition of MLCK-dependent caveolar endocytosis may represent an approach to restoring barrier function in inflammatory bowel disease. PMID:17570213

  20. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair.

    PubMed

    Luissint, Anny-Claude; Parkos, Charles A; Nusrat, Asma

    2016-10-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  1. Electroacupuncture at Bilateral Zusanli Points (ST36) Protects Intestinal Mucosal Immune Barrier in Sepsis

    PubMed Central

    Zhu, Mei-fei; Xing, Xi; Lei, Shu; Wu, Jian-nong; Wang, Ling-cong; Huang, Li-quan; Jiang, Rong-lin

    2015-01-01

    Sepsis results in high morbidity and mortality. Immunomodulation strategies could be an adjunctive therapy to treat sepsis. Acupuncture has also been used widely for many years in China to treat sepsis. However, the underlying mechanisms are not well-defined. We demonstrated here that EA preconditioning at ST36 obviously ameliorated CLP-induced intestinal injury and high permeability and reduced the mortality of CLP-induced sepsis rats. Moreover, electroacupuncture (EA) pretreatment exerted protective effects on intestinal mucosal immune barrier by increasing the concentration of sIgA and the percentage of CD3+, γ/δ, and CD4+ T cells and the ratio of CD4+/CD8+ T cells. Although EA at ST36 treatments immediately after closing the abdomen in the CLP procedure with low-frequency or high-frequency could not reduce the mortality of CLP-induced sepsis in rats, these EA treatments could also significantly improve intestinal injury index in rats with sepsis and obviously protected intestinal mucosal immune barrier. In conclusion, our findings demonstrated that EA at ST36 could improve intestinal mucosal immune barrier in sepsis induced by CLP, while the precise mechanism underlying the effects needs to be further elucidated. PMID:26346309

  2. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function

    PubMed Central

    Bode, Lars; Salvestrini, Camilla; Park, Pyong Woo; Li, Jin-Ping; Esko, Jeffrey D.; Yamaguchi, Yu; Murch, Simon; Freeze, Hudson H.

    2007-01-01

    Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-γ, TNF-α, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate– or syndecan-1–deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-γ, TNF-α, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients. PMID:18064305

  3. Heat Stress Reduces Intestinal Barrier Integrity and Favors Intestinal Glucose Transport in Growing Pigs

    PubMed Central

    Pearce, Sarah C.; Mani, Venkatesh; Boddicker, Rebecca L.; Johnson, Jay S.; Weber, Thomas E.; Ross, Jason W.; Rhoads, Robert P.; Baumgard, Lance H.; Gabler, Nicholas K.

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport. PMID:23936392

  4. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

    PubMed

    Pearce, Sarah C; Mani, Venkatesh; Boddicker, Rebecca L; Johnson, Jay S; Weber, Thomas E; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Gabler, Nicholas K

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35-50% humidity; n=8) or HS conditions (35°C; 24-43% humidity; n=8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P=0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P=0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na(+)/K(+) ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P=0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.

  5. Zinc’s impact on intestinal barrier function and zinc trafficking during coccidial caccine challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the effects of Zn supplementation on intestinal barrier function and Zn trafficking, three dietary regimens were formulated: a basal corn/SBM diet formulated with a Zn-free vitamin/mineral premix (Basal), and two Zn regimens formulated to provide 90 mg/kg total dietary Zn from ...

  6. Enhancing Effect of Trachelogenin from Trachelospermi caulis Extract on Intestinal Barrier Function.

    PubMed

    Shin, Hee Soon; Bae, Min-Jung; Jung, Sun Young; See, Hye-Jeong; Kim, Yun Tai; Do, Jeong-Ryong; Back, Su Yeon; Choi, Sang-Won; Shon, Dong-Hwa

    2015-01-01

    Trachelospermi caulis is used widely as an herbal medicine in oriental countries to attenuate fever and pain. We wished to reveal the novel function of this herb and its active component on barrier function in intestinal epithelial cells. Monolayers of intestinal epithelial cells (Caco-2) were used to evaluate the transepithelial electrical resistance (TEER) and quantity of permeated ovalbumin (OVA) as indices of barrier function. T. caulis increased TEER values on cell monolayers and decreased OVA permeation across cell monolayers. To ascertain the active component of T. caulis, the extract was isolated to five fractions, and the effect of each of these fractions on intestinal barrier function examined. Chloroform and ethyl acetate fractions showed increased TEER values and decreased OVA flux. Chloroform and ethyl acetate fractions contained mainly trachelogenin and its glycoside, tracheloside. Trachelogenin increased TEER values and decreased OVA flux by enhancing the tight-junction protein occludin (but not tracheloside) in Caco-2 monolayers. These findings demonstrated that trachelogenin, an active component of T. caulis, might help to attenuate food allergy or inflammatory bowel disease through inhibition of allergen permeation or enhancement of the intestinal barrier. PMID:26268064

  7. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease.

    PubMed

    Nalle, S C; Turner, J R

    2015-07-01

    Compromised intestinal barrier function is a prominent feature of inflammatory bowel disease (IBD). However, links between intestinal barrier loss and disease extend much further, including documented associations with celiac disease, type I diabetes, rheumatoid arthritis, and multiple sclerosis. Intestinal barrier loss has also been proposed to have a critical role in the pathogenesis of graft-versus-host disease (GVHD), a serious, potentially fatal consequence of hematopoietic stem cell transplantation. Experimental evidence has begun to support this view, as barrier loss and its role in initiating and establishing a pathogenic inflammatory cycle in GVHD is emerging. Here we discuss similarities between IBD and GVHD, mechanisms of intestinal barrier loss in these diseases, and the crosstalk between barrier loss and the immune system, with a special focus on natural killer (NK) cells. Unanswered questions and future research directions on the topic are discussed along with implications for treatment.

  8. Hydroxyethyl Starch (HES 130/0.4) Impairs Intestinal Barrier Integrity and Metabolic Function: Findings from a Mouse Model of the Isolated Perfused Small Intestine

    PubMed Central

    Dombrowsky, Heike; Zitta, Karina; Bein, Berthold; Krause, Thorsten; Goldmann, Torsten; Frerichs, Inez; Steinfath, Markus; Weiler, Norbert; Albrecht, Martin

    2015-01-01

    Background The application of hydroxyethyl starch (HES) for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine. Methods An isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7) or 3% HES (130/0.4; N=7). Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio), edema formation (wet-to-dry weight ratio), morphology (histological and electron microscopical analysis), fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation) were evaluated in both groups. Results Compared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01), an increased fluid accumulation in the intestinal lumen (p<0.001), an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001) and a significantly impaired intestinal galactose uptake (p<0.001). Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces. Conclusion A vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small

  9. Cinnamon extract protects against acute alcohol-induced liver steatosis in mice.

    PubMed

    Kanuri, Giridhar; Weber, Synia; Volynets, Valentina; Spruss, Astrid; Bischoff, Stephan C; Bergheim, Ina

    2009-03-01

    Acute and chronic consumption of alcohol can cause increased intestinal permeability and bacterial overgrowth, thereby increasing portal endotoxin levels. This barrier impairment subsequently leads to an activation of hepatic Kupffer cells and increased release of reactive oxygen species as well as of tumor necrosis factor-alpha (TNFalpha). Recent studies have suggested that cinnamon extract may have antiinflammatory effects. In the present study, the protective effects of an alcoholic extract of cinnamon bark was assessed in a mouse model of acute alcohol-induced steatosis and in RAW 264.7 macrophages, used here as a model of Kupffer cells. Acute alcohol ingestion caused a >20-fold increase in hepatic lipid accumulation. Pretreatment with cinnamon extract significantly reduced the hepatic lipid accumulation. This protective effect of cinnamon extract was associated with an inhibition of the induction of the myeloid differentiation primary response gene (MyD) 88, inducible nitric oxide (NO) synthase (iNOS), and plasminogen activator inhibitor 1 mRNA expression found in livers of alcohol-treated animals. In vitro prechallenge with cinnamon extract suppressed lipopolysaccharide (LPS)-induced MyD88, iNOS, and TNFalpha expression as well as NO formation almost completely. Furthermore, LPS treatment of RAW 264.7 macrophages further resulted in degradation of inhibitor kappaB; this effect was almost completely blocked by cinnamon extract. Taken together, our data show that an alcohol extract of cinnamon bark may protect the liver from acute alcohol-induced steatosis through mechanisms involving the inhibition of MyD88 expression. PMID:19126670

  10. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation

    PubMed Central

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-01-01

    Abstract Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  11. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

    PubMed Central

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  12. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  13. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  14. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    PubMed

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable.

  15. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  16. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  17. Partial Enteral Nutrition Mitigated Ischemia/Reperfusion-Induced Damage of Rat Small Intestinal Barrier

    PubMed Central

    Wu, Chao; Wang, Xinying; Jiang, Tingting; Li, Chaojun; Zhang, Li; Gao, Xuejin; Tian, Feng; Li, Ning; Li, Jieshou

    2016-01-01

    Background and Aims: This study was designed to investigate a relatively optimum dose of partial enteral nutrition (PEN) which effectively attenuates intestinal barrier dysfunction initiated by ischemia/reperfusion injury (IRI). Methods: In experiment 1, 60 male Sprague-Dawley (SD) rats were subjected to intestinal IRI and assigned to six groups according to the different proportion of EN administrations: namely total parenteral nutrition (TPN or 0%EN), 10%EN, 20%EN, 40%EN, 60%EN, and total enteral nutrition (TEN or 100%) groups, the deficits of intraluminal calorie were supplemented by PN. In experiment 2, 50 male SD rats were subjected to intestinal IRI and divided into five groups based on the results of experiment 1: TPN, TEN, 20%EN, TPN plus pretreatment with NF-κB antagonist 30 min before IRI (TPN+PDTC), and TPN plus pretreatment with HIF-1α antagonist 30 min before IRI (TPN+YC-1) groups. Results: In experiment 1, previous IRI combined with subsequent EN shortage disrupted the structure of intestinal epithelial cell and tight junctions (TJs). While 20% dose of EN had an obviously protective effect on these detrimental consequences. In experiment 2, compared with TPN only, 20%EN exerted a significant protection of barrier function of intestinal epithelium. Analogous results were observed when TPN combined with specific NF-κB/HIF-1α inhibitors (PDTC and YC-1). Meanwhile, the expression of NF-κB/HIF-1α had a similar trend among the groups. Conclusions: Our findings indicate that 20%EN is the minimally effective dosage of EN which promotes the recovery of intestinal barrier function after IRI in a rat model. Furthermore, we discreetly speculate that this benefit is, at least partly, related to NF-κB/HIF-1α pathway expression. PMID:27548209

  18. Impaired function of the intestinal barrier in a novel sub-health rat model

    PubMed Central

    FENG, SISI; LIU, WEIDONG; ZUO, SHENGNAN; XIE, TINGYAN; DENG, HUI; ZHANG, QIUHUAN; ZHONG, BAIYUN

    2016-01-01

    Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub-health model, the rats were subjected to a high-fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D-lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti-apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription-quantitative polymerase chain reaction analyses In the present study, the sub-health rat model was successfully established, and sub-health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub-health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub-health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub-health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms. PMID:26957295

  19. Impaired function of the intestinal barrier in a novel sub-health rat model.

    PubMed

    Feng, Sisi; Liu, Weidong; Zuo, Shengnan; Xie, Tingyan; Deng, Hui; Zhang, Qiuhuan; Zhong, Baiyun

    2016-04-01

    Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub‑health model, the rats were subjected to a high‑fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D‑lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti‑apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription‑quantitative polymerase chain reaction analyses In the present study, the sub‑health rat model was successfully established, and sub‑health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub‑health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub‑health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub‑health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms. PMID:26957295

  20. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function.

    PubMed

    Yue, Yuan; Wu, Shuangchan; Li, Zhike; Li, Jian; Li, Xiaofei; Xiang, Jin; Ding, Hong

    2015-08-01

    Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.

  1. Pregnane X receptor agonists enhance intestinal epithelial wound healing and repair of the intestinal barrier following the induction of experimental colitis.

    PubMed

    Terc, Joshua; Hansen, Ashleigh; Alston, Laurie; Hirota, Simon A

    2014-05-13

    The intestinal epithelial barrier plays a key role in the maintenance of homeostasis within the gastrointestinal tract. Barrier dysfunction leading to increased epithelial permeability is associated with a number of gastrointestinal disorders including the inflammatory bowel diseases (IBD) - Crohn's disease and ulcerative colitis. It is thought that the increased permeability in patients with IBD may be driven by alterations in the epithelial wound healing response. To this end considerable study has been undertaken to identify signaling pathways that may accelerate intestinal epithelial wound healing and normalize the barrier dysfunction observed in IBD. In the current study we examined the role of the pregnane X receptor (PXR) in modulating the intestinal epithelial wound healing response. Mutations and reduced mucosal expression of the PXR are associated with IBD, and others have reported that PXR agonists can dampen intestinal inflammation. Furthermore, stimulation of the PXR has been associated with increased cell migration and proliferation, two of the key processes involved in wound healing. We hypothesized that PXR agonists would enhance intestinal epithelial repair. Stimulation of Caco-2 intestinal epithelial cells with rifaximin, rifampicin and SR12813, all potent agonists of the PXR, significantly increased wound closure. This effect was driven by p38 MAP kinase-dependent cell migration, and occurred in the absence of cell proliferation. Treating mice with a rodent specific PXR agonist, pregnenolone 16α-carbonitrile (PCN), attenuated the intestinal barrier dysfunction observed in the dextran sulphate sodium (DSS) model of experimental colitis, an effect that occurred independent of the known anti-inflammatory effects of PCN. Taken together our data indicate that the activation of the PXR can enhance intestinal epithelial repair and suggest that targeting the PXR may help to normalize intestinal barrier dysfunction observed in patients with IBD

  2. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis.

    PubMed

    Carlsson, Anders H; Yakymenko, Olena; Olivier, Isabelle; Håkansson, Fathima; Postma, Emily; Keita, Asa V; Söderholm, Johan D

    2013-10-01

    OBJECTIVE. The intestinal microbiota plays a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Faecalibacterium prausnitzii (FP) is underrepresented in IBD patients and have been suggested to have anti-inflammatory effects in mice. Increased intestinal permeability is common in IBD but the relationship between FP and intestinal barrier function has not been investigated. Our aim was to study treatment with FP supernatant on intestinal barrier function in a dextran sodium sulfate (DSS) colitis mice model. MATERIAL AND METHODS. C57BL/6 mice received 3% DSS in tap water ad libitum during five days to induce colitis. From day 3 the mice received a daily gavage with FP supernatant or broth during seven days. Ileum and colon were mounted in Ussing chambers for permeability studies with (51)Cr-EDTA and Escherichia coli K-12. Colon was saved for Western blot analyses of tight junction proteins. RESULTS. DSS-treated mice showed significant weight loss and colon shortening. Gavage with FP supernatant resulted in a quicker recovery after DSS treatment and less extensive colonic shortening. Ileal mucosa of DSS mice showed a significant increase in (51)Cr-EDTA-passage compared to controls. (51)Cr-EDTA passage was significantly decreased in mice receiving FP supernatant. No significant differences were observed in passage of E. coli K12. Western blots showed a trend to increased claudin-1 and claudin-2 expressions in DSS mice. CONCLUSIONS. Supernatant of FP enhances the intestinal barrier function by affecting paracellular permeability, and may thereby attenuate the severity of DSS-induced colitis in mice. These findings suggest a potential role of FP in the treatment of IBD.

  3. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  4. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier

    PubMed Central

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  5. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens.

    PubMed

    Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Janssens, Geert P J; De Baere, Siegrid; Mountzouris, Konstantinos C; Su, Shengchen; Wong, Eric A; De Meulenaer, Bruno; Verlinden, Marc; Devreese, Mathias; Haesebrouck, Freddy; Novak, Barbara; Dohnal, Ilse; Martel, An; Croubels, Siska

    2015-12-23

    Deoxynivalenol (DON) and fumonisins (FBs) are secondary metabolites produced by Fusarium fungi that frequently contaminate broiler feed. The aim of this study was to investigate the impact of DON and/or FBs on the intestinal barrier in broiler chickens, more specifically on the mucus layer and antioxidative response to oxidative stress. One-day-old broiler chicks were divided into four groups, each consisting of eight pens of seven birds each, and were fed for 15 days either a control diet, a DON-contaminated diet (4.6 mg DON/kg feed), a FBs-contaminated diet (25.4 mg FB1 + FB2/kg feed), or a DON+FBs-contaminated diet (4.3 mg DON and 22.9 mg FB1 + FB2/kg feed). DON and FBs affected the duodenal mucus layer by suppressing intestinal mucin (MUC) 2 gene expression and altering the mucin monosaccharide composition. Both mycotoxins decreased gene expression of the intestinal zinc transporter (ZnT)-1 and regulated intracellular methionine homeostasis, which are both important for preserving the cell's critical antioxidant activity. Feeding a DON- and/or FBs-contaminated diet, at concentrations close to the European Union maximum guidance levels (5 mg DON and 20 mg FB1 + FB2/kg feed) changes the intestinal mucus layer and several intestinal epithelial antioxidative mechanisms.

  6. Activation of muscarinic cholinoceptor ameliorates tumor necrosis factor-α-induced barrier dysfunction in intestinal epithelial cells.

    PubMed

    Khan, Md Rafiqul Islam; Uwada, Junsuke; Yazawa, Takashi; Islam, Md Tariqul; Krug, Susanne M; Fromm, Michael; Karaki, Shin-ichiro; Suzuki, Yuichi; Kuwahara, Atsukazu; Yoshiki, Hatsumi; Sada, Kiyonao; Muramatsu, Ikunobu; Anisuzzaman, Abu Syed Md; Taniguchi, Takanobu

    2015-11-30

    Impaired intestinal barrier function is one of the critical issues in inflammatory bowel diseases. The aim of this study is to investigate muscarinic cholinoceptor (mAChR)-mediated signaling for the amelioration of cytokine-induced barrier dysfunction in intestinal epithelium. Rat colon challenged with TNF-α and interferon γ reduced transepithelial electrical resistance (TER). This barrier injury was attenuated by muscarinic stimulation. In HT-29/B6 intestinal epithelial cells, muscarinic stimulation suppressed TNF-α-induced activation of NF-κB signaling and barrier disruption. Finally, muscarinic stimulation promoted the shedding of TNFR1, which would be a mechanism for the attenuation of TNF-α/NF-κB signaling and barrier disruption via mAChR.

  7. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage

    PubMed Central

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall’Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  8. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    PubMed

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall'Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  9. Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets

    PubMed Central

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087

  10. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology

    PubMed Central

    Yu, Linda Chia-Hui; Wang, Jin-Town; Wei, Shu-Chen; Ni, Yen-Hsuan

    2012-01-01

    The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status. PMID:22368784

  11. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.

    PubMed

    Nighot, Prashant K; Hu, Chien-An Andy; Ma, Thomas Y

    2015-03-13

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.

  12. Autophagy Enhances Intestinal Epithelial Tight Junction Barrier Function by Targeting Claudin-2 Protein Degradation*

    PubMed Central

    Nighot, Prashant K.; Hu, Chien-An Andy; Ma, Thomas Y.

    2015-01-01

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2. PMID:25616664

  13. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    PubMed Central

    Yu, Qinghua; Yuan, Lixia; Deng, Jun; Yang, Qian

    2015-01-01

    Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells), or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus) C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK, and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection. PMID:25859435

  14. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression

    PubMed Central

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  15. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  16. CXCR4 Antagonist AMD3100 Modulates Claudin Expression and Intestinal Barrier Function in Experimental Colitis

    PubMed Central

    Xia, Xian-Ming; Wang, Fang-Yu; Zhou, Ju; Hu, Kai-Feng; Li, Su-Wen; Zou, Bing-Bing

    2011-01-01

    Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway. PMID:22073304

  17. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis.

    PubMed

    Awad, Wageha A; Zentek, Jürgen

    2015-06-01

    Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis. PMID:24888376

  18. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis.

    PubMed

    Awad, Wageha A; Zentek, Jürgen

    2015-06-01

    Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis.

  19. Lactobacillus plantarum inhibits intestinal epithelial barrier dysfunction induced by unconjugated bilirubin.

    PubMed

    Zhou, Yukun; Qin, Huanlong; Zhang, Ming; Shen, Tongyi; Chen, Hongqi; Ma, Yanlei; Chu, Zhaoxin; Zhang, Peng; Liu, Zhihua

    2010-08-01

    Although a large number of in vitro and in vivo tests have confirmed that taking probiotics can improve the intestinal barrier, few studies have focused on the relationship between probiotics and the intestinal epithelial barrier in hyperbilirubinaemia. To investigate the effects of and mechanisms associated with probiotic bacteria (Lactobacillus plantarum; LP) and unconjugated bilirubin (UCB) on the intestinal epithelial barrier, we measured the viability, apoptotic ratio and protein kinase C (PKC) activity of Caco-2 cells. We also determined the distribution and expression of tight junction proteins such as occludin, zonula occludens (ZO)-1, claudin-1, claudin-4, junctional adhesion molecule (JAM)-1 and F-actin using confocal laser scanning microscopy, immunohistochemistry, Western blotting and real-time quantitative PCR. The present study demonstrated that high concentrations of UCB caused obvious cytotoxicity and decreased the transepithelial electrical resistance (TER) of the Caco-2 cell monolayer. Low concentrations of UCB inhibited the expression of tight junction proteins and PKC but could induce UDP-glucuronosyltransferases 1 family-polypeptide A1 (UGT1A1) expression. UCB alone caused decreased PKC activity, serine phosphorylated occludin and ZO-1 levels. After treatment with LP, the effects of UCB on TER and apoptosis were mitigated; LP also prevented aberrant expression and rearrangement of tight junction proteins. Moreover, PKC activity and serine phosphorylated tight junction protein levels were partially restored after treatment with LP, LP exerted a protective effect against UCB damage to Caco-2 monolayer cells, and it restored the structure and distribution of tight junction proteins by activating the PKC pathway. In addition, UGT1A1 expression induced by UCB in Caco-2 cells could ameliorate the cytotoxicity of UCB. PMID:20412608

  20. Changes of the immunological barrier of intestinal mucosa in rats with sepsis

    PubMed Central

    Jiang, Long-yuan; Zhang, Meng; Zhou, Tian-en; Yang, Zheng-fei; Wen, Li-qiang; Chang, Jian-xing

    2010-01-01

    BACKGROUND: Sepsis has become the greatest threat to in-patients, with a mortality of over 25%. The dysfunction of gut barrier, especially the immunological barrier, plays an important role in the development of sepsis. This dysfunction occurs after surgery, but the magnitude of change does not differentiate patients with sepsis from those without sepsis. Increased intestinal permeability before surgery is of no value in predicating sepsis. The present study aimed to observe the changes of intestinal mucosal immunologic barrier in rat models of sepsis induced by cecal ligation and puncture. METHODS: Sixty Sprague-Dawley rats were randomly divided into a sepsis group (n=45) and a control group (n=15). The rats in the sepsis group were subjected to cecal ligation and puncture (CLP), whereas the rats in the control group underwent a sham operation. The ileac mucosa and segments were harvested 3, 6 and 12 hours after CLP, and blood samples were collected. Pathological changes, protein levels of defensin-5 (RD-5) and trefoil factor-3 (TFF3) mRNA, and lymphocytes apoptosis in the intestinal mucosa were determined. In an additional experiment, the gut-origin bacterial DNA in blood was detected. RESULTS: The intestinal mucosa showed marked injury with loss of ileal villi, desquamation of epithelium, detachment of lamina propria, hemorrhage and ulceration in the sepsis group. The expression of TFF3 mRNA and level of RD-5 protein were decreased and the apoptosis of mucosal lymphocyte increased (P<0.05) in the sepsis group compared with the control group. Significant differences were observed in RD-5 and TFF3 mRNA 3 hours after CLP and they were progressively increased 6 and 12 hours after CLP in the sepsis group compared with the control group (P<0.05, RD-5 F=11.76, TFF3 F=16.86 and apoptosis F=122.52). In addition, the gut-origin bacterial DNA detected in plasma was positive in the sepsis group. CONCLUSION: The immunological function of the intestinal mucosa was impaired in

  1. Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease.

    PubMed

    Nalle, Sam C; Kwak, H Aimee; Edelblum, Karen L; Joseph, Nora E; Singh, Gurminder; Khramtsova, Galina F; Mortenson, Eric D; Savage, Peter A; Turner, Jerrold R

    2014-07-01

    Previous studies have shown a correlation between pretransplant conditioning intensity, intestinal barrier loss, and graft-versus-host disease (GVHD) severity. However, because irradiation and other forms of pretransplant conditioning have pleiotropic effects, the precise role of intestinal barrier loss in GVHD pathogenesis remains unclear. We developed GVHD models that allowed us to isolate the specific contributions of distinct pretransplant variables. Intestinal damage was required for the induction of minor mismatch [major histocompatibility complex (MHC)-matched] GVHD, but was not necessary for major mismatch GVHD, demonstrating fundamental pathogenic distinctions between these forms of disease. Moreover, recipient natural killer (NK) cells prevented minor mismatch GVHD by limiting expansion and target organ infiltration of alloreactive T cells via a perforin-dependent mechanism, revealing an immunoregulatory function of MHC-matched recipient NK cells in GVHD. Minor mismatch GVHD required MyD88-mediated Toll-like receptor 4 (TLR4) signaling on donor cells, and intestinal damage could be bypassed by parenteral lipopolysaccharide (LPS) administration, indicating a critical role for the influx of bacterial components triggered by intestinal barrier loss. In all, the data demonstrate that pretransplant conditioning plays a dual role in promoting minor mismatch GVHD by both depleting recipient NK cells and inducing intestinal barrier loss.

  2. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  3. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome.

    PubMed

    Hammer, Adam M; Morris, Niya L; Earley, Zachary M; Choudhry, Mashkoor A

    2015-01-01

    Alcohol (ethanol) is one of the most globally abused substances, and is one of the leading causes of premature death in the world. As a result of its complexity and direct contact with ingested alcohol, the intestine represents the primary source from which alcohol-associated pathologies stem. The gut is the largest reservoir of bacteria in the body, and under healthy conditions, it maintains a barrier preventing bacteria from translocating out of the intestinal lumen. The intestinal barrier is compromised following alcohol exposure, which can lead to life-threatening systemic complications including sepsis and multiple organ failure. Furthermore, alcohol is a major confounding factor in pathology associated with trauma. Experimental data from both human and animal studies suggest that alcohol perturbs the intestinal barrier and its function, which is exacerbated by a "second hit" from traumatic injury. This article highlights the role of alcohol-mediated alterations of the intestinal epithelia and its defense against bacteria within the gut, and the impact of alcohol on intestinal immunity, specifically on T cells and neutrophils. Finally, it discusses how the gut microbiome both contributes to and protects the intestines from dysbiosis after alcohol exposure and trauma.

  4. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease.

    PubMed

    Williams, Benjamin B; Tebbutt, Niall C; Buchert, Michael; Putoczki, Tracy L; Doggett, Karen; Bao, Shisan; Johnstone, Cameron N; Masson, Frederick; Hollande, Frederic; Burgess, Antony W; Scott, Andrew M; Ernst, Matthias; Heath, Joan K

    2015-08-01

    The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33(-/-) mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33(-/-) mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33(-/-) mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33(-/-) mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33(-/-) mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33(-/-) mice provide a valuable model to study the mechanisms linking intestinal

  5. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    PubMed

    Akiyama, Takuya; Oishi, Kenji; Wullaert, Andy

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  6. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers

    PubMed Central

    Akiyama, Takuya; Oishi, Kenji

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  7. Alcohol-induced disruption of endocrine signaling.

    PubMed

    Ronis, Martin J J; Wands, Jack R; Badger, Thomas M; de la Monte, Suzanne M; Lang, Charles H; Calissendorff, Jan

    2007-08-01

    This article contains the proceedings of a symposium at the 2006 ISBRA meeting in Sydney Australia, organized and cochaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effect of long-term ethanol consumption on liver injury and repair, by Jack R. Wands; (2) Alcohol-induced insulin resistance in liver: potential roles in regulation of ADH expression, ethanol clearance, and alcoholic liver disease, by Thomas M. Badger; (3) Chronic gestational exposure to ethanol causes brain insulin and insulin-like growth factor resistance, by Suzanne M de la Monte; (4) Disruption of IGF-1 signaling in muscle: a mechanism underlying alcoholic myopathy, by Charles H. Lang; (5) The role of reduced plasma estradiol and impaired estrogen signaling in alcohol-induced bone loss, by Martin J. Ronis; and (6) Short-term influence of alcohol on appetite-regulating hormones in man, by Jan Calissendorff.

  8. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  9. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice.

    PubMed

    Guan, Guiping; Wang, Hongbing; Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  10. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements.

  11. Effects of simulated weightlessness on the intestinal mucosal barrier of rats

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Chun-min; Mao, Gao-ping; Liu, Qing-sen; Guo, Ming-zhou

    2011-07-01

    This study employed a rat tail-suspension model to investigate the effects of simulated weightlessness on the intestinal mucosal barrier. Twenty-four Wistar rats were randomly divided into control (CON), 14-day tail-suspension (SUS-14d), and 21-day tail-suspension (SUS-21d) groups ( n = 8 per group). Expression of occludin and zonula occludins-1 (ZO-1), proteins of the tight junction (TJ), in the intestinal mucosa was measured by immunohistochemical analysis, Western blotting, and mRNA fluorescent quantitation PCR. Plasma concentrations of diamine oxidase (DAO) and D-lactate were determined using an enzymatic spectrophotometric assay. Expression of occludin and ZO-1 was reduced in the SUS-14d and SUS-21d groups as compared to the CON group, with lowest expression observed in the SUS-21d group ( P < 0.01). Examination by transmission electron microscopy (TEM) of the jejunal epithelium revealed increased intercellular space, decreased TJ and desmosome densities, and destruction of microvilli in the SUS-14d and SUS-21d groups. Plasma DAO and D-lactate concentrations in the SUS-21d group were higher than those in SUS-14d group and significantly higher than those in the CON group ( P < 0.01). In all three groups, the expression of occludin and ZO-1 was found to correlate negatively with DAO ( P < 0.01) and D-lactate ( P < 0.01) concentrations. It is concluded that simulated weightless results in down-regulation of expression of TJ proteins in the rat intestinal mucosa. Simulated weightlessness is proposed to increase intestinal permeability through damage to the TJ.

  12. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients.

  13. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis.

    PubMed

    Naydenov, Nayden G; Feygin, Alex; Wang, Dongdong; Kuemmerle, John F; Harris, Gianni; Conti, Mary Anne; Adelstein, Robert S; Ivanov, Andrei I

    2016-01-01

    The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo. PMID:27063635

  14. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis

    PubMed Central

    Naydenov, Nayden G.; Feygin, Alex; Wang, Dongdong; Kuemmerle, John F.; Harris, Gianni; Conti, Mary Anne; Adelstein, Robert S.; Ivanov, Andrei I.

    2016-01-01

    The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo. PMID:27063635

  15. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model

    PubMed Central

    Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01). Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01) and suppressed zonulin release (P < 0.05). In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01) and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05) and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05). Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01), decreased the levels of serum zonulin (P < 0.05), normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may protect against

  16. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    PubMed

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01). Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01) and suppressed zonulin release (P < 0.05). In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01) and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05) and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05). Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01), decreased the levels of serum zonulin (P < 0.05), normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may protect against

  17. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium.

    PubMed

    Purohit, Vishnudutt; Bode, J Christian; Bode, Christiane; Brenner, David A; Choudhry, Mashkoor A; Hamilton, Frank; Kang, Y James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R Balfour; Swanson, Christine; Turner, Jerrold R

    2008-08-01

    This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram-negative bacteria in the intestine, which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram-negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan, which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram-negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, l-glutamine, oats supplementation, or zinc, thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram-negative bacteria

  18. The importance of alcohol-induced muscle disease.

    PubMed

    Preedy, Victor R; Ohlendieck, Kay; Adachi, Junko; Koll, Michael; Sneddon, Alan; Hunter, Ross; Rajendram, Rajkumar; Mantle, David; Peters, Timothy J

    2003-01-01

    Alcohol-induced muscle disease (AIMD) is a composite term to describe any muscle pathology (molecular, biochemical, structural or physiological) resulting from either acute or chronic alcohol ingestion or a combination thereof. The chronic form of AIMD is arguably the most prevalent skeletal muscle disorder in the Western Hemisphere affecting more than 2000 subjects per 100,000 population and is thus much more common than hereditary disorders such as Becker or Duchenne muscular dystrophy. Paradoxically, most texts on skeletal myopathies or scientific meetings covering muscle disease have generally ignored chronic alcoholic myopathy. The chronic form of AIMDs affects 40-60% of alcoholics and is more common than other alcohol-induced diseases, for example, cirrhosis (15-20% of chronic alcoholics), peripheral neuropathy (15-20%), intestinal disease (30-50%) or cardiomyopathy (15-35%). In this article, we summarise the pathological features of alcoholic muscle disease, particularly biochemical changes related to protein metabolism and some of the putative underlying mechanisms. However, the intervening steps between the exposure of muscle to ethanol and the initiation of the cascade of responses leading to muscle weakness and loss of muscle bulk remain essentially unknown. We argue that alcoholic myopathy represents: (a) a model system in which both the causal agent and the target organ is known; (b) a myopathy involving free-radical mediated pathology to the whole body which may also target skeletal muscle and (c) a reversible myopathy, unlike many hereditary muscle diseases. A clearer understanding of the mechanisms responsible for alcoholic myopathy is important since some of the underlying pathways may be common to other myopathies.

  19. Mechanism of intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease: An observational study

    PubMed Central

    Xin, Xiaofeng; Dai, Wei; Wu, Jie; Fang, Liping; Zhao, Ming; Zhang, Pengpeng; Chen, Min

    2016-01-01

    The aim of the present study was to investigate intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease (COPD). Male Sprague Dawley rats (n=40) were evenly randomized into control and COPD groups and the COPD model was established by regulated exposure to cigarette smoke for 6 months. Histopathological changes of the lung and intestinal tissues were detected by hematoxylin and eosin staining. Expression of the tight junction proteins occludin and zona occludens-1 (ZO-1) in the intestinal tissues were analyzed by western blotting, serum diamine oxidase (DAO) activity was detected by spectrophotometry, the urinary lactulose to mannitol ratio (L/M) was evaluated by high performance liquid chromatography, and intestinal tissue secretion of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-8 were detected by ELISA. Lung histopathology revealed thinned alveolar walls, ruptured alveolar septa, enlarged and deformed alveoli, and the formation of bullae and emphysema due to alveolar fusion in the COPD group, while intestinal histopathology indicated clearly swollen intestines with darkened and gray mucosa, neutrophil infiltration of the intestinal mucosal and regional epithelial shedding. The occludin and ZO-1 expression levels were significantly lower in the COPD group compared with those in the corresponding control group (P<0.05), while the urinary L/M ratio was significantly higher (P<0.05). Furthermore, the serum DAO activity and secretion of TNF-α, IFN-γ and IL-8 in the intestinal tissues were significantly higher in the COPD group than in the control group (each P<0.05). Dysfunctional and structural changes were observed in the intestinal mucosal barrier in COPD model rats, which may be associated with the increased intestinal inflammatory responses. PMID:27588054

  20. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice.

    PubMed

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-08-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota.

  1. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice

    PubMed Central

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-01-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota. PMID:26247961

  2. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.

  3. A coculture model mimicking the intestinal mucosa reveals a regulatory role for myofibroblasts in immune-mediated barrier disruption.

    PubMed

    Willemsen, L E M; Schreurs, C C H M; Kroes, H; Spillenaar Bilgen, E J; Van Deventer, S J H; Van Tol, E A F

    2002-10-01

    The pathogenesis of Crohn's disease involves a mucosal inflammatory response affecting the barrier function of the gut. Myofibroblasts directly underlining the intestinal epithelium may have a regulatory role in immune-mediated barrier disruption. A coculture system of T84 epithelial and CCD-18Co myofibroblasts was established in order to mimic the in situ spatial interactions between these cell types and to evaluate their role in barrier: integrity. Lamina propria mononuclear cells (LPMC) were introduced in co- and monocultures. Effects of immune cells on barrier integrity was determined by measuring resistance and permeability for macromolecules. Introduction of LPMC in both culture systems caused a time-dependent decrease in barrier integrity. This was found to be less pronounced in cocultures indicating a regulatory role for mesenchymal cells. The effects were also found to depend on the route of LPMC stimulation. Additional analyses suggested that the regulatory role of myofibroblasts in barrier integrity involves production of growth factors. PMID:12395905

  4. Enteral feeding and its impact on the gut immune system and intestinal mucosal barrier

    PubMed Central

    Kruszewski, Wiesław J.; Buczek, Tomasz

    2015-01-01

    Enteral feeding is the preferred method of nutritional therapy. Mucosal lack of contact with nutrients leads do lymphoid tissue atrophy, immune system functional decline, and intensification in bacterial translocation. Currently, it is assumed that microbiome is one of the body organs that has a significant impact on health. The composition of microbiome is not affected by age, sex, or place of residence, although it changes rapidly after diet modification. The composition of the microbiome is determined by enterotype, which is specific for each organism. It has a significant impact on the risk of diabetes, cancer, atherosclerosis, and other diseases. This review gathers data on interaction between gut-associated lymphoid tissue, mucosa-associated lymphoid tissue, microbiome, and the intestinal mucosal barrier. Usually, the information on the aforementioned is scattered in specialist-subject magazines such as gastroenterology, microbiology, genetics, biochemistry, and others. PMID:26557936

  5. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier.

    PubMed

    Wu, Shao-Jung; Don, Trong-Ming; Lin, Cheng-Wei; Mi, Fwu-Long

    2014-11-01

    Bacterial-derived lipopolysaccharides (LPS) can cause defective intestinal barrier function and play an important role in the development of inflammatory bowel disease. In this study, a nanocarrier based on chitosan and fucoidan was developed for oral delivery of berberine (Ber). A sulfonated fucoidan, fucoidan-taurine (FD-Tau) conjugate, was synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy. The FD-Tau conjugate was self-assembled with berberine and chitosan (CS) to form Ber-loaded CS/FD-Tau complex nanoparticles with high drug loading efficiency. Berberine release from the nanoparticles had fast release in simulated intestinal fluid (SIF, pH 7.4), while the release was slow in simulated gastric fluid (SGF, pH 2.0). The effect of the berberine-loaded nanoparticles in protecting intestinal tight-junction barrier function against nitric oxide and inflammatory cytokines released from LPS-stimulated macrophage was evaluated by determining the transepithelial electrical resistance (TEER) and paracellular permeability of a model macromolecule fluorescein isothiocyanate-dextran (FITC-dextran) in a Caco-2 cells/RAW264.7 cells co-culture system. Inhibition of redistribution of tight junction ZO-1 protein by the nanoparticles was visualized using confocal laser scanning microscopy (CLSM). The results suggest that the nanoparticles may be useful for local delivery of berberine to ameliorate LPS-induced intestinal epithelia tight junction disruption, and that the released berberine can restore barrier function in inflammatory and injured intestinal epithelial. PMID:25421323

  6. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets

    PubMed Central

    Jacobi, Sheila K; Moeser, Adam J; Blikslager, Anthony T; Rhoads, J Marc; Corl, Benjamin A; Harrell, Robert J; Odle, Jack

    2013-01-01

    AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model. METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses. RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). 3H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol. CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model. PMID:23964143

  7. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  8. DHA protects against experimental colitis in IL-10-deficient mice associated with the modulation of intestinal epithelial barrier function.

    PubMed

    Zhao, Jie; Shi, Peiliang; Sun, Ye; Sun, Jing; Dong, Jian-Ning; Wang, Hong-Gang; Zuo, Lu-Gen; Gong, Jian-Feng; Li, Yi; Gu, Li-Li; Li, Ning; Li, Jie-Shou; Zhu, Wei-Ming

    2015-07-01

    A defect in the intestinal barrier is one of the characteristics of Crohn's disease (CD). The tight junction (TJ) changes and death of epithelial cells caused by intestinal inflammation play an important role in the development of CD. DHA, a long-chain PUFA, has been shown to be helpful in treating inflammatory bowel disease in experimental models by inhibiting the NF-κB pathway. The present study aimed at investigating the specific effect of DHA on the intestinal barrier function in IL-10-deficient mice. IL-10-deficient mice (IL-10(-/-)) at 16 weeks of age with established colitis were treated with DHA (i.g. 35.5 mg/kg per d) for 2 weeks. The severity of their colitis, levels of pro-inflammatory cytokines, epithelial gene expression, the distributions of TJ proteins (occludin and zona occludens (ZO)-1), and epithelial apoptosis in the proximal colon were measured at the end of the experiment. DHA treatment attenuated the established colitis and was associated with reduced infiltration of inflammatory cells in the colonic mucosa, lower mean histological scores and decreased levels of pro-inflammatory cytokines (IL-17, TNF-α and interferon-γ). Moreover, enhanced barrier function was observed in the DHA-treated mice that resulted from attenuated colonic permeability, rescued expression and corrected distributions of occludin and ZO-1. The results of the present study indicate that DHA therapy may ameliorate experimental colitis in IL-10(-/-) mice by improving the intestinal epithelial barrier function.

  9. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function.

    PubMed

    Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro

    2014-08-01

    Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs.

  10. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    PubMed

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs.

  11. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    PubMed

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  12. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Yin, Li; Li, Xing; Tang, Meng; Zhang, Tao; Wang, Dayong

    2013-09-01

    Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L-1 of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged

  13. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation.

    PubMed

    Ling, Ka-Ho; Wan, Murphy Lam Yim; El-Nezami, Hani; Wang, Mingfu

    2016-05-16

    Contamination of food/feedstuffs by mycotoxins is a serious problem worldwide, causing severe economic losses and serious health problems in animals/humans. Deoxynivalenol (DON) is a major mycotoxin contaminant and is known to impair intestinal barrier function. Grapes and red wine are rich in polyphenols, such as resveratrol (RES), which has striking antioxidant and anti-inflammatory activities. RES is a food-derived component; therefore, it may be simultaneously present with DON in the gastrointestinal tract. The aim of this study was to explore in vitro protective effects of RES against DON-induced intestinal damage. The results showed that RES could protect DON-induced bacteria translocation because of enhanced of intestinal barrier function by restoring the DON-induced decrease in transepithelial electrical resistance and increase in paracellular permeability. Further mechanistic studies demonstrated that RES protects against DON-induced barrier dysfunction by promoting the assembly of claudin-4 in the tight junction complex. This is probably mediated through modulation of IL-6 and IL-8 secretion via mitogen-activated protein kinase-dependent pathways. Our results imply that RES can protect against DON-induced intestinal damage and that RES may be used as a novel dietary intervention strategy to reduce DON toxicity in animals/humans. PMID:27058607

  14. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation.

    PubMed

    Ling, Ka-Ho; Wan, Murphy Lam Yim; El-Nezami, Hani; Wang, Mingfu

    2016-05-16

    Contamination of food/feedstuffs by mycotoxins is a serious problem worldwide, causing severe economic losses and serious health problems in animals/humans. Deoxynivalenol (DON) is a major mycotoxin contaminant and is known to impair intestinal barrier function. Grapes and red wine are rich in polyphenols, such as resveratrol (RES), which has striking antioxidant and anti-inflammatory activities. RES is a food-derived component; therefore, it may be simultaneously present with DON in the gastrointestinal tract. The aim of this study was to explore in vitro protective effects of RES against DON-induced intestinal damage. The results showed that RES could protect DON-induced bacteria translocation because of enhanced of intestinal barrier function by restoring the DON-induced decrease in transepithelial electrical resistance and increase in paracellular permeability. Further mechanistic studies demonstrated that RES protects against DON-induced barrier dysfunction by promoting the assembly of claudin-4 in the tight junction complex. This is probably mediated through modulation of IL-6 and IL-8 secretion via mitogen-activated protein kinase-dependent pathways. Our results imply that RES can protect against DON-induced intestinal damage and that RES may be used as a novel dietary intervention strategy to reduce DON toxicity in animals/humans.

  15. Fermented Yupingfeng polysaccharides enhance immunity by improving the foregut microflora and intestinal barrier in weaning rex rabbits.

    PubMed

    Sun, Hao; Ni, Xueqin; Song, Xu; Wen, Bin; Zhou, Yi; Zou, Fuqin; Yang, Mingyue; Peng, Zhirong; Zhu, Hui; Zeng, Yan; Wang, Hesong; Fu, Xiangchao; Shi, Yunduo; Yin, Zhongqiong; Pan, Kangcheng; Jing, Bo; Zeng, Dong; Wang, Ping

    2016-09-01

    Yupingfeng (YPF) is a kind of Astragali radix-based ancient Chinese herbal supplemented with Atractylodis Macrocephalae Rhizoma and Radix Saposhnikoviae. Increasing evidence has proven the beneficial immunomodulating activity of YPF. However, the action mechanism(s) of it is not known. Here, we explored the immunomodulatory activity of unfermented Yupingfeng polysaccharides (UYP) and fermented Yupingfeng polysaccharides (FYP) obtained using Rhizopus oligosporus SH in weaning Rex rabbits. The results showed that both UYP and FYP exhibited notable growth-promoting and immune-enhancing activities, improvement of the intestinal flora homeostasis, and maintenance of intestinal barrier integrity and functionality. Notably, compared with UYP, FYP effectively enhanced average daily gain, organ indices, interleukin-2 (IL-2), IL-4, IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ protein concentrations in serum, and TLR2 and TLR4 mRNA expressions in the gastrointestinal tract (GIT). Moreover, FYP exhibited greater beneficial effects in improving the intestinal flora, including augment flora diversity and the abundance of cellulolytic bacteria, reduction the abundance of Streptococcus spp. and Enterococcus spp. in the GIT, particularly the foregut and maintaining the intestinal barrier integrity and functionality by upregulating zonula occludens 1, claudin, polymeric immunoglobulin receptor, trefoil factor, and epidermal growth factor mRNA levels in the jejunum and ileum. Our results indicated the immunoenhancement effect of FYP is superior over that of UYP, which is probably related with the amelioration of the intestinal microflora and intestinal barrier in the foregut. PMID:27260288

  16. A new role for reticulon-4B/NOGO-B in the intestinal epithelial barrier function and inflammatory bowel disease.

    PubMed

    Rodríguez-Feo, Juan Antonio; Puerto, Marta; Fernández-Mena, Carolina; Verdejo, Cristina; Lara, José Manuel; Díaz-Sánchez, María; Álvarez, Emilio; Vaquero, Javier; Marín-Jiménez, Ignacio; Bañares, Rafael; Menchén, Luis

    2015-06-15

    Inflammatory bowel disease (IBD) is characterized by an impaired intestinal barrier function. We aimed to investigate the role of reticulon-4B (RTN-4B/NOGO-B), a structural protein of the endoplasmic reticulum, in intestinal barrier function and IBD. We used immunohistochemistry, confocal microscopy, real-time PCR, and Western blotting to study tissue distribution and expression levels of RTN-4B/NOGO-B in control and IBD samples from mouse and humans. We also targeted RTN-4B/NOGO-B using siRNAs in cultured human intestinal epithelial cell (IECs). Epithelial barrier permeability was assessed by transepithelial electrical resistance (TEER) measurement. RTN-4B/NOGO-B is expressed in the intestine mainly by IECs. Confocal microscopy revealed a colocalization of RTN-4B, E-cadherin, and polymerized actin fibers in tissue and cultured IECs. RTN-4B mRNA and protein expression were lower in the colon of IL-10(-/-) compared with wild-type mice. Colocalization of RTN-4B/E-cadherin/actin was reduced in the colon of IL-10(-/-) mice. Analysis of endoscopic biopsies from IBD patients showed a significant reduction of RTN-4B/NOGO-B expression in inflamed mucosa compared with control. Treatment of IECs with H2O2 reduced TEER values and triggered phosphorylation of RTN-4B in serine 107 residues as well as downregulation of RTN-4B expression. Acute RTN-4B/NOGO-B knockdown by siRNAs resulted in a decreased TEER values and reduction of E-cadherin and α-catenin expression and in the amount of F-actin-rich filaments in IECs. Epithelial RTN-4B/NOGO-B was downregulated in human and experimental IBD. RTN-4B participates in the intestinal epithelial barrier function, most likely via its involvement in E-cadherin, α-catenin expression, and actin cytoskeleton organization at sites of cell-to-cell contacts.

  17. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  18. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin

    PubMed Central

    Nikitas, Georgios; Deschamps, Chantal; Disson, Olivier; Niault, Théodora; Cossart, Pascale

    2011-01-01

    Listeria monocytogenes (Lm) is a foodborne pathogen that crosses the intestinal barrier upon interaction between its surface protein InlA and its species-specific host receptor E-cadherin (Ecad). Ecad, the key constituent of adherens junctions, is typically situated below tight junctions and therefore considered inaccessible from the intestinal lumen. In this study, we investigated how Lm specifically targets its receptor on intestinal villi and crosses the intestinal epithelium to disseminate systemically. We demonstrate that Ecad is luminally accessible around mucus-expelling goblet cells (GCs), around extruding enterocytes at the tip and lateral sides of villi, and in villus epithelial folds. We show that upon preferential adherence to accessible Ecad on GCs, Lm is internalized, rapidly transcytosed across the intestinal epithelium, and released in the lamina propria by exocytosis from where it disseminates systemically. Together, these results show that Lm exploits intrinsic tissue heterogeneity to access its receptor and reveal transcytosis as a novel and unanticipated pathway that is hijacked by Lm to breach the intestinal epithelium and cause systemic infection. PMID:21967767

  19. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers.

    PubMed

    Kaushik, Gaurav; Huber, David P; Aho, Ken; Finney, Bruce; Bearden, Shawn; Zarbalis, Konstantinos S; Thomas, Michael A

    2016-05-27

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding (2)H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post-conception days), and quantifying (2)H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of (2)H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical

  20. Severity of pancreatitis-associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin

    PubMed Central

    Deng, Wenhong; Abliz, Ablikim; Xu, Sheng; Sun, Rongze; Guo, Wenyi; Shi, Qiao; Yu, Jia; Wang, Weixing

    2016-01-01

    intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP. PMID:27573037

  1. Severity of pancreatitis‑associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin.

    PubMed

    Deng, Wenhong; Abliz, Ablikim; Xu, Sheng; Sun, Rongze; Guo, Wenyi; Shi, Qiao; Yu, Jia; Wang, Weixing

    2016-10-01

    that apocynin may attenuate intestinal barrier dysfunction in sodium taurocholate‑induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF‑κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP. PMID:27573037

  2. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome

    PubMed Central

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-01-01

    Aim: The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g·kg−1·d−1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4+ and CD8+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+/CD8+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4+/CD8+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  3. Macleaya cordata Extract Decreased Diarrhea Score and Enhanced Intestinal Barrier Function in Growing Piglets.

    PubMed

    Liu, Gang; Guan, Guiping; Fang, Jun; Martínez, Yordan; Chen, Shuai; Bin, Peng; Duraipandiyan, Veeramuthu; Gong, Ting; Tossou, Myrlene Carine B; Al-Dhabi, Naif Abdullah; Yin, Yulong

    2016-01-01

    Macleaya cordata extract is of great scientific and practical interest to researchers, due to its antimicrobial and anti-inflammatory responses within experimental animals. This study was designed to determine the diarrhea score and innate immunity of growing piglets after they had received Macleaya cordata extract supplements. A total of 240 growing pigs were randomly assigned to one of three dietary treatments, with 8 replicates per treatment and 10 piglets per replicate. All pigs received a basal diet containing similar amounts of nutrients. The three treatments were a control (no additive), an antibiotic (200 mg/kg colistin), and the Macleaya cordata extract supplement group (40 mg/kg Macleaya cordata extract). The diarrhea score was calculated after D 28. The jejunal samples were obtained from five piglets selected randomly from each treatment on D 28. In comparison with the control group, the dietary Macleaya cordata extract and colistin group demonstrated a substantially decreased diarrhea score. The introduction of Macleaya cordata extract supplements to the diet significantly increased volumes of ZO-1 and claudin-1, particularly in comparison with the pigs in the control group (P < 0.05). The findings indicate that Macleaya cordata extract does enhance intestinal barrier function in growing piglets and that it could be used as a viable substitute for antibiotics. PMID:27525260

  4. Macleaya cordata Extract Decreased Diarrhea Score and Enhanced Intestinal Barrier Function in Growing Piglets

    PubMed Central

    Fang, Jun; Martínez, Yordan; Bin, Peng; Duraipandiyan, Veeramuthu; Yin, Yulong

    2016-01-01

    Macleaya cordata extract is of great scientific and practical interest to researchers, due to its antimicrobial and anti-inflammatory responses within experimental animals. This study was designed to determine the diarrhea score and innate immunity of growing piglets after they had received Macleaya cordata extract supplements. A total of 240 growing pigs were randomly assigned to one of three dietary treatments, with 8 replicates per treatment and 10 piglets per replicate. All pigs received a basal diet containing similar amounts of nutrients. The three treatments were a control (no additive), an antibiotic (200 mg/kg colistin), and the Macleaya cordata extract supplement group (40 mg/kg Macleaya cordata extract). The diarrhea score was calculated after D 28. The jejunal samples were obtained from five piglets selected randomly from each treatment on D 28. In comparison with the control group, the dietary Macleaya cordata extract and colistin group demonstrated a substantially decreased diarrhea score. The introduction of Macleaya cordata extract supplements to the diet significantly increased volumes of ZO-1 and claudin-1, particularly in comparison with the pigs in the control group (P < 0.05). The findings indicate that Macleaya cordata extract does enhance intestinal barrier function in growing piglets and that it could be used as a viable substitute for antibiotics. PMID:27525260

  5. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  6. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  7. New advances in the pathophysiology of intestinal ion transport and barrier function in diarrhea and the impact on therapy.

    PubMed

    Hoque, Kazi Mirajul; Chakraborty, Subhra; Sheikh, Irshad Ali; Woodward, Owen M

    2012-06-01

    Diarrhea remains a continuous threat to human health worldwide. Scaling up the best practices for diarrhea prevention requires improved therapies. Diarrhea results from dysregulation of normal intestinal ion transport functions. Host-microbe contact is a key determinant of this response. Underlying mechanisms in the disease state are regulated by intracellular signals that modulate the activity of individual transport proteins responsible for ion transport and barrier function. Similarly, virulence factors of pathogens and their complex interaction with the host has shed light on the mechanism of enteric infection. Great advances in our understanding of the pathophysiologic mechanisms of epithelial transport, and host-microbe interaction have been made in recent years. Application of these new advances may represent strategies to decrease pathogen attachment, enhance intestinal cation absorption, decrease anion secretion and repair barrier function. This review highlights the new advances and better understanding in the pathophysiology of diarrheal diseases and their impact on therapy.

  8. The permeability of the plasma-lymph barrier of the small intestine of various species to macromolecules.

    PubMed

    Vogel, G; Martensen, I

    1982-03-01

    The filtration coefficients of polyvinylpyrrolidone (PVP) of molecular weight 10,000-110,000 were measured at the plasma-lymph barrier of the upper small intestine of rabbits, rats and cats. For this purpose the animals were given intravenous injections or infusions of PVP in such a way as to produce a constant blood level; PVP concentrations were measured in lymph obtained by cannulating the mesenteric duct and also in the plasma. In these species low molecular weight PVP had a filtration coefficient of 0.85-0.64, while high molecular weight PVP (MW 110,000) either had a very low filtration coefficient - 0.22 - or was not detectable in the intestinal lymph. The three species, representing herbivores, omnivores and carnivores, showed no differences in the penetration behavior of PVP, i.e., in the permeability of the plasma-lymph barrier to macromolecules.

  9. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo

    PubMed Central

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  10. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    PubMed

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  11. Acute Alcohol-Induced Liver Injury

    PubMed Central

    Massey, Veronica L.; Arteel, Gavin E.

    2012-01-01

    Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD) in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation, and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, which also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic. PMID:22701432

  12. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    PubMed

    Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.

  13. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    PubMed

    Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report. PMID:26536291

  14. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge.

    PubMed

    Gao, Chengbin; Fu, Qiang; Su, Baofeng; Zhou, Shun; Liu, Fengqiao; Song, Lin; Zhang, Min; Ren, Yichao; Dong, Xiaoyu; Tan, Fenghua; Li, Chao

    2016-12-01

    The mucosal immune system serves as the frontline barriers of host defense against pathogen infection, especially for the fishes, which are living in the pathogen rich aquatic environment. The intestine constitutes the largest surface body area in constantly contact with the external pathogens, and plays a vital role in the immune defense against inflammation and pathogen infection. Previous studies have revealed that fish intestine might serves as the portal of entry for Vibrio anguillarum. To characterize the immune actors and their associated immune activities in turbot intestine barrier during bacterial infection, here we examined the gene expression profiles of turbot intestine at three time points following experimental infection with V. anguillarum utilizing RNA-seq technology. A total of 122 million reads were assembled into 183,101 contigs with an average length of 1151 bp and the N50 size of 2302 bp. Analysis of differential gene expression between control and infected samples at 1 h, 4 h, and 12 h revealed 2079 significantly expressed genes. Enrichment and pathway analysis of the differentially expressed genes showed the centrality of the pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification and immune activation/inflammation in the pathogen entry and host immune responses. The present study reported the novel gene expression patterns in turbot mucosal immunity, which were overlooked in previous studies. Our results can help to understand the mechanisms of turbot host defense, and may also provide foundation to identify the biomarkers for future selection of disease-resistant broodstock and evaluation of disease prevention and treatment options. PMID:27431928

  15. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression.

    PubMed

    Miyoshi, Yuka; Tanabe, Soichi; Suzuki, Takuya

    2016-07-01

    Intracellular zinc is required for a variety of cell functions, but its precise roles in the maintenance of the intestinal tight junction (TJ) barrier remain unclear. The present study investigated the essential roles of intracellular zinc in the preservation of intestinal TJ integrity and the underlying molecular mechanisms. Depletion of intracellular zinc in both intestinal Caco-2 cells and mouse colons through the application of a cell-permeable zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) induced a disruption of the TJ barrier, as indicated by increased FITC-labeled dextran flux and decreased transepithelial electrical resistance. The TPEN-induced TJ disruption is associated with downregulation of two TJ proteins, occludin and claudin-3. Biotinylation of cell surface proteins revealed that the zinc depletion induced the proteolysis of occludin but not claudin-3. Occludin proteolysis was sensitive to the inhibition of calpain activity, and increased calpain activity was observed in the zinc-depleted cells. Although quantitative PCR analysis and promoter reporter assay have demonstrated that the zinc depletion-induced claudin-3 downregulation occurred at transcriptional levels, a site-directed mutation in the egr1 binding site in the claudin-3 promoter sequence induced loss of both the basal promoter activity and the TPEN-induced decreases. Reduced egr1 expression by a specific siRNA also inhibited claudin-3 expression and transepithelial electrical resistance maintenance in cells. This study shows that intracellular zinc has an essential role in the maintenance of the intestinal epithelial TJ barrier through regulation of occludin proteolysis and claudin-3 transcription. PMID:27151944

  16. Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease.

    PubMed

    Mao, Jing-Wei; Tang, Hai-Ying; Zhao, Ting; Tan, Xiao-Yan; Bi, Jian; Wang, Bing-Yuan; Wang, Ying-De

    2015-01-01

    Intestinal mucosal barrier dysfunction is closely related to liver diseases, which implies impaired gut-liver axis may play a role in the pathogenesis of NAFLD. In our study, rats were divided into three groups: normal chow diet (NCD) group, high-fat diet (HFD) group and TNBS-induced colitis with high-fat diet (C-HFD) group. Liver tissues were obtained for histological observation and TNF-α, IL-6 mRNA determination and blood samples were collected for liver enzymes and LPS analysis. Ultrastructural changes of jejuna epithelium, SIBO and amounts of CD103(+)MHCII(+)DCs and CD4(+)CD25(+)FoxP3(+)T-regs in terms of percentage in mesenteric lymph nodes (MLN) were observed by electron microscope, bacterial cultivation and flow cytometry, respectively. The results demonstrated the pathological characteristics accorded with nonalcoholic simple fatty liver (NAFL) and NASH in HFD group by week 8 and 12, respectively. Besides, the degree of hepatic steatosis and steatohepatitis was more severe in C-HFD group compared with HFD-group at the same time point. NAFLD activity score (NAS), liver enzymes, concentration of LPS and mRNA expressions of TNF-α, IL-6 were higher significantly in C-HFD group compared with HFD and NCD group at week 4, 8 and 12, respectively. In HFD group, epithelium microvilli atrophy, disruptive tight junctions and SIBO were present, and these changes were more severe in NASH compared with NAFL. The percentage of CD103+MHCII+DCs and CD4+CD25+FoxP3+T-regs decreased significantly in NAFL and NASH compared with NCD group. Our conclusion was that gut-liver axis was impaired in NAFLD, which played crucial role in the pathogenesis of NAFLD. PMID:26097546

  17. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection.

    PubMed

    Tincati, Camilla; Douek, Daniel C; Marchetti, Giulia

    2016-01-01

    Over the past 10 years, extensive work has been carried out in the field of microbial translocation in HIV infection, ranging from studies on its clinical significance to investigations on its pathogenic features. In the present work, we review the most recent findings on this phenomenon, focusing on the predictive role of microbial translocation in HIV-related morbidity and mortality, the mechanisms by which it arises and potential therapeutic approaches. From a clinical perspective, current work has shown that markers of microbial translocation may be useful in predicting clinical events in untreated HIV infection, while conflicting data exist on their role in cART-experienced subjects, possibly due to the inclusion of extremely varied patient populations in cohort studies. Results from studies addressing the pathogenesis of microbial translocation have improved our knowledge of the damage of the gastrointestinal epithelial barrier occurring in HIV infection. However, the extent to which mucosal impairment translates directly to increased gastrointestinal permeability remains an open issue. In this respect, novel work has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial translocation and systemic T-cell activation/inflammation, thus representing a possible target of immune-therapeutic interventions shown to be promising in the animal model. Further, recent reports have not only confirmed the presence of a dysbiotic intestinal community in the course of HIV infection but have also shown that it may be linked to mucosal damage, microbial translocation and peripheral immune activation. Importantly, technical advances have also shed light on the metabolic activity of gut microbes, highlighting the need for novel therapeutic approaches to correct the function, as well as the composition, of the gastrointestinal microbiota. PMID:27073405

  18. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress.

    PubMed

    Song, J; Xiao, K; Ke, Y L; Jiao, L F; Hu, C H; Diao, Q Y; Shi, B; Zou, X T

    2014-03-01

    The current study investigated the efficacy of a probiotic mixture on ameliorating heat stress-induced impairment of intestinal microflora, morphology, and barrier integrity in broilers. The probiotic mixture contained Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum. Three hundred sixty 21-d-old Ross 308 male broilers were allocated in 4 experimental treatments, each of which was replicated 6 times with 15 broilers per replicate. A 2 × 2 factorial design was used in the study, and the main factors were composed of diet (basal diet or addition of 1.5 g/kg of probiotic mixture) and temperature (thermoneutral zone or heat stress). From d 22 to 42, birds were either raised in a thermoneutral zone (22°C) or subjected to cyclic heat stress by exposing them to 33°C for 10 h (from 0800 to 1800) and 22°C from 1800 to 0800. Compared with birds kept in the thermoneutral zone, birds subjected to heat stress had reduced ADG and ADFI; lower viable counts of Lactobacillus and Bifidobacterium and increased viable counts of coliforms and Clostridium in small intestinal contents; shorter jejunal villus height, deeper crypt depth, and lower ratio of villus height to crypt depth; decreased jejunal transepithelial electrical resistance and a higher level of jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa; and downregulated protein levels of occludin and zonula occludens-1 (P < 0.05). Supplemental probiotics increased (P < 0.05) small intestinal Lactobacillus and Bifidobacterium, jejunal villus height, protein level of occludin, and decreased (P < 0.05) feed to gain ratio and small intestinal coliforms. These results indicate that dietary addition of probiotic mixture was effective in partially ameliorating intestinal barrier function. But no temperature × diet interaction was observed in the present study, revealing that the supplemented probiotics had the same effect at both temperatures.

  19. Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge.

    PubMed

    Zhu, Huiling; Liu, Yulan; Chen, Shaokui; Wang, Xiuying; Pi, Dingan; Leng, Weibo; Chen, Feng; Zhang, Jing; Kang, Ping

    2016-06-01

    Stress induces injury in intestinal barrier function in piglets. Long-chain n-3 PUFA have been shown to exhibit potential immunomodulatory and barrier protective effects in animal models and clinical trials. In addition, corticotropin-releasing hormone (CRH)/CRH receptor (CRHR) signalling pathways play an important role in stress-induced alterations of intestinal barrier function. We hypothesised that fish oil could affect intestinal barrier function and CRH/CRHR signalling pathways. In total, thirty-two weaned pigs were allocated to one of four treatments. The experiment consisted of a 2×2 factorial design, and the main factors included immunological challenge (saline or lipopolysaccharide (LPS)) and diet (5 % maize oil or 5 % fish oil). On d 19 of the trial, piglets were treated with saline or LPS. At 4 h after injection, all pigs were killed, and the mesenteric lymph nodes (MLN), liver, spleen and intestinal samples were collected. Fish oil decreased bacterial translocation incidence and the number of translocated micro-organisms in the MLN. Fish oil increased intestinal claudin-1 protein relative concentration and villus height, as well as improved the intestinal morphology. In addition, fish oil supplementation increased intestinal intraepithelial lymphocyte number and prevented elevations in intestinal mast cell and neutrophil numbers induced by LPS challenge. Moreover, fish oil tended to decrease the mRNA expression of intestinal CRHR1, CRH and glucocorticoid receptors. These results suggest that fish oil supplementation improves intestinal barrier function and inhibits CRH/CRHR1 signalling pathway and mast cell tissue density. PMID:27080003

  20. Spray-dried animal plasma prevents the effects of Staphylococcus aureus enterotoxin B on intestinal barrier function in weaned rats.

    PubMed

    Pérez-Bosque, Anna; Amat, Concepció; Polo, Javier; Campbell, Joy M; Crenshaw, Joe; Russell, Louis; Moretó, Miquel

    2006-11-01

    In this study, we investigated intestinal barrier function during inflammation as well as the effects of dietary supplementation with porcine spray-dried animal plasma (SDAP) proteins and porcine immunoglobulin concentrate (IC). Wistar Lewis rats were fed from d 21 (weaning) until d 34 or 35 either a control diet or a diet containing SDAP or IC. On d 30 and d 33, rats received an intraperitoneal dose of Staphylococcus aureus enterotoxin B (SEB; 0.5 mg/kg body wt; groups SEB, SEB-SDAP, and SEB-IC). SEB reduced the potential difference across the jejunum by 60%, the short-circuit current by 70%, and Na-K-ATPase activity in intestinal mucosa (all P < 0.05). The fluxes of dextran flux (4 kDa) and horseradish peroxidase (HRP, 40 kDa) across the intestinal wall also increased in SEB-treated rats (P < 0.01, P = 0.068, respectively). SEB also increased HRP flux across the paracellular space (P < 0.05). Moreover, SEB-treated rats had a reduced expression of tight junction proteins, such as ZO-1 (10% reduction; P < 0.05) and beta-catenin (20% reduction; P < 0.05). Dietary supplementation with SDAP or IC prevented dextran (P < 0.05) and HRP (P < 0.05) paracellular flux across the intestinal epithelium. SDAP supplementation also prevented SEB effects on Na-K-ATPase activity (P < 0.05). In our model of SEB-induced intestinal inflammation, the increased permeability across the intestinal mucosa was due to the lower expression of tight junction proteins, an effect that can be prevented by both SDAP and IC supplementation.

  1. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions

    PubMed Central

    Guichard, Annabel; Moreno, Beatriz Cruz; Aguilar, Berenice; van Sorge, Nina M.; Kuang, Jennifer; Kurkciyan, Adrianne A.; Wang, Zhipeng; Hang, Saiyu; Pineton de Chambrun, Guillaume P.; McCole, Declan F.; Watnick, Paula; Nizet, Victor; Bier, Ethan

    2013-01-01

    Summary Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl−) efflux through the CFTR Cl− channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 over-expression. These barrier-disrupting effects of CtxA may act in parallel with Cl− secretion to drive the pathophysiology of cholera. PMID:24034615

  2. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions.

    PubMed

    Guichard, Annabel; Cruz-Moreno, Beatriz; Cruz-Moreno, Beatriz Cruz; Aguilar, Berenice; van Sorge, Nina M; Kuang, Jennifer; Kurkciyan, Adrianne A; Wang, Zhipeng; Hang, Saiyu; Pineton de Chambrun, Guillaume P; McCole, Declan F; Watnick, Paula; Nizet, Victor; Bier, Ethan

    2013-09-11

    Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera. PMID:24034615

  3. Baicalein induces CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of food allergy.

    PubMed

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy.

  4. Baicalein induces CD4+Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy

    PubMed Central

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy. PMID:27561877

  5. Baicalein induces CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of food allergy.

    PubMed

    Bae, Min-Jung; Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Kwon, Da-Ae; Shon, Dong-Hwa

    2016-01-01

    The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy. PMID:27561877

  6. Clinical Characteristics Associated with Post-Operative Intestinal Epithelial Barrier Dysfunction in Children with Congenital Heart Disease

    PubMed Central

    Typpo, Katri V; Larmonier, Claire B.; Deschenes, Jendar; Redford, Daniel; Kiela, Pawel R.; Ghishan, Fayez K.

    2014-01-01

    Objective Children with congenital heart disease (CHD) have loss of intestinal epithelial barrier function (EBF), which increases their risk for post-operative sepsis and organ dysfunction. We do not understand how post-operative cardiopulmonary support or the inflammatory response to cardiopulmonary bypass (CPB) might alter intestinal EBF. We examined variation in a panel of plasma biomarkers to reflect intestinal EBF (cellular and paracellular structure and function) after CPB and in response to routine ICU care. Design Prospective cohort Setting University medical center cardiac intensive care unit Patients Twenty children aged newborn to 18 years undergoing repair or palliation of CHD with CPB. Interventions We measured baseline and repeated plasma FABP2, citrulline, claudin 3, and dual sugar permeability test (DSPT) to reflect intestinal epithelial integrity, epithelial function, paracellular integrity, and paracellular function, respectively. We measured baseline and repeated plasma pro-inflammatory (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL4, IL10) cytokines, known to modulate intestinal EBF in murine models of CPB. Measurements and Main Results All patients had abnormal baseline FABP2 concentrations (mean 3815.5 pg/mL), (normal 41–336 pg/mL). Cytokine response to CPB was associated with early, but not late changes in plasma concentrations of FABP2 and citrulline. Variation in biomarker concentrations over time were associated with aspects of ICU care indicating greater severity of illness: claudin 3, FABP2, and DSPT ratio were associated with symptoms of feeding intolerance (p<0.05) while FABP2 was positively associated with vasoactive-inotrope score (VIS) (p=0.04). Citrulline was associated with larger arteriovenous O2 saturation difference (p=0.04) and had a complex relationship with VIS. Conclusions Children undergoing CPB for repair or palliation of CHD are at risk for intestinal injury and often present with evidence for loss of intestinal

  7. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.

    PubMed

    Tong, Ling-Chang; Wang, Yue; Wang, Zhi-Bin; Liu, Wei-Ye; Sun, Sheng; Li, Ling; Su, Ding-Feng; Zhang, Li-Chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7-14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  8. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  9. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis

    PubMed Central

    Li, Ming; Liang, Pin; Li, Zhenzhen; Wang, Ying; Zhang, Guobin; Gao, Hongwei; Wen, Shu; Tang, Li

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins. PMID:26217323

  10. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    PubMed

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.

  11. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR.

    PubMed

    Zou, Tongtong; Jaladanki, Suraj K; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam; Wang, Jian-Ying

    2016-05-01

    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.

  12. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR

    PubMed Central

    Zou, Tongtong; Jaladanki, Suraj K.; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam

    2016-01-01

    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally. PMID:26884465

  13. Effects of Soybean Agglutinin on Mechanical Barrier Function and Tight Junction Protein Expression in Intestinal Epithelial Cells from Piglets

    PubMed Central

    Pan, Li; Qin, Guixin; Zhao, Yuan; Wang, Jun; Liu, Feifei; Che, Dongsheng

    2013-01-01

    In this study, we sought to investigate the role of soybean agglutinin (SBA) in mediating membrane permeability and the mechanical barrier function of intestinal epithelial cells. The IPEC-J2 cells were cultured and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mg/mL SBA. Transepithelial electrical resistance (TEER) and alkaline phosphatase (AP) activity were measured to evaluate membrane permeability. The results showed a significant decrease in TEER values (p < 0.05) in a time- and dose-dependent manner, and a pronounced increase in AP activity (p < 0.05). Cell growth and cell morphology were used to evaluate the cell viability. A significant cell growth inhibition (p < 0.05) and alteration of morphology were observed when the concentration of SBA was increased. The results of western blotting showed that the expression levels of occludin and claudin-3 were decreased by 31% and 64% compared to those of the control, respectively (p < 0.05). In addition, immunofluorescence labeling indicated an obvious decrease in staining of these targets and changes in their localizations. In conclusion, SBA increased the membrane permeability, inhibited the cell viability and reduced the levels of tight junction proteins (occludin and claudin-3), leading to a decrease in mechanical barrier function in intestinal epithelial cells. PMID:24189218

  14. Dietary fat level and alcohol-induced pancreatic injury

    SciTech Connect

    Towner, S.J.; Inomata, T.; Largman, C.; French, S.W.

    1986-03-01

    Effects of dietary fat levels on alcohol-induced pancreatic injury were studied in a rat model which achieves sustained blood alcohol levels and maximal nutritional control. A diet containing 5, 25, or 35% of fat (corn oil; % total calories) and either ethanol or isocaloric dextrose were intragastrically infused in male Wistar rats for 30-120 days. Following intoxication, the pancreatic pathology was examined light-microscopically. None of pair-fed controls showed abnormal pancreas histology. These results indicate potentiation of alcohol-induced pancreatic injury. Particularly higher incidence of chronic interstitial pancreatitis with increased dietary fat.

  15. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    PubMed

    Fiorentino, Maria; Levine, Myron M; Sztein, Marcelo B; Fasano, Alessio

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  16. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets*

    PubMed Central

    Yang, Huan-sheng; Wu, Fei; Long, Li-na; Li, Tie-jun; Xiong, Xia; Liao, Peng; Liu, Hong-nan; Yin, Yu-long

    2016-01-01

    The goal of this study was to evaluate the effects of a mixture of yeast culture, cell wall hydrolysates, and yeast extracts (collectively “yeast products,” YP) on the performance, intestinal physiology, and health of weaned piglets. A total of 90 piglets weaned at 21 d of age were blocked by body weight, sex, and litter and randomly assigned to one of three treatments for a 14-d feeding experiment, including (1) a basal diet (control), (2) 1.2 g/kg of YP, and (3) 20 mg/kg of colistin sulfate (CSE). No statistically significant differences were observed in average daily feed intake, average daily weight gain, or gain-to-feed ratio among CSE, YP, and control piglets. Increased prevalence of diarrhea was observed among piglets fed the YP diet, whereas diarrhea was less prevalent among those fed CSE. Duodenal and jejunal villus height and duodenal crypt depth were greater in the control group than they were in the YP or CSE groups. Intraepithelial lymphocytes (IEL) in the duodenal and jejunal villi were enhanced by YP, whereas IEL in the ileal villi were reduced in weaned piglets fed YP. Secretion of jejunal and ileal interleukin-10 (IL-10) was higher and intestinal and serum antioxidant indexes were affected by YP and CSE. In YP- and CSE-supplemented animals, serum D-lactate concentration and diamine oxidase (DAO) activity were both increased, and intestinal mRNA expressions of occludin and ZO-1 were reduced as compared to the control animals. In conclusion, YP supplementation in the diets of weaned piglets appears to increase the incidence of diarrhea and has adverse effects on intestinal morphology and barrier function. PMID:27704745

  17. Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

    PubMed Central

    Sun, Rui; Qiao, Xiangjin; Xu, Cuicui; Shang, Xiaoya; Niu, Weining; Chao, Yu

    2014-01-01

    The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia+vitamin E (250 mg/kg BW*d) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma (IFN-γ) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and IκBα, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha (HIF-1α and HIF-2α), Toll-like receptors (TLR4), P-IκBα and nuclear factor-κB p65(NF-κB P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-κB signaling pathway. PMID:25177163

  18. Randomized Clinical Trial of Pre-operative Feeding to Evaluate Intestinal Barrier Function in Neonates Requiring Cardiac Surgery

    PubMed Central

    Zyblewski, Sinai C.; Nietert, Paul J.; Graham, Eric M.; Taylor, Sarah N.; Atz, Andrew M.; Wagner, Carol L.

    2015-01-01

    Objective To evaluate intestinal barrier function in neonates undergoing cardiac surgery using lactulose/mannitol (L/M) ratio measurements and to determine correlations with early breast milk feeding. Study design This was a single-center, prospective, randomized pilot study of 27 term neonates (≥37 weeks gestation) requiring cardiac surgery who were randomized to one of two pre-operative feeding groups: 1) nil per os (NPO) vs. 2) trophic (10 cc/kg/day) breast milk feeds. At three time points (pre-op, post-op day 7, and post-op day 14), subjects were administered an oral lactulose/mannitol solution and subsequent L/M ratios were measured using gas chromatography, with higher ratios indicative of increased intestinal permeability. Trends over time in the mean urine L/M ratios for each group were estimated using a general linear mixed model. Results There were no adverse events related to pre-operative trophic feeding. In the NPO group (n=13), the mean urine L/M ratios at pre-op, post-op day 7, and post-op day 14 were 0.06, 0.12, and 0.17, respectively. In the trophic breast milk feeds group (n=14), the mean urine L/M ratios at pre-op, post-op day 7, and post-op day 14 were 0.09, 0.19, and 0.15, respectively. Both groups had significantly higher L/M ratios at post-op day 7 and 14 compared with pre-op (p<0.05). Conclusions Neonates have increased intestinal permeability after cardiac surgery extending to at least post-op day 14. This pilot study was not powered to detect differences in benefit or adverse events comparing NPO with breast milk feeds. Further studies to identify mechanisms of intestinal injury and therapeutic interventions are warranted. Trial registration Registered with ClinicalTrials.gov: NCT01475357. PMID:25962930

  19. Protective Effect of Huoxiang Zhengqi Oral Liquid on Intestinal Mucosal Mechanical Barrier of Rats with Postinfectious Irritable Bowel Syndrome Induced by Acetic Acid

    PubMed Central

    Liu, Yao; Liu, Wei; Peng, Qiu-Xian; Peng, Jiang-Li; Yu, Lin-Zhong; Hu, Jian-Lan

    2014-01-01

    In this study, a rat model with acetic acid-induced PI-IBS was used to study the role of HXZQ oral liquid in repairing the colonic epithelial barrier and reducing intestinal permeability. Pathomorphism of colonic tissue, epithelial ultrastructure, DAO activity in serum, and the protein expression of ZO-1 and occludin were examined to investigate protective effect mechanisms of HXZQ on intestinal mucosa barrier and then present experimental support for its use for prevention and cure of PI-IBS. PMID:25254052

  20. FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier.

    PubMed

    Lu, Kun-Ying; Lin, Cheng-Wei; Hsu, Chun-Hua; Ho, Yi-Cheng; Chuang, Er-Yuan; Sung, Hsing-Wen; Mi, Fwu-Long

    2014-10-22

    The oral route is a convenient and commonly employed way for drug delivery. However, therapeutic proteins have poor bioavailability upon oral administration due to the impermeable barrier from intestinal epithelial tight junction (TJ). Moreover, the pH of the small intestine varies among different regions of the intestinal tract where digestion and absorption occur at different levels. In this study, a tunable dual-emitting and pH-responsive nanocarrier that can alter the fluorescent color and emission intensity in response to pH changes and can trigger the opening of intestinal epithelial TJ at different levels were developed from chitosan-N-arginine and poly(γ-glutamic acid)-taurine conjugates. As pH increased from 6.0 to 8.0, the binding affinity of the oppositely charged polyions decreased, whereas the ratio of the intensity of the donor-to-acceptor emission intensity (ID/IA) increased by 27-fold. The fluorescent and pH-responsive nanocarrier was able to monitor the pH change of intestinal environment and to control the release of an anti-angiogenic protein in response to the pH gradient. The nanocarrier triggered the opening of intestinal epithelial TJ and consequently enhanced the permeation of the released protein through the intestinal epithelial barrier model (Caco-2 cell monolayer) to inhibit tube formation of human umbilical vein endothelial cells. PMID:25260022

  1. Protective effect of 1,25-dihydroxyvitamin D3 on ethanol-induced intestinal barrier injury both in vitro and in vivo.

    PubMed

    Chen, Shan-Wen; Ma, Yuan-Yuan; Zhu, Jing; Zuo, Shuai; Zhang, Jun-Ling; Chen, Zi-Yi; Chen, Guo-Wei; Wang, Xin; Pan, Yi-Sheng; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-09-01

    Studies have suggested the role of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in protecting intestinal barrier function from injuries induced by multiple reagents. Vitamin D deficiency was reported to be associated with poor prognosis in patients with alcoholic liver disease (ALD). This study is designed to investigate the effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier dysfunction and the underlying mechanisms utilizing Caco-2 cell monolayers and a mouse model with acute ethanol injury. In Caco-2 monolayers, ethanol significantly increased monolayer permeability, disrupted TJ distribution, increased phosphorylation level of MLC, and induced generation of ROS compared with controls. However, pre-treatment with 1,25(OH)2D3 greatly ameliorated the ethanol-induced barrier dysfunction, TJ disruption, phosphorylation level of MLC, and generation of ROS compared with ethanol-exposed monolayers. Mice fed with vitamin d-sufficient diet had a higher plasma level of 25(OH)D3 and were more resistant to ethanol-induced acute intestinal barrier injury compared with the vitamin d-deficient group. These results suggest that the suppression of generation of ROS and increased phosphorylation level of MLC might be one of the mechanisms underlying the protective effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier injury and provide evidence for the application of vitamin D as therapeutic factors against ethanol-induced gut leakiness.

  2. Candida albicans is able to use M cells as a portal of entry across the intestinal barrier in vitro.

    PubMed

    Albac, Sandrine; Schmitz, Antonin; Lopez-Alayon, Carolina; d'Enfert, Christophe; Sautour, Marc; Ducreux, Amandine; Labruère-Chazal, Catherine; Laue, Michael; Holland, Gudrun; Bonnin, Alain; Dalle, Frederic

    2016-02-01

    Candida albicans is the most frequent yeast responsible for systemic infections in humans. These infections mainly originate from the gastrointestinal tract where C. albicans can invade the gut epithelial barrier to gain access to the bloodstream. Along the gut, pathogens can use Microfold (M) cells as a portal of entry to cross the epithelial barrier. M cells are specialized cells mainly located in the follicule-associated epithelium of Peyer patches. In this study, we used scanning electron and fluorescence microscopy, adhesion and invasion assays and fungal mutants to investigate the interactions of C. albicans with M cells obtained in an established in vitro model whereby enterocyte-like Caco-2 cells co-cultured with the Raji B cell line undergo a phenotypic switch to morphologically and functionally resembling M cells. Our data demonstrate that C. albicans co-localizes with and invades preferentially M cells, providing evidence that the fungus can use M cells as a portal of entry into the intestinal barrier. In addition to active penetration, F-actin dependent endocytosis contributes to internalization of the fungus into M cells through a mechanism involving hypha-associated invasins including Ssa1 and Als3. PMID:26242223

  3. Submandibular chronic sialadenitis presenting with alcohol-induced pain.

    PubMed Central

    Okany, C. C.; Akinsete, I.; Akinyanju, O. O.

    1990-01-01

    A 32 year old man with alcohol-induced pain over a right submandibular swelling is described. Excision biopsy of this swelling revealed chronic sialadenitis and the symptoms promptly ceased following this excision. We speculate on the possible pathophysiological mechanism. PMID:2267210

  4. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation

    PubMed Central

    Demehri, Farokh R.; Barrett, Meredith; Ralls, Matthew W.; Miyasaka, Eiichi A.; Feng, Yongjia; Teitelbaum, Daniel H.

    2013-01-01

    Total parenteral nutrition (TPN), a commonly used treatment for patients who cannot receive enteral nutrition, is associated with significant septic complications due in part to a loss of epithelial barrier function (EBF). While the underlying mechanisms of TPN-related epithelial changes are poorly understood, a mouse model of TPN-dependence has helped identify several contributing factors. Enteral deprivation leads to a shift in intestinal microbiota to predominantly Gram-negative Proteobacteria. This is associated with an increase in expression of proinflammatory cytokines within the mucosa, including interferon-γ and tumor necrosis factor-α. A concomitant loss of epithelial growth factors leads to a decrease in epithelial cell proliferation and increased apoptosis. The resulting loss of epithelial tight junction proteins contributes to EBF dysfunction. These mechanisms identify potential strategies of protecting against TPN-related complications, such as modification of luminal bacteria, blockade of proinflammatory cytokines, or growth factor replacement. PMID:24392360

  5. Probiotics Prevent Intestinal Barrier Dysfunction in Acute Pancreatitis in Rats via Induction of Ileal Mucosal Glutathione Biosynthesis

    PubMed Central

    Lutgendorff, Femke; Nijmeijer, Rian M.; Sandström, Per A.; Trulsson, Lena M.; Magnusson, Karl-Eric; Timmerman, Harro M.; van Minnen, L. Paul; Rijkers, Ger T.; Gooszen, Hein G.; Akkermans, Louis M. A.; Söderholm, Johan D.

    2009-01-01

    Background During acute pancreatitis (AP), oxidative stress contributes to intestinal barrier failure. We studied actions of multispecies probiotics on barrier dysfunction and oxidative stress in experimental AP. Methodology/Principal Findings Fifty-three male Spraque-Dawley rats were randomly allocated into five groups: 1) controls, non-operated, 2) sham-operated, 3) AP, 4) AP and probiotics and 5) AP and placebo. AP was induced by intraductal glycodeoxycholate infusion and intravenous cerulein (6 h). Daily probiotics or placebo were administered intragastrically, starting five days prior to AP. After cerulein infusion, ileal mucosa was collected for measurements of E. coli K12 and 51Cr-EDTA passage in Ussing chambers. Tight junction proteins were investigated by confocal immunofluorescence imaging. Ileal mucosal apoptosis, lipid peroxidation, and glutathione levels were determined and glutamate-cysteine-ligase activity and expression were quantified. AP-induced barrier dysfunction was characterized by epithelial cell apoptosis and alterations of tight junction proteins (i.e. disruption of occludin and claudin-1 and up-regulation of claudin-2) and correlated with lipid peroxidation (r>0.8). Probiotic pre-treatment diminished the AP-induced increase in E. coli passage (probiotics 57.4±33.5 vs. placebo 223.7±93.7 a.u.; P<0.001), 51Cr-EDTA flux (16.7±10.1 vs. 32.1±10.0 cm/s10−6; P<0.005), apoptosis, lipid peroxidation (0.42±0.13 vs. 1.62±0.53 pmol MDA/mg protein; P<0.001), and prevented tight junction protein disruption. AP-induced decline in glutathione was not only prevented (14.33±1.47 vs. 8.82±1.30 nmol/mg protein, P<0.001), but probiotics even increased mucosal glutathione compared with sham rats (14.33±1.47 vs. 10.70±1.74 nmol/mg protein, P<0.001). Glutamate-cysteine-ligase activity, which is rate-limiting in glutathione biosynthesis, was enhanced in probiotic pre-treated animals (probiotics 2.88±1.21 vs. placebo 1.94±0.55 nmol/min/mg protein; P<0

  6. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  7. Effect of tannic acid-fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity.

    PubMed

    Wu, Shao-Jung; Ho, Yi-Cheng; Jiang, Shun-Zhou; Mi, Fwu-Long

    2015-07-01

    Practical application of tannic acid is limited because it readily binds proteins to form insoluble aggregates. In this study, tannic acid was self-assembled with fish scale gelatin hydrolysates (FSGH) to form stable colloidal complex nanoparticles. The nanoparticles prepared from 4 mg ml(-1) tannic acid and 4 mg ml(-1) FSGH had a mean particle size of 260.8 ± 3.6 nm, and showed a positive zeta potential (20.4 ± 0.4 mV). The nanoparticles acted as effective nano-biochelators and free radical scavengers because they provided a large number of adsorption sites for interaction with heavy metal ions and scavenging free radicals. The maximum adsorption capacity for Cu(2+) ions was 123.5 mg g(-1) and EC50 of DPPH radical scavenging activity was 21.6 ± 1.2 μg ml(-1). Hydroxyl radical scavenging effects of the nanoparticles were investigated by electron spin resonance spectroscopy. The copper-chelating capacity and free radical scavenging activity of the nanoparticles were associated with their capacity to inhibit Cu(2+) ion-induced barrier impairment and hyperpermeability of Caco-2 intestinal epithelial tight junction (TJ). However, α-amylase inhibitory activity of the nanoparticles was significantly lower than that of free tannic acid. The results suggest that the nanoparticles can ameliorate Cu(2+) ion induced intestinal epithelial TJ dysfunction without severely inhibiting the activity of the digestive enzymes. PMID:26069899

  8. Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model.

    PubMed

    Generoso, Simone V; Viana, Mirelle; Santos, Rosana; Martins, Flaviano S; Machado, José A N; Arantes, Rosa M E; Nicoli, Jacques R; Correia, Maria I T D; Cardoso, Valbert N

    2010-06-01

    Probiotic is a preparation containing microorganisms that confers beneficial effect to the host. This work assessed whether oral treatment with viable or heat-killed yeast Saccharomyces cerevisiae strain UFMG 905 prevents bacterial translocation (BT), intestinal barrier integrity, and stimulates the immunity, in a murine intestinal obstruction (IO) model. Four groups of mice were used: mice undergoing only laparotomy (CTL), undergoing intestinal obstruction (IO) and undergoing intestinal obstruction after previous treatment with viable or heat-killed yeast. BT, determined as uptake of (99m)Tc-E. coli in blood, mesenteric lymph nodes, liver, spleen and lungs, was significantly higher in IO group than in CTL group. Treatments with both yeasts reduced BT in blood and all organs investigated. The treatment with both yeasts also reduced intestinal permeability as determined by blood uptake of (99m)Tc-DTPA. Immunological data demonstrated that both treatments were able to significantly increase IL-10 levels, but only viable yeast had the same effect on sIgA levels. Intestinal lesions were more severe in IO group when compared to CTL and yeasts groups. Concluding, both viable and heat-killed cells of yeast prevent BT, probably by immunomodulation and by maintaining gut barrier integrity. Only the stimulation of IgA production seems to depend on the yeast viability.

  9. Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice

    PubMed Central

    Shi, Chen-Zhang; Chen, Hong-Qi; Liang, Yong; Xia, Yang; Yang, Yong-Zhi; Yang, Jun; Zhang, Jun-Dong; Wang, Shu-Hai; Liu, Jing; Qin, Huan-Long

    2014-01-01

    AIM: To investigate the protective effects of combinations of probiotic (Bifico) on interleukin (IL)-10-gene-deficient (IL-10 KO) mice and Caco-2 cell monolayers. METHODS: IL-10 KO mice were used to assess the benefits of Bifico in vivo. IL-10 KO and control mice received approximately 1.5 × 108 cfu/d of Bifico for 4 wk. Colons were then removed and analyzed for epithelial barrier function by Ussing Chamber, while an ELISA was used to evaluate proinflammatory cytokines. The colon epithelial cell line, Caco-2, was used to test the benefit of Bifico in vitro. Enteroinvasive Escherichia coli (EIEC) and the probiotic mixture Bifico, or single probiotic strains, were applied to cultured Caco-2 monolayers. Barrier function was determined by measuring transepithelial electrical resistance and tight junction protein expression. RESULTS: Treatment of IL-10 KO mice with Bifico partially restored body weight, colon length, and epithelial barrier integrity to wild-type levels. In addition, IL-10 KO mice receiving Bifico treatment had reduced mucosal secretion of tumor necrosis factor-α and interferon-γ, and attenuated colonic disease. Moreover, treatment of Caco-2 monolayers with Bifico or single-strain probiotics in vitro inhibited EIEC invasion and reduced the secretion of proinflammatory cytokines. CONCLUSION: Bifico reduced colon inflammation in IL-10 KO mice, and promoted and improved epithelial-barrier function, enhanced resistance to EIEC invasion, and decreased proinflammatory cytokine secretion. PMID:24782616

  10. Intestinal barrier analysis by assessment of mucins, tight junctions, and α-defensins in healthy C57BL/6J and BALB/cJ mice.

    PubMed

    Volynets, Valentina; Rings, Andreas; Bárdos, Gyöngyi; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2016-01-01

    The intestinal barrier is gaining increasing attention because it is related to intestinal homeostasis and disease. Different parameters have been used in the past to assess intestinal barrier functions in experimental studies; however most of them are poorly defined in healthy mice. Here, we compared a number of barrier markers in healthy mice, established normal values and correlations. In 48 mice (24 C57BL/6J, 24 BALB/cJ background), we measured mucus thickness, and expression of mucin-2, α-defensin-1 and -4, zonula occludens-1, occludin, junctional adhesion molecule-A, claudin-1, 2 and -5. We also analyzed claudin-3 and fatty acid binding protein-2 in urine and plasma, respectively. A higher expression of mucin-2 protein was found in the colon compared to the ileum. In contrast, the α-defensins-1 and -4 were expressed almost exclusively in the ileum. The protein expression of the tight junction molecules claudin-1, occludin and zonula occludens-1 did not differ between colon and ileum, although some differences occurred at the mRNA level. No age- or gender-related differences were found. Differences between C57BL/6J and BALB/cJ mice were found for α-defensin-1 and -4 mRNA expression, and for urine and plasma marker concentrations. The α-defensin-1 mRNA correlated with claudin-5 mRNA, whereas α-defensin-4 mRNA correlated with claudin-3 concentrations in urine. In conclusion, we identified a number of murine intestinal barrier markers requiring tissue analyses or measurable in urine or plasma. We provide normal values for these markers in mice of different genetic background. Such data might be helpful for future animal studies in which the intestinal barrier is of interest. PMID:27583194

  11. Age-related differences in mucosal barrier function and morphology of the small intestine in low and normal birth weight piglets.

    PubMed

    Huygelen, V; De Vos, M; Willemen, S; Fransen, E; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that the mucosal maturation of the small intestine is altered in low birth weight piglets, pairs of naturally suckled low birth weight (LBW, n = 20) and normal birth weight (NBW, n = 20) littermate piglets were selected and sampled after 0, 3, 10, and 28 d of suckling. In vivo intestinal permeability was evaluated via a lactulose-mannitol absorption test. Other indirect measurements for mucosal barrier functioning included sampling for histology and immunohistochemistry (intestinal trefoil factor [ITF]), measuring intestinal alkaline phosphatase (IAP) activity, and immunoblotting for occludin, caspase-3, and proliferating cell nuclear antigen (PCNA). The lactulose-mannitol ratio did not differ between NBW and LBW piglets, but a significant increase in this ratio was observed in 28-d-old piglets (P = 0.001). Small intestinal villus height did not differ with age (P = 0.02) or birth weight (P = 0.20). In contrast, villus width (P = 0.02) and crypt depth (P < 0.05) increased gradually with age, but no birth-weight-related differences were observed. LBW piglets had significantly (P = 0.03) more ITF immunoreactive positive cells per villus area compared to NBW piglets, whereas no age (P = 0.82) or region-related (P = 0.13) differences could be observed. The activity of IAP in the small intestine was higher in newborn piglets compared to the older piglets. No significant differences in cell proliferation in the small intestine was observed (P = 0.47) between NBW and LBW piglets; the highest proliferation was seen in piglets of 28 d of age (P = 0.01). Newborn piglets had significantly fewer apoptotic cells, whereas more apoptotic cells were seen in piglets of 10 d of age (P < 0.01). In conclusion, birth weight did not affect the parameters related to intestinal barrier function investigated in this study, suggesting that the mucosal barrier function is not altered in LBW piglets. Nevertheless, these results confirm that the mucosal barrier function

  12. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    PubMed Central

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2010-01-01

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  13. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    PubMed

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  14. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    SciTech Connect

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  15. Bifidobacterium breve and Streptococcus thermophilus secretion products enhance T helper 1 immune response and intestinal barrier in mice.

    PubMed

    Ménard, Sandrine; Laharie, David; Asensio, Corinne; Vidal-Martinez, Teresita; Candalh, Céline; Rullier, Anne; Zerbib, Frank; Mégraud, Francis; Matysiak-Budnik, Tamara; Heyman, Martine

    2005-11-01

    Lactic acid bacteria or their secretion products can modulate immune responses differently in normal and inflammatory conditions. This comparative study analyzes the effect of oral administration of living lactic acid bacteria, or their conditioned media, on the epithelial and immune functions of colitis-prone C57BL/6 IL-10-deficient mice. Mice were untreated (control) or infected with Helicobacter hepaticus with or without oral treatment with living bacteria, Bifidobacterium breve C50 and Streptococcus thermophilus 065 (LB), or their culture-conditioned media (CM). Histology, cytokine mRNA, electrical resistance, and barrier capacity of colonic samples as well as cytokine secretion by mesenteric lymph node (MLN) cells were studied. Helicobacter hepaticus mice developed only mild colitis, which was not modified in LB or CM groups. In the CM (but not the LB) group, the colonic barrier was reinforced as compared to the other groups, as evidenced by decreased horseradish peroxidase (HRP) transcytosis and mannitol fluxes and increased electrical resistance. In MLN, the percentage of CD4+ and CD8+ T cells secreting IFNgamma was significantly higher in CM (2.06% and 1.98%, respectively) mice than in H. hepaticus (1.1% and 0.47%, P < 0.05) or control mice. In addition, the nonspecific stimulation of IFNgamma, TNFalpha, and IL-12 secretion by MLN cells was significantly higher in the CM group as compared to the other groups. In the absence of severe colitis, Bifidobacterium breve C50- and Streptococcus thermophilus 065-conditioned media can reinforce intestinal barrier capacity and stimulate Th1 immune response, highlighting the involvement of lactic acid bacteria-derived components in host defense.

  16. Possible roles of LI-Cadherin in the formation and maintenance of the intestinal epithelial barrier

    PubMed Central

    Baumgartner, Werner

    2013-01-01

    LI-cadherin belongs to the so called 7D-cadherins, exceptional members of the cadherin superfamily which are characterized by seven extracellular cadherin repeats and a small cytosolic domain. Under physiological conditions LI-cadherin is expressed in the intestine and colon in human and mouse and in the rat also in hepatocytes. LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells and a lot of biophysical and biochemical parameters were determined in the last time. It is also known that dysregulated LI-cadherin expression can be found in a variety of diseases. Although there are several hypothesis and theoretical models concerning the function of LI-cadherin, the physiological role of LI-cadherin is still enigmatic. PMID:24665380

  17. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-04-01

    Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  18. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-04-01

    Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  19. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum.

    PubMed

    Hegan, Peter S; Chandhoke, Surjit K; Barone, Christina; Egan, Marie; Bähler, Martin; Mooseker, Mark S

    2016-04-01

    Genetic studies have implicated MYO9B, which encodes myosin IXb (Myo9b), a motor protein with a Rho GTPase activating domain (RhoGAP), as a susceptibility gene for inflammatory bowel disease (IBD). Moreover, we have recently shown that knockdown of Myo9b in an intestinal epithelial cell line impairs wound healing and barrier function. Here, we investigated whether mice lacking Myo9b have impaired intestinal barrier function and features of IBD. Myo9b knock out (KO) mice exhibit impaired weight gain and fecal occult blood (indicator of gastrointestinal bleeding), and increased intestinal epithelial cell apoptosis could be detected along the entire intestinal axis. Histologic analysis revealed intestinal mucosal damage, most consistently observed in the ileum, which included superficial ulceration and neutrophil infiltration. Focal lesions contained neutrophils and ultrastructural examination confirmed epithelial discontinuity and the deposition of extracellular matrix. We also observed impaired mucosal barrier function in KO mice. Transepithelial electrical resistance of KO ileum is >3 fold less than WT ileum. The intestinal mucosa is also permeable to high molecular weight dextran, presumably due to the presence of mucosal surface ulcerations. There is loss of tight junction-associated ZO-1, decreased lateral membrane associated E-cadherin, and loss of terminal web associated cytokeratin filaments. Consistent with increased Rho activity in the KO, there is increased subapical expression of activated myosin II (Myo2) based on localization of phosphorylated Myo2 regulatory light chain. Except for a delay in disease onset in the KO, no difference in dextran sulfate sodium-induced colitis and lethality was observed between wild-type and Myo9b KO mice.

  20. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats

    PubMed Central

    Braniste, Viorica; Jouault, Aurore; Gaultier, Eric; Polizzi, Arnaud; Buisson-Brenac, Claire; Leveque, Mathilde; Martin, Pascal G.; Theodorou, Vassilia; Fioramonti, Jean; Houdeau, Eric

    2009-01-01

    Bisphenol A (BPA), a chemical estrogen widely used in the food-packaging industry and baby bottles, is recovered in human fluids (0.1–10 nM). Recent studies have reported that BPA is hormonally active at low doses, emphasizing the debate of a risk for human health. Estrogen receptors are expressed in the colon, and although the major route of BPA exposure is food, the effects on gut have received no attention. We first examined the endocrine disrupting potency of BPA on colonic paracellular permeability (CPP), experimental colitis, and visceral sensitivity in ovariectomized rats orally exposed to 5 mg/kg/d BPA (i.e., the no observed adverse effect level), 50 μg/kg/d BPA (i.e., tolerable daily intake), or lower doses. BPA dose-dependently decreased basal CPP, with a half-maximal inhibitory dose of 5.2 μg/kg/d, 10-fold below the tolerable daily intake. This correlated with an increase in epithelial tight junction sealing, also observed in Caco-2 cells exposed to 10 nM BPA. When ovariectomized rats were fed with BPA at the no observed adverse effect level, the severity of colitis was reduced, whereas the same dose increased pain sensitivity to colorectal stimuli. We then examined the impact of perinatal exposure to BPA on intestinal permeability and inflammatory response in the offspring. In female rats, but not in male rats, perinatal BPA evoked a decrease of CPP in adulthood, whereas the proinflammatory response of colonic mucosa was strengthened. This study first demonstrates that the xenoestrogen BPA at reference doses influences intestinal barrier function and gut nociception. Moreover, perinatal exposure promotes the development of severe inflammation in adult female offspring only. PMID:20018722

  1. Protective effects of ψ taraxasterol 3-O-myristate and arnidiol 3-O-myristate isolated from Calendula officinalis on epithelial intestinal barrier.

    PubMed

    Dall'Acqua, Stefano; Catanzaro, Daniela; Cocetta, Veronica; Igl, Nadine; Ragazzi, Eugenio; Giron, Maria Cecilia; Cecconello, Laura; Montopoli, Monica

    2016-03-01

    The triterpene esters ᴪ taraxasterol-3-O-myristate (1) and arnidiol-3-O-myristate (2) were tested for their ability to protect epithelial intestinal barrier in an in vitro model. Their effects on ROS production and on trans-epithelial resistance were investigated on CaCo-2 cell monolayers both in basal and stress-induced conditions. Both compounds were able to modulate the stress damage induced by H2O2 and INFγ+TNFα, showing a potential use as model compounds for the study of new therapeutic agents for intestinal inflammations. PMID:26791917

  2. Protective effects of ψ taraxasterol 3-O-myristate and arnidiol 3-O-myristate isolated from Calendula officinalis on epithelial intestinal barrier.

    PubMed

    Dall'Acqua, Stefano; Catanzaro, Daniela; Cocetta, Veronica; Igl, Nadine; Ragazzi, Eugenio; Giron, Maria Cecilia; Cecconello, Laura; Montopoli, Monica

    2016-03-01

    The triterpene esters ᴪ taraxasterol-3-O-myristate (1) and arnidiol-3-O-myristate (2) were tested for their ability to protect epithelial intestinal barrier in an in vitro model. Their effects on ROS production and on trans-epithelial resistance were investigated on CaCo-2 cell monolayers both in basal and stress-induced conditions. Both compounds were able to modulate the stress damage induced by H2O2 and INFγ+TNFα, showing a potential use as model compounds for the study of new therapeutic agents for intestinal inflammations.

  3. Manganese deficiency or excess caused the depression of intestinal immunity, induction of inflammation and dysfunction of the intestinal physical barrier, as regulated by NF-κB, TOR and Nrf2 signalling, in grass carp (Ctenopharyngodon idella).

    PubMed

    Jiang, Wei-Dan; Tang, Ren-Jun; Liu, Yang; Kuang, Sheng-Yao; Jiang, Jun; Wu, Pei; Zhao, Juan; Zhang, Yong-An; Tang, Ling; Tang, Wu-Neng; Zhou, Xiao-Qiu; Feng, Lin

    2015-10-01

    Intestinal mucosal immune components and mRNA levels of inflammatory cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules in young grass carp (Ctenopharyngodon idellus) under dietary manganese (Mn) deficiency or excess were investigated. Fish were fed the diets containing graded levels of Mn [3.65-27.86 mg Mn kg(-1) diet] for 8 weeks. The results demonstrated that Mn deficiency significantly decreased the lysozyme and acid phosphatase (ACP) activities, up-regulated tumour necrosis factor α (TNF-α), interleukin 8 and the signalling factor nuclear factor-κB p65, and down-regulated interleukin 10 (IL-10), transforming growth factor β1, inhibitor of signalling factors κB-α and target of rapamycin mRNA levels in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI). However, Mn deficiency did not change the C3 content in the PI, whereas it decreased the C3 contents in the MI and DI. Additionally, Mn depletion also resulted in significantly low mRNA levels for tight junction proteins (claudin-b, claudin-c, claudin-15, occludin and zonula occludens-1), antioxidant enzymes (MnSOD, GPx and CAT) and NF-E2-related factor-2 in the intestines of fish. Excessive Mn exhibited toxic effects similar to Mn deficiency, where optimal Mn contents reversed those indicators. In conclusion, Mn deficiency or excess causes the depression of intestinal immunity, induction of inflammation and dysfunction of the intestinal physical barrier relating to NF-κB, TOR and Nrf2 signalling in grass carp. Furthermore, quadratic regression analysis at 95% maximum response of lysozyme and acid phosphatase activities in the distal intestine of young grass carp revealed the optimum dietary Mn levels to be 8.90 and 8.99 mg kg(-1) diet, respectively.

  4. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator

    PubMed Central

    2010-01-01

    Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly

  5. Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier.

    PubMed

    Arana, Maite R; Tocchetti, Guillermo N; Rigalli, Juan P; Mottino, Aldo D; Villanueva, Silvina S M

    2016-07-01

    The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well. PMID:27109321

  6. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  7. Anti-inflammatory and Intestinal Barrier-protective Activities of Commensal Lactobacilli and Bifidobacteria in Thoroughbreds: Role of Probiotics in Diarrhea Prevention in Neonatal Thoroughbreds.

    PubMed

    Tanabe, Soichi; Suzuki, Takuya; Wasano, Yuichiro; Nakajima, Fumihiko; Kawasaki, Hiroshi; Tsuda, Tomonori; Nagamine, Natsuko; Tsurumachi, Takashi; Sugaya, Kiyoshi; Akita, Hiroaki; Takagi, Misako; Takagi, Kunihiko; Inoue, Yoshinobu; Asai, Yo; Morita, Hidetoshi

    2014-01-01

    We previously isolated the commensal bacteria lactobacilli and bifidobacteria from the Thoroughbred intestine and prepared the horse probiotics LacFi(TM), consisting of Lactobacillus ruminis KK14, L. equi KK 15, L. reuteri KK18, L. johnsonii KK21, and Bifidobacterium boum HU. Here, we found that the five LacFi(TM) constituent strains remarkably suppressed pro-inflammatory interleukin-17 production in mouse splenocytes stimulated with interleukin-6 and transforming growth factor-β. The protective effects of the probiotic on impaired intestinal barrier function were evaluated in Caco-2 cells treated with tumor necrosis factor-α. Evaluation of transepithelial resistance showed that all the strains exhibited intestinal barrier protective activity, with significant suppression of barrier impairment by L. reuteri KK18. The LacFi(TM) constituent strains were detected in neonatal LacFi(TM)-administered Thoroughbred feces using polymerase chain reaction denaturing gradient gel electrophoresis and culture methods. These five strains were found to be the predominant lactobacilli and bifidobacteria in the intestinal microbiota of LacFi(TM)-administered Thoroughbreds. Administration of LacFi(TM) to neonatal Thoroughbreds decreased diarrhea incidence from 75.9% in the control group (n=29 neonatal Thoroughbreds) to 30.7% in the LacFi(TM)-administered group (n=101 neonatal Thoroughbreds) immediately after birth to 20 weeks after birth. LacFi(TM) treatment also prevented diarrhea especially at and around 4 weeks and from 10 to 16 weeks. The duration of diarrhea was also shorter in the probiotics-administered group (7.4 ± 0.8 days) than in the control group (14.0 ± 3.2 days). These results indicate that the LacFi(TM) probiotics regulates intestinal function and contributes to diarrhea prevention.

  8. Ethanol Impairs Intestinal Barrier Function in Humans through Mitogen Activated Protein Kinase Signaling: A Combined In Vivo and In Vitro Approach

    PubMed Central

    Elamin, Elhaseen; Masclee, Ad; Troost, Freddy; Pieters, Harm-Jan; Keszthelyi, Daniel; Aleksa, Katarina; Dekker, Jan; Jonkers, Daisy

    2014-01-01

    Background Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders. Aim Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism. Methods Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers. Results Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine. Conclusions Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption. Trial Registration ClinicalTrials.gov NCT00928733 PMID:25226407

  9. Indomethacin co-crystals and their parent mixtures: does the intestinal barrier recognize them differently?

    PubMed

    Ferretti, Valeria; Dalpiaz, Alessandro; Bertolasi, Valerio; Ferraro, Luca; Beggiato, Sarah; Spizzo, Federico; Spisni, Enzo; Pavan, Barbara

    2015-05-01

    Co-crystals are crystalline complexes of two or more molecules bound together in crystal lattices through noncovalent interactions. The solubility and dissolution properties of co-crystals can allow to increase the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). It is currently believed that the co-crystallization strategy should not induce changes on the pharmacological profile of the APIs, even if it is not yet clear whether a co-crystal would be defined as a physical mixture or as a new chemical entity. In order to clarify these aspects, we chose indomethacin as guest poorly aqueous soluble molecule and compared its properties with those of its co-crystals obtained with 2-hydroxy-4-methylpyridine (co-crystal 1), 2-methoxy-5-nitroaniline (co-crystal 2), and saccharine (co-crystal 3). In particular, we performed a systematic comparison among indomethacin, its co-crystals, and their parent physical mixtures by evaluating via HPLC analysis the API dissolution profile, its ability to permeate across intestinal cell monolayers (NCM460), and its oral bioavailability in rat. The indomethacin dissolution profile was not altered by the presence of co-crystallizing agents as physical mixtures, whereas significant changes were observed by the dissolution of the co-crystals. Furthermore, there was a qualitative concordance between the API dissolution patterns and the relative oral bioavailabilities in rats. Co-crystal 1 induced a drastic decrease of the transepithelial electrical resistance (TEER) value of NCM460 cell monolayers, whereas its parent mixture did not evidence any effect. The saccharin-indomethacin mixture induced a drastic decrease of the TEER value of monolayers, whereas its parent co-crystal 3 did not induce any effects on their integrity, being anyway able to increase the permeation of indomethacin. Taken together, these results demonstrate for the first time different effects induced by co-crystals and their parent physical

  10. Moderate Hypothermia Provides Better Protection of the Intestinal Barrier than Deep Hypothermia during Circulatory Arrest in a Piglet Model: A Microdialysis Study

    PubMed Central

    Chen, Guangxian; Tang, Zhixian; Lin, Weibin; Rong, Jian; Wu, Zhongkai

    2016-01-01

    Introduction This study aimed to assess the effects of different temperature settings of hypothermic circulatory arrest (HCA) on intestinal barrier function in a piglet model. Methods Twenty Wuzhishan piglets were randomly assigned to 40 min of HCA at 18°C (DHCA group, n = 5), 40 min of HCA at 24°C (MHCA group, n = 5), normothermic cardiopulmonary bypass (CPB group, n = 5) or sham operation (SO group, n = 5). Serum D-lactate (SDL) and lipopolysaccharide (LPS) levels were determined. Microdialysis parameters (glucose, lactate, pyruvate and glycerol) in the intestinal dialysate were measured. After 180 min of reperfusion, intestinal samples were harvested for real-time polymerase chain reaction and western blotting measurements for E-cadherin and Claudin-1. Results Higher levels of SDL and LPS were detected in the DHCA group than in the MHCA group (P < 0.001). Both MHCA and DHCA groups exhibited lower glucose levels, higher lactate and glycerol levels and a higher lactate to pyruvate (L/P) ratio compared with the CPB group (p<0.05); the DHCA group had higher lactate and glycerol levels and a higher L/P ratio (p<0.05) but similar glucose levels compared to the MHCA group. No significant differences in E-cadherin mRNA or protein levels were noted. Upregulation of claudin-1 mRNA levels was detected in both the DHCA and MHCA animals’ intestines (P < 0.01), but only the DHCA group exhibited a decrease in claudin-1 protein expression (P < 0.01). Conclusion HCA altered the energy metabolism and expression of epithelial junctions in the intestine. Moderate hypothermia (24°C) was less detrimental to the markers of normal functioning of the intestinal barrier than deep hypothermia (18°C). PMID:27685257

  11. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia.

    PubMed

    Chau, Jennifer Y; Tiffany, Caitlin M; Nimishakavi, Shilpa; Lawrence, Jessica A; Pakpour, Nazzy; Mooney, Jason P; Lokken, Kristen L; Caughey, George H; Tsolis, Renee M; Luckhart, Shirley

    2013-10-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  12. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia.

    PubMed

    Chau, Jennifer Y; Tiffany, Caitlin M; Nimishakavi, Shilpa; Lawrence, Jessica A; Pakpour, Nazzy; Mooney, Jason P; Lokken, Kristen L; Caughey, George H; Tsolis, Renee M; Luckhart, Shirley

    2013-10-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.

  13. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    PubMed Central

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  14. New Treatment Strategies for Alcohol-Induced Heart Damage

    PubMed Central

    Fernández-Solà, Joaquim; Planavila Porta, Ana

    2016-01-01

    High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use. PMID:27690014

  15. OSTEOPONTIN BINDING TO LIPOPOLYSACCHARIDE LOWERS TUMOR NECROSIS FACTOR-α AND PREVENTS EARLY ALCOHOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Ge, Xiaodong; Leung, Tung-Ming; Arriazu, Elena; Lu, Yongke; Urtasun, Raquel; Christensen, Brian; Fiel, Maria Isabel; Mochida, Satoshi; Sørensen, Esben S.; Nieto, Natalia

    2013-01-01

    Rationale: Although osteopontin (OPN) is induced in alcoholic patients, its role in the pathophysiology of alcoholic liver disease (ALD) remains unclear. Increased translocation of lipopolysaccharide (LPS) from the gut is key for the onset of ALD since it promotes macrophage infiltration and activation, tumor necrosis factor-α (TNFα) production and liver injury. Since OPN is protective for the intestinal mucosa, we postulated that enhancing OPN expression in the liver and consequently in the blood and/or in the gut could protect from early alcohol-induced liver injury. Results: Wild-type (WT), OPN knockout (Opn−/−) and transgenic mice overexpressing OPN in hepatocytes (OpnHEP Tg) were chronically fed either the control or the ethanol Lieber-DeCarli diet. Ethanol increased hepatic, plasma, biliary and fecal OPN more in OpnHEP Tg than in WT mice. Steatosis was lesser in ethanol-treated OpnHEP Tg mice as shown by decreased liver-to-body weight ratio, hepatic triglycerides, the steatosis score, oil red-O staining and lipid peroxidation. There was also less inflammation and liver injury as demonstrated by lower ALT activity, hepatocyte ballooning degeneration, LPS levels, the inflammation score and the number of macrophages and TNFα+ cells. To establish if OPN could limit LPS availability and its noxious effects in the liver, binding studies were performed. OPN showed affinity for LPS and the binding prevented macrophage activation, reactive oxygen and nitrogen species generation and TNFα production. Treatment with milk OPN (m-OPN) blocked LPS translocation in vivo and protected from early alcohol-induced liver injury. Conclusion: Natural induction plus forced overexpression of OPN in the liver and treatment with m-OPN protect from early alcohol-induced liver injury by blocking the gut-derived LPS and TNFα effects in the liver. PMID:24214181

  16. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent

    PubMed Central

    Boudry, Gaëlle; Lemay, Danielle G.

    2015-01-01

    A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders. PMID:25747351

  17. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent.

    PubMed

    Hamilton, M Kristina; Boudry, Gaëlle; Lemay, Danielle G; Raybould, Helen E

    2015-05-15

    A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders.

  18. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions.

    PubMed

    Vindigni, Stephen M; Zisman, Timothy L; Suskind, David L; Damman, Christopher J

    2016-07-01

    We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental 'hits' are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function.

  19. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions

    PubMed Central

    Vindigni, Stephen M.; Zisman, Timothy L.; Suskind, David L.; Damman, Christopher J.

    2016-01-01

    We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental ‘hits’ are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function. PMID:27366227

  20. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure.

    PubMed

    Soares, Anne D N; Costa, Kátia A; Wanner, Samuel P; Santos, Rosana G C; Fernandes, Simone O A; Martins, Flaviano S; Nicoli, Jacques R; Coimbra, Cândido C; Cardoso, Valbert N

    2014-11-28

    Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.

  1. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets. PMID:25012977

  2. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.

  3. Fermented Pueraria Lobata extract ameliorates dextran sulfate sodium-induced colitis by reducing pro-inflammatory cytokines and recovering intestinal barrier function

    PubMed Central

    Choi, Seungho; Woo, Jong-Kyu; Jang, Yeong-Su; Kang, Ju-Hee; Jang, Jung-Eun; Yi, Tae-Hoo; Park, Sang-Yong; Kim, Sun-Yeou; Yoon, Yeo-Sung

    2016-01-01

    Inflammatory bowel disease is a chronic inflammatory disorder occurring in the gastrointestinal track. However, the efficacy of current therapeutic strategies has been limited and accompanied by side effects. In order to eliminate the limitations, herbal medicines have recently been developed for treatment of IBD. Peuraria Lobata (Peuraria L.) is one of the traditional herbal medicines that have anti-inflammatory effects. Bioavailability of Peuraria L., which is rich in isoflavones, is lower than that of their fermented forms. In this study, we generated fermented Peuraria L. extracts (fPue) and investigated the role of fPue in inflammation and intestinal barrier function in vitro and in vivo. As the mice or intestinal epithelial cells were treated with DSS/fPue, mRNA expression of pro-inflammatory cytokines was reduced and the architecture and expression of tight junction proteins were recovered, compared to the DSS-treated group. In summary, fPue treatment resulted in amelioration of DSS-induced inflammation in the colon, and the disrupted intestinal barrier was recovered as the expression and architecture of tight junction proteins were retrieved. These results suggest that use of fPue could be a new therapeutic strategy for treatment of IBD. PMID:27729931

  4. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells

    PubMed Central

    Beard, Richard S.; Eitner, Rebecca A.; Chen, Liwei; Wu, Mack H.

    2016-01-01

    transepithelial electrical resistance (TER), as well as excluded FoxO1 from the nucleus. Our results indicate that PTK6 may act as a novel mediator of intestinal epithelial permeability during inflammatory injury, and miR-93 may protect intestinal epithelial barrier function, at least in part, by targeting PTK6. PMID:27119373

  5. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-01

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse.

  6. Maturation of the Intestinal Epithelial Barrier in Neonatal Rats Coincides with Decreased FcRn Expression, Replacement of Vacuolated Enterocytes and Changed Blimp-1 Expression

    PubMed Central

    Arévalo Sureda, Ester; Weström, Björn; Pierzynowski, Stefan G.; Prykhodko, Olena

    2016-01-01

    Background The intestinal barrier is immature in newborn mammals allowing for transfer of bioactive macromolecules, e.g. protecting antibodies, from mother’s milk to the blood circulation and in neonatal rodents lasts until weaning. This passage involves the neonatal-Fc-receptor (FcRn) binding IgG in the proximal and highly endocytic vacuolated enterocytes in the distal immature small intestine (SI). Recent studies have suggested an involvement of the transcription factor B-lymphocyte-induced maturation-protein-1 (Blimp-1) in the regulation of SI maturation in mice. Hence, the objective of the present study was to monitor the development of the intestinal barrier function, in relation to Blimp-1 expression during both natural and precociously induced intestinal maturation in rats. Results During the suckling period IgG plasma levels increased, while after gut closure it temporarily decreased. This corresponded to a high expression of FcRn in the proximal SI epithelium and the presence of vacuolated enterocytes in the distal SI. The immature foetal-type epithelium was replaced after weaning or induced precocious maturation, by an adult-type epithelium with FcRnneg cells in the proximal and by non-vacuolated enterocytes in the distal SI. In parallel to this epithelial shift, Blimp-1 expression decreased in the distal SI. Conclusion The switch from foetal- to adult-type epithelium, with decreased proximal expression of FcRn and distal replacement of vacuolated enterocytes, was concurrent in the two SI regions and could be used for monitoring SI maturation in the rat. The changes in expression of Blimp-1 in the distal SI epithelium followed the maturation pattern. PMID:27736989

  7. Effects of glutamine alone or in combination with zinc and vitamin A on growth, intestinal barrier function, stress and satiety-related hormones in Brazilian shantytown children

    PubMed Central

    Lima, Aldo A. M.; Anstead, Gregory M.; Zhang, Qiong; Figueiredo, Ítalo L.; Soares, Alberto M.; Mota, Rosa M. S.; Lima, Noélia L.; Guerrant, Richard L.; Oriá, Reinaldo B.

    2014-01-01

    OBJECTIVE: To determine the impact of supplemental zinc, vitamin A, and glutamine alone or in combination on growth, intestinal barrier function, stress and satiety-related hormones among Brazilian shantytown children with low median height-for-age z-scores. METHODS: A randomized, double-blind, placebo-controlled trial was conducted in children aged two months to nine years from the urban shanty compound community of Fortaleza, Brazil. Demographic and anthropometric information was assessed. The random treatment groups available for testing (a total of 120 children) were as follows: (1) glutamine alone, n = 38; (2) glutamine plus vitamin A plus zinc, n = 37; and a placebo (zinc plus vitamin A vehicle) plus glycine (isonitrogenous to glutamine) control treatment, n = 38. Leptin, adiponectin, insulin-like growth factor (IGF-1), and plasma levels of cortisol were measured with immune-enzymatic assays; urinary lactulose/mannitol and serum amino acids were measured with high-performance liquid chromatography. ClinicalTrials.gov: NCT00133406. RESULTS: Glutamine treatment significantly improved weight-for-height z-scores compared to the placebo-glycine control treatment. Either glutamine alone or all nutrients combined prevented disruption of the intestinal barrier function, as measured by the percentage of lactulose urinary excretion and the lactulose:mannitol absorption ratio. Plasma leptin was negatively correlated with plasma glutamine (p = 0.002) and arginine (p = 0.001) levels at baseline. After glutamine treatment, leptin was correlated with weight-for-age (WAZ) and weight-for-height z-scores (WHZ) (p≤0.002) at a 4-month follow-up. In addition, glutamine and all combined nutrients (glutamine, vitamin A, and zinc) improved the intestinal barrier function in these children. CONCLUSION: Taken together, these findings reveal the benefits of glutamine alone or in combination with other gut-trophic nutrients in growing children via interactions with

  8. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis and apoptosis

    PubMed Central

    Abdelmegeed, Mohamed A.; Banerjee, Atrayee; Jang, Sehwan; Yoo, Seong-Ho; Yun, Jun-Won; Gonzalez, Frank J.; Keshavarzian, Ali; Song, Byoung-Joon

    2013-01-01

    Ethanol-inducible cytochrome P450 2E1 (CYP2E1) contributes to increased oxidative stress and steatosis in chronic alcohol-exposure models. However, its role in binge ethanol-induced gut leakiness and hepatic injury is unclear. This study was aimed to investigate the role of CYP2E1 in binge alcohol-induced gut leakiness and the mechanisms of steatohepatitis. Female wild-type (WT) and Cyp2e1-null mice were treated with three doses of binge ethanol (WT-EtOH or Cyp2e1-null-EtOH) (6 g/kg oral gavage at 12-h intervals) or dextrose (negative control). Intestinal histology of only WT-EtOH exhibited epithelial alteration and blebbing of lamina propria while liver histology obtained at 6 h after the last ethanol dose showed elevated steatosis with scattered inflammatory foci. These were accompanied by increased levels of serum endotoxin, hepatic enterobacteria and triglycerides. All these changes including the intestinal histology and hepatic apoptosis, determined by TUNEL assay, were significantly reversed when WT-EtOH mice were treated with the specific inhibitor of CYP2E1 chlormethiazole and the antioxidant N-acetyl-cysteine, both of which suppressed the oxidative markers including intestinal CYP2E1. WT-EtOH also exhibited elevated amounts of serum TNF-α, hepatic cytokines, CYP2E1 and lipid peroxidation with decreased levels of mitochondrial superoxide dismutase and suppressed aldehyde dehydrogenase 2 activity. Increased hepatocyte apoptosis with elevated levels of pro-apoptotic proteins and decreased levels of active (phosphorylated) p-AKT, p-AMPK and peroxisome proliferator-activated receptor-alpha (PPAR-α), all of which are involved in fat metabolism and inflammation, were observed in WT-EtOH. These changes were significantly attenuated in the corresponding Cyp2e1-null-EtOH mice. These data indicate that both intestinal and hepatic CYP2E1 induced by binge alcohol seem critical in the binge alcohol-mediated increased nitroxidative stress, gut leakage, endotoxemia, and

  9. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis.

    PubMed

    Abdelmegeed, Mohamed A; Banerjee, Atrayee; Jang, Sehwan; Yoo, Seong-Ho; Yun, Jun-Won; Gonzalez, Frank J; Keshavarzian, Ali; Song, Byoung-Joon

    2013-12-01

    Ethanol-inducible cytochrome P450 2E1 (CYP2E1) contributes to increased oxidative stress and steatosis in chronic alcohol-exposure models. However, its role in binge ethanol-induced gut leakiness and hepatic injury is unclear. This study was aimed at investigating the role of CYP2E1 in binge alcohol-induced gut leakiness and the mechanisms of steatohepatitis. Female wild-type (WT) and Cyp2e1-null mice were treated with three doses of binge ethanol (WT-EtOH or Cyp2e1-null-EtOH) (6g/kg oral gavage at 12-h intervals) or dextrose (negative control). Intestinal histology of only WT-EtOH exhibited epithelial alteration and blebbing of lamina propria, and liver histology obtained at 6h after the last ethanol dose showed elevated steatosis with scattered inflammatory foci. These were accompanied by increased levels of serum endotoxin, hepatic enterobacteria, and triglycerides. All these changes, including the intestinal histology and hepatic apoptosis, determined by TUNEL assay, were significantly reversed when WT-EtOH mice were treated with the specific inhibitor of CYP2E1 chlormethiazole and the antioxidant N-acetylcysteine, both of which suppressed oxidative markers including intestinal CYP2E1. WT-EtOH also exhibited elevated amounts of serum TNF-α, hepatic cytokines, CYP2E1, and lipid peroxidation, with decreased levels of mitochondrial superoxide dismutase and suppressed aldehyde dehydrogenase 2 activity. Increased hepatocyte apoptosis with elevated levels of proapoptotic proteins and decreased levels of active (phosphorylated) p-AKT, p-AMPK, and peroxisome proliferator-activated receptor-α, all of which are involved in fat metabolism and inflammation, were observed in WT-EtOH. These changes were significantly attenuated in the corresponding Cyp2e1-null-EtOH mice. These data indicate that both intestinal and hepatic CYP2E1 induced by binge alcohol seems critical in binge alcohol-mediated increased nitroxidative stress, gut leakage, and endotoxemia; altered fat

  10. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    PubMed

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde

  11. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-01

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers.

  12. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-01

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. PMID:27281582

  13. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction.

    PubMed

    Ronaghan, Natalie J; Shang, Judie; Iablokov, Vadim; Zaheer, Raza; Colarusso, Pina; Turner, Jerrold R; MacNaughton, Wallace K

    2016-09-01

    Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism. PMID:27492333

  14. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    PubMed

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at

  15. Ceramide is involved in alcohol-induced neural proliferation

    PubMed Central

    Wang, Zhixin; Deng, Tongxing; Deng, Jiexin; Deng, Jinbo; Gao, Xiaoqun; Shi, Yuanyuan; Liu, Bin; Ma, Zhanyou; Jin, Haixiao

    2013-01-01

    Prenatal alcohol exposure, especially during early pregnancy, can lead to fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are related to the effects of ceramide. In this study, we established an alcohol exposure model in wild-type mice and in knockout mice for the key enzyme involved in ceramide metabolism, sphingomyelin synthase 2. This model received daily intragastric administration of 25% ethanol, and pups were used at postnatal days 0, 7, 14, 30 for experiments. Serology and immunofluorescence staining found that ethanol exposure dose-dependently reduced blood sphingomyelin levels in two genotypes of pups, and increased neural cell proliferation and the number of new neurons in the hippocampal dentate gyrus. Western blot analysis showed that the relative expression level of protein kinase C α increased in two notypes of pups after ethanol exposure. Compared with wild-type pups, the expression level of the important activator protein of the ceramide/ceramide-1-phosphate pathway, protein kinase C α, was reduced in the hippocampus of sphingomyelin synthase 2 knockouts. Our findings illustrate that ceramide is involved in alcohol-induced neural proliferation in the hippocampal dentate gyrus of pups after prenatal ethanol exposure, and the mechanism may be associated with increased pression of protein kinase C α activating the ceramide/ceramide-1-phosphate pathway. PMID:25206527

  16. Corticosteroids in the treatment of alcohol-induced rhabdomyolysis.

    PubMed

    Antoon, James W; Chakraborti, Chayan

    2011-10-01

    Rhabdomyolysis is a common condition with potentially devastating complications, including acute renal failure, arrhythmias, and death. The standard of care is to use supportive measures such as aggressive fluid repletion to prevent kidney injury and attenuate clinical symptoms. Besides fluid management, few therapeutic options are available for the treatment of acute rhabdomyolysis. As a result, acute and refractory cases remain difficult to manage. We report a case of alcohol-induced rhabdomyolysis that responded dramatically to high-dose corticosteroids. A 55-year-old man presented to the emergency department for evaluation of diffuse muscle pain, weakness, and darkening urine. On admission, his creatine kinase (CK) level was 50,022 U/L. Despite aggressive fluid repletion, his CK level continued to increase, peaking at 401,280 U/L with a concomitant increase in muscle pain and urine darkening. On administration of high-dose corticosteroids, clinical symptoms and CK levels improved dramatically, and the patient was discharged 36 hours later with complete resolution of muscle pain and weakness. Given their low toxicity profile, short-term high-dose corticosteroids may be a valid treatment option for recurrent rhabdomyolysis unresponsive to fluid repletion.

  17. Alcohol-induced neurodegeneration: when, where and why?

    PubMed

    Crews, Fulton T; Collins, Michael A; Dlugos, Cynthia; Littleton, John; Wilkins, Lincoln; Neafsey, Edward J; Pentney, Roberta; Snell, Lawrence D; Tabakoff, Boris; Zou, Jian; Noronha, Antonio

    2004-02-01

    This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor alpha (TNFalpha), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal.

  18. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    PubMed Central

    Udoh, Uduak S.; Valcin, Jennifer A.; Gamble, Karen L.; Bailey, Shannon M.

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases. PMID:26473939

  19. The Molecular Circadian Clock and Alcohol-Induced Liver Injury.

    PubMed

    Udoh, Uduak S; Valcin, Jennifer A; Gamble, Karen L; Bailey, Shannon M

    2015-10-14

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  20. Ceramide is involved in alcohol-induced neural proliferation.

    PubMed

    Wang, Zhixin; Deng, Tongxing; Deng, Jiexin; Deng, Jinbo; Gao, Xiaoqun; Shi, Yuanyuan; Liu, Bin; Ma, Zhanyou; Jin, Haixiao

    2013-08-15

    Prenatal alcohol exposure, especially during early pregnancy, can lead to fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are related to the effects of ceramide. In this study, we established an alcohol exposure model in wild-type mice and in knockout mice for the key enzyme involved in ceramide metabolism, sphingomyelin synthase 2. This model received daily intragastric administration of 25% ethanol, and pups were used at postnatal days 0, 7, 14, 30 for experiments. Serology and immunofluorescence staining found that ethanol exposure dose-dependently reduced blood sphingomyelin levels in two genotypes of pups, and increased neural cell proliferation and the number of new neurons in the hippocampal dentate gyrus. Western blot analysis showed that the relative expression level of protein kinase C α increased in two notypes of pups after ethanol exposure. Compared with wild-type pups, the expression level of the important activator protein of the ceramide/ceramide-1-phosphate pathway, protein kinase C α, was reduced in the hippocampus of sphingomyelin synthase 2 knockouts. Our findings illustrate that ceramide is involved in alcohol-induced neural proliferation in the hippocampal dentate gyrus of pups after prenatal ethanol exposure, and the mechanism may be associated with increased pression of protein kinase C α activating the ceramide/ceramide-1-phosphate pathway. PMID:25206527

  1. Tumour necrosis factor-α-induced loss of intestinal barrier function requires TNFR1 and TNFR2 signalling in a mouse model of total parenteral nutrition

    PubMed Central

    Feng, Yongjia; Teitelbaum, Daniel H

    2013-01-01

    Tumour necrosis factor-α (TNF-α) has been reported to play a central role in intestinal barrier dysfunction in many diseases; however, the precise role of the TNF-α receptors (TNFRs) has not been well defined using in vivo models. Our previous data showed that enteral nutrient deprivation or total parenteral nutrition (TPN) led to a loss of intestinal epithelial barrier function (EBF), with an associated upregulation of TNF-α and TNFR1. In this study, we hypothesized that TNF-α plays an important role in TPN-associated EBF dysfunction. Using a mouse TPN model, we explored the relative roles of TNFR1 vs. TNFR2 in mediating this barrier loss. C57/BL6 mice underwent intravenous cannulation and were given enteral nutrition or TPN for 7 days. Tumour necrosis factor-α receptor knockout (KO) mice, including TNFR1KO, TNFR2KO or TNFR1R2 double KO (DKO), were used. Outcomes included small intestine transepithelial resistance (TER) and tracer permeability, junctional protein zonula occludens-1, occludin, claudins and E-cadherin expression. In order to address the dependence of EBF on TNF-α further, exogenous TNF-α and pharmacological blockade of TNF-α (Etanercept) were also performed. Total parenteral nutrition led to a loss of EBF, and this was almost completely prevented in TNFR1R2DKO mice and partly prevented in TNFR1KO mice but not in TNFR2KO mice. The TPN-associated downregulation of junctional protein expression and junctional assembly was almost completely prevented in the TNFR1R2DKO group. Blockade of TNF-α also prevented dysfunction of the EBF and junctional protein losses in mice undergoing TPN. Administration of TPN upregulated the downstream nuclear factor-κB and myosin light-chain kinase (MLCK) signalling, and these changes were almost completely prevented in TNFR1R2DKO mice, as well as with TNF-α blockade, but not in TNFR1KO or TNFR2KO TPN groups. Tumour necrosis factor-α is a critical factor for TPN-associated epithelial barrier dysfunction, and

  2. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier.

    PubMed

    Goyer, Marianne; Loiselet, Alicia; Bon, Fabienne; L'Ollivier, Coralie; Laue, Michael; Holland, Gudrun; Bonnin, Alain; Dalle, Frederic

    2016-01-01

    C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ) formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin), we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ.

  3. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier.

    PubMed

    Goyer, Marianne; Loiselet, Alicia; Bon, Fabienne; L'Ollivier, Coralie; Laue, Michael; Holland, Gudrun; Bonnin, Alain; Dalle, Frederic

    2016-01-01

    C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ) formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin), we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ. PMID:26933885

  4. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier

    PubMed Central

    Bon, Fabienne; L’Ollivier, Coralie; Laue, Michael; Holland, Gudrun; Bonnin, Alain; Dalle, Frederic

    2016-01-01

    C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ) formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin), we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ. PMID:26933885

  5. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation.

    PubMed

    Garg, Aditya; Zhao, Angela; Erickson, Sarah L; Mukherjee, Subhajit; Lau, Aik Jiang; Alston, Laurie; Chang, Thomas K H; Mani, Sridhar; Hirota, Simon A

    2016-10-01

    The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD. PMID:27440420

  6. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation.

    PubMed

    Garg, Aditya; Zhao, Angela; Erickson, Sarah L; Mukherjee, Subhajit; Lau, Aik Jiang; Alston, Laurie; Chang, Thomas K H; Mani, Sridhar; Hirota, Simon A

    2016-10-01

    The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD.

  7. Inhibitory effects of pretreatment with radon on acute alcohol-induced hepatopathy in mice.

    PubMed

    Toyota, Teruaki; Kataoka, Takahiro; Nishiyama, Yuichi; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m(3) radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.

  8. Milk osteopontin, a nutritional approach to prevent alcohol-induced liver injury.

    PubMed

    Ge, Xiaodong; Lu, Yongke; Leung, Tung-Ming; Sørensen, Esben S; Nieto, Natalia

    2013-05-15

    Alcohol consumption is a leading cause of liver disease worldwide; thus, there is an urgent need to develop novel therapeutic interventions. Key events for the onset and progression of alcoholic liver disease result in part from the gut-to-liver interaction. Osteopontin is a cytokine present at high concentration in human milk, umbilical cord, and infants' plasma with beneficial potential. We hypothesized that dietary administration of milk osteopontin could prevent alcohol-induced liver injury perhaps by maintaining gut integrity and averting hepatic inflammation and steatosis. Wild-type mice were fed either the control or the ethanol Lieber-DeCarli diets alone or in combination with milk osteopontin for 3 wk, and parameters of gut and liver damage were measured. Milk osteopontin protected the stomach and the gut by increasing gland height, crypt cell plus enterocyte proliferation, and mucin content in addition to lowering macrophages, plasmacytes, lymphocytes, and neutrophils in the mucosa and submucosa in alcohol-fed mice. Milk osteopontin targeted the gut-liver axis, preserving the expression of tight-junction proteins in alcohol-fed mice thus maintaining intestinal integrity and permeability. There was protection from liver injury since transaminases, the activity scores, triglyceride levels, neutrophil infiltration, 3-nitrotyrosine residues, lipid peroxidation end products, translocation of gram-negative bacteria, lipopolysaccharide levels, and tumor necrosis factor-α were lower in cotreated than in ethanol-fed mice. Furthermore, milk osteopontin diminished ethanol-mediated liver injury in OPN knockout mice. Milk osteopontin could be a simple effective nutritional therapeutic strategy to prevent alcohol hepatotoxicity due, among others, to gut protective, anti-inflammatory, and anti-steatotic actions. PMID:23518682

  9. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    PubMed

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  10. Alcohol-Induced Developmental Origins of Adult-Onset Diseases.

    PubMed

    Lunde, Emilie R; Washburn, Shannon E; Golding, Michael C; Bake, Shameena; Miranda, Rajesh C; Ramadoss, Jayanth

    2016-07-01

    Fetal alcohol exposure may impair growth, development, and function of multiple organ systems and is encompassed by the term fetal alcohol spectrum disorders (FASD). Research has so far focused on the mechanisms, prevention, and diagnosis of FASD, while the risk for adult-onset chronic diseases in individuals exposed to alcohol in utero is not well explored. David Barker's hypothesis on Developmental Origins of Health and Disease (DOHaD) suggests that insults to the milieu of the developing fetus program it for adult development of chronic diseases. In the 25 years since the introduction of this hypothesis, epidemiological and animal model studies have made significant advancements in identifying in utero developmental origins of chronic adult-onset diseases affecting cardiovascular, endocrine, musculoskeletal, and psychobehavioral systems. Teratogen exposure is an established programming agent for adult diseases, and recent studies suggest that prenatal alcohol exposure correlates with adult onset of neurobehavioral deficits, cardiovascular disease, endocrine dysfunction, and nutrient homeostasis instability, warranting additional investigation of alcohol-induced DOHaD, as well as patient follow-up well into adulthood for affected individuals. In utero epigenetic alterations during critical periods of methylation are a key potential mechanism for programming and susceptibility of adult-onset chronic diseases, with imprinted genes affecting metabolism being critical targets. Additional studies in epidemiology, phenotypic characterization in response to timing, dose, and duration of exposure, as well as elucidation of mechanisms underlying FASD-DOHaD inter relation, are thus needed to clinically define chronic disease associated with prenatal alcohol exposure. These studies are critical to establish interventional strategies that decrease incidence of these adult-onset diseases and promote healthier aging among individuals affected with FASD. PMID:27254466

  11. Alcohol-Induced Developmental Origins of Adult-Onset Diseases.

    PubMed

    Lunde, Emilie R; Washburn, Shannon E; Golding, Michael C; Bake, Shameena; Miranda, Rajesh C; Ramadoss, Jayanth

    2016-07-01

    Fetal alcohol exposure may impair growth, development, and function of multiple organ systems and is encompassed by the term fetal alcohol spectrum disorders (FASD). Research has so far focused on the mechanisms, prevention, and diagnosis of FASD, while the risk for adult-onset chronic diseases in individuals exposed to alcohol in utero is not well explored. David Barker's hypothesis on Developmental Origins of Health and Disease (DOHaD) suggests that insults to the milieu of the developing fetus program it for adult development of chronic diseases. In the 25 years since the introduction of this hypothesis, epidemiological and animal model studies have made significant advancements in identifying in utero developmental origins of chronic adult-onset diseases affecting cardiovascular, endocrine, musculoskeletal, and psychobehavioral systems. Teratogen exposure is an established programming agent for adult diseases, and recent studies suggest that prenatal alcohol exposure correlates with adult onset of neurobehavioral deficits, cardiovascular disease, endocrine dysfunction, and nutrient homeostasis instability, warranting additional investigation of alcohol-induced DOHaD, as well as patient follow-up well into adulthood for affected individuals. In utero epigenetic alterations during critical periods of methylation are a key potential mechanism for programming and susceptibility of adult-onset chronic diseases, with imprinted genes affecting metabolism being critical targets. Additional studies in epidemiology, phenotypic characterization in response to timing, dose, and duration of exposure, as well as elucidation of mechanisms underlying FASD-DOHaD inter relation, are thus needed to clinically define chronic disease associated with prenatal alcohol exposure. These studies are critical to establish interventional strategies that decrease incidence of these adult-onset diseases and promote healthier aging among individuals affected with FASD.

  12. Molecular and cellular events in alcohol-induced muscle disease.

    PubMed

    Fernandez-Solà, Joaquim; Preedy, Victor R; Lang, Charles H; Gonzalez-Reimers, Emilio; Arno, M; Lin, J C I; Wiseman, H; Zhou, S; Emery, P W; Nakahara, T; Hashimoto, K; Hirano, M; Santolaria-Fernández, F; González-Hernández, T; Fatjó, Francesc; Sacanella, Emilio; Estruch, Ramón; Nicolás, José M; Urbano-Márquez, Alvaro

    2007-12-01

    Alcohol consumption induces a dose-dependent noxious effect on skeletal muscle, leading to progressive functional and structural damage of myocytes, with concomitant reductions in lean body mass. Nearly half of high-dose chronic alcohol consumers develop alcoholic skeletal myopathy. The pathogenic mechanisms that lie between alcohol intake and loss of muscle tissue involve multiple pathways, making the elucidation of the disease somewhat difficult. This review discusses the recent advances in basic and clinical research on the molecular and cellular events involved in the development of alcohol-induced muscle disease. The main areas of recent research interest on this field are as follows: (i) molecular mechanisms in alcohol exposed muscle in the rat model; (ii) gene expression changes in alcohol exposed muscle; (iii) the role of trace elements and oxidative stress in alcoholic myopathy; and (iv) the role of apoptosis and preapoptotic pathways in alcoholic myopathy. These aforementioned areas are crucial in understanding the pathogenesis of this disease. For example, there is overwhelming evidence that both chronic alcohol ingestion and acute alcohol intoxication impair the rate of protein synthesis of myofibrillar proteins, in particular, under both postabsorptive and postprandial conditions. Perturbations in gene expression are contributory factors to the development of alcoholic myopathy, as ethanol-induced alterations are detected in over 400 genes and the protein profile (i.e., the proteome) of muscle is also affected. There is supportive evidence that oxidative damage is involved in the pathogenesis of alcoholic myopathy. Increased lipid peroxidation is related to muscle fibre atrophy, and reduced serum levels of some antioxidants may be related to loss of muscle mass and muscle strength. Finally, ethanol induces skeletal muscle apoptosis and increases both pro- and antiapoptotic regulatory mechanisms.

  13. Alcohol-induced ciliary dysfunction targets the outer dynein arm.

    PubMed

    Yang, Fan; Pavlik, Jacqueline; Fox, Laura; Scarbrough, Chasity; Sale, Winfield S; Sisson, Joseph H; Wirschell, Maureen

    2015-03-15

    Alcohol abuse results in an increased incidence of pulmonary infection, in part attributable to impaired mucociliary clearance. Analysis of motility in mammalian airway cilia has revealed that alcohol impacts the ciliary dynein motors by a mechanism involving altered axonemal protein phosphorylation. Given the highly conserved nature of cilia, it is likely that the mechanisms for alcohol-induced ciliary dysfunction (AICD) are conserved. Thus we utilized the experimental advantages offered by the model organism, Chlamydomonas, to determine the precise effects of alcohol on ciliary dynein activity and identify axonemal phosphoproteins that are altered by alcohol exposure. Analysis of live cells or reactivated cell models showed that alcohol significantly inhibits ciliary motility in Chlamydomonas via a mechanism that is part of the axonemal structure. Taking advantage of informative mutant cells, we found that alcohol impacts the activity of the outer dynein arm. Consistent with this finding, alcohol exposure results in a significant reduction in ciliary beat frequency, a parameter of ciliary movement that requires normal outer dynein arm function. Using mutants that lack specific heavy-chain motor domains, we have determined that alcohol impacts the β- and γ-heavy chains of the outer dynein arm. Furthermore, using a phospho-threonine-specific antibody, we determined that the phosphorylation state of DCC1 of the outer dynein arm-docking complex is altered in the presence of alcohol, and its phosphorylation correlates with AICD. These results demonstrate that alcohol targets specific outer dynein arm components and suggest that DCC1 is part of an alcohol-sensitive mechanism that controls outer dynein arm activity.

  14. Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation.

    PubMed

    Mosberian-Tanha, Peyman; Øverland, Margareth; Landsverk, Thor; Reveco, Felipe E; Schrama, Johan W; Roem, Andries J; Agger, Jane W; Mydland, Liv T

    2016-01-01

    The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo.

  15. Intestinal Cell Barrier Function In Vitro Is Severely Compromised by Keratin 8 and 18 Mutations Identified in Patients with Inflammatory Bowel Disease

    PubMed Central

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo. PMID:24915158

  16. Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation.

    PubMed

    Mosberian-Tanha, Peyman; Øverland, Margareth; Landsverk, Thor; Reveco, Felipe E; Schrama, Johan W; Roem, Andries J; Agger, Jane W; Mydland, Liv T

    2016-01-01

    The primary aim of this experiment was to evaluate the intestinal barrier permeability in vivo in rainbow trout (Oncorhynchus mykiss) fed increasing levels of soyabean meal (SBM). The relationship between SBM-induced enteritis (SBMIE) and the permeability markers was also investigated. Our results showed that the mean score of morphological parameters was significantly higher as a result of 37·5 % SBM inclusion in the diet, while the scores of fish fed 25 % SBM or lower were not different from those of the fish meal-fed controls (P < 0·05). SBMIE was found in the distal intestine (DI) in 18 % of the fish (eleven of sixty): ten in the 37·5 % SBM-fed group and one in the 25 % SBM-fed group. Sugar markers in plasma showed large variation among individuals probably due to variation in feed intake. We found, however, a significant linear increase in the level of plasma d-lactate with increasing SBM inclusion level (P < 0·0001). Plasma concentration of endotoxin was not significantly different in groups with or without SBMIE. Some individual fish showed high values of endotoxin in blood, but the same individuals did not show any bacterial translocation. Plasma bacterial DNA was detected in 28 % of the fish with SBMIE, and 8 % of non-SBMIE fish (P = 0·07). Plasma concentration of d-lactate was significantly higher in fish with SBMIE (P < 0·0001). To conclude, SBMIE in the DI of rainbow trout was associated with an increase in bacterial translocation and plasma d-lactate concentration, suggesting that these permeability markers can be used to evaluate intestinal permeability in vivo. PMID:27547389

  17. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  18. Effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection

    PubMed Central

    Zhang, Yu; Gu, Fang; Wang, Fengxian; Zhang, Yuanda

    2016-01-01

    Objective: To evaluate the effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection. Methods: A total of 120 patients with burn-induced invasive fungal infection were randomly divided into an early enteral nutrition (EN) group and a parenteral nutrition (PN) group (n=60). The patients were given nutritional support intervention for 14 days, and the expression levels of serum transferrin, albumin, total protein, endotoxin, D-lactic acid and inflammatory cytokines were detected on the 1st, 7th and 14th days respectively. Results: As the treatment progressed, the levels of serum transferrin, albumin and total protein of the EN group were significantly higher than those of the PN group (P<0.05), while the levels of serum endotoxin and D-lactic acid of the form group were significantly lower (P<0.05). After treatment, the expression levels of IL-6 and TNF-α were decreased in the EN group, which were significantly different from those of the PN group (P<0.05). During treatment, the incidence rates of complications such as abdominal distension, diarrhea, sepsis, nausea, vomiting and gastric retention were similar. The mean healing time of wound surface was 9.34±0.78 days in the EN group and 12.46±2.19 days in the PN group, i.e. such time of the former was significantly shorter than that of the latter (P<0.05). Conclusion: Treating patients having burn-induced invasive fungal infection by early enteral nutrition support with arginine can safely alleviate malnutrition and stress reaction, strengthen cellular immune function and promote wound healing, thereby facilitating the recovery of gastrointestinal motility and the function of intestinal mucosal barrier. PMID:27375697

  19. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network

    PubMed Central

    Springler, Alexandra; Hessenberger, Sabine; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways. PMID:27618100

  20. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network.

    PubMed

    Springler, Alexandra; Hessenberger, Sabine; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    Deoxynivalenol (DON), produced by the plant pathogens Fusarium graminearum and Fusarium culmorum, is one of the most common mycotoxins, contaminating cereal and cereal-derived products. Although worldwide contamination of food and feed poses health threats to humans and animals, pigs are particularly susceptible to this mycotoxin. DON derivatives, such as deepoxy-deoxynivalenol (DOM-1), are produced by bacterial transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Intestinal epithelial cells are the initial barrier against these food- and feed-borne toxins. The present study confirms DON-induced activation of MAPK p44/42 and inhibition of p44/42 by MAPK-inhibitor U0126 monoethanolate. Influence of DON and DOM-1 on transepithelial electrical resistance (TEER), viability and expression of seven tight junction proteins (TJ), as well as the potential of U0126 to counteract DON-induced effects, was assessed. While DOM-1 showed no effect, DON significantly reduced TEER of differentiated IPEC-J2 and decreased expression of claudin-1 and -3, while leaving claudin-4; ZO-1, -2, and -3 and occludin unaffected. Inhibition of p44/42 counteracted DON-induced TEER decrease and restored claudin-3, but not claudin-1 expression. Therefore, effects of DON on TEER and claudin-3 are at least partially p44/42 mediated, while effects on viability and claudin-1 are likely mediated via alternative pathways. PMID:27618100

  1. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients.

    PubMed

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A; Wertheimer, Joshua; Mullin, James M

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed.

  2. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients

    PubMed Central

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A.; Wertheimer, Joshua; Mullin, James M.

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed. PMID:26226276

  3. Prions efficiently cross the intestinal barrier after oral administration: Study of the bioavailability, and cellular and tissue distribution in vivo

    PubMed Central

    Urayama, Akihiko; Concha-Marambio, Luis; Khan, Uffaf; Bravo-Alegria, Javiera; Kharat, Vineetkumar; Soto, Claudio

    2016-01-01

    Natural forms of prion diseases frequently originate by oral (p.o.) infection. However, quantitative information on the gastro-intestinal (GI) absorption of prions (i.e. the bioavailability and subsequent biodistribution) is mostly unknown. The main goal of this study was to evaluate the fate of prions after oral administration, using highly purified radiolabeled PrPSc. The results showed a bi-phasic reduction of PrPSc with time in the GI, except for the ileum and colon which showed sustained increases peaking at 3–6 hr, respectively. Plasma and whole blood 125I-PrPSc reached maximal levels by 30 min and 3 hr, respectively, and blood levels were constantly higher than plasma. Upon crossing the GI-tract 125I-PrPSc became associated to blood cells, suggesting that binding to cells decreased the biological clearance of the agent. Size-exclusion chromatography revealed that oligomeric 125I-PrPSc were transported from the intestinal tract, and protein misfolding cyclic amplification showed that PrPSc in organs and blood retained the typical prion self-replicating ability. Pharmacokinetic analysis found the oral bioavailability of 125I-PrPSc to be 33.6%. Interestingly, 125I-PrPSc reached the brain in a quantity equivalent to the minimum amount needed to initiate prion disease. Our findings provide a comprehensive and quantitative study of the fate of prions upon oral infection. PMID:27573341

  4. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation.

    PubMed

    Wang, Lirui; Fouts, Derrick E; Stärkel, Peter; Hartmann, Phillipp; Chen, Peng; Llorente, Cristina; DePew, Jessica; Moncera, Kelvin; Ho, Samuel B; Brenner, David A; Hooper, Lora V; Schnabl, Bernd

    2016-02-10

    Approximately half of all deaths from liver cirrhosis, the tenth leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease. PMID:26867181

  5. Epidermal growth factor improved alcohol-induced inflammation in rats.

    PubMed

    Chen, Ya-Ling; Peng, Hsiang-Chi; Hsieh, Yi-Ching; Yang, Suh-Ching

    2014-11-01

    The purpose of this study was to investigate the effects of an epidermal growth factor (EGF) intervention on improving the inflammatory response of rats fed an ethanol-containing diet. Eight-week-old male Wistar rats were divided into ethanol (E) and control (C) groups. Rats in the E group were fed an ethanol liquid diet, while rats in the C group were pair-fed an isoenergetic diet without ethanol. After a 4-week ethanol-induction period, both the C and E group were respectively subdivided into 2 groups: a normal liquid diet without (C group, n = 8) or with EGF supplementation (C + EGF, n = 8), and the ethanol-containing diet without (E group, n = 8) or with EGF supplementation (E + EGF group, n = 8). The EGF (30 μg/kg body weight/day) intervention period was carried out for the following 8 weeks. At the end of the experiment, activity of aspartate transaminase (AST) and alanine transaminase (ALT) and hepatic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 in group E were significantly higher than those in group C. In addition, alterations in the gut microbiota profile were found in group E. In contrast, activity of AST and ALT and levels of TNF-α, IL-1β, and IL-6 in group E + EGF were significantly lower than those in group E. Significantly lower intestinal permeability and lower numbers of Escherichia coli in the fecal microbial culture were also found in group E + EGF. These results suggest that EGF improved the intestinal integrity by decreasing E. coli colonization and lowering intestinal permeability, which then ameliorated the inflammatory response under chronic ethanol exposure.

  6. Toxic Effects of Maternal Zearalenone Exposure on Intestinal Oxidative Stress, Barrier Function, Immunological and Morphological Changes in Rats

    PubMed Central

    Liu, Min; Gao, Rui; Meng, Qingwei; Zhang, Yuanyuan; Bi, Chongpeng; Shan, Anshan

    2014-01-01

    The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses. PMID:25180673

  7. Prions efficiently cross the intestinal barrier after oral administration: Study of the bioavailability, and cellular and tissue distribution in vivo.

    PubMed

    Urayama, Akihiko; Concha-Marambio, Luis; Khan, Uffaf; Bravo-Alegria, Javiera; Kharat, Vineetkumar; Soto, Claudio

    2016-01-01

    Natural forms of prion diseases frequently originate by oral (p.o.) infection. However, quantitative information on the gastro-intestinal (GI) absorption of prions (i.e. the bioavailability and subsequent biodistribution) is mostly unknown. The main goal of this study was to evaluate the fate of prions after oral administration, using highly purified radiolabeled PrP(Sc). The results showed a bi-phasic reduction of PrP(Sc) with time in the GI, except for the ileum and colon which showed sustained increases peaking at 3-6 hr, respectively. Plasma and whole blood (125)I-PrP(Sc) reached maximal levels by 30 min and 3 hr, respectively, and blood levels were constantly higher than plasma. Upon crossing the GI-tract (125)I-PrP(Sc) became associated to blood cells, suggesting that binding to cells decreased the biological clearance of the agent. Size-exclusion chromatography revealed that oligomeric (125)I-PrP(Sc) were transported from the intestinal tract, and protein misfolding cyclic amplification showed that PrP(Sc) in organs and blood retained the typical prion self-replicating ability. Pharmacokinetic analysis found the oral bioavailability of (125)I-PrP(Sc) to be 33.6%. Interestingly, (125)I-PrP(Sc) reached the brain in a quantity equivalent to the minimum amount needed to initiate prion disease. Our findings provide a comprehensive and quantitative study of the fate of prions upon oral infection. PMID:27573341

  8. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  9. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge.

    PubMed

    Song, Z-H; Ke, Y-L; Xiao, K; Jiao, L-F; Hong, Q-H; Hu, C-H

    2015-04-01

    The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-β1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-β1 and ERK1/2 and Akt signaling pathway.

  10. Influence of thermally oxidized vegetable oils and animal fats on intestinal barrier function and immune variables in young pigs.

    PubMed

    Liu, P; Kerr, B J; Weber, T E; Chen, C; Johnston, L J; Shurson, G C

    2014-07-01

    To evaluate the effect of feeding thermally oxidized lipids on metabolic oxidative status, gut barrier function, and immune response of young pigs, 108 barrows (6.67 ± 0.03 kg BW) were assigned to 12 dietary treatments in a 4 × 3 factorial arrangement in addition to a corn-soybean meal control diet. Main effects were 4 lipid sources (corn oil [CN], canola oil [CA], poultry fat [PF], and tallow [TL]) and 3 oxidation levels (original lipids [OL], slow oxidation [SO] of lipids heated for 72 h at 95°C, or rapid oxidation [RO] of lipids heated for 7 h at 185°C). Pigs were provided ad libitum access to diets for 28 d followed by controlled feed intake for 10 d. After a 24-h fast on d 38, serum was collected and analyzed for α-tocopherol (α-T), thiobarbituric acid reactive substances (TBARS), endotoxin, haptoglobin, IgA, and IgG. On the same day following serum collection, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability. There was a source × peroxidation interaction for serum α-T concentration where pigs fed SO or RO had decreased (P < 0.05) serum α-T concentration compared with pigs fed OL in CA and CN diets but not in pigs fed PF and TL diets. There was no source × peroxidation interaction for serum TBARS, but among all lipid sources, pigs fed SO or RO lipids had increased (P < 0.05) serum TBARS compared with pigs fed OL. In addition, pigs fed CN or CA had greater (P < 0.05) serum TBARS compared with pigs fed PF or TL diets. There were no lipid source × peroxidation level interaction or lipid source or peroxidation level effects on serum endotoxin, haptoglobin, IgA, or IgG. Pigs fed lipid supplemented diets tended to have increased serum endotoxin (P = 0.06), IgA (P = 0.10), and IgG (P = 0.09) compared with pigs fed the control diet. There were no lipid source × peroxidation level interaction or lipid source or peroxidation level effects on urinary TBARS and lactulose to mannitol ratio. Compared with pigs

  11. In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction

    PubMed Central

    Liu, Lina; Cai, Xueting; Yan, Jing; Luo, Yi; Shao, Ming; Lu, Yin; Sun, Zhiguang; Cao, Peng

    2012-01-01

    Fagopyrum cymosum (Trev.) Meisn (Fag) is a herb rhizome which has been widely used to treat diseases. To investigate the effects and mechanisms of the Fag on irritable bowel syndrome (IBS), in vivo neonatal pups maternal separation (NMS) combined with intracolonic infusion of acetic acid (AA) was employed to establish IBS rat models. Fag reduced their visceral hyperalgesia and the whole gut permeability, ameliorated colonic mucosa inflammation and injury, and upregulated the expression of decreased tight junction proteins (TJs) of claudin-1, occludin, and ZO-1 (except ZO-2) in colonic epithelium. Caco-2 monolayer cells were incubated with TNF-α and IFN-γ  in vitro to establish an epithelial barrier dysfunction model whose transepithelial electrical resistance (TER) depended more on dose of Fag than that of the controls, and whose TJs levels were lower than those of the controls. Fag upregulated the NP-40 insoluble and soluble components of the four TJs markedly in a dose-dependent manner. These data suggest that Fag alleviated the hyperalgesia of IBS rats by reducing intestinal inflammation and enhancing mucosal epithelial function after regulating the structure and function of TJs. PMID:23365604

  12. Bacteria-Derived Compatible Solutes Ectoine and 5α-Hydroxyectoine Act as Intestinal Barrier Stabilizers to Ameliorate Experimental Inflammatory Bowel Disease.

    PubMed

    Abdel-Aziz, Heba; Wadie, Walaa; Scherner, Olaf; Efferth, Thomas; Khayyal, Mohamed T

    2015-06-26

    Earlier studies showed that the compatible solute ectoine (1) given prophylactically before induction of colitis by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats prevented histological changes induced in the colon and the associated rise in inflammatory mediators. This study was therefore conducted to investigate whether ectoine (1) and its 5α-hydroxy derivative (2) would also be effective in treating an already established condition. Two days after inducing colitis in rats by instilling TNBS/alcohol in the colon, animals were treated orally once daily for 1 week with either 1 or 2 (50, 100, 300 mg/kg). Twenty-four hours after the last drug administration rats were sacrificed. Ulcerative lesions and colon mass indices were reduced by 1 and 2 in a bell-shaped manner. Best results were obtained with 100 mg/kg ectoine (1) and 50 mg/kg 5α-hydroxyectoine (2). The solutes normalized the rise in myeloperoxidase, TNFα, and IL-1β induced by TNBS but did not affect levels of reduced glutathione or ICAM-1, while reducing the level of fecal calprotectin, an established marker for inflammatory bowel disease. The findings indicate that the naturally occurring compatible solutes ectoine (1) and 5α-hydroxyectoine (2) possess an optimum concentration that affords maximal intestinal barrier stabilization and could therefore prove useful for better management of human inflammatory bowel disease.

  13. In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction.

    PubMed

    Liu, Lina; Cai, Xueting; Yan, Jing; Luo, Yi; Shao, Ming; Lu, Yin; Sun, Zhiguang; Cao, Peng

    2012-01-01

    Fagopyrum cymosum (Trev.) Meisn (Fag) is a herb rhizome which has been widely used to treat diseases. To investigate the effects and mechanisms of the Fag on irritable bowel syndrome (IBS), in vivo neonatal pups maternal separation (NMS) combined with intracolonic infusion of acetic acid (AA) was employed to establish IBS rat models. Fag reduced their visceral hyperalgesia and the whole gut permeability, ameliorated colonic mucosa inflammation and injury, and upregulated the expression of decreased tight junction proteins (TJs) of claudin-1, occludin, and ZO-1 (except ZO-2) in colonic epithelium. Caco-2 monolayer cells were incubated with TNF-α and IFN-γ  in vitro to establish an epithelial barrier dysfunction model whose transepithelial electrical resistance (TER) depended more on dose of Fag than that of the controls, and whose TJs levels were lower than those of the controls. Fag upregulated the NP-40 insoluble and soluble components of the four TJs markedly in a dose-dependent manner. These data suggest that Fag alleviated the hyperalgesia of IBS rats by reducing intestinal inflammation and enhancing mucosal epithelial function after regulating the structure and function of TJs.

  14. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    PubMed

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses. PMID:26481011

  15. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    PubMed

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses.

  16. Protective effect of oligomeric proanthocyanidins against alcohol-induced liver steatosis and injury in mice.

    PubMed

    Wang, Zhiguo; Su, Bo; Fan, Sumei; Fei, Haixia; Zhao, Wei

    2015-03-20

    The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future. PMID:25680468

  17. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  18. Vitamin A supplementation effects on intestinal barrier function, growth, total parasitic and specific Giardia spp. infections in Brazilian children: a prospective randomized, double-blind, placebo-controlled trial

    PubMed Central

    Lima, Aldo A. M.; Soares, Alberto M.; Lima, Noélia L.; Mota, Rosa M. S.; Maciel, Bruna L. L.; Kvalsund, Michelle P.; Barrett, Leah J.; Fitzgerald, Relana P.; Blaner, William S.; Guerrant, Richard L.

    2009-01-01

    Background This study evaluates the effects of retinol on intestinal barrier function, growth, total parasites and Giardia spp. infections in children in the Northeast of Brazil. Methods The study was a double-blind, randomized placebo-controlled trial (http://clinicaltrials.gov;Register#NCT00133406) involving 79children reiceved vitamin A 100,000 - 200,000 IU (n = 39) or placebo (n = 40) at enrollment, 4 and 8 months, followed for 36 months. Intestinal barrier function was evaluated using the lactulose:mannitol test. Stool lactoferrin was used as a marker for intestinal inflammation. Results The groups were similar with regard to age, sex, nutritional parameters (z-scores), serum retinol concentrations, proportion of lactoferrin positive stool samples, and intestinal barrier function. The lactulose:mannitol ratio did not change during the same time of follow-up (p>0.05). The proportion of lactoferrin positive samples evaluated at one month did not change between groups (p>0.05). Total intestinal parasitic specifically new infections were significantly lower in the vitamin A treatment compared to control group; these were accounted for entirely by significantly fewer new Giardia infections in the vitamin A treatment group. The cumulative z-scores for weight-for-length or height (WHZ), length or height-for-age z-scores (HAZ), and weight-for-age (WAZ) did not change significantly with vitamin A intervention for 36 months of follow-up. Conclusions These data showed that total parasitic infection and Giardia spp. infections were significantly lower in the vitamin A treatment group when compared to the placebo group, suggesting that vitamin A improves host defenses against Giardia infections. PMID:20038852

  19. [Intestinal-brain axis. Neuronal and immune-inflammatory mechanisms of brain and intestine pathology].

    PubMed

    Bondarenko, V M; Riabichenko, E V

    2013-01-01

    Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine micro flora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zone of the brain with consequent destabilization of hematoencephalic barriers and spread oF inflammation to other parts of the brain resulting in neurodegradation development.

  20. Sexual Dimorphism in Alcohol Induced Adipose Inflammation Relates to Liver Injury

    PubMed Central

    Fulham, Melissa A.

    2016-01-01

    Alcoholic liver disease occurs due to chronic, heavy drinking and is driven both by metabolic alterations and immune cell activation. Women are at a higher risk than men for developing alcohol induced liver injury and this dimorphism is reflected in animal models of alcoholic liver disease. The importance of adipose tissue in alcoholic liver disease is emerging. Chronic alcohol consumption causes adipose tissue inflammation, which can influence liver injury. Sex differences in body fat composition are well known. However, it is still unclear if alcohol-induced adipose tissue inflammation occurs in a sex-dependent manner. Here we have employed the clinically relevant NIAAA model of chronic-binge alcohol consumption to investigate this sexual dimorphism. We report that female mice have greater liver injury than male mice despite lower alcohol consumption. Chronic-binge alcohol induces adipose tissue inflammation in vivo in female mice, which is illustrated by increased expression of TNFα, IL-6, and CCL2, compared to only IL-6 induction in male adipose tissue. Further, macrophage activation markers such as CD68 as well as the pro-inflammatory activation markers CD11b and CD11c were higher in female adipose tissue. Interestingly, alcohol induced expression of TLR2, 3, 4, and 9 in female but not male adipose tissue, without affecting the TLR adaptor, MyD88. Higher trends of serum endotoxin in female mice may likely contribute to adipose tissue inflammation. In vitro chronic alcohol-mediated sensitization of macrophages to endotoxin is independent of sex. In summary, we demonstrate for the first time that there is a sexual dimorphism in alcohol-induced adipose tissue inflammation and female mice exhibit a higher degree of inflammation than male mice. PMID:27711160

  1. Experimental rat model for alcohol-induced osteonecrosis of the femoral head

    PubMed Central

    Okazaki, Shunichiro; Nagoya, Satoshi; Tateda, Kenji; Katada, Ryuichi; Mizuo, Keisuke; Watanabe, Satoshi; Yamashita, Toshihiko; Matsumoto, Hiroshi

    2013-01-01

    Alcohol-induced osteonecrosis of the femoral head (ONFH) is observed in alcohol abusers and patients with alcoholic fatty liver disease. It has been reported that Toll-like receptor 4 (TLR4) signalling plays a crucial role in the pathogenesis of alcoholic fatty liver disease. We previously reported a corticosteroid-induced ONFH rat model, and suggested that TLR4 signalling contributes to the pathogenesis of ONFH. Thus, it is thought that the pathogenesis of alcohol-induced ONFH is probably similar to that of corticosteroid-induced ONFH. The aim of this study was to develop a new animal model for alcohol-induced ONFH and to evaluate the relationship between the pro-inflammatory response via TLRs and the development of ONFH in rats. Male Wistar rats were fed a Lieber–DeCarli liquid diet containing 5% ethanol (experimental group) or dextran (control group) for 1–24 weeks. Histopathological and biochemical analyses were performed. Feeding the ethanol-containing liquid diet resulted in the development of ONFH with hepatic steatosis, hepatic dysfunction and hyperlipidaemia, whereas feeding the dextran-containing diet did not cause ONFH. However, we could not recognize any relationship between the pro-inflammatory response via TLR4 and the development of alcohol-induced ONFH. Thus in this study we have developed a new rat model for alcohol-induced ONFH based on the feeding of an ethanol liquid diet. ONFH was observed within seven days from the start of feeding with 5% ethanol-containing liquid diet. Although this was linked to hepatic steatosis, a TLR4 association was not a feature of this model. PMID:24020403

  2. Exogenous phospholipids supplementation improves growth and modulates immune response and physical barrier referring to NF-κB, TOR, MLCK and Nrf2 signaling factors in the intestine of juvenile grass carp (Ctenopharyngodon idella).

    PubMed

    Chen, Yong-Po; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2015-11-01

    This study was conducted to investigate the effects of dietary phospholipids (PL) on the growth performance, intestinal enzyme activity and immune response and intestinal physical barrier of juvenile grass carp (Ctenopharyngodon idella). A total of 1080 juvenile grass carp with an average initial weight of 9.34 ± 0.03 g were fed six semi-purified diets containing 0.40% (unsupplemented control group), 1.43%, 2.38%, 3.29%, 4.37% and 5.42% PL for 2 months. Results indicated that 3.29% PL increased lysozyme (LZ) and acid phosphatase (ACP) activities and complement component 3 (C3) content (P < 0.05), up-regulated the mRNA relative expression levels of interleukin 10, transforming growth factor β1 (TGF-β1), inhibitor protein κBα (IκBα), target of rapamycin (TOR) and casein kinase 2 (CK2) (P < 0.05), and down-regulated tumor necrosis factor α (TNF-α), interleukin 1β, nuclear factor κB p65 (NF-κB p65), IκB kinase β (IKKβ) and IκB kinase γ (IKKγ) mRNA relative expression levels (P < 0.05) in the intestine, suggesting that optimum PL could improve fish intestinal immunity. In addition, 3.29% PL increased the activities of anti-superoxide anion (ASA), anti-hydroxyl radical, copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx) and glutathione reductase (GR), the content of glutathione (P < 0.05), and the mRNA relative expression levels of occludin, zonula occludens 1 (ZO-1), claudin 3, claudin 12, claudin b, claudin c, SOD1, GPx, GR and NF-E2-related factor 2 (Nrf2) and decreased malondialdehyde (MDA), protein carbonyl (PC) and ROS content (P < 0.05), the mRNA relative expression levels of Kelch-like-ECH-associated protein 1a (Keap1a), myosin light chain kinase (MLCK) and p38 mitogen-activated protein kinase (p38 MAPK) in the intestine, indicating that the optimum PL could improve fish intestinal physical barrier. Finally, based on the PWG, C3 content in the DI, ACP activity in the DI, intestinal PC content and intestinal ASA activity, the

  3. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis.

    PubMed

    Wang, Honggang; Dong, Jianning; Shi, Peiliang; Liu, Jianhui; Zuo, Lugen; Li, Yi; Gong, Jianfeng; Gu, Lili; Zhao, Jie; Zhang, Liang; Zhang, Wei; Zhu, Weiming; Li, Ning; Li, Jieshou

    2015-02-01

    Intestinal inflammation causes tight junction changes and death of epithelial cells, and plays an important role in the development of Crohn's disease (CD). CD52 monoclonal antibody (CD52 mAb) directly targets the cell surface CD52 and is effective in depleting mature lymphocytes by cytolytic effects in vivo, leading to long-lasting changes in adaptive immunity. The aim of this study was to investigate the therapeutic effect of CD52 mAb on epithelial barrier function in animal models of IBD. Interleukin-10 knockout mice (IL-10(-/-) ) of 16 weeks with established colitis were treated with CD52 mAb once a week for 2 weeks. Severity of colitis, CD4(+) lymphocytes and cytokines in the lamina propria, epithelial expression of tight junction proteins, morphology of tight junctions, tumour necrosis factor-α (TNF-α)/TNF receptor 2 (TNFR2) mRNA expression, myosin light chain kinase (MLCK) expression and activity, as well as epithelial apoptosis in proximal colon were measured at the end of the experiment. CD52 mAb treatment effectively attenuated colitis associated with decreased lamina propria CD4(+) lymphocytes and interferon-γ/IL-17 responses in colonic mucosa in IL-10(-/-) mice. After CD52 mAb treatment, attenuation of colonic permeability, increased epithelial expression and correct localization of tight junction proteins (occludin and zona occludens protein-1), as well as ameliorated tight junction morphology were observed in IL-10(-/-) mice. CD52 mAb treatment also effectively suppressed the epithelial apoptosis, mucosa TNF-α mRNA expression, epithelial expression of long MLCK, TNFR2 and phosphorylation of MLC. Our results indicated that anti-CD52 therapy may inhibit TNF-α/TNFR2-mediated epithelial apoptosis and MLCK-dependent tight junction permeability by depleting activated T cells in the gut mucosa.

  4. The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury

    PubMed Central

    Zhang, Yu-Jie; Zhou, Tong; Wang, Fang; Zhou, Yue; Li, Ya; Zhang, Jiao-Jiao; Zheng, Jie; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in mice. The animals were treated daily with alcohol and fruit juices for fifteen days. Chronic treatment with alcohol increased the levels of aspartate transaminase (AST), alanine transaminase (ALT), total bilirubin (TBIL), triglyceride (TG), malondialdehyde (MDA), and decreased total protein (TP). Histopathological evaluation also showed that ethanol induced extensive fat droplets in hepatocyte cytoplasm. Syzygium samarangense and Passiflora edulis normalized various biochemical parameters. Solanum muricatum increased the level of ALT and induced infiltration of inflammatory cells in the liver. These results strongly suggest that treatment with Syzygium samarangense and Passiflora edulis could protect liver from the injury of alcohol, while Solanum muricatum could aggravate the damage. PMID:27681723

  5. Pharmacological ceramide reduction alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice

    PubMed Central

    Correnti, Jason M.; Juskeviciute, Egle; Swarup, Aditi

    2014-01-01

    Hepatosteatosis, the ectopic accumulation of lipid in the liver, is one of the earliest clinical signs of alcoholic liver disease (ALD). Alcohol-dependent deregulation of liver ceramide levels as well as inhibition of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPAR-α) activity are thought to contribute to hepatosteatosis development. Adiponectin can regulate lipid handling in the liver and has been shown to reduce ceramide levels and activate AMPK and PPAR-α. However, the mechanisms by which adiponectin prevents alcoholic hepatosteatosis remain incompletely characterized. To address this question, we assessed ALD progression in wild-type (WT) and adiponectin knockout (KO) mice fed an ethanol-containing liquid diet or isocaloric control diet. Adiponectin KO mice relative to WT had increased alcohol-induced hepatosteatosis and hepatomegaly, similar modest increases in serum alanine aminotransferase, and reduced liver TNF. Restoring circulating adiponectin levels using recombinant adiponectin ameliorated alcohol-induced hepatosteatosis and hepatomegaly in adiponectin KO mice. Alcohol-fed WT and adiponectin KO animals had equivalent reductions in AMPK protein and PPAR-α DNA binding activity compared with control-fed animals. No difference in P-AMPK/AMPK ratio was detected, suggesting that alcohol-dependent deregulation of AMPK and PPAR-α in the absence of adiponectin are not primary causes of the observed increase in hepatosteatosis in these animals. By contrast, alcohol treatment increased liver ceramide levels in adiponectin KO but not WT mice. Importantly, pharmacological inhibition of de novo ceramide synthesis in adiponectin KO mice abrogated alcohol-mediated increases in liver ceramides, steatosis, and hepatomegaly. These data suggest that adiponectin reduces alcohol-induced steatosis and hepatomegaly through regulation of liver ceramides, but its absence does not exacerbate alcohol-induced liver damage. PMID

  6. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury

    PubMed Central

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  7. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury.

    PubMed

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  8. Hepatotherapeutic effect of Aloe vera in alcohol-induced hepatic damage.

    PubMed

    Saka, W A; Akhigbe, R E; Ishola, O S; Ashamu, E A; Olayemi, O T; Adeleke, G E

    2011-07-15

    There is a lack of reliable hepatotherapeutic drugs in modern medicine in the management of alcohol/drug-induced liver damage. Aloe vera extract has been used in folklore medicine for its medicinal values. This study evaluates the hepatotherapeutic activity of aqueous extract of Aloe vera gel in rats. Sprague-Dawley rats were divided into three groups; the negative control, positive control and the extract-treated groups. The negative control received only distilled water daily. The positive control received alcohol, while the extract-treated group received aqueous extract of Aloe vera and alcohol. Hepatotoxicity was induced in the positive control and extract-treated rats with alcohol. The hepatotherapeutic effect was evaluated by performing an assay of the serum total bilirubin, alkaline phosphatase, aspartate and alanine transaminases and liver histopathology. Alanine transaminase activities were comparable in all groups. Alcohol treatment alone significantly (p < 0.05) increased total serum bilirubin, alkaline phosphatase and aspartate transaminase activities. Alcohol-induced hepatic dysfunction was abrogated by Aloe vera extract. Histopathological examination revealed that alcohol induced hepatic damage. Aloe vera treatment maintained hepatic architecture similar to that seen in the control. This study shows that aqueous extract of Aloe vera gel is hepatotherapeutic and thus lends credence to the use of the plant in folklore medicine in the management of alcohol-induced hepatic dysfunction.

  9. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    PubMed

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  10. Intestinal failure: Pathophysiological elements and clinical diseases

    PubMed Central

    Ding, Lian-An; Li, Jie-Shou

    2004-01-01

    There are two main functions of gastrointestinal tract, digestion and absorption, and barrier function. The latter has an important defensive effect, which keeps the body away from the invading and damaging of bacteria and endotoxin. It maintains the systemic homeostasis. Intestinal dysfunction would happen when body suffers from diseases or harmful stimulations. The lesser dysfunction of GI tract manifests only disorder of digestion and absorption, whereas the more serious intestinal disorders would harm the intestinal protective mechanism, or intestinal barrier function, and bacterial/endotoxin translocation, of intestinal failure (IF) would ensue. This review disscussed the theory of the intestinal failure, aiming at attracting recognition and valuable comments by clinicians. PMID:15052668

  11. Interleukin-10 Enhances the Intestinal Epithelial Barrier in the Presence of Corticosteroids through p38 MAPK Activity in Caco-2 Monolayers: A Possible Mechanism for Steroid Responsiveness in Ulcerative Colitis

    PubMed Central

    Lorén, Violeta; Cabré, Eduard; Ojanguren, Isabel; Domènech, Eugeni; Pedrosa, Elisabet; García-Jaraquemada, Arce; Mañosa, Miriam; Manyé, Josep

    2015-01-01

    Glucocorticosteroids are the first line therapy for moderate-severe flare-ups of ulcerative colitis. Despite that, up to 60% of patients do not respond adequately to steroid treatment. Previously, we reported that low IL-10 mRNA levels in intestine are associated with a poor response to glucocorticoids in active Crohn’s disease. Here, we test whether IL-10 can favour the response to glucocorticoids by improving the TNFα-induced intestinal barrier damage (assessed by transepithelial electrical resistance) in Caco-2 monolayers, and their possible implications on glucocorticoid responsiveness in active ulcerative colitis. We show that the association of IL-10 and glucocorticoids improves the integrity of TNFα-treated Caco-2 cells and that p38 MAPK plays a key role. In vitro, IL-10 facilitates the nuclear translocation of p38 MAPK-phosphorylated thereby modulating glucocorticoids-receptor-α, IL-10-receptor-α and desmoglein-2 expression. In glucocorticoids-refractory patients, p38 MAPK phosphorylation and membrane desmoglein-2 expression are reduced in colonic epithelial cells. These results suggest that p38 MAPK-mediated synergism between IL-10 and glucocorticoids improves desmosome straightness contributing to the recovery of intestinal epithelium and reducing luminal antigens contact with lamina propria in ulcerative colitis. This study highlights the link between the intestinal epithelium in glucocorticoids-response in ulcerative colitis. PMID:26090671

  12. Effects of l-carnitine and/or maize distillers dried grains with solubles in diets of gestating and lactating sows on the intestinal barrier functions of their offspring.

    PubMed

    Wei, Bingdong; Nie, Shaoping; Meng, Qingwei; Qu, Zhe; Shan, Anshan; Chen, Zhihui

    2016-08-01

    The objective of this study was to investigate the effects of l-carnitine and/or maize distillers dried grains with solubles (DDGS) in diets of gestating and lactating sows on the intestinal barrier functions of their offspring. The experiment was designed as a 2×2 factorial with two dietary treatments (soyabean meal v. DDGS) and two l-carnitine levels (0 v. 100 mg/kg in gestating diets and 0 v. 200 mg/kg in lactating diets). Sows (Landrace×Large White) with an average parity of 4·2 with similar body weight were randomly assigned to four groups of thirty each. Dietary supplementation with l-carnitine increased the total superoxide dismutase activity but decreased the concentration of malondialdehyde of the jejunal mucosa in newborn piglets and weaning piglets on day 21. Dietary supplementation with l-carnitine decreased the concentrations of IL-1β, IL-12 and TNF-α in the jejunal mucosa of newborn piglets and decreased the concentrations of IL-6 and TNF-α in the jejunal mucosa of weaning piglets on day 21. There was an interaction between dietary treatment and l-carnitine on the bacterial numbers of total eubacteria in the digesta of caecum in weaning piglets on day 21. Bacterial numbers of total eubacteria in weaning piglets on day 21 were significantly increased by l-carnitine only in soyabean meal diet, but there was no significant effect of l-carnitine in DDGS-based diet. Dietary supplementation with l-carnitine increased the bacterial numbers of Lactobacillus spp. and bifidobacteria spp. in the digesta of caecum in weaning piglets on day 21. Dietary supplementation with l-carnitine in sows affected the expression of tight junction proteins (claudin 1, zonula occludens-1 (ZO-1) and occludin) in the jejunal mucosa of their offspring by increasing the expression of ZO-1 mRNA in the jejunal mucosa of newborn piglets, and by increasing the expression of ZO-1 and occludin mRNA in the jejunal mucosa of weaning piglets on day 21. In conclusion, dietary

  13. "Green" synthesized and coated nanaosilver alters the membrance permeability of barrier (intestinal, brain, endothelial) cells and stimulates oxidative stress pathways in neurons.

    EPA Science Inventory

    Nanosilver's (nanoAg) use in medical applications and consumer products is increasing. Because of this, its "green" synthesis and surface modification with beneficial coatings are desirable. Given nanoAg's potential exposure routes (e.g., dermal, intestin...

  14. Acetyl-L-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain

    PubMed Central

    Rump, Travis J.; Muneer, P.M. Abdul; Szlachetka, Adam M.; Lamb, Allyson; Haorei, Catherine; Alikunju, Saleena; Xiong, Huangui; Keblesh, James; Liu, Jianuo; Zimmerman, Matthew C.; Jones, Jocelyn; Donohue, Terrence M.; Persidsky, Yuri; Haorah, James

    2011-01-01

    The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to mice caused an increase in inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine adduct formation in frontal cortical neurons but not in astrocytes from brains of these animals. Interestingly, alcohol administration caused a rather selective activation of NADPH oxidase (NOX), which, in turn, enhanced levels of reactive oxygen species (ROS) and 4-hydroxynonenal, but these were predominantly localized in astrocytes and microglia. Oxidative damage in glial cells was accompanied by their pronounced activation (astrogliosis) and coincident neuronal loss, suggesting that inflammation in glial cells caused neuronal degeneration. Immunohistochemistry studies indicated that alcohol consumption induced different oxidative mediators in different brain cell types. Thus, nitric oxide was mostly detected in iNOS-expressing neurons, whereas ROS were predominantly generated in NOX-expressing glial cells after alcohol ingestion. Assessment of neuronal activity in ex vivo frontal cortical brain tissue slices from ethanol-fed mice showed a reduction in long-term potentiation synaptic transmission compared with slices from controls. Coadministration of ALC with alcohol showed a significant reduction in oxidative damage and neuronal loss and a restoration of synaptic neurotransmission in this brain region, suggesting that ALC protects brain cells from ethanol-induced oxidative injury. These findings suggest the potential clinical utility of ALC as a neuroprotective agent that prevents alcohol-induced brain damage and development of neurological disorders. PMID:20708681

  15. Intestinal leiomyoma

    MedlinePlus

    Leiomyoma - intestine ... McLaughlin P, Maher MM. The duodenum and small intestine. In: Adam A, Dixon AK, Gillard JH, Schaefer- ... Roline CE, Reardon RF. Disorders of the small intestine. In: Marx JA, Hockberger RS, Walls RM, et ...

  16. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  17. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial

    PubMed Central

    2012-01-01

    Background Probiotics are an upcoming group of nutraceuticals claiming positive effects on athlete’s gut health, redox biology and immunity but there is lack of evidence to support these statements. Methods We conducted a randomized, double-blinded, placebo controlled trial to observe effects of probiotic supplementation on markers of intestinal barrier, oxidation and inflammation, at rest and after intense exercise. 23 trained men received multi-species probiotics (1010 CFU/day, Ecologic®Performance or OMNi-BiOTiC®POWER, n = 11) or placebo (n = 12) for 14 weeks and performed an intense cycle ergometry over 90 minutes at baseline and after 14 weeks. Zonulin and α1-antitrypsin were measured from feces to estimate gut leakage at baseline and at the end of treatment. Venous blood was collected at baseline and after 14 weeks, before and immediately post exercise, to determine carbonyl proteins (CP), malondialdehyde (MDA), total oxidation status of lipids (TOS), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Statistical analysis used multifactorial analysis of variance (ANOVA). Level of significance was set at p < 0.05, a trend at p < 0.1. Results Zonulin decreased with supplementation from values slightly above normal into normal ranges (<30 ng/ml) and was significantly lower after 14 weeks with probiotics compared to placebo (p = 0.019). We observed no influence on α1-antitrypsin (p > 0.1). CP increased significantly from pre to post exercise in both groups at baseline and in the placebo group after 14 weeks of treatment (p = 0.006). After 14 weeks, CP concentrations were tendentially lower with probiotics (p = 0.061). TOS was slightly increased above normal in both groups, at baseline and after 14 weeks of treatment. There was no effect of supplementation or exercise on TOS. At baseline, both groups showed considerably higher TNF-α concentrations than normal. After 14 weeks TNF-α was

  18. The common prophylactic therapy for bowel surgery is ineffective for clearing Bacteroidetes, the primary inducers of systemic inflammation, and causes faster death in response to intestinal barrier damage in mice

    PubMed Central

    Sinsimer, Daniel; Esseghir, Amira; Tang, May; Laouar, Amale

    2014-01-01

    Introduction and objective The role of secreted gut microbial components in the initiation of systemic inflammation and consequences of antibiotic therapies on this inflammatory process are poorly elucidated. We investigate whether peripheral innate cells mount an inflammatory response to gut microbial components, the immune cells that are the primary drivers of systemic inflammation, the bacterial populations that are predominantly responsible, and whether perioperative antibiotics affect these processes. Method and experimental design Conditioned supernatants from gut microbes were used to stimulate murine innate cell types in vitro and in vivo, and proinflammatory responses were characterised. Effects of antibiotic therapies on these responses were investigated using a model of experimental intestinal barrier damage induced by dextran sodium sulfate. Results Proinflammatory responses in the periphery are generated by components of anaerobes from the Bacteroidetes phylotype and these responses are primarily produced by myeloid dendritic cells. We found that the common prophylactic therapy for sepsis (oral neomycin and metronidazole administered to patients the day prior to surgery) is ineffective for clearing Bacteroidetes from the murine intestine. A point of critical consequence of this result is the increased systemic inflammation and premature death observed in treated mice, and these outcomes appear to be independent of gut bacterial spread in the initial phase of intestinal barrier damage. Importantly, spillage of gut microbial products, rather than dissemination of gut microbes, may underlay the initiation of systemic inflammation leading to death. Conclusions Our data further affirm the importance of a balanced gut microflora biodiversity in host immune homeostasis and reinforce the notion that inadequate antibiotic therapy can have detrimental effects on overall immune system. PMID:26462264

  19. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.

    PubMed

    He, Wei; Yang, Ke; Fan, Lifang; Lv, Yaqi; Jin, Zhu; Zhu, Shumin; Qin, Chao; Wang, Yiao; Yin, Lifang

    2015-11-10

    Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.

  20. Ginger-derived nanoparticles protect against alcohol-induced liver damage.

    PubMed

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant-derived nanoparticles. PMID:26610593

  1. Alcohol-Induced Histone Acetylation Reveals a Gene Network Involved in Alcohol Tolerance

    PubMed Central

    Ghezzi, Alfredo; Krishnan, Harish R.; Lew, Linda; Prado, Francisco J.; Ong, Darryl S.; Atkinson, Nigel S.

    2013-01-01

    Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol. PMID:24348266

  2. Exacerbation of Alcohol-Induced Oxidative Stress in Rats by Polyunsaturated Fatty Acids and Iron Load

    PubMed Central

    Patere, S. N.; Majumdar, A. S.; Saraf, M. N.

    2011-01-01

    The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography), polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron. PMID:22303057

  3. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  4. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  5. Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology

    PubMed Central

    Massey, Veronica L.; Beier, Juliane I.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Arteel, Gavin E.

    2015-01-01

    Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis. PMID:26437442

  6. Thymoquinone Inhibition of Acquisition and Expression of Alcohol-Induced Behavioral Sensitization.

    PubMed

    Khan, Muhammad Sona; Gohar, Aneela; Abbas, Ghulam; Mahmood, Wajahat; Rauf, Khalid; Sewell, Robert D E

    2015-10-01

    Repeated low doses of alcohol have been shown to progressively enhance locomotor activity in mice, and this phenomenon is designated as behavioral sensitization. Thymoquinone, a major active component of Nigella sativa oil has been investigated in a number of studies for its neuroprotective effects against a variety of ailments. This study was conducted to explore the therapeutic potential of thymoquinone on the acquisition and expression of alcohol-induced behavioral sensitization. Mice treated with alcohol (2.2 g/kg/day) or saline for 13 days and subsequently challenged with an acute alcohol dose (2.2 g/kg) 5 days later were orally administered acute doses of thymoquinone (10, 20 and 30 mg/kg). Thymoquinone subacute treatment with all doses throughout alcohol exposure significantly inhibited both the development and expression phases of alcohol behavioral sensitization in a dose-dependent manner. However, acute treatment with thymoquinone (30 mg/kg) only reversed the expression phase of sensitization. These findings are explained in terms of the known GABA promoting action of thymoquinone in relation to the motive circuit within the limbic component of the basal ganglia. It is concluded that thymoquinone may be a potential therapeutic option for the treatment and prevention of alcohol induced behavioral sensitization. PMID:26171893

  7. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-06-03

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  8. Effect of indomethacin on alcohol-induced morphological anomalies in mice

    SciTech Connect

    Randall, C.L.; Anton, R.F.; Becker, H.C.

    1987-07-20

    The purpose of the present study was 1) to examine the effect of indomethacin (INDO), a prostaglandin synthesis inhibitor, on alcohol-induced growth and morphological impairment in C57BL/6J mice (Study 1) and 2) to determine if INDO crosses the placenta (Study 2). On day 10 of gestation, mice were injected (s.c.) acutely with either 0, 5, 10, or 20 mg/kg INDO, followed one hour later by alcohol (5.8 g/kg orally) or isocaloric sucrose. Fetuses were removed on day 19 of pregnancy, weighed, and examined for anomalous development. As expected, Study 1 demonstrated that maternal alcohol treatment decreased fetal weight and increased the number of fetuses with birth defects. INDO alone decreased fetal weight but did not affect morphologic development. More importantly, INDO antagonized alcohol-induced birth defects, but only at the highest dose. The results of Study 2 suggest that the relative ineffectiveness of INDO may be related to its inability to readily cross the placenta. Since high doses of INDO also caused maternal toxicity, the usefulness of this compound in future studies of this type was questioned. 22 references, 4 tables.

  9. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    PubMed

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  10. Alcohol-Induced Changes in Opioid Peptide Levels in Adolescent Rats Are Dependent on Housing Conditions

    PubMed Central

    Palm, Sara; Nylander, Ingrid

    2014-01-01

    Background Endogenous opioids are implicated in the mechanism of action of alcohol and alcohol affects opioids in a number of brain areas, although little is known about alcohol's effects on opioids in the adolescent brain. One concern, in particular when studying young animals, is that alcohol intake models often are based on single housing that may result in alcohol effects confounded by the lack of social interactions. The aim of this study was to investigate short- and long-term alcohol effects on opioids and the influence of housing conditions on these effects. Methods In the first part, opioid peptide levels were measured after one 24-hour session of single housing and 2-hour voluntary alcohol intake in adolescent and adult rats. In the second part, a model with a cage divider inserted during 2-hour drinking sessions was tested and the effects on opioids were examined after 6 weeks of adolescent voluntary intake in single-and pair-housed rats, respectively. Results The effects of single housing were age specific and affected Met-enkephalin-Arg6Phe7 (MEAP) in particular. In adolescent rats, it was difficult to distinguish between effects induced by alcohol and single housing, whereas alcohol-specific effects were seen in dynorphin B (DYNB), beta-endorphin (BEND), and MEAP levels in adults. Voluntary drinking affected several brain areas and the majority of alcohol-induced effects were not dependent on housing. However, alcohol effects on DYNB and BEND in the amygdala were dependent on housing. Housing alone affected MEAP in the cingulate cortex. Conclusions Age-specific housing- and alcohol-induced effects on opioids were found. In addition, prolonged voluntary alcohol intake under different housing conditions produced several alcohol-induced effects independent of housing. However, housing-dependent effects were found in areas implicated in stress, emotionality, and alcohol use disorder. Housing condition and age may therefore affect the reasons and

  11. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier.

    PubMed

    Seong, Myeong A; Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong Su; Choi, Seungho; Jang, Young Saeng; Lee, Taek Hwan; Jung, Kyung Hoon; Kang, Dong Kyu; Hurh, Byung Seok; Kim, Dae Eung; Kim, Sun Yeou; Oh, Seung Hyun

    2015-07-01

    Ginseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine. In this study, we investigated the molecular mechanisms underlying the anti-inflammatory activity of fermented wild ginseng (FWG). We found that FWG significantly alleviated the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis mouse model, and decreased expression level of pro-inflammatory cytokines in colonic tissue. Moreover, we observed that FWG suppressed the infiltration of macrophages in DSS-induced colitis. FWG also attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB into the nucleus. Our data indicate that FWG contains anti-inflammatory activity via NF-κB inactivation and could be useful for treating colitis.

  12. Analysis of alcohol-induced DNA damage in Escherichia coli by visualizing single genomic DNA molecules.

    PubMed

    Kang, Yujin; Lee, Jinyong; Kim, Jisoo; Oh, Yeeun; Kim, Dogeun; Lee, Jungyun; Lim, Sangyong; Jo, Kyubong

    2016-07-21

    Consumption of alcohol injures DNA, and such damage is considered to be a primary cause for the development of cancer and many other diseases essentially due to reactive oxygen species generated from alcohol. To sensitively detect alcohol-induced DNA lesions in a biological system, we introduced a novel analytical platform for visualization of single genomic DNA molecules using E. coli. By fluorescently labelling the DNA lesions, our approach demonstrated, with the highest sensitivity, that we could count the number of DNA lesions induced by alcohol metabolism in a single bacterial cell. Moreover, our results showed a linear relationship between ethanol concentration and the number of DNA lesions: 0.88 lesions per 1% ethanol. Using this approach, we quantitatively analysed the DNA damage induced by exposure to alcoholic beverages such as beer (5% ethanol), rice wine (13%), soju (20%), and whisky (40%). PMID:27186604

  13. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    PubMed

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  14. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    PubMed

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.

  15. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    PubMed

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  16. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease.

    PubMed

    Niemelä, O; Parkkila, S; Ylä-Herttuala, S; Villanueva, J; Ruebner, B; Halsted, C H

    1995-10-01

    The pathogenesis of alcohol-induced liver disease involves the adverse effects of ethanol metabolites and oxidative tissue injury. Previous studies indicated that covalent protein adducts with reactive aldehydes may be formed in alcohol consumers. To study the role of such protein adducts in the development of liver injury, we examined the sequential appearances of adducts of the ethanol metabolite acetaldehyde (AA) and of two products of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxynonenol (HNE), in ethanol-fed micropigs. Immunohistochemical stainings using specific antibodies that recognize epitopes of each adduct were performed from liver biopsy specimens obtained at 1, 5, and 12 months from micropigs fed either control diet (n = 5) or ethanol-containing diets (n = 5). After 1 month on the ethanol diet, AA and MDA adducts were observed primarily in the perivenous regions co-localizing with each other and coinciding with increased concentrations of serum aminotransferase markers of liver injury. HNE adducts were usually less intense and more diffuse, and were also seen in some biopsy specimens from control animals. Although the most intense staining reactions at 5 months remained in zone 3, a more widespread distribution was usually seen together with increased evidence of steatonecrosis and focal inflammation. In terminal biopsies at 12 months, perivenous fibrosis was present in three of five biopsy specimens. More extensive pericentral and intralobular fibrosis was noted in one micropig fed ethanol for 21 months. These studies demonstrate that covalent adducts of proteins with reactive aldehydes are formed in early phases of alcohol-induced liver disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Deletion of tumor progression locus 2 attenuates alcohol-induced hepatic inflammation

    PubMed Central

    Stice, Camilla P.; Hussain, Sajid; Liu, Chun; Ausman, Lynne M.

    2016-01-01

    Background The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine-threonine kinase that functions as a critical regulator of inflammatory pathways by up-regulating production of inflammatory cytokines. The present study aims to fill the gap in knowledge regarding the involvement of TPL2 in the mechanism of alcohol-induced hepatic inflammation. Methods Male TPL2−/− knockout (TPL2KO) mice and TPL2+/+ wild-type (WT) mice were group pair-fed with Lieber-DeCarli liquid ethanol diet (EtOH diet, 27% energy from EtOH) or control diet (ctrl diet) for 4 weeks. Both histological and molecular biomarkers involved in the induction of hepatic inflammation by alcohol consumption were examined. Results Consumption of the EtOH diet in WT mice lead to a significant induction of TPL2 mRNA expression as compared with WT mice fed ctrl diet. A significant induction in inflammatory foci and steatosis was also observed in WT mice fed EtOH diet. The deletion of TPL2 significantly reduced inflammatory foci in the liver of mice consuming both ctrl and EtOH diets as compared to their respective WT controls. This reduction was associated with suppression of hepatic inflammatory gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) and macrophage marker F4/80. In addition, histological analysis of livers revealed that TPL2 deletion resulted in reduced steatosis in both ctrl (significant) and EtOH (non-significant) diet-fed mice as compared to their respective WT controls. Conclusions The demonstration that TPL2 deletion attenuates alcohol-induced hepatic inflammation provides evidence of a novel role for TPL2 in the pathogenesis of ALD. PMID:26904554

  18. Effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats.

    PubMed

    Li, Bin; Zhu, Lijie; Wu, Ting; Zhang, Jiachen; Jiao, Xinyao; Liu, Xiuying; Wang, Yanqun; Meng, Xianjun

    2015-03-01

    Alcohol-induced oxidative stress plays a crucial role in the pathological development of alcoholic liver disease. The aim of this study was to investigate the effects of triterpenoid from Schisandra chinensis on oxidative stress in alcohol-induced liver injury in rats. We found that the administration of triterpenoid attenuated alcohol-induced oxidative stress in multiple organs including liver. Moreover, the impaired liver function and histological changes resulted from alcohol consumption was improved by triterpenoid treatment. Finally, we found that pretreatment with triterpenoid from Schisandra chinensis to alcohol-fed rats increased the expression level of haem oxygenase-1 (HO-1) while inhibited the induction of cytochrome P-450 2E1 (CYP2E1) in liver microsomes. Further assays revealed that the microsomal activity of HO-1 was accordingly induced whereas CYP2E1 was suppressed in rats received triterpenoid intervention. Our findings suggest that triterpenoid from Schisandra chinensis may protect against alcohol-induced liver injury through ameliorating oxidative stress in rats.

  19. Intestinal Malrotation

    MedlinePlus

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  20. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier

    PubMed Central

    Seong, Myeong A; Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong Su; Choi, Seungho; Jang, Young Saeng; Lee, Taek Hwan; Jung, Kyung Hoon; Kang, Dong Kyu; Hurh, Byung Seok; Kim, Dae Eung; Kim, Sun Yeou; Oh, Seung Hyun

    2015-01-01

    Ginseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine. In this study, we investigated the molecular mechanisms underlying the anti-inflammatory activity of fermented wild ginseng (FWG). We found that FWG significantly alleviated the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis mouse model, and decreased expression level of pro-inflammatory cytokines in colonic tissue. Moreover, we observed that FWG suppressed the infiltration of macrophages in DSS-induced colitis. FWG also attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB into the nucleus. Our data indicate that FWG contains anti-inflammatory activity via NF-κB inactivation and could be useful for treating colitis. [BMB Reports 2015; 48(7): 419-425] PMID:25936779

  1. Intestine Transplant

    MedlinePlus

    ... intestine segment, most intestine transplants involve a whole organ from a deceased donor. In addition, most intestine transplants are performed in ... blood before surgery. I am looking for ... allocation About UNOS Being a living donor Calculator - CPRA Calculator - KDPI Calculator - LAS Calculator - MELD ...

  2. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.

    PubMed

    Fang, Shi-Qi; Wang, Yong-Tang; Wei, Jing-Xiang; Shu, Ya-Hai; Xiao, Lan; Lu, Xiu-Min

    2016-04-01

    As one of the most commonly abused psychotropic substances, ethanol exposure has deleterious effects on the central nervous system (CNS). The most detrimental results of ethanol exposure during development are the loss of neurons in brain regions such as the hippocampus and neocortex, which may be related to the apoptosis and necrosis mediated by oxidative stress. Recent studies indicated that a number of natural drugs from plants play an important role in protection of nerve cells from damage. Among these, it has been reported that chlorogenic acid (CA) has neuroprotective effects against oxidative stress. Thus, it may play some beneficial effects on ethanol-induced neurotoxicity. However, the effects of CA on ethanol-induced nerve damage remain unclear. In order to investigate the protective effects of CA on alcohol-induced apoptosis in rat pheochromocytoma PC12 cells, in the present study, cell viability and the optimal dosage of CA were first quantified by MTT assay. Then, the cell apoptosis and cell cycle were respectively investigated by Hoechst 33258 staining and flow cytometer (FCM). To further clarify the possible mechanism, followed with the test of mitochondria transmembrane potential with Rhodamine 123 (Rho 123) staining, the expression of Bcl-2, Capase-3 and growth associated protein-43 (GAP-43) were analyzed by immunofluorescence assay separately. The results showed that treatment with 500 mM alcohol decreased the cell viability and then significantly induced apoptosis in PC12 cells. However, when pretreated with different concentrations of CA (1, 5, 10, 50 μM), cell viability increased in different degree. Comparatively, CA with the concentration of 10 μM most effectively promoted the proliferation of damaged cells, increased the distribution ratio of the cells at the G2/M and S phases, and enhanced mitochondria transmembrane potential. This appears to be in agreement with up-regulation of the expression of Bcl-2 and GAP-43, and down-regulation of

  3. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation

    PubMed Central

    Lippai, Dora; Bala, Shashi; Petrasek, Jan; Csak, Timea; Levin, Ivan; Kurt-Jones, Evelyn A.; Szabo, Gyongyi

    2013-01-01

    Alcohol-induced neuroinflammation is mediated by proinflammatory cytokines, including IL-1β. IL-1β production requires caspase-1 activation by inflammasomes—multiprotein complexes that are assembled in response to danger signals. We hypothesized that alcohol-induced inflammasome activation contributes to increased IL-1β in the brain. WT and TLR4-, NLRP3-, and ASC-deficient (KO) mice received an ethanol-containing or isocaloric control diet for 5 weeks, and some received the rIL-1ra, anakinra, or saline treatment. Inflammasome activation, proinflammatory cytokines, endotoxin, and HMGB1 were measured in the cerebellum. Expression of inflammasome components (NLRP1, NLRP3, ASC) and proinflammatory cytokines (TNF-α, MCP-1) was increased in brains of alcohol-fed compared with control mice. Increased caspase-1 activity and IL-1β protein in ethanol-fed mice indicated inflammasome activation. TLR4 deficiency protected from TNF-α, MCP-1, and attenuated alcohol-induced IL-1β increases. The TLR4 ligand, LPS, was not increased in the cerebellum. However, we found up-regulation of acetylated and phosphorylated HMGB1 and increased expression of the HMGB1 receptors (TLR2, TLR4, TLR9, RAGE) in alcohol-fed mice. NLRP3- or ASC-deficient mice were protected from caspase-1 activation and alcohol-induced IL-1β increase in the brain. Furthermore, in vivo treatment with rIL-1ra prevented alcohol-induced inflammasome activation and IL-1β, TNF-α, and acetylated HMGB1 increases in the cerebellum. Conversely, intracranial IL-1β administration induced TNF-α and MCP-1 in the cerebellum. In conclusion, alcohol up-regulates and activates the NLRP3/ASC inflammasome, leading to caspase-1 activation and IL-1β increase in the cerebellum. IL-1β amplifies neuroinflammation, and disruption of IL-1/IL-1R signaling prevents alcohol-induced inflammasome activation and neuroinflammation. Increased levels of acetylated and phosphorylated HMGB1 may contribute to alcoholic neuroinflammation

  4. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    PubMed Central

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  5. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  6. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  7. Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity.

    PubMed

    Fowler, Anna-Kate; Thompson, Jeremy; Chen, Lixia; Dagda, Marisela; Dertien, Janet; Dossou, Katina Sylvestre S; Moaddel, Ruin; Bergeson, Susan E; Kruman, Inna I

    2014-01-01

    The prefrontal cortex (PFC) is a brain region responsible for executive functions including working memory, impulse control and decision making. The loss of these functions may ultimately lead to addiction. Using histological analysis combined with stereological technique, we demonstrated that the PFC is more vulnerable to chronic alcohol-induced oxidative stress and neuronal cell death than the hippocampus. This increased vulnerability is evidenced by elevated oxidative stress-induced DNA damage and enhanced expression of apoptotic markers in PFC neurons. We also found that one-carbon metabolism (OCM) impairment plays a significant role in alcohol toxicity to the PFC seen from the difference in the effects of acute and chronic alcohol exposure on DNA repair and from exaggeration of the damaging effects upon additional OCM impairment in mice deficient in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR). Given that damage to the PFC leads to loss of executive function and addiction, our study may shed light on the mechanism of alcohol addiction. PMID:25188266

  8. Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice

    PubMed Central

    Xia, Wei; Wu, Jianping; Yuan, Liyun; Wu, Jing; Tu, Di; Fang, Jun

    2014-01-01

    Betulinic acid (BA), a pentacyclic lupane-type triterpene, has a wide range of bioactivities. The main objective of this work was to evaluate the hepatoprotective activity of BA and the potential mechanism underlying the ability of this compound to prevent liver damage induced by alcohol in vivo. Mice were given oral doses of BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and induced liver injury by feeding 50% alcohol orally at the dosage of 10 ml/kg after 1 h last administration of BA. BA pretreatment significantly reduced the serum levels of alanine transaminase, aspartate transaminase, total cholesterol, and triacylglycerides in a dose-dependent manner in the mice administered alcohol. Hepatic levels of glutathione, superoxide dismutase, glutathione peroxidase, and catalase were remarkably increased, while malondialdehyde contents and microvesicular steatosis in the liver were decreased by BA in a dose-dependent manner after alcohol-induced liver injury. These findings suggest that the mechanism underlying the hepatoprotective effects of BA might be due to increased antioxidant capacity, mainly through improvement of the tissue redox system, maintenance of the antioxidant system, and decreased lipid peroxidation in the liver. PMID:24378582

  9. Effect of resveratrol on alcohol-induced mortality and liver lesions in mice

    PubMed Central

    Bujanda, Luis; García-Barcina, María; Juan, Virginia Gutiérrez-de; Bidaurrazaga, Joseba; de Luco, Marian Fernández; Gutiérrez-Stampa, Marian; Larzabal, Mikel; Hijona, Elisabeth; Sarasqueta, Cristina; Echenique-Elizondo, Miguel; Arenas, Juan I

    2006-01-01

    Background Resveratrol is a polyphenol with important antiinflammatory and antioxidant properties. We investigated the effect of resveratrol on alcohol-induced mortality and liver lesions in mice. Methods Mice were randomly distributed into four groups (control, resveratrol-treated control, alcohol and resveratrol-treated alcohol). Chronic alcohol intoxication was induced by progressively administering alcohol in drinking water up to 40% v/v. The mice administered resveratrol received 10 mg/ml in drinking water. The animals had free access to standard diet. Blood levels were determined for transaminases, IL-1 and TNF-α. A histological evaluation was made of liver damage, and survival among the animals was recorded. Results Transaminase concentration was significantly higher in the alcohol group than in the rest of the groups (p < 0.05). IL-1 levels were significantly reduced in the alcohol plus resveratrol group compared with the alcohol group (p < 0.05). TNF-α was not detected in any group. Histologically, the liver lesions were more severe in the alcohol group, though no significant differences between groups were observed. Mortality in the alcohol group was 78% in the seventh week, versus 22% in the alcohol plus resveratrol group (p < 0.001). All mice in the alcohol group died before the ninth week. Conclusion The results obtained suggest that resveratrol reduces mortality and liver damage in mice. PMID:17105669

  10. Were James Bond’s drinks shaken because of alcohol induced tremor?

    PubMed Central

    Johnson, Graham; Guha, Indra Neil

    2013-01-01

    Objective To quantify James Bond’s consumption of alcohol as detailed in the series of novels by Ian Fleming. Design Retrospective literature review. Setting The study authors’ homes, in a comfy chair. Participants Commander James Bond, 007; Mr Ian Lancaster Fleming. Main outcome measures Weekly alcohol consumption by Commander Bond. Methods All 14 James Bond books were read by two of the authors. Contemporaneous notes were taken detailing every alcoholic drink taken. Predefined alcohol unit levels were used to calculate consumption. Days when Bond was unable to consume alcohol (such as through incarceration) were noted. Results After exclusion of days when Bond was unable to drink, his weekly alcohol consumption was 92 units a week, over four times the recommended amount. His maximum daily consumption was 49.8 units. He had only 12.5 alcohol free days out of 87.5 days on which he was able to drink. Conclusions James Bond’s level of alcohol intake puts him at high risk of multiple alcohol related diseases and an early death. The level of functioning as displayed in the books is inconsistent with the physical, mental, and indeed sexual functioning expected from someone drinking this much alcohol. We advise an immediate referral for further assessment and treatment, a reduction in alcohol consumption to safe levels, and suspect that the famous catchphrase “shaken, not stirred” could be because of alcohol induced tremor affecting his hands. PMID:24336307

  11. Restraint stress exacerbates alcohol-induced reproductive toxicity in male rats.

    PubMed

    Priya, P Hari; Girish, B P; Reddy, P Sreenivasula

    2014-12-01

    Cumulative exposure to multiple stresses may lead to aggravating the toxicity of each stress, qualitatively or quantitatively altering biological responses because of toxicological interaction. In this study, we intended to determine the possible effects of restraint stress on reproductive toxicity due to ethanol usage in male rats. Early pubertal male Wistar rats were subjected to either restraint stress (5 h/day) or alcohol intoxication (2 mg/kg body weight) or both for 60 days. Body weights of control and experimental rats were similar during the 60 days of this study. Testes were harvested, weighed, and prepared for enzyme assays, and cauda epididymides were isolated for the determination of density, motility, and viability of stored spermatozoa. Restraint stress or alcohol treatment significantly reduced testis weight and caused significant reductions in steroidogenesis and spermatogenesis. Mean density, motility, and viability of stored spermatozoa were reduced in experimental rats. Plasma testosterone concentrations in rats subjected to restraint stress or alcohol were decreased compared with those of controls, concomitant with increased concentrations of LH and FSH in experimental rats. These data suggest that sub-chronic exposure to restraint stress or alcohol contribute to reduce testicular and epididymal function in exposed rats. The study also suggests that restraint stress exacerbates alcohol-induced reproductive toxicity in rats.

  12. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  13. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway

    SciTech Connect

    Zhang, Yu; Wei, Guangkuan; Di, Zhiyong; Zhao, Qingjie

    2014-09-26

    Graphical abstract: - Highlights: • Alcohol upregulates miR-339-5p expression. • miR-339-5p inhibits the NF-kB pathway. • miR-339-5p interacts with and blocks activity of IKK-beat and IKK-epsilon. • miR-339-5p modulates IL-1β, IL-6 and TNF-α. - Abstract: Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitro techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity.

  14. Zeta isoform of protein kinase C prevents oxidant-induced nuclear factor-kappaB activation and I-kappaBalpha degradation: a fundamental mechanism for epidermal growth factor protection of the microtubule cytoskeleton and intestinal barrier integrity.

    PubMed

    Banan, A; Fields, J Z; Zhang, L J; Shaikh, M; Farhadi, A; Keshavarzian, A

    2003-10-01

    Oxidant damage and gut barrier disruption contribute to the pathogenesis of a variety of inflammatory gastrointestinal disorders, including inflammatory bowel disease (IBD). In our studies using a model of the gastrointestinal (GI) epithelial barrier, monolayers of intestinal (Caco-2) cells, we investigated damage to and protection of the monolayer barrier. We reported that activation of nuclear factor-kappaB (NF-kappaB) via degradation of its endogenous inhibitor I-kappaBalpha is key to oxidant-induced disruption of barrier integrity and that growth factor (epidermal growth factor, EGF) protects against this injury by stabilizing the cytoskeletal filaments. Protein kinase C (PKC) activation seems to be required for monolayer maintenance, especially activation of the atypical zeta isoform of PKC. In an attempt to investigate, at the molecular level, the fundamental events underlying EGF protection against oxidant disruption, we tested the intriguing hypothesis that EGF-induced activation of PKC-zeta prevents oxidant-induced activation of NF-kappaB and the consequences of NF-kappaB activation, namely, cytoskeletal and barrier disruption. Monolayers of wild-type (WT) Caco-2 cells were incubated with oxidant (H2O2) with or without EGF or modulators. In other studies, we used the first gastrointestinal cell clones created by stable transfection of varying levels (1-5 microg) of cDNA to either overexpress PKC-zeta or to inhibit its expression. Transfected cell clones were then pretreated with EGF or a PKC activator (diacylglycerol analog 1-oleoyl-2-acetyl-glycerol, OAG) before oxidant. We monitored the following endpoints: monolayer barrier integrity, stability of the microtubule cytoskeleton, subcellular distribution and activity of the PKC-zeta isoform, intracellular levels and phosphorylation of the NF-kappaB inhibitor I-kappaBalpha, and nuclear translocation and activity of NF-kappaB subunits p65 and p50. Monolayers were also fractionated and processed to assess

  15. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells

    PubMed Central

    Kim, Hyun-Sung; Hoang, Michael; Tu, Thanh G.; Elie, Omid; Lee, Connie; Vu, Catherine; Horvath, Steve; Spigelman, Igor; Kim, Yong

    2014-01-01

    Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis. PMID:24751885

  16. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  17. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function

    PubMed Central

    Groebner, Jennifer L.; Fernandez, David J.; Tuma, Dean J.; Tuma, Pamela L.

    2016-01-01

    Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to micro-tubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease. PMID:25148871

  18. Alcohol-induced autophagy contributes to loss in skeletal muscle mass.

    PubMed

    Thapaliya, Samjhana; Runkana, Ashok; McMullen, Megan R; Nagy, Laura E; McDonald, Christine; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2014-04-01

    Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia.

  19. Intestinal Parasitoses.

    ERIC Educational Resources Information Center

    Lagardere, Bernard; Dumburgier, Elisabeth

    1994-01-01

    Intestinal parasites have become a serious public health problem in tropical countries because of the climate and the difficulty of achieving efficient hygiene. The objectives of this journal issue are to increase awareness of the individual and collective repercussions of intestinal parasites, describe the current conditions of contamination and…

  20. Quantitative In Vitro and In Vivo Evaluation of Intestinal and Blood-Brain Barrier Transport Kinetics of the Plant N-Alkylamide Pellitorine

    PubMed Central

    Veryser, Lieselotte; Bracke, Nathalie; Wynendaele, Evelien; Joshi, Tanmayee; Tatke, Pratima; Taevernier, Lien

    2016-01-01

    Objective. To evaluate the gut mucosa and blood-brain barrier (BBB) pharmacokinetic permeability properties of the plant N-alkylamide pellitorine. Methods. Pure pellitorine and an Anacyclus pyrethrum extract were used to investigate the permeation of pellitorine through (1) a Caco-2 cell monolayer, (2) the rat gut after oral administration, and (3) the BBB in mice after intravenous and intracerebroventricular administration. A validated bioanalytical UPLC-MS2 method was used to quantify pellitorine. Results. Pellitorine was able to cross the Caco-2 cell monolayer from the apical-to-basolateral and from the basolateral-to-apical side with apparent permeability coefficients between 0.6 · 10−5 and 4.8 · 10−5 cm/h and between 0.3 · 10−5 and 5.8 · 10−5 cm/h, respectively. In rats, a serum elimination rate constant of 0.3 h−1 was obtained. Intravenous injection of pellitorine in mice resulted in a rapid and high permeation of pellitorine through the BBB with a unidirectional influx rate constant of 153 μL/(g·min). In particular, 97% of pellitorine reached the brain tissue, while only 3% remained in the brain capillaries. An efflux transfer constant of 0.05 min−1 was obtained. Conclusion. Pellitorine shows a good gut permeation and rapidly permeates the BBB once in the blood, indicating a possible role in the treatment of central nervous system diseases. PMID:27493960

  1. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota.

    PubMed

    Engen, Phillip A; Green, Stefan J; Voigt, Robin M; Forsyth, Christopher B; Keshavarzian, Ali

    2015-01-01

    The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies. PMID:26695747

  2. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota.

    PubMed

    Engen, Phillip A; Green, Stefan J; Voigt, Robin M; Forsyth, Christopher B; Keshavarzian, Ali

    2015-01-01

    The excessive use of alcohol is a global problem causing many adverse pathological health effects and a significant financial health care burden. This review addresses the effect of alcohol consumption on the microbiota in the gastrointestinal tract (GIT). Although data are limited in humans, studies highlight the importance of changes in the intestinal microbiota in alcohol-related disorders. Alcohol-induced changes in the GIT microbiota composition and metabolic function may contribute to the well-established link between alcohol-induced oxidative stress, intestinal hyperpermeability to luminal bacterial products, and the subsequent development of alcoholic liver disease (ALD), as well as other diseases. In addition, clinical and preclinical data suggest that alcohol-related disorders are associated with quantitative and qualitative dysbiotic changes in the intestinal microbiota and may be associated with increased GIT inflammation, intestinal hyperpermeability resulting in endotoxemia, systemic inflammation, and tissue damage/organ pathologies including ALD. Thus, gut-directed interventions, such as probiotic and synbiotic modulation of the intestinal microbiota, should be considered and evaluated for prevention and treatment of alcohol-associated pathologies.

  3. Intestinal steroidogenesis.

    PubMed

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions.

  4. Reversal of Alcohol-Induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making

    PubMed Central

    Schindler, Abigail G.; Soden, Marta E.; Zweifel, Larry S.

    2016-01-01

    Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. SIGNIFICANCE STATEMENT One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make

  5. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice

    PubMed Central

    Williams, Jessica A.; Ni, Hong-Min; Ding, Yifeng

    2015-01-01

    Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. PMID:26159696

  6. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  7. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    PubMed

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer.

  8. Intestinal obstruction

    MedlinePlus

    ... of the bowel may be due to: A mechanical cause, which means something is in the way ... lung disease Use of certain medicines, especially narcotics Mechanical causes of intestinal obstruction may include: Adhesions or ...

  9. An intestinal Trojan horse for gene delivery

    NASA Astrophysics Data System (ADS)

    Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun

    2015-02-01

    The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.

  10. Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice

    PubMed Central

    Chattopadhyay, Abhijnan; Pinkaew, Decha; Doan, Hung Q.; Jacob, Reed B.; Verma, Sunil K.; Friedman, Hana; Peterson, Alan C.; Kuyumcu-Martinez, Muge N.; McDougal, Owen M.; Fujise, Ken

    2016-01-01

    Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans. PMID:26726832

  11. Transdermal delivery of cannabidiol attenuates binge alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder.

    PubMed

    Liput, Daniel J; Hammell, Dana C; Stinchcomb, Audra L; Nixon, Kimberly

    2013-10-01

    Excessive alcohol consumption, characteristic of alcohol use disorders, results in neurodegeneration and behavioral and cognitive impairments that are hypothesized to contribute to the chronic and relapsing nature of alcoholism. Therefore, the current study aimed to advance the preclinical development of transdermal delivery of cannabidiol (CBD) for the treatment of alcohol-induced neurodegeneration. In Experiment 1, 1.0%, 2.5% and 5.0% CBD gels were evaluated for neuroprotection. The 5.0% CBD gel resulted in a 48.8% reduction in neurodegeneration in the entorhinal cortex assessed by Fluoro-Jade B (FJB), which trended to statistical significance (p=0.069). Treatment with the 5.0% CBD gel resulted in day 3 CBD plasma concentrations of ~100.0 ng/mL so this level was used as a target concentration for development of an optimized gel formulation. Experiment 2 tested a next generation 2.5% CBD gel formulation, which was compared to CBD administration by intraperitoneal injection (IP; 40.0 mg/kg/day). This experiment found similar magnitudes of neuroprotection following both routes of administration; transdermal CBD decreased FJB+ cells in the entorhinal cortex by 56.1% (p<0.05), while IP CBD resulted in a 50.6% (p<0.05) reduction in FJB+ cells. These results demonstrate the feasibility of using CBD transdermal delivery systems for the treatment of alcohol-induced neurodegeneration.

  12. Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice.

    PubMed

    Chattopadhyay, Abhijnan; Pinkaew, Decha; Doan, Hung Q; Jacob, Reed B; Verma, Sunil K; Friedman, Hana; Peterson, Alan C; Kuyumcu-Martinez, Muge N; McDougal, Owen M; Fujise, Ken

    2016-01-01

    Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans. PMID:26726832

  13. OPG and RANKL polymorphisms are associated with alcohol-induced osteonecrosis of the femoral head in the north area of China population in men

    PubMed Central

    Li, Yizhou; Wang, Yuan; Guo, Yongchang; Wang, Quanjian; Ouyang, Yongri; Cao, Yuju; Jin, Tianbo; Wang, Jianzhong

    2016-01-01

    Abstract Alcohol-induced osteonecrosis of the femoral head (ONFH) is an important pathogenesis of nontraumatic ONFH. However, the mechanisms of the pathogenesis are still unknown. Osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) have been implicated in multiple functions including blocking osteoclast maturation, controlling vascular calcifications, and promoting tumor growth and metastasis. The purpose of this article was to explore the association between OPG and RANKL gene variants and alcohol-induced ONFH. Six hundred seventy male subjects (335 patients and 335 normal individuals) were enrolled in our study. We selected 24 single-nucleotide polymorphisms (SNPs) to evaluate the association between genetic susceptibility variants and alcohol-induced ONFH using the chi-square test and gene model analysis. Overall, the OPG SNPs (rs1032128 and rs11573828) were associated with the strongest increased risk of alcohol-induced ONFH in the recessive model (rs1032128: odds ratio [OR] 1.49, 95% confidence interval [CI] 1.00–2.22, P = 0.04 for G/A; rs11573828: OR 3.32, 95% CI 1.07–10.30, P = 0.03 for T/C). The RANKL SNP rs2200287 was also an increased risk factor (OR 3.65, 95% CI 1.53–8.47, P = 0.003 for T/C) in the recessive model. The rs11573856, rs3134056, and rs1564861 SNPs were considered protective factors for alcohol-induced ONFH. We concluded that OPG and RANKL polymorphisms were associated with the occurrence of alcohol-induced ONFH. PMID:27336899

  14. Effect of maternal methionine pre-treatment on alcohol-induced exencephaly and axial skeletal dysmorphogenesis in mouse fetuses.

    PubMed

    Padmanabhan, R; Ibrahim, Ahmad; Bener, Abulbari

    2002-02-01

    Alcohol is known to induce folate deficiency and impair methionine synthase activity. Exogenous folic acid (FA) administered periconceptionally has been shown to prevent the first occurrence and recurrence of neural tube defects (NTD) in humans. Since folate, vitamin B(12) and methionine are metabolically interrelated, it was decided to determine the effect of methionine pre-treatment on alcohol-induced NTD and axial skeletal defects in mouse embryos. Following administration of a single dose of 70 or 150 mg/kg of methionine, 0.03 ml/g body weight of ethanol solution (25% v/v of absolute alcohol in saline) was injected intraperitoneally into pregnant mice at critical stages of neural tube development. The controls were either non-treated or saline treated and pair-fed and pair-watered. Fetuses were collected on gestation day 18. Alcohol and methionine plus alcohol numerically enhanced embryonic resorption and induced a significant reduction in fetal body weight. Alcohol alone caused a 3-fold increase in the background frequency of exencephaly in gestation days 7 and 8 treatment groups. The low dose of methionine only numerically reduced the spontaneous exencephaly. Pre-treatment with methionine only produced a numerical but not statistically significant reduction in alcohol-induced exencephaly. The higher dose of methionine did not produce a particularly beneficial effect on embryonic survival, fetal body weight and occurrence of exencephaly. Alcohol-induced cleft palate and limb malformations were ameliorated by methionine pre-treatment. Craniofacial skeleton, vertebrae and ribs were extensively malformed both in the alcohol and methionine plus alcohol groups indicating a lack of rescue effects of methionine. Whereas supernumerary ribs and extra sternal ribs were augmented by methionine, occipitalization of the atlas vertebra was a malformation unique to the pre-treatment group. Plasma levels of several amino acids including that of methionine were significantly

  15. Intestinal Obstruction

    MedlinePlus

    ... the small intestine (duodenum) may be caused by cancer of the pancreas, scarring from an ulcer, or Crohn disease . Rarely, a gallstone, a mass of undigested food, or a collection of parasitic worms may block ... commonly caused by cancer, diverticulitis , or a hard lump of stool (fecal ...

  16. Cold-inducible RNA-binding protein is an important mediator of alcohol-induced brain inflammation.

    PubMed

    Rajayer, Salil R; Jacob, Asha; Yang, Weng-Lang; Zhou, Mian; Chaung, Wayne; Wang, Ping

    2013-01-01

    Binge drinking has been associated with cerebral dysfunction. Ethanol induced microglial activation initiates an inflammatory process that causes upregulation of proinflammatory cytokines which in turn creates neuronal inflammation and damage. However, the molecular mechanism is not fully understood. We postulate that cold-inducible RNA-binding protein (CIRP), a novel proinflammatory molecule, can contribute to alcohol-induced neuroinflammation. To test this theory male wild-type (WT) mice were exposed to alcohol at concentrations consistent to binge drinking and blood and brain tissues were collected. At 5 h after alcohol, a significant increase of 53% in the brain of CIRP mRNA was observed and its expression remained elevated at 10 h and 15 h. Brain CIRP protein levels were increased by 184% at 10 h and remained high at 15 h. We then exposed male WT and CIRP knockout (CIRP(-/-)) mice to alcohol, and blood and brain tissues were collected at 15 h post-alcohol infusion. Serum levels of tissue injury markers (AST, ALT and LDH) were significantly elevated in alcohol-exposed WT mice while they were less increased in the CIRP(-/-) mice. Brain TNF-α mRNA and protein expressions along with IL-1β protein levels were significantly increased in WT mice, which was not seen in the CIRP(-/-) mice. In cultured BV2 cells (mouse microglia), ethanol at 100 mM showed an increase of CIRP mRNA by 274% and 408% at 24 h and 48 h respectively. Corresponding increases in TNF-α and IL-1β were also observed. CIRP protein levels were markedly increased in the medium, suggesting that CIRP was secreted by the BV2 cells. From this we conclude that alcohol exposure activates microglia to produce and secrete CIRP and possibly induce pro-inflammatory response and thereby causing neuroinflammation. CIRP could be a novel mediator of alcohol-induced brain inflammation.

  17. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice.

    PubMed

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8-10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  18. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice

    PubMed Central

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R.

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  19. Intestinal spirochaetosis

    PubMed Central

    Lee, F. D.; Kraszewski, A.; Gordon, J.; Howie, J. G. R.; McSeveney, D.; Harland, W. A.

    1971-01-01

    An abnormal condition of the large intestine is described in which the surface epithelium is infested by short spirochaetes. Diagnosis can be made by light microscopy. A review of 14 cases diagnosed by rectal biopsy and 62 cases involving the appendix shows no consistent symptom complex. The possible significance is discussed. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 1 PMID:5548558

  20. Small intestinal ischemia and infarction

    MedlinePlus

    ... small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine ... Embolus: Blood clots can block one of the arteries supplying the intestine. People who have had a ...

  1. Concepts and mechanisms: crossing host barriers.

    PubMed

    Doran, Kelly S; Banerjee, Anirban; Disson, Olivier; Lecuit, Marc

    2013-07-01

    The human body is bordered by the skin and mucosa, which are the cellular barriers that define the frontier between the internal milieu and the external nonsterile environment. Additional cellular barriers, such as the placental and the blood-brain barriers, define protected niches within the host. In addition to their physiological roles, these host barriers provide both physical and immune defense against microbial infection. Yet, many pathogens have evolved elaborated mechanisms to target this line of defense, resulting in a microbial invasion of cells constitutive of host barriers, disruption of barrier integrity, and systemic dissemination and invasion of deeper tissues. Here we review representative examples of microbial interactions with human barriers, including the intestinal, placental, and blood-brain barriers, and discuss how these microbes adhere to, invade, breach, or compromise these barriers.

  2. Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?

    PubMed Central

    Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian

    2013-01-01

    The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037

  3. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    PubMed

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P < 0.05). Moreover, zonula occludens-1 (ZO-1), occludin and claudin c mRNA levels were highest in the fish fed the diet containing 11.5 g Phe kg(-1) (P < 0.05). However, claudin 12 and claudin b mRNA levels were not significantly affected by dietary Phe (P > 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish

  4. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  5. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits.

    PubMed

    Bonthius, Daniel J; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J

    2015-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS-/- mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS-/- mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS-/- mice and their wild type controls received alcohol (0.0, 2.2, or 4.4mg/g) daily over postnatal days 4-9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS-/- and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS-/- mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS-/- mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS-/- mice, but not in wild type. Thus, homozygous

  6. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L.; Casey, Carol A.

    2015-01-01

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R. PMID:26607390

  7. αCaMKII autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice.

    PubMed

    Easton, Alanna C; Lucchesi, Walter; Mizuno, Keiko; Fernandes, Cathy; Schumann, Gunter; Giese, K Peter; Müller, Christian P

    2013-09-01

    The autophosphorylation of alpha Ca2+ /calmodulin dependent protein kinase II (αCaMKII) is important for memory formation and is becoming increasingly implicated in the development of drug addiction. Previous work suggests that αCaMKII acts via the monoaminergic systems to facilitate the establishment of alcohol drinking behaviour. The present study aims to investigate whether αCaMKII autophosphorylation deficient αCaMKII(T286A) mice show a difference in the rewarding properties of alcohol (2 g/kg, i.p.), as measured by conditioned place preference (CPP). We found that alcohol-induced CPP could be established at an accelerated rate in αCaMKII(T286A) compared to wild type (WT) mice. Hyperactivity/hyper-arousal induced by the test environment was normalised by alcohol in the αCaMKII(T286A), but not WT mice. This effect could be conditioned to the test environment and may suggest enhanced negative reinforcing action of alcohol in αCaMKII autophosphorylation deficient mice.

  8. Laboratory models available to study alcohol-induced organ damage and immune variations; choosing the appropriate model

    PubMed Central

    D’Souza El-Guindy, Nympha B.; Kovacs, Elizabeth J.; De Witte, Philippe; Spies, Claudia; Littleton, John M.; de Villiers, Willem J. S.; Lott, Amanda J.; Plackett, Timothy P.; Lanzke, Nadine; Meadows, Gary G.

    2010-01-01

    The morbidity and mortality resulting from alcohol-related diseases impose a substantive cost to society globally. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, researchers in the alcohol field are focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most is performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium “Methods of Ethanol Application in Alcohol Model – How Long is Long Enough” at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans. PMID:20586763

  9. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model.

    PubMed

    D'Souza El-Guindy, Nympha B; Kovacs, Elizabeth J; De Witte, Philippe; Spies, Claudia; Littleton, John M; de Villiers, Willem J S; Lott, Amanda J; Plackett, Timothy P; Lanzke, Nadine; Meadows, Gary G

    2010-09-01

    The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.

  10. αCaMKII autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice.

    PubMed

    Easton, Alanna C; Lucchesi, Walter; Mizuno, Keiko; Fernandes, Cathy; Schumann, Gunter; Giese, K Peter; Müller, Christian P

    2013-09-01

    The autophosphorylation of alpha Ca2+ /calmodulin dependent protein kinase II (αCaMKII) is important for memory formation and is becoming increasingly implicated in the development of drug addiction. Previous work suggests that αCaMKII acts via the monoaminergic systems to facilitate the establishment of alcohol drinking behaviour. The present study aims to investigate whether αCaMKII autophosphorylation deficient αCaMKII(T286A) mice show a difference in the rewarding properties of alcohol (2 g/kg, i.p.), as measured by conditioned place preference (CPP). We found that alcohol-induced CPP could be established at an accelerated rate in αCaMKII(T286A) compared to wild type (WT) mice. Hyperactivity/hyper-arousal induced by the test environment was normalised by alcohol in the αCaMKII(T286A), but not WT mice. This effect could be conditioned to the test environment and may suggest enhanced negative reinforcing action of alcohol in αCaMKII autophosphorylation deficient mice. PMID:23732653

  11. The protective effect of Agaricus blazei Murrill, submerged culture using the optimized medium composition, on alcohol-induced liver injury.

    PubMed

    Wang, Hang; Li, Gang; Zhang, Wenyu; Han, Chunchao; Xu, Xin; Li, Yong-Ping

    2014-01-01

    Agaricus blazei Murrill (ABM), an edible mushroom native to Brazil, is widely used for nonprescript and medicinal purposes. Alcohol liver disease (ALD) is considered as a leading cause for a liver injury in modern dietary life, which can be developed by a prolonged or large intake of alcohol. In this study, the medium composition of ABM was optimized using response surface methodology for maximum mycelial biomass and extracellular polysaccharide (EPS) production. The model predicts to gain a maximal mycelial biomass and extracellular polysaccharide at 1.047 g/100 mL, and 0.367 g/100 mL, respectively, when the potato is 29.88 g/100 mL, the glucose is 1.01 g/100 mL, and the bran is 1.02 g/100 mL. The verified experiments showed that the model was significantly consistent with the model prediction and that the trends of mycelial biomass and extracellular polysaccharide were predicted by artificial neural network. After that, the optimized medium was used for the submerged culture of ABM. Then, alcohol-induced liver injury in mice model was used to examine the protective effect of ABM cultured using the optimized medium on the liver. And the hepatic histopathological observations showed that ABM had a relatively significant role in mice model, which had alcoholic liver damage.

  12. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes.

    PubMed

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L; Casey, Carol A

    2015-11-26

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R.

  13. Intestinal protozoa.

    PubMed

    Juckett, G

    1996-06-01

    Giardia is the best known cause of protozoal gastrointestinal disease in North America, producing significant but not life-threatening gastrointestinal distress and diarrhea. Although diagnosis of giardiasis may be challenging, treatment is usually successful. Entamoeba histolytica poses a rarer but far more difficult clinical challenge. Dysentery caused by E. histolytica may be the most feared intestinal protozoal infection, although Cryptosporidium parvum, Balantidium coli, Isospora belli, Sarcocystis species and other newly described protozoa also may cause diarrhea in healthy individuals and may result in intractable, life-threatening illness in patients with acquired immunodeficiency syndrome or other immunosuppressive diseases. Certain protozoa once considered relatively unimportant, such as Cryptosporidium, are now recognized as significant causes of morbidity even in the United States, since transmission readily occurs through contaminated water. PMID:8644565

  14. Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes.

    PubMed

    Wang, Junming; Zhang, Yueyue; Liu, Ruixin; Li, Xiaobing; Cui, Ying; Qu, Lingbo

    2015-04-01

    Geniposide (GP) is one of main compounds in Gardenia jasminoides Ellis, with both medicinal and nutritional value. This study was designed to determine, for the first time, how GP from G. jasminoides protects against acute alcohol-induced liver injury, and the underlying mechanisms. Mice were orally administered alcohol (6.0 g/kg body mass) 2 h after intragastric administration of GP and bifendate, every day for 7 continuous days. Six hours after the alcohol was administered, levels of serum alanine/aspartate transaminase (ALT/AST), hepatic lipid peroxidation (LPO), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), copper- and zinc-containing superoxide dismutase (CuZn-SOD), and catalase (CAT), and mRNA expression of CuZn-SOD and CAT were assayed. The results demonstrated that GP (20.0, 40.0, or 80 mg/kg) significantly reversed the excessive, alcohol-induced elevation in both serum ALT/AST and hepatic LPO levels. Moreover, hepatic GSH, GST, GPx, CuZn-SOD, and CAT levels were all decreased in the alcohol-treated mice, whereas treatment with GP reversed these decreases. Further analysis indicated that hepatic mRNA expression of CuZn-SOD and CAT in the alcohol-treated mice was significantly down-regulated, whereas GP up-regulated such decreases. Taken together, this study shows that GP protects against acute alcohol-induced liver injury via up-regulating the expression of the main antioxidant enzymes, and thus ameliorates alcohol-induced oxidative stress injury in the liver. PMID:25730420

  15. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis.

    PubMed

    Avila, Diana V; Barker, David F; Zhang, JingWen; McClain, Craig J; Barve, Shirish; Gobejishvili, Leila

    2016-09-01

    Alcohol-induced hepatic steatosis is a significant risk factor for progressive liver disease. Cyclic adenosine monophosphate (cAMP) signalling has been shown to significantly regulate lipid metabolism; however, the role of altered cAMP homeostasis in alcohol-mediated hepatic steatosis has never been studied. Our previous work demonstrated that increased expression of hepatic phosphodiesterase 4 (Pde4), which specifically hydrolyses and decreases cAMP levels, plays a pathogenic role in the development of liver inflammation/injury. The aim of this study was to examine the role of PDE4 in alcohol-induced hepatic steatosis. C57BL/6 wild-type and Pde4b knockout (Pde4b(-/-) ) mice were pair-fed control or ethanol liquid diets. One group of wild-type mice received rolipram, a PDE4-specific inhibitor, during alcohol feeding. We demonstrate for the first time that an early increase in PDE4 enzyme expression and a resultant decrease in hepatic cAMP levels are associated with the significant reduction in carnitine palmitoyltransferase 1A (Cpt1a) expression. Notably, alcohol-fed (AF) Pde4b(-/-) mice and AF wild-type mice treated with rolipram had significantly lower hepatic free fatty acid content compared with AF wild-type mice. Importantly, PDE4 inhibition in alcohol-fed mice prevented the decrease in hepatic Cpt1a expression via the Pparα/Sirt1/Pgc1α pathway. These results demonstrate that the alcohol- induced increase in hepatic Pde4, specifically Pde4b expression, and compromised cAMP signalling predispose the liver to impaired fatty acid oxidation and the development of steatosis. Moreover, these data also suggest that hepatic PDE4 may be a clinically relevant therapeutic target for the treatment of alcohol-induced hepatic steatosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27287961

  16. Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes.

    PubMed

    Wang, Junming; Zhang, Yueyue; Liu, Ruixin; Li, Xiaobing; Cui, Ying; Qu, Lingbo

    2015-04-01

    Geniposide (GP) is one of main compounds in Gardenia jasminoides Ellis, with both medicinal and nutritional value. This study was designed to determine, for the first time, how GP from G. jasminoides protects against acute alcohol-induced liver injury, and the underlying mechanisms. Mice were orally administered alcohol (6.0 g/kg body mass) 2 h after intragastric administration of GP and bifendate, every day for 7 continuous days. Six hours after the alcohol was administered, levels of serum alanine/aspartate transaminase (ALT/AST), hepatic lipid peroxidation (LPO), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), copper- and zinc-containing superoxide dismutase (CuZn-SOD), and catalase (CAT), and mRNA expression of CuZn-SOD and CAT were assayed. The results demonstrated that GP (20.0, 40.0, or 80 mg/kg) significantly reversed the excessive, alcohol-induced elevation in both serum ALT/AST and hepatic LPO levels. Moreover, hepatic GSH, GST, GPx, CuZn-SOD, and CAT levels were all decreased in the alcohol-treated mice, whereas treatment with GP reversed these decreases. Further analysis indicated that hepatic mRNA expression of CuZn-SOD and CAT in the alcohol-treated mice was significantly down-regulated, whereas GP up-regulated such decreases. Taken together, this study shows that GP protects against acute alcohol-induced liver injury via up-regulating the expression of the main antioxidant enzymes, and thus ameliorates alcohol-induced oxidative stress injury in the liver.

  17. Wound healing of intestinal epithelial cells

    PubMed Central

    Iizuka, Masahiro; Konno, Shiho

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events; restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing. PMID:21633524

  18. Gut barrier function in malnourished patients

    PubMed Central

    Welsh, F; Farmery, S; MacLennan, K; Sheridan, M; Barclay, G; Guillou, P; Reynolds, J

    1998-01-01

    Background—The integrity of the gastrointestinal mucosa is a key element in preventing systemic absorption of enteric toxins and bacteria. In the critically ill, breakdown of gut barrier function may fuel sepsis. Malnourished patients have an increased risk of postoperative sepsis; however, the effects of malnutrition on intestinal barrier function in man are unknown. 
Aims—To quantify intestinal barrier function, endotoxin exposure, and the acute phase cytokine response in malnourished patients. 
Patients—Malnourished and well nourished hospitalised patients. 
Methods—Gastrointestinal permeability was measured in malnourished patients and well nourished controls using the lactulose:mannitol test. Endoscopic biopsy specimens were stained and morphological and immunohistochemical features graded. The polymerase chain reaction was used to determine mucosal cytokine expression. The immunoglobulin G antibody response to endotoxin and serum interleukin 6 were measured by enzyme linked immunosorbent assay. 
Results—There was a significant increase in intestinal permeability in the malnourished patients in association with phenotypic and molecular evidence of activation of lamina propria mononuclear cells and enterocytes, and a heightened acute phase response. 
Conclusions—Intestinal barrier function is significantly compromised in malnourished patients, but the clinical significance is unclear. 

 Keywords: protein-energy malnutrition; intestinal permeability; endotoxin; cytokine PMID:9577348

  19. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation.

    PubMed

    Lin, Xing; Zhang, Shijun; Huang, Renbin; Wei, Ling; Tan, Shimei; Liang, Shuang; Tian, Yuanchun; Wu, Xiaoyan; Lu, Zhongpeng; Huang, Quanfang

    2014-06-01

    A compound was isolated from Centipeda minima using bioassay-guided screening. The structure of this compound was elucidated based on its spectral data, and it was identified as helenalin. The hepatoprotective effect of helenalin was evaluated using a liver fibrosis model induced by intragastric administration with alcohol within 24 weeks in rats. The results revealed that helenalin significantly prevented alcohol-induced hepatic injury and fibrogenesis, as evidenced by the decrease in serum aminotransferase, the attenuation of histopathological changes, and the inhibition of the hepatic fibrosis indicators, such as hyaluronic acid, type III precollagen, laminin, hydroxyproline and collagen α type I. Mechanistically, studies showed that helenalin expedited ethanol metabolism by enhancing the alcohol and aldehyde dehydrogenase activities. Furthermore, helenalin alleviated lipid peroxidation, recruited the antioxidative defense system, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TGF-β1, TNF-α, IL-6 and IL-1β and myeloperoxidase, via down-regulation of NF-κB. Helenalin significantly decreased collagen deposition by reducing the profibrotic cytokines like transforming growth factor-β, platelet-derived growth factor-β and connective tissue growth factor, and promoted extracellular matrix degradation by modulating the levels of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9. In addition, helenalin inhibited HSC activation as evidenced by the down-regulation of α-SMA and TGF-β levels. In conclusion, helenalin had a significant protective effect on chronic ethanol-induced hepatic fibrosis and may be a major bioactive ingredient of C. minima.

  20. Alcohol-Induced Changes in Conflict Monitoring and Error Detection as Predictors of Alcohol Use in Late Adolescence

    PubMed Central

    Korucuoglu, Ozlem; Gladwin, Thomas E; Wiers, Reinout W

    2015-01-01

    Adolescence is a vulnerable period for the development of substance use and related problems. Understanding how exposure to drugs influences the adolescent brain could reveal mechanisms underlying risk for addiction later in life. In the current study, 87 adolescents (16–20-year olds; the local legal drinking age was16, allowing the inclusion of younger subjects than usually possible) underwent EEG measurements during a Go/No-Go task with and without alcohol cues; after placebo and a low dose of alcohol (0.45 g/kg). Conflict monitoring and error detection processes were investigated with the N2 and the error-related negativity (ERN) ERP components. Participants were followed-up after 6 months to assess changes in alcohol use. The NoGo-N2 was larger for alcohol cues and acute alcohol decreased the amplitude of the NoGo-N2 for alcohol cues. ERN amplitude was blunted for alcohol cues. Acute alcohol decreased the amplitude of the ERN, specifically for control cues. Furthermore, the differences in ERN for alcohol cues between the placebo and alcohol conditions predicted alcohol use 6 months later: subjects who showed stronger blunting of the ERN after acute alcohol were more likely to return to more moderate drinking patterns. These results suggest that cues signalling reward opportunities might activate a go-response mode and larger N2 (detection of increased conflict) for these cues might be necessary for inhibition. The ERN results suggest a deficiency in the monitoring system for alcohol cues. Finally, a lack of alcohol-induced deterioration of error monitoring for cues with high salience might be a vulnerability factor for alcohol abuse in adolescents. PMID:25189856

  1. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    PubMed

    Banerjee, Atrayee; Abdelmegeed, Mohamed A; Jang, Sehwan; Song, Byoung-Joon

    2015-01-01

    The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT) or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH) (3.5 g/kg/dose oral gavages at 12-h intervals) or dextrose (Control). Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4), leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1) were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART), are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  2. Alcohol-induced One-carbon Metabolism Impairment Promotes Dysfunction of DNA Base Excision Repair in Adult Brain*

    PubMed Central

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G.; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J.; Bergeson, Susan E.; Henderson, George I.; Kruman, Inna I.

    2012-01-01

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr+/− mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain. PMID:23118224

  3. Elucidation of molecular mechanism involved in neuroprotective effect of Coenzyme Q10 in alcohol-induced neuropathic pain.

    PubMed

    Kandhare, Amit D; Ghosh, Pinaki; Ghule, Arvindkumar E; Bodhankar, Subhash L

    2013-12-01

    The aim of the present investigation was to evaluate the effect of Coenzyme Q10 and its combination with vitamin E in alcohol-induced chronic neuropathic pain. Male Wistar rats were orally treated with alcohol (10 g/kg, 35% v/v, b.i.d.) for 10 weeks. Coenzyme Q10 (25, 50, and 100 mg/kg) and vitamin E (100 mg/kg) were coadministered orally for 1 h after ethanol administration for 10 weeks. Various nerve functions, biochemical, and molecular parameters were assessed. Chronic administration of ethanol for 10 weeks resulted significant development of neuropathic pain. Treatment with Coenzyme Q10 (50 and 100 mg/kg) for 10 weeks showed significant and dose dependently increased in level of nociceptive threshold, endogenous antioxidant, and Na,K-ATPase enzyme. Coenzyme Q10 (50 and 100 mg/kg) significantly restored the levels of motor nerve conduction velocity and sensory nerve conduction velocity. It also showed significant decrease in levels of endogenous calcium, oxidative-nitrosative stress, TNF-α, IL-1β, and IL-4 level. Alteration in protein expression of polymerase gamma (pol γ) was significantly restored the Coenzyme Q10 treatment. The important finding of the study is that, Coenzyme Q10 (100 mg/kg) and α-tocopherol (100 mg/kg) combination-treated rats showed more significant prevention of behavioral, biochemical, and molecular neurotoxic effect of alcohol administration than Coenzyme Q10 or α-tocopherol alone treated group. It is evident from the finding of present investigation that plethora of mechanism including inhibition of oxido-nitrosative stress, release of pro-inflammatory cytokine, modulation of endogenous biomarker, and protection of pol γ protein expression simultaneously orchestrate to exhibits neuroprotective effect of Coenzyme Q10, vitamin E and their combination.

  4. Alcohol-Induced miR-27a Regulates Differentiation and M2 Macrophage Polarization of Normal Human Monocytes

    PubMed Central

    Saha, Banishree; Bruneau, Johanna C.; Kodys, Karen; Szabo, Gyongyi

    2015-01-01

    Alcohol abuse is a leading cause of liver disease characterized by liver inflammation, fatty liver, alcoholic hepatitis, or liver cirrhosis. Immunomodulatory effects of alcohol on monocytes and macrophages contribute to alcoholic liver disease. Alcohol use, an independent risk factor for progression of hepatitis C virus (HCV) infection–mediated liver disease, impairs host defense and alters cytokine production and monocyte/macrophage activation. We hypothesized that alcohol and HCV have synergistic effects on the phenotype and function of monocytes. Our data show that acute alcohol binge drinking in healthy volunteers results in increased frequency of CD16+ and CD68+ and M2-type (CD206+, dendritic cell [DC]-SIGN+–expressing and IL-10–secreting) circulating CD14+ monocytes. Expression of HCV-induced CD68 and M2 markers (CD206 and DC-SIGN) in normal monocytes was further enhanced in the presence of alcohol. The levels of microRNA (miR)-27a was significantly upregulated in monocytes cultured in the presence of alcohol or alcohol and HCV as compared with HCV alone. The functional role of miR-27a in macrophage polarization was demonstrated by transfecting monocytes with an miR-27a inhibitor that resulted in reduced alcohol- and HCV- mediated monocyte activation (CD14 and CD68 expression), polarization (CD206 and DC-SIGN expression), and IL-10 secretion. Over-expression of miR-27a in monocytes enhanced IL-10 secretion via activation of the ERK signaling pathway. We found that miR-27a promoted ERK phosphorylation by downregulating the expression of ERK inhibitor sprouty2 in monocytes. Thus, we identified that sprouty2 is a target of miR-27a in human monocytes. In summary, our study demonstrates the regulatory role of miR-27a in alcohol-induced monocyte activation and polarization. PMID:25716995

  5. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    PubMed

    Banerjee, Atrayee; Abdelmegeed, Mohamed A; Jang, Sehwan; Song, Byoung-Joon

    2015-01-01

    The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT) or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH) (3.5 g/kg/dose oral gavages at 12-h intervals) or dextrose (Control). Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4), leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1) were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART), are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART. PMID:26484872

  6. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  7. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD

    PubMed Central

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs) are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD. PMID:27578924

  8. Microbial barriers.

    PubMed

    Gutwein, Luke G; Panigrahi, Mousumee; Schultz, Gregory S; Mast, Bruce A

    2012-07-01

    Barrier wound therapy is commonplace in the health care environment and functions to limit bacterial colonization and infection in both acute wounds and recalcitrant chronic wounds. This article reviews the nature of acute and chronic wounds and their available adjunctive barrier therapies.

  9. Intestinal permeability--a new target for disease prevention and therapy.

    PubMed

    Bischoff, Stephan C; Barbara, Giovanni; Buurman, Wim; Ockhuizen, Theo; Schulzke, Jörg-Dieter; Serino, Matteo; Tilg, Herbert; Watson, Alastair; Wells, Jerry M

    2014-11-18

    Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review, current knowledge on mucosal barrier and its role in disease prevention and therapy is summarized. First, the relevant terms 'intestinal barrier' and 'intestinal permeability' are defined. Secondly, the key element of the intestinal barrier affecting permeability are described. This barrier represents a huge mucosal surface, where billions of bacteria face the largest immune system of our body. On the one hand, an intact intestinal barrier protects the human organism against invasion of microorganisms and toxins, on the other hand, this barrier must be open to absorb essential fluids and nutrients. Such opposing goals are achieved by a complex anatomical and functional structure the intestinal barrier consists of, the functional status of which is described by 'intestinal permeability'. Third, the regulation of intestinal permeability by diet and bacteria is depicted. In particular, potential barrier disruptors such as hypoperfusion of the gut, infections and toxins, but also selected over-dosed nutrients, drugs, and other lifestyle factors have to be considered. In the fourth part, the means to assess intestinal permeability are presented and critically discussed. The means vary enormously and probably assess different functional components of the barrier. The barrier assessments are further hindered by the natural variability of this functional entity depending on species and genes as well as on diet and other environmental factors. In the final part, we discuss selected diseases associated with increased intestinal permeability such as critically illness, inflammatory bowel diseases, celiac disease, food allergy, irritable bowel syndrome, and--more recently recognized

  10. Healing of intestinal inflammation by IL-22

    PubMed Central

    Mizoguchi, Atsushi

    2012-01-01

    An IL-10 family cytokine IL-22 is characterized by several unique biological properties, including 1) the target restricted to innate cells, 2) the distinct expression pattern between large and small intestines, 3) alteration of the cellular source depending on several factors, 4) the dual abilities to serve as protective versus proinflammatory mediators in inflammatory responses, and 5) the close association with some major IBD susceptibility genes. The major functions of IL-22 in the intestine are the stimulation of epithelial cells to produce a wide variety of antibacterial proteins, the reinforcement of mucus barrier through stimulation of mucin 1 production under intestinal inflammatory conditions, and the enhancement of epithelial regeneration with goblet cell restitution. Through these beneficial functions, IL-22 contributes to the improvement of some types of experimental chronic colitis, which are mediated by Th1 or Th2 responses. Most importantly, studies using both loss-of-function and gain-of-function approaches have clearly demonstrated the ability of IL-22 to promote intestinal wound healing from acute intestinal injury. These findings highlight IL-22 as an attractive and promising target for future IBD therapy. Alternatively, the enormous progress in the field of IL-22 biology has also suggested more complicated mechanism with IL-22 pathway than previously predicted. This review article briefly summarizes previous and current knowledge on IL-22 particularly associated with intestinal inflammation. PMID:22359410

  11. Alcohol-induced facial dysmorphology in C57BL/6 mouse models of fetal alcohol spectrum disorder.

    PubMed

    Anthony, Bruce; Vinci-Booher, Sophia; Wetherill, Leah; Ward, Richard; Goodlett, Charles; Zhou, Feng C

    2010-01-01

    significantly more effects of pair feeding on these facial measures than did B6J mice, suggesting that the B6N substrain may be more vulnerable to nutritional stress during pregnancy. Overall, these data indicate that both B6N and B6J mice were vulnerable to alcohol but show differences in the severity and location of alcohol-induced dysmorphic facial features and may parallel findings from human studies comparing different ethnic groups. Furthermore, these findings suggest that discriminant analysis may be useful in predicting alcohol exposure in either mouse substrains.

  12. Small Intestine Disorders

    MedlinePlus

    Your small intestine is the longest part of your digestive system - about twenty feet long! It connects your stomach to ... many times to fit inside your abdomen. Your small intestine does most of the digesting of the foods ...

  13. Intestinal obstruction repair

    MedlinePlus

    Repair of volvulus; Intestinal volvulus - repair; Bowel obstruction - repair ... Intestinal obstruction repair is done while you are under general anesthesia . This means you are asleep and DO NOT feel pain. ...

  14. Large intestine (colon) (image)

    MedlinePlus

    ... portion of the digestive system most responsible for absorption of water from the indigestible residue of food. The ileocecal valve of the ileum (small intestine) passes material into the large intestine at the ...

  15. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  16. [Intestinal dysbacteriosis promotes intestinal intraepithelial T lymphocyte activation and proinflammatory cytokine secretion in mice].

    PubMed

    Luo, Xia; Luo, Shuang; Zheng, Yanyi; Wen, Ruyan; Deng, Xiangliang; Zhou, Lian

    2016-08-01

    Objective To study the effect of intestinal dysbacteriosis on mouse intestinal intraepithelial T lymphocytes (iIELs). Methods The intestinal dysbacteriosis was induced in mice by oral administration of ceftriaxone sodium. The iIELs were digested with ethylene diaminetetraacetic acid (EDTA) and DL-dithiothreitol (DTT). The phenotype of iIELs and the proportions of subsets of T cells were detected by flow cytometry; the concentrations of cytokines (IL-2, IL-6, IFN-γ) in the intestine were examined by ELISA; the intestinal bacteria were analyzed with selective medium and PCR. Results Compared with the control group, intestinal commensal bacteria in mice were significantly reduced after the administration of ceftriaxone sodium, but fungi and yeasts increased. The proportions of T cell subgroups in ilELs changed, in which the proportion of TCR γδ(+)T cells significantly increased, and the activated CD3(+)T, CD8(+)T and TCR γδ(+)T cells increased. The concentrations of IL-2, IL-6 and IFN-γ were significantly raised in the intestine. Conclusion The dysbacteriosis results in the decrease of commensal bacteria, the increase of the fungus, the damage of microbial barrier, the more activated T cells in ilELs and the promotion of proinflammatory cytokine secretion in the gut. This is probably one of the reasons for inflammatory bowel disease caused by dysbacteriosis. PMID:27412931

  17. Vertebrate Intestinal Endoderm Development

    PubMed Central

    Spence, Jason R.; Lauf, Ryan; Shroyer, Noah F.

    2010-01-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. PMID:21246663

  18. Establishment of Intestinal Bacteriology

    PubMed Central

    MITSUOKA, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the intestinl microbiota in health and disease. Moreover, using germfree animals, it was proven that the intestinal microbiota has a role in carcinogenesis and aging in the host. Thus, a new interdisciplinary field, “intestinal bacteriology” was established. PMID:25032084

  19. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells.

    PubMed

    Lim, Jung Dae; Lee, Sung Ryul; Kim, Taeseong; Jang, Seon-A; Kang, Se Chan; Koo, Hyun Jung; Sohn, Eunsoo; Bak, Jong Phil; Namkoong, Seung; Kim, Hyoung Kyu; Song, In Sung; Kim, Nari; Sohn, Eun-Hwa; Han, Jin

    2015-02-01

    Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions.

  20. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress.

    PubMed

    You, Yanghee; Yoo, Soonam; Yoon, Ho-Geun; Park, Jeongjin; Lee, Yoo-Hyun; Kim, Sunoh; Oh, Kyung-Taek; Lee, Jeongmin; Cho, Hong-Yon; Jun, Woojin

    2010-06-01

    The protective effects of Taraxacum officinale (dandelion) root against alcoholic liver damage were investigated in HepG2/2E1 cells and ICR mice. When an increase in the production of reactive oxygen species was induced by 300 mM ethanol in vitro, cell viability was drastically decreased by 39%. However, in the presence of hot water extract (TOH) from T. officinale root, no hepatocytic damage was observed in the cells treated with ethanol, while ethanol-extract (TOE) did not show potent hepatoprotective activity. Mice, which received TOH (1 g/kg bw/day) with ethanol revealed complete prevention of alcohol-induced hepatotoxicity as evidenced by the significant reductions of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities compared to ethanol-alone administered mice. When compared to the ethanol-alone treated group, the mice receiving ethanol plus TOH exhibited significant increases in hepatic antioxidant activities, including catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione. Furthermore, the amelioration of malondialdehyde levels indicated TOH's protective effects against liver damage mediated by alcohol in vivo. These results suggest that the aqueous extract of T. officinale root has protective action against alcohol-induced toxicity in the liver by elevating antioxidative potentials and decreasing lipid peroxidation.

  1. Diagnosis and treatment of small intestinal bacterial overgrowth.

    PubMed

    Ponziani, Francesca Romana; Gerardi, Viviana; Gasbarrini, Antonio

    2016-01-01

    A huge number of bacteria are hosted in the gastrointestinal tract, following a gradient increasing towards the colon. Gastric acid secretion and intestinal clearance provide the qualitative and quantitative partitioning of intestinal bacteria; small intestinal bacteria overgrowth (SIBO) occurs when these barrier mechanisms fail. Diagnosis of SIBO is challenging due to the low specificity of symptoms, the frequent association with other diseases of the gastrointestinal tract and the absence of optimal objective diagnostic tests. The therapeutic approach to SIBO is oriented towards resolving predisposing conditions, and is supported by antibiotic treatment to restore the normal small intestinal microflora and by modifications of dietary habits for symptomatic relief. In the near future, metagenomics and metabolomics will help to overcome the uncertainties of SIBO diagnosis and the pitfalls of therapeutic management, allowing the design of a personalized strategy based on the direct insight into the small intestinal microbial community. PMID:26636484

  2. Intracellular transport of nanocarriers across the intestinal epithelium.

    PubMed

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei; Hu, Lei; Gan, Yong

    2016-05-01

    The intestinal epithelium is the main barrier restricting the oral delivery of low-permeability drugs. Over recent years, numerous nanocarriers have been designed to improve the efficiency of oral drug delivery. However, the intracellular processes determining the transport of nanocarriers across the intestinal epithelium remain elusive, and only limited enhancement of the oral bioavailability of drugs has been achieved. Here, we review the processes involved in nanocarrier trafficking across the intestinal epithelium, including apical endocytosis, intracellular transport, and basolateral exocytosis. Understanding the complex intracellular processes of nanocarrier trafficking is particularly essential for the rational design of oral drug delivery systems. PMID:27094490

  3. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    PubMed

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora.

  4. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  5. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability

    PubMed Central

    Du, Lijun; Kim, John J.; Shen, Jinhua

    2016-01-01

    The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn's disease (CD), ulcerative colitis (UC), celiac disease, and irritable bowel syndrome (IBS). Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK-) and myosin light chain kinase- (MLCK-) mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability. PMID:27746814

  6. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion.

    PubMed

    Tahara, Harunobu; Kusuhara, Hiroyuki; Fuse, Eiichi; Sugiyama, Yuichi

    2005-07-01

    Fexofenadine is a selective, nonsedating H(1)-receptor antagonist approved for symptoms of allergic conditions, which is mainly excreted into feces via biliary excretion. The purpose of this study is to investigate its pharmacokinetics in mice and rats to determine the role of P-glycoprotein (P-gp) in its biliary excretion. In mice, biliary excretion clearance (17 ml/min/kg) accounted for almost 60% of the total body clearance (30 ml/min/kg). Comparing the pharmacokinetics after intravenous and oral administration indicated that the bioavailability of fexofenadine was at most 2% in mice. Knockout of Mdr1a/1b P-gp did not affect the biliary excretion clearance with regard to both plasma and liver concentrations, whereas the absence of P-gp caused a 6-fold increase in the plasma concentration after oral administration. In addition, the steady-state brain-to-plasma concentration ratio of fexofenadine was approximately 3-fold higher in Mdr1a/1b P-gp knockout mice than in wild-type mice. Together, these results show that P-glycoprotein plays an important role in efflux transport in the brain and small intestine but only a limited role in biliary excretion in mice. In addition, there was no difference in the biliary excretion between normal and hereditarily multidrug resistance-associated protein 2 (Mrp2)-deficient mutant rats (Eisai hyperbilirubinemic rats) and between wild-type and breast cancer resistance protein (Bcrp) knockout mice. These results suggest that the biliary excretion of fexofenadine is mediated by unknown transporters distinct from P-gp, Mrp2, and Bcrp.

  7. Intestinal lymphangiectasia in children

    PubMed Central

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  8. Intestinal transplantation: a review.

    PubMed

    Desai, Chirag Sureshchandra; Khan, Khalid Mahmood; Girlanda, Raffaele; Fishbein, Thomas M

    2012-09-01

    Parenteral nutrition is a life-saving therapy for patients with intestinal failure. Intestinal transplantation is now recognized as a treatment for patients who develop complications of parenteral nutrition and in whom attempts at intestinal rehabilitation have failed. Patients with parenteral nutrition related liver disease will require a liver graft typically part of a multivisceral transplant. Isolated intestinal transplants are more commonly performed in adults while multivisceral transplants are most commonly performed in infants. Isolated intestinal transplants have the best short-term outcome, with over 80 % survival at 1 year. Patients requiring multivisceral transplants have a high rate of attrition with a 1 year survival less than 70 %. Prognostic factors for a poor outcome include patient hospitalization at the time of transplant and donor age greater than 40 years while systemic sepsis and acute rejection are the major determinant of early postoperative outcome. For patients surviving the first year the outcome of transplantation of the liver in addition to intestine affords some survival advantage though long-term outcome does not yet match other abdominal organs. Outcomes for intestinal retransplantation are poor as a result of immunology and patient debility. Overall intestinal transplantation continues to develop and is a clear indication with cost and quality of life advantages in patients with intestinal failure that do not remain stable on parenteral nutrition.

  9. New Ways of Thinking about (and Teaching about) Intestinal Epithelial Function

    ERIC Educational Resources Information Center

    Barrett, Kim E.

    2008-01-01

    This article summarizes a presentation made at the Teaching Refresher Course of the American Physiological Society, which was held at the Experimental Biology meeting in 2007. The intestinal epithelium has important ion transport and barrier functions that contribute pivotally to normal physiological functioning of the intestine and other body…

  10. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    PubMed

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect. PMID:26923511

  11. Dai Huang Fu Zi Tang could ameliorate intestinal injury in a rat model of hemorrhagic shock by regulating intestinal blood flow and intestinal expression of p-VASP and ZO-1

    PubMed Central

    2014-01-01

    Background Dai Huang Fu Zi Tang (DHFZT), an oriental herbal formula, has long been used clinically in treatment of intestinal obstruction, acute pancreatitis, cholecystalgia and chronic diarrhea for thousands of years. Recent studies have demonstrated that DHFZT can reduce intestinal pathological injury and the concentration of enterogenous endotoxin in an animal model. But the underlying mechanism has not been fully elucidated. Methods SD male rats in adult were used to model HS and treated with DHFZT. The serum concentration of endotoxin were analyzed by dynamic turbidimetric method. In addition, the blood flow of small intestine were measured using laser speckle technique. Phosphorylated vasodilator-stimulated phosphoprotein (p-VASP) and zonula occludens (ZO)-1 protein, intestinal fatty acid binding protein (IFABP) were measured by Western Blotting, RT-PCR, ELISA respectively. Results Present study showed that DHFZT markedly elevated the blood flow of small intestine, protected the intestinal barrier function by up-regulating the expression of ZO-1 protein and down-regulating expression of p-VASP, and notely decreased serum concentration of IFABP and endotoxin in HS. Conclusions These results reveal that DHFZT improves intestinal blood flow, protects the intestinal barrier function, and ameliorates intestinal endotoxaemia in rats with HS. PMID:24580804

  12. Interactions Between the Intestinal Microbiome and Liver Diseases

    PubMed Central

    Schnabl, Bernd; Brenner, David A.

    2014-01-01

    The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease. PMID:24440671

  13. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy.

    PubMed

    Moura, Frederico C; Monteiro, Mario L

    2010-01-01

    Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases. PMID:20195038

  14. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy

    PubMed Central

    Moura, Frederico C; Monteiro, Mário L

    2010-01-01

    Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases. PMID:20195038

  15. Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats.

    PubMed

    Hamilton, G F; Criss, K J; Klintsova, A Y

    2015-08-01

    Developmental alcohol exposure in humans can produce a wide range of deficits collectively referred to as fetal alcohol spectrum disorders (FASD). FASD-related impairments in executive functioning later in life suggest long-term damage to the prefrontal cortex (PFC). In rodent neonates, moderate to high levels of alcohol exposure decreased frontal lobe brain size and altered medial PFC pyramidal neuron dendritic morphology. Previous research in our lab demonstrated that neonatal alcohol exposure decreased basilar dendritic complexity but did not affect spine density in Layer II/III pyramidal neurons in 26- to 30-day-old rats. The current study adds to the literature by evaluating the effect of neonatal alcohol exposure on mPFC Layer II/III basilar dendritic morphology in adolescent male rats. Additionally, it examines the potential for voluntary exercise to mitigate alcohol-induced deficits on mPFC dendritic complexity. An animal model of binge drinking during the third trimester of pregnancy was used. Rats were intubated with alcohol (alcohol-exposed, AE; 5.25 g kg(-1) day(-1)) on postnatal days (PD) 4-9; two control groups were included (suckle control and sham-intubated). Rats were anesthetized and perfused with heparinized saline solution on PD 42, and brains were processed for Golgi-Cox staining. Developmental alcohol exposure decreased spine density and dendritic complexity of basilar dendrites of Layer II/III neurons in the medial PFC (mPFC) compared to dendrites of control animals. Voluntary exercise increased spine density and dendritic length in AE animals resulting in elimination of the differences between AE and SH rats. Thus, voluntary exercise during early adolescence selectively rescued alcohol-induced morphological deficits in the mPFC. PMID:25967699

  16. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Nawabi, Atta; Komatsu, Masaaki; Huang, Heqing; Ding, Wen-Xing

    2016-01-01

    Chronic alcohol exposure increased hepatic receptor-interacting protein kinase (RIP) 3 expression and necroptosis in the liver but its mechanisms are unclear. In the present study, we demonstrated that chronic alcohol feeding plus binge (Gao-binge) increased RIP3 but not RIP1 protein levels in mouse livers. RIP3 knockout mice had decreased serum alanine amino transferase activity and hepatic steatosis but had no effect on hepatic neutrophil infiltration compared with wild type mice after Gao-binge alcohol treatment. The hepatic mRNA levels of RIP3 did not change between Gao-binge and control mice, suggesting that alcohol-induced hepatic RIP3 proteins are regulated at the posttranslational level. We found that Gao-binge treatment decreased the levels of proteasome subunit alpha type-2 (PSMA2) and proteasome 26S subunit, ATPase 1 (PSMC1) and impaired hepatic proteasome function. Pharmacological or genetic inhibition of proteasome resulted in the accumulation of RIP3 in mouse livers. More importantly, human alcoholics had decreased expression of PSMA2 and PSMC1 but increased protein levels of RIP3 compared with healthy human livers. Moreover, pharmacological inhibition of RIP1 decreased Gao-binge-induced hepatic inflammation, neutrophil infiltration and NF-κB subunit (p65) nuclear translocation but failed to protect against steatosis and liver injury induced by Gao-binge alcohol. In conclusion, results from this study suggest that impaired hepatic proteasome function by alcohol exposure may contribute to hepatic accumulation of RIP3 resulting in necroptosis and steatosis while RIP1 kinase activity is important for alcohol-induced inflammation. PMID:26769846

  17. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation.

    PubMed

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  18. Transient Receptor Potential Vanilloid 1 Gene Deficiency Ameliorates Hepatic Injury in a Mouse Model of Chronic Binge Alcohol-Induced Alcoholic Liver Disease

    PubMed Central

    Liu, Huilin; Beier, Juliane I.; Arteel, Gavin E.; Ramsden, Christopher E.; Feldstein, Ariel E.; McClain, Craig J.; Kirpich, Irina A.

    2016-01-01

    Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro resulted in activation of TRPV1 signal transduction with increased intracellular Ca2+ levels. Genetic depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1 deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and chemokine expression, including tumor necrosis factor-α, IL-6, macrophage inflammatory protein-2, and monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions appear to play a significant role in hepatic inflammation/injury, further supporting an important role for dietary lipids in ALD. PMID:25447051

  19. The Ayurvedic drug Ksheerabala (101) ameliorates alcohol-induced neurotoxicity by down-regulating the expression of transcription factor (NFkB) in rat brain

    PubMed Central

    Rejitha, S.; Prathibha, P.; Madambath, Indira

    2015-01-01

    Introduction: Most of the pharmaceutical effects of alcohol are due to its accumulation in the brain. Ksheerabala (101) an Ayurvedic formulation mainly used against central nervous system disorders. Aim: To determine the antioxidant and neuroprotective effect of Ksheerabala (101) on alcohol-induced oxidative stress in rats. Materials and Methods: Male Albino rats of Sprague-Dawley strain were grouped into four; control, alcohol (4 g/kg), Ksheerabala (15 μL/1 ml milk/100 g) and Ksheerabala (15 μL/1 ml milk/100 g) + alcohol (4 g/kg). After the experimental period (90 days), the animals were sacrificed and the effect of Ksheerabala (101) was studied on oxidative stress, inflammatory markers, and induction of transcription factor in brain. Results were statistically analyzed by one-way ANOVA. Results: The activities of antioxidant enzymes and reduced glutathione which were decreased in alcohol-treated rats, increased significantly in co-administered groups. The lipid peroxidation products and protein carbonyls which were increased significantly in alcohol-treated rats decreased significantly in co-administered groups. The expression of gamma-glutamyl cysteine synthase decreased significantly in alcohol-treated rats and increased significantly in co-administered groups. The transcription factor nuclear factor-κB (NFκB) which was up-regulated in alcohol-treated rats was down-regulated in co-administered rats. The histopathology reinforced these results. Conclusion: Ksheerabala (101) attenuates alcohol-induced oxidative stress and down-regulates the expression of NFκB in rat brain. PMID:27313421

  20. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    PubMed Central

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  1. Gastrointestinal gene delivery by cyclodextrins--in vitro quantification of extracellular barriers.

    PubMed

    O'Neill, Martin J; O'Mahony, Aoife M; Byrne, Colin; Darcy, Raphael; O'Driscoll, Caitriona M

    2013-11-18

    Local gene delivery represents a promising therapeutic approach for diseases of the intestine. However, the gastrointestinal tract poses significant challenges to successful gene delivery. Cyclodextrins (CDs) have been extensively investigated as non-viral vectors. Here, we assessed the suitability of an amphiphilic cationic CD for intestinal gene transfer, with particular focus on extracellular barriers. Stability and transfection efficiency of CD·DNA complexes were assessed post incubation in simulated gastric and intestinal fluids, bile salts and mucin, or with intestinal enzymes to represent extracellular barriers to intestinal gene delivery. Stability was determined by gel electrophoresis and transfection was measured by luciferase expression in intestinal epithelial cells (Caco-2). Transfection efficiency of CD·DNA complexes was enhanced after incubation in bile salts but was reduced after incubation in gastric and intestinal fluids and mucin. CD·DNA complexes were stable after incubation with pancreatic enzymes and with a model lower intestinal enzyme. Furthermore, the CD protected pDNA from degradation by DNase. In summary, physiologically relevant in vitro models were established and used to quantify the barriers posed by the intestinal extracellular environment to gene delivery. This systematic assessment identified the advantages and limitations of the CD vector and facilitated the proposal of formulation strategies to overcome these barriers.

  2. Gastrointestinal gene delivery by cyclodextrins--in vitro quantification of extracellular barriers.

    PubMed

    O'Neill, Martin J; O'Mahony, Aoife M; Byrne, Colin; Darcy, Raphael; O'Driscoll, Caitriona M

    2013-11-18

    Local gene delivery represents a promising therapeutic approach for diseases of the intestine. However, the gastrointestinal tract poses significant challenges to successful gene delivery. Cyclodextrins (CDs) have been extensively investigated as non-viral vectors. Here, we assessed the suitability of an amphiphilic cationic CD for intestinal gene transfer, with particular focus on extracellular barriers. Stability and transfection efficiency of CD·DNA complexes were assessed post incubation in simulated gastric and intestinal fluids, bile salts and mucin, or with intestinal enzymes to represent extracellular barriers to intestinal gene delivery. Stability was determined by gel electrophoresis and transfection was measured by luciferase expression in intestinal epithelial cells (Caco-2). Transfection efficiency of CD·DNA complexes was enhanced after incubation in bile salts but was reduced after incubation in gastric and intestinal fluids and mucin. CD·DNA complexes were stable after incubation with pancreatic enzymes and with a model lower intestinal enzyme. Furthermore, the CD protected pDNA from degradation by DNase. In summary, physiologically relevant in vitro models were established and used to quantify the barriers posed by the intestinal extracellular environment to gene delivery. This systematic assessment identified the advantages and limitations of the CD vector and facilitated the proposal of formulation strategies to overcome these barriers. PMID:24016741

  3. Intestinal adaptation after massive intestinal resection

    PubMed Central

    Weale, A; Edwards, A; Bailey, M; Lear, P

    2005-01-01

    Patients with short bowel syndrome require long term parenteral nutrition support. However, after massive intestinal resection the intestine undergoes adaptation and nutritional autonomy may be obtained. Given that the complications of parenteral nutrition may be life threatening or result in treatment failure and the need for intestinal transplantation, a more attractive option is to wean patients off nutrition support by optimising the adaptive process. The article examines the evidence that after extensive small bowel resection adaptation occurs in humans and focuses on the factors that influence adaptation and the strategies that have been used to optimise this process. The review is based on an English language Medline search with secondary references obtained from key articles. There is evidence that adaptation occurs in humans. Adaptation is a complex process that results in response to nutrient and non-nutrient stimuli. Successful and reproducible strategies to improve adaptation remain elusive despite an abundance of experimental data. Nevertheless given the low patient survival and quality of life associated with other treatments for irreversible intestinal failure it is imperative that clinical research continues into the optimisation of the adaptation. PMID:15749794

  4. Mucin Dynamics in Intestinal Bacterial Infection

    PubMed Central

    Lindén, Sara K.; Florin, Timothy H. J.; McGuckin, Michael A.

    2008-01-01

    Background Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. Methodology/Principal Findings Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. Conclusion Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection. PMID:19088856

  5. Intestinal colonization resistance

    PubMed Central

    Lawley, Trevor D; Walker, Alan W

    2013-01-01

    Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invading microbes such as pathogens. This phenomenon is called ‘colonization resistance’ and is associated with a stable and diverse microbiota in tandem with a controlled lack of inflammation, and involves specific interactions between the mucosal immune system and the microbiota. Here we overview the microbial ecology of the healthy mammalian intestinal tract and highlight the microbe–microbe and microbe–host interactions that promote colonization resistance. Emerging themes highlight immunological (T helper type 17/regulatory T-cell balance), microbiota (diverse and abundant) and metabolic (short-chain fatty acid) signatures of intestinal health and colonization resistance. Intestinal pathogens use specific virulence factors or exploit antibiotic use to subvert colonization resistance for their own benefit by triggering inflammation to disrupt the harmony of the intestinal ecosystem. A holistic view that incorporates immunological and microbiological facets of the intestinal ecosystem should facilitate the development of immunomodulatory and microbe-modulatory therapies that promote intestinal homeostasis and colonization resistance. PMID:23240815

  6. Pharmaceutical Nanoparticles and the Mucin Biopolymer Barrier

    PubMed Central

    Aljayyoussi, Ghaith; Abdulkarim, Muthanna; Griffiths, Peter; Gumbleton, Mark

    2012-01-01

    S U M M A R Y Mucus in the gastrointestinal tract remains a tenacious barrier that restricts the passage of many orally administered compounds into the GIT’s epithelial layer and consequently into the systemic circulation. This results in significant decreases in the oral bioavailability of many therapeutic molecules. Nanoparticles offer an avenue to surpass this mucus barrier. They can be used as drug carriers to improve the bioavailability of many compounds that are restricted by mucus. Nanoparticles achieve penetration of the mucus barrier through a multitude of properties that they possess as their size, charge density, and surface functional groups which can all be tailored to achieve optimal penetration of the thick and fibrous mucus barrier. This article offers a quick review about the use of nanoparticles as drug carriers to increase mucus penetration in the gastro intestinal tract. PMID:23678457

  7. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  8. The Role of Intestinal Microbiota in Graft versus Host Disease.

    PubMed

    Qayed, Muna; Horan, John T

    2015-01-01

    Graft versus host disease (GVHD) remains a major life threatening complication and one of the primary barriers to successful allogeneic hematopoietic stem cell transplantation, limiting its application in nonmalignant conditions. Immunosuppression is used for prevention and treatment of GVHD, dampening the graft versus leukemia effect. Intestinal bacteria play a major role in inflammation and augmenting the GVHD cytokine response. Early studies in murine models showed that manipulating the presence of intestinal flora or counteracting its byproducts could limit GVHD. Thus multiple clinical trials targeting gut decontamination were conducted, with the aims of modulating inflammation and protecting against GVHD, with mixed results. More recent work has improved our understanding of the role of intestinal microbiota in the maintenance of innate immunity, mucosal integrity and limiting inflammation. This review offers a summary of this data, with a discussion of potential therapeutic interventions manipulating the intestinal microbiota.

  9. Barrier Formation

    PubMed Central

    Lyaruu, D.M.; Medina, J.F.; Sarvide, S.; Bervoets, T.J.M.; Everts, V.; DenBesten, P.; Smith, C.E.; Bronckers, A.L.J.J.

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl− for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b−/− mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b−/− mice and was strongly correlated with Cl−. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl− levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  10. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity.

    PubMed

    Leung, Jacqueline M; Loke, P'ng

    2013-03-01

    The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis.

  11. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?

    PubMed

    Brahe, L K; Astrup, A; Larsen, L H

    2013-12-01

    It is increasingly recognized that there is a connection between diet, intestinal microbiota, intestinal barrier function and the low-grade inflammation that characterizes the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment relevant. In this context, the ability of some Gram-positive anaerobic bacteria to produce the short-chain fatty acid butyrate is interesting. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans, and recent studies suggest that butyrate might have an anti-inflammatory potential that can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Here, we review and discuss the potential of butyrate as an anti-inflammatory mediator in metabolic diseases, and the potential for dietary interventions increasing the intestinal availability of butyrate.

  12. Genetic aspects of intestinal permeability in inflammatory bowel disease.

    PubMed

    Takeuchi, Ken; Maiden, Laurence; Bjarnason, Ingvar

    2004-01-01

    There is a long-standing belief that disruption of the intestinal barrier function may lead to systemic and local intestinal disease. The role of increased intestinal permeability in Crohn's disease is reviewed here. What is not in doubt is that intestinal permeability in patients with Crohn's disease is increased proportional to disease activity; it can be used to predict clinical relapse of disease and prognosis; and a small proportion of first-degree relatives have increased intestinal permeability. This last finding has been subject to much speculation. In particular it has been suggested that it represents a genetically determined abnormality. If so it might play an important pathogenic process in the disease. However this permeability change in relatives does not conform to a classical inheritance pattern and in some studies it is found in the patients' spouses. This suggests an environmental cause for the changes. However proponents of an environmental factor have been singularly inactive in attempting to identify this agent(s). In view of recent research it seems likely that the increased intestinal permeability in relatives of Crohn's patients may be secondary to sub-clinical intestinal inflammation. This inflammation conforms to an inherited additive trait. The genetic basis for this inflammation is being studied.

  13. Genetic aspects of intestinal permeability in inflammatory bowel disease.

    PubMed

    Takeuchi, Ken; Maiden, Laurence; Bjarnason, Ingvar

    2004-01-01

    There is a long-standing belief that disruption of the intestinal barrier function may lead to systemic and local intestinal disease. The role of increased intestinal permeability in Crohn's disease is reviewed here. What is not in doubt is that intestinal permeability in patients with Crohn's disease is increased proportional to disease activity; it can be used to predict clinical relapse of disease and prognosis; and a small proportion of first-degree relatives have increased intestinal permeability. This last finding has been subject to much speculation. In particular it has been suggested that it represents a genetically determined abnormality. If so it might play an important pathogenic process in the disease. However this permeability change in relatives does not conform to a classical inheritance pattern and in some studies it is found in the patients' spouses. This suggests an environmental cause for the changes. However proponents of an environmental factor have been singularly inactive in attempting to identify this agent(s). In view of recent research it seems likely that the increased intestinal permeability in relatives of Crohn's patients may be secondary to sub-clinical intestinal inflammation. This inflammation conforms to an inherited additive trait. The genetic basis for this inflammation is being studied. PMID:15669640

  14. Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration

    PubMed Central

    Dudakov, Jarrod A.; Jenq, Robert R.; Velardi, Enrico; Young, Lauren F.; Smith, Odette M.; Lawrence, Gillian; Ivanov, Juliet A.; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L.; O'Rourke, Kevin P.; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas; Nieuwenhuis, Edward E.; Shroyer, Noah F.; Liu, Chen; Kolesnick, Richard

    2015-01-01

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch, and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance1,2. However, little is known about the regulation of the ISC compartment after tissue damage. Utilizing ex vivo organoid cultures, we provide evidence that innate lymphoid cells (ILCs), potent producers of Interleukin-22 (IL-22) after intestinal injury3,4, increased the growth of murine small intestine (SI) organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both murine and human intestinal organoids, increasing proliferation, and promoting ISC expansion. IL-22 induced Stat3 phosphorylation in Lgr5+ ISCs, and Stat3 was critical for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after murine allogeneic bone marrow transplantation (BMT) enhanced recovery of ISCs, increased epithelial regeneration, and reduced intestinal pathology and mortality from graft vs. host disease (GVHD). Atoh1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independent of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  15. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease

    PubMed Central

    Hartmann, Phillipp; Chen, Wei-Chung; Schnabl, Bernd

    2012-01-01

    Alcoholic liver disease (ALD) encompasses hepatic steatosis, which may progress to alcoholic hepatitis, fibrosis, and cirrhosis. It remains a leading cause of morbidity and mortality in the US and worldwide. The severity of liver disease correlates with plasma levels of bacterial products in patients, and experimental ALD depends on the level of gut derived bacterial products in rodents. Since intestinal decontamination and deficiency of bacterial product receptors or their downstream signaling molecules protect from alcohol-induced liver disease, bacterial translocation (BT), qualitative, and quantitative changes of the enteric microbiome are considered as being of fundamental importance in the pathogenesis of ALD. Recent enhancements in diagnostic technologies provide a better insight into these shifts. This review highlights vital events in ALD such as BT, the importance of Toll-like receptor (TLR) signaling, intestinal bacterial overgrowth (IBO), and changes in the intestinal microbiome. Furthermore, a treatment trial section of patients reviews possible future options of therapy for ALD modifying the enteric microbiome. PMID:23087650

  16. Intestinal pseudo-obstruction

    MedlinePlus

    ... Taking drugs that slow intestinal movements. These include narcotic (pain) medicines and drugs used when you are ... that may have caused the problem (such as narcotic drugs) may help. In severe cases, surgery may ...

  17. Small intestine (image)

    MedlinePlus

    The small intestine is the portion of the digestive system most responsible for absorption of nutrients from food into the bloodstream. The pyloric sphincter governs the passage of partly digested food ...

  18. Iron uptake and transport across physiological barriers.

    PubMed

    Duck, Kari A; Connor, James R

    2016-08-01

    Iron is an essential element for human development. It is a major requirement for cellular processes such as oxygen transport, energy metabolism, neurotransmitter synthesis, and myelin synthesis. Despite its crucial role in these processes, iron in the ferric form can also produce toxic reactive oxygen species. The duality of iron's function highlights the importance of maintaining a strict balance of iron levels in the body. As a result, organisms have developed elegant mechanisms of iron uptake, transport, and storage. This review will focus on the mechanisms that have evolved at physiological barriers, such as the intestine, the placenta, and the blood-brain barrier (BBB), where iron must be transported. Much has been written about the processes for iron transport across the intestine and the placenta, but less is known about iron transport mechanisms at the BBB. In this review, we compare the established pathways at the intestine and the placenta as well as describe what is currently known about iron transport at the BBB and how brain iron uptake correlates with processes at these other physiological barriers. PMID:27457588

  19. Damage of vascular endothelial barrier induced by explosive blast and its clinical significance.

    PubMed

    Wang, Jian-Min; Chen, Jing

    2016-06-01

    In recent years, injuries induced by explosive blast have got more and more attention owing to weapon development and frequent terrorist activities. Tear, bleeding and edema of tissues and organs are the main manifestations of blast shock wave damage. Vascular endothelial barrier is the main defense of tissues and organs' integrity. This article aims to discuss possible mechanisms of endothelial barrier damage induced by explosive blast and main manifestations of blood brain barrier, bloodeair barrier, and intestinal vascular barrier impairments. In addition, the main regulatory factors of vascular permeability are also summarized so as to provide theoretical basis for prevention and cure of vascular endothelial barrier damage resulting from explosive blast. PMID:27321288

  20. Damage of vascular endothelial barrier induced by explosive blast and its clinical significance.

    PubMed

    Wang, Jian-Min; Chen, Jing

    2016-06-01

    In recent years, injuries induced by explosive blast have got more and more attention owing to weapon development and frequent terrorist activities. Tear, bleeding and edema of tissues and organs are the main manifestations of blast shock wave damage. Vascular endothelial barrier is the main defense of tissues and organs' integrity. This article aims to discuss possible mechanisms of endothelial barrier damage induced by explosive blast and main manifestations of blood brain barrier, bloodeair barrier, and intestinal vascular barrier impairments. In addition, the main regulatory factors of vascular permeability are also summarized so as to provide theoretical basis for prevention and cure of vascular endothelial barrier damage resulting from explosive blast.

  1. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  2. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Hu, David

    2015-11-01

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequenc