Science.gov

Sample records for alcohols including methanol

  1. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  2. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  3. Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Incidence of methanol contamination of traditionally fermented beverages is increasing globally resulting in the death of several persons. The source of methanol contamination has not been clearly established in most countries. While there were speculations that unscrupulous vendors might have deliberately spiked the beverages with methanol, it is more likely that the methanol might have been produced by contaminating microbes during traditional ethanol fermentation, which is often inoculated spontaneously by mixed microbes, with a potential to produce mixed alcohols. Methanol production in traditionally fermented beverages can be linked to the activities of pectinase producing yeast, fungi and bacteria. This study assessed some traditional fermented beverages and found that some beverages are prone to methanol contamination including cachaca, cholai, agave, arak, plum and grape wines. Possible microbial role in the production of methanol and other volatile congeners in these fermented beverages were discussed. The study concluded by suggesting that contaminated alcoholic beverages be converted for fuel use rather than out rightly banning the age-long traditional alcohol fermentation.

  4. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic). 721.10485 Section 721.10485 Protection of... alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic). (a) Chemical substance...

  5. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic). 721.10485 Section 721.10485 Protection of... alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic). (a) Chemical substance...

  6. Surrogate alcohol containing methanol, social deprivation and public health in Novosibirsk, Russia.

    PubMed

    Neufeld, Maria; Lachenmeier, Dirk; Hausler, Thomas; Rehm, Jürgen

    2016-11-01

    Surrogate alcohol, i.e. alcohol not intended or not officially intended for human consumption, continues to play an important role in alcohol consumption in Russia, especially for people with alcohol dependence. Among the different types of surrogate alcohol, there are windshield washer antifreeze liquids; these products are the cheapest kinds of non-beverage alcohol available and thus likely to be used by the most deprived and marginalised groups such as homeless people with alcohol dependence. Although it is well known, that non-beverage alcohol is used for consumption by various groups in Russia, and although there are laws to prohibit the use of methanol as part of windshield washer antifreeze liquids for the very reason that such products could be used as surrogate alcohol, we detected products in retail sale which were a mix of water and methanol only. Methanol poses serious health threats including blindness and death, and there had been repeated methanol deaths from surrogate alcohol in Russia over the last years. If law-enforcement does not change for surrogate products, we can expect more methanol-resulting deaths in the most deprived and marginalized groups of people with alcohol dependence in Russia. In addition, ingredients with questionable safety profiles such as formic acid should also be prohibited in non-beverage alcohol products that are likely to be consumed as surrogate alcohol.

  7. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  8. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    PubMed Central

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  9. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1.

  10. The potential of CO2 laser photoacoustic spectrometry for detection of methanol in alcoholic beverage

    NASA Astrophysics Data System (ADS)

    Lin, J.-W.; Shaw, S.-Y.

    2009-03-01

    The first use of CO2 laser photoacoustic measurements for detecting the methanol contents in alcohol-like solutions is presented. With an intracavity cell configuration, the minimum detectable concentration was ˜200 ppm for methanol and the linear range of the calibration curve for methanol was from 200 to 70000 ppm. For demonstrating the reliability of analysis in alcoholic beverages, a series of different concentrations of two-component samples was prepared and measured by the same procedures. The results showed the feasibility on determining methanol and ethanol contents accurately within a specific tolerance, limited mainly by background signal and laser stability. This potential method with no pre-treatment of samples takes only ˜10 min to finish one single measurement. It suggests that the PA detection is suitable for routine diagnosis of adulterated wines in commercial products.

  11. Methanol

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 11 / 001Fa www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHANOL ( NONCANCER ) ( CAS No . 67 - 56 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2013 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document

  12. Crown ether alcohols. 1. Crystal and molecular structure of the complex between sym-hydroxydibenzo-14-crown-4- and water molecules ((C sub 18 H sub 20 O sub 5 )ter dot 1. 25(H sub 2 O)ter dot 0. 125(CH sub 3 OH)) including interesting water-methanol channels

    SciTech Connect

    Olsher, U.; Frolow, F.; Bartsch, R.A.; Pugia, M.J.; Shoham, G. Texas Tech Univ., Lubbock Hebrew Univ. of Jerusalem )

    1989-12-20

    The synthesis and crystal structure of the title compound are described. Single-crystal x-ray structure analysis indicates 8 formula units in the unit cell of parameters a = 16.024 (1) {angstrom} and c = 13.076 (1) {angstrom}. The space group is I{bar 4}. Direct methods yielded the structure, which was refined by least-squares techniques to a final R factor of 0.038 for 1533 independent observations. Unusual water-methanol channels are found in this structure. The crystal packing of the complex includes hydrophilic water-methanol channels which are surrounded by hydrophobic cylinders consisting mainly of benzo rings and methylene groups. The crystal structure provides a model for the encapsulation of water molecules by hydrophobic regions with potential application for the formation of hydrophilic pores in biological bilayers.

  13. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.

  14. Performance Evaluation of Alcohol-Gasoline Blends in 1980 Model Automobiles. Phase II. Methanol-Gasoline Blends.

    DTIC Science & Technology

    1984-01-01

    renovation, re-inspection, and acceptance by CRC. These cars comprised three models by three automobile makers and two engine-emissions control groups for...EVALUATION OF ALCOHOL.GASOLINE BLENDS IN 1980 MODEL AUTOMOBILES PHASE II METHANOL-GASOLINE BLENDS January 1984 APPROVrD FOR pUBLIC RELEASE" DISTRIBUTION...Members: PERFORMANCE EVALUATION OF ALCOHOL-GASOLINE BLENDS IN 1980 MODEL AUTOMOBILES : PHASE II - METHANOL-GASOLINE BLENDS (CRC Report No. 536) -I

  15. Novel method for identification and quantification of methanol and ethanol in alcoholic beverages by gas chromatography-Fourier transform infrared spectroscopy and horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba Prasad; Lahiri, Sujit Chandra

    2009-01-01

    Numerous methods are being used to identify and quantify methanol and ethanol in alcoholic beverages, including country liquors. Some of the known methods are density and refractive index measurements, and spectrophotometric measurements using Schiff's reagent or chromatropic acid. Other advanced techniques involve head space gas chromatography (GC), GC-flame ionization detection, high-performance liquid chromatography, enzymatic reactions, and biosensors. However, identification and quantification of methanol and ethanol in beverages can be accurately done using GC-Fourier transform infrared spectroscopy (FTIR) and horizontal attenuated total reflectance (HATR)-FTIR. Identification of alcohols is possible from library matching of the IR spectra obtained from GC-FTIR. In water, methanol and ethanol show a very strong peak for C-O, stretching at 1015.3 and 1044.2 cm(-1), respectively. The strong absorption of vibrational stretching frequency of C-O present in alcohols was used for quantification purposes. The absorptions of C-O group frequency of alcohols in water mixtures were measured using HATR-FTIR with a zinc-selenide crystal. Samples were placed directly on the HATR crystal, with alcohol concentrations ranging from 0.2 to 50.0% (v/v). The plot of absorptions against concentrations of methanol and ethanol obeyed Beer's law (r2 = 0.9998 and 0.9987, respectively), from which alcohol in the mixtures was quantified. Propan-2-ol and n-butanol showed no interference. The method is validated from absorption measurements of known mixtures of standard ethanol in water. This is a simple, specific, rapid, accurate, and nondestructive method of identification and quantification of methanol and ethanol in mixtures. It can be used to ascertain methanol contamination in alcoholic beverages that can lead to death or methanol poisoning by alcohol consumption.

  16. Rotational spectral studies of O(1D) insertion reactions with methane and ethylene: Methanol and vinyl alcohol in a supersonic expansion

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Wehres, Nadine; DePrince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob C.; Widicus Weaver, Susanna L.

    2015-06-01

    We report a new apparatus for millimeter/submillimeter spectroscopic studies of O(1D) insertion reactions to produce molecules of astrophysical interest. This study focuses on the insertion of O(1D) into methane to form methanol, and the insertion of O(1D) into ethylene to form vinyl alcohol (CH2CHOH). The O(1D) was produced via laser photodissociation of O3 in a fused silica tube and mixed with a hydrocarbon before a supersonic expansion. Direct absorption millimeter/submillimeter spectroscopy was used to monitor the products. The methanol study was used as an experimental benchmark, while the vinyl alcohol study extended rotational spectroscopic measurements to higher frequencies. Observed products from both insertion reactions included, but were not limited to, H2CO, HO2, and CH3O. Methanol and vinyl alcohol were only produced in detectable quantities when the fused silica tube was included, indicating that collisions before the expansion are required for production and stabilization of the O(1D) insertion products.

  17. The 6-GHz methanol multibeam maser catalogue - IV. Galactic longitudes 186°-330° including the Orion-Monoceros region

    NASA Astrophysics Data System (ADS)

    Green, J. A.; Caswell, J. L.; Fuller, G. A.; Avison, A.; Breen, S. L.; Ellingsen, S. P.; Gray, M. D.; Pestalozzi, M.; Quinn, L.; Thompson, M. A.; Voronkov, M. A.

    2012-03-01

    We present the fourth portion of a Galactic plane survey of methanol masers at 6668 MHz, spanning the longitude range 186°-330°. We report 207 maser detections, 89 new to the survey. This completes the southern sky part of the methanol multibeam survey and includes a large proportion of new sources, 43 per cent. We also include results from blind observations of the Orion-Monoceros star-forming region, formally outside the latitude range of the methanol multibeam survey; only the four previously known methanol emitting sites were detected, of which we present new positions and spectra for masers at Orion A (south) and Orion B, obtained with the Multi-Element Radio Linked Interferometer Network (MERLIN) array.

  18. Characterization a low pressure of plasma of methanol (CH4O) alcohol

    NASA Astrophysics Data System (ADS)

    Villa, M.; Torres, C.; Reyes, P. G.; Osorio, D.; Castillo, F.; Martínez, H.

    2014-05-01

    The aim of this work is to explore the emission spectroscopy of Methanol alcohol plasma in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region: C7H7 (451.06nm), C6H5 (483.02nm), CHO (519.56nm), H2 (560.46nm), C (607.02nm), H2 (661.46nm); cathode region: O2 (391.04nm), CHOCHO (428.00nm), H2 (656.52nm); to 20 and 30 cm region: O2+ (297.00nm), CO2+ (315.52nm), O+ (357.48nm), C+ (388.00nm).

  19. Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes

    NASA Astrophysics Data System (ADS)

    Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E.

    1999-08-01

    The explosion or burning of methanol, ethanol, n-propanol, and isopropanol in large small-necked bottles when ignited with a match has been studied with respect to the nature of the alcohol, temperature, concentration dilutions with water, oxygen concentration, plastic versus glass bottles, and salts added for color. The various effects are explained in terms of vapor pressures. Safety guidelines are emphasized.

  20. The effect of cobalt concentration, methanol, and ethanol on the alcohol synthesis over a CuZnCr catalyst

    SciTech Connect

    Calafat, A.; Laine, J. )

    1994-05-01

    Doping CuZnCr (38/38/24) with Co (0-5 mol%), and adding methanol or ethanol to a CO + H[sub 2] reactant mixture led to considerable modifications in catalytic activity and selectivity. Modification of the reducibility of the catalyst and copper aggregation were attributed to the presence of Co. The introduction of methanol inhibited production of other oxygenated compounds. On the contrary, the introduction of ethanol enhanced it. Results obtained with ethanol in the reactant flow for both Co-modified and unmodified catalysts suggest that production of methanol and ethanol are related and that the active sites for methanol synthesis are the same as those for higher alcohol synthesis under low-pressure reaction conditions. 27 refs., 7 figs., 2 tabs.

  1. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)

    NASA Astrophysics Data System (ADS)

    Bambagioni, Valentina; Bianchini, Claudio; Marchionni, Andrea; Filippi, Jonathan; Vizza, Francesco; Teddy, Jacques; Serp, Philippe; Zhiani, Mohammad

    Palladium and platinum-ruthenium nanoparticles supported on multi-walled carbon nanotubes (MWCNT) are prepared by the impregnation-reduction procedure. The materials obtained, Pd/ MWCNT and Pt-Ru/ MWCNT, are characterized by TEM, ICP-AES and XRPD. Electrodes coated with Pd/ MWCNT are scrutinized for the oxidation of methanol, ethanol or glycerol in 2 M KOH solution in half cells. The catalyst is very active for the oxidation of all alcohols, with glycerol providing the best performance in terms of specific current density and ethanol showing the lowest onset potential. Membrane-electrode assemblies have been fabricated using Pd/ MWCNT anodes, commercial cathodes and anion-exchange membrane and evaluated in both single passive and active direct alcohol fuel cells fed with aqueous solutions of 10 wt.% methanol, 10 wt.% ethanol or 5 wt.% glycerol. Pd/ MWCNT exhibits unrivalled activity as anode electrocatalyst for alcohol oxidation. The analysis of the anode exhausts shows that ethanol is selectively oxidized to acetic acid, detected as acetate ion in the alkaline media of the reaction, while methanol yields carbonate and formate. A much wider product distribution, including glycolate, glycerate, tartronate, oxalate, formate and carbonate, is obtained from the oxidation of glycerol. The results obtained with Pt-Ru/ MWCNT anodes in acid media are largely inferior to those provided by Pd/ MWCNT electrodes in alkaline media.

  2. Health risks of including alcohol and tobacco in PICTA free trade.

    PubMed

    Hill, Linda

    2004-03-01

    In April 2005 Pacific Forum leaders will decide whether to include alcohol and tobacco in the Pacific Island Countries Trade Agreement (PICTA). This article presents arguments for keeping alcohol out of regional free trade agreements. Inclusion will allow regional rationalisation of production, increased alcohol availability, competition and marketing, and lower prices. These trade goals are inappropriate for alcohol and tobacco. Pacific public health organisations are concerned that official advice has focused on fiscal impacts, not health and social impacts. The World Health Organization has identified alcohol as the leading factor in injury and disease for low-mortality developing countries. Effective policies to reduce alcohol related harm include restrictions on availability, as well as excise taxes affecting price. Under trade agreements elsewhere, national alcohol policies have been challenged as 'non-tariff barriers to trade'. Hazardous drinking is of increasingly concern in the Pacific and decisions about alcohol should not reflect commercial interests.

  3. Effect of additions of C/sub 2/-C/sub 4/ alcohols on the catalytic activity of silver in the oxidation of methanol

    SciTech Connect

    Kurina, L.N.; Zeile, L.E.; Filicheva, O.D.; Roznina, M.I.

    1988-02-20

    The authors give the results of a study of the partial oxidation of methanol on a pumice-silver catalyst in the presence of ethyl, isopropyl, and isobutyl alcohol impurities that are contained in the methanol feedstock. The choice of alcohols as the materials of the investigation is related to the fact that in the rectification of the methanol feedstock the recovered methanol-fusel oil-water fraction, containing up to 33% water, 5% ethanol, and up to 13% higher alcohols, is burned, i.e., is irretrievably lost for industry, while this valuable chemical raw material can be used for formaldehyde synthesis. The gaseous reaction products were analyzed for CO, CO/sub 2/, H/sub 2/, and O/sub 2/ contents; the amount of the obtained formaldehyde was determined by the sulfite method, the acidity of the formaldehyde solution was determined titrimetrically, and the content of the unreacted methanol was determined chromatographically. The results of the analysis were used to calculate the yields of formaldehyde and gases and the selectivity as the ratio of the amount of methanol consumed for formaldehyde formation to all the reacted methanol.

  4. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  5. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  6. Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect

    Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

    1996-08-01

    This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  7. Non-additive Empirical Force Fields for Short-Chain Linear Alcohols: Methanol to Butanol. Hydration Free Energetics and Kirkwood-Buff Analysis Using Charge Equilibration Models

    PubMed Central

    Zhong, Yang; Patel, Sandeep

    2010-01-01

    Building upon the nonadditive electrostatic force field for alcohols based on the CHARMM charge equilibration (CHEQ) formalism, we introduce atom-pair specific solute-solvent Lennard-Jones (LJ) parameters for alcohol-water interaction force fields targeting improved agreement with experimental hydration free energies of a series of small molecule linear alcohols as well as ab initio water-alcohol geometries and energetics. We consider short-chain, linear alcohols from methanol to butanol as they are canonical small-molecule organic model compounds to represent the hydroxyl chemical functionality for parameterizing biomolecular force fields for proteins. We discuss molecular dynamics simulations of dilute aqueous solutions of methanol and ethanol in TIP4P-FQ water, with particular discussion of solution densities, structure defined in radial distribution functions, electrostatic properties (dipole moment distributions), hydrogen bonding patterns of water, as well as a Kirkwood-Buff (KB) integral analysis. Calculation of the latter provides an assessment of how well classical force fields parameterized to at least semi-quantitatively match experimental hydration free energies capture the microscopic structures of dilute alcohol solutions; the latter translate into macroscopic thermodynamic properties through the application of KB analysis. We find that the CHEQ alcohol force fields of this work semi-quantitatively match experimental KB integrals for methanol and ethanol mole fractions of 0.1 and 0.2. The force field combination qualitatively captures the concentration dependence of the alcohol-alcohol and water-water KB integrals, but due to inadequacies in the representation of the microscopic structures in such systems (which cannot be parameterized in any systematic fashion), a priori quantitative description of alcohol-water KB integrals remains elusive. PMID:20687517

  8. The Potential of Photochemical Transition Metal Reactions in Prebiotic Organic Synthesis. I. Observed Conversion of Methanol into Ethylene Glycol as Possible Prototype for Sugar Alcohol Formation

    NASA Astrophysics Data System (ADS)

    Eisch, John J.; Munson, Peter R.; Gitua, John N.

    2004-10-01

    Photochemical processes involving redox reactions between metal ions and organic substrates possess the versatile potential for having harnessed solar energy for prebiotic organic synthesis. The present study in our Laboratory has shown that ultraviolet irradiation of transition metal ions such as of Ni, Co, Fe, Cu and Ti dissolved in primary or secondary alcohols causes photoreduction of the metal ions with the concomitant oxidation of the alcohol to aldehyde or ketone. An observed accompaniment of this novel `light' reaction has been the known `dark' pinacol reaction, whereby the carbonyl derivative underwent bimolecular coupling to the diol by the photogenerated reduced transition metal reagent. These tandem `light-dark' processes possess the potential for the stepwise synthesis of dimeric 1,2-diols from simpler alcohols under conditions that might have prevailed on the prebiotic earth. Experiments reported here have demonstrated that such a tandem `light-dark' conversion of methanol into ethylene glycol, via formaldehyde, does in fact occur, when nickel(II) acetylacetonate solutions in methanol undergo prolonged irradiation at 185-254 nm. Since ethylene glycol can be considered as the simplest sugar alcohol, these findings may provide novel insight into the prebiotic oligomerization of formaldehyde into higher sugar alcohols or even sugars.

  9. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    PubMed

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  10. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate.

    PubMed

    2008-01-01

    Alcohol Denat. is the generic term used by the cosmetics industry to describe denatured alcohol. Alcohol Denat. and various specially denatured (SD) alcohols are used as cosmetic ingredients in a wide variety of products. Many denaturants have been previously considered, on an individual basis, as cosmetic ingredients by the Cosmetic Ingredient Review (CIR) Expert Panel, whereas others, including Brucine and Brucine Sulfate, Denatonium Benzoate, and Quassin, have not previously been evaluated. Quassin is a bitter alkaloid obtained from the wood of Quassia amara. Quassin has been used as an insect antifeedant and insecticide and several studies demonstrate its effectiveness. At oral doses up to 1000 mg/kg using rats, Quassin was not toxic in acute and short-term tests, but some reversible piloerection, decrease in motor activity, and a partial loss of righting reflex were found in mice at 500 mg/kg. At 1000 mg/kg given intraperitoneally (i.p.), all mice died within 24 h of receiving treatment. In a cytotoxicity test with brine shrimp, 1 mg/ml of Quassin did not possess any cytotoxic or antiplasmodial activity. Quassin administered to rat Leydig cells in vitro at concentrations of 5-25 ng/ml inhibited both the basal and luteinizing hormone (LH)-stimulated testosterone secretion in a dose-related fashion. Quassin at doses up to 2.0 g/kg in drinking water using rats produced no significant effect on the body weights, but the mean weights of the testes, seminal vesicles, and epididymides were significantly reduced, and the weights of the anterior pituitary glands were significantly increased. The sperm counts and levels of LH, follicle-stimulating hormone (FSH), and testosterone were significantly lower in groups treated with Quassin. Brucine is a derivative of 2-hydroxystrychnine. Swiss-Webster mice given Brucine base, 30 ml/kg, had an acute oral LD(50) of 150 mg/kg, with central nervous system depression followed by convulsions and seizures in some cases. In those

  11. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  12. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    PubMed Central

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  13. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media.

    PubMed

    Rogosa, M; Love, L L

    1968-02-01

    A method is described for the direct quantitative gas chromatographic separation of C(2)-C(6) lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 muliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C(2)-C(6) acids added to culture supernatant fluids were obtained.

  14. Direct Quantitative Gas Chromatographic Separation of C2-C6 Fatty Acids, Methanol, and Ethyl Alcohol in Aqueous Microbial Fermentation Media

    PubMed Central

    Rogosa, M.; Love, L. L.

    1968-01-01

    A method is described for the direct quantitative gas chromatographic separation of C2-C6 lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 μliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C2-C6 acids added to culture supernatant fluids were obtained. PMID:5645415

  15. Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes.

    ERIC Educational Resources Information Center

    Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E.

    1999-01-01

    Presents several variations on a demonstration in which alcohol vapors are combusted in large small-necked bottles, causing a blue flame to shoot from the bottle's mouth. Describes variations with different pure alcohols, temperature, alcohol/water solution concentration, oxygen concentration, type of container, and the addition of salt for color.…

  16. Alcohol Transportation Fuels Demonstration Program

    SciTech Connect

    Kinoshita, C.M.

    1990-01-01

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  17. Energy integrated farm, including a solar methane digestor and alcohol plant. Final progress report

    SciTech Connect

    Meier, O.

    1982-01-01

    This final progress report summarizes the authors success in running an alcohol still. The still was to produce over 20,000 gallons of alcohol per year, the waste hot water would be used to heat a methane digestion system and for domestic space and water heating. Many problems were encountered and solutions were noted.

  18. Multiple Hits, Including Oxidative Stress, as Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (NASH)

    PubMed Central

    Takaki, Akinobu; Kawai, Daisuke; Yamamoto, Kazuhide

    2013-01-01

    Multiple parallel hits, including genetic differences, insulin resistance and intestinal microbiota, account for the progression of non-alcoholic steatohepatitis (NASH). Multiple hits induce adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level that subsequently induce hepatic steatosis, inflammation and fibrosis, among which oxidative stress is considered a key contributor to progression from simple fatty liver to NASH. Although several clinical trials have shown that anti-oxidative therapy can effectively control hepatitis activities in the short term, the long-term effect remains obscure. Several trials of long-term anti-oxidant protocols aimed at treating cerebrovascular diseases or cancer development have failed to produce a benefit. This might be explained by the non-selective anti-oxidative properties of these drugs. Molecular hydrogen is an effective antioxidant that reduces only cytotoxic reactive oxygen species (ROS) and several diseases associated with oxidative stress are sensitive to hydrogen. The progress of NASH to hepatocellular carcinoma can be controlled using hydrogen-rich water. Thus, targeting mitochondrial oxidative stress might be a good candidate for NASH treatment. Long term clinical intervention is needed to control this complex lifestyle-related disease. PMID:24132155

  19. Gene-alcohol interactions identify several novel blood pressure loci including a promising locus near SLC16A9

    PubMed Central

    Simino, Jeannette; Sung, Yun Ju; Kume, Rezart; Schwander, Karen; Rao, D. C.

    2013-01-01

    Alcohol consumption is a known risk factor for hypertension, with recent candidate studies implicating gene-alcohol interactions in blood pressure (BP) regulation. We used 6882 (predominantly) Caucasian participants aged 20–80 years from the Framingham SNP Health Association Resource (SHARe) to perform a genome-wide analysis of SNP-alcohol interactions on BP traits. We used a two-step approach in the ABEL suite to examine genetic interactions with three alcohol measures (ounces of alcohol consumed per week, drinks consumed per week, and the number of days drinking alcohol per week) on four BP traits [systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure]. In the first step, we fit a linear mixed model of each BP trait onto age, sex, BMI, and antihypertensive medication while accounting for the phenotypic correlation among relatives. In the second step, we conducted 1 degree-of-freedom (df) score tests of the SNP main effect, alcohol main effect, and SNP-alcohol interaction using the maximum likelihood estimates (MLE) of the parameters from the first step. We then calculated the joint 2 df score test of the SNP main effect and SNP-alcohol interaction using MixABEL. The effect of SNP rs10826334 (near SLC16A9) on SBP was significantly modulated by both the number of alcoholic drinks and the ounces of alcohol consumed per week (p-values of 1.27E-08 and 3.92E-08, respectively). Each copy of the G-allele decreased SBP by 3.79 mmHg in those consuming 14 drinks per week vs. a 0.461 mmHg decrease in non-drinkers. Index SNPs in 20 other loci exhibited suggestive (p-value ≤ 1E-06) associations with BP traits by the 1 df interaction test or joint 2 df test, including 3 rare variants, one low-frequency variant, and SNPs near/in genes ESRRG, FAM179A, CRIPT-SOCS5, KAT2B, ADCY2, GLI3, ZNF716, SLIT1, PDE3A, KERA-LUM, RNF219-AS1, CLEC3A, FBXO15, and IGSF5. SNP-alcohol interactions may enhance discovery of novel variants with large effects that can be

  20. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  1. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  2. Alcohol Transportation Fuels Demonstration Program. Phase 1

    SciTech Connect

    Kinoshita, C.M.

    1990-12-31

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  3. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  4. Alcohol

    MedlinePlus

    ... parents and other adults use alcohol socially — having beer or wine with dinner, for example — alcohol seems ... besides just hanging out in someone's basement drinking beer all night. Plan a trip to the movies, ...

  5. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  6. Paroxysmal Autonomic Instability With Dystonia Managed Using Chemodenervation Including Alcohol Neurolysis and Botulinum Toxin Type A Injection: A Case Report

    PubMed Central

    Lee, Hye-Sun; Oh, Hyun-Seung

    2015-01-01

    Paroxysmal autonomic instability with dystonia (PAID) is a rare complication of brain injury. Symptoms of PAID include diaphoresis, hyperthermia, hypertension, tachycardia, and tachypnea accompanied by hypertonic movement. Herein, we present the case of a 44-year-old female patient, who was diagnosed with paraneoplastic limbic encephalopathy caused by thyroid papillary cancer. The patient exhibited all the symptoms of PAID. On the basis that the symptoms were unresponsive to antispastic medication and her liver function test was elevated, we performed alcohol neurolysis of the musculocutaneous nerve followed by botulinum toxin type A (BNT-A) injection into the biceps brachii and brachialis. Unstable vital signs and hypertonia were relieved after chemodenervation. Accordingly, alcohol neurolysis and BNT-A injection are proposed as a treatment option for intractable PAID. PMID:25932429

  7. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  8. Alcohol fuels program technical review

    SciTech Connect

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  9. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  10. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  11. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  12. [Survival of Gram-positive spore-forming bacteria including Bacillus cereus after hand washing using alcohol-based handrub].

    PubMed

    Ogawa, Midori; Takada, Shinichiro; Takahashi, Masao; Yasuda, Etsuko; Watase, Mariko; Taniguchi, Hatsumi

    2006-12-01

    Hand washing is the most fundamental method for preventing infection. Currently, hand washing with an alcohol-based handrub is the international gold standard method. However, in our study we found many samples of ineffective hand washing using an alcohol-based handrub. The rates of ineffective samples were 10.4% (5/48) in 2004 and 34.3% (12/35) in 2005. We examined the morphology by Gram staining and biochemical properties of the bacteria which remained after hand washing in 2005. Their colonies were divided into 3 groups (round colonies, irregular-shaped and diffusive colonies). The round colonies were considered Staphylococcus spp., and the irregular-shaped colonies or diffusive colonies were considered Gram-positive spore-forming bacteria. In the 12 ineffective hand washing samples (more than the same number of bacteria colonies as before hand washing, or > or = 300), there were 3 samples considered to be the result of the survival of Staphylococcus spp., and 9 samples considered to be the result of the survival of Gram-positive spore-forming bacteria including Bacillus cereus. Based on these results, we should take careful measures, such as wearing sterile gloves if necessary. We should never be overconfident regarding the effect of hand washing.

  13. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  14. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  15. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including novel risk loci

    PubMed Central

    Gelernter, J; Kranzler, HR; Sherva, R; Almasy, L; Koesterer, R; Smith, AH; Anton, R; Preuss, UW; Ridinger, M; Rujescu, D; Wodarz, N; Zill, P; Zhao, H; Farrer, LA

    2014-01-01

    We report a GWAS of alcohol dependence (AD) in European-American (EA) and African-American (AA) populations, with replication in independent samples of EAs, AAs and Germans. Our sample for discovery and replication was 16 087 subjects, the largest sample for AD GWAS to date. Numerous genome-wide significant (GWS) associations were identified, many novel. Most associations were population specific, but in several cases were GWS in EAs and AAs for different SNPs at the same locus, showing biological convergence across populations. We confirmed well-known risk loci mapped to alcohol-metabolizing enzyme genes, notably ADH1B (EAs: Arg48His, P = 1.17 × 10−31; AAs: Arg369Cys, P = 6.33 × 10−17) and ADH1C in AAs (Thr151Thr, P = 4.94 × 10−10), and identified novel risk loci mapping to the ADH gene cluster on chromosome 4 and extending centromerically beyond it to include GWS associations at LOC100507053 in AAs (P = 2.63 × 10−11), PDLIM5 in EAs (P = 2.01 × 10−8), and METAP in AAs (P = 3.35 × 10−8). We also identified a novel GWS association (1.17 × 10−10) mapped to chromosome 2 at rs1437396, between MTIF2 and CCDC88A, across all of the EA and AA cohorts, with supportive gene expression evidence, and population-specific GWS for markers on chromosomes 5, 9 and 19. Several of the novel associations implicate direct involvement of, or interaction with, genes previously identified as schizophrenia risk loci. Confirmation of known AD risk loci supports the overall validity of the study; the novel loci are worthy of genetic and biological follow-up. The findings support a convergence of risk genes (but not necessarily risk alleles) between populations, and, to a lesser extent, between psychiatric traits. PMID:24166409

  16. Alcohol fuels: options for developing countries. Final report

    SciTech Connect

    Not Available

    1983-01-01

    This report summarizes information on alcohol fuel technologies for planners, investors, and technical assistance agencies in developing countries. Although the information is primarily aimed at the non-technical reader, it does contain some details of the technologies: references are included for those who wish more specialized information. This report explores the production and use of alcohol fuels and the production of ethanol and methanol. In addition it looks at the social, economic and environmental implications of using alcohol fuels. Positive and negative factors of using alcohol fuels are given. The report includes information on various tropical crops and their conversion to alcohols through both traditional and novel proceses.

  17. Antidote review: fomepizole for methanol poisoning.

    PubMed

    Mycyk, Mark B; Leikin, Jerrold B

    2003-01-01

    Fomepizole (Antizol) was recently approved by the US Food and Drug Administration for treatment of methanol poisoning. By inhibiting the hepatic enzyme alcohol dehydrogenase, it presents formation of toxic metabolites with far fewer consequences than traditional ethanol therapy. It appears that fomepizole will become standard therapy for methanol intoxication as it is for ethylene glycol poisoning.

  18. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  19. Alcohol Consumption Has a Protective Effect against Hematological Malignancies: a Population-Based Study in Sweden Including 420,489 Individuals with Alcohol Use Disorders12345

    PubMed Central

    Ji, Jianguang; Sundquist, Jan; Sundquist, Kristina

    2014-01-01

    BACKGROUND: It has been suggested that alcohol consumption is associated with increased risk of a few solid cancers, although studies that examined the association with hematological malignancies have shown inconsistent results. In this study, we examined the risk of hematological malignancies among individuals who had alcohol use disorders (AUDs) in Sweden. METHODS: Individuals with AUDs were identified from the nationwide Swedish Hospital Discharge Register and Outpatient Register, the Crime Register, and the Prescription Drug Register, and they were linked to the Swedish Cancer Registry to calculate standardized incidence ratios (SIRs) of hematological malignancies, using those Swedes without AUDs as a reference. In addition, we used a quasi-experimental sibling design to investigate the odds ratios among sibling pairs who were discordant with AUDs. RESULTS: A total of 420,489 individuals were identified with AUDs. After more than 15 million person-years of follow-up, a total of 1755 individuals developed hematological malignancies demonstrating a low risk, i.e., SIR = 0.60 (95% confidence interval = 0.57-0.63). People with AUDs had low risks for developing specific types of malignancies. The lowest risk (0.51) was for leukemia, followed by myeloma (0.52), non-Hodgkin lymphoma (0.65), and Hodgkin disease (0.71). The risk was lower among AUDs identified at an older age. The low risks of hematological malignancies were also noted using sibling analysis. CONCLUSIONS: Our data suggest that alcohol consumption has a protective effect against hematological malignancies. However, further studies are needed to identity the underlying mechanisms of the protective effect of alcohol consumption against hematological malignancies. PMID:24783999

  20. Kinetics and mechanism of phosgenation of aliphatic alcohols. V. Quantum-chemical investigation of the mechanism of the reaction of phosgene with methanol

    SciTech Connect

    Orlov, S.I.; Varnek, A.A.; Chimishkyan, A.L.; Sel', O.B.

    1988-04-20

    Analysis of maps of the molecular electrostatic potential of phosgene showed that attack by methanol as nucleophile at the phosgene carbon atom takes place preferentially not in the plane of the molecule (the S/sub N/2 mechanism) but in a direction perpendicular to the COCl/sub 2/ plane (an AE addition-elimination mechanism). A fragment of the potential energy surface for the reaction of phosgene with methanol was calculated by the MNDO method. The reaction takes place by an AE-like mechanism through a late transition state, which represents a four-membered ring. There is not local minimum at a point corresponding to a tetrahedral intermediate, and this is explained by the absence of factors which stabilize it.

  1. Unusual case of methanol poisoning

    SciTech Connect

    Shapiro, L.; Henderson, M. . Dept. of Chemical Pathology); Madi, S.; Mellor, L. . Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  2. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    PubMed

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable.

  3. Methanol from coal

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  4. Alcohol fuels for motor vehicles: an update

    SciTech Connect

    Klass, D.L.

    1983-08-01

    This is the first part of a two-part article on the current status of alcohol fuels. The production of alcohol fuels is discussed in terms of the two major products, ethanol and methanol. Improvements in alcohol production have come about via research and development of fermentation ethanol and methanol and thermochemical ethanol and methanol. Historically, the cost of methanol has almost always been less than that of ethanol because the selling prices of the alcohols correlate with the embedded feedstock costs. It is expected that by the late 1980s both methanol and ethanol can be made from biomass at prices competitive with petroleum-based products. 7 tables.

  5. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  6. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.

  7. Treatment of patients with ethylene glycol or methanol poisoning: focus on fomepizole

    PubMed Central

    Mégarbane, Bruno

    2010-01-01

    Ethylene glycol (EG) and methanol are responsible for life-threatening poisonings. Fomepizole, a potent alcohol dehydrogenase (ADH) inhibitor, is an efficient and safe antidote that prevents or reduces toxic EG and methanol metabolism. Although no study has compared its efficacy with ethanol, fomepizole is recommended as a first-line antidote. Treatment should be started as soon as possible, based on history and initial findings including anion gap metabolic acidosis, while awaiting measurement of alcohol concentration. Administration is easy (15 mg/kg-loading dose, either intravenously or orally, independent of alcohol concentration, followed by intermittent 10 mg/kg-doses every 12 hours until alcohol concentrations are <30 mg/dL). There is no need to monitor fomepizole concentrations. Administered early, fomepizole prevents EG-related renal failure and methanol-related visual and neurological injuries. When administered prior to the onset of significant acidosis or organ injury, fomepizole may obviate the need for hemodialysis. When dialysis is indicated, 1 mg/kg/h-continuous infusion should be provided to compensate for its elimination. Side-effects are rarely serious and with a lower occurrence than ethanol. Fomepizole is contraindicated in case of allergy to pyrazoles. It is both efficacious and safe in the pediatric population, but is not recommended during pregnancy. In conclusion, fomepizole is an effective and safe first-line antidote for EG and methanol intoxications. PMID:27147840

  8. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol.

    PubMed

    Xu, Bingjun; Liu, Xiaoying; Haubrich, Jan; Friend, Cynthia M

    2010-01-01

    Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetaldehyde, benzaldehyde and benzeneacetaldehyde to methyl esters is promoted by oxygen-covered Au(111) below room temperature with high selectivity. The high selectivity is attributed to the ease of nucleophilic attack of the aldehydes by the methoxy intermediate-formed from methanol on the surface-which yields the methyl esters. The competing combustion occurs via attack of both methanol and the aldehydes by oxygen. The mechanistic model constructed in this study provides insight into factors that control selectivity and clearly elucidates the crucial role of Au nanoparticles as active species in the catalytic oxidation of alcohols, even in solution.

  9. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1986-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  10. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1987-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  11. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  12. A novel organic/inorganic polymer membrane based on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid/3-glycidyloxypropyl trimethoxysilane polymer electrolyte membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lue, Shingjiang Jessie; Shih, Jeng-Ywan

    2011-05-01

    Poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS)/3-glycidyloxypropyl)trimethoxysilane (PVA/PAMPS/GPTMS) organic/inorganic proton-conducting polymer membranes are prepared by a solution casting method. PAMPS is a polymeric acid commonly used as a primary proton donor, while 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) is an inorganic precursor forming a semi-interpenetrating network (SIPN). Varying amounts of sulfosuccinic acid (SSA) are used as the cross-linker and secondary proton source. The characteristic properties of PVA/PAMPS/GPTMS composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), micro-Raman spectroscopy and the AC impedance method. Direct methanol fuel cells (DMFCs) made of PVA/PAMPS/GPTMS composite membranes are assembled and examined. Experimental results indicate that DMFCs employing an inexpensive, non-perfluorinated, organic/inorganic SIPN membrane achieve good electrochemical performance. The highest peak power density of a DMFC using PVA/PAMPS/GPTMS composite membrane with 2 M CH3OH solution fuel at ambient temperature is 23.63 mW cm-2. The proposed organic/inorganic proton-conducting membrane based on PVA/PAMPS/GPTMS appears to be a viable candidate for future DMFC applications.

  13. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  14. New processes target methanol production, off-gas cleaning

    SciTech Connect

    Haggin, J. )

    1994-03-28

    Catalysis plays a key role in two technological developments aimed at addressing environmental-related matters. One, a process that converts carbon dioxide to methanol, is seen as a means of reducing the amount of carbon dioxide dumped into the atmosphere without an economic penalty. The other, unsteady-state operation, is a chemical processing innovation that is finding its way into the cleaning of plant exhaust gases. Particulars on the developments were presented in separate forums at the American Chemical Society's national meeting in San Diego. The methanol process, developed by Lurgi Oel-Gas-Chemie, Frankfurt, was outlined for the Catalysis and Surface Science Secretariat. Lurgi is ready to commercialized a variation of its methanol process, which converts carbon dioxide to ethanol in two stages. Underlying the process is development of a catalyst that is suitable for operation in two temperature regimes. The paper describes the development of the process. A catalytic reverse processing system is being used to decontaminate gas streams containing volatile organic compounds (VOCs). These VOCs may be unacceptable in the environment or undesirable in subsequent processing units. Other applications include nitrogen oxides reduction, ammonia and methanol synthesis, and oxidation of SO[sub 2] to SO[sub 3] in the manufacture of sulfuric acid. Among the materials that have been removed as VOCs are C[sub 4] to C[sub 8] alcohols, phenol, formaldehyde, cyanic acid, and a variety of organic solvents. The advantages over conventional methods are discussed.

  15. Alcohol and pregnancy

    MedlinePlus

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... group of defects in the baby known as fetal alcohol syndrome. Symptoms can include: Behavior and attention problems Heart ...

  16. Neuromuscular Functions on Experimental Acute Methanol Intoxication

    PubMed Central

    Moral, Ali Reşat; Çankayalı, İlkin; Sergin, Demet; Boyacılar, Özden

    2015-01-01

    Objective The incidence of accidental or suicidal ingestion of methyl alcohol is high and methyl alcohol intoxication has high mortality. Methyl alcohol intoxication causes severe neurological sequelae and appears to be a significant problem. Methyl alcohol causes acute metabolic acidosis, optic neuropathy leading to permanent blindness, respiratory failure, circulatory failure and death. It is metabolised in the liver, and its metabolite formic acid has direct toxic effects, causing oxidative stress, mitochondrial damage and increased lipid peroxidation associated with the mechanism of neurotoxicity. Methanol is known to cause acute toxicity of the central nervous system; however, the effects on peripheral neuromuscular transmission are unknown. In our study, we aimed to investigate the electrophysiological effects of experimentally induced acute methanol intoxication on neuromuscular transmission in the early period (first 24 h). Methods After approval by the Animal Experiment Ethics Committee of Ege University, the study was carried out on 10 Wistar rats, each weighing about 200 g. During electrophysiological recordings and orogastric tube insertion, the rats were anaesthetised using intra-peritoneal (IP) injection of ketamine 100 mg kg−1 and IP injection of xylazine 10 mg kg−1. The rats were given 3 g kg−1 methyl alcohol by the orogastric tube. Electrophysiological measurements from the gastrocnemius muscle were compared with baseline. Results Latency measurements before and 24 h after methanol injection were 0.81±0.11 ms and 0.76±0.12 ms, respectively. CMAP amplitude measurements before and 24 h after methanol injection were 9.85±0.98 mV and 9.99±0.40 mV, respectively. CMAP duration measurements before and 24 h after methanol injection were 9.86±0.03 ms and 9.86±0.045 ms, respectively. Conclusion It was concluded that experimental methanol intoxication in the acute phase (first 24 h) did not affect neuromuscular function. PMID:27366524

  17. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    PubMed

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions.

  18. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  19. The combined oxidation of methanol and ethanol on silver catalysts

    SciTech Connect

    Kurina, L.N.; Gryaznov, V.M.; Gul yanova, S.G.; Plakidkin, A.A.; Vedernikov, V.I.

    1985-10-01

    The authors study the oxidation of methanol, ethanol, and mixtures of these alcohols on industrial silver-pumice and silver membrane catalysts as well as the adsorption of these alcohols on silver. The oxidation of the alcohol mixture on the industrial silver-pumice catalyst gives higher yields of both formaldehyde and acetaldehyde than in the oxidation of the alcohols taken individually. It is also shown that an increase in the rates of formaldehyde formation in the combined oxidation of methanol and ethanol was observed on the silver membrane catalyst.

  20. Methanol and methyl fuel catalysts. Final technical report, September 1980-August 1983

    SciTech Connect

    Klier, K.; Herman, R.G.; Simmons, G.W.

    1983-12-01

    Copper-based catalysts for alcohol synthesis were prepared, tested for catalytic activity and selectivity, and characterized. These catalysts include Cu/ZnO, Cu/Co/ZnO, Cu/Co/Cr/sub 2/O/sub 3/, Cu/Co/Cr/sub 2/O/sub 3//K/sub 2/O, and Cu/ZnO/KOH. The chromia-containing catalysts exhibited a low activity and selectivity, while the Cu/ZnO catalyst was verified to be a very active and selective methanol synthesis catalyst. Cobalt imparted a methanation function to the catalysts, while potassium suppressed the activity and the selectivity. Over the quaternary catalyst, higher pressure and lower GHSV enhanced the selectivity to higher alcohols. Low concentrations of carbon dioxide in H/sub 2//CO synthesis gas over Cu/ZnO catalysts promote methanol synthesis, while at high concentrations it behaves as a retardant of the synthesis. The water gas shift reaction readily proceeds over the Cu/ZnO catalyst. Analogous to the CO/sub 2/ effect, the presence of water in the synthesis gas has a profound effect on the synthesis of methanol. The Cu/ZnO catalyst is a good hydrogenation catalyst. Olefins, aldehydes, and acids are hydrogenated at a faster rate than CO is hydrogenated to methanol, but aromatics are hydrogenated at slower rates. Chemical trapping of the intermediates on these surface sites with amines demonstrates that a kinetically significant intermediate in methanol synthesis is a surface formyl or hydroxycarbene species. These species can be formed from synthesis gas or by alcohols in the reactant stream, and they readily alkylate amines in the reactant gas stream. Over an Fe/Cu/ZnO catalyst, amines inhibit the production of alcohols by trapping the precursor intermediates, while changing the hydrocarbon selectivity from paraffins to predominantly olefins. 68 references, 9 figures, 25 tables.

  1. Acute methanol toxicity in minipigs

    SciTech Connect

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.; Ekuta, J.; Bolon, B.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- and formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.

  2. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  3. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    SciTech Connect

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  4. Methanol ice VUV photoprocessing: GC-MS analysis of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Abou Mrad, Ninette; Duvernay, Fabrice; Chiavassa, Thierry; Danger, Grégoire

    2016-05-01

    Next to water, methanol is one of the most abundant molecules in astrophysical ices. A new experimental approach is presented here for the direct monitoring via gas chromatography coupled to mass spectrometry (GC-MS) of a sublimating photoprocessed pure methanol ice. Unprecedentedly, in a same analysis, compelling evidences for the formation of 33 volatile organic compounds are provided. The latter are C1-C6 products including alcohols, aldehydes, ketones, esters, ethers and carboxylic acids. Few C3 and all C4 detected compounds have been identified for the first time. Tentative detections of few C5 and C6 compounds are also presented. GC-MS allows for the first time the direct quantification of C2-C4 photoproducts and shows that their abundances decrease with the increase of their carbon chain length. These qualitative and quantitative measurements provide important complementary results to previous experiments, and present interesting similarities with observations of sources rich in methanol.

  5. Pressure Effects on Combustion of Methanol and Methanol-Docecanol Droplets

    NASA Technical Reports Server (NTRS)

    Okai, K.; Ono, Y.; Muriue, O.; Tsue, M.; Kono, M.; Sato, J.; Dietrich, D. L.; Williams, F. A.

    1999-01-01

    The objective of this research is to improve understanding of the combustion of binary fuel mixtures in the vicinity of the critical point. Fiber-supported single droplets and two-droplet arrays of methanol and of mixtures of methanol and 1-dodecanol, initially 0.9 mm in diameter, were burned in room-temperature air at pressures from 0.1 MPa to 9.0 MPa in the NASA Lewis 2.2-second drop tower. The work is a continuation of a collaborative Japan-US research effort designed to increase knowledge of high-pressure combustion of fuel sprays, relevant to application in propulsive and power-production devices such as Diesel engines. Some previous publications from this cooperative program may be cited. All of the previous experiments concerned alkanes and alkane mixtures. The new research reported here addresses alcohols and alcohol mixtures, to ascertain the degree to which previous results for alkanes extend to alcohols. There have been many previous experimental studies of methanol droplet combustion and a few of alcohol mixtures, but not at the high pressures of interest here. There is some experimental information on methanol droplet combustion at elevated pressure but none on the alcohol mixtures extending to critical pressures, as in the present study.

  6. Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tian, Xingling; Yang, Zaixing; Zhou, Bo; Xiu, Peng; Tu, Yusong

    2013-05-01

    Alcohols are important products in chemical industry, but separating them from their aqueous solutions is very difficult due to the hydrophilic nature of alcohols. Based on molecular dynamics simulations, we observe a striking nanoscale drying phenomenon and suggest an energy-saving and efficient approach toward alcohol/water separation by using single-walled carbon nanotubes (SWNTs). We use various common linear alcohols including C1-C6 1-alcohols and glycerol for demonstration (the phenol is also used as comparison). Our simulations show that when SWNTs are immersed in aqueous alcohols solutions, although the alcohols concentration is low (1 M), all kinds of alcohols can induce dehydration (drying) of nanotubes and accumulate inside wide [(13, 13)] and narrow [(6, 6) or (7, 7)] SWNTs. In particular, most kinds of alcohols inside the narrow SWNTs form nearly uniform 1D molecular wires. Detailed energetic analyses reveal that the preferential adsorption of alcohols over water inside nanotubes is attributed to the stronger dispersion interactions of alcohols with SWNTs than water. Interestingly, we find that for the wide SWNT, the selectivity for 1-alcohols increases with the number of alcohol's carbon atoms (Ncarbon) and exhibits an exponential law with respect to Ncarbon for C1-C5 1-alcohols; for narrow SWNTs, the selectivity for 1-alcohols is very high for methanol, ethanol, and propanol, and reaches a maximum when Ncarbon = 3. The underlying physical mechanisms and the implications of these observations for alcohol/water separation are discussed. Our findings provide the possibility for efficient dehydration of aqueous alcohols (and other hydrophilic organic molecules) by using SWNT bundles/membranes.

  7. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    SciTech Connect

    Not Available

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  8. Phase behavior of chlorinated solvent + water + alcohol mixtures with application to alcohol flushing

    SciTech Connect

    Hayden, N.J.; Diebold, J.; Noyes, G.

    1999-09-01

    Alcohol flushing is a new in-situ remediation technique for the removal of water-immiscible solvents from contaminated soil and groundwater. Understanding the changes in the physical and chemical properties of chlorinated solvents and the aqueous-phase solution during flushing is prerequisite for the successful application of this technology. The overall objectives of these experiments were to characterize the ternary-phase behavior, interfacial tension, viscosity, and density for mixtures containing a chlorinated solvent, water and alcohol. Two chlorinated solvents were used: tetrachloroethylene and trichloroethylene. The alcohols studied included methanol, ethanol, and propan-2-ol. Results showed that the single-phase region of the ternary relationships increased as the molecular weight of the alcohol increased. The interfacial tension between the chlorinated solvents and aqueous solutions decreased with increasing alcohol concentration and increasing molecular weight of the alcohol. Changes in the viscosity of water + alcohol mixtures due to the addition of the solvents were only evident at high alcohol concentrations. Small changes in density were noted for the chlorinated solvents in equilibrium with water + alcohol solutions except in the case of trichloroethylene and propan-2-ol solutions, which exhibited considerable swelling.

  9. Alcohol Fuels Program technical review, Spring 1984

    SciTech Connect

    Not Available

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  10. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    PubMed

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1).

  11. Infrared Analysis of Gasoline/Alcohol Blends.

    DTIC Science & Technology

    1981-02-01

    in storage, routine handling and distribution. As a result, other oxygenates such as methanol , iso-propanol, t-butanoA, methyl -t- butyl ether, and...Table 1 lists TABLE 1. ALCOHOL ANALYTE BAND NUMBERS -1 Component Analytical Frequency, cm Gasoline 967 Methanol 1030 Ethanol 882 iso-propanol 952 t...of varying concen- trations of each alcohol in a gasoline were obtained, with Figure 4 showing a low and high standard for methanol . The net peak

  12. Gasoline from alcohols

    NASA Astrophysics Data System (ADS)

    Morgan, C. R.; Warner, J. P.; Yurchak, S.

    1981-03-01

    This paper discusses laboratory and vehicle performance test results obtained from gasoline produced by the Mobil methanol conversion process. Antiknock qualities, driveability performance, exhaust emission levels, plus other in-car and laboratory characterization tests show the gasoline to compare very favorably with conventional petroleum derived high-octane unleaded gasolines. The methanol conversion process, and its advantages relative to the blending of alcohol-containing fuels, also is discussed briefly.

  13. Alcohol fuels for aviation

    SciTech Connect

    Schauffler, P.

    1982-06-01

    The ten-fold increase in aviation fuel prices in eight years has caused a reassessment of alcohol fuels. In a recent test, methanol fuel-flow rate was high at takeoff, and levelled off at 10,000 feet, but above 18,000 fell 30% below avgas use. Because methanol sells thirty cents below avgas per gallon it is already an attractive fuel for piston-engine aircraft. But as 95% of aviation fuel is burned as kerosene in turbines a test program has been set up to look at the performance of small shaft turbine engines with various combinations of alcohols and water, and of straight methanol, and to look at major thrust engine at optimum fuel as well. These tests should determine the overall alcohol potentials for aviation. The tests will also tell if the breakthrough will be modest or major.

  14. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  15. [Vibrational assignment analysis of Raman spectra of fatty alcohols].

    PubMed

    Zou, Qiao; Du, Xian-Yuan; Zhang, Chen; Li, Xing-Chun; Li, Yu

    2013-01-01

    In the present research, Raman spectra of 31 fatty alcohols were calculated by B3LYP/6-31G (d) and verified by taking methanol for example. The study results indicate that B3LYP/6-31G (d) is an effective approach for the fatty alcohols Raman spectra calculated. The vibrational assignment and Raman spectra features of 6 unbranched alcohols were discussed and the vibrating peaks derived from stretching vibration by C-O were chosen as the research target selection, and the multiple principal component regression models were established and validated with the parameters including polarizability, thermodynamic and energy parameters of the above unbranched alcohols. There exists significant correlation between the vibrating peaks derived from stretching vibration by C-O of fatty alcohols and the parameters (sig. = 0.015). This study will benefit the Raman spectra research of homologs.

  16. A Comparison of Brunt Criteria, the Non Alcoholic Fatty Liver Disease Activity Score (NAS) & a Proposed NAS-including fibrosis as Valid Diagnostic Scores for NASH

    PubMed Central

    Santiago-Rolón, Amarilys; Purcell, Dagmary; Rosado, Kathia; Toro, Doris H.

    2016-01-01

    Objective Non-alcoholic steatohepatitis (NASH) can result in cirrhosis and end stage liver disease. It is of utmost importance to differentiate NASH from simple steatosis. The aim of this study is to determine the prevalence of NASH in Latino veterans with metabolic syndrome and compare histologic grading using Brunt Criteria, the NAFLD activity score (NAS), and a proposed NAS score including fibrosis. Methods Veterans with metabolic syndrome, hepatic steatosis and elevation of ALT/AST who underwent a liver biopsy from 2004-2010 were included in this study. Biopsies were evaluated by a single blinded Hepatopathologist. Steatosis, lobular inflammation, ballooning and fibrosis were graded per specimen. Each biopsy was evaluated using Brunt criteria, NAS and NAS plus fibrosis. Results Sixty patients were included in this study, 88.3% men with a mean age of 50.4 (± 12.8). 50.0% met criteria for NASH according to the Brunt system. When classifying biopsies using NAS, only 30.0% (18/60) had a score ≥5, while when adding fibrosis, the number of patients with a score ≥5 increased to 33 (55.0%). When evaluating the predictive ability of the two scoring systems, we found that NAS including fibrosis had a higher sensitivity than NAS (86.7% vs. 40.0%) and a lower specificity (76.7% vs. 80.0%). Conclusion In our population with metabolic syndrome and altered liver function tests, about 50-55% had steatohepatitis. There were significant differences between the scoring systems. When using NAS-plus-fibrosis more patients were recognized and the sensitivity increased. Further validation studies are required to evaluate this proposed NAS scoring System. PMID:26602577

  17. Low self–esteem in women with eating disorders and alcohol abuse as a psycho–social factor to be included in their psychotherapeutic approach

    PubMed Central

    2010-01-01

    Author have analyzed the psycho–social peculiarities of the women from Romania who are affected by eating disorders and alcohol excessive consumption, and studied the manner of the link between these disease and the psycho–sexual. 120 participants at the study (Oltenia district) were divided into 2 groups: 60 healthy women, 30 with eating disorders and 30 alcohol dependent women. In all subjects were applied the following tests: Scale for compulsive appetite (SCA) and Scale of interest for own weight, both for eating disorders, CAGE questionnaire for alcohol dependence and two scales for determining: the gender–role ambivalence (O'Neil and Caroll Scale) and the masculinity and feminity index (A. Chelcea). The results obtained in both lots of Romanian women with pathologic behavior (food and/or alcohol consumption) have indicated a low psycho–sexual identity versus control group but no correlation with masculinity/feminity index. PMID:21254749

  18. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  19. Methanol production from Eucalyptus wood chips. Final report

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  20. Conversion of Methanol, Ethanol and Propanol over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcohols over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  5. An exploratory randomised controlled trial of a premises-level intervention to reduce alcohol-related harm including violence in the United Kingdom

    PubMed Central

    2012-01-01

    Background To assess the feasibility of a randomised controlled trial of a licensed premises intervention to reduce severe intoxication and disorder; to establish effect sizes and identify appropriate approaches to the development and maintenance of a rigorous research design and intervention implementation. Methods An exploratory two-armed parallel randomised controlled trial with a nested process evaluation. An audit of risk factors and a tailored action plan for high risk premises, with three month follow up audit and feedback. Thirty-two premises that had experienced at least one assault in the year prior to the intervention were recruited, match paired and randomly allocated to control or intervention group. Police violence data and data from a street survey of study premises’ customers, including measures of breath alcohol concentration and surveyor rated customer intoxication, were used to assess effect sizes for a future definitive trial. A nested process evaluation explored implementation barriers and the fidelity of the intervention with key stakeholders and senior staff in intervention premises using semi-structured interviews. Results The process evaluation indicated implementation barriers and low fidelity, with a reluctance to implement the intervention and to submit to a formal risk audit. Power calculations suggest the intervention effect on violence and subjective intoxication would be raised to significance with a study size of 517 premises. Conclusions It is methodologically feasible to conduct randomised controlled trials where licensed premises are the unit of allocation. However, lack of enthusiasm in senior premises staff indicates the need for intervention enforcement, rather than voluntary agreements, and on-going strategies to promote sustainability. Trial registration UKCRN 7090; ISRCTN: 80875696 PMID:22676069

  6. Unrecorded alcohol consumption in Russia: toxic denaturants and disinfectants pose additional risks

    PubMed Central

    Solodun, Yuriy V.; Monakhova, Yulia B.; Kuballa, Thomas; Samokhvalov, Andriy V.; Rehm, Jürgen; Lachenmeier, Dirk W.

    2011-01-01

    In 2005, 30% of all alcohol consumption in Russia was unrecorded. This paper describes the chemical composition of unrecorded and low cost alcohol, including a toxicological evaluation. Alcohol products (n=22) from both recorded and unrecorded sources were obtained from three Russian cities (Saratov, Lipetsk and Irkutsk) and were chemically analyzed. Unrecorded alcohols included homemade samogons, medicinal alcohols and surrogate alcohols. Analysis included alcoholic strength, levels of volatile compounds (methanol, acetaldehyde, higher alcohols), ethyl carbamate, diethyl phthalate (DEP) and polyhexamethyleneguanidine hydrochloride (PHMG). Single samples showed contamination with DEP (275–1269 mg/l) and PHMG (515 mg/l) above levels of toxicological concern. Our detailed chemical analysis of Russian alcohols showed that the composition of vodka, samogon and medicinal alcohols generally did not raise major public health concerns other than for ethanol. It was shown, however, that concentration levels of DEP and PHMG in some surrogate alcohols make these samples unfit for human consumption as even moderate drinking would exceed acceptable daily intakes. PMID:22319254

  7. Dietary methanol and autism.

    PubMed

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted.

  8. Microwave Spectrum of the Ethanol-Methanol Dimer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Carroll, Brandon; Mead, Griffin; Blake, Geoffrey

    2016-06-01

    The hydrogen bond donor/acceptor competition in mixed alcohol clusters remains a fundamental question in physical chemistry. Previous theoretical work on the prototype ethanol-methanol dimer has been inconclusive in predicting the energetically preferred structure. Here, we report the microwave spectrum of the ethanol-methanol dimer between 8-18 GHz, using a chirped pulse Fourier transform microwave spectrometer. With the aid of ab initio calculations, 36 transitions have been fit and assigned to a t-ethanol-acceptor, methanol-donor structure in an argon-backed expansion. In a helium-backed expansion, a second excited conformer has been observed, and tentatively assigned to a g-ethanol-acceptor, methanol-donor structure. No ethanol-donor, methanol-acceptor structures have been found, suggesting such structures are energetically disfavored.

  9. An interesting case of characteristic methanol toxicity through inhalational exposure

    PubMed Central

    Kumar, Pratyush; Gogia, Atul; Kakar, Atul; Miglani, Pratyush

    2015-01-01

    Methanol poisoning is rare but carries high risk of morbidity and mortality. Most of the cases witnessed in emergency are due to consumption of adulterated alcohol. Here we are reporting a very rare case of methanol poisoning through inhalational exposure leading to putamen necrosis and decreased visual acuity. He had dyselectrolytemia and metabolic acidosis which was successfully managed with early intervention. Its importance lies in the fact that inhalational methanol poisoning is an entity which if picked up early can prevent long-term neurological sequelae. PMID:26285665

  10. Methanol from Wood Waste: A Technical and Economic Study.

    DTIC Science & Technology

    1977-06-01

    percent of the gas is converted to methanol , the balance passing as inerts to the boiler. The reaction is as follows: catalyst 2H + CO ’ CH3OH 2 *-3...the boiler. Catalyst life is expected to be 6 years for methanol synthesis and 2 to 3 years for the shift reactor . PLANT SIZE In a chemical processing...percent of methyl alcohol ( methanol ) in gasoline for automotive use. / At a current consumption rate of 110 billion gallons per year (gpy), 11 billion

  11. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOEpatents

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  12. Methanol May Function as a Cross-Kingdom Signal

    PubMed Central

    Dorokhov, Yuri L.; Komarova, Tatiana V.; Petrunia, Igor V.; Kosorukov, Vyacheslav S.; Zinovkin, Roman A.; Shindyapina, Anastasia V.; Frolova, Olga Y.; Gleba, Yuri Y.

    2012-01-01

    Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in

  13. Design and implementation of a wireless passive microsensor for methanol detection

    NASA Astrophysics Data System (ADS)

    Sanz, Diego; Rosas, Walter; Unigarro, Edgar; Vargas, Watson; Segura-Quijano, Fredy

    2013-03-01

    Methanol is a public health concern due to its toxicity, characterized by metabolic acidosis and blindness, among others. The third world population affected by the exposure to this compound is increasing, mainly due to the consumption of illicit distilled or adulterated alcoholic beverages. Although methanol is naturally present in some alcoholic drinks, the maximum allowed concentration cannot exceed 10 g of methanol per liter of anhydrous alcohol (0.4% (v/v) at 40% of ethanol) according to the general EU limit. A wireless passive microsensor was designed to detect small amounts of methanol at 40% of alcoholic dissolutions. The sensor consists of a planar inductor in series with an interdigital capacitor that changes its capacitance with the solution's dielectric constant. An antenna is used to readout the real part of the impedance to obtain the resonant frequencies for different amounts of methanol in the solution. The aim of this work was to develop a low cost wireless sensor with the capability to detect concentrations of at least 0.4% (v/v) of methanol in a 40% of alcoholic solution. The results obtained show variations of 403 kHz in the resonant frequency for changes of 0.2% (v/v) on the concentration of methanol in a 40% alcoholic ethanol-based solution. This project was possible thanks to the collaboration of the Department of Electrical and Electronics Engineering and the Department of Chemical Engineering of Universidad de los Andes.

  14. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  15. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  16. Complex suicide by ethanol intoxication and inhalation of fire fumes in an old lady: interdisciplinary elucidation including post-mortem analysis of congener alcohols.

    PubMed

    Jungmann, L; Perdekamp, M Grosse; Bohnert, M; Auwärter, V; Pollak, S

    2011-06-15

    An 88-year-old woman committed suicide by drinking a toxic amount of highly concentrated alcohol and setting two rooms of her flat on fire. As there was not enough oxygen, the fire went out, however. At autopsy, no thermal lesions were found on the body, but soot depositions in the airways and a COHb value of 14% pointed to the inhalation of fire fumes. The ethanol concentration in femoral blood was 6.62 per mille. The gastric mucosa was fixed by the ingested alcohol and showed hardly any autolytic changes despite a post-mortem interval of five days. Congener analysis of the gastric contents and the femoral blood indicated the uptake of a fruit distillate or its foreshot.

  17. The Asian methanol market

    SciTech Connect

    Nagase, Hideki

    1995-12-31

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future.

  18. Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: decreased ethanol potentiation and decreased channel density.

    PubMed

    Pietrzykowski, Andrzej Z; Martin, Gilles E; Puig, Sylvie I; Knott, Thomas K; Lemos, Jose R; Treistman, Steven N

    2004-09-22

    Tolerance is an important element of drug addiction and provides a model for understanding neuronal plasticity. The hypothalamic-neurohypophysial system (HNS) is an established preparation in which to study the actions of alcohol. Acute application of alcohol to the rat neurohypophysis potentiates large-conductance calcium-sensitive potassium channels (BK), contributing to inhibition of hormone secretion. A cultured HNS explant from adult rat was used to explore the molecular mechanisms of BK tolerance after prolonged alcohol exposure. Ethanol tolerance was intrinsic to the HNS and consisted of: (1) decreased BK potentiation by ethanol, complete within 12 min of exposure, and (2) decreased current density, which was not complete until 24 hr after exposure, indicating that the two components of tolerance represent distinct processes. Single-channel properties were not affected by chronic exposure, suggesting that decreased current density resulted from downregulation of functional channels in the membrane. Indeed, we observed decreased immunolabeling against the BK alpha-subunit on the surface of tolerant terminals. Analysis using confocal microscopy revealed a reduction of BK channel clustering, likely associated with the internalization of the channel.

  19. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  20. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  1. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  2. Forgoing the Folate?-Contemporary Recommendations for Methanol Poisoning and Evidence Review.

    PubMed

    Lim, Christopher S; Bryant, Sean M

    2016-01-01

    Methanol poisonings can produce significant toxicity in humans, including acidosis, blindness, and death. The current mainstay of therapy is alcohol dehydrogenase (ADH) inhibition to prevent formation of formic acid and hemodialysis to correct acidosis and remove both parent compound and toxic metabolite. Folate has been recommended as an adjunctive therapy to increase formic acid oxidation into carbon dioxide and water. We retrospectively reviewed recommendation of folate therapy for methanol poisoning by our regional poison center from 2002 to 2012. One hundred two patients met inclusion criteria. Our findings demonstrate a sharp decline in folate recommendation over the course of the study period (48% vs. 12% during the years 2002-2006 and 2007-2012, respectively), despite similar rates of ADH inhibition, hemodialysis, and serious outcomes. This may be related to the approval of the use of fomepizole in methanol poisoning in 2002, which provides a quicker, more reliable means of ADH inhibition than ethanol infusions. We also provide a review of the available evidence of folate use in methanol poisoning.

  3. Alcoholism & depression.

    PubMed

    Hall, Mellisa

    2012-10-01

    One out of 2 Americans report drinking on a routine basis, making the excessive consumption of alcohol the third leading cause of preventable death in America (). Alcoholism and depression are common comorbidities that home healthcare professionals frequently encounter. To achieve the best patient outcomes, alcoholism should be addressed initially. Although all age groups are at risk, alcoholism and depression occur in more than 8 percent of older adults. Prevention through identifying alcohol use early in adolescence is vital to reduce the likelihood of alcohol dependence. This article provides an overview of the long-term effects of alcohol abuse, including alcoholic cirrhosis and hepatic encephalopathy. The diagnostic criteria for substance dependence and ideas for nonthreatening screening questions to use with patients who are adolescent or older are discussed. While providing patient care, home healthcare nurses share the patient's intimate home environment. This environment is perceived as a safe haven by the patient and home care nurses can take advantage of counseling and treatment opportunities in this nonthreatening environment.

  4. Neurological Complications Resulting from Non-Oral Occupational Methanol Poisoning.

    PubMed

    Choi, Ji Hyun; Lee, Seung Keun; Gil, Young Eun; Ryu, Jia; Jung-Choi, Kyunghee; Kim, Hyunjoo; Choi, Jun Young; Park, Sun Ah; Lee, Hyang Woon; Yun, Ji Young

    2017-02-01

    Methanol poisoning results in neurological complications including visual disturbances, bilateral putaminal hemorrhagic necrosis, parkinsonism, cerebral edema, coma, or seizures. Almost all reported cases of methanol poisoning are caused by oral ingestion of methanol. However, recently there was an outbreak of methanol poisoning via non-oral exposure that resulted in severe neurological complications to a few workers at industrial sites in Korea. We present 3 patients who had severe neurological complications resulting from non-oral occupational methanol poisoning. Even though initial metabolic acidosis and mental changes were improved with hemodialysis, all of the 3 patients presented optic atrophy and ataxia or parkinsonism as neurological complications resulting from methanol poisoning. In order to manage it adequately, as well as to prevent it, physicians should recognize that methanol poisoning by non-oral exposure can cause neurologic complications.

  5. Neurological Complications Resulting from Non-Oral Occupational Methanol Poisoning

    PubMed Central

    Lee, Seung Keun; Gil, Young-Eun; Kim, Hyunjoo; Choi, Jun Young

    2017-01-01

    Methanol poisoning results in neurological complications including visual disturbances, bilateral putaminal hemorrhagic necrosis, parkinsonism, cerebral edema, coma, or seizures. Almost all reported cases of methanol poisoning are caused by oral ingestion of methanol. However, recently there was an outbreak of methanol poisoning via non-oral exposure that resulted in severe neurological complications to a few workers at industrial sites in Korea. We present 3 patients who had severe neurological complications resulting from non-oral occupational methanol poisoning. Even though initial metabolic acidosis and mental changes were improved with hemodialysis, all of the 3 patients presented optic atrophy and ataxia or parkinsonism as neurological complications resulting from methanol poisoning. In order to manage it adequately, as well as to prevent it, physicians should recognize that methanol poisoning by non-oral exposure can cause neurologic complications. PMID:28049252

  6. The Relative Acidities of Water and Methanol

    NASA Astrophysics Data System (ADS)

    Abrash, Henry I.

    2001-11-01

    The experimental evidence for the relative acidities of water and methanol is reviewed. Because of solvent effects, a comparison of either autoprotolysis constants or dissociation constants measured in different media does not provide a reliable indication of these relative values. The most suitable measure of the relative acidities of water and methanol is the equilibrium constant for the proton transfer between water and methoxide ion (H2O + CH3O- OHO- + CH3OH) in various water-methanol mixtures. Experimental measurements of this thermodynamic equilibrium constant, in particular the contributions of Unmack, show considerable uncertainty owing to the difficulties in estimating activity coefficients, but they strongly indicate that methanol is about twice as acidic as water. This result shows that substitution of a methyl group for a hydrogen atom does not always destabilize a negative charge on a nearby oxygen atom. The question of whether to present acidities, particularly those of solvents, in terms of dissociation constants based on concentrations rather than activities is considered. In view of the slight consideration given to the relative acidities of water and alcohols in current organic chemistry tests and the discontinuity for students caused by use of concentration-based constants in organic chemistry only, thermodynamic constants remain the most suitable way to present acidities.

  7. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions.

    PubMed

    Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph; Nielsen, Martin; Drexler, Hans-Joachim; Baumann, Wolfgang; Junge, Henrik; Beller, Matthias

    2013-12-23

    Molecularly well-defined iron pincer complexes promote the aqueous-phase reforming of methanol to carbon dioxide and hydrogen, which is of interest in the context of a methanol and hydrogen economy. For the first time, the use of earth-abundant iron complexes under mild conditions for efficient hydrogen generation from alcohols is demonstrated.

  8. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  9. Alcohol and bone.

    PubMed

    Mikosch, Peter

    2014-01-01

    Alcohol is widely consumed across the world in different cultural and social settings. Types of alcohol consumption differ between (a) light, only occasional consumption, (b) heavy chronic alcohol consumption, and (c) binge drinking as seen as a new pattern of alcohol consumption among teenagers and young adults. Heavy alcohol consumption is detrimental to many organs and tissues, including bones. Osteoporosis is regularly mentioned as a secondary consequence of alcoholism, and chronic alcohol abuse is established as an independent risk factor for osteoporosis. The review will present the different mechanisms and effects of alcohol intake on bone mass, bone metabolism, and bone strength, including alcoholism-related "life-style factors" such as malnutrition, lack of exercise, and hormonal changes as additional causative factors, which also contribute to the development of osteoporosis due to alcohol abuse.

  10. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    PubMed

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  11. Chemical Components of Noncommercial Alcohol Beverage Samples: A Study With the Viewpoint of Toxic Components in Mashhad, Iran

    PubMed Central

    Dadpour, Bita; Hedjazi, Arya; Ghorbani, Hamideh; Khosrojerdi, Hamid; Vaziri, Seyed Mohsen; Malek Zadeh, Haleh; Habibi Tamijani, Amir

    2016-01-01

    Background Iran has one of the lowest alcoholic beverage use rates in comparison with other countries, because it is legally forbidden and because of religious beliefs. Even so, unrecorded and noncommercial alcohol remains a considerable concern, which needs special attention. Objectives In the current research, we have studied the general composition of noncommercial alcohol samples to identify potentially toxic components in the context of the city of Mashhad in IR Iran. Patients and Methods Using a descriptive study, chemical composition records of alcohol samples obtained from Mashhad and its suburbs (from March 2013 to March 2014) were evaluated in terms of ethanol percentage and methanol percentage using gas chromatography. Likewise, the pH of the alcohol and the location of the sample were also considered. Some substances, such as inorganic elements, were not included because there was no information about these substances in the records. Results Of 877 reports of alcohol samples, more than 50% were obtained from Mashhad and the rest were from the suburbs. Of the reports, 57.5% were in the spring and summer, followed by 42.5% in the fall and winter. The mean (min-max) of ethanol percentage was 30.04% (0 - 98.4). In four cases, methanol was detected. The mean (min-max) of methanol percentage was 23% (4 - 95).The majority of the samples had an acidic pH. Conclusions The composition of unrecorded samples did not raise major toxicological concern beyond ethanol in alcohol products. However, concentration levels of methanol in some unrecorded alcohol samples made these samples detrimental for human consumption. PMID:27622171

  12. Proalcohol: the Brazilian alcohol program

    SciTech Connect

    Benemann, J.R.

    1980-07-01

    Examines the Brazilian National Alcohol Plan - Proalcohol - which has as its immediate aim, 20% replacement of all gasoline with alcohol. Future plans call for replacement of virtually all gasoline by alcohol and a significant fraction of diesel fuels by 1986. Issues which are looked at separately are: agronomic, industrial (alcohol production), utilization, institutional, social, environmental, and scientific. Economic issues pervade all of these and are considered in the conclusions. There is a brief discussion of methanol production and the lessons for the United States.

  13. The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults.

    PubMed

    Wang, Shu-Ping; Hu, Xing-Xing; Meng, Qing-Wei; Muhammad, Shahid Arain; Chen, Rui-Rui; Li, Fei; Li, Guo-Qing

    2013-09-01

    Methanol is among the most common short-chain alcohols in fermenting fruits, the natural food and oviposition sites of the fruit fly Drosophila melanogaster. Our previous results showed that cytochrome P450 monooxygenases (CYPs) were associated with methanol detoxification in the larvae. Catalases, alcohol dehydrogenases (ADHs), esterases (ESTs) and glutathione S-transferases (GSTs) were specifically inhibited by 3-amino-1,2,4-triazole (3-AT), 4-methylpyrazole (4-MP), triphenyl phosphate (TPP) and diethylmeleate (DEM), respectively. CYPs were inhibited by piperonyl butoxide (PBO) and 1-aminobenzotriazole (1-ABT). In the present paper, the involvements of these enzymes in methanol metabolism were investigated in female and male adults by determining the combination indices of methanol and their corresponding inhibitors. When PBO, 1-ABT, 3-AT, 4-MP and TPP were individually mixed with methanol, they exhibited significant synergism to the mortality of the adults after 72h of dietary exposure. In contrast, the DEM and methanol mixture showed additive effects. Moreover, methanol exposure dramatically increased CYP activity and up-regulated mRNA expression levels of several Cyp genes. Bioassays using different strains revealed that the variation in ADH activity and RNAi-mediated knockdown of α-Est7 significantly changed LC50 values for methanol. These results suggest that CYPs, catalases, ADHs and ESTs are partially responsible for methanol elimination in adults. It seems that there are some differences in methanol metabolism between larvae and adults, but not between female and male adults.

  14. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica.

    PubMed

    Wakayama, Keishi; Yamaguchi, Sakiko; Takeuchi, Akihito; Mizumura, Tasuku; Ozawa, Shotaro; Tomizuka, Noboru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2016-11-01

    In this study we found that the methylotrophic yeast Pichia methanolica showed impaired growth on high methanol medium (>5%, or 1.56 M, methanol). In contrast, P. methanolica grew well on glucose medium containing 5% methanol, but the growth defects reappeared on glucose medium supplemented with 5 mM formaldehyde. During methanol growth of P. methanolica, formaldehyde accumulated in the medium up to 0.3 mM before it was consumed rapidly based on cell growth. These findings indicate that the growth defect of P. methanolica on high methanol media is not caused directly by methanol toxicity, but rather by formaldehyde, which is a key toxic intermediate of methanol metabolism. Moreover, during methanol growth of P. methanolica, expression of enzymes in the methanol-oxidation pathway were induced before the alcohol oxidase isozymes Mod1p and Mod2p, and Mod1p expression was induced before Mod2p. These results suggest that to avoid excess accumulation of formaldehyde-the toxic intermediate of methanol metabolism-P. methanolica grown on methanol strictly regulates the order in which methanol-metabolizing enzymes are expressed.

  15. Microbial Oxidation of Methane and Methanol: Crystallization of Methanol Dehydrogenase and Properties of Holo- and Apo-Methanol Dehydrogenase from Methylomonas methanica

    PubMed Central

    Patel, Ramesh N.; Hou, Ching T.; Felix, Andre

    1978-01-01

    Procedures are described for the purification and crystallization of methanol dehydrogenase from the soluble fraction of the type I obligate methylotroph Methylomonas methanica strain S1. The crystallized enzyme is homogeneous as judged by acrylamide gel electrophoresis and ultracentrifugation. The enzyme had a high pH optimum (9.5) and required ammonium salt as an activator. In the presence of phenazine methosulfate as an electron acceptor, the enzyme catalyzed the oxidation of primary alcohols and formaldehyde. Secondary, tertiary, and aromatic alcohols were not oxidized. The molecular weight as well as subunit size of methanol dehydrogenase was 60,000, indicating that it is monomeric. The sedimentation constant (s20,w) was 3.1S. The amino acid composition of the crystallized enzyme is also presented. Antisera prepared against the crystalline enzyme were nonspecific; they cross-reacted with and inhibited the isofunctional enzyme from other obligate methylotrophic bacteria. The crystalline methanol dehydrogenase had an absorption peak at 350 nm in the visible region and weak fluorescence peaks at 440 and 470 nm due to the presence of a pteridine derivative as the prosthetic group. A procedure was developed for the preparation of apo-methanol dehydrogenase. The molecular weights, sedimentation constants, electrophoretic mobilities, and immunological properties of apo- and holo-methanol dehydrogenases are identical. Apo-methanol dehydrogenase lacked the absorption peak at 350 nm and the fluorescence peaks at 440 and 470 nm and was catalytically inactive. All attempts to reconstitute an active enzyme from apo-methanol dehydrogenase, using various pteridine derivatives, were unsuccessful. Images PMID:415046

  16. Epidemiology of Alcohol Poisoning and Its Outcome in the North-West of Iran

    PubMed Central

    Morteza Bagi, Hamid Reza; Tagizadieh, Mohammad; Moharamzadeh, Payman; Pouraghaei, Mahboob; Kahvareh Barhagi, Aynaz; Shahsavari Nia, Kavous

    2015-01-01

    Introduction: Alcohol poisoning is one of the main preventable causes of death, disability, and injury in many societies. Ethanol and methanol are the most prevalent kinds of alcohol used. There is no any exact reports of alcohol poisoning and its outcome in Iranian society. Therefore, the present study was assessed the status of alcohol poisoning and its outcome in referees to the emergency department. Methods: This is a cross-sectional study, which was done from July 2013 to 2014 in Sina Trauma Center, Tabriz, Iran. The studied population included all alcohol-poisoning cases referred to this center. Demographic variables, clinical evaluation, laboratory tests, and patient's outcome were evaluated. To assess the relation between evaluated factors and outcome of alcohol poisoning. After univariate analysis, a multivariate logistic regression was applied to evaluate independent risk factors for death. P<0.05 was considered as a significant level. Results: Lastly, 81 patients with alcohol poisoning were entered to the study (91.4% male) with the mean age of 27.9±10.4 years. Ten (12.3%) subjects were dialyzed and 34 (42%) cases hospitalized that 3 (3.7%) of them died. The multivariate logistic regression test displayed that plasma creatinine level (OR=2.2 95%Cl: 1.8-2.5; p=0.015) and need for dialysis (OR=6.4; 95%Cl: 5.3-7.5; p<0.001) were the only risk factors of death among these patients. Conclusion: The findings of the present study revealed that total mortality rate of referees to the emergency with alcohol poisoning was 3.7% all of whom related to methanol poisoning. Based on this result, the mortality rate of methanol poisoning was estimated 20%. Need for dialysis and increasing the creatinine level were accounted as independent risk factors of death. PMID:26512366

  17. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  18. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  19. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  20. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... Daily life skills, such as feeding and bathing Fetal alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, including wide-set and narrow ...

  1. Thermodynamic properties of direct methanol polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Seong, Ji Yun; Bae, Young Chan; Sun, Yang Kook

    A new semi-empirical model is established to describe the cell voltage of a direct methanol fuel cell (DMFC) as a function of current density. The model equation is validated experimental data over a wide range of a methanol concentration and temperatures. A number of existing models are semi-empirical. They, however, have a serious mathematical defect. When the current density, j, becomes zero, the equation should reduce to the open circuit voltage, E0. These models, however, do not meet the mathematical boundary condition. The proposed model focuses on very unfavorable conditions for the cell operation, i.e. low methanol solution concentrations and relatively low cell temperatures. A newly developed semi-empirical equation with reasonable boundary conditions includes the methanol crossover effect that plays a major role in determining the cell voltage of DMFC. Also, it contains methanol activity based on thermodynamic functions to represent methanol crossover effect.

  2. Differential permeation of artemia cysts and cucumber seeds by alcohols

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Siegel, S. M.

    1975-01-01

    The rate of penetration of the simpler alcohols into brine shrimp cysts and cucumber seeds was studied. In solutions below 70% the rate of penetration is related to lipid solvent capacity of the alcohol. In concentrations above 70%, particularly in absolute alcohols, methanol penetrates brine shrimp rapidly and ethanol penetrates slowly. All the other alcohols tested did not penetrate the dormant structures. Ethionine and deuteroxy-methanol did not affect the rate of penetration of methanol. It is suggested that in dehydrated membranes the lipid moiety is protected by a continuous sheet of protein. Methanol, which is fairly similar to water, is probably able to penetrate the membrane by initiating a conformation change in the protein, exposing the lipid which subsequently dissolves in the methanol thus destroying the membrane.

  3. Thermally integrated staged methanol reformer and method

    DOEpatents

    Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  4. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  5. Two new methanol converters

    SciTech Connect

    Westerterp, K.R.; Bodewes, T.N.; Vrijiand, M.S.A.; Kuczynski, M. )

    1988-11-01

    Two novel converter systems were developed for the manufacture of methanol from synthesis gas: the Gas-Solid-Solid Trickle Flow Reactor (GSSTFR) and the Reactor System with Interstage Product Removal (RSIPR). In the GSSTFR version, the product formed at the catalyst surface is directly removed from the reaction zone by means of a solid adsorbent. This adsorbent continuously trickles over the catalyst bed. High reactant conversions up to 100% can be achieved in a single pass so that the usual recycle loop for the unconverted reactants is absent or greatly reduced in size. In the RSIPR version, high conversions per pass are achieved in a series of adiabatic or isothermal fixed bed reactors with selective product removal in absorbers between the reactor stages. The feasibility and economics of the two systems are discussed on the basis of 1,000 tpd methanol plants compared with a low-pressure Lurgi system.

  6. Hairpin ribozyme-catalyzed ligation in water-alcohol solutions.

    PubMed

    Vlassov, Alexander V; Johnston, Brian H; Kazakov, Sergei A

    2005-12-01

    The hairpin ribozyme (HPR) is a naturally existing RNA that catalyzes site-specific RNA cleavage and ligation. At 37 degrees C and in the presence of divalent metal ions (M(2+)), the HPR efficiently cleaves RNA substrates in trans. Here, we show that the HPR can catalyze efficient M(2+)-independent ligation in trans in aqueous solutions containing any of several alcohols, including methanol, ethanol, and isopropanol, and millimolar concentrations of monovalent cations. Ligation proceeds most efficiently in 60% isopropanol at 37 degrees C, whereas the reverse (cleavage) reaction is negligible under these conditions. We suggest that dehydration of the RNA is the key factor promoting HPR activity in water- alcohol solutions. Alcohol-induced ribozyme ligation may have practical applications.

  7. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  8. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  9. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  10. Biofuel production from palm oil with supercritical alcohols: effects of the alcohol to oil molar ratios on the biofuel chemical composition and properties.

    PubMed

    Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Bunyakiat, Kunchana; Ngamprasertsith, Somkiat

    2011-11-01

    Biofuel production from palm oil with supercritical methanol (SCM) and supercritical ethanol (SCE) at 400 °C and 15 MPa were evaluated. At the optimal alcohol to oil molar ratios of 12:1 and 18:1 for the SCM and SCE processes, respectively, the biofuel samples were synthesized in a 1.2-L reactor and the resulting biofuel was analyzed for the key properties including those for the diesel and biodiesel standard specifications. Biofuel samples derived from both the SCM and SCE processes could be used as an alternative fuel after slight improvement in their acid value and free glycerol content. The remarkable advantages of this novel process were: the additional fuel yield of approximately of 5% and 10% for SCM and SCE, respectively; the lower energy consumption for alcohol preheating, pumping and recovering than the biodiesel production with supercritical alcohols that use a high alcohol to oil molar ratio of 42:1.

  11. An Evaluation of Methanol, Ethanol, the Propanols, and the Butanols as Ship Propulsion Fuels.

    DTIC Science & Technology

    1976-09-01

    This report evaluates the alkyl monohydric alcohols from methanol through the butanols (C-1 to C-4) as Navy ship propulsion fuels. Properties of the alcohols from the technical literature are compared with the properties of Navy ship propulsion hydrocarbon fuels (Diesel Fuel Marine and JP-5). None of these alcohols is suitable as a direct substitute or as an extender for the currently used ship propulsion fuels. The use of methanol with its low volumetric energy content would entail over a 50% reduction in range

  12. METHANOL: THE CURRENT STATUS OF ENVIRONMENTAL HEALTH ISSUES

    EPA Science Inventory

    Methanol has been a topic of interest both as an environmental pollutant and as a fuel. The Clean Air Act (CAA) includes methanol in a list of 189 toxic air pollutants that the U.S. Congress identified for special consideration in the 1990 CAA Amendments. In addition, growing i...

  13. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  14. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  15. Methanol as a gasoline extender: a critique.

    PubMed

    Wigg, E E

    1974-11-29

    The tests conducted with the three vehicles at different emission control levels suggest that, in the area of fuel economy and emissions, potential benefits with methanol blends are related to carburetion and are only significant in the case of the rich-operating cars built before emission control standards were imposed. Theoretical considerations related to methanol's leaning effect on carburetion support this conclusion. Potential advantages for methanol in these areas are therefore continuously diminishing as the older cars leave the roads. At present, these older cars use only about one-fourth of the totalc motor gasoline consumed and, before methanol could be used on a large scale, this fraction would be much smaller. The use of methanol in gasoline would almost certainly create severe product quality problems. Water contamination could lead to phase separation in the distribution system and possibly in the car tank as well, and this would require additional investment in fuel handling and blending equipment. Excess fuel volatility in hot weather may also have adverse effects on car performance if the methanol blends include typical concentrations of butanes and pentanes. Removal of these light hydrocarbon components would detract from methanol's role as a gasoline extender and if current fuel volatility specifications were maintained, its use could lead to a net loss in the total available energy for use in motor fuels. Car performance problems associated with excessively lean operation would also be expected in the case of a significant proportion of late-model cars which are adjusted to operate on lean fuel-air mixtures. If methanol does become available in large quantities, these factors suggest that it would be more practical to use it for purposes other than those related to the extending of motor gasoline, such as for gas turbines used for electric power generation. In this case, the "pure" methanol would act as a cleanburning fuel, having none of the

  16. Two applications of the thermogram of the alcohol/water binary system with compositions of cryobiological interests.

    PubMed

    Weng, Lindong; Li, Weizhong; Zuo, Jianguo

    2011-06-01

    Quantitative analyses of the bound water content in the alcohol aqueous solution and its osmotic behavior should be cryobiologically significant. This paper has presented two applications of the thermogram of the alcohol/water system recorded by differential scanning calorimeter (DSC). Both applications are: (1) generating the quantitative relationship between the bound water content and the solution composition; (2) calculating the osmotic virial coefficients for alcohols. Five alcohols including methanol, ethanol, ethylene glycol, propylene glycol and glycerol are investigated. In the present study, partial binary phase diagrams of these five alcohol solutions are determined in the first place. The bound water contents in these solutions are quantitatively evaluated by three criteria afterwards. In the end, the osmotic virial coefficients for these alcohols are calculated according to the osmotic virial equation. It is turned out that the bound water fraction out of the total water content increases with a rising molality. The ability of the solute to restrict water molecules can be weakened when the solution becomes more concentrated. The results also indicate that propylene glycol should be the strongest "water-blocker" while methanol the weakest one. These findings can deepen our understanding of the cryoprotective properties of the alcohols from the perspectives of their roles in binding free water and promoting the osmotic efflux of cell water.

  17. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  18. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  19. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  20. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  1. Formation and spectra of clathrate hydrates of methanol and methanol-ether mixtures

    NASA Astrophysics Data System (ADS)

    Williams, Kenneth Dixon; Devlin, J. Paul

    1997-10-01

    Infrared spectra of mixed clathrate hydrates, with either ethylene oxide (EO) or tetrahydrofuran (THF) and methanol molecules as the guest species, have been obtained from thin films prepared by vapor deposition of D 2O mixtures in the 115-130 K range. Although methanol acts as a suppressant to the direct vapor deposition of a type I clathrate with EO, nearly complete conversion of 115 K amorphous codeposits, to the crystalline mixed clathrate, occurs upon warming near 150 K. By contrast, the type II clathrate of THF shows an increased crystalline quality when methanol is included in the vapor deposits of the mixed clathrate hydrate at 130 K. The observation of the OD stretch-mode band of weakly bonded CD 3OD near 2575 cm -1 is part of the evidence that the methanol molecules are encaged. However, as shown theoretically by Tanaka, the clathrate hydrates of methanol, even when mixed with an ether help gas, are not stable structures but form at low temperatures because of kinetic factors, only to decompose in the 140-160 K range. Attempts to prepare a simple type I or type II clathrate hydrate of methanol have produced mixed results. Limited amounts of clathrate hydrate form during deposition but annealing does not result in complete conversion to crystalline clathrates, particularly for host : guest ratios of 17 : 1.

  2. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six…

  3. Alzheimer's disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice.

    PubMed

    Yang, Meifeng; Lu, Jing; Miao, Junye; Rizak, Joshua; Yang, Jianzhen; Zhai, Rongwei; Zhou, Jun; Qu, Jiagui; Wang, Jianhong; Yang, Shangchuan; Ma, Yuanye; Hu, Xintian; He, Rongqiao

    2014-01-01

    Although methanol toxicity is well known for acute neurological sequelae leading to blindness or death, there is a new impetus to investigate the chronic effects of methanol exposure. These include a recently established link between formaldehyde, a methanol metabolite, and Alzheimer's disease (AD) pathology. In the present study, mice were fed with methanol to revisit the chronic effects of methanol toxicity, especially as it pertains to AD progression. Three groups of mice (n = 9) were given either water as a control or a methanol solution (concentrations of 2% or 3.8%) over a 6-week period. The methanol-fed mice were found to have impaired spatial recognition and olfactory memory in Y-maze and olfactory memory paradigms. Immunohistochemical analysis of the mouse brains found increased neuronal tau phosphorylation in the hippocampus and an increased cellular apoptotic marker in hippocampal CA1 neurons (~10% of neurons displayed chromatin condensation) in the methanol-fed groups. Two additional in vitro experiments in mouse embryonic cerebral cortex neurons and mouse neuroblastoma N2a cells found that formaldehyde, but not methanol or the methanol end product formic acid, induced microtubule disintegration and tau protein hyperphosphorylation. The findings of the behavioral tests and immunohistochemical analysis suggested that the methanol-fed mice presented with partial AD-like symptoms. The in vitro experiments suggested that formaldehyde was most likely the detrimental component of methanol toxicity related to hippocampal tau phosphorylation and the subsequent impaired memory in the mice. These findings add to a growing body of evidence that links formaldehyde to AD pathology.

  4. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  5. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Conceptual Data Model for Administrative Functions of a Typical Naval Ship, to Include: Drug and Alcohol Program Advisor, Watch Quarter and Station Bill, Safety, Medical and Security

    DTIC Science & Technology

    1991-09-01

    J FtI’’il il lIl! UNCLASSIFED SECURITY CLASiIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 1a. REPORT SECURITY CLASSIFICATION 1 b, RESTRICTIVE...MARKINGS UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is...OF FUNDING NUMBERS Program Element No Projetj No Task No. Work Unit A¢Ces$on Number 11. TITLE (Include Security Classification ) CONCEPTUAL DATA MODEL

  8. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  9. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups www.al-anon.org National Institute on Alcohol ...

  10. Prenatal alcohol consumption and knowledge about alcohol consumption and fetal alcohol syndrome in Korean women.

    PubMed

    Kim, Oksoo; Park, Kyungil

    2011-09-01

    The study investigated prenatal alcohol consumption and knowledge of alcohol risks and fetal alcohol syndrome among Korean women. The participants were 221 Korean women who attended the post-partum care centers in Seoul, Korea. The data included the participants' background characteristics, quantity-frequency typology, Student Alcohol Questionnaire, and a scale on the participants' knowledge of fetal alcohol syndrome. Alcohol was consumed during pregnancy by 12.7% of the participants. Of these, 60.7% drank alcohol with their spouse. A few participants reported that nurses identified their drinking habits and gave them information on alcohol consumption and fetal alcohol syndrome. Most of the participants did not have the opportunity for prenatal counseling about fetal alcohol syndrome. The knowledge level regarding alcohol risks and fetal alcohol syndrome among the participants was poor. Alcohol consumption before pregnancy was significantly related to prenatal alcohol consumption. Prenatal alcohol consumption was not related to knowledge about alcohol consumption and fetal alcohol syndrome. The assessment of alcohol consumption and counseling about alcohol are needed for pregnant women in order to prevent fetal alcohol syndrome.

  11. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products.

    PubMed

    Lachenmeier, Dirk W; Haupt, Simone; Schulz, Katja

    2008-04-01

    Higher alcohols occur naturally in alcoholic beverages as by-products of alcoholic fermentation. Recently, concerns have been raised about the levels of higher alcohols in surrogate alcohol (i.e., illicit or home-produced alcoholic beverages) that might lead to an increased incidence of liver diseases in regions where there is a high consumption of such beverages. In contrast, higher alcohols are generally regarded as important flavour compounds, so that European legislation even demands minimum contents in certain spirits. In the current study we review the scientific literature on the toxicity of higher alcohols and estimate tolerable concentrations in alcoholic beverages. On the assumption that an adult consumes 4 x 25 ml of a drink containing 40% vol alcohol, the maximum tolerable concentrations of 1-propanol, 1-butanol, 2-butanol, isobutanol, isoamyl alcohol and 1-hexanol in such a drink would range between 228 and 3325 g/hl of pure alcohol. A reasonable preliminary guideline level would be 1000 g/hl of pure alcohol for the sum of all higher alcohols. This level is higher than the concentrations usually found in both legal alcoholic beverages and surrogate alcohols, so that we conclude that scientific data are lacking so far to consider higher alcohols as a likely cause for the adverse effects of surrogate alcohol. The limitations of our study include the inadequate toxicological data base leading to uncertainties during the extrapolation of toxicological data between the different alcohols, as well as unknown interactions between the different higher alcohols and ethanol.

  12. Methanol-Air Batteries.

    DTIC Science & Technology

    1977-01-01

    Cells charged with 120 ml of anolyte , consisting of 6 M methanol in 11 M KOH, have operated for 2,230 hours under cyclic load drains of 50 mA for 13...minutes and 2 A for 1 second. One cell operated for more than 8,000 hours with periodic refilling of fresh anolyte , demonstrating the long serviceable...life of the electrode components. Fuel utilization efficiencies as high as 84% have been obtained from cells charged with an anolyte solution of

  13. Transport of methanol by pipeline

    SciTech Connect

    Not Available

    1985-04-01

    This report examines and evaluates the problems and considerations that could affect the feasibility of transporting methanol by pipeline. The following are the major conclusions: Though technical problems, such as methanol water contamination and materials incompatibility, remain to be solved, none appears insolvable. Methanol appears to be less toxic, and therefore to represent less of a health hazard, than gasoline, the fuel for which methanol is expected to substitute. The primary safety hazards of methanol, fire and explosion, are no worse than those of gasoline. The environmental hazards that can be associated with methanol are not as significant as those of petroleum. Provided quantities of throughput sufficient to justify pipeline transport are available, there appear to be no economic impediments to the transport of methanol by pipeline. Based on these, it appears that it can be concluded that the pipelining of methanol, whether via an existing petroleum pipeline or a new methanol-dedicated pipeline, is indeed feasible. 66 refs., 3 figs., 27 tabs.

  14. Community pharmacy-delivered interventions for public health priorities: a systematic review of interventions for alcohol reduction, smoking cessation and weight management, including meta-analysis for smoking cessation

    PubMed Central

    Brown, Tamara J; Todd, Adam; O'Malley, Claire; Moore, Helen J; Husband, Andrew K; Bambra, Clare; Kasim, Adetayo; Sniehotta, Falko F; Steed, Liz; Smith, Sarah; Nield, Lucie; Summerbell, Carolyn D

    2016-01-01

    Objectives To systematically review the effectiveness of community pharmacy-delivered interventions for alcohol reduction, smoking cessation and weight management. Design Systematic review and meta-analyses. 10 electronic databases were searched from inception to May 2014. Eligibility criteria for selecting studies Study design: randomised and non-randomised controlled trials; controlled before/after studies, interrupted times series. Intervention: any relevant intervention set in a community pharmacy, delivered by the pharmacy team. No restrictions on duration, country, age, or language. Results 19 studies were included: 2 alcohol reduction, 12 smoking cessation and 5 weight management. Study quality rating: 6 ‘strong’, 4 ‘moderate’ and 9 ‘weak’. 8 studies were conducted in the UK, 4 in the USA, 2 in Australia, 1 each in 5 other countries. Evidence from 2 alcohol-reduction interventions was limited. Behavioural support and/or nicotine replacement therapy are effective and cost-effective for smoking cessation: pooled OR was 2.56 (95% CI 1.45 to 4.53) for active intervention vs usual care. Pharmacy-based interventions produced similar weight loss compared with active interventions in other primary care settings; however, weight loss was not sustained longer term in a range of primary care and commercial settings compared with control. Pharmacy-based weight management interventions have similar provider costs to those delivered in other primary care settings, which are greater than those delivered by commercial organisations. Very few studies explored if and how sociodemographic or socioeconomic variables moderated intervention effects. Insufficient information was available to examine relationships between effectiveness and behaviour change strategies, implementation factors, or organisation and delivery of interventions. Conclusions Community pharmacy-delivered interventions are effective for smoking cessation, and demonstrate that the pharmacy is a

  15. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... 84 Alcohol Alert Number 84 Print Version The Genetics of Alcoholism Why can some people have a ... to an increased risk of alcoholism. Cutting-Edge Genetic Research in Alcoholism Although researchers already have made ...

  16. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  17. Translational Studies of Alcoholism

    PubMed Central

    Zahr, Natalie M.; Sullivan, Edith V.

    2008-01-01

    Human studies are necessary to identify and classify the brain systems predisposing individuals to develop alcohol use disorders and those modified by alcohol, while animal models of alcoholism are essential for a mechanistic understanding of how chronic voluntary alcohol consumption becomes compulsive, how brain systems become damaged, and how damage resolves. Our current knowledge of the neuroscience of alcohol dependence has evolved from the interchange of information gathered from both human alcoholics and animal models of alcoholism. Together, studies in humans and animal models have provided support for the involvement of specific brain structures over the course of alcohol addiction, including the prefrontal cortex, basal ganglia, cerebellum, amygdala, hippocampus, and the hypothalamic–pituitary–adrenal axis. PMID:20041042

  18. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  19. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  20. Monoalkylation of acetonitrile by primary alcohols catalyzed by iridium complexes.

    PubMed

    Anxionnat, Bruno; Pardo, Domingo Gomez; Ricci, Gino; Cossy, Janine

    2011-08-05

    The monoalkylation of acetonitrile by primary alcohols was achieved in a one-pot sequence in the presence of iridium catalysts. A diversity of nitriles has been obtained from aryl- and alkyl-methanols in excellent yield.

  1. OTEC energy via methanol production

    SciTech Connect

    Avery, W.H.; Richards, D.; Niemeyer, W.G.; Shoemaker, J.D.

    1983-01-01

    The conceptual design of an 160 MW/sub e/ OTEC plantship has been documented; it is designed to produce 1000 tonne/day of fuel-grade methanol from coal slurry shipped to the plantship, using oxygen and hydrogen from the on-board electrolysis of water. Data and components are used that were derived by Brown and Root Development, Inc. (BARDI) in designing a barge-mounted plant to make methanol from natural gas for Litton Industries and in the design and construction of a coal-to-ammonia demonstration plant in operation at Muscle Shoals, Alabama, for the Tennessee Valley Authority (TVA). The OTEC-methanol plant design is based on the use of the Texaco gasifier and Lurgi synthesis units. The sale price of OTEC methanol delivered to port from this first-of-a-kind plant is estimated to be marginally competitive with methanol from other sources at current market prices.

  2. Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida

    SciTech Connect

    Fishkind, H.H.

    1982-06-01

    A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the project are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.

  3. Antibacterial activity of Thymus daenensis methanolic extract.

    PubMed

    Mojab, Faraz; Poursaeed, Mahshid; Mehrgan, Hadi; Pakdaman, Shima

    2008-07-01

    Medicinal plants are potential of antimicrobial compounds. The present study deals with the antibacterial activity of methanolic extract of Thymus daenensis. Aerial parts of the plant were collected from Alvand mountainside (Hamadan, Iran) in May 2005, air-dried and extracted by methanol. The dried extract was redissolved in methanol to make a 100 mg/ml solution and then filtered. Antibacterial activity of the extract was evaluated against various Gram-positive and Gram-negatives bacteria using disk diffusion technique. Blank paper disks were loaded with 40 microl of the methanol solution and then dried up. The impregnated disks were placed on Mueller-Hinton agar inoculated with bacterial suspension equal to 0.5 McFarland. The extract inhibited the growth Gram-positive bacteria, i.e., Staphylococcus aureus, Micrococcus luteus, Entrococcus faecalis, Streptococcus pyogenes, but it showed no activity against Gram-negative bacteria. The most significant effect was seen against S.aureus including MRSA, which are important nosocomial pathogens. MIC90 of the extract was determined against Gram-positive bacteria (3.12 mg/ml) and 11 MRSA strain (1.56 mg/ml).

  4. Methanex, Hoechst Celanese dissolve methanol partnership

    SciTech Connect

    Morris, G.D.L.

    1993-03-31

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties.

  5. Alcohol and the law.

    PubMed

    Karasov, Ariela O; Ostacher, Michael J

    2014-01-01

    Society has had an interest in controlling the production, distribution, and use of alcohol for millennia. The use of alcohol has always had consequences, be they positive or negative, and the role of government in the regulation of alcohol is now universal. This is accomplished at several levels, first through controls on production, importation, distribution, and use of alcoholic beverages, and second, through criminal laws, the aim of which is to address the behavior of users themselves. A number of interventions and policies reduce alcohol-related consequences to society by regulating alcohol pricing, targeting alcohol-impaired driving, and limiting alcohol availability. The legal system defines criminal responsibility in the context of alcohol use, as an enormous percentage of violent crime and motor death is associated with alcohol intoxication. In recent years, recovery-oriented policies have aimed to expand social supports for recovery and to improve access to treatment for substance use disorders within the criminal justice system. The Affordable Care Act, also know as "ObamaCare," made substantial changes to access to substance abuse treatment by mandating that health insurance include services for substance use disorders comparable to coverage for medical and surgical treatments. Rather than a simplified "war on drugs" approach, there appears to be an increasing emphasis on evidence-based policy development that approaches alcohol use disorders with hope for treatment and prevention. This chapter focuses on alcohol and the law in the United States.

  6. 75 FR 46949 - National Institute on Alcohol Abuse and Alcoholism; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... conducted by the National Institute on Alcohol Abuse and Alcoholism, including consideration of personnel... Alcohol Abuse and Alcoholism, 5635 Fishers Lane, Room 3061, Rockville, MD 20852, 301-443-6076....

  7. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  8. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    EPA Science Inventory

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  9. Prediction and validation of hemodialysis duration in acute methanol poisoning.

    PubMed

    Lachance, Philippe; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Ghannoum, Marc; Agharazii, Mohsen

    2015-11-01

    The duration of hemodialysis (HD) in methanol poisoning (MP) is dependent on the methanol concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. However, methanol assays are not easily available, potentially leading to undue extension or premature termination of treatment. Here we provide a prediction model for the duration of high-efficiency HD in MP. In a retrospective cohort study, we identified 71 episodes of MP in 55 individuals who were treated with alcohol dehydrogenase inhibition and HD. Four patients had residual visual abnormality at discharge and only one patient died. In 46 unique episodes of MP with high-efficiency HD the mean methanol elimination half-life (T1/2) during HD was 108 min in women, significantly different from the 129 min in men. In a training set of 28 patients with MP, using the 90th percentile of gender-specific elimination T1/2 (147 min in men and 141 min in women) and a target methanol concentration of 4 mmol/l allowed all cases to reach a safe methanol of under 6 mmol/l. The prediction model was confirmed in a validation set of 18 patients with MP. High-efficiency HD time in hours can be estimated using 3.390 × (Ln (MCi/4)) for women and 3.534 × (Ln (MCi/4)) for men, where MCi is the initial methanol concentration in mmol/l, provided that metabolic acidosis is corrected.

  10. Genetics and alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  11. Separation characteristics of alcohol from aqueous solution by ultrasonic atomization.

    PubMed

    Yasuda, Keiji; Mochida, Kyosuke; Asakura, Yoshiyuki; Koda, Shinobu

    2014-11-01

    The generation rate of ultrasonically atomized droplets and the alcohol concentration in droplets were estimated by measuring the flow rate and the alcohol concentration of vapors from a bulk solution with a fountain. The effect of the alcohol concentration in the bulk solution on the generation rate of droplets and the alcohol concentration in droplets were investigated. The ultrasonic frequency was 2.4MHz, and ethanol and methanol aqueous solutions were used as samples. The generation rate of droplets for ethanol was smaller than that for methanol at the same alcohol molar fraction in the bulk solution. For both solutions, at low alcohol concentration in the bulk solution, the alcohol concentration in droplets was lower than that in vapors and the atomized droplets were visible. On the other side, at high concentration, the concentration in droplets exceeded that in vapors and the atomized droplets became invisible. These results could be explained that the alcohol-rich clusters in the bulk solution were preferentially atomized by ultrasonic irradiation. The concentration in droplets for ethanol was higher than that for methanol at low alcohol concentration because the amount of alcohol-rich clusters was larger. When the alcohol molar fraction was greater than 0.6, the atomized droplets almost consisted of pure alcohol.

  12. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    PubMed

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized.

  13. A novel alcohol/iron (III) fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Qingfeng; Zou, Tao; Zhang, Yuanyuan; Liu, Xiaoping; Xu, Guorong; Nie, Huidong; Zhou, Xiulin

    2016-07-01

    A novel alcohol fuel cell is constructed by using Fe3+ as the oxidation agent instead of the conventional O2. Various alcohols as the fuels are tested, including methanol, ethanol, n-propanol and iso-propanol. In this fuel cell, the anode catalysts tested are PdSn/β-cd-CNT, PdSn/CNT, Pd/β-cd-CNT, Pd/CNT and Pd/β-cd-C, prepared by using multi-walled carbon nanotube (CNT) and carbon powder (C), as well as β-cyclodexdrin (β-cd) modified CNT (β-cd-CNT) and β-cd modified C (β-cd-C), as the substrates to immobilize PdSn and Pd nanoparticles in glycol solvent. The as-synthesized PdSn/β-cd-CNT catalyst presents significantly higher electroactivity for alcohol oxidation than the conventional Pd/C catalyst. Fe3+ reduction reaction is carried out on the cathode made of carbon powder. The anolyte (alcohols in 1 mol L-1 NaOH) and catholyte (Fe3+ in 0.5 mol L-1 NaCl) are separated with a Nafion 117 membrane. Open circuit voltage (OCV) of the cell with the anode PdSn/β-cd-CNT is 1.14-1.22 V, depending upon the used alcohol. The maximum power densities with methanol, ethanol, n-propanol and iso-propanol fuels are 15.2, 16.1, 19.9 and 12.2 mW cm-2, respectively.

  14. Single passive direct methanol fuel cell supplied with pure methanol

    NASA Astrophysics Data System (ADS)

    Feng, Ligang; Zhang, Jing; Cai, Weiwei; Liang, Liang; Xing, Wei; Liu, Changpeng

    2011-03-01

    A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm-2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.

  15. [Effectiveness of pre-emptive hemodialysis with high-flux membranes for the treatment of life-threatening alcohol poisoning].

    PubMed

    Peces, R; Fernández, R; Peces, C; González, E; Olivas, E; Renjel, F; Jiménez, M; Costero, O; Montero, A; Selgas, R

    2008-01-01

    Alcohol intoxication (methanol, ethanol and ethylene glycol) may result in metabolic acidosis with increased anion gap, increased serum osmolal gap, and neurologic abnormalities ranging from drunkenness to coma, and death. The mortality and morbidity rates remain very high despite intensive care therapy. The toxicity of methanol and ethylene glycol is clearly correlated to the degree of metabolic acidosis. The established treatment of severe methanol and ethylene glycol intoxication is ethanol administration and hemodialysis (HD). By inhibiting the main metabolic pathway of methanol and ethylene glycol (alcohol dehydrogenase), ethanol prevents the formation of major toxic metabolites (formic acid, glycolic acid and oxalic acid). Conventional HD can reduce serum methanol, ethanol and ethylene glycol and its metabolites rapidly, but high-flux membranes should be capable of removing more toxic per hour of HD. In this report, we describe 14 cases of life-threatening alcohol intoxication (11 methanol, 1 ethanol, and 2 ethylene glycol) who were treated successfully with supportive care, ethanol infusion (methanol and ethylene glycol), and early HD with a high-flux dialyser. The median pH was 7.04 +/- 0.06 (range 6.60-7.33), median bicarbonate 9.9 +/- 1.9 mmol/l (range 1.4-25), and median base deficit 18.4 +/- 2.6 mmol/l (range 2-33). The median anion gap was 29.1 +/- 2.3 mmol/l (range 16-45) and the median osmolal gap was 119 +/- 47 mOsm/l (range 16-402). On admission there was an excellent linear correlation between the serum toxic alcohol concentrations and the osmolal gaps (R2 = 0.98, p = 0.0006). In all cases early HD corrected metabolic acidosis and osmolal abnormalities. The mortality was 7 % (1 from 14). We conclude that pre-emptive HD should be performed in severe intoxications to remove both the parent compound and its metabolites. The HD prescription should include a large surface area dialyser with high-flux membrane, a blood flow rate in excess of 250 ml

  16. Methanol observation of IRAS 19312+1950: A possible new type of class I methanol maser

    NASA Astrophysics Data System (ADS)

    Nakashima, Jun-ichi; Sobolev, Andrej M.; Salii, Svetlana V.; Zhang, Yong; Yung, Bosco H. K.; Deguchi, Shuji

    2015-10-01

    We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O, and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain in the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the λ = 3 mm, 7 mm, and 13 mm bands, and detected six lines including four thermal lines and two class I maser lines. We derived basic physical parameters, including kinetic temperature and relative abundances, by fitting a radiative transfer model. According to the derived excitation temperature and line profiles, a spherically expanding outflow lying at the center of the nebulosity is excluded from the possibilities for methanol emission regions. The detection of class I methanol maser emission suggests that a shock region is involved in the system of IRAS 19312+1950. If the central star of IRAS 19312+1950 is an evolved star as suggested in the past, the class I maser detected in the present observation is the first case detected in an interaction region between an evolved star outflow and ambient molecular gas.

  17. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  18. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  19. Alcohol and Other Drug Use Among Undergraduates at Indiana University, Bloomington, Including a Comparison Between I.U. Students and the State's High School Population. Indiana Studies in Higher Education, No. 49.

    ERIC Educational Resources Information Center

    Wakefield, Linda Morton

    The use of alcohol and six classes of illicit drugs among 485 undergraduates at Indiana University, Bloomington, was studied in 1981-1982 and compared to a state study of alcohol/drug use by high school students. Attention was focused on the following questions: When does drug experimentation begin, and which drugs are currently most popular? How…

  20. Methanol unity frays, discounting returns

    SciTech Connect

    Morris, G.D.L.

    1997-02-05

    This article reviews the price variation in methanol for February 1997 and how the company Methanex compares to other producers. The discrepancy between posting prices and transaction prices is noted.

  1. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices.

    PubMed

    Yuan, Feng; Xiong, Guoxiang; Cohen, Noam A; Cohen, Akiva S

    2017-03-01

    We optimized methanol treatment in paraformaldehyde-fixed slices for immunofluorescent staining of ependymal basal bodies in brain ventricles. As 100% methanol induced severe deformations to the slices (including rolling and folding over), we tried to decrease methanol concentration. We found that 33.3% to 75% methanol could result in ideal immunostaining of basal bodies without inducing obvious deformations. Instead of treating slices at -20°C (without proper cryoprotection measurements) as suggested in previous studies, we carried out methanol treatment at room temperature. Our modified protocol can not only raise immunostaining efficiency in tissue slices, it may also prevent potential freezing damages to the samples.

  2. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices

    PubMed Central

    Yuan, Feng; Cohen, Noam A.; Cohen, Akiva S.

    2017-01-01

    We optimized methanol treatment in paraformaldehyde-fixed slices for immunofluorescent staining of ependymal basal bodies in brain ventricles. As 100% methanol induced severe deformations to the slices (including rolling and folding over), we tried to decrease methanol concentration. We found that 33.3% to 75% methanol could result in ideal immunostaining of basal bodies without inducing obvious deformations. Instead of treating slices at −20°C (without proper cryoprotection measurements) as suggested in previous studies, we carried out methanol treatment at room temperature. Our modified protocol can not only raise immunostaining efficiency in tissue slices, it may also prevent potential freezing damages to the samples. PMID:26509907

  3. Dynamical properties of water-methanol solutions

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H. Eugene

    2016-02-01

    We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ˜ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.

  4. Alcohol and suicidal behavior.

    PubMed

    Hufford, M R

    2001-07-01

    Alcohol dependence and alcohol intoxication are important risk factors for suicidal behavior. However, the mechanism for the relationship remains unclear. This review presents a conceptual framework relating alcohol to suicidal behavior. Distal risk factors create a statistical potential for suicide. Alcohol dependence, as well as associated comorbid psychopathology and negative life events, act as distal risk factors for suicidal behavior. Proximal risk factors determine the timing of suicidal behavior by translating the statistical potential of distal risk factors into action. The acute effects of alcohol intoxication act as important proximal risk factors for suicidal behavior among the alcoholic and nonalcoholic alike. Mechanisms responsible for alcohol's ability to increase the proximal risk for suicidal behavior include alcohol's ability to: (1) increase psychological distress, (2) increase aggressiveness, (3) propel suicidal ideation into action through suicide-specific alcohol expectancies, and (4) constrict cognition which impairs the generation and implementation of alternative coping strategies. Moreover, the proximal risk factors associated with acute intoxication are consistent with Baumeister's (1990) escape theory of suicide. Suggestions for additional research are discussed, including the possibility that a nonlinear cusp catastrophe model characterizes the relationship between alcohol intoxication and suicidal behavior.

  5. Alcohol and the Brain: Neuropsychological Correlates.

    ERIC Educational Resources Information Center

    Grant, Igor

    1987-01-01

    Considers neuropsychological changes associated with alcohol abuse and touches on related neuropathological and neuroradiological research. Describes neuropsychological research on recently detoxified alcoholic men, long-term abstainers, and animals. Sources of neuropsychological variability including family history of alcoholism, developmental…

  6. Indonesia to build methanol plant

    SciTech Connect

    Alperowicz, N.

    1992-08-05

    P.T. Kaltim Methanol Industri (Jakarta), a company set up to build a new methanol plant in Indonesia, expects to award contracts for the construction of a new plant, Indonesia's second methanol unit, by the end of this year. P.T. Kaltim Methanol is a private company owned by P.T. Humpuss, an industrial group active in transport, airlines, and shipping of LNG and methanol. The 2,000-m.t./day plant will be built at Bontang, Kalimantan Island, close to the fertilizer producer P.T. Pupuk Kaltim and near the country's largest natural gas reserves. The site is also a deepsea port, handy for transportation of ready product. Three groups are in discussions with the investor on plant supply as well as methanol offtake deals. They are H G/Kockner; John Brown/Davy/Lucky Goldstar, offering the ICI process independently; and Lurgi/Metallgesellschaft (MG), proposing the Lurgi process. At least 60% of the output is expected to be exported, and both ICI and MG are understood to be interested in selling product from the future plant. Japan, Southeast Asia, and the US are targeted.

  7. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses.

    PubMed

    Wang, Ju; Yuan, Wenji; Li, Ming D

    2011-12-01

    Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.

  8. Depolymerization of polyethylene terephthalate in supercritical methanol

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Koyamoto, Hiroshi; Kodama, Akio; Hirose, Tsutomu; Nagaoka, Shoji

    2002-11-01

    The degradation of polyethylene terephthalate (PET) in supercritical methanol was investigated with the aim of developing a process for chemical recycling of waste plastics. A batch reactor was used at temperatures of 573-623 K under an estimated pressure of 20 MPa for a reaction time of 2-120 min. PET was decomposed to its monomers, dimethyl terephthalate and ethylene glycol, by methanolysis in supercritical methanol. The reaction products were analysed using size-exclusion chromatography, gas chromatography-mass spectrometry, and reversed-phase liquid chromatography. The molecular weight distribution of the products was obtained as a function of reaction time. The yields of monomer components of the decomposition products including by-products were measured. Continuous kinetics analysis was performed on the experimental data.

  9. Visual and neurologic sequelae of methanol poisoning in Saudi Arabia

    PubMed Central

    Galvez-Ruiz, Alberto; Elkhamary, Sahar M.; Asghar, Nasira; Bosley, Thomas M.

    2015-01-01

    Objectives: To present the visual sequelae of methanol poisoning and to emphasize the characteristics of methanol exposure in the Kingdom of Saudi Arabia (KSA). Methods: A retrospective case series was carried out on 50 sequential patients with methanol poisoning seen at the King Khaled Eye Specialist Hospital and King Saud University Hospitals in Riyadh, KSA between 2008 and 2014. All patients were examined by a neuro-ophthalmologist at least one month after methanol intoxication. Results: All 50 patients were young or middle-aged males. All admitted to drinking unbranded alcohol within 2-3 days before profound or relatively profound, painless, bilateral visual loss. Mean visual acuity in this group was hand motions (logMAR 2.82; range 0.1 - 5.0) with some eye to eye variability within individuals. Worse visual acuity was correlated with advancing age (Pearson correlation: oculus dextrus [right eye] - 0.37, p=0.008; oculus sinister [left eye] - 0.36, p=0.011). All patients had optic atrophy bilaterally, and all tested patients had visual field defects. Tremors with or without rigidity were present in 12 patients, and 11 of 30 patients who had neuroimaging performed had evidence of putaminal necrosis. Conclusion: Methanol intoxication causes visual loss within 12-48 hours due to relatively severe, painless, bilateral optic nerve damage that may be somewhat variable between eyes, and is generally worse with advancing age. The coincidence of bilateral optic nerve damage and bilateral putaminal necrosis in a young or middle-aged male is very suspicious for methanol-induced damage. PMID:25935177

  10. Alcohol: A Women's Health Issue

    MedlinePlus

    ... crashes, other injuries, high blood pressure, stroke, violence, suicide, and certain types of cancer. What is a ... than those of male alcoholics, including deaths from suicides, alcohol-related accidents, heart disease and stroke, and ...

  11. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  12. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle

    PubMed Central

    Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.

    2014-01-01

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  13. Acceptorless Photocatalytic Dehydrogenation for Alcohol Decarbonylation and Imine Synthesis

    SciTech Connect

    Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D.

    2012-07-29

    It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H2 (see scheme). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H2.

  14. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alcohol test system. 862.3040 Section 862.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  15. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alcohol test system. 862.3040 Section 862.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  16. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alcohol test system. 862.3040 Section 862.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  17. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alcohol test system. 862.3040 Section 862.3040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  18. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  19. Methanol as A Tracer of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Kozlov, M. G.; Reimers, D.

    2011-09-01

    The methanol molecule CH3OH has a complex microwave spectrum with a large number of very strong lines. This spectrum includes purely rotational transitions as well as transitions with contributions of the internal degree of freedom associated with the hindered rotation of the OH group. The latter takes place due to the tunneling of hydrogen through the potential barriers between three equivalent potential minima. Such transitions are highly sensitive to changes in the electron-to-proton mass ratio, μ = m e/m p, and have different responses to μ-variations. The highest sensitivity is found for the mixed rotation-tunneling transitions at low frequencies. Observing methanol lines provides more stringent limits on the hypothetical variation of μ than ammonia observation with the same velocity resolution. We show that the best-quality radio astronomical data on methanol maser lines constrain the variability of μ in the Milky Way at the level of |Δμ/μ| < 28 × 10-9 (1σ) which is in line with the previously obtained ammonia result, |Δμ/μ| < 29 × 10-9 (1σ). This estimate can be further improved if the rest frequencies of the CH3OH microwave lines will be measured more accurately.

  20. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  1. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  2. Methanol conversion to higher hydrocarbons

    SciTech Connect

    Tabak, S.A.

    1994-12-31

    Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

  3. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-03-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and 5 acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone 10 over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass mo15 tion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  4. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  5. Cardiovascular effects of alcohol.

    PubMed Central

    Davidson, D M

    1989-01-01

    The effects of alcohol on the heart include modification of the risk of coronary artery disease, the development of alcoholic cardiomyopathy, exacerbation of conduction disorders, atrial and ventricular dysrhythmias, and an increased risk of hypertension, hemorrhagic stroke, infectious endocarditis, and fetal heart abnormalities. PMID:2686174

  6. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  7. Improved Direct Methanol Fuel Cell Stack

    SciTech Connect

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  8. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  9. Some Recent Observations on the Burning of Isolated N-Heptane and Alcohol Droplets

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.

    2001-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research on Combustion and Fluid Dynamics, the combustion of liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be studied. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions to the collaborative program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. The complementary UCSD contributions apply asymptotic theoretical analyses and are described in the published literature and in a companion communication in this conference. The combined program continues to focus on analyses of results obtained from Fiber Supported Droplet Combustion (FSDC) experiments (FSDC-2, STS- 94) conducted with the above fuels in shuttle cabin air and Droplet Combustion Experiment (DCE) data obtained for unsupported and fiber supported droplets of n-heptane in Helium-Oxygen mixtures and cabin air (STS-83, STS-94). The program is preparing for a second DCE experimental mission using methanol/methanol-water as fuels and helium-oxygen-nitrogen environments. DCE-2 is to be conducted aboard the International Space Station. Emphases of recent Princeton work are on the study of simple alcohols (methanol, ethanol) and alcohol/water mixtures as fuels, with time-dependent measurements of drop size, flame-standoff, liquid-phase composition, and finally, extinction. Ground based experiments have included bench-scale studies at Princeton and collaborative experimental studies in the 2.2 second drop

  10. VANADIA CATALYZED VAPOR PHASE OXIDATION OF METHANOL IN THE PRESENCE OF OZONE

    EPA Science Inventory

    Catalytic oxidation of methanol was carried out in the presence of ozone using vanadia based catalysts. The process can be used to selectively convert alcohols to aldehydes or ketones. It can also be used to control emissions of volatile organic compounds from Kraft mill and ot...

  11. Inhibition of MMPs by alcohols

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  12. Capillary siphons and their application in the fuel delivery system of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Zhen

    The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5˜1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range.

  13. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  14. Geriatric Alcoholism and Drug Abuse

    ERIC Educational Resources Information Center

    Schuckit, Marc A.

    1977-01-01

    This paper reviews the literature and presents new data on alcohol and drug problems in older individuals. Drug abusers include users of opiates, inadvertent misusers, and deliberate abusers of nonopiates. Two to 10 percent of the elderly are alcoholic, and these are usually individuals beginning alcohol abuse after age 40. (Author)

  15. Alcohol fuels activities at the Solar Energy Research Institute, 1982. [Program Summary

    SciTech Connect

    Not Available

    1983-04-01

    The purpose of this report is to present and describe the SERI R and D activities in alcohol fuels during FY 1982. This report summarizes both in-house and contracted research tasks. Individual task summary sheets are included which report budget allocations, the objectives, and the technical approach. The major emphasis of the program is on cellulose-to-ethanol process development, with a smaller emphasis on methanol synthesis through gasification. To improve biological processing of biomass, the program also includes many of the long-lead-time, basic research tasks in such areas of recombinant DNA, genetics, and mutant strain selection.

  16. Influence of vitamin C on alcohol binding to phospholipid monolayers.

    PubMed

    Weis, M; Kopáni, M

    2008-07-01

    The simple model of the biological membrane is provided by well-controlled lipid monolayers at the air-water interface. The Maxwell displacement current technique (MDC) provides novel approach to conformation study of the membrane models. The effect of alcohols is interaction with membrane molecules, mainly with the lipid head group and consequent changes in physical-chemical properties of the membrane. The aim of study is to detect changes in structural, electrical and mechanical properties of dipalmitoyl-phosphatidylcholine (DPPC) monolayer on the subphase of methanol-water and ethanol-water mixtures before and after addition of antioxidant agent, vitamin C. Monolayers properties are investigated by a surface pressure analysis (including mechanical properties evaluation) and the Maxwell displacement current measurement, the dipole moment projection calculation. Surface pressure-area isotherms show similar behaviour of the DPPC monolayer on alcohol-water mixtures independently on presence of vitamin C. Binding/adsorption process induces change of electron density distribution across monolayer and thus the molecular dipole moment. We observe small or negligible binding of methanol molecules on oxygen bonds of DPPC. Thus the antioxidant, vitamin C, has no significant effect. For ethanol-water mixtures is observed recovery of electrical properties in presence of antioxidant agent. We suppose that vitamin C regulates DPPC-ethanol molecules interaction.

  17. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    PubMed Central

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  18. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.

    PubMed

    Witthoff, Sabrina; Mühlroth, Alice; Marienhagen, Jan; Bott, Michael

    2013-11-01

    Methanol is considered an interesting carbon source in "bio-based" microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert (13)C-labeled methanol to (13)CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.

  19. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  20. Alcoholic and non-alcoholic steatohepatitis.

    PubMed

    Neuman, Manuela G; French, Samuel W; French, Barbara A; Seitz, Helmut K; Cohen, Lawrence B; Mueller, Sebastian; Osna, Natalia A; Kharbanda, Kusum K; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J; McKillop, Iain H; Kirpich, Irina A; McClain, Craig J; Bataller, Ramon; Nanau, Radu M; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomes, Paul G; Ganesan, Murali; Malnick, Steve

    2014-12-01

    This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  1. Fetal alcohol exposure: consequences, diagnosis, and treatment.

    PubMed

    Pruett, Dawn; Waterman, Emily Hubbard; Caughey, Aaron B

    2013-01-01

    Maternal alcohol use during pregnancy is prevalent, with as many as 12% of pregnant women consuming alcohol. Alcohol intake may vary from an occasional drink, to weekly binge drinking, to chronic alcohol use throughout pregnancy. Whereas there are certain known consequences from fetal alcohol exposure, such as fetal alcohol syndrome, other effects are less well defined. Craniofacial dysmorphologies, abnormalities of organ systems, behavioral and intellectual deficits, and fetal death have all been attributed to maternal alcohol consumption. This review article considers the theoretical mechanisms of how alcohol affects the fetus, including the variable susceptibility to fetal alcohol exposure and the implications of ethanol dose and timing of exposure. Criteria for diagnosis of fetal alcohol syndrome are discussed, as well as new methods for early detection of maternal alcohol use and fetal alcohol exposure, such as the use of fatty acid ethyl esters. Finally, current and novel treatment strategies, both in utero and post utero, are reviewed.

  2. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  3. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  4. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  5. National Institute on Alcohol Abuse and Alcoholism

    MedlinePlus

    ... Alcohol Awareness Month April is Alcohol Awareness Month Biosensor Challenge Learn more College Drinking Learn More Alcohol Dependence Get the facts Alcohol Awareness Month Biosensor Challenge College Drinking Alcohol Dependence Latest News New & ...

  6. Prevalence of alcohol abuse and alcoholism in general population of Mostar region, Bosnia and Herzegovina.

    PubMed

    Skobić, Helena; Sinanović, Osman; Skobić Bovan, Nada; Ivanković, Ante; Pejanović Skobić, Natasa

    2010-03-01

    The aim of this study was to determine the prevalence of alcohol abuse and alcoholism in the general population of Mostar region, Bosnia and Herzegovina. This study was conducted on a stratified sample of 704 participants. The prevalence of alcohol abuse was determined using standardized questionnaire on alcohol consumption--Michigan Alcoholism Screening Test. Prevalence of alcohol abuse with high risk for alcoholism was 9.9% and prevalence of alcohol addiction was 2.1%. In student population, there were 3.9% of alcohol addicts and 11.1% of persons with high risk of alcoholism. In high school population, there were 1.7% of alcohol addicts and 14.4% of persons with high risk of alcoholism. In Mostar region there was a high prevalence of alcoholism and problematic drinking, especially in high school and student population. There is a need for extensive preventive measures that have to include education, early diagnosis and intervention.

  7. Interaction of alcohols with [val5]angiotensin in alcohol-water mixtures.

    PubMed

    Neuman, R C; Gerig, J T

    2010-05-20

    Intermolecular solvent-solute NOE experiments have been used to probe interactions of various alcohols with the peptide hormone [val(5)]angiotensin II at 0 degrees C. It is found that these NOEs are detectable but dependent on the kind of alcohol present and the conformation of the peptide. Solvent-solute NOEs in 100% methanol and 89% methanol-water are basically those predicted by a hard sphere model for intermolecular spin dipole interactions. NOEs at the peptide backbone (N-H, C alpha-H) protons in 25% methanol-water and 36% ethylene glycol-water mixtures indicate that alcohol interactions near these groups are also adequately described by this model. However, in 35% ethanol-water, interactions of alcohol methyl protons with the peptide result in unexpectedly negative NOEs, probably signaling that peptide-alcohol interactions in this solvent take place on a significantly slower time scale than that defined by mutual diffusion of these species. Some side chain-alcohol interactions result in NOEs up to 8 times larger than expected. Possible reasons for these enhanced effects are discussed.

  8. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

    PubMed

    Shi, Lei; Yang, Guohui; Tao, Kai; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2013-08-20

    converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

  9. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  10. Fermentation of methanol in the sheep rumen.

    PubMed

    Pol, A; Demeyer, D I

    1988-03-01

    Sheep fed a hay-concentrate diet were adapted to pectin administration and ruminal infusion of methanol. Both treatments resulted in a strong increase in the rate of methanogenesis from methanol. Quantitative data show that methanol was exclusively converted into methane. Treatments did not influence ruminal volatile fatty acid percentages.

  11. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  12. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  13. Methanol fuel vehicle demonstration: Exhaust emission testing. Final report

    SciTech Connect

    Hyde, J.D.

    1993-07-01

    Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

  14. Viewpoint: methanol poisoning outbreak in Libya: a need for policy reforms.

    PubMed

    Taleb, Ziyad Ben; Bahelah, Raed

    2014-11-01

    We address the controversies surrounding a 2013 outbreak of methanol poisoning in Tripoli, Libya. We critically examine and systematically analyze the outbreak to highlight the lessons learned from this disaster and how to act properly to prevent similar outbreaks in future. Many health problems have been directly attributed to drinking alcohol; the type and quality of alcohol determines the detrimental effects. An unregulated and flourishing black market in alcohol is among the factors behind the Libyan tragedy, where approximately 90 deaths and about 1000 hospital admissions were reported. We reviewed gaps in local and regional alcohol policy, and highlighted the issue of illegally produced and home-made alcohol. Collaboration between countries in the region plus critical health and policy reforms in Libya, with emphasis on public health preparedness, can dramatically decrease morbidity and mortality associated with such outbreaks.

  15. Alcohol Use Disorders

    MedlinePlus

    ... Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol ... less effect than before? Found that when the effects of alcohol were wearing off, you had withdrawal symptoms, such ...

  16. Ego Identity of Adolescent Children of Alcoholics

    ERIC Educational Resources Information Center

    Gavriel-Fried, Belle; Teichman, Meir

    2007-01-01

    The study examines the issue of ego identity among adolescent sons of alcoholic fathers. Forty-four adolescent sons of alcoholic fathers, age of 15-18, constituted the sample. They were drawn from public alcohol treatment center in Israel. The control group included 60 adolescents none of their parents is known as an alcoholic, sampled from…

  17. Receptivity to alcohol marketing predicts initiation of alcohol use

    PubMed Central

    Henriksen, Lisa; Feighery, Ellen C.; Schleicher, Nina C.; Fortmann, Stephen P.

    2008-01-01

    Purpose This longitudinal study examined the influence of alcohol advertising and promotions on the initiation of alcohol use. A measure of receptivity to alcohol marketing was developed from research about tobacco marketing. Recall and recognition of alcohol brand names were also examined. Methods Data were obtained from in-class surveys of 6th, 7th, and 8th graders at baseline and 12-month follow-up. Participants who were classified as never drinkers at baseline (n=1,080) comprised the analysis sample. Logistic regression models examined the association of advertising receptivity at baseline with any alcohol use and current drinking at follow-up, adjusting for multiple risk factors, including peer alcohol use, school performance, risk taking, and demographics. Results At baseline, 29% of never drinkers either owned or wanted to use an alcohol branded promotional item (high receptivity), 12% students named the brand of their favorite alcohol ad (moderate receptivity) and 59% were not receptive to alcohol marketing. Approximately 29% of adolescents reported any alcohol use at follow-up; 13% reported drinking at least 1 or 2 days in the past month. Never drinkers who reported high receptivity to alcohol marketing at baseline were 77% more likely to initiate drinking by follow-up than those were not receptive. Smaller increases in the odds of alcohol use at follow-up were associated with better recall and recognition of alcohol brand names at baseline. Conclusions Alcohol advertising and promotions are associated with the uptake of drinking. Prevention programs may reduce adolescents’ receptivity to alcohol marketing by limiting their exposure to alcohol ads and promotions and by increasing their skepticism about the sponsors’ marketing tactics. PMID:18155027

  18. Therapy for alcoholic liver disease

    PubMed Central

    Jaurigue, Maryconi M; Cappell, Mitchell S

    2014-01-01

    Alcoholism results in about 2.5 million deaths annually worldwide, representing 4% of all mortality. Although alcoholism is associated with more than 60 diseases, most mortality from alcoholism results from alcoholic liver disease (ALD). ALD includes alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, in order of increasing severity. Important scoring systems of ALD severity include: Child-Pugh, a semi-quantitative scoring system useful to roughly characterize clinical severity; model for end-stage liver disease, a quantitative, objective scoring system used for prognostication and prioritization for liver transplantation; and discriminant function, used to determine whether to administer corticosteroids for alcoholic hepatitis. Abstinence is the cornerstone of ALD therapy. Psychotherapies, including twelve-step facilitation therapy, cognitive-behavioral therapy, and motivational enhancement therapy, help support abstinence. Disulfiram decreases alcohol consumption by causing unpleasant sensations after drinking alcohol from accumulation of acetaldehyde in serum, but disulfiram can be hepatotoxic. Adjunctive pharmacotherapies to reduce alcohol consumption include naltrexone, acamprosate, and baclofen. Nutritional therapy helps reverse muscle wasting, weight loss, vitamin deficiencies, and trace element deficiencies associated with ALD. Although reduced protein intake was previously recommended for advanced ALD to prevent hepatic encephalopathy, a diet containing 1.2-1.5 g of protein/kg per day is currently recommended to prevent muscle wasting. Corticosteroids are first-line therapy for severe alcoholic hepatitis (discriminant function ≥ 32), but proof of their efficacy in decreasing mortality remains elusive. Pentoxifylline is an alternative therapy. Complications of advanced ALD include ascites, spontaneous bacterial peritonitis, esophageal variceal bleeding, hepatic encephalopathy, hepatorenal syndrome, hepatopulmonary syndrome, and

  19. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours.

  20. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  1. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  2. Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire.

    PubMed

    Zhang, Qinglin; Wang, Lu; Bi, Yixing; Xu, Dajun; Zhi, Huiqiang; Qiu, Peifang

    2015-04-28

    A steel channel with the size of 30m×2 m×1.2m has been made to simulate the full surface fire of a 50,000m(3) methanol tank. Several large-scale methanol fire extinguishment experiments have been conducted under different foam application rates and foam concentrations in order to investigate the flow length, flow velocity and fire extinguishing effectiveness of the alcohol-resistant foam. The result showed that the alcohol-resistant aqueous film forming foam (AFFF/AR) and alcohol-resistant fluoro-protein foam (FP/AR) could flow beyond 30m on the burning methanol surface and extinguish the fire successfully even with the foam application rate of 4Lmin(-1)m(-2). Under the same condition, the fire extinguishing performance of AFFF/AR was better than FP/AR, and the flow velocity of AFFF/AR on the burning methanol surface was 0.203ms(-1), while the value of FP/AR was 0.082ms(-1).

  3. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.

    PubMed

    Wu, Tung-Yun; Chen, Chang-Ting; Liu, Jessica Tse-Jin; Bogorad, Igor W; Damoiseaux, Robert; Liao, James C

    2016-06-01

    Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation.

  4. Aggregation kinetics of latex microspheres in alcohol-water media.

    PubMed

    Odriozola, G; Schmitt, A; Callejas-Fernández, J; Hidalgo-Alvarez, R

    2007-06-15

    We report zeta potential and aggregation kinetics data on colloidal latex particles immersed in water-alcohol media. Zeta potential values show absolute maxima for volume fractions of alcohol of 0.10 and 0.05 for ethanol and 1-propanol, respectively. For methanol, no maximum of the absolute value of the zeta potential was found. Aggregation kinetics was studied by means of a single-cluster optical sizing equipment and for alcohol volume fractions ranging from 0 to 0.1. The aggregation processes are induced by adding different potassium bromide concentrations to the samples. We expected to find a slowdown of the overall aggregation kinetics for ethanol and 1-propanol, and no significant effect for methanol, as compared with pure water data. That is, we expected the zeta potential to govern the overall aggregation rate. However, we obtained a general enhancement of the aggregation kinetics for methanol and 1-propanol and a general slowdown of the aggregation rate for ethanol. In addition, aggregation data under ethanol show a slower kinetics for large electrolyte concentration than that obtained for intermediate electrolyte concentration. We think that these anomalous behaviors are linked to layering, changes in hydrophobicity of particle surfaces due to alcohol adsorption, complex ion-water-alcohol-surface structuring, and competition between alcohol-surface adsorption and alcohol-alcohol clustering.

  5. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  6. Trinidad to build fifth methanol plant

    SciTech Connect

    1997-04-09

    Lurgi confirms it has been awarded a lump sum turnkey contract to build Trinidad`s fifth methanol plant. The facility will be owned by Titan Methanol, whose shareholders are Beacon Group Energy Investment Fund (75%) Amoco Chemical (15%), and Saturn Methanol (10%). The 2,500-m.t./day unit at Point Lisas, which is scheduled to come onstream at the end of 1999, will be Trinidad`s largest methanol unit. Saturn Methanol will be responsible for methanol offtake. Lurgi will use its combined reforming process for the gas section of the unit and its low-pressure methanol synthesis technology. Lurgi has used the same processes in plants in Malaysia and Indonesia.

  7. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  8. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  9. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes.

    PubMed

    Wulfers, M J; Teketel, S; Ipek, B; Lobo, R F

    2015-03-14

    This communication reports the discovery of several small-pore Cu-zeolites and zeotypes that produce methanol from methane and water vapor, and produce more methanol per copper atom than Cu-ZSM-5 and Cu-mordenite. The new materials include Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-39, and Cu-SAPO-34.

  10. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  11. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  12. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.

  13. Genetic studies in alcohol research

    SciTech Connect

    Karp, R.W.

    1994-12-15

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) supports research to elucidate the specific genetic factors, now largely unknown, which underlie susceptibility to alcoholism and its medical complications (including fetal alcohol syndrome). Because of the genetic complexity and heterogeneity of alcoholism, identification of the multiple underlying factors will require the development of new study designs and methods of analysis of data from human families. While techniques of genetic analysis of animal behavioral traits (e.g., targeted gene disruption, quantitative trait locus (QTL) mapping) are more powerful that those applicable to humans (e.g., linkage and allelic association studies), the validation of animal behaviors as models of aspects of human alcoholism has been problematic. Newly developed methods for mapping QTL influencing animal behavioral traits can not only permit analyses of human family data to be directly informed by the results of animal studies, but can also serve as a novel means of validating animal models of aspects of alcoholism. 55 refs.

  14. Alcoholism: genes and mechanisms.

    PubMed

    Oroszi, Gabor; Goldman, David

    2004-12-01

    Alcoholism is a chronic relapsing/remitting disease that is frequently unrecognized and untreated, in part because of the partial efficacy of treatment. Only approximately one-third of patients remain abstinent and one-third have fully relapsed 1 year after withdrawal from alcohol, with treated patients doing substantially better than untreated [1]. The partial effectiveness of strategies for prevention and treatment, and variation in clinical course and side effects, represent a challenge and an opportunity to better understand the neurobiology of addiction. The strong heritability of alcoholism suggests the existence of inherited functional variants of genes that alter the metabolism of alcohol and variants of other genes that alter the neurobiologies of reward, executive cognitive function, anxiety/dysphoria, and neuronal plasticity. Each of these neurobiologies has been identified as a critical domain in the addictions. Functional alleles that alter alcoholism-related intermediate phenotypes include common alcohol dehydrogenase 1B and aldehyde dehydrogenase 2 variants that cause the aversive flushing reaction; catechol-O-methyltransferase (COMT) Val158Met leading to differences in three aspects of neurobiology: executive cognitive function, stress/anxiety response, and opioid function; opioid receptor micro1 (OPRM1) Asn40Asp, which may serve as a gatekeeper molecule in the action of naltrexone, a drug used in alcoholism treatment; and HTTLPR, which alters serotonin transporter function and appears to affect stress response and anxiety/dysphoria, which are factors relevant to initial vulnerability, the process of addiction, and relapse.

  15. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  16. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol.

    PubMed

    Alberico, E; Nielsen, M

    2015-04-21

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

  17. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  18. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  19. Children of Alcoholics: Alcohol, Tobacco, and Other Drugs Resource Guide.

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Center for Substance Abuse Prevention.

    This resource guide contains a list of materials for professionals working with children of alcoholics. The information is divided into four sections: (1) prevention materials that include coping with an alcoholic or drug-abusing parent, kids talking to kids, and networking; (2) curricula including learning to live drug free, and resources for the…

  20. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    It is reported that Savannah Foods and Industries, in a joint venture with United States Sugar Corporation have applied for a loan guarantee for the production of alcohol from agricultural commodities. The two phase program calls for research and development, before a prototype plant will be built for the conversion of cellulosic compounds found in bagasse into alcohol for use as a fuel.

  1. Alcohol Facts

    MedlinePlus

    ... Families? Why Is It So Hard to Quit Drugs? Effects of Drugs Drug Use Hurts Other People Drug Use Hurts ... This Section Signs of Alcohol Abuse and Addiction Effects of Alcohol on Brains and Bodies Previous ... Treatment Work? Treatment and Rehab Resources About the ...

  2. Eleventh Annual Conference on Alcohol and Biomass Energy Technologies

    NASA Astrophysics Data System (ADS)

    1991-10-01

    NEDO is undertaking a number of alcohol and biomass energy technology projects aiming at developing technology for bacterial production of fuel alcohol directly from currently unutilized resources such as agricultural and forestry wastes. This book reports the eleventh annual conference and consists of two parts. Part one describes outlines of these projects classified into three groups. In part two, achievements of these projects are reported in detail. For the development of fuel alcohol production technology using bacteria, searching for and breeding superior bacteria were achieved, and the optimum design of a total production system including a fermenter and peripheral processes was studied. Next, for the development of a high-efficiency membrane complex methane production unit from sewage and industrial waste water, membrane modules, a new type bioreactor, and an instrumentation and control system were investigated, leading to test production with pilot plants. Finally, for demonstration tests for converting oil-fired power stations to methanol, developmental studies on stationary diesel power generation and others were carried out.

  3. Alcohol Consumption in Demographic Subpopulations

    PubMed Central

    Delker, Erin; Brown, Qiana; Hasin, Deborah S.

    2016-01-01

    Alcohol consumption is common across subpopulations in the United States. However, the health burden associated with alcohol consumption varies across groups, including those defined by demographic characteristics such as age, race/ethnicity, and gender. Large national surveys, such as the National Epidemiologic Survey on Alcohol and Related Conditions and the National Survey on Drug Use and Health, found that young adults ages 18–25 were at particularly high risk of alcohol use disorder and unintentional injury caused by drinking. These surveys furthermore identified significant variability in alcohol consumption and its consequences among racial/ethnic groups. White respondents reported the highest prevalence of current alcohol consumption, whereas alcohol abuse and dependence were most prevalent among Native Americans. Native Americans and Blacks also were most vulnerable to alcohol-related health consequences. Even within ethnic groups, there was variability between and among different subpopulations. With respect to gender, men reported more alcohol consumption and binge drinking than women, especially in older cohorts. Men also were at greater risk of alcohol abuse and dependence, liver cirrhosis, homicide after alcohol consumption, and drinking and driving. Systematic identification and measurement of the variability across demographics will guide prevention and intervention efforts, as well as future research. PMID:27159807

  4. Kinetics and mechanism of phosgenation of aliphatic alcohols. VI. The role of the association of the alcohol

    SciTech Connect

    Orlov, S.I.; Chimishkyan, A.L.; Negrebetskii, V.V.

    1988-07-10

    Investigation of the effect of the association of a series of alcohols on the phosgenation rate in heptane showed that the tetramer of the alcohol enters exclusively into reaction with phosgene. This is explained by the formation of a bicyclic transition state (or tetrahedral intermediate), which does not require previous desolvation or association of the alcohol and secures effective intramolecular assistance to the elimination of hydrogen chloride. The electronic structure was determined by CNDO/2 quantum-chemical calculations, which reproduces the three-dimensional structure and electron density distribution in the molecules fairly well. Methanol was chosen as model alcohol in order to simplify the calculations.

  5. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.

    PubMed

    Olson, Edwin S; Sharma, Ramesh K; Aulich, Ted R

    2004-01-01

    The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the self-condensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol. All of these higher alcohols are useful as solvents, chemical intermediates, and fuel additives and, consequently, have higher market values than the simple alcohol intermediates. Several new catalysts for the condensation of ethanol and alcohol mixtures to higher alcohols were designed and tested under a variety of conditions. Reactions of methanol-ethanol mixtures gave as high as 100% conversion of the ethanol to form high yields of isobutanol with smaller amounts of 1-propanol, the amounts in the mixture depending on the starting mixture. The most successful catalysts are multifunctional with basic and hydrogen transfer components.

  6. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  7. Surface tension of water-alcohol mixtures from Monte Carlo simulations.

    PubMed

    Biscay, F; Ghoufi, A; Malfreyt, P

    2011-01-28

    Monte Carlo simulations are reported to predict the dependence of the surface tension of water-alcohol mixtures on the alcohol concentration. Alcohols are modeled using the anisotropic united atom model recently extended to alcohol molecules. The molecular simulations show a good agreement between the experimental and calculated surface tensions for the water-methanol and water-propanol mixtures. This good agreement with experiments is also established through the comparison of the excess surface tensions. A molecular description of the mixture in terms of density profiles and hydrogen bond profiles is used to interpret the decrease of the surface tension with the alcohol concentration and alcohol chain length.

  8. Thermodynamic and structural properties of methanol-water solutions using nonadditive interaction models.

    PubMed

    Zhong, Yang; Warren, G Lee; Patel, Sandeep

    2008-05-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be -5.6 +/- 0.2 kcal/mol, in respectable agreement with the experimental value of -5.1 kcal/mol. With respect to solution microstructure, the present cluster analysis suggests that the microscale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bipercolating network structure.

  9. Thermodynamic and Structural Properties of Methanol-Water Solutions Using Non-Additive Interaction Models

    PubMed Central

    Zhong, Yang; Warren, G. Lee; Patel, Sandeep

    2014-01-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339

  10. Alcoholic cardiomyopathy: Pathophysiologic insights

    PubMed Central

    Piano, Mariann R.; Phillips, Shane A.

    2014-01-01

    Alcoholic cardiomyopathy is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. Alcoholic cardiomyopathy is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of alcoholic cardiomyopathy. PMID:24671642

  11. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  12. Direct methanol fuel cell for portable applications

    SciTech Connect

    Valdez, T.I.; Narayanan, S.R.; Frank, H.; Chun, W.

    1997-12-01

    A five cell direct methanol fuel cell stack has been developed at the Jet Propulsion Laboratory. Presently direct methanol fuel cell technology is being incorporated into a system for portable applications. Electrochemical performance and its dependence on flow rate and temperature for a five cell stack are presented. Water transport data, and water transport mechanisms for direct methanol fuel cells are discussed. Stack response to pulse loads has been characterized. Implications of stack performance and operating conditions on system design have been addressed.

  13. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  14. An Experimental Study of Methanol Reformation.

    DTIC Science & Technology

    1979-12-01

    1973, p. 1300) show how methanol compares to other alterna- tives. In addition, the production of methanol from syngas is a proven commercial...technology, and the syngas can be coal-derived (Wilk 1978, p. 56). The disadvantages of methanol concern the fact that more will have to be carried than...the chief engineer’s job to continue research and upgrading into 1980. 2.2 Design Parameters The following limitations were placed on the new system

  15. From protein denaturant to protectant: Comparative molecular dynamics study of alcohol/protein interactions

    NASA Astrophysics Data System (ADS)

    Shao, Qiang; Fan, Yubo; Yang, Lijiang; Qin Gao, Yi

    2012-03-01

    It is well known that alcohols can have strong effects on protein structures. For example, monohydric methanol and ethanol normally denature, whereas polyhydric glycol and glycerol protect, protein structures. In a recent combined theoretical and NMR experimental study, we showed that molecular dynamics simulations can be effectively used to understand the molecular mechanism of methanol denaturing protein. In this study, we used molecular dynamics simulations to investigate how alcohols with varied hydrophobicity and different numbers of hydrophilic groups (hydroxyl groups) exert effects on the structure of the model polypeptide, BBA5. First, we showed that methanol and trifluoroethanol (TFE) but not glycol or glycerol disrupt hydrophobic interactions. The latter two alcohols instead protect the assembly of the α- and β-domains of the polypeptide. Second, all four alcohols were shown to generally increase the stability of secondary structures, as revealed by the increased number of backbone hydrogen bonds formed in alcohol/water solutions compared to that in pure water, although individual hydrogen bonds can be weakened by certain alcohols, such as TFE. The two monohydric alcohols, methanol and TFE, display apparently different sequence-dependence in affecting the backbone hydrogen bond stability: methanol tends to enhance the stability of backbone hydrogen bonds of which the carbonyl groups are from polar residues, whereas TFE tends to stabilize those involving non-polar residues. These results demonstrated that subtle differences in the solution environment could have distinct consequences on protein structures.

  16. Stress and Alcohol

    PubMed Central

    Keyes, KM.; Hatzenbuehler, ML.; Grant, Bridget F.; Hasin, Deborah S.

    2012-01-01

    Exposure to stress often is psychologically distressing. The impact of stress on alcohol use and the risk of alcohol use disorders (AUDs) depends on the type, timing during the life course, duration, and severity of the stress experienced. Four important categories of stressors that can influence alcohol consumption are general life stress, catastrophic/fateful stress, childhood maltreatment, and minority stress. General life stressors, including divorce and job loss, increase the risk for AUDs. Exposure to terrorism or other disasters causes population-level increases in overall alcohol consumption but little increase in the incidence of AUDs. However, individuals with a history of AUDs are more likely to drink to cope with the traumatic event. Early onset of drinking in adolescence, as well as adult AUDs, are more common among people who experience childhood maltreatment. Finally, both perceptions and objective indicators of discrimination are associated with alcohol use and AUDs among racial/ethnic and sexual minorities. These observations demonstrate that exposure to stress in many forms is related to subsequent alcohol consumption and AUDs. However, many areas of this research remain to be studied, including greater attention to the role of various stressors in the course of AUDs and potential risk moderators when individuals are exposed to stressors. PMID:23584105

  17. College Student Perceptions on Campus Alcohol Policies and Consumption Patterns

    ERIC Educational Resources Information Center

    Marshall, Brenda L.; Roberts, Katherine J.; Donnelly, Joseph W.; Rutledge, Imani N.

    2011-01-01

    Environmental strategies for colleges and universities to reduce alcohol consumption among their students include the development and enforcement of campus alcohol policies. This study examines students' knowledge and attitudes toward campus alcohol policies and how they relate to alcohol consumption and alcohol social norms. A sample of 422…

  18. 27 CFR 19.608 - Cases of industrial alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Cases of industrial alcohol. 19.608 Section 19.608 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Cases of industrial alcohol. (a) Mandatory marks. Each case, including encased containers, of...

  19. Are Alcohol Expectancies Associations? Comment on Moss and Albery (2009)

    ERIC Educational Resources Information Center

    Wiers, Reinout W.; Stacy, Alan W.

    2010-01-01

    Moss and Albery (2009) presented a dual-process model of the alcohol-behavior link, integrating alcohol expectancy and alcohol myopia theory. Their integrative theory rests on a number of assumptions including, first, that alcohol expectancies are associations that can be activated automatically by an alcohol-relevant context, and second, that…

  20. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24059 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  1. Alcohol during Pregnancy

    MedlinePlus

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  2. Influence of apple cultivar and juice pasteurization on hard cider and eau-de-vie methanol content.

    PubMed

    Hang, Yong D; Woodams, Edward E

    2010-02-01

    Apple eau-de-vie is a traditional alcoholic beverage produced in France by distillation of fermented apple juice (hard cider). The current research was undertaken to determine the methanol content of hard cider and apple eau-de-vie made from four apple cultivars grown in the Finger Lakes region of New York State. The methanol concentration of hard cider varied from 0.037% to approximately 0.091%, and the methanol content of apple eau-de-vie ranged from below 200 mg to more than 400 mg/100mL of 40% ethanol. The United States legal limit of methanol for fruit brandy is 0.35% by volume or 280 mg/100mL of 40% ethanol. Of the four apple cultivars examined, Crispin apples yielded significantly more methanol in hard cider and eau-de-vie than Empire, Jonagold or Pacific Rose apples. Pasteurization of Crispin apple juice prior to alcoholic fermentation significantly reduced the methanol content of hard cider and eau-de-vie.

  3. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface.

    PubMed

    Ballal, Deepti; Chapman, Walter G

    2013-09-21

    Aqueous solutions of alcohols are interesting because of their anomalous behavior that is believed to be due to the molecular structuring of water and alcohol around each other in solution. The interfacial structuring and properties are significant for application in alcohol purification processes and biomolecular structure. Here we study aqueous mixtures of short alcohols (methanol, ethanol, 1-propanol, and 2-propanol) at a hydrophobic surface using interfacial statistical associating fluid theory which is a perturbation density functional theory. The addition of a small amount of alcohol decreases the interfacial tension of water drastically. This trend in interfacial tension can be explained by the structure of water and alcohol next to the surface. The hydrophobic group of an added alcohol preferentially goes to the surface preserving the structure of water in the bulk. For a given bulk alcohol concentration, water mixed with the different alcohols has different interfacial tensions with propanol having a lower interfacial tension than methanol and ethanol. 2-propanol is not as effective in decreasing the interfacial tension as 1-propanol because it partitions poorly to the surface due to its larger excluded volume. But for a given surface alcohol mole fraction, all the alcohol mixtures give similar values for interfacial tension. For separation of alcohol from water, methods that take advantage of the high surface mole fraction of alcohol have advantages compared to separation using the vapor in equilibrium with a water-alcohol liquid.

  4. Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol

    SciTech Connect

    Piccoli, R.L. ); Lovisi, H.R. )

    1995-02-01

    The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

  5. [Prevention of alcohol dependence].

    PubMed

    Trova, A C; Paparrigopoulos, Th; Liappas, I; Ginieri-Coccossis, M

    2015-01-01

    With the exception of cardiovascular diseases, no other medical condition causes more serious dysfunction or premature deaths than alcohol-related problems. Research results indicate that alcohol dependent individuals present an exceptionally poor level of quality of life. This is an outcome that highlights the necessity of planning and implementing preventive interventions on biological, psychological or social level, to be provided to individuals who make alcohol abuse, as well as to their families. Preventive interventions can be considered on three levels of prevention: (a) primary prevention, which is focused on the protection of healthy individuals from alcohol abuse and dependence, and may be provided on a universal, selective or indicated level, (b) secondary prevention, which aims at the prevention of deterioration regarding alcoholic dependence and relapse, in the cases of individuals already diagnosed with the condition and (c) tertiary prevention, which is focused at minimizing deterioration of functioning in chronically sufferers from alcoholic dependence. The term "quaternary prevention" can be used for the prevention of relapse. As for primary prevention, interventions focus on assessing the risk of falling into problematic use, enhancing protective factors and providing information and health education in general. These interventions can be delivered in schools or in places of work and recreation for young people. In this context, various programs have been applied in different countries, including Greece with positive results (Preventure, Alcolocks, LST, SFP, Alcohol Ignition Interlock Device). Secondary prevention includes counseling and structured help with the delivery of programs in schools and in high risk groups for alcohol dependence (SAP, LST). These programs aim at the development of alcohol refusal skills and behaviors, the adoption of models of behaviors resisting alcohol use, as well as reinforcement of general social skills. In the

  6. Catalyst for producing lower alcohols

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  7. Liquid-liquid equilibria of water + methanol + 1-octanol and water + ethanol + 1-octanol at various temperatures

    SciTech Connect

    Arce, A.; Blanco, A.; Souza, P.; Vidal, I. . Dept. of Chemical Engineering)

    1994-04-01

    This study is part of a wider program of research on the recovery of light alcohols from dilute aqueous solutions using high molecular weight solvents. The authors report liquid-liquid equilibrium data and binodal curves for the systems water + methanol + 1-octanol and water + ethanol + 1-octanol at 25, 35, and 45 C. The data were fitted to the NRTL and UNIQUAC equations.

  8. Abnormal Metabolite in Alcoholic Subjects,

    DTIC Science & Technology

    1982-01-01

    coated with 3Z Carbowax 20 M. Serum proteins were removed by precipitation with 0.5 M percholoric acid. The clear, protein -free supernatant was...this study included alcoholic hepatitis or cirrhosis of the liver in 29. of the alcoholic subjects; diabetes mellitus in 8 and Korsakoff’s syndrome in 6...no ethanol, and who according to the history had been two days without any alcohol intake . DISCUSSION The source of the 2,3-butanediol found in the

  9. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  10. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  11. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments.

    PubMed

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-06-25

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments.

  12. Transferable force field for alcohols and polyalcohols.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Teuler, Jean-Marie; Boutin, Anne

    2009-04-30

    A new force field has been developed for alcohol and polyalcohol molecules. Based on the anisotropic united-atom force field AUA4 developed for hydrocarbons, it only introduces one new anisotropic united atom corresponding to the hydroxyl group OH. In the case of polyalcohols and complex molecules, the calculation of the intramolecular electrostatic energy is revisited. These interactions are calculated between charges belonging to the different local dipoles of the molecule, one dipole being defined as a group of consecutive charges globally neutral. This new method allows avoiding the use of empirical scaling parameters commonly introduced to calculate 1-4 electrostatic interactions. The transferability of the proposed potential is demonstrated through the simulation of a wide variety of alcohol families: primary alcohols (methanol, ethanol, propan-1-ol, hexan-1-ol, octan-1-ol), secondary alcohols (propan-2-ol), tertiary alcohols (2-methylpropan-2-ol), phenol, and diols (1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol). Monte Carlo simulations carried out in the Gibbs ensemble lead to a good agreement between calculated and experimental data for the thermodynamic properties along the liquid/vapor saturation curve, for the critical point coordinates and for the liquid structure at room temperature. Additional simulations were performed on the methanol + n-butane system showing the capability of the proposed potential to reproduce the azeotropic behavior of such mixtures with a good agreement.

  13. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  14. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water. Part 2. C1-C3 Alcohols + Aliphatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 37 ternary systems of C1-C3 alcohols with aliphatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For 14 systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem and another one can be in the methanol + hydrocarbon subsystem. The binary tie lines were compared with the recommended values published previously.

  15. Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol.

    PubMed

    Du, Xian-Long; Jiang, Zheng; Su, Dang Sheng; Wang, Jian-Qiang

    2016-02-19

    Methanol is a sustainable source of liquid fuels and one of the most useful organic chemicals. To date, most of the work in this area has focused on the direct hydrogenation of CO2 to methanol. However, this process requires high operating temperatures (200-250 °C), which limits the theoretical yield of methanol. Thus, it is desirable to find a new strategy for the efficient conversion of CO2 to methanol at relatively low reaction temperatures. This Minireview seeks to outline the recent advances on the indirect hydrogenation of CO2 to methanol. Much emphasis is placed on discussing specific systems, including hydrogenation of CO2 derivatives (organic carbonates, carbamates, formates, cyclic carbonates, etc.) and cascade reactions, with the aim of critically highlighting both the achievements and remaining challenges associated with this field.

  16. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  17. Cognitive sequelae of methanol poisoning involve executive dysfunction and memory impairment in cross-sectional and long-term perspective.

    PubMed

    Bezdicek, O; Michalec, J; Vaneckova, M; Klempir, J; Liskova, I; Seidl, Z; Janikova, B; Miovsky, M; Hubacek, J; Diblik, P; Kuthan, P; Pilin, A; Kurcova, I; Fenclova, Z; Petrik, V; Navratil, T; Pelclova, D; Zakharov, S; Ruzicka, E

    2017-03-01

    Methanol poisoning leads to lesions in the basal ganglia and subcortical white matter, as well as to demyelination and atrophy of the optic nerve. However, information regarding cognitive deficits in a large methanol sample is lacking. The principal aim of the present study was to identify the cognitive sequelae of methanol poisoning and their morphological correlates. A sample of 50 patients (METH; age 48 ± 13 years), 3-8 months after methanol poisoning, and 57 control subjects (CS; age 49 ± 13 years) were administered a neuropsychological battery. Forty-six patients were followed in 2 years' perspective. Patients additionally underwent 1.5T magnetic resonance imaging (MRI). Three biochemical and toxicological metabolic markers and a questionnaire regarding alcohol abuse facilitated the classification of 24 patients with methanol poisoning without alcohol abuse (METHna) and 22 patients with methanol poisoning and alcohol abuse (METHa). All groups were compared to a control group of similar size, and matched for age, education, premorbid intelligence level, global cognitive performance, and level of depressive symptoms. Using hierarchical multiple regression we found significant differences between METH and CS, especially in executive and memory domains. METHa showed a similar pattern of cognitive impairment with generally more severe executive dysfunction. Moreover, all METH patients with extensive involvement on brain MRI (lesions in ≥2 anatomical regions) had a more severe cognitive impairment. From a longitudinal perspective, we did not find any changes in their cognitive functioning after 2 years' follow-up. Our findings suggest that methanol poisoning is associated with executive dysfunction and explicit memory impairment, supposedly due to basal ganglia dysfunction and disruption of frontostriatal circuitry proportional to the number of brain lesions, and that these changes are persistent after 2 years' follow-up.

  18. Alcoholics Anonymous

    MedlinePlus

    ... Help What's New Read Daily Reflections Make a Contribution Go to Online Bookstore Welcome to Alcoholics Anonymous ® ... and Twelve & Twelve | 75th Anniversary Edition | Make a contribution | Self-Support Press/Media | Archives & History | A.A. ...

  19. Alcohol Intolerance

    MedlinePlus

    ... or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some ... in some people, possibly as a result of histamines contained in some alcoholic beverages. Your immune system ...

  20. Alcohol withdrawal

    MedlinePlus

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  1. High octane ethers from synthesis gas-derived alcohols

    SciTech Connect

    Klier, K.; Herman, R.G.; Johansson, M.; Feeley, O.C.

    1992-01-01

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers.

  2. Improvement of porcine interferon-α production by recombinant Pichia pastoris via induction at low methanol concentration and low temperature.

    PubMed

    Jin, Hu; Liu, Guoqiang; Dai, Keke; Wang, Huihui; Li, Zhen; Shi, Zhongping

    2011-09-01

    Improved porcine interferon-α (pIFN-α) production by recombinant Pichia pastoris was achieved by culture conditions optimization in a 5-l bioreactor. The results indicated that the pIFN-α concentration, specific methanol consumption rate, specific activities of alcohol oxidase, formaldehyde dehydrogenase, and formate dehydrogenase could be significantly enhanced by decreasing induction temperature. The highest pIFN-α concentration (1.35 g l(-1)) was obtained by simultaneously controlling methanol concentration at 5 g l(-1) and induction temperature at 20 °C, which was about 1.6-fold higher than the maximum obtained with previous optimal methanol concentration level (about 10 g l(-1)) when inducing at 30 °C. The potential mechanisms behind low temperature and low methanol concentration effect on pIFN-α production may be ascribed to higher cell metabolic activity, more carbon flux towards pIFN-α production, and less intracellular/extracellular protease release.

  3. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.

    PubMed

    Hnaien, M; Lagarde, F; Jaffrezic-Renault, N

    2010-04-15

    A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes. The local conductivity increased rapidly after alcohol addition, reaching steady-state within 10 min. The sensitivity was maximal for methanol (0.394+/-0.004 microS microM(-1), n=5) and decreased by increasing the alcohol chain length. The response was linear up to 75 microM for methanol, 70 microM for ethanol and 65 microM for 1-propanol and limits of detection were 0.5 microM, 1 microM and 3 microM, respectively (S/N=3). No significant loss of the enzyme activities was observed after 3 months of storage at 4 degrees C in a 20mM phosphate buffer solution pH 7.2 (two or three measurements per week). After 4 months, 95% of the initial signal still remained. The biosensor response to ethanol was not significantly affected by acetic, lactic, ascorbic, malic, oxalic, citric, tartaric acids or glucose. The bi-enzymatic sensor was successfully applied to the determination of ethanol in different alcoholic beverages.

  4. Developmental and Reproductive Toxicology of Methanol

    EPA Science Inventory

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  5. Rare combination of bilateral putaminal necrosis, optic neuritis, and polyneuropathy in a case of acute methanol intoxication among patients met with hooch tragedy in Gujarat, India

    PubMed Central

    Jarwani, Bhavesh S; Motiani, Puja; Divetia, Ruchir; Thakkar, Gurudutta

    2012-01-01

    Methanol poisoning is a rare but extremely hazardous form of intoxication, generally occurring after suicidal or accidental events. Methanol is a cheap and potent adulterant of illicit liquors. In India, we have witnessed number of mass emergencies due to adulterated alcohol consumption. Although Gujarat State had banned alcohol consumption since 1961, worse hooch tragedies have often taken place. The most severe consequences of methanol intoxication are blindness, a profound metabolic acidosis and various forms of neurological impairment; which occur characteristically after a latent period of several hours or days after ingestion. We present a unique case of acute methanol intoxication presented with, apart from metabolic acidosis and optic neuritis, involvement of central nervous system and peripheral nervous system. He had bilateral optic neuritis, delayed onset polyneuropathy with axonopathy, and radiculopathy. Magnetic resonance imaging findings were consistent with bilateral putaminal necrosis. PMID:23248510

  6. The epigenetic landscape of alcoholism.

    PubMed

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C

    2014-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.

  7. The Epigenetic Landscape of Alcoholism

    PubMed Central

    Krishnan, Harish R.; Sakharkar, Amul J.; Teppen, Tara L.; Berkel, Tiffani D.M.; Pandey, Subhash C.

    2015-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure, but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, holds great therapeutic potential in the treatment and prevention of alcoholism. PMID:25131543

  8. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.

    PubMed

    Kim, Taegyu; Hwang, Jin Soo; Kwon, Sejin

    2007-07-01

    This paper presents the design, fabrication and evaluation of a micro methanol reformer complete with a heat source. The micro system consists of the steam reforming reactor of methanol, the catalytic decomposition reactor of hydrogen peroxide, and a heat exchanger between the two reactors. In the present study, catalytic decomposition of hydrogen peroxide is used as a process to supply heat to the reforming reactor. The decomposition process of hydrogen peroxide produces water vapor and oxygen as a product that can be used efficiently to operate the reformer/PEMFC system. Cu/ZnO was selected as a catalyst for methanol steam reforming and Pt for the decomposition of hydrogen peroxide. Incipient wetness method was used to load catalysts on a porous support. Catalyst loaded supports were inserted in the cavity made on the glass wafer. The performance of the methanol steam reforming system was measured at various test conditions and the optimum operation condition was sought. At the optimum condition, the hydrogen selectivity was 86.4% and the thermal efficiency was 44.8%. The product gas included 74.1% H(2), 24.5% CO(2) and 1.4% CO and the total volume production rate was 23.5 ml min(-1). This amount of hydrogen can produce 1.5 W of power on a typical PEMFC.

  9. Influence of pH*-value of methanolic electrolytes on electroosmotic flow in hydrophilic coated capillaries.

    PubMed

    Belder, D; Elke, K; Husmann, H

    2000-01-28

    The dependency of EOF on the H+-concentration and the related so called pH* value of methanolic electrolytes has been examined with poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and uncoated capillaries. These results were compared with the pH dependency of EOF of these capillaries using aqueous buffers. In uncoated capillaries the dependency of EOF on the pH(*)-value is very similar for aqueous and methanolic electrolytes. The EOF increases with increasing H+-concentration and pH-hysteresis is observed. In PVA coated capillaries the EOF is strongly reduced over wide pH* or pH ranges for both methanolic electrolytes and aqueous buffers. The EOF in PEG coated capillaries is surprisingly directed to the anode with methanolic electrolytes whereas a reduced cathodic EOF is observed in aqueous electrolytes. The anodic EOF of PEG-coated capillaries in methanolic electrolytes is independent of the pH*-value. The usefulness of PEG- and PVA-coated capillaries for adjusting the EOF in non-aqueous electrolytes for the analysis of isomeric organic acids was demonstrated.

  10. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    NASA Astrophysics Data System (ADS)

    González-Salgado, D.; Zemánková, K.; Noya, E. G.; Lomba, E.

    2016-05-01

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  11. Ethylene glycol or methanol intoxication: which antidote should be used, fomepizole or ethanol?

    PubMed

    Rietjens, S J; de Lange, D W; Meulenbelt, J

    2014-02-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol poisoning) and death. Therapy consists of general supportive care (e.g. intravenous fluids, correction of electrolytes and acidaemia), the use of antidotes and haemodialysis. Haemodialysis is considered a key element in the treatment of severe EG and methanol intoxication and is aimed at removing both the parent compound and its toxic metabolites, reducing the duration of antidotal treatment and shortening the hospital observation period. Currently, there are two antidotes used to block ADH-mediated metabolism of EG and methanol: ethanol and fomepizole. In this review, the advantages and disadvantages of both antidotes in terms of efficacy, safety and costs are discussed in order to help the physician to decide which antidote is appropriate in a specific clinical setting.

  12. Mutations affecting the expression of the MOX gene encoding peroxisomal methanol oxidase in Hansenula polymorpha.

    PubMed

    Vallini, V; Berardi, E; Strabbioli, R

    2000-11-01

    In this study, aimed at identifying genetic factors acting positively upon the MOX gene, we report the isolation and characterisation of several methanol utilisation-defective (Mut-) mutants of Hansenula polymorpha. These fall into 12 complementation groups, eight of which show significant reductions in alcohol (methanol) oxidase activity in methanol. Three of these groups, identifying the MUT3, MUT5 and MUT10 loci, exhibit extremely low levels of MOX promoter activity, not only in methanol medium, but also during growth in glycerol or methylamine. We suggest that these loci play a significant role in the derepression of the MOX gene expression. One of these genes (MUT10) also seems to be involved in the utilisation of carbon sources other than methanol, and it is apparent that the same gene plays some role in the biogenesis or in the enlargement of the peroxisome. Three other genes (MUT7, MUT8 and MUT9) appear to be involved in peroxisome biogenesis, whereas most other mutants harbour lesions that leave the peroxisome biogenesis and proliferation unaffected.

  13. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  14. Children of Alcoholics/Addicts.

    ERIC Educational Resources Information Center

    Towers, Richard L.

    The purpose of this booklet is to raise the awareness of teachers and other school personnel about the needs and characteristics of the children of alcoholics and addicts and to explain what schools can do to help. The booklet discusses: (1) risk factors for children of alcoholics and substance abusers, including the psychological, emotional, and…

  15. Production of Protonated Methanol Ions Via Intermolecular Reactions within Van der Waals Clusters of Dime Dimethyl Ether. Revision

    DTIC Science & Technology

    1990-02-02

    preparation (17) This result also suggests that the protonated methanol ion is not produced via a reaction between the DME cluster and a water impurity. In...include Security Classification) Production ol Protonated Methanol Ions via "Intermolecular" Reactions within van der Waals Clusters of Dimethyl Ether...2/90 Production of Protonated Methanol Ions via "Intermolecular" Reactions within van der Waals Clusters of Dimethyl Ether M. Todd Coolbaugh, William

  16. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.

  17. The hydrogen-bond collective dynamics in liquid methanol

    NASA Astrophysics Data System (ADS)

    Bellissima, Stefano; de Panfilis, Simone; Bafile, Ubaldo; Cunsolo, Alessandro; González, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-12-01

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.

  18. The hydrogen-bond collective dynamics in liquid methanol

    PubMed Central

    Bellissima, Stefano; De Panfilis, Simone; Bafile, Ubaldo; Cunsolo, Alessandro; González, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-01-01

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature. PMID:27996056

  19. The hydrogen-bond collective dynamics in liquid methanol

    DOE PAGES

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less

  20. The hydrogen-bond collective dynamics in liquid methanol

    SciTech Connect

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; Bafile, Ubaldo; Gonzalez, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.

  1. Hospital-Admitted Injury Attributable to Alcohol

    PubMed Central

    Miller, Ted R.; Spicer, Rebecca S.

    2013-01-01

    Background Primary data collection has established that alcohol causes injuries treated in the emergency department. No comparable data exist for injuries admitted to hospital. Data on the injury risks of heavy drinkers relative to other drinkers also are sparse. Methods We estimated (1) whether regular heavy drinkers have higher hospitalized injury risks than other people when alcohol negative and (2) how much hospitalized injury risk of regular heavy drinkers and other drinkers rises when alcohol positive. We combined national alcohol consumption data with alcohol metabolism rates to estimate hours spent alcohol positive versus alcohol negative during a year for heavy drinkers versus other people. A literature review provided hospitalized non-fatal injury rates for these groups by alcohol involvement. Results Relative to other alcohol-negative people aged 18 and older, heavy drinkers have an estimated relative risk of hospitalized injury of 1.4 when alcohol negative and 4.3 when alcohol positive. Others have an estimated relative risk of 1.0 when alcohol negative and 6.8 when alcohol positive. Thus alcohol greatly raises injury risk. The excess risk patterns persist for a wide range of sensitivity analysis values. Of hospitalized injuries, an estimated 21% are alcohol attributable including 36% of assaults. Conclusions Drinking alcohol is a major cause of hospitalized injury. Heavy drinkers lead risky lifestyles. They tolerate alcohol better than most drinkers but their injury risks still triple when they drink. Our approach to attribution is a valuable complement to more costly, more precise approaches that rely heavily on primary data collection. It works for any severity of injury. Applying it only requires an existing alcohol consumption survey plus data on alcohol involvement in targeted injuries. PMID:22004026

  2. Deciding to quit drinking alcohol

    MedlinePlus

    ... Alcohol abuse - quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... pubmed/23698791 . National Institute on Alcohol Abuse and Alcoholism. Alcohol and health. www.niaaa.nih.gov/alcohol- ...

  3. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists.

  4. The study of synergistic effects of alcohols on the catalytic hydrogenation of brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kartseva, N.V.

    1998-12-31

    The hydrogenation of brown coal in methanol, ethanol and isopropanol containing medium in the presence of catalysts was studied. The effects of different catalysts, alcohols, the proportion between the quantity of hydrogen, alcohols and tetralin on the conversion of coal, product yields, composition and molecular weight of solubles were analyzed. The synergistic effects of the mixtures of methanol and ethanol with tetralin and with hydrogen on the conversion of brown coal were observed at 380 C and 430 C in the presence of supported Fe, Fe-Mo, Ni, and Co hydroxide catalysts. Small amounts of methanol and ethanol additives induced the improved coal swelling and conversion into soluble products with diminished molecular weight. Synergistic effect was found to depend on the catalyst concentration, hydrogen pressure and alcohol structure. Coal swelling, hydrogenation and alkylation reactions were evaluated. The nature of the promoting effect of alcohols on coal liquefaction is discussed.

  5. Capacity additions ease tight methanol supply

    SciTech Connect

    Greek, B.F. )

    1988-10-03

    Two menthanol plants now in operation - one in the U.S., the other in Chile - will boost global supplies of methanol more than 375 million gal annually. This large capacity addition and smaller expansions in other parts of the world will exceed demand growth during 1988 and 1989, easing the squeeze on supplies. As the result of increased supplies, methanol prices could slip slightly in the fourth quarter. They are more likely to decline next year, however. The two plants, which started up in August, are owned and operated by Tenneco Oil Co. Processing and Marketing and by Cape Horn Methanol (CHM). The Tenneco plant, located in Pasadena, Tex., was restarted after a shutdown in 1982 when prices for methanol were low. It now is running at full capacity of 125 million gal per year. The plant uses the low-pressure process technology of Lurgi, reportedly requiring for feedstock and energy between 100,000 and 125,000 cu ft of methane per gallon. Global trade in methanol smooths out the supply and demand inconsistencies. Surging methanol demand in the U.S. and in Western Europe has been met by imports from areas where methanol production is most economical - that is, where natural gas is readily available and has no other application as high in value. Canada, Chile, and Trinidad are examples of those areas.

  6. Engineering Escherichia coli for methanol conversion.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  7. Alcohols which have been in contact with any plastics may interfere in radioimmunoassays of progesterone.

    PubMed

    Ocvirk, Rok; Bisson, Jennifer M; Murphy, Beverley E Pearson

    2009-01-01

    In recent years there has been increasing use of plastic rather than glass containers for many liquids, including wine. However we have found that residue from commercially obtained 'pure' ethanol dispensed in plastic bottles interferes in some biochemical assays. We have observed a volume-dependent decrease in maximally bound ligand in radioimmunoassays of progesterone. The resulting shift in the standard curve leads to an underestimation of the analyte concentrations and to altered estimation of cross reactivity by competing ligands. These effects became apparent in assays with high sensitivity (500 pg or less). All sources of ethanol obtainable in Quebec contained impurities. A similar effect was also produced by 'pure' methanol. The reduction in maximally bound ligand was amplified when the alcohol was aliquoted using plastic pipette tips. We conclude that alcohols which have had any contact with plastics are not safe to use in immunoassays of progesterone (or its metabolites as estimated according to cross-reactivity after HPLC) and may affect other assays. If the use of alcohol and plastic tips cannot be avoided, the amount of alcohol used should be reduced to 1% or less. This can be accomplished by preparing steroid standards in assay buffers containing albumin or gelatin, which enhance the solubility of steroids in aqueous media.

  8. Slowing the Tide of Alcohol Use Disorders.

    PubMed

    Chamsi-Pasha, Hassan; Chamsi-Pasha, Majed; Albar, Mohammed Ali

    2016-09-28

    Alcohol use disorders (AUDs)-a spectrum including at-risk drinking, alcohol abuse, dependence, and addiction-is a highly prevalent problem worldwide with a substantial economic impact. The toll of alcohol on individual health and healthcare systems is devastating. Alcohol is estimated to be the fifth leading risk factor for global disability-adjusted life years. Tackling the problem of AUD requires a comprehensive strategy that includes solid action on price, availability, and marketing of alcohol. Restricting or banning alcohol advertising may reduce exposure to the risk posed by alcohol at the individual and general population level. Warning labels about the cancer risks associated with drinking have a high degree of public support and may be an inexpensive and acceptable way to educate the public. Religiosity may reduce risk behaviors and contribute to health decision making related to alcohol use.

  9. Alcohol Use and Firearm Violence

    PubMed Central

    Branas, Charles C.; Han, SeungHoon; Wiebe, Douglas J.

    2016-01-01

    Although the misuse of firearms is necessary to the occurrence of firearm violence, there are other contributing factors beyond simply firearms themselves that might also be modified to prevent firearm violence. Alcohol is one such key modifiable factor. To explore this, we undertook a 40-year (1975–2014) systematic literature review with meta-analysis. One large group of studies showed that over one third of firearm violence decedents had acutely consumed alcohol and over one fourth had heavily consumed alcohol prior to their deaths. Another large group of studies showed that alcohol was significantly associated with firearm use as a suicide means. Two controlled studies showed that gun injury after drinking, especially heavy drinking, was statistically significant among self-inflicted firearm injury victims. A small group of studies investigated the intersection of alcohol and firearms laws and alcohol outlets and firearm violence. One of these controlled studies found that off-premise outlets selling takeout alcohol were significantly associated with firearm assault. Additional controlled, population-level risk factor and intervention studies, including randomized trials of which only 1 was identified, are needed. Policies that rezone off-premise alcohol outlets, proscribe blood alcohol levels and enhance penalties for carrying or using firearms while intoxicated, and consider prior drunk driving convictions as a more precise criterion for disqualifying persons from the purchase or possession of firearms deserve further study. PMID:26811427

  10. Alcohol Use and Firearm Violence.

    PubMed

    Branas, Charles C; Han, SeungHoon; Wiebe, Douglas J

    2016-01-01

    Although the misuse of firearms is necessary to the occurrence of firearm violence, there are other contributing factors beyond simply firearms themselves that might also be modified to prevent firearm violence. Alcohol is one such key modifiable factor. To explore this, we undertook a 40-year (1975-2014) systematic literature review with meta-analysis. One large group of studies showed that over one third of firearm violence decedents had acutely consumed alcohol and over one fourth had heavily consumed alcohol prior to their deaths. Another large group of studies showed that alcohol was significantly associated with firearm use as a suicide means. Two controlled studies showed that gun injury after drinking, especially heavy drinking, was statistically significant among self-inflicted firearm injury victims. A small group of studies investigated the intersection of alcohol and firearms laws and alcohol outlets and firearm violence. One of these controlled studies found that off-premise outlets selling takeout alcohol were significantly associated with firearm assault. Additional controlled, population-level risk factor and intervention studies, including randomized trials of which only 1 was identified, are needed. Policies that rezone off-premise alcohol outlets, proscribe blood alcohol levels and enhance penalties for carrying or using firearms while intoxicated, and consider prior drunk driving convictions as a more precise criterion for disqualifying persons from the purchase or possession of firearms deserve further study.

  11. Human alcohol-related neuropathology

    PubMed Central

    Kril, Jillian J.

    2015-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions

  12. Fetal Alcohol Syndrome: A Behavioral Teratology.

    ERIC Educational Resources Information Center

    Kavale, Kenneth A.; Karge, Belinda D.

    1986-01-01

    The review examines the literature on the behaviorally teratogenic aspects of Fetal Alcohol Syndrome, including: (1) prevalence of alcohol abuse among women, (2) acute and chronic effects of alcohol on the fetus, (3) genetic susceptibility, (4) neuropathology, (5) correlative conditions, and (6) animal studies. (Author/DB)

  13. Degradation of Coflon in Methanol at Temperatures Around 140 C

    NASA Technical Reports Server (NTRS)

    Campion, R. P.; Samulak, M.; Morgan, C. J.

    1995-01-01

    An unexpected and significant physico-chemical degradation of Coflon PVDF specimens was observed at the end of 1994 during routine scheduled exposure exercises on strained material. The intent was to age various samples, including some strained in a 4-point bend configuration, in methanol at 140 C and subsequently submit the aged samples to various tests including dynamic fatigue and fracture toughness. However, the samples deteriorated to such an extent that such testing was not possible: only when conditions were made less severe was it found possible to perform such testing. The purpose of the current report is to describe the nature of the PVDF deterioration observed during a number of tests performed to examine this phenomenon. This report also records, as Appendix 1, some SEM/X-ray microanalysis data on Coflon samples exposed to a methanol/amine mixture, and to other amine or H2S-aged samples.

  14. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  15. Alcoholic sialosis.

    PubMed

    Kastin, B; Mandel, L

    2000-01-01

    Sialosis (sialadenosis) is a term used to describe a disorder that involves both secretory and parenchymal changes of the major salivary glands, most commonly the parotid. Seen often in a dental office, it is recognized as an indolent, bilateral, non-inflammatory, non-neoplastic, soft, symmetrical, painless and persistent enlargement of the parotid glands. Four major entities have commonly been associated with this disorder. They are alcoholism, endocrinopathy (particularly diabetes mellitus), maLnutrition and idiopathic. We are reporting a case of alcoholic sialosis with its clinical and diagnostic aspects. It is important for the dental practitioner to recognize sialosis, because it often indicates the existence of an unsuspected systemic disease.

  16. Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts.

    PubMed

    Liang, Ming-Hua; Liang, Ying-Jie; Chai, Jiang-Yan; Zhou, Shi-Shui; Jiang, Jian-Guo

    2014-11-01

    Methanol, often generated in brewed wine, is highly toxic for human health. To decrease the methanol content of the brewed wine, atmospheric and room-temperature plasma (ARTP) was used as a new mutagenesis tool to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Headspace gas chromatography was used to determine the identity and concentration of methanol with butyl acetate as internal standard in brewed wine. With 47.4% higher and 26.3% positive mutation rates were obtained, the ARTP jet exhibited a strong effect on mutation breeding of S. cerevisiae. The mutant S. cerevisiae S12 exhibited the lowest methanol content, which was decreased by 72.54% compared with that of the wild-type strain. Subsequently, the mutant S. cerevisiae S12 was used to ferment different combinations of malt and adjuncts for lower methanol content and higher alcoholic content. It was shown that the culture 6#, which was 60% malt, 20% wheat, and 20% corn, was the best combinations of malt and adjuncts, with the lowest methanol content (104.8 mg/L), and a relatively higher alcoholic content (15.3%, v/v). The optimal malt-adjunct culture 6#, treated with the glucoamylase dose of 0.04 U/mg of grain released the highest reducing sugars (201.6 mg/mL). It was indicated that the variation in reducing sugars among the combinations of malt and different adjuncts could be due to the dose of exogenous enzymes.

  17. [Alcoholism: indictment or diagnosis?].

    PubMed

    Neves, Delma Pessanha

    2004-01-01

    This article presents reflections on how alcohol consumption is conceived as a sociological object, including proscribed forms linked to the definition of diseases or disregard for moral norms. Through considerations on the accumulated investment in a research process currently under way, the author highlights the ethical and epistemological dilemmas faced by anthropologists who focus on this issue.

  18. Ethyl alcohol production

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    Recent price increases and temporary shortages of petroleum products have caused farmers to search for alternate sources of fuel. The production of ethyl alcohol from grain is described and the processes involved include saccharification, fermentation and distillation. The resulting stillage has potential as a livestock feed.

  19. Drugs, Alcohol & Pregnancy.

    ERIC Educational Resources Information Center

    Dye, Christina

    Expectant parents are introduced to the effects of a variety of drugs on the unborn baby. Material is divided into seven sections. Section 1 deals with the most frequently used recreational drugs, including alcohol, marijuana, narcotics, depressants, stimulants, inhalants, and hallucinogens. Sections 2 and 3 focus on the effects of prescription…

  20. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  1. Fermentative alcohol production

    SciTech Connect

    Blanch, H.W.; Cysewski, G.R.; Maiorella, B.L.; Wilke, C.R.

    1982-11-16

    An improved fermentation process is disclosed for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases. One is a fermentor proper operated at atmospheric pressure and the other is a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using ''water load balancing'' (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  2. Improved fermentative alcohol production

    SciTech Connect

    Wilke, C.R.; Maiorella, B.L.; Blanch, M.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  3. Alcohol and Hepatitis

    MedlinePlus

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  4. Alcohol and Hepatitis

    MedlinePlus

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  5. Stress, epigenetics, and alcoholism.

    PubMed

    Moonat, Sachin; Pandey, Subhash C

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.

  6. Direct methanol feed fuel cell with reduced catalyst loading

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  7. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures.

    PubMed

    Souda, Ryutaro

    2017-01-18

    Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.

  8. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  9. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  10. Advances in Alcoholism Treatment

    PubMed Central

    Huebner, Robert B.; Kantor, Lori Wolfgang

    2011-01-01

    Researchers are working on numerous and varied approaches to improving the accessibility, quality, effectiveness, and cost-effectiveness of treatment for alcohol use disorders (AUDs). This overview article summarizes the approaches reviewed in this issue, including potential future developments for alcoholism treatment, such as medications development, behavioral therapy, advances in technology that are being used to improve treatment, integrated care of patients with AUDs and co-occurring disorders, the role of 12-step programs in the broader realm of treatment, treating patients with recurring and chronic alcohol dependence, strategies to close the gap between treatment need and treatment utilization, and how changes in the health care system may affect the delivery of treatment. This research will not only reveal new medications and behavioral therapies but also will contribute to new ways of approaching current treatment problems. PMID:23580014

  11. NEUROBIOLOGICAL BASES OF ALCOHOL ADDICTION.

    PubMed

    Matošić, Ana; Marušić, Srđan; Vidrih, Branka; Kovak-Mufić, Ana; Cicin-Šain, Lipa

    2016-03-01

    characteristic of alcoholism type 2 is seeking for excitement (Novelty Seeking, NS), unchanged dopamine transmission and decreased serotonin transmission. These neurochemical differences among alcoholism subtypes represent the basis for a different therapy approach. Intake of alcohol changes different gene expression in the human brain. The inheritance model of alcoholism is not fully explained, however, it is considered that the disease is connected to a larger gene number included in neurotransmission, cell mechanisms and general metabolic function, with a simultaneous influence of the environment. The contribution of genetic factors is stronger in certain types of alcoholism and thus we have been confronted in the last years of alcoholism research with studies researching the connections of some alcoholism subtypes with the polymorphism phenomenon in the genes coding the synaptic proteins included in the alcoholism etiology. The primary role of monoamine oxidase (MAO) in the brain is catalysis of deamination of the oxidative neurotransmitter amines, i.e. serotonin, adrenaline, noradrenaline and dopamine. Thus, this enzyme is the key factor for maintaining cytoplasmic concentration of various neurotransmitters and for regulation of the neurotransmitting synaptic activity. Taken this MAO function into consideration, MAO is the enzyme included in the etiology and pathogenesis of various neuropsychiatric and neurological disorders. The finding of the decreased platelet MAO activity in various psychiatric disorders has brought us to the assumption that this enzyme may be a constitutional/genetic indicator (trait marker) or an indicator of disease condition (state marker) in biologic psychiatry. There are only a few studies of alcohol addiction researching the connections of the MAO coding gene polymorphism and alcoholism; however, these studies are primarily related to the variable number of tandem repeats (VTNR) polymorphism in the regulatory gene region for MAO-A, considered to

  12. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  13. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  14. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  15. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  16. BHP may scale up methanol production

    SciTech Connect

    Alperowicz, N.

    1993-06-23

    Broken Hill Pty. (BHP: Melbourne) says otherwise uneconomic gas reserves in the Timor Sea off northwest Australia could be developed if the company`s plans to commercialize a novel gas-to-methanol technology prove to be viable. BHP is building an A$70-million ($50 million) research unit in Victoria using ICI`s Leading Concept Methanol gas-to-methanol process. If this unit proves viable, it could be put on a vessel and taken to Timor Sea where BHP has oil exploration and production interests. Timor gas is not economically viable because of lack of nearby markets. The 54,000-m.t./year research plant, located at Werrbee near Melbourne, is scheduled to start production in the second half of 1994, according to BHP manager Joe Evon. The plant is being built by Davy/John Brown. Provided the economic climate is right, BHP is expected to build a world-scale methanol plant offshore.

  17. Methanol production from fermentor off-gases

    NASA Astrophysics Data System (ADS)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  18. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  19. Methanol in the sky with diamonds

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T.

    1991-01-01

    The present of gas phase methanol in dense interstellar molecular clouds was established by radio detection of its rotational emission lines. However, the position, width, and profile of a absorption band near 1470 cm(exp -1) in the IR spectra of many dense molecular clouds strongly suggests that solid methanol is an important component of interstellar ices. In an attempt to better constrain the identification of 1470 cm(exp -1) feature, we began a program to search for other characteristic absorption bands of solid state methanol in the spectra of objects known to produce this band. One such feature is now identified in the spectra of several dense molecular clouds and its position, width, and profile fit well with those of laboratory H2O:CH3OH ices. Thus, the presence of methanol-bearing ices in space is confirmed.

  20. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    SciTech Connect

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang; Xu, Ye; Ju, Bing-Gang

    2013-01-20

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  1. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2013-12-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC.

  2. Assessment of the cancer potential of methanol.

    PubMed

    Cruzan, George

    2009-01-01

    There are no published cancer studies of methanol-exposed cohorts. Genotoxicity studies do not suggest carcinogenic activity from methanol exposure. Oncogenicity studies of methanol were conducted by inhalation for approximately 20 hrs/day at up to 1000 ppm in F344 rats and B6C3F1 mice (NEDO), and by incorporation into drinking water at up to 20,000 ppm in Sprague-Dawley rats (Ramazzini Foundation, by Soffritti et al.). No increased neoplasms were found in the NEDO rat and mouse inhalation studies, even at air levels (up to 1000 ppm for >19 hours/day, 7 days/week) that caused 10-fold increased blood methanol levels. The maximum dose level was 600 mg/kg/day. The breakdown of methanol to formaldehyde in rats is saturated at doses above 600 mg/kg according to Horton et al. Thus, higher inhalation exposure concentrations are not expected to lead to tumors in rats or mice. In the Soffritti et al. study there was excessive early mortality, and lung pathology (inflammation, dysplasia, or neoplasm) was present in 87-94% of those dying anytime in the study. Soffritti et al. reported lympho-immunoblastic lymphoma. There are no historical control data to which this study can be compared because this diagnosis is not used by any other pathologist in animal studies. Lung infections probably played a role in formation of the lesions called lympho-immunoblastic lymphoma in the Ramazzini methanol study. The data from genotoxicity studies, the inhalation and drinking water oncogenicity studies of methanol in rats and mice, and mode of action considerations support a conclusion that methanol is not likely to be carcinogenic in humans.

  3. Methanol On The Extra-red Tnos And Centaurs

    NASA Astrophysics Data System (ADS)

    Antonieta Barucci, Maria; Dalle Ore, C.; Emery, J.; Merlin, F.; Cruikshank, D.; Perna, D.; de Bergh, C.

    2012-10-01

    We present an analysis of the reddest objects of the transneptunian and centaur populations, following the taxonomical class RR. A statistical analysis was performed by Barucci et al. (2011) including all existing data in the literature (76 objects) covering the spectral range from 0.4 to 2.3μm. The subgroup of RR class of objects (23) contains more than ¼ of the whole studied populations, including Centaurs, detached, classical, plutinos and scattered objects. In the whole studied sample, the CH3OH ice was detected spectroscopically only on three objects (Pholus, 2002VE95 and Sedna). These objects which are among the reddest ones, belong to different dynamical classes, and have different sizes. To further investigate the presence of CH3OH as part of the composition of the entire RR class we used the Spitzer data available for the RR class for a subgroup of nine objects. Both methanol and methane have a strong absorption at 3.6μm, the first of the Spitzer IRAC channels, and a much brighter albedo at the following channel at 4.5μm. Our technique makes use of a large database of models including H2O, CH3OH, CH4, and N2 ices combined with tholins, amorphous carbon, and silicates. We find that models containing some hydrocarbon ices are possible matches to the spectrum of almost all objects in our sample. Laboratory irradiation experiments show a strong reddening of the spectra of methanol. The presence of methanol on the extra-red objects could imply that these objects exhibit an almost primordial surface. Following the Brown et al (2011) hypothesis, the TNO surface composition and colors are established by formation-location in the early solar system. This would support the idea that objects formed further in the solar planetary disk could retain methanol. These results are in agreement with the hypothesis that substantial mixing has occurred after the TNOs formation.

  4. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-09-05

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  5. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  6. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  7. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  8. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  9. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  10. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  11. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  12. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.

    PubMed

    Ji, Xiaoyuan; Su, Zhiguo; Wang, Ping; Ma, Guanghui; Zhang, Songping

    2016-09-01

    Biocatalyzed artificial photosynthesis systems provide a promising strategy to store solar energy in a great variety of chemicals. However, the lack of direct interface between the light-capturing components and the oxidoreductase generally hinders the trafficking of the chemicals and photo-excited electrons into the active center of the redox biocatalysts. To address this problem, a completely integrated artificial photosynthesis system for enhanced electronic energy-transfer efficacy is reported by combining co-axial electrospinning/electrospray and layer-by-layer (LbL) self-assembly. The biocatalysis part including multiple oxidoreductases and coenzymes NAD(H) was in situ encapsulated inside the lumen polyelectrolyte-doped hollow nanofibers or microcapsules fabricated via co-axial electrospinning/electrospray; while the precise and spatial arrangement of the photocatalysis part, including electron mediator and photosensitizer for photo-regeneration of the coenzyme, was achieved by ion-exchange interaction-driven LbL self-assembly. The feasibility and advantages of this integrated artificial photosynthesis system is fully demonstrated by the catalyzed cascade reduction of CO2 to methanol by three dehydrogenases (formate, formaldehyde, and alcohol dehydrogenases), incorporating the photo-regeneration of NADH under visible-light irradiation. Compared to solution-based systems, the methanol yield increases from 35.6% to 90.6% using the integrated artificial photosynthesis. This work provides a novel platform for the efficient and sustained production of a broad range of chemicals and fuels from sunlight.

  13. Pharmacotherapy of alcohol use disorders.

    PubMed

    Buonopane, Alessandra; Petrakis, Ismene L

    2005-01-01

    Therapeutic interventions to treat alcoholism have increased in number, including several pharmacotherapies. Aspects of epidemiology, gender, and psychiatric comorbidity as well as a brief overview of neurobiology are presented as an introduction. The medications used clinically for the treatment of alcoholism, disulfiram and naltrexone, approved by the Food and Drug Administration in the United States for the treatment of alcoholism and acamprosate, a medication used extensively in Europe that is currently being evaluated in the United States, are reviewed in detail. An overview of the serotonergic agents is also provided. Finally, future directions, including new medications and some clinical strategies that show promise but are not yet used extensively clinically, are mentioned.

  14. Five Approaches to Improving the Fuel Properties of Biodiesel Including "Designer" Biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually produced from vegetable oils or animal fats or used cooking oils by a transesterification reaction with an alcohol, usually methanol, to give the corresponding mono-alkyl esters with glycerol as co-product. With a few exceptions, most common biodiesel feedstocks possess fatty a...

  15. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    DOEpatents

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  16. Methanol incorporation in clathrate hydrates and the implications for oil and gas pipeline flow assurance and icy planetary bodies

    PubMed Central

    Shin, Kyuchul; Udachin, Konstantin A.; Moudrakovski, Igor L.; Leek, Donald M.; Alavi, Saman; Ratcliffe, Christopher I.; Ripmeester, John A.

    2013-01-01

    One of the best-known uses of methanol is as antifreeze. Methanol is used in large quantities in industrial applications to prevent methane clathrate hydrate blockages from forming in oil and gas pipelines. Methanol is also assigned a major role as antifreeze in giving icy planetary bodies (e.g., Titan) a liquid subsurface ocean and/or an atmosphere containing significant quantities of methane. In this work, we reveal a previously unverified role for methanol as a guest in clathrate hydrate cages. X-ray diffraction (XRD) and NMR experiments showed that at temperatures near 273 K, methanol is incorporated in the hydrate lattice along with other guest molecules. The amount of included methanol depends on the preparative method used. For instance, single-crystal XRD shows that at low temperatures, the methanol molecules are hydrogen-bonded in 4.4% of the small cages of tetrahydrofuran cubic structure II hydrate. At higher temperatures, NMR spectroscopy reveals a number of methanol species incorporated in hydrocarbon hydrate lattices. At temperatures characteristic of icy planetary bodies, vapor deposits of methanol, water, and methane or xenon show that the presence of methanol accelerates hydrate formation on annealing and that there is unusually complex phase behavior as revealed by powder XRD and NMR spectroscopy. The presence of cubic structure I hydrate was confirmed and a unique hydrate phase was postulated to account for the data. Molecular dynamics calculations confirmed the possibility of methanol incorporation into the hydrate lattice and show that methanol can favorably replace a number of methane guests. PMID:23661058

  17. Alcohol-attentional bias and motivational structure as independent predictors of social drinkers' alcohol consumption.

    PubMed

    Fadardi, Javad Salehi; Cox, W Miles

    2008-10-01

    Prior studies aimed at explaining cognitive-motivational reasons for drinking have focused on either cognitive or motivational factors, but not on both. This study examined the ability of both alcohol-attentional bias and motivational structure to predict alcohol consumption. Participants were university students (N=87) who completed a battery of tests, including the Personal Concerns Inventory (a measure of adaptive and maladaptive motivation), an alcohol Stroop test (a measure of alcohol-attentional bias), and an alcohol-use inventory. Regression, moderation, and mediation analyses showed that (a) maladaptive motivation and alcohol-attentional bias were positive predictors of alcohol consumption after participants' age, gender, and executive cognitive functioning had been controlled, and (b) maladaptive motivation and alcohol-attentional bias independently predicted alcohol consumption. The implications of the results for both theory and practice are discussed.

  18. Collective efficacy, alcohol outlet density, and young men's alcohol use in rural South Africa.

    PubMed

    Leslie, Hannah H; Ahern, Jennifer; Pettifor, Audrey E; Twine, Rhian; Kahn, Kathleen; Gómez-Olivé, F Xavier; Lippman, Sheri A

    2015-07-01

    Alcohol use contributes to morbidity and mortality in developing countries by increasing the risk of trauma and disease, including alcohol dependence. Limited research addresses determinants of alcohol use beyond the individual level in sub-Saharan Africa. We test the association of community collective efficacy and alcohol outlet density with young men's drinking in a cross-sectional, locally representative survey conducted in rural northeast South Africa. Informal social control and cohesion show protective associations with men's heavy drinking, while alcohol outlet density is associated with more potential problem drinking. These findings provide initial support for intervening at the community level to promote alcohol reduction.

  19. Alcohol use and safe drinking

    MedlinePlus

    ... to alcohol use Get into trouble with the law, family members, friends, school, or dates because of alcohol THE EFFECTS OF ALCOHOL Alcoholic drinks have different amounts of alcohol in them. Beer is about 5% alcohol, although some beers can ...

  20. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  1. 32 CFR 147.9 - Guideline G-Alcohol consumption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Guideline G-Alcohol consumption. 147.9 Section... Adjudication § 147.9 Guideline G—Alcohol consumption. (a) The concern. Excessive alcohol consumption often... that could raise a security concern and may be disqualifying include: (1) Alcohol-related...

  2. 19 CFR 191.104 - Alcohol, Tobacco and Firearms certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Alcohol, Tobacco and Firearms certificates. 191... Toilet Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.104 Alcohol... request with the regional regulatory administrator, Bureau of Alcohol, Tobacco and Firearms, in...

  3. 19 CFR 191.104 - Alcohol, Tobacco and Firearms certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Alcohol, Tobacco and Firearms certificates. 191... Toilet Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.104 Alcohol... request with the regional regulatory administrator, Bureau of Alcohol, Tobacco and Firearms, in...

  4. 19 CFR 191.104 - Alcohol, Tobacco and Firearms certificates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Alcohol, Tobacco and Firearms certificates. 191... Toilet Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.104 Alcohol... request with the regional regulatory administrator, Bureau of Alcohol, Tobacco and Firearms, in...

  5. 32 CFR 147.9 - Guideline G-Alcohol consumption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Guideline G-Alcohol consumption. 147.9 Section... Adjudication § 147.9 Guideline G—Alcohol consumption. (a) The concern. Excessive alcohol consumption often... that could raise a security concern and may be disqualifying include: (1) Alcohol-related...

  6. 32 CFR 147.9 - Guideline G-Alcohol consumption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Guideline G-Alcohol consumption. 147.9 Section... Adjudication § 147.9 Guideline G—Alcohol consumption. (a) The concern. Excessive alcohol consumption often... that could raise a security concern and may be disqualifying include: (1) Alcohol-related...

  7. 32 CFR 147.9 - Guideline G-Alcohol consumption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Guideline G-Alcohol consumption. 147.9 Section... Adjudication § 147.9 Guideline G—Alcohol consumption. (a) The concern. Excessive alcohol consumption often... that could raise a security concern and may be disqualifying include: (1) Alcohol-related...

  8. 32 CFR 147.9 - Guideline G-Alcohol consumption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Guideline G-Alcohol consumption. 147.9 Section... Adjudication § 147.9 Guideline G—Alcohol consumption. (a) The concern. Excessive alcohol consumption often... that could raise a security concern and may be disqualifying include: (1) Alcohol-related...

  9. 19 CFR 191.104 - Alcohol, Tobacco and Firearms certificates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Alcohol, Tobacco and Firearms certificates. 191... Toilet Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.104 Alcohol... request with the regional regulatory administrator, Bureau of Alcohol, Tobacco and Firearms, in...

  10. 19 CFR 191.104 - Alcohol, Tobacco and Firearms certificates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Alcohol, Tobacco and Firearms certificates. 191... Toilet Preparations (Including Perfumery) Manufactured From Domestic Tax-Paid Alcohol § 191.104 Alcohol... request with the regional regulatory administrator, Bureau of Alcohol, Tobacco and Firearms, in...

  11. Alcohol Policy Considerations for Indian Reservations and Bordertown Communities.

    ERIC Educational Resources Information Center

    May, Philip A.

    1992-01-01

    Alcohol abuse and alcoholism are the leading health problems among American Indian communities. Public policy options that address these problems include controlling the supply of alcoholic beverages; shaping drinking practices directly; or reducing physical and social environmental risks. Discusses alcohol-related death rates and community…

  12. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism

    PubMed Central

    Achur, Rajeshwara N.; Freeman, Willard M.; Vrana, Kent E.

    2010-01-01

    There are currently no consistent objective biochemical markers of alcohol abuse and alcoholism. Development of reliable diagnostic biomarkers that permit accurate assessment of alcohol intake and patterns of drinking is of prime importance to treatment and research fields. Diagnostic biomarker development in other diseases has demonstrated the utility of both open, systems biology, screening for biomarkers and more rational focused efforts on specific biomolecules or families of biomolecules. Long term alcohol consumption leads to altered inflammatory cell and adaptive immune responses with associated pathologies and increased incidence of infections. This has led researchers to focus attention on identifying cytokine biomarkers in models of alcohol abuse. Alcohol is known to alter cytokine levels in plasma and a variety of tissues including lung, liver, and very importantly brain. A number of cytokine biomarker candidates have been identified, including: TNF alpha, IL1-alpha, IL1-beta, IL6, IL8, IL12 and MCP-1. This is an emerging and potentially exciting avenue of research in that circulating cytokines may contribute to diagnostic biomarker panels and a combination of multiple biomarkers may significantly increase the sensitivity and specificity of the biochemical tests aiding reliable and accurate detection of excessive alcohol intake. PMID:20020329

  13. Fetal Alcohol Syndrome: Facts and Prevention.

    ERIC Educational Resources Information Center

    Shelton, Maria; Cook, Martha

    1993-01-01

    This article provides a brief introduction to fetal alcohol syndrome (FAS) including characteristics, incidence, current government programs, successful local programs, and implications for school administrators. (DB)

  14. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  15. Acoustic and volumetric studies of intermolecular interactions in dilute solutions of methanol in aromatic amines

    NASA Astrophysics Data System (ADS)

    Marczak, W.; Chowanska, A.; Piwowarska, B.

    2005-10-01

    Limiting partial compressibilities and volumes of methanol in pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine and 2,6-dimethylpyridine were calculated from the experimental speeds of sounds and densities of dilute solutions at 298.15 K. The limiting functions were found to be linearly correlated with the association energies of isolated 1:1 complexes of the pyridine derivatives with water. Those association energies are close to the energies for similar complexes with methanol. The results evidence that ortho effect enhances the ability of pyridines to hydrogen bonding with methanol in the same way as with water. The effect consist in changes of hydrogen bond energy, unspecific interactions with a steric hindrance, e.g. between hydrocarbon tail of the alcohol molecule and the methyl group in the ring, and changes in resonance interactions. Stronger hydrogen bonds cause smaller partial molar compressibilities and volumes of the solute, as well as greater negative enthalpies of solution. Importantly, single molecule of water or methanol forms one hydrogen bond with the proton-accepting solvent.

  16. Relationships among Alcohol Outlet Density, Alcohol Use, and Intimate Partner Violence Victimization among Young Women in the United States

    ERIC Educational Resources Information Center

    Waller, Martha W.; Iritani, Bonita J.; Christ, Sharon L.; Clark, Heddy Kovach; Moracco, Kathryn E.; Halpern, Carolyn Tucker; Flewelling, Robert L.

    2012-01-01

    Greater access to alcohol has been widely found to be associated with many negative outcomes including violence perpetration. This study examines the relationship between alcohol outlet density, alcohol use, and intimate partner violence (IPV) victimization among young women in the United States. A direct association between alcohol outlet density…

  17. Perceptions of Family Alcohol Use in a Young Adult Sample

    PubMed Central

    Serafini, Kelly A.; Stewart, David G.

    2015-01-01

    Perceptions of family alcohol use have been linked to adolescent alcohol use behaviors, yet there have been no studies that have assessed this relationship in young adults. This study examined perceptions of family alcohol use and their association with participants’ self-reported alcohol use. Participants included 171 undergraduate students (mean age = 21.67, 71.9 percent female, 75.4 percent Caucasian). Participants completed measures assessing quantity and frequency of alcohol use, negative consequences of use, and sibling relationship quality. They also reported their perceptions of alcohol use for siblings and parents during a typical week. Perceptions of siblings’ quantity of weekly alcohol use were significantly associated with participants’ quantity of alcohol use (r = .21, p = .006) and frequency of alcohol use (r = .23, p = .002). Perceptions of parental alcohol use were not related to the participants’ alcohol use patterns. PMID:26339202

  18. Relocating alcohol advertising research: examining socially mediated relationships with alcohol.

    PubMed

    Cherrington, Jane; Chamberlain, Kerry; Grixti, Joe

    2006-03-01

    This article reviews, critiques and politicises the positivist approaches that presently dominate alcohol advertising health research, and considers the benefits of a culturalist alternative. Positivist research in this area is identified as: (1) atheoretical and methods-driven; (2) restricted in focus, leaving critical issues unconsidered; and (3) inappropriately conceptualizing the 'normal' drinking person as rational and safe. The culturist alternative proposed is argued to present a more adequate framework, which can include and address problematic issues that are presently excluded, including: the pleasures associated with alcohol use, the involvements of 'normal' people in problem drinking, the inadequacy of present risk categories and the complexities of wider mediatory processes about alcohol in society. We argue for the adoption of more informed, culturalist approaches to alcohol advertising research.

  19. Senior Alcohol Services Revisited: Elderly Alcoholism--Current State of the Art.

    ERIC Educational Resources Information Center

    Dunlop, Jean D.

    This report notes the growing awareness of alcohol problems among the elderly during the past 5 to 10 years, and reviews the final conclusions of the federal demonstration project, Senior Alcohol Services. Five basic concepts are included: (1) there are a growing number of elderly persons with alcohol problems (10-15% of all persons over age 60);…

  20. Parent Knowledge of Fetal Alcohol Syndrome and Fetal Alcohol Effects: Michigan Survey.

    ERIC Educational Resources Information Center

    Mack, Faite R-P.

    This paper presents results of a survey of 297 parents in Michigan regarding their knowledge of Fetal Alcohol Syndrome and Fetal Alcohol Effects (FAS/FAE), including their knowledge of the characteristics that typify alcohol-related birth defects and prevention measures. Parents surveyed had children in preschool regular education, preschool…

  1. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  2. Monkey Alcohol Tissue Research Resource: Banking Tissues for Alcohol Research

    PubMed Central

    Daunais, JB; Davenport, AT; Helms, CM; Gonzales, SW; Hemby, SE; Friedman, DP; Farro, JP; Baker, EJ; Grant, KA

    2015-01-01

    Background An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is co-morbid with damage to major organs including heart, lungs, liver, pancreas and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of EtOH and they metabolize it more rapidly than primates. Methods The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates (NHPs), specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent/day) over long periods of time (12–30 months) with concomitant pathological changes in endocrine, hepatic and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the ethanol-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. Results The MATRR is a unique post-mortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer ethanol using a standardized experimental paradigm to the broader alcohol research community. Conclusions This resource provides a translational

  3. Targeting Alcohol Misuse

    PubMed Central

    Farris, Coreen; Hepner, Kimberly A.

    2015-01-01

    Abstract On the 2012 Workplace and Gender Relations Survey on Active Duty Service Members, 23 percent of female and 4 percent of male service members indicated that they had experienced a completed or attempted sexual assault during their military service. In addition, official numbers show no decline in sexual assaults, despite the implementation of sexual assault prevention programs across the U.S. Department of Defense (DoD). Alcohol misuse is also a problem in the military: One-third of active-duty service members reported binge drinking, a rate that compares unfavorably with that of their civilian counterparts. DoD has invested considerable resources in universal sexual assault prevention programs and social media campaigns, but evaluation results are not yet available, and the effectiveness of these programs is unclear. Research on civilian populations—particularly college students, who share some characteristics with junior enlisted personnel—could provide insights for DoD. For example, the research indicates a connection between alcohol and aggression, including sexual aggression. Alcohol can also have a range of effects on the risk of victimization—from a reduced awareness of risk indicators to incapacitation or unconsciousness. An extensive review of the existing research provides some guidance for how DoD can implement and evaluate efforts to reduce alcohol misuse as part of a larger strategy to reduce the incidence of sexual assault among members of the armed forces. PMID:28083353

  4. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.

    PubMed

    Ruckenstein, Eli; Shulgin, Ivan L; Tilson, Jeffrey L

    2005-02-10

    water in methanol is about two, with the water molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the central water molecule, have characteristics similar to those of the methane molecules around a central water molecule in the H(2)O...(CH(4))(10) cluster. The ab initio quantum mechanical methods employed in this paper have provided detailed information about the H bonds in the clusters investigated. In particular, they provided full information about two types of H bonds between water and methanol molecules (in which the water or the methanol molecule is the proton donor), including information about their energies and lengths. The average numbers of the two types of H bonds in the CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10) clusters have been calculated. Such information could hardly be obtained with the simulation methods.

  5. [Out of addictions: Alcohol, or alcohol to alcohol].

    PubMed

    Simmat-Durand, L; Vellut, N; Lejeune, C; Jauffret-Roustide, M; Mougel, S; Michel, L; Planche, M

    2016-06-29

    Pathways from alcoholism to recovery are documented; less often are those from drug addiction to alcoholism. Biographical approaches allow analyzing how people change their uses and talk about their trajectories of recovery.

  6. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development).

    PubMed Central

    Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R.

    1995-01-01

    We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests. PMID:12228547

  7. Methanol-induced toxic optic neuropathy with diffusion weighted MRI findings.

    PubMed

    Tanrivermis Sayit, Asli; Aslan, Kerim; Elmali, Muzaffer; Gungor, Inci

    2016-12-01

    We report a 52-year-old man with methanol intoxication who showed optic nerve damage as assessed by magnetic resonance imaging (MRI). He was admitted to the hospital with blurred vision after the consumption of alcohol (600-700 ml of cologne). He was treated with intravenous ethanol, NaHCO3 and hemodialysis. On admission, a brain and orbital MRI was performed. Bilateral mild contrast enhancement was detected on the contrast-enhanced images in the retrobulbar segment of the optic nerves (RBONs). Also, diffusion-weighted images showed restricted diffusion in the RBONs. Diagnosis was considered as methanol-induced optic neuropathy based on the MRI findings of the optic nerves.

  8. Genetic and physical analyses of Methylobacterium organophilum XX genes encoding methanol oxidation

    SciTech Connect

    Machlin, S.M.; Tam, P.E.; Bastien, C.A.; Hanson, R.S.

    1988-01-01

    When allyl alcohol was used as a suicide substrate, spontaneous mutants and UV light- and nitrous acid-generated mutants of Methylobacterium organophilum XX were selected which grew on methylamine but not on methanol. There was no detectable methanol dehydrogenase (MDH) activity in crude extracts of these mutants, yet Western blots revealed that some mutants still produced MDH protein. Complementation of 50 mutants by a cosmid gene bank of M. organophilum XX demonstrated that three major regions of the genome, each of which was separated by a minimum of 40 kilobases, were required for expression of active MDH. By subcloning and Tn5 insertion mutagenesis of subcloned fragments, at least 11 genes clustered within these three regions were subsequently identified. The identity of the MDH structural gene, which was initially determined by hybridization to the structural gene of Methylobacterium sp. strain AM1, was confirmed by Western blot analysis of an MDH-..beta..-galactosidase fusion protein.

  9. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  10. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Barakat, Nasser A. M.; El-Newehy, Mohamed; Al-Deyab, Salem S.; Kim, Hak Yong

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  11. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation.

    PubMed

    Barakat, Nasser A M; El-Newehy, Mohamed; Al-Deyab, Salem S; Kim, Hak Yong

    2014-01-03

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  12. NIAAA: Advancing Alcohol Research for 40 Years

    PubMed Central

    Warren, Kenneth R.; Hewitt, Brenda G.

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has been the lead Federal agency responsible for scientific research on alcohol and its effects for 40 years. During that time, NIAAA has conducted and funded groundbreaking research, distilled and disseminated those research findings to a broad audience, and ultimately improved public health. Among NIAAA’s many significant contributions are the National Epidemiologic Survey on Alcohol and Related Conditions, the largest survey ever conducted on alcohol and associated psychiatric and medical conditions; investment in research to identify the genes underlying vulnerability to alcoholism; creation of the Collaborative Studies on Genetics of Alcoholism, a study of the genetics of alcoholism in a human population; leadership in exploring the effects of alcohol on fetal development and on a variety of diseases and organ systems; fostering alcoholism treatment, including supporting a medications development program that has funded more than 30 Phase 2 trials and 15 human laboratory studies; international collaborations and work across the National Institutes of Health; influential research on preventing alcohol problems through community programs as well as policy changes; and the translation of research findings to everyday practice, including the production of award-winning clinician training materials. PMID:23579932

  13. Sabic; Methanol shortfall threatens MTBE growth

    SciTech Connect

    Not Available

    1992-02-10

    This paper reports that a lack of methanol capacity in the mid-1990s could lead to shortages and limit production of methyl tertiary butyl ether, warns Abdullah Nojaidi, president of Sabic Marketing Ltd. It is estimated that world methanol demand will rise by about 5.6%/year in 1991-2000 fed by a jump of at least 20% in demand for MTBE. These averages are deceptive, because demand will explode in 1992-1993. Abdullah Nojaidi states that we are going to need every available gallon of methanol capacity to control pollution in the U.S., western and eastern Europe, Japan, and Asia...Unfortunately, new plants require long lead times, and those who want to see the right returns in advance are unlikely to have plants in place when demand starts to rise sharply in 1992 and 1993.

  14. Methanol and the productivity of tropical crops

    SciTech Connect

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanol in tropical crop production but further studies are required before this apparent potential can be harnessed.

  15. Efficient green methanol synthesis from glycerol

    NASA Astrophysics Data System (ADS)

    Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.

    2015-12-01

    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

  16. Acute toxicity of methanol to mytilus edulis

    SciTech Connect

    Helmstetter, A.; Gamerdinger, A.P.; Pruell, R.J.

    1996-12-31

    Methanol is being promoted as an alternative fuel because of the clean air benefits of reduced carbon monoxide and other by-product emissions. In the event of an accidental spill or leakage from a storage tank, there is limited data available on the impact of alternative fuels on marine ecosystems. Before considering the impact of methanol on ecosystem processes, it is necessary to establish the acute toxicity. The blue mussel (Mytilus edulis) was selected for study because of its use as an indicator species of marine ecosystem health (Widdows and Donkin 1992). Our primary objective was to determine the LC-50 value of methanol to adult Mytilus edulis. We also not sublethal effects that were observed during the course of the 96-hr exposure. 16 refs., 1 fig. 3 tabs.

  17. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  18. Use of alcohol in farming applications: alternative fuels utilization program

    SciTech Connect

    Borman, G.L.; Foster, D.E.; Uyehara, O.A.; McCallum, P.W.; Timbario, T.J.

    1980-11-01

    The use of alcohol with diesel fuel has been investigated as a means of extending diesel fuel supplies. The ability to use ethanol in diesel-powered farm equipment could provide the means for increasing the near-term fuels self-sufficiency of the American farmer. In the longer term, the potential availability of methanol (from coal) in large quantities could serve to further decrease the dependency on diesel fuel. This document gives two separate overviews of the use of alcohols in farm equipment. Part I of this document compares alcohol with No. 1 and No. 2 diesel fuels and describes several techniques for using alcohol in farm diesels. Part II of this document discusses the use of aqueous ethanol in diesel engines, spark ignition engines and provides some information on safety and fuel handling of both methanol and ethanol. This document is not intended as a guide for converting equipment to utilize alcohol, but rather to provide information such that the reader can gain insight on the advantages and disadvantages of using alcohol in existing engines currently used in farming applications.

  19. Photocatalytic conversion of methane to methanol

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R.

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  20. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO.

    PubMed

    Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing; Shimon, Linda J W; Milstein, David

    2011-07-22

    Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate 'green' reactions. A possible mechanism involves metal-ligand cooperation by aromatization-dearomatization of the heteroaromatic pincer core.

  1. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to study the conversion of synthesis gas to methanol (MEOH) in the liquid phase by a novel method. In previous reports, we provided evidence for a two step reaction consisting of a carbonylation reaction taking place mainly in the film'' close to a copper chromite surface followed by a hydrogenolysis reaction taking place on the surface of the copper chromite. The interaction between the two catalysts enhances the rate of methanol formation. In this quarter, we reexamined the equilibrium concentration for methyl formate and obtained data at higher loadings of copper chromite.

  2. Neat methanol fuel cell power plant

    NASA Astrophysics Data System (ADS)

    Abens, S.; Farooque, M.

    1985-12-01

    Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.

  3. Environmental controls over methanol emission from leaves

    NASA Astrophysics Data System (ADS)

    Harley, P.; Greenberg, J.; Niinemets, É.; Guenther, A.

    2007-12-01

    Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.2 to 38 μg g (dry mass)-1 h-1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.3 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can

  4. The toxic and metabolic effects of 23 aliphatic alcohols in the isolated perfused rat liver.

    PubMed

    Strubelt, O; Deters, M; Pentz, R; Siegers, C P; Younes, M

    1999-05-01

    We investigated the acute toxic and metabolic effects of 23-aliphatic alcohols (16 saturated and 7 unsaturated) in the isolated perfused rat liver at a concentration of 65.1 mmol/l (approximately 0.3% ethanol). The capacity of the straight chain primary alcohols (methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol) to release the enzymes glutamate-pyruvate transaminase (GPT), lactate dehydrogenase (LDH) and glutamate dehydrogenase (GLDH) into the perfusate was strongly correlated with their carbon chain length. The secondary alcohols were less active in this respect whereas branching of the carbon chain did not consistently change alcohol toxicity. Unsaturation in the straight chain but not in the branched chain alcohols was accompanied by an increase in toxicity. An increased enzyme release was in general accompanied by, and correlated to, reductions in oxygen consumption, bile secretion, and perfusion flow of the isolated livers. Statistically significant correlations exist between parameters of alcohol-induced hepatotoxicity and the membrane/buffer partition coefficents of the alcohols. With the exception of methanol, all alcohols tested increased the lactate/pyruvate ratio of the perfusate, although this effect was not correlated to the degree of hepatic injury. Hepatic ATP concentrations decreased in most cases in line with hepatic injury and were particularly correlated with changes in oxygen consumption. Hepatic concentrations of reduced glutathione (GSH) were only diminished by the unsaturated alcohols, whereas an increase in hepatic oxidized glutathione (GSSG) occurred only with some of the saturated alcohols. Hepatic concentrations of malondialdehyde (MDA) increased after two saturated and three unsaturated alcohols but did not correlate with other parameters of hepatotoxicity. In conclusion, alcohol-induced hepatotoxicity is primarily due to membrane damage induced by the direct solvent properties of the alcohols. The consequences and relative

  5. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    SciTech Connect

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  6. Social and Cultural Contexts of Alcohol Use

    PubMed Central

    Sudhinaraset, May; Wigglesworth, Christina; Takeuchi, David T.

    2016-01-01

    Alcohol use and misuse account for 3.3 million deaths every year, or 6 percent of all deaths worldwide. The harmful effects of alcohol misuse are far reaching and range from individual health risks, morbidity, and mortality to consequences for family, friends, and the larger society. This article reviews a few of the cultural and social influences on alcohol use and places individual alcohol use within the contexts and environments where people live and interact. It includes a discussion of macrolevel factors, such as advertising and marketing, immigration and discrimination factors, and how neighborhoods, families, and peers influence alcohol use. Specifically, the article describes how social and cultural contexts influence alcohol use/misuse and then explores future directions for alcohol research. PMID:27159810

  7. Is it time to ban alcohol advertising?

    PubMed

    Anderson, Peter

    2009-04-01

    Children and adolescents are particularly vulnerable to the harmful effects of alcohol, with heavy drinking risking impaired brain development and future alcohol dependence. Advertisements increase expectancies about alcohol, leading to a greater likelihood of drinking. A systematic review of 13 longitudinal studies of over 38,000 young people found convincing evidence of an impact of media exposure and alcohol advertising on subsequent alcohol use, including initiation of drinking and heavier drinking among existing drinkers. All European countries, with the exception of the UK, have a ban on one or more types of advertising. Since self-regulation is reported as failing to prevent marketing which has an impact on younger people, and since advertising commonly crosses country borders, there is an argument to approximate advertising rules across Europe banning alcohol advertising targeted at young people, a highly cost-effective measure to reduce harmful alcohol use, and one supported by European citizens and case law.

  8. Microbial production of fatty alcohols.

    PubMed

    Fillet, Sandy; Adrio, José L

    2016-09-01

    Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.

  9. Suicidal Behavior and Alcohol Abuse

    PubMed Central

    Pompili, Maurizio; Serafini, Gianluca; Innamorati, Marco; Dominici, Giovanni; Ferracuti, Stefano; Kotzalidis, Giorgio D.; Serra, Giulia; Girardi, Paolo; Janiri, Luigi; Tatarelli, Roberto; Sher, Leo; Lester, David

    2010-01-01

    Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns. PMID:20617037

  10. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  11. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  12. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  13. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH3OHn(-). The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  14. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  15. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production.

    PubMed

    Yang, Yi-Hung; Klinthong, Worasaung; Tan, Chung-Sung

    2015-12-01

    CO2-expanded methanol (CXM) was used to extract lipids from the microalgae Chlorella vulgaris (a total lipid content of 20.7% was determined by Soxhlet extraction with methanol at 373 K for 96 h) in a continuous mode. The CXM was found to be a superior solvent to methanol, ethanol, pressurized methanol and ethanol, and CO2-expanded ethanol for lipid extraction. The effects of operation variables including temperature, pressure and CO2 flow rate on extraction performance were examined using the response surface and contour plot methodologies. The optimal operating conditions were at a pressure of 5.5 MPa, a temperature of 358 K, a methanol flow rate of 1 mL/min and a CO2 flow rate of 3.0 mL/min, providing an extracted lipid yield of 84.8 wt% over an extraction period of 30 min. Compared with propane methanol mixture, CXM was safer and more energy efficient for lipid extraction from C. vulgaris.

  16. Recycling of carbon dioxide to methanol and derived products - closing the loop.

    PubMed

    Goeppert, Alain; Czaun, Miklos; Jones, John-Paul; Surya Prakash, G K; Olah, George A

    2014-12-07

    Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.

  17. Total oxidation of methanol on Cu(110): a density functional theory study.

    PubMed

    Sakong, Sung; Gross, Axel

    2007-09-13

    The partial and total oxidation of methanol on clean and oxygen-precovered Cu(110) has been studied by periodic density functional theory calculations within the generalized gradient approximation. Reaction paths including the geometry and the energetics of several reaction intermediates and the activation barriers between them have been determined, thus creating a complete scheme for methanol oxidation on copper. The calculations demonstrate that the specific structure of oxygen on copper plays an important role in both the partial and the total oxidation of methanol. For lower oxygen concentrations on the surface, the partial oxidation of methanol to formaldehyde is promoted by the presence of oxygen on the surface through the removal of hydrogen in the form of water, which prevents the recombinative desorption of methanol. At larger oxygen concentrations, the presence of isolated oxygen atoms reduces the C-H bond breaking barrier of adsorbed methoxy considerably, thus accelerating the formation of formaldehyde. Furthermore, oxygen also promotes the formation of dioxymethylene from formaldehyde, which then easily decays to formate. Formate is the most stable reaction intermediate in the total oxidation. Thus the formate decomposition represents the rate-limiting step in the total oxidation of methanol on copper.

  18. Older Adults and Alcohol

    MedlinePlus

    ... Alcohol Exposure Support & Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA ... are here Home » Alcohol & Your Health » Special Populations & Co-occurring Disorders » Older Adults In this Section Underage ...

  19. Fetal Alcohol Syndrome

    MedlinePlus

    ... The diagnosis of fetal alcohol syndrome. Deutsches Arztebaltt International. 2013;110:703. Ungerer M, et al. In utero alcohol exposure, epigenetic changes and their consequences. Alcohol Research: Current Reviews. 2013;35:37. Coriale G, et al. ...

  20. Fetal Alcohol Syndrome

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Fetal Alcohol Syndrome Read in Chinese What is Fetal Alcohol Syndrome (FAS)? Fetal Alcohol Syndrome (FAS) describes changes in ...

  1. Alcoholic liver disease

    MedlinePlus

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  3. Prenatal Alcohol Exposure Selectively Enhances Young Adult Perceived Pleasantness of Alcohol Odors

    PubMed Central

    Hannigan, John H.; Chiodo, Lisa M.; Sokol, Robert J.; Janisse, James; Delaney-Black, Virginia

    2015-01-01

    Prenatal Alcohol Exposure (PAE) can lead to life-long neurobehavioral and social problems that can include a greater likelihood of early use and/or abuse of alcohol compared to older teens and young adults without PAE. Basic research in animals demonstrates that PAE influences later postnatal responses to chemosensory cues (i.e., odor & taste) associated with alcohol. We hypothesized that PAE would be related to poorer abilities to identify odors of alcohol-containing beverages, and would alter perceived alcohol odor intensity and pleasantness. To address this hypothesis we examined responses to alcohol and other odors in a small sample of young adults with detailed prenatal histories of exposure to alcohol and other drugs. The key finding from our controlled analyses is that higher levels of PAE were related to higher relative ratings of pleasantness for alcohol odors. As far as we are aware, this is the first published study to report the influence of PAE on responses to alcohol beverage odors in young adults. These findings are consistent with the hypothesis that positive associations (i.e., “pleasantness”) to the chemosensory properties of alcohol (i.e., odor) are acquired prenatally and are retained for many years despite myriad interceding postnatal experiences. Alternate hypotheses may also be supported by the results. There are potential implications of altered alcohol odor responses for understanding individual differences in initiation of drinking, and alcohol seeking and high-risk alcohol-related behaviors in young adults. PMID:25600468

  4. Hydrogen bond dynamics in bulk alcohols.

    PubMed

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  5. Is local alcohol outlet density related to alcohol-related morbidity and mortality in Scottish cities?

    PubMed Central

    Richardson, E.A.; Hill, S.E.; Mitchell, R.; Pearce, J.; Shortt, N.K.

    2015-01-01

    Alcohol consumption may be influenced by the local alcohol retailing environment. This study is the first to examine neighbourhood alcohol outlet availability (on- and off-sales outlets) and alcohol-related health outcomes in Scotland. Alcohol-related hospitalisations and deaths were significantly higher in neighbourhoods with higher outlet densities, and off-sales outlets were more important than on-sales outlets. The relationships held for most age groups, including those under the legal minimum drinking age, although were not significant for the youngest legal drinkers (18–25 years). Alcohol-related deaths and hospitalisations were higher in more income-deprived neighbourhoods, and the gradient in deaths (but not hospitalisations) was marginally larger in neighbourhoods with higher off-sales outlet densities. Efforts to reduce alcohol-related harm should consider the potentially important role of the alcohol retail environment. PMID:25840352

  6. Liquid phase methanol reactor staging process for the production of methanol

    SciTech Connect

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  7. Advances in alcoholic liver disease: An update on alcoholic hepatitis

    PubMed Central

    Liang, Randy; Liu, Andy; Perumpail, Ryan B; Wong, Robert J; Ahmed, Aijaz

    2015-01-01

    Alcoholic hepatitis is a pro-inflammatory chronic liver disease that is associated with high short-term morbidity and mortality (25%-35% in one month) in the setting of chronic alcohol use. Histopathology is notable for micro- and macrovesicular steatosis, acute inflammation with neutrophil infiltration, hepatocellular necrosis, perivenular and perisinusoidal fibrosis, and Mallory hyaline bodies found in ballooned hepatocytes. Other findings include the characteristic eosinophilic fibrillar material (Mallory’s hyaline bodies) found in ballooned hepatocytes. The presence of focal intense lobular infiltration of neutrophils is what typically distinguishes alcoholic hepatitis from other forms of hepatitis, in which the inflammatory infiltrate is primarily composed of mononuclear cells. Management consists of a multidisciplinary approach including alcohol cessation, fluid and electrolyte correction, treatment of alcohol withdrawal, and pharmacological therapy based on the severity of the disease. Pharmacological treatment for severe alcoholic hepatitis, as defined by Maddrey’s discriminant factor ≥ 32, consists of either prednisolone or pentoxifylline for a period of four weeks. The body of evidence for corticosteroids has been greater than pentoxifylline, although there are higher risks of complications. Recently head-to-head trials between corticosteroids and pentoxifylline have been performed, which again suggests that corticosteroids should strongly be considered over pentoxifylline. PMID:26576078

  8. Advances in alcoholic liver disease: An update on alcoholic hepatitis.

    PubMed

    Liang, Randy; Liu, Andy; Perumpail, Ryan B; Wong, Robert J; Ahmed, Aijaz

    2015-11-14

    Alcoholic hepatitis is a pro-inflammatory chronic liver disease that is associated with high short-term morbidity and mortality (25%-35% in one month) in the setting of chronic alcohol use. Histopathology is notable for micro- and macrovesicular steatosis, acute inflammation with neutrophil infiltration, hepatocellular necrosis, perivenular and perisinusoidal fibrosis, and Mallory hyaline bodies found in ballooned hepatocytes. Other findings include the characteristic eosinophilic fibrillar material (Mallory's hyaline bodies) found in ballooned hepatocytes. The presence of focal intense lobular infiltration of neutrophils is what typically distinguishes alcoholic hepatitis from other forms of hepatitis, in which the inflammatory infiltrate is primarily composed of mononuclear cells. Management consists of a multidisciplinary approach including alcohol cessation, fluid and electrolyte correction, treatment of alcohol withdrawal, and pharmacological therapy based on the severity of the disease. Pharmacological treatment for severe alcoholic hepatitis, as defined by Maddrey's discriminant factor ≥ 32, consists of either prednisolone or pentoxifylline for a period of four weeks. The body of evidence for corticosteroids has been greater than pentoxifylline, although there are higher risks of complications. Recently head-to-head trials between corticosteroids and pentoxifylline have been performed, which again suggests that corticosteroids should strongly be considered over pentoxifylline.

  9. Ion/molecule reactions of 2-chloro- and 2-bromopropene radical cations with methanol and ethanol--FT-ICR spectrometry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Grützmacher, Hans-Friedrich; Büchner, Michael; Zipse, Hendrik

    2005-02-01

    Continuing the studies of ion/molecule reactions of haloalkene radical cations with nucleophiles, the reactions of the radical cations of 2-chloropropene, 1+, and 2-bromopropene. 2+, with methanol and ethanol, respectively, have been investigated by FT-ICR spectrometry and by computational analysis using DFT calculation (BHLYP/6-311 + G(2d,p)//BHLYP/6-31 + G(d) level). Only slow reactions (reaction efficiency <1%) are observed for 1+/methanol and 2+/methanol. Slow proton transfer is the main process for 1+/methanol besides minor addition of methanol to 1+ followed by loss of HCl or Cl. Addition of methanol accompanied by loss of Br is the exclusive process observed for 2+/methanol. In contrast, both 1+ and 2+ react efficiently with ethanol yielding protonated acetaldehyde as the exclusive (1+) or by far dominant (2+) primary reaction product. The computational analysis of these ion/molecule reactions shows that in the case of 1+/methanol and 2+/methanol all processes are either endothermic or blocked by large activation energies. Nonetheless, addition of methanol to the ionized CC double bond of 1+ or 2+ is exothermic, yielding in each case a pair of isomeric [beta]-distonic methoxonium ions. A new reaction mechanism has been found for the HX (X = Cl, Br) elimination from the less stable isomer of the distonic intermediates. Further, an energetically favorable transition state has been detected for hydrogen atom transfer from the [alpha]-CH2 group of alcohol to the halogenoalkene radical cations. These findings lead to a revised mechanism of the oxidation process and provide a plausible explanation for the excessive H/D exchange between 1+ and CD3OH during their slow reaction.

  10. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    PubMed

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation.

  11. Effect of dissolved oxygen in alcoholic beverages and drinking water on alcohol elimination in humans.

    PubMed

    Rhee, Su-jin; Chae, Jung-woo; Song, Byung-jeong; Lee, Eun-sil; Kwon, Kwang-il

    2013-02-01

    Oxygen plays an important role in the metabolism of alcohol. An increased dissolved oxygen level in alcoholic beverages reportedly accelerates the elimination of alcohol. Therefore, we evaluated the effect of dissolved oxygen in alcohol and the supportive effect of oxygenated water on alcohol pharmacokinetics after the excessive consumption of alcohol, i.e., 540 ml of 19.5% alcohol (v/v). Fifteen healthy males were included in this randomized, 3 × 3 crossover study. Three combinations were tested: X, normal alcoholic beverage and normal water; Y, oxygenated alcoholic beverage and normal water; Z, oxygenated alcoholic beverage and oxygenated water. Blood alcohol concentrations (BACs) were determined by conversion of breath alcohol concentrations. Four pharmacokinetic parameters (C(max), T(max), K(el), and AUCall) were obtained using non-compartmental analysis and the times to reach 0.05% and 0.03% BAC (T(0.05%) and T(0.03%)) were compared using one-way analysis of variance (ANOVA) and Duncan's post hoc test. With combination Z, the BAC decreased to 0.05% significantly faster (p < 0.05) than with combination X. Analyzing the pharmacokinetic parameters, the mean K(el) was significantly higher for combination Z than for combinations X and Y (p < 0.05), whereas the mean values of C(max), T(max) and AUCall did not differ significantly among the combinations. Dissolved oxygen in drinks accelerates the decrease in BAC after consuming a large amount of alcohol. However, the oxygen dissolved in the alcoholic beverage alone did not have a sufficient effect in this case. We postulate that highly oxygenated water augments the effect of oxygen in the alcoholic beverage in alcohol elimination. Therefore, it is necessary to investigate the supportive effect of ingesting additional oxygenated water after heavy drinking of normal alcoholic beverages.

  12. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  13. The Quality of Alcohol Products in Vietnam and Its Implications for Public Health

    PubMed Central

    Lachenmeier, Dirk W.; Anh, Pham Thi Hoang; Popova, Svetlana; Rehm, Jürgen

    2009-01-01

    Four homemade (artisanally manufactured and unrecorded) and seven commercial (industrially manufactured and taxed) alcohol products from Vietnam were collected and chemically analyzed for toxicologically relevant substances. The majority of both types had alcohol contents between 30 and 40% vol. Two homemade samples contained significantly higher concentrations of 45 and 50% vol. In one of these homemade samples the labeled alcoholic strength was exceeded by nearly 20% vol. All other analyzed constituents of the samples (e.g., methanol, acetaldehyde, higher alcohols, esters, metals, anions) were found in concentrations that did not pose a threat to public health. A peculiarity was a homemade sample of alcohol with pickled snakes and scorpions that contained 77% vol of alcohol, allegedly used as traditional Chinese medicine. Based on this small sample, there is insufficient evidence to conclude that alcohol quality, beyond the effects of ethanol, has an influence on health in Vietnam. However, future research with larger samples is needed. PMID:19742208

  14. Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Hamieh, S.; Canaff, C.; Tayeb, K. Ben; Tarighi, M.; Maury, S.; Vezin, H.; Pouilloux, Y.; Pinard, L.

    2015-07-01

    Ethanol and methanol are converted using H-ZSM-5 zeolite at 623 K and 3.0 MPa into identical hydrocarbons (paraffins, olefins and aromatics) and moreover with identical selectivities. The distribution of olefins as paraffins follows the Flory distribution with a growth probability of 0.53. Regardless of the alcohol, the catalyst lifetime and selectivity into hydrocarbons C3+ are high in spite of an important coke content. The coke that poisons the Brønsted acid sites without blocking their access is composed in part of radical polyalkylaromatics. The addition of hydroquinone, an inhibitor of radicals, to the feed, provokes an immediate catalyst deactivation.

  15. Methanol and acetaldehyde fluxes over ryegrass

    NASA Astrophysics Data System (ADS)

    Custer, Thomas; Schade, Gunnar

    2007-09-01

    Oxygenated volatile organic compounds (OVOCs) play an active role in tropospheric chemistry but our knowledge concerning their release and ultimate fate is limited. However, the recent introduction of Proton Transfer Reaction Mass Spectrometry (PTRMS) has improved our capability to make direct field observations of OVOC mixing ratios and fluxes. We used PTRMS in an eddy covariance setup to measure selected OVOC exchange rates above a well-characterized agricultural plot in Northern Germany. In fall 2003, mixing ratios of methanol and acetaldehyde 2 m above the field ranged from 1 to 10 and 0.4 to 2.1 ppb, respectively, well correlated with one another. Fluxes of both gases were followed for growing Italian ryegrass (Lolium multiflorum) over a significant portion of its life cycle. Diurnally fluctuating emissions of methanol and very small acetaldehyde fluxes were observed up to the cutting and removal of the grass. Methanol emissions were exponentially related to ambient temperatures and appeared to be higher during the grass' rapid leaf area expansion and after a rain event. Acetaldehyde exchanges averaged over the whole period indicated very slow deposition. Our measurements confirm previous, similar results, as well as presumptions that grasses are comparatively low methanol emitters compared to non-grass species.

  16. Producing methanol from CO[sub 2

    SciTech Connect

    Goehna, H.; Koenig, P. )

    1994-06-01

    Year after year, large quantities of carbon dioxide are emitted to the atmosphere from a variety of sources. Solutions are sought to reduce CO[sub 2] emissions or to reconvert released CO[sub 2] into energy sources or other industrially usable substances. Methanol can be produced from CO[sub 2] and hydrogen, and can be used either as a fuel or as a chemical raw material. If used as a fuel, it would in effect have the added environmental advantage of reducing consumption of fossil fuels. Currently, methanol is produced from syngas, a mixture of H[sub 2], CO, and CO[sub 2]. CO is the main carbon source in the commercial-scale process by which methanol can be produced under competitive economics from a mixture of CO[sub 2] and hydrogen. This complex undertaking requires the development of a suitable catalyst, optimization of process parameters, and an adjustment of Lurgi's proven methanol technology to the specific requirements. This paper discusses goals for the catalyst, optimizing process parameters, adjustment of the process technology, and economic analysis.

  17. Metacridamide B methanol-d4 monosolvate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The title compound was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the abs...

  18. A methanol/air fuel cell system

    NASA Technical Reports Server (NTRS)

    Asher, W. J.

    1974-01-01

    High power-density, self-regulating fuel cell develops electrical power from catalyzed reaction between methanol and atmospheric oxygen. Cells such as these are of particular interest, because they may one day offer an emission-free, extremely efficient alternative to internal-combustion engines as power source.

  19. A novel process for methanol synthesis

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1991-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. In previous reports, we provided evidence for a two step reaction in series, the carbonylation reaction mainly taking place in a non-equilibrium region in the vicinity of the Cu-chromite surface, and the hydrogenolysis reaction taking place on the surface of the Cu-chromite. The synergism between the two catalysts enhances the rate of methanol formation. In this quarter, we studied the effect of pressure and temperature on the rate of MeOH synthesis. We also compared the reaction rate of a syngas feed simulated for an H{sub 2}/CO ratio from a Texaco gasifier with a methanol balanced syngas feed (H{sub 2}/CO=2). Atomic absorption analysis of solid and liquid samples for the KOMe/Cu-chromite runs was undertaken to identify the distribution of potassium at the end of the methanol synthesis runs. Modelling studies were initiated with emphasis on both kinetic and process behavior. 12 refs., 7 figs., 1 tab.

  20. HYDROGEN BONDING IN THE METHANOL DIMER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  1. Methanol decomposition bottoming cycle for IC engines

    NASA Technical Reports Server (NTRS)

    Purohit, G.; Houseman, J.

    1979-01-01

    This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.

  2. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  3. Optimized fuel cell grade hydrogen from methanol

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek

    2003-10-01

    To evaluate reaction rates liar making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a micro reactor testing unit using a commercial Cu-ZnO/Al2O3 catalyst for the first three reactions and Pt-Fe/gamma-alumina catalyst for the last reaction. The activity tests were performed between 120˜325°C and atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, water addition to the feed increased the yield of hydrogen and reduced the formation of by-products. XPS analysis of used catalyst samples and time on-stream data showed that the Cu2+ oxidation state of copper favors methanol decomposition. A simplified reaction network of 5 elementary reactions was proposed and all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. For the kinetics of the water gas shift reaction, an empirical rate expression was obtained from the experimental data. Based on a review of published work on the WGS reaction mechanism, our study found that a rate expression derived from a regenerative mechanism and another rate expression derived from adsorptive mechanism fit the experimental data equally well. For the kinetics of CO preferential oxidation, a reaction model in which three reactions (CO oxidation, H2 oxidation and the WGS reaction) occur simultaneously was chosen to predict the reactor performance. In particular the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Combining the three reactors and several

  4. Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris.

    PubMed

    Wang, Jinjia; Wang, Xiaolong; Shi, Lei; Qi, Fei; Zhang, Ping; Zhang, Yuanxing; Zhou, Xiangshan; Song, Zhiwei; Cai, Menghao

    2017-02-02

    The alcohol oxidase 1 promoter (PAOX1) of Pichia pastoris is commonly used for high level expression of recombinant proteins. While the safety risk of methanol and tough process control for methanol induction usually cause problems especially in large-scale fermentation. By testing the functions of trans-acting elements of PAOX1 and combinatorially engineering of them, we successfully constructed a methanol-free PAOX1 start-up strain, in which, three transcription repressors were identified and deleted and, one transcription activator were overexpressed. The strain expressed 77% GFP levels in glycerol compared to the wide-type in methanol. Then, insulin precursor (IP) was expressed, taking which as a model, we developed a novel glucose-glycerol-shift induced PAOX1 start-up for this methanol-free strain. A batch phase with glucose of 40 g/L followed by controlling residual glucose not lower than 20 g/L was compatible for supporting cell growth and suppressing PAOX1. Then, glycerol induction was started after glucose used up. Accordingly, an optimal bioprocess was further determined, generating a high IP production of 2.46 g/L in a 5-L bioreactor with dramatical decrease of oxygen consumption and heat evolution comparing with the wild-type in methanol. This mutant and bioprocess represent a safe and efficient alternative to the traditional glycerol-repressed/methanol-induced PAOX1 system.

  5. Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris

    PubMed Central

    Wang, Jinjia; Wang, Xiaolong; Shi, Lei; Qi, Fei; Zhang, Ping; Zhang, Yuanxing; Zhou, Xiangshan; Song, Zhiwei; Cai, Menghao

    2017-01-01

    The alcohol oxidase 1 promoter (PAOX1) of Pichia pastoris is commonly used for high level expression of recombinant proteins. While the safety risk of methanol and tough process control for methanol induction usually cause problems especially in large-scale fermentation. By testing the functions of trans-acting elements of PAOX1 and combinatorially engineering of them, we successfully constructed a methanol-free PAOX1 start-up strain, in which, three transcription repressors were identified and deleted and, one transcription activator were overexpressed. The strain expressed 77% GFP levels in glycerol compared to the wide-type in methanol. Then, insulin precursor (IP) was expressed, taking which as a model, we developed a novel glucose-glycerol-shift induced PAOX1 start-up for this methanol-free strain. A batch phase with glucose of 40 g/L followed by controlling residual glucose not lower than 20 g/L was compatible for supporting cell growth and suppressing PAOX1. Then, glycerol induction was started after glucose used up. Accordingly, an optimal bioprocess was further determined, generating a high IP production of 2.46 g/L in a 5-L bioreactor with dramatical decrease of oxygen consumption and heat evolution comparing with the wild-type in methanol. This mutant and bioprocess represent a safe and efficient alternative to the traditional glycerol-repressed/methanol-induced PAOX1 system. PMID:28150747

  6. Energy conservation in alcohol production

    SciTech Connect

    Standiford, F.C.; Weimer, L.D.

    1983-01-01

    Explains how substantial energy savings can be achieved by integrating the distillation system into the slop concentrating evaporator of a fermentation plant. Presents diagram of a fully integrated system. Advantages of a combined system include considerable improvement in the energy balance of a fuel alcohol plant; concentration of alcohol in the feed becomes much less important; improvement in the recovery of alcohol in the feed; and it enables simpler stripping of alcohol from the fermented liquor. Such systems will reduce the net extra heat required for distillation from one-half to one-third that normally needed. The energy required for slop evaporation is slightly less than normally needed by a highly efficient vapor compression evaporator operating alone.

  7. Alcohol and Health. Seventh Special Report to the U.S. Congress from the Secretary of Health and Human Services.

    ERIC Educational Resources Information Center

    National Inst. on Alcohol Abuse and Alcoholism (DHHS), Rockville, MD.

    This report describes recent progress in knowledge on alcohol abuse and alcoholism. These topics are covered: (1) alcohol abuse and alcoholism, including drinking patterns, etiology, and alcohol dependence as a disease; (2) epidemiology, including morbidity and deaths; (3) genetics and environment, including twin and adoption studies, animal…

  8. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  9. Alcohol, DNA Methylation, and Cancer

    PubMed Central

    Varela-Rey, Marta; Woodhoo, Ashwin; Martinez-Chantar, Maria-Luz; Mato, José M.; Lu, Shelly C.

    2013-01-01

    Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis. PMID:24313162

  10. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  11. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  12. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell

    SciTech Connect

    Wang, J.T.; Wasmus, S.; Savinell, R.F.

    1996-04-01

    The products of methanol crossover through the acid-doped polybenzimidazole polymer electrolyte membrane (PBI PEM) to the cathode of a prototype direct methanol fuel cell (DMFC) were analyzed using multipurpose electrochemical mass spectrometry (MPEMS) coupled to the cathode exhaust gas outlet. It was found that the methanol crossing over reacts almost quantitatively to CO{sub 2} at the cathode with the platinum of the cathode acting as a heterogeneous catalyst. The cathode open-circuit potential is inversely proportional to the amount of CO{sub 2} formed. A poisoning effect on the oxygen reduction also was found. Methods for the estimation of the methanol crossover rate at operating fuel cells are suggested.

  13. Mechanism of Methanol Synthesis on Cu through CO 2 and CO Hydrogenation

    SciTech Connect

    Grabow, L. C.; Mavrikakis, M.

    2011-04-01

    We present a comprehensive mean-field microkinetic model for the methanol synthesis and water-gas-shift (WGS) reactions that includes novel reaction intermediates, such as formic acid (HCOOH) and hydroxymethoxy (CH₃O₂) and allows for the formation of formic acid (HCOOH), formaldehyde (CH₂O), and methyl formate (HCOOCH₃) as byproducts. All input model parameters were initially derived from periodic, self-consistent, GGA-PW91 density functional theory calculations on the Cu(111) surface and subsequently fitted to published experimentalmethanol synthesis rate data, which were collected under realistic conditions on a commercial Cu/ZnO/Al₂O₃ catalyst. We find that the WGS reaction follows the carboxyl (COOH)-mediated path and that both CO and CO₂ hydrogenation pathways are active for methanol synthesis. Under typical industrial methanol synthesis conditions, CO₂ hydrogenation is responsible for ~2/3 of the methanol produced. The intermediates of the CO₂ pathway for methanol synthesis include HCOO*, HCOOH*, CH₃O₂*, CH₂O*, and CH₃O*. The formation of formate (HCOO*) from CO₂* and H* on Cu(111) does not involve an intermediate carbonate (CO₃*) species, and hydrogenation of HCOO* leads to HCOOH* instead of dioxymethylene (H₂CO₂*). The effect of CO is not only promotional; CO* is also hydrogenated in significant amounts to HCO*, CH₂O *, CH₃O*, and CH₃OH*. We considered two possibilities for CO promotion: (a) removal of OH* via COOH* to form CO₂ and hydrogen (WGS), and (b) CO-assisted hydrogenation of various surface intermediates, with HCO* being the H-donor. Only the former mechanism contributes to methanol formation, but its effect is small compared with that of direct CO hydrogenation to methanol. Overall, methanol synthesis rates are limited by methoxy (CH₃O*) formation at low CO₂/(CO+CO₂) ratios and by CH₃O* hydrogenation in CO₂-rich feeds. CH₃O* hydrogenation is the common slow step for both the CO and the CO

  14. Evaluation of the Ramazzini Foundation Study of Methanol in Rats

    EPA Pesticide Factsheets

    Evaluation of the Ramazzini Foundation Study of Methanol in Rats: A Comparison of Diagnoses by the RF Study Pathologist and a Recent NTP Review Team, summarized by George Cruzan and submitted to the Methanol Institute

  15. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo; Minoura, Tsuyoshi

    1995-05-01

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  16. Glutamatergic targets for new alcohol medications

    PubMed Central

    Spanagel, Rainer; Krystal, John H.

    2013-01-01

    Rationale An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol’s intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. Objectives We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. Results Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. Conclusions Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new

  17. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  18. Communicating alcohol narratives: creating a healthier relationship with alcohol.

    PubMed

    Anderson, Peter; Amaral-Sabadini, Michaela Bitarello do; Baumberg, Ben; Jarl, Johan; Stuckler, David

    2011-08-01

    Alcohol, like mental health, is a neglected topic in public health discussions. However, it should be defined as a priority public health area because the evidence available to support this is very persuasive. Although only half the world's population drinks alcohol, it is the world's third leading cause of ill health and premature death, after low birth weight and unsafe sex, and the world's greatest cause of ill health and premature death among individuals between 25 and 59 years of age. This article aims to outline current global experiences with alcohol policies and suggests how to communicate better evidence-based policy responses to alcohol-related harm using narratives. The text summarizes 6 actions to provide incentives that would favor a healthier relationship with alcohol in contemporary society. Actions include price and availability changes, marketing regulations, changes in the format of drinking places and on the product itself, and actions designed to nudge people at the time of their purchasing decisions. Communicating alcohol narratives to policymakers more successfully will likely require a discourse emphasizing the reduction of heavy drinking occasions and the protection of others from someone else's problematic drinking.

  19. Infrared spectroscopy of methanol-hexane liquid mixtures. II. The strength of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2009-03-01

    The study by Fourier transform infrared attenuated total reflectance spectroscopy at 27 °C of methanol (MeOH) and hexane mixtures is presented. In the 0-0.25 and 0.75-1.00 molar fractions, the mixtures form homogeneous solutions, whereas from 0.25 to 0.75, the mixtures are inhomogeneous forming two phases. These mixtures have the near 3300 cm-1 OH stretch band only slightly displaced throughout the whole concentration range indicating very little variation in the H-bonding condition. This result is very different from that of MeOH in CCl4 where the OH stretch bands are scattered in a wide frequency range. Factor analysis applied to the MeOH/hexane spectra gave seven principal factors (one hexane and six methanol factors) and retrieved their principal spectra and abundances. In the inhomogeneous region, the two phase volumes changed inversely with concentration, but their factor compositions are invariable at 1:3 and 3:1 molar ratios. Five of the six principal methanol factors have the O-H and the C-O stretch bands situated near, respectively, 3310 and 1025 cm-1 with little displacement in the whole concentration range. The sixth factor observed at 3654 cm-1 (full width at half height<40 cm-1) was assigned to free methanol OH by Max and Chapados [J. Chem. Phys. 128, 224512 (2008)]. This species concentration is very low but constant at around 0.01M in the methanol range of 0.5-2.5M. The main OH stretch bands (˜3300 cm-1) were simulated with six Gaussian components that were assigned to different hydrogen-bonding situations. These form reverse micelles at low methanol concentrations and micelles at high concentrations that persist in pure methanol. A very different state of affairs exists in MeOH in CCl4 where free OH groups are formed in almost all mixtures except in pure MeOH. Since hexane is a better model of a lipidic milieu than CCl4, the results for MeOH/hexane give a better representation of the fate of alcoholic OH groups in such a milieu.

  20. Moderate alcohol consumption--need for intervention programs in pregnancy?

    PubMed

    Meberg, A; Halvorsen, B; Holter, B; Ek, I J; Askeland, A; Gaaserud, W; Steinsvåg, J

    1986-01-01

    Consumption of alcohol was investigated in two groups of pregnant women: an intervention group (n = 58) (two structured interviews during pregnancy including counseling focused on reduction of alcohol consumption and potential benefits to the fetus, and interview after delivery), and a control group (n = 74) (interview after delivery). Prepregnancy 80% of the women were light or moderate alcohol consumers, and 20% teetotalers. Pregnancy considerably reduced alcohol consumption in both groups. 66% abstained from alcohol during pregnancy, and use of liquor nearly ceased. The changes in alcohol consumption occurred independently to the intervention program. Strategy for reducing alcohol consumption during pregnancy should include a structured alcohol anamnesis at the first ante-natal visit, accompanied by counseling focused on reduction of alcohol consumption. More extensive intervention programs may be reserved for pregnancies at higher risk (high-consumers, abusers).