Science.gov

Sample records for alcohols ketones ethers

  1. Volumes of aqueous alcohols, ethers, and ketones to T = 523 K and p = 28 MPa.

    PubMed

    Schulte, M D; Shock, E L; Obsil, M; Majer, V

    1999-09-01

    Densities of dilute aqueous solutions of isopropanol, 1,5-pentanediol, cyclohexanol, benzyl alcohol, diethyl ether, 1,2-dimethoxyethane, acetone, and 2,5-hexanedione were measured by means of a vibrating-tube flow densimeter at temperatures near T = (302, 373, 423, 473, and 521) K at a pressure of p = 28 MPa. At the lowest and highest temperatures, measurements were also made close to the saturation vapour pressure of water to investigate the effect of pressure on the volumes of solutes. Apparent molar volumes were calculated for each solute and extrapolated to give partial molar volumes at infinite dilution. The variation of the volume with temperature, pressure, and structure of solute is discussed qualitatively, and group contributions are determined at the temperatures of measurements and p = 28 MPa. Several equations proposed in the literature for correlating the partial molar volumes at infinite dilution as a function of state parameters are tested. Parameters of one selected equation are tabulated allowing calculation of the partial molar volumes at infinite dilution at temperatures and pressures up to T = 573 K and p = 40 MPa. respectively.

  2. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  3. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect

    Kim, Yu Seung; Liu, Baijun; Hu, Wei; Jiang, Zhenhua; Robertson, Gilles; Guiver, Michael

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  4. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.

    PubMed

    Demir, Teyfik

    2015-05-01

    Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition to that, the bone quality is very poor at sacrum region. This study investigated a possible solution to the pullout problem without the expandable screws' handicaps. Newly designed poly-ether-ether-ketone expandable shell and classical pedicle screws were biomechanically compared. Torsion test, pullout tests, fatigue tests, flexion/extension moment test, axial gripping capacity tests and torsional gripping capacity tests were conducted in accordance with ASTM F543, F1798 and F1717. Standard polyurethane foam and calf vertebrae were used as embedding medium for pullout tests. Classical pedicle screw pullout load on polyurethane foam was 564.8 N compared to the failure load for calf vertebrae's 1264 N. Under the same test conditions, expandable poly-ether-ether-ketone shell system's pullout loads from polyurethane foam and calf vertebrae were 1196.3 and 1890 N, respectively. The pullout values for expandable poly-ether-ether-ketone shell were 33% and 53% higher than classical pedicle screw on polyurethane foam and calf vertebrae, respectively. The expandable poly-ether-ether-ketone shell exhibited endurance on its 90% of yield load. Contrary to poly-ether-ether-ketone shell, classical pedicle screw exhibited endurance on 70% of its yield load. Expandable poly-ether-ether-ketone shell exhibited much higher pullout performance than classical pedicle screw. Fatigue performance of expandable poly-ether-ether-ketone shell is also higher than classical pedicle screw due to damping the micro motion capacity of the poly-ether-ether-ketone. Expandable poly-ether-ether-ketone shell is a safe alternative to all other expandable pedicle screw systems on mechanical perspective.

  5. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.

    PubMed

    Demir, Teyfik

    2015-05-01

    Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition to that, the bone quality is very poor at sacrum region. This study investigated a possible solution to the pullout problem without the expandable screws' handicaps. Newly designed poly-ether-ether-ketone expandable shell and classical pedicle screws were biomechanically compared. Torsion test, pullout tests, fatigue tests, flexion/extension moment test, axial gripping capacity tests and torsional gripping capacity tests were conducted in accordance with ASTM F543, F1798 and F1717. Standard polyurethane foam and calf vertebrae were used as embedding medium for pullout tests. Classical pedicle screw pullout load on polyurethane foam was 564.8 N compared to the failure load for calf vertebrae's 1264 N. Under the same test conditions, expandable poly-ether-ether-ketone shell system's pullout loads from polyurethane foam and calf vertebrae were 1196.3 and 1890 N, respectively. The pullout values for expandable poly-ether-ether-ketone shell were 33% and 53% higher than classical pedicle screw on polyurethane foam and calf vertebrae, respectively. The expandable poly-ether-ether-ketone shell exhibited endurance on its 90% of yield load. Contrary to poly-ether-ether-ketone shell, classical pedicle screw exhibited endurance on 70% of its yield load. Expandable poly-ether-ether-ketone shell exhibited much higher pullout performance than classical pedicle screw. Fatigue performance of expandable poly-ether-ether-ketone shell is also higher than classical pedicle screw due to damping the micro motion capacity of the poly-ether-ether-ketone. Expandable poly-ether-ether-ketone shell is a safe alternative to all other expandable pedicle screw systems on mechanical perspective

  6. Flow-Induced Crystallization of Poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Nazari, Behzad; Rhoades, Alicyn; Colby, Ralph

    The effects of an interval of shear above the melting temperature Tm on subsequent isothermal crystallization below Tm is reported for the premier engineering thermoplastic, poly(ether ether ketone) (PEEK). The effect of shear on the crystallization rate of PEEK is investigated by means of rheological techniques and differential scanning calorimetry (DSC) under a protocol of imposing shear in a rotational cone and plate rheometer and monitoring crystallization after quenching. The rate of crystallization at 320 °C was not affected by shear for shear rates <7 s-1 at 350 °C, whereas intervals of adequate shear at higher shear rates prior to the quench to 320 °C accelerated crystallization significantly. As the duration of the interval of shear above 7 s-1 is increased, the crystallization time decreases but at each shear rate eventually saturates once the applied specific work exceeds ~120 MPa. The annealing of the flow-induced precursors was also investigated. The nuclei were fairly persistent at temperatures close to 350 °C, however very unstable at temperatures above 375 °C. This suggests that the nanostructures formed under shear might be akin to crystalline lamellae of greater thickness, compared to quiescently crystallized lamellae.

  7. Vibrational Study Of Poly(Ether Ether Ketone).

    NASA Astrophysics Data System (ADS)

    Dosiere, M.

    1989-12-01

    The medium infrared region (4000-400cm-1) has been widely used to study crystallinity because differences could be observed in the vibrational spectrum of several polymers which could be related to crystallinity as determined by X-ray diffraction, differential scanning calorimetry and density measurements. However, as crystallinity is concerned with packing of chains and interactions between neighboor chains, the absorption bands arising from such vibrations appear therefore at wavenumbers below 400 cm -1. Poly-(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) or poly(aryl ether ether ketone) (PEEK),commercially introduced by ICI1, has been attracting increasing interest. It is a semicrystalline polymer with an unusual combination of properties such as high chemical resistance, excellent thermal stability as good mechanical properties. Taking into account of its high temperature high strength characteristics and melt processability, PEEK is generating interest for applications such as reinforced composites, coatings, electrical connectors, impeller housings... Fourier transform infrared spectroscopy is a quick and powerful tool to investigate orientation and/or crystallinity in polymeric materials.

  8. Oxidative acetoxylation of the silyl ethers of ketone enols

    SciTech Connect

    Brunovlenskaya, I.I.; Kusainova, K.M.; Kashin, A.K.

    1988-07-20

    The authors studied the reaction of (dicarboxyiodo)benzenes with the trimethylsilyl ethers of ketone enols having various structures. They also undertook a comparative investigation of the oxidation of these compounds with lead tetraacetate. The reaction of (diacetoxyiodo)benzene with the trimethylsilyl ethers of ketone enols takes place with retention of the (CH/sub 3/)/sub 3/Si group in two directions, i.e., substitution of the vinylic hydrogen or diacetoxylation of the double bond. The reaction can be used for the regioselective synthesis of /alpha/-acetoxy ketones, since the trimethylsilyl group is readily eliminated from the obtained products by the action of fluoride ion or boron trifluoride etherate with the formation of the corresponding substituted ketones.

  9. Synthesis and characterization of poly(ether ketone)s containing phosphorus and fluorine

    SciTech Connect

    Youngman, P.W.; Fitch, J.W.; Cassidy, P.E. |

    1996-10-01

    Because of the excellent properties exhibited by fluorinated poly(ether ketone)s, modifications were sought to further improve this polymer toward atomic oxygen resistance. For this purpose a phosphorous-containing monomer [bis(4-fluorophenyl)phenyl phosphine oxide] was synthesized and incorporated into a poly(ether ketone) backbone by reaction with 2,2-bis[4-(4-fluorobenzoyl)phenyl]hexafluoropropane in varying proportions with bisphenol AF to produce polymers with different amounts of the phosphine oxide repeating unit in the backbone. Colorless, film-forming materials were produced with a slight increase in Tg due to the phosphine oxide function. The incorporation of this moiety also resulted in a very small increase in the dielectric constant and an improved resistance to atomic oxygen ablation.

  10. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 10 4 S s cm -3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.

  11. A constitutive model of polyether-ether-ketone (PEEK).

    PubMed

    Chen, Fei; Ou, Hengan; Lu, Bin; Long, Hui

    2016-01-01

    A modified Johnson-Cook (JC) model was proposed to describe the flow behaviour of polyether-ether-ketone (PEEK) with the consideration of coupled effects of strain, strain rate and temperature. As compared to traditional JC model, the modified one has better ability to predict the flow behaviour at elevated temperature conditions. In particular, the yield stress was found to be inversely proportional to temperature from the predictions of the proposed model. PMID:26409233

  12. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  13. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    PubMed

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK. PMID:25868268

  14. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  15. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    PubMed

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-01

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes.

  16. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  17. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    SciTech Connect

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpreted using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).

  18. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    NASA Astrophysics Data System (ADS)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  19. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  20. Cathodic delaminations of poly(phenyl ether ether ketone) (PEEK) coatings overlaid on zinc phosphate-deposited steels

    SciTech Connect

    Sugama, T.; Carciello, N.R. . Dept. of Applied Science)

    1993-12-10

    The melt-crystallized poly(phenyl) ether ether ketone (PEEK) polymer was overlaid on crystalline zinc phosphate (Zn [center dot] Ph) conversion coating-deposited and nondeposited cold-rolled steels at 400 C in air or in N[sub 2] environments. The ability of these coatings systems to protect the steel against corrosion was evaluated from the rate of cathodic delamination of the coating layer from the steel. Because the cathodic reaction, H[sub 2]O + 1/20[sub 2] + 2e[sup [minus

  1. Expandable Polyaryl-Ether-Ether-Ketone Spacers for Interbody Distraction in the Lumbar Spine

    PubMed Central

    Alimi, Marjan; Shin, Benjamin; Macielak, Michael; Hofstetter, Christoph P.; Njoku, Innocent; Tsiouris, Apostolos J.; Elowitz, Eric; Härtl, Roger

    2015-01-01

    Study Design Retrospective case series. Objective StaXx XD (Spine Wave, Inc., Shelton, CT, United States) is an expandable polyaryl-ether-ether-ketone (PEEK) wafer implant utilized in the treatment of lumbar degenerative disease. PEEK implants have been successfully used as interbody devices. Few studies have focused on expandable PEEK devices. The aim of the current study is to determine the radiographic and clinical outcome of expandable PEEK cages utilized for transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases. Methods Forty-nine patients who underwent lumbar interbody fusion with implantation of expandable PEEK cages and posterior instrumentation were included. The clinical outcome was evaluated using the visual analog scale (VAS) and the Oswestry Disability Index (ODI). Radiographic parameters including disk height, foraminal height, listhesis, local disk angle of the index level/levels, regional lumbar lordosis, and graft subsidence were measured preoperatively, postoperatively, and at latest follow-up. Results At an average follow-up of 19.3 months, the minimum clinically important difference for the ODI and VAS back, buttock, and leg were achieved in 64, 52, 58, and 52% of the patients, respectively. There was statistically significant improvement in VAS back (6.42 versus 3.11, p < 0.001), VAS buttock (4.66 versus 1.97, p = 0.002), VAS leg (4.55 versus 1.96, p < 0.001), and ODI (21.7 versus 12.1, p < 0.001) scores. There was a significant increase in the average disk height (6.49 versus 8.18 mm, p = 0.037) and foraminal height (15.6 versus 18.53 mm, p = 0.0001), and a significant reduction in the listhesis (5.13 versus 3.15 mm, p = 0.005). The subsidence of 0.66 mm (7.4%) observed at the latest follow-up was not significant (p = 0.35). Conclusions Midterm results indicate that expandable PEEK spacers can effectively and durably restore disk and foraminal height and improve

  2. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. PMID:26910135

  3. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits.

  4. A gemini quaternary ammonium poly (ether ether ketone) anion-exchange membrane for alkaline fuel cell: design, synthesis, and properties.

    PubMed

    Si, Jiangju; Lu, Shanfu; Xu, Xin; Peng, Sikan; Xiu, Ruijie; Xiang, Yan

    2014-12-01

    To reconcile the tradeoff between conductivity and dimensional stability in AEMs, a novel Gemini quaternary ammonium poly (ether ether ketone) (GQ-PEEK) membrane was designed and successfully synthesized by a green three-step procedure that included polycondensation, bromination, and quaternization. Gemini quaternary ammonium cation groups attached to the anti-swelling PEEK backbone improved the ionic conductivity of the membranes while undergoing only moderate swelling. The grafting degree (GD) of the GQ-PEEK significantly affected the properties of the membranes, including their ion-exchange capacity, water uptake, swelling, and ionic conductivity. Our GQ-PEEK membranes exhibited less swelling (≤ 40 % at 25-70 °C, GD 67 %) and greater ionic conductivity (44.8 mS cm(-1) at 75 °C, GD 67 %) compared with single quaternary ammonium poly (ether ether ketone). Enhanced fuel cell performance was achieved when the GQ-PEEK membranes were incorporated into H2 /O2 single cells. PMID:25346412

  5. The synthesis of poly(ether ether ketone) (PEEK) derived from 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,3,3,4,4,4-heptafluorobutane

    SciTech Connect

    Peterman, J.A.; Feld, W.A.

    1995-12-31

    Poly(ether ether ketone)s (PEEK) are of interest due to their high thermal stability. Most PEEK materials are prepared by aromatic nucleophilic substitution between an activated aromatic dihalide and an alkali-metal bisphenolate in polar, aprotic solvents. We now report the preparation of a PEEK containing an extended fluorocarbon chain in the bisphenol, analogous to that produced by McGrath, et. al which contained a trifluoromethyl group in the bisphenol, and examine the effect on thermal properties.

  6. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  7. Space radiation effects on poly(aryl-ether-ketone) thin films and composites

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Sykes, George F., Jr.

    1988-01-01

    The purpose of this study was to assess the space durability of poly(aryl-ether-ketone) (PEEK) in the forms of films and graphite fiber reinforced composites. The influence of the film's crystallinity on electron radiation stability was evaluated using X-ray diffraction, DSC, FTIR, and mechanical property tests. The mechanical properties of the composites material were evaluated after electron radiation and after electron radiation followed by thermal cycling simulating 30 years in geosynchronous orbit.

  8. Interfacial interactions of poly(ether ketone ketone) polymer coatings onto oxide-free phosphate films on an aluminum surface

    SciTech Connect

    Asunskis, A. L.; Sherwood, P. M. A.

    2007-07-15

    This article continues a series of papers that shows how thin (10 nm or less) oxide-free phosphate films can be formed on a number of metals. The films formed have potential as corrosion resistant films. Previous papers have shown that it is possible to extend the range of the surface coatings that can be formed by placing a thin polymer layer over the phosphate layer. In this work it is shown how the water insoluble polymer poly(ether ketone ketone) (PEKK) can be placed over a thin oxide-free phosphate film on aluminum metal. The surface and the interfaces involved were studied by valence band and core level x-ray photoelectron spectroscopy. Difference spectra in the valence band region were used to show that there is a chemical interaction between the PEKK and phosphate thin films on the aluminum metal. Three different phosphate film compositions were studied using different phosphorous containing acids, H{sub 3}PO{sub 4}, H{sub 3}PO{sub 3}, and H{sub 3}PO{sub 2}. This type of interaction illustrates the potential of phosphates to act as adhesion promoters. The valence band spectra are interpreted by calculations.

  9. Electro-osmotic drag effect on the methanol permeation for sulfonated poly(ether ether ketone) and nafion 117 membranes.

    PubMed

    Chi, Nguyen Thi Que; Bae, Byungchan; Kim, Dukjoon

    2013-11-01

    Electro-osmotic drag effect on the methanol permeation was investigated for sulfonated poly(ether ether ketone) (sPEEK) membrane, and its result was compared with that of Nafion 117 membrane. The electro-osmotic drag coefficient was determined from the limiting current density measured at different temperature. The methanol permeability of sPEEK membrane increased with temperature but its temperature dependence was not as strong as that of Nafion 117 membrane. The methanol permeability or the total methanol flux of Nafion 117 membrane was at least twice higher than that of sPEEK70 membrane (sPEEK membrane with 70% sulfonation degree), as the methanol permeation was highly contributed by the electro-osmotic drag effect. This higher electro-osmotic drag of Nafion 117 membrane is attributed to the bigger ion cluster and waster channel in nanophase and thus more free water absorption than sPEEK membrane.

  10. An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis.

    PubMed

    Akay, M; Aslan, N

    1995-01-01

    A fracture mechanics approach was applied to estimate the life of a prosthesis injection moulded from short carbon fibre reinforced poly ether ether ketone. Flexural modulus and strength, fracture toughness, fatigue endurance limit, fatigue crack growth rate and threshold stress intensity factor were determined. The dimensions of the test pieces were selected to yield fibre orientation and fibre length distributions similar to those obtained in the prosthesis. Stress levels generated in the prosthesis under different activities were estimated by conducting three-dimensional finite element analysis. It was shown by a fracture mechanics approach that a fatigue failure due to the propagation of an embedded elliptical slit, under these stresses, would be unlikely for a crack length smaller than 1.85 mm. However, the cement would fail under the same conditions, irrespective of the type of the prosthesis employed.

  11. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  12. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    PubMed

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  13. 37. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, NORTHWEST CORNER OF BUILDING. BUILDING NO. 521 (ETHER VAULT) IN BACKGROUND LEFT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  14. 41. LOOKING WEST AT BUILDING NO. 519, ETHER AND ALCOHOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. LOOKING WEST AT BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, (LEFT) AND BUILDING NO. 521, ETHER VAULT, (RIGHT) IN FOREGROUND - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  15. 46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, CONTROL PANEL LEVEL (2ND DECK) OF ETHER AND ALCOHOL STILL BUILDING, LOOKING NORTH, SHOWING TWO ALCOHOL DISTILLATION TOWERS BEHIND 'MIXED SOLVENT UNIT' CONTROL PANEL. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  16. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  17. 39. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, LOOKING AT SOUTHWEST CORNER WITH BUILDING NO. 521, ETHER VAULT, AND BUILDING NO. 519-A, ETHER & ALOCOHL STORAGE TANKS, IN BACKGROUND RIGHT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  18. 47. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, 4TH LEVEL, LOOKING NORTH AT TOPS OF ALCOHOL AND ETHER DISTILLATION TOWERS. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  19. 48. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, 5TH LEVEL, LOOKING NORTH AT ETHER AND ALCOHOL CONDENSERS AT TOP OF TOWER. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  20. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits.

  1. Hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (PIEEK) for fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Chang, Guanjun; Shang, Zhenfang; Yang, Li

    2015-05-01

    A new diamine monomer, 3,3‧-dihydroxydiphenylamine, is prepared by the palladium catalyzed C-N coupling reaction and the following reduction reaction of 3-bromoanisole and m-anisidine. A series of novel hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (SPIEEK) are obtained by the copolymerization of sodium 5,5‧-carbonylbis(2-fluorobenzene sulfonate), 4,4‧-difluorobenzophenone with 3,3‧-dihydroxydiphenylamine. The structures of resulting polymers are characterized by means of FT-IR, 1H NMR spectroscopy, and elemental analysis; the results show an agreement with the proposed structure. The resulting SPIEEK membranes display much better resistance to swelling than these without imino groups due to the strong interchain interaction through imino and sulfonic acid groups. The SPIEEK-60 and SPIEEK-80 membrane show the proton conductivity of 0.118 and 0.154 S cm-1 at 80 °C which is higher than Nafion 117 (0.082 S cm-1 at 80 °C). Moreover, the SPIEEK membranes exhibit good mechanical properties and lower methanol permeability due to the hydrogen bondings between the polymer chains.

  2. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Di, Zhigang; Xie, Qiang; Li, Haibin; Mao, Dali; Li, Ming; Zhou, Daowu; Li, Lu

    2015-01-01

    The SiO2-Nafion/sulfonated poly (ether ether ketone) (SPEEK) composite membranes are fabricated by using the simple mechanical ball-milling process to combine SiO2 glass powders with small portion of Nafion, in which SiO2 glass powders are prepared by modified sol-gel progress and Nafion is embedded in situ into a highly porous silica network. The morphology, thermal and mechanical properties, pore structure, proton conductivity and fuel cell performance of the SiO2-Nafion/SPEEK composite membranes are investigated. The poor miscibility of Nafion and sulfonated aromatic polymer is solved by fixing Nafion into SiO2 glass powders. The composite membranes perform well even if the proportion of inorganic component in membranes is as high as 40 wt.%. A maximum of proton conductivity, 0.018 S cm-1, is obtained from the membrane of 4(8Si-2N)/6SPEEK at 80 °C and 90% relative humidity, which is owing to its enhanced hygroscopicity and highly dispersed Nafion clusters. In addition, a single fuel cell equipped with the composite membrane shows a peak power density of 589.2 mW cm-2 at 70 °C.

  3. Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether ketone) for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Xie, Qiang; Li, Yifan; Chen, Xiaojing; Hu, Jing; Li, Lu; Li, Haibin

    2015-05-01

    The phosphosilicate sol/sulfonated poly(ether ether ketone) (SPEEK) composite membranes are fabricated by using a simple mechanical mixing process. The performance of the composite membranes is investigated, including their morphology, thermal and mechanical properties, water adsorption and swelling ratio, proton conductivity and fuel cell performance. The composite membranes obtain the advantages of both components while avert their disadvantages, showing excellent comprehensive performance. The utilization of SPEEK endows the composite membranes with good mechanical properties even if the proportion of inorganic components in the membranes is as high as 40 wt.%. The incorporation of phosphosilicate sol not only enhances the dimensional and thermal stability of the composite membranes, but also improves their conductivity significantly. A maximum of proton conductivity of 0.138 S cm-1, higher than that of Nafion 212 membrane (0.124 S cm-1), is obtained from the composite membrane 6SPEEK/4(P-Si) under the conditions of 70 °C and 95% relative humidity, owing to its enhanced hygroscopicity and functional groups. Besides, a single fuel cell equipped with the composite membrane 7SPEEK/3(P-Si) releases a peak power density of 449.9 mW cm-2 at 60 °C, higher than that of cells equipped with SPEEK and Nafion 212 membrane measured under the same conditions.

  4. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  5. Effect of chemical etching on the Cu/Ni metallization of poly (ether ether ketone)/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Di, LiZhi; Liu, Bin; Song, Jianjing; Shan, Dan; Yang, De-An

    2011-02-01

    Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that Cdbnd O bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.

  6. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  7. Preparation of aliphatic ketones through a ruthenium-catalyzed tandem cross-metathesis/allylic alcohol isomerization.

    PubMed

    Finnegan, David; Seigal, Benjamin A; Snapper, Marc L

    2006-06-01

    Grubbs' 2nd generation and Hoveyda-Grubbs' ruthenium alkylidenes are shown to be effective catalysts for cross-metatheses of allylic alcohols with cyclic and acyclic olefins, as well as isomerization of the resulting allylic alcohols to alkyl ketones. The net result of this new tandem methodology is a single-flask process that provides highly functionalized, ketone-containing products from simple allylic alcohol precursors. [reaction: see text

  8. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading

    PubMed Central

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-01-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465

  9. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.

    PubMed

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-03-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465

  10. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  11. Sulfonated poly(ether ether ketone)/clay-SO 3H hybrid proton exchange membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Tiezhu; Cui, Zhiming; Zhong, Shuangling; Shi, Yuhua; Zhao, Chengji; Zhang, Gang; Shao, Ke; Na, Hui; Xing, Wei

    A new type of sulfonated clay (clay-SO 3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO 3H was 51.8 mequiv. (100 g) -1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO 3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO 3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO 3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO 3H-1 hybrid membrane with 1 wt.% clay-SO 3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO 3H hybrid membrane with 1 wt.% clay-SO 3H had potential usage of a proton exchange membrane (PEM) for DMFCs.

  12. 36. BUILDINGS NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. BUILDINGS NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, AND NO. 523, REFRIGERATION PLANT BUILDING, LOOKING EAST. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  13. 44. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, LOOKING UP DISTILLATION TOWER FROM 2ND LEVEL. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  14. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.

    PubMed

    Huang, Fei; Liu, Zhuqing; Yu, Zhengkun

    2016-01-18

    Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included. PMID:26639633

  15. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    NASA Astrophysics Data System (ADS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  16. Synthesis of α-trifluoromethyl ketones via the Cu-catalyzed trifluoromethylation of silyl enol ethers using an electrophilic trifluoromethylating agent.

    PubMed

    Li, Lun; Chen, Qing-Yun; Guo, Yong

    2014-06-01

    A method has been developed for the synthesis of α-trifluoromethyl ketones via the Cu-catalyzed trifluoromethylation of silyl enol ethers with an electrophilic trifluoromethylating agent, which produces a trifluoromethyl radical.

  17. Me2(CH2Cl)SiCN: Bifunctional Cyanating Reagent for the Synthesis of Tertiary Alcohols with a Chloromethyl Ketone Moiety via Ketone Cyanosilylation.

    PubMed

    Zeng, Xing-Ping; Zhou, Jian

    2016-07-20

    We report a novel bifunctional cyanating reagent, Me2(CH2Cl)SiCN, which paves the way to a one-pot sequential synthesis of tertiary alcohols featuring a chloromethyl ketone moiety via enantioselective ketone cyanosilylation. This method contributes to gram-scale enantioselective total synthesis of the aggregation pheromone of the Colorado potato beetle, (S)-CPB. PMID:27399262

  18. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  19. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  20. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK.

  1. In Vitro Evaluation of Bioactivity of Chemically Deposited Hydroxyapatite on Polyether Ether Ketone

    PubMed Central

    Almasi, D.; Izman, S.; Sadeghi, M.; Iqbal, N.; Roozbahani, F.; Krishnamurithy, G.; Kamarul, T.; Abdul Kadir, M. R.

    2015-01-01

    Polyether ether ketone (PEEK) is considered the best alternative material for titanium for spinal fusion cage implants due to its low elasticity modulus and radiolucent property. The main problem of PEEK is its bioinert properties. Coating with hydroxyapatite (HA) showed very good improvement in bioactivity of the PEEK implants. However the existing methods for deposition of HA have some disadvantages and damage the PEEK substrate. In our previous study a new method for deposition of HA on PEEK was presented. In this study cell proliferation of mesenchymal stem cell and apatite formation in simulated body fluid (SBF) tests were conducted to probe the effect of this new method in improvement of the bioactivity of PEEK. The mesenchymal stem cell proliferation result showed better cells proliferation on the treated layer in comparison with untreated PEEK. The apatite formation results showed the growth of the HA on the treated PEEK but there was not any sight of the growth of HA on the untreated PEEK even after 2 weeks. The results showed the new method of the HA deposition improved the bioactivity of the treated PEEK in comparison with the bare PEEK. PMID:25838826

  2. Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone

    NASA Astrophysics Data System (ADS)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2016-09-01

    We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.

  3. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. PMID:26301567

  4. PEEK (Polyether-ether-ketone) Based Cervical Total Disc Arthroplasty: Contact Stress and Lubrication Analysis

    PubMed Central

    Xin, H; Shepherd, DET; Dearn, KD

    2012-01-01

    This paper presents a theoretical analysis of the maximum contact stress and the lubrication regimes for PEEK (Polyether-ether-ketone) based self-mating cervical total disc arthroplasty. The NuNec® cervical disc arthroplasty system was chosen as the study object, which was then analytically modelled as a ball on socket joint. A non-adhesion Hertzian contact model and elastohydrodynamic lubrication theory were used to predict the maximum contact stress and the minimum film thickness, respectively. The peak contact stress and the minimum film thickness between the bearing surfaces were then determined, as the radial clearance or lubricant was varied. The obtained results show that under 150 N loading, the peak contact stress was in the range 5.9 – 32.1 MPa, well below the yield and fatigue strength of PEEK; the calculated minimum film thickness ranged from 0 to 0.042 µm and the corresponding lambda ratio range was from 0 to 0.052. This indicates that the PEEK based cervical disc arthroplasty will operate under a boundary lubrication regime, within the natural angular velocity range of the cervical spine. PMID:22670159

  5. Damage tolerance evaluation of PEEK (polyether ether ketone) composites: Final report

    SciTech Connect

    Frazier, J.L.

    1988-12-01

    A polyether ether ketone (PEEK) thermoplastic system is currently being evaluated in flight service as a structural element for the US Air Force C-130 transport plane. The particular structure under study is the C-130 belly skin, a fuselage panel that is located on the underside of the aircraft and is subjected to impact from runway debris. A current Air Force objective is to reduce maintenance and replacement requirements of aircraft using lightweight composite structures to replace or supplement existing metal alloy components. The incorporation of lighter weight composite structures would result in aircraft weight reductions, allowing greater range and fuel economy. The impact-damage susceptibility of composite structures often results in strain-limited application of composite materials where the mechanical properties' advantages over traditional metal alloys are not attained. Methods developed to enhance the damage tolerance of composite material systems should increase their potential uses in existing and future aircraft. A materials evaluation program was conducted to determine the possible benefits of interleaving thermoplastic film layers between the plies of a PEEK/graphite composite material system to produce a material system with increased resistance to impact damage. Several laminate designs incorporating PEEK thermoplastic film as an interleaf material were subjected to impacts of various energies and projectile velocities. Mechanical properties of unimpacted, open-hole, and impacted laminate panels were measured to determine the effectiveness of the interleaf concept for improving damage tolerance relative to the existing baseline material. 5 refs., 19 figs., 8 tabs.

  6. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  7. Recent Advances in the Reactions of 1,2-Allenic Ketones and α-Allenic Alcohols.

    PubMed

    Fan, Xuesen; He, Yan; Zhang, Xinying

    2016-06-01

    This Personal Account summarizes our recent efforts in searching for novel synthetic strategies for a number of organic molecules by using allene derivatives as valuable substrates. It starts with a concise description of the background of allene-related synthetic chemistry. The second part deals with the reactions of 1,2-allenic ketones, including the reactions of 1,2-allenic ketones with various nucleophiles to afford functionalized benzenes, heterocycles, and fluoroenones, and those of allenic ketones as nucleophiles under the promotion of bases to provide 1,3,4'-triones or functionalized furans. The third part of this account focuses on the reactions of α-allenic alcohols. In this section, multicomponent reactions involving α-allenic alcohols, and cascade reactions of α-allenic alcohols promoted by Brønsted acid or iodine, are presented. PMID:27230525

  8. High strength, surface porous polyether-ether-ketone for load-bearing orthopaedic implants

    PubMed Central

    Evans, Nathan T.; Torstrick, F. Brennan; Lee, Christopher S.D.; Dupont, Kenneth M.; Safranski, David L.; Chang, W. Allen; Macedo, Annie E.; Lin, Angela; Boothby, Jennifer M.; Whittingslow, Daniel C.; Carson, Robert A.; Guldberg, Robert E.; Gall, Ken

    2015-01-01

    Despite its widespread clinical use in load-bearing orthopaedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer thickness was 399.6±63.3 µm and possessed a mean pore size of 279.9±31.6 µm, strut spacing of 186.8±55.5 µm, porosity of 67.3±3.1%, and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via µCT and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic applications. PMID:25463499

  9. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  10. RuHCl(CO)(PPh3)3-catalyzed α-alkylation of ketones with primary alcohols.

    PubMed

    Kuwahara, Takashi; Fukuyama, Takahide; Ryu, Ilhyong

    2012-09-21

    The α-alkylation reaction of ketones with primary alcohols to give α-alkylated ketones was achieved using RuHCl(CO)(PPh(3))(3) as a catalyst in the presence of Cs(2)CO(3) as a base. This reaction proceeds via an aldol condensation of ketones with aldehydes, formed via transfer dehydrogenation of alcohols, to give α,β-unsaturated ketones, which then undergo transfer hydrogenation with primary alcohols to give α-alkylated ketones and aldehydes, the latter of which participate in the next catalytic cycle. While the reaction of aliphatic primary alcohols was sluggish compared with that of benzylic alcohols, a catalytic amount of 1,10-phenanthroline was found to promote the alkylation dramatically. PMID:22931460

  11. 42. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, NORTH WING, 1ST LEVEL, VIEW OF FILTERS AND BLOWERS FOR SOLVENT VAPORS FROM BUILDING NO. 527. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  12. 43. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, NORTH WING, 1ST LEVEL, LOOKING SOUTHWEST AT EQUIPMENT USED TO CONDENSE SOLVENT VAPORS TRANSMITTED BY SOLVENT RECOVERY DUCT FROM BUILDING NO. 527. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  13. 45. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, CONTROL PANEL LEVEL (2ND DECK), LOOKING AT 'MIXED SOLVENT UNIT' CONTROL PANEL (LOOKING EAST). - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  14. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex.

    PubMed

    Xia, Yong; Lin, Lili; Chang, Fenzhen; Fu, Xuan; Liu, Xiaohua; Feng, Xiaoming

    2015-11-01

    A highly efficient asymmetric ring-opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N'-dioxide-scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99% yield and 95% ee. This is also the first example of one catalytic system working for the ring-opening reaction of donor-acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.

  15. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex.

    PubMed

    Xia, Yong; Lin, Lili; Chang, Fenzhen; Fu, Xuan; Liu, Xiaohua; Feng, Xiaoming

    2015-11-01

    A highly efficient asymmetric ring-opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N'-dioxide-scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99% yield and 95% ee. This is also the first example of one catalytic system working for the ring-opening reaction of donor-acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version. PMID:26398505

  16. Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers.

    PubMed

    Cossoul, Emilie; Hubert-Roux, Marie; Sebban, Muriel; Churlaud, Florence; Oulyadi, Hassan; Afonso, Carlos

    2015-01-26

    Recently, the interest of the coupling between atmospheric solid analysis probe (ASAP) and ion mobility-mass spectrometry has been revealed in the field of polymers. This method associates a direct ionization technique with a bi-dimensional separation method. Poly(ether ether ketones) (PEEK) belong to the family of the poly(aryl ether ketones) (PAEK) which are high performance aromatic polymers usually used in aerospace, electronics and nuclear industries. PEEK are important commercial thermoplastics with excellent chemical resistance and good mechanical properties. Because of their low solubility, few structural characterization studies of PEEK have been reported. In mass spectrometry, only MALDI-TOF analyses for polymer synthesis monitoring have been described with the use of strong acids such as sulfuric acid. This work demonstrates that ASAP is particularly efficient for analysis of PEEK in a solvent free approach with the production of intact small oligomers (n≤2). Five types of PEEK oligomers with different end-groups were evidenced. With MALDI-TOF, the same end-groups with almost the same relative abundance were obtained which support the hypothesis that the oligomers detected in ASAP are intact small oligomers and not fragments or pyrolysis products. This is particularly interesting as generally the ASAP analysis of polymers yields pyrolysis products with the loss of end-group information. The end-groups assignments have been confirmed by tandem mass spectrometry (MS/MS) experiments on the M(+) molecular ions, which allowed highlighting some specific neutral or radical losses as well as two diagnostic product ions. Thus, ASAP-IM/MS/MS proves to be a fast and efficient alternative way to characterize low solubility polymers such as PEEK. PMID:25542357

  17. The Stereoselective Reductions of Ketones to the Most Thermodynamically Stable Alcohols Using Lithium and Hydrated Salts of Common Transition Metals.

    PubMed

    Kennedy, Nicole; Cohen, Theodore

    2015-08-21

    A simple method is presented for the highly stereoselective reductions of ketones to the most thermodynamically stable alcohols. In this procedure, the ketone is treated with lithium dispersion and either FeCl2·4H2O or CuCl2·2H2O in THF at room temperature. This protocol is applied to a large number and variety of ketones and is both more convenient and efficient than those commonly reported for the diastereoselective reduction of five- and six-membered cyclic ketones. PMID:26226182

  18. Palladium-catalyzed allylic alkylation of simple ketones with allylic alcohols and its mechanistic study.

    PubMed

    Huo, Xiaohong; Yang, Guoqiang; Liu, Delong; Liu, Yangang; Gridnev, Ilya D; Zhang, Wanbin

    2014-06-23

    Allylic alcohols were directly used in Pd-catalyzed allylic alkylations of simple ketones under mild reaction conditions. The reaction proceeded smoothly at 20 °C by the concerted action of a Pd catalyst, a pyrrolidine co-catalyst, and a hydrogen-bonding solvent, and does not require any additional reagents. A computational study suggested that methanol plays a crucial role in the formation of the π-allylpalladium complex by lowering the activation barrier. PMID:24848670

  19. Synthesis of cinnamyl ethers from α-vinylbenzyl alcohol using iodine as catalyst.

    PubMed

    Kasashima, Yoshio; Uzawa, Atsushi; Hashimoto, Kahoko; Nishida, Tadasuke; Murakami, Keiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2010-01-01

    Reactions of α-vinylbenzyl alcohol with other alcohols using iodine as a catalyst were investigated. The corresponding cinnamyl ethers were obtained as products. This suggested that α-vinylbenzyl alcohol was converted to cinnamyl ethers via 1-phenylallyl cation. Cinnamyl ethyl ether was obtained in 75% yield by the reaction of α-vinylbenzyl alcohol and ethanol in acetonitrile with iodine under the following conditions: temperature = 50 °C, molar ratio of α-vinylbenzyl alcohol:ethanol:iodine = 1:3.0:0.2, and time period = 6 h. Generally, the yields of the reactions using primary alcohols were higher than those using secondary and tertiary alcohols. Ether interchange also occurred by the reaction of α-vinylbenzyl alcohol and iodine, but proceeded smoothly only when an allyl group was used as the other substituent of the starting ether.

  20. Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones under Ambient Atmosphere.

    PubMed

    Wang, Lianyue; Shang, SenSen; Li, Guosong; Ren, Lanhui; Lv, Ying; Gao, Shuang

    2016-03-01

    We report a new Fe(NO3)3·9H2O/9-azabicyclo[3.3.1]nonan-N-oxyl catalyst system that enables efficient aerobic oxidation of a broad range of primary and secondary alcohols to the corresponding aldehydes and ketones at room temperature with ambient air as the oxidant. The catalyst system exhibits excellent activity and selectivity for primary aliphatic alcohol oxidation. This procedure can also be scaled up. Kinetic analysis demonstrates that C-H bond cleavage is the rate-determining step and that cationic species are involved in the reaction. PMID:26859251

  1. Experimental determination of Grüneisen gamma for polyether ether ketone (PEEK) using the shock-reverberation technique

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew; Appleby-Thomas, Gareth James; Hazell, Paul

    2012-03-01

    Following multiple loading events the resultant shock state of a material will lie away from the principle Hugoniot. Prediction of such states requires knowledge of a materials equation-of-state. The material-specific variable Grüneisen gamma, γ(v), defines the shape of "off-Hugoniot" points in energy-volume-pressure space. Here, the shock response of the important temperature-resistant polymer polyether ether ketone (PEEK) was compared to ANSYS Autodyn® simulations in an attempt to estimate a value of γ1. However, inconsistencies between experimental and computational results were found, highlighting the importance of full knowledge of material properties for such analyses. In particular, this approach led to revision of the established equation-of-state for PEEK, with a new nonlinear form identified.

  2. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  3. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  4. Pitch-based carbon-fibre-reinforced poly (ether-ether-ketone) OPTIMA assessed as a bearing material in a mobile bearing unicondylar knee joint.

    PubMed

    Scholes, S C; Unsworth, A

    2009-01-01

    The introduction of unicondylar knee prostheses has allowed the preservation of the non-diseased compartment of the knee while replacing the diseased or damaged compartment. In an attempt to reduce the likelihood of aseptic loosening, new material combinations have been investigated within the laboratory. Tribological tests (friction, lubrication, and wear) were performed on metal-on-carbon-fibre-reinforced (CFR) poly (ether-ether-ketone) (PEEK) (pitch-based) mobile unicondylar knee prostheses up to 5 x 10(6) cycles. Both a loaded soak control and an unloaded soak control (both medial and lateral components) were used to compensate for weight change due to lubricant absorption. For this material combination the loaded soak control gave slightly lower wear for both the medial and the lateral components than did the unloaded soak control. The medial components gave higher steady state wear than the lateral components (1.70 mm3 per 10(6) cycles compared with 1.02 mm3 per 10(6) cycles with the loaded soak control). The results show that the CFR PEEK unicondylar knee joints performed well in these wear tests. They gave lower volumetric wear rates than conventional metal-on-ultra-high-molecular-weight polyethylene prostheses have given in the past when tested under similar conditions. The friction tests showed that, at physiological viscosities, these joints operated in the boundary-mixed-lubrication regime. The low wear produced by these joints seems to be a function of the material combination and not of the lubrication regime.

  5. Enhancing proton conduction under low humidity by incorporating core-shell polymeric phosphonic acid submicrospheres into sulfonated poly(ether ether ketone) membrane

    NASA Astrophysics Data System (ADS)

    Nie, Lingli; Wang, Jingtao; Xu, Tao; Dong, Hao; Wu, Hong; Jiang, Zhongyi

    2012-09-01

    Polymeric phosphonic acid submicrospheres (PPASs) with carboxylic acid cores and phosphonic acid shells are synthesized by distillation-precipitation polymerization. The structure and composition of PPASs are confirmed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX). The PPASs are then incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate composite membranes for direct methanol fuel cells (DMFCs). The incorporated PPASs enlarge the ion-channel size of the composite membranes as testified by small-angle X-ray scattering (SAXS), affording significantly enhanced water uptake and water retention. Compared with the membrane containing the polymeric carboxylic acid submicrospheres (PCASs), the PPASs-filled membrane exhibits higher proton conductivity owing to the higher water uptake and water retention of the PPASs and stronger acidity of phosphonic acid. The composite membrane with 15 wt.% PPASs displays the highest proton conductivity of 0.0187 S cm-1 at room temperature and 100% relative humidity (RH). At the RH as low as 20%, this membrane acquires a proton conductivity of 0.0066 S cm-1, 5 times higher than that of the SPEEK control membrane (0.0011 S cm-1) after 90 min testing, at 40 °C.

  6. Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Liu, Le; Yu, Lihong; Wang, Lei; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-12-01

    Sulfonated poly(ether ether ketone) (SPEEK) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) composite membranes are prepared and investigated in detail for vanadium redox flow battery (VRFB) application. With the high hydrophobicity and stability of P(VDF-co-HFP), the properties of composite membranes such as mechanical property and vanadium ion permeability are effectively improved, showing good trends with the increasing of P(VDF-co-HFP) mass ratio. The VRFB single cell assembled with the composite membrane of 15 wt.% P(VDF-co-HFP) (SPEEK-15% membrane) exhibits higher coulombic efficiency (CE, 95.4%) and energy efficiency (EE, 83.8%) than that assembled with Nafion 117 membrane (CE 91.1% and EE 78.4%) at the current density of 80 mA cm-2. Furthermore, the SPEEK-15% membrane maintains a stable performance during 100 cycles at the current density of 80 mA cm-2. Therefore the SPEEK/P(VDF-co-HFP) composite membrane could be used as low-cost and high-performance membrane for VRFB application.

  7. Sulfonated poly(ether ether ketone)/polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages

    NASA Astrophysics Data System (ADS)

    Han, Miaomiao; Zhang, Gang; Li, Mingyu; Wang, Shuang; Liu, Zhongguo; Li, Hongtao; Zhang, Yang; Xu, Dan; Wang, Jing; Ni, Jing; Na, Hui

    A diamine-terminated polybenzimidazole oligomer (o-PBI) has been synthesized for introducing the benzimidazole groups (BI) into sulfonated poly(ether ether ketone) (SPEEK) membranes. SPEEK/o-PBI/4,4‧-diglycidyl(3,3‧,5,5‧-tetramethylbiphenyl) epoxy resin (TMBP) composite membranes in situ polymerization has been prepared for the purpose of improving the performance of SPEEK with high ion-exchange capacities (IEC) for the usage in the direct methanol fuel cells (DMFCs). The composite membranes with three-dimensional network structure are obtained through a cross-linking reaction between PBI oligomer and TMBP and the acid-base interaction between sulfonic acid groups and benzimidazole groups. Resulting membranes show a significantly increasing of all of the properties, such as high proton conductivity (0.14 S cm -1 at 80 °C), low methanol permeability (2.38 × 10 -8 cm 2 s -1), low water uptake (25.66% at 80 °C) and swelling ratio (4.11% at 80 °C), strong thermal and oxidative stability, and mechanical properties. Higher selectivity has been found for the composite membranes in comparison with SPEEK. Therefore, the SPEEK/o-PBI/TMBP composite membranes show a good potential in DMFCs usages.

  8. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application. PMID:25315399

  9. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Carbon fibers (CFs) are one kind of important industrial materials that can be obtained commercially at low price. Based on the high extraction efficiency of carbon sorbents, a cheap and accessible carbon fibers-in-poly(ether ether ketone) (PEEK) tube was developed for online in-tube solid-phase microextraction (SPME) method. Coupled to high performance liquid chromatography (HPLC), the CFs-in-tube SPME was applied to analyze eight polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. Extraction conditions (sampling rate, extraction time, methanol content) and desorption time were investigated for optimization of conditions. Under the optimum conditions, the CFs-in-tube SPME-HPLC method provided high extraction efficiency with enrichment factors up to 1748. Good linearity (0.05-50 μg L(-1), 0.5-50 μg L(-1)) and low detection limits (0.01-0.1 μg L(-1)) were also obtained. The online analysis method was finally applied to determine several model PAHs analytes in real environmental aqueous samples. Some target analytes were detected and relative recoveries were in the range of 92.3-111%. Due to natural chemical stability of carbon fibers and PEEK tube, the CFs-in-tube device exhibited high resistance to organic solvent, acid and alkaline conditions. PMID:26653455

  10. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  11. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  12. Development of poly(ether ether ketone)(PEEK) derived from bisphenol-S for proton exchange membrane (PEM) in direct methanol fuel cells (DMFC)

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2008-03-01

    The currently used Proton Exchange Membrane (PEM) in Direct Methanol Fuel Cell (DMFC) is Nafion?, an excellent proton conductivity in fully hydrated membrane. However, it has major drawbacks such as very high cost, and lost of conductivity at elevated temperature and low humidity. In our work, the novel PEM was based on sulfonated poly(ether ether ketone) (S-PEEK) which was synthesized by the nucleophilic aromatic substitution polycondensation of bisphonol-S, 4,4'-dichlorobenzophenone (DCBP), and sodium 5,5'-carbonylbis(2-chlorobenzenesulfonate) (SDCBP). Bisphenol-S is expected to improve thermal stability due to its high melting point (245oC). S-PEEK was characterized by FTIR, 1H-NMR, TGA, DSC, and titration to determine the degree of sulfonation (D.S.). Composite membranes were prepared by using S-PEEK as polymer matrix and heteropolyacid (HPA) as an inorganic filler. The phosphotungstic acid (PTA) was used due to its highly proton conductivity at high temperature and low water uptake. The membranes were characterized by SEM, TGA, DSC, DMTA, and by the measurements of the water uptake (%), the swelling ratio (%), the ion exchange capacities (IEC), the methanol diffusion coefficient, and the proton conductivity.

  13. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Carbon fibers (CFs) are one kind of important industrial materials that can be obtained commercially at low price. Based on the high extraction efficiency of carbon sorbents, a cheap and accessible carbon fibers-in-poly(ether ether ketone) (PEEK) tube was developed for online in-tube solid-phase microextraction (SPME) method. Coupled to high performance liquid chromatography (HPLC), the CFs-in-tube SPME was applied to analyze eight polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. Extraction conditions (sampling rate, extraction time, methanol content) and desorption time were investigated for optimization of conditions. Under the optimum conditions, the CFs-in-tube SPME-HPLC method provided high extraction efficiency with enrichment factors up to 1748. Good linearity (0.05-50 μg L(-1), 0.5-50 μg L(-1)) and low detection limits (0.01-0.1 μg L(-1)) were also obtained. The online analysis method was finally applied to determine several model PAHs analytes in real environmental aqueous samples. Some target analytes were detected and relative recoveries were in the range of 92.3-111%. Due to natural chemical stability of carbon fibers and PEEK tube, the CFs-in-tube device exhibited high resistance to organic solvent, acid and alkaline conditions.

  14. Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces.

    PubMed

    Yang, Biao; Lin, Haiping; Miao, Kangjian; Zhu, Pan; Liang, Liangbo; Sun, Kewei; Zhang, Haiming; Fan, Jian; Meunier, Vincent; Li, Youyong; Li, Qing; Chi, Lifeng

    2016-08-16

    On-surface synthesis has prompted much interest in recent years because it provides an alternative strategy for controlling chemical reactions and allows for the direct observation of reaction pathways. Herein, we combined scanning tunneling microscopy and density functional theory to provide extensive evidence for the conversion of alkoxybenzene-containing ethers into alcohols by means of surface synthesis. The reported dealkylation reactions are finely controlled by the annealing parameters, which govern the onset of successive alkyl chains dissociations. Moreover, density functional theory calculations elucidate the details of the reaction pathways, showing that dealkylation reactions are surface-assisted and very different from their homogeneous analogues in solution. PMID:27432690

  15. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  16. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    PubMed

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  17. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation.

  18. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-01

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d6) solution of the purified polymer using 1H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10-3 Scm-1 at 30°C and 3.383 × 10-3 Scm-1 at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  19. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  20. Study on the pretreatment of poly(ether ether ketone)/multiwalled carbon nanotubes composites through environmentally friendly chemical etching and electrical properties of the chemically metallized composites.

    PubMed

    Zhai, Tong; Di, Lizhi; Yang, De'an

    2013-12-11

    The high-volume resistivity and surface resistance of poly(ether ether ketone)/multiwalled carbon nanotubes (PEEK/MWCNT) composites restrict their use in an electronic field. To decrease the volume resistivity and surface resistance, we metalized the composites by electroless plating. The composites and metal coatings were characterized by SEM, XPS, AFM, EDX, and XRD spectroscopy. The swelling ratio of the composites, volume resistivity of two-side-coated composites, sheet resistance of plated composites, and adhesion between the coating and PEEK/MWCNT were tested. The results are as follows. A high roughness and a small swelling ratio were obtained by swelling in 18 mol/L H2SO4 for 3 min. Most of the MWCNT on the surface were still wrapped with PEEK after swelling. To expose the MWCNT, an environmentally friendly and effective etchant (MnO2-NaH2PO4-H2SO4) was used. After etching, not only were high roughness and partially exposed MWCNT obtained but also the percentage of hydrophilic groups on the surface was increased. A dense cauliflower-like Ni-P coating was produced, and the exposed MWCNT were embedded in the metal coating after electroless plating for 20 min. The coating exhibited an amorphous structure with a phosphorus content of 11.21 wt %. The volume resistivity of two-side-coated PEEK/MWCNT dropped sharply to 38 Ω·m after electroless plating for 5 min. The sheet resistance decreased with increasing the electroless-plating time, and it dropped to 0.88 Ω/square after electroless plating for 40 min. The adhesion of the coating reached the highest 5 B scale (ASTM D3359) and could even undergo the test 20 times. PMID:24221995

  1. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.

    PubMed

    Wu, Su-Hua; Li, Yi; Zhang, Yong-Quan; Li, Xiao-Kang; Yuan, Chao-Fan; Hao, Yu-Lin; Zhang, Zhi-Yong; Guo, Zheng

    2013-12-01

    Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 μm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application.

  2. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)

    NASA Astrophysics Data System (ADS)

    Huang, Haoxiang; Chen, Liang; Varshney, Vikas; Roy, Ajit K.; Kumar, Satish

    2016-09-01

    Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0-80 (0%-6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.

  3. Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Wang, Tao; Wu, Xuemei; Xiao, Wu; Yu, Miao; Chen, Wei; Zhang, Fengxiang; He, Gaohong

    2016-09-01

    This work reports the novel work of coupling H2/CO2 separation with biomass-derived butanone hydrogenation in non-fluorinated sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) electrochemical hydrogen pump (EHP) reactor. Due to higher resistance to swelling, SPPESK-based EHP reactor exhibits more excellent reaction rate in elevated temperature (60 °C) and higher butanone concentration (2 M) as 270, 260 nmol cm-2 s-1, respectively, higher than 240, 200 nmol cm-2 s-1of Nafion-based EHP reactors. Also, the SPPESK-based EHP reactor remains 90% of initial hydrogenation rate after 4 batches, better than that of Nafion-based EHP reactors, which is only 62%. The energy efficiency of EHP separator reaches 40% under H2/CO2 mixture feed mode, and electricity of about 0.3 kWh is consumed per Nm3 H2 product, being superior to energy consumption compared with alternative processes like PSA and electrolysis of water. In addition, SPPESK-based EHP exhibits better hydrogenation stability due to lower CO2 permeation than Nafion. With increasing CO2 content in H2 feed, hydrogenation rate almost keeps constant at around 210 nmol cm-2 s-1 in SPPESK-based EHP reactor while decreases fast to 50 nmol cm-2 s-1 in Nafion/PTFE-based EHP reactor. These results show integration of gas separation with hydrogenation reactor is feasible in SPPESK-based EHP reactor.

  4. Tailor-made pore controlled poly (arylene ether ketone) membranes as a lithium-ion battery separator

    NASA Astrophysics Data System (ADS)

    Le Mong, Anh; Kim, Dukjoon

    2016-02-01

    Porous poly(arylene ether ketone) (PAEK) membranes are prepared by selective removal of poly(lactic acid) (PLA) molecules from self-assembled PAEK-PLA block copolymers. The pore size and porosity of the membranes are precisely controlled by adjusting PLA concentration. The synthesis of the PAEK-PLA copolymer is confirmed by FTIR and NMR spectroscopies and the morphology of the membrane is examined by scanning electron microscopy (SEM). Several important properties such as liquid electrolyte uptake, contact angle, thermal and mechanical stability, and lithium ion conductivity are measured and compared with those of commercial poly(propylene) (PP) membranes to investigate their application feasibility as a separator. The porous PAEK membrane shows improved thermal and dimensional stability compared to the PP membrane. The EC/DEC/EMC (1:1:1, v/v/v) soaked PAEK membrane with a pore diameter of 50 nm shows the highest lithium ion conductivity, higher than that of PP membrane. More importantly, the porous PAEK membranes show superior liquid electrolyte holding capacity to the PP membrane.

  5. Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong

    In order to develop novel membranes for vanadium redox flow battery (VRB) with low self-discharge rate and low cost, sulfonated poly(fluorenyl ether ketone) (SPFEK) was synthesized directly via aromatic nucleophilic polycondensation of bisphenol fluorene with 60% sulfonated difluorobenzophenone and 40% difluorobenzophenone. The SPFEK membrane shows the lower permeability of vanadium ions. The open circuit voltage evaluation demonstrates that the SPFEK membrane is superior to Nafion 117 membrane in self-discharge test. Both energy efficiencies (EE) and power densities of the VRB single cell based on the SPFEK membrane are higher than those of the VRB with Nafion 117 membrane at the same current densities. The highest coulombic efficiency (CE) of VRB with SPFEK membrane is 80.3% while the highest CE of the VRB with Nafion 117 membrane is 77.0%. The SPFEK membrane shows the comparative stability to Nafion 117 membrane in VO 2 + electrolyte. The experimental results suggest that SPFEK membrane is a promising ion exchange membrane for VRB.

  6. Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yin, Bibo; Li, Zhaohua; Dai, Wenjing; Wang, Lei; Yu, Lihong; Xi, Jingyu

    2015-07-01

    A series of highly branched sulfonated poly (fluorenyl ether ketone sulfone)s (HSPAEK) are synthesized by direct polycondensation reactions. The HSPAEK with 8% degree of branching is further investigated as membrane for vanadium redox flow battery (VRFB). The HSPAEK membrane prepared by solution casting method exhibits smooth, dense and tough morphology. It possesses very low VO2+ permeability and high ion selectivity compared to those of Nafion 117 membrane. When applied to VRFB, this novel membrane shows higher coulombic efficiency (CE, 99%) and energy efficiency (EE, 84%) than Nafion 117 membrane (CE, 92% and EE, 78%) at current density of 80 mA cm-2. Besides, the HSPAEK membrane shows super stable CE and EE as well as excellent discharge capacity retention (83%) during 100 cycles life test. After being soaked in 1.5 mol L-1 VO2+ solution for 21 days, the weight loss of HSPAEK membrane and the amount of VO2+ reduced from VO2+ are only 0.26% and 0.7%, respectively, indicating the superior chemical stability of the membrane.

  7. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  8. Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fiberous mat by electrospinning

    NASA Astrophysics Data System (ADS)

    Shi, R.; Bin, Y. Z.; Yang, W. X.; Wang, D.; Wang, J. Y.; Jian, X. G.

    2016-08-01

    Poly(phthalazinone ether ketone) (PPEK) is noted for its outstanding heat-resistance property and mechanical strength. A one-step electrospinning method was conducted to produce PPEK micro-nano porous fibrous mat. We gave emphasis study on the spinnability, optimized conditions, fibers' morphology, surface science and fracture mechanism. The uniform electrospun fibrous mat resulted from PPEK/chloroform binary system indicated that PPEK would be a prospective material to be applied in electrospinning. Addition of a small amount of non-solvent (ethanol) turned out to be advantageous to the reduction of fiber diameter and the alleviation of choking during spinning process. Organic salt (benzyltrimethylammonium chloride) was employed to increase the conductivity of solution for the formation of thin fiber. After trials, PPEK/chloroform/ethanol system with salt and PPEK/NMP system were taken as two optimized systems. These two systems showed different pore fraction in N2 adsorption test, and displayed different mechanical behaviors in uniaxial tension test. The fibrous mat from PPEK/chloroform/ethanol system showed a feature of ductile fracture with relatively low fracture strength but long fracture deformation, while the fibrous mat from PPEK/NMP system showed a feature of brittle fracture with small deformation but quite large fracture strength of ca. 6 MPa. Finally thermogravimetric analysis indicated that the resultant PPEK fibrous mat did not decompose until the temperature reached 478 °C, which qualified the resultant fibrous mat as a promising material used under high-temperature condition.

  9. Reversible Interconversion between Alkanes, Alkenes, Alcohols and Ketones under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Shipp, J.; Hartnett, H. E.; Gould, I. R.; Shock, E.; Williams, L. B.

    2011-12-01

    Many transformation reactions involving hydrocarbons that occur in deep sedimentary systems and determine petroleum compositions occur in the presence of H2O. Hydrothermal transformations of organic material are thought to provide carbon sources for microbes in deep ocean sediments. Hydrothermal conditions may also mimic the conditions where life developed on an early Earth. Nevertheless, much remains to be learned about the mechanisms of hydrothermal organic reactions, including ways in which various reactions are interrelated and how reactions compete with each other. It can be argued that metastable equilibrium states develop over geological timescales and at geochemically relevant temperatures, suggesting that reactions occur under thermodynamic rather than kinetic control. The extent to which reactions are reversible, and how product distributions are determined, are primary tests of the metastable equilibrium model. Seewald (2001, GCA 65, 1641-1664) showed that under hydrothermal conditions and in the presence of a redox buffer, simple alkanes and alkenes undergo oxidation, reduction, and hydration reactions. He proposed a reaction scheme where alkanes interconvert with alkenes, followed by stepwise hydration of alkenes to alcohols, oxidation to ketones, and finally conversion to carboxylic acids, which can undergo decarboxylation. Here we describe experiments that further develop the scope of these functional group interconversions, determine relative reaction kinetics, and provide insight into competing reactions. Hydrothermal experiments were performed at 300°C and 100 MPa in gold capsules for 12 to 144 hours. The reactant structures were based on cyclohexane with one and two methyl groups that served as regio- and stereochemical markers for the reactions. Starting with the alkanes, the observed products include the corresponding alkenes, alcohols, ketones and enones, in support of the Seewald reaction scheme. Our experiments add a branch to this scheme

  10. Catalytic asymmetric reductive coupling of alkynes and aldehydes: enantioselective synthesis of allylic alcohols and alpha-hydroxy ketones.

    PubMed

    Miller, Karen M; Huang, Wei-Sheng; Jamison, Timothy F

    2003-03-26

    A highly enantioselective method for catalytic reductive coupling of alkynes and aldehydes is described. Allylic alcohols are afforded with complete E/Z selectivity, generally >95:5 regioselectivity, and in up to 96% ee. In conjunction with ozonolysis, this process is complementary to existing methods of enantioselective alpha-hydroxy ketone synthesis. PMID:12643701

  11. An atom-economical access to β-heteroarylated ketones from propargylic alcohols via tandem ruthenium/indium catalysis.

    PubMed

    Trost, Barry M; Breder, Alexander

    2011-02-01

    The direct and chemoselective synthesis of β-heteroarylated ketones from secondary propargyl alcohols through tandem Ru/In catalysis is reported. Both electron-rich and neutral heteroarenes, such as furans and indoles, efficiently undergo the redox isomerization/conjugate addition (RICA) sequence to provide the corresponding adducts in yields of up to 97%.

  12. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  13. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  14. Chemoselective Oxidation of Benzyl, Amino, and Propargyl Alcohols to Aldehydes and Ketones under Mild Reaction Conditions

    PubMed Central

    Reddy, C B Rajashekar; Reddy, Sabbasani Rajasekhara; Naidu, Shivaji

    2015-01-01

    Catalytic oxidation reactions often suffer from drawbacks such as low yields and poor selectivity. Particularly, selective oxidation of alcohols becomes more difficult when a compound contains more than one oxidizable functional group. In order to deliver a methodology that addresses these issues, herein we report an efficient, aerobic, chemoselective and simplified approach to oxidize a broad range of benzyl and propargyl alcohols containing diverse functional groups to their corresponding aldehydes and ketones in excellent yields under mild reaction conditions. Optimal yields were obtained at room temperature using 1 mmol substrate, 10 mol % copper(I) iodide, 10 mol % 4-dimethylaminopyridine (DMAP), and 1 mol % 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) in acetonitrile, under an oxygen balloon. The catalytic system can be applied even when sensitive and oxidizable groups such as alkynes, amines, and phenols are present; starting materials and products containing such groups were found to be stable under the developed conditions. PMID:25969806

  15. Chemoselective Oxidation of Benzyl, Amino, and Propargyl Alcohols to Aldehydes and Ketones under Mild Reaction Conditions.

    PubMed

    Reddy, C B Rajashekar; Reddy, Sabbasani Rajasekhara; Naidu, Shivaji

    2015-04-01

    Catalytic oxidation reactions often suffer from drawbacks such as low yields and poor selectivity. Particularly, selective oxidation of alcohols becomes more difficult when a compound contains more than one oxidizable functional group. In order to deliver a methodology that addresses these issues, herein we report an efficient, aerobic, chemoselective and simplified approach to oxidize a broad range of benzyl and propargyl alcohols containing diverse functional groups to their corresponding aldehydes and ketones in excellent yields under mild reaction conditions. Optimal yields were obtained at room temperature using 1 mmol substrate, 10 mol % copper(I) iodide, 10 mol % 4-dimethylaminopyridine (DMAP), and 1 mol % 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) in acetonitrile, under an oxygen balloon. The catalytic system can be applied even when sensitive and oxidizable groups such as alkynes, amines, and phenols are present; starting materials and products containing such groups were found to be stable under the developed conditions. PMID:25969806

  16. [Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography].

    PubMed

    Gai, Qingqing; Wu, Peng; Shi, Yulin; Bai, Yu; Long, Yinhua

    2015-01-01

    A method for the determination of low-carbon (C1-C8) alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis was developed by gas chromatography. It included the optimization of separation conditions, the precision and accuracy of determination, and the use of correction factors of the analytes to ethanol for quantification. The aqueous products showed that the correlation coefficients for ethanol in different content ranges were above 0.99, which means it had good linear correlations. The spiked recoveries in the aqueous samples of Fischer-Tropsch synthesis were from 93.4% to 109.6%. The accuracy of the method can satisfy the requirement for the analysis of the aqueous samples of Fischer-Tropsch synthesis. The results showed that the total mass fractions of the major low-carbon alcohols, aldehydes, ketones in aqueous products of Fischer-Tropsch synthesis were about 3%-12%, and the contents of ethanol were the highest (about 1.7%-7.3%). The largest share of the total proportion was n-alcohols, followed by isomeric alcohols, aldehydes and ketones were the lowest. This method is simple, fast, and has great significance for the analysis of important components in aqueous products of Fischer-Tropsch synthesis.

  17. Metal-free oxidative radical addition of carbonyl compounds to α,α-diaryl allylic alcohols: synthesis of highly functionalized ketones.

    PubMed

    Chu, Xue-Qiang; Meng, Hua; Zi, You; Xu, Xiao-Ping; Ji, Shun-Jun

    2014-12-15

    A metal-free direct alkylation of simple carbonyl compounds (ketones, esters, and amides) with α,α-diaryl allylic alcohols is described. The protocol provides facile access to highly functionalized dicarbonyl ketones by a radical addition/1,2-aryl migration cascade. The regioselectivity of the reaction was precisely controlled by the nature of the carbonyl compound.

  18. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    PubMed

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  19. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    PubMed

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications. PMID:27557058

  20. Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers.

    PubMed

    Liu, Jian-Bo; Xu, Xiu-Hua; Qing, Feng-Ling

    2015-10-16

    The development of an efficient and practical method for the preparation of alkyl trifluoromethyl ethers is urgently demanding. The silver-mediated oxidative O-trifluoromethylation of primary, secondary, and tertiary alcohols with TMSCF3 under mild reaction conditions is established to provide a novel approach to a broad range of alkyl trifluoromethyl ethers. Further, this method is applied to the late-stage O-trifluoromethylation of complex natural products and prescribed pharmaceutical agents.

  1. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  2. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  3. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    SciTech Connect

    Not Available

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  4. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Yoshimasa, Keisuke; Egashira, Tatsuya; Oya, Takahiro; Oyaizu, Kenichi; Nishide, Hiroyuki

    2016-09-01

    Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at -1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier.

  5. Conversion of alcohols to ether-rich gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-08-20

    This patent describes a continuous process for converting crude methanol to methyl tertiary-alkyl ether. It comprises contacting a crude methanolic feedstock containing a minor amount of water with a liquid olefinic C{sub 4}-C{sub 5} hydrocarbon extraction stream rich in C{sub 4} or C{sub 5} iso-alkene hydrocarbon or mixtures thereof under extraction conditions favorable to selective extraction of the methanol, thereby providing an extract liquid stream containing sufficient methanol for etherification and an aqueous raffinate stream lean in methanol; reacting liquid hydrocarbon extractant and extracted methanol substantially free of water in a first catalytic reaction zone in contact with acid etherification catalyst under etherification process conditions to convert methanol and iso-alkene hydrocarbon to predominantly methyl tertiary-alkyl ether; fractionating the etherification effluent to recover liquid product containing methyl tertiary-alkyl ether; catalytically converting methanol in the raffinate stream at elevated temperature in contact with acid zeolite catalyst to produce predominantly lower olefins rich in propene, isobutylene and isoamylenes; reacting propene from methanol conversion with water to product di-isopropyl ether; and recovering the isobutylene and isoamylenes produced by catalytic conversion of methanol in a C{sub 4}-C{sub 5} liquid stream for recycle as liquid extractant.

  6. Nucleophilic Difluoromethylenation of Ketones Using Diethyl (Difluoro(trimethylsilyl)methyl)phosphonate Mediated by 18-Crown-6 Ether/KOAc.

    PubMed

    Wang, Yu-Hui; Cao, Zhong-Yan; Zhou, Jian

    2016-09-01

    We report a general difluoromethylenation of various types of ketones using diethyl (difluoro(trimethylsilyl)methyl)phosphonate mediated by the combination of 18-crown-6 and KOAc. It provides facile access to structurally diverse β-hydroxy-α,α-difluorophosphonates as interesting targets for medicinal research. PMID:27500746

  7. Light Induced C-C Coupling of 2-Chlorobenzazoles with Carbamates, Alcohols, and Ethers.

    PubMed

    Lipp, Alexander; Lahm, Günther; Opatz, Till

    2016-06-01

    A light induced, transition-metal-free C-C coupling reaction of 2-chlorobenzazoles with aliphatic carbamates, alcohols, and ethers is presented. Inexpensive reagents, namely sodium acetate, benzophenone, water, and acetonitrile, are employed in a simple reaction protocol using a cheap and widely available 25 W energy saving UV-A lamp at ambient temperature. PMID:27128627

  8. [On the surface-anesthetic activity of some ether alcohols (author's transl)].

    PubMed

    Riemschneider, R; Rufer, C; Chik, W H

    1978-01-01

    An account of the preparation and surface anesthetic potency of 12 ether alcohols of the type X-O-Y-OH is given in this paper. The anaesthetic intensity and effective duration of a chloronaphthalene derivative of this type lie within the range of action of cocain.

  9. Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance

    NASA Astrophysics Data System (ADS)

    Su, Yu-Huei; Liu, Ying-Ling; Sun, Yi-Ming; Lai, Juin-Yih; Guiver, Michael D.; Gao, Yan

    Sulfonated poly(phthalazinone ether ketone) (sPPEK) with a degree of sulfonation of 1.23 was mixed with silica nanoparticles to form hybrid materials for using as proton exchange membranes. The nanoparticles were found homogeneously dispersed in the polymer matrix and a high 30 phr (parts per hundred resin) loading of silica nanoparticles can be achieved. The hybrid membranes exhibited improved swelling behavior, thermal stability, and mechanical properties. The methanol crossover behavior of the membrane was also depressed such that these membranes are suitable for a high methanol concentration in feed (3 M) in cell test. The membrane with 5 phr silica nanoparticles showed an open cell potential of 0.6 V and an optimum power density of 52.9 mW cm -2 at a current density of 264.6 mA cm -2, which is better than the performance of the pristine sPPEK membrane and Nafion ® 117.

  10. Tunable Ether Production via Coupling of Aldehydes or Aldehyde/Alcohol over Hydrogen-Modified Gold Catalysts at Low Temperatures.

    PubMed

    Pan, Ming; Brush, Adrian J; Dong, Guangbin; Mullins, C Buddie

    2012-09-01

    Ethers are an important group of organic compounds that are primarily prepared via homogeneous catalysis, which can lead to operational and environmental issues. Here we demonstrate the production of ethers via heterogeneous catalysis over H adatom-covered gold at temperatures lower than 250 K. Symmetrical ethers can be formed via a self-coupling reaction of corresponding aldehydes; for example, homocoupling of acetaldehyde and propionaldehyde yields diethyl ether and di-n-propyl ether, respectively. In addition, coupling reactions between alcohols and aldehydes, with different carbon chain lengths, are observed via the production of the corresponding unsymmetrical ethers. A reaction mechanism is proposed, suggesting that an alcohol-like intermediate via partial hydrogenation of aldehydes on the surface plays a key role in these reactions. These surface chemical reactions suggest possible heterogeneous routes to low-temperature production of ethers. PMID:26292142

  11. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  12. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  13. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  14. Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts.

    PubMed

    Li, Zhi; Assary, Rajeev S; Atesin, Abdurrahman C; Curtiss, Larry A; Marks, Tobin J

    2014-01-01

    The thermodynamically leveraged conversion of ethers and alcohols to saturated hydrocarbons is achieved efficiently with low loadings of homogeneous M(OTf)n + heterogeneous Pd tandem catalysts (M = transition metal; OTf = triflate; n = 4). For example, Hf(OTf)4 mediates rapid endothermic etheralcohol and alcohol ⇌ alkene equilibria, while Pd/C catalyzes the subsequent, exothermic alkene hydrogenation. The relative C-O cleavage rates scale as 3° > 2° > 1°. The reaction scope extends to efficient conversion of biomass-derived ethers, such as THF derivatives, to the corresponding alkanes. PMID:24354599

  15. Liquid chromatographic enantioseparation of aryl alpha-amino ketones on a crown ether-based chiral stationary phase.

    PubMed

    Ho Hyun, Myung; Tan, Guanghui; Cho, Yoon Jae

    2005-04-01

    A liquid chromatographic chiral stationary phase based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel was applied in the resolution of aryl alpha-amino ketones including cathinone, the main psychoactive alkaloid found in the leaves of the khat plant. The resolution was excellent, the separation factors ranging between 1.72 and 8.58 and the resolution factors (R(S)) ranging between 2.60 and 11.10. The chromatographic resolution behaviour was dependent on the type and the content of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase and the column temperature.

  16. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity

    NASA Astrophysics Data System (ADS)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi

    2014-02-01

    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  17. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  18. Regioselective Oxo-Amination of Alkenes and Enol Ethers with N-Bromosuccinimide-Dimethyl Sulfoxide Combination: A Facile Synthesis of α-Amino-Ketones and Esters.

    PubMed

    Prasad, Pragati K; Reddi, Rambabu N; Sudalai, Arumugam

    2016-02-01

    An unprecedented conversion of alkenes and enol ethers to the corresponding α-imido carbonyl compounds with excellent regioselectivity and yields has been developed. This oxo-amination process employs readily available N-bromosuccinimide (NBS) and secondary amines as N-sources and dimethyl sulfoxide (DMSO) as the oxidant and also leads to the production of amino alcohols in a single step on reduction, thus broadening the scope of this operationally simple reaction. For the first time, the formation of reactive Me2S(+)-O-Br species generated by the interaction of NBS with DMSO has been proven.

  19. Copper(II)-catalyzed hydrosilylation of ketones using chiral dipyridylphosphane ligands: highly enantioselective synthesis of valuable alcohols.

    PubMed

    Yu, Feng; Zhou, Ji-Ning; Zhang, Xi-Chang; Sui, Yao-Zong; Wu, Fei-Fei; Xie, Lin-Jie; Chan, Albert S C; Wu, Jing

    2011-12-01

    In the presence of PhSiH(3) as the reductant, the combination of enantiomeric dipyridylphosphane ligands and Cu(OAc)(2)·H(2)O, which is an easy-to-handle and inexpensive copper salt, led to a remarkably practical and versatile chiral catalyst system. The stereoselective formation of a selection of synthetically interesting β-, γ- or δ-halo alcohols bearing high degrees of enantiopurity (up to 99.9% enantiomeric excess (ee)) was realized with a substrate-to-ligand molar ratio (S/L) of up to 10,000. The present protocol also allowed the hydrosilylation of a diverse spectrum of alkyl aryl ketones with excellent enantioselectivities (up to 98% ee) and exceedingly high turn-over rates (up to 50,000 S/L molar ratio in 50 min reaction time) in air, under very mild conditions, which offers great opportunities for the preparation of various physiologically active targets. The synthetic utility of the chiral products obtained was highlighted by the efficient conversion of optically enriched β-halo alcohols into the corresponding styrene oxide, β-amino alcohol, and β-azido alcohol, respectively. PMID:22065457

  20. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.

    PubMed

    Magaña-Reyes, Miguel; Morales, Marcia; Revah, Sergio

    2005-11-01

    Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE. PMID:16314973

  1. [Analysis of phenolic compounds in aqueous samples by gas chromatography coupled with headspace solid-phase microextraction using poly (phthalazine ether sulfone ketone) coated fiber].

    PubMed

    Yao, Guiyan; Guan, Wenna; Xu, Feng; Wang, Hua; Guan, Yafeng

    2008-09-01

    The direct trace analysis of phenolic compounds in aqueous samples was performed by headspace solid-phase microextraction/gas chromatography (HS-SPME/GC). A laboratory made poly (phthalazine ether sulfone ketone) (PPESK, 30 microm) coated fiber was used to extract the phenols from aqueous samples. The parameters affecting the extraction efficiency, such as extraction temperature and time, pH value, and salt concentration, were optimized. The low pH value and high salt concentration can increase the extraction efficiency of phenols. The limits of detection (LODs) were from 0.003 to 0.041 microg/L, which were within the range of EPA Method 604. The relative standard deviations (RSDs) were less than 16%. Compared with commercial polyacrylate (PA) fiber (85 microm), the PPESK fiber shows high affinity toward phenolic compounds, and therefore, high absolute recoveries. The phenols were detected with the recoveries of 100.5%-111.8% for a tap water sample and 94.8%-117.3% for a seawater sample at the spiked level of 20 microg/L.

  2. Comparison of proton conducting polymer electrolyte membranes prepared from multi-block and random copolymers based on poly(arylene ether ketone)

    NASA Astrophysics Data System (ADS)

    Kang, Kyuhyun; Kim, Dukjoon

    2015-05-01

    Multi-block and random copolymers based on poly(arylene ether ketone) with the similar IEC values are synthesized. The chemical structure of the hydrophobic and hydrophilic oligomers and the copolymers synthesized from them is identified using 1H - and 19F- nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy, and gel permeation chromatography (GPC). The development of distinguished hydrophobic-hydrophilic phase separation is confirmed by small-angle X-ray scattering (SAXS) spectroscopy. The proton conductivity and water uptake along with the thermal, mechanical, oxidative stabilities are measured to investigate the effect of the copolymer structure on the membrane properties. While water uptake is similar with respect to each other, the proton conductivity of the multi-block copolymer membrane is higher than that of random one at the same levels of IEC. It results from much more distinct hydrophobic-hydrophilic phase separation formed in the multi-block copolymer membrane than the random one. The ion cluster dimension of the multi-block copolymer membranes is larger than that of the random copolymer membranes from the SAXS analysis. Also, the ion cluster dimension distribution of the block copolymer membranes is much narrower than that of random ones. The multi-block copolymer membranes illustrate superior oxidation stability to the random copolymer membrane due to the same phase separation difference.

  3. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction - safety and efficacy in a porcine model.

    PubMed

    Li, Xiang; He, Jiankang; Bian, Weiguo; Li, Zheng; Zhang, Wenyou; Li, Dichen; Snedeker, Jess G

    2014-08-01

    Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4). Biomechanical tests were performed after euthanization, with ultimate tensile strengths at 3months of ∼370N and at 6months of ∼566N - comparable to autograft and allograft performance in this animal model. Comprehensive histological observations revealed that TCP substantially enhanced silk graft to bone attachment. Interdigitation of soft and hard tissues was observed, with regenerated fibrocartilage characterizing a transitional zone from silk graft to bone that was similar to native ligament bone attachments. We conclude that both initial stability and robust long-term biological attachment were consistently achieved using the tested construct, supporting a large potential for silk-TCP combinations in the repair of the torn ACL.

  4. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    PubMed Central

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. PMID:27103801

  5. The breakdown of vinyl ethers as a two-center synchronous reaction

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Shestakov, A. F.

    2009-11-01

    The experimental data on the molecular decomposition of vinyl ethers of various structures to alkanes and the corresponding aldehydes or ketones in the gas phase were analyzed using the method of intersecting parabolas. The enthalpies and kinetic parameters of decomposition were calculated for 17 reactions. The breakdown of ethers is a two-center concerted reaction characterized by a very high classical potential barrier to the thermally neutral reaction (180-190 kJ/mol). The kinetic parameters (activation energies and rate constants) of back reactions of the formation of vinyl ethers in the addition of aldehydes or ketones to alkanes were calculated using the method of intersecting parabolas. The factors that influenced the activation energy of the decomposition and formation of ethers were discussed. Quantum-chemical calculations of several vinyl ether decomposition reactions were performed. Ether formation reactions were compared with the formation of unsaturated alcohols as competitive reactions, which can occur in the interaction of carbonyl compounds with alkenes.

  6. Photooxygenation of allylic alcohols: kinetic comparison of unfunctionalized alkenes with prenol-type allylic alcohols, ethers and acetates.

    PubMed

    Griesbeck, Axel G; Adam, Waldemar; Bartoschek, Anna; El-Idreesy, Tamer T

    2003-08-01

    The kinetics of the chemical and physical quenching of the first excited singlet state of oxygen [1O2 (1delta(g))] by unfunctionalized alkenes 1-4, allylic alcohols 5-7 and 9, allylic acetates 8 and 11, and the allylic ether 10 display small solvent-polarity effects on the reactivity. The regioselectivity of the singlet oxygen ene reaction is solvent independent for the unfunctionalized alkenes as well as the prenol-type substrates, the latter showing substantial solvent effects on the diastereoselectivity. Pronounced physical quenching is detected only for the allylic alcohols 5 and 6. These results are interpreted in terms of the interactions between singlet oxygen and the allylic hydroxy groups, conformationally promoted by allylic strain which lead either to chemical activation or to physical quenching. The results for substrate 9 in deuterated v.s non-deuterated methanol are in accord with hydrogen bonding between the allylic alcohol and 1O2, which directs the diastereoselectivity of the ene reaction with chiral allylic alcohols.

  7. Preliminary Experiences of the Combined Midline-Splitting French Door Laminoplasty with Polyether Ether Ketone (PEEK) Plate for Cervical Spondylosis and OPLL

    PubMed Central

    Oh, Chang Hyun; Ji, Gyu Yeul; Hur, Junseok W.; Choi, Won-Seok; Shin, Dong Ah

    2015-01-01

    Objective The purpose of this study was to evaluate the safety and efficacy of cervical midline-splitting French-door laminoplasty with a polyether ether ketone (PEEK) plate. The authors retrospectively analyzed the results of patients with cervical laminoplasty miniplate (MAXPACER®) without bone grafts in multilevel cervical stenosis. Methods Fifteen patients (13 males and 2 females, mean age 50.0 years (range 35-72)) with multilevel cervical stenosis (ossification of the posterior longitudinal ligament and cervical spondylotic myelopathy) underwent a combined surgery of midline-splitting French-door laminoplasty with or without mini plate. All 15 patients were followed for at least 12 months (mean follow-up 13.3 months) after surgery, and a retrospective review of the clinical, radiological and surgical data was conducted. Results The radiographic results showed a significant increase over the postoperative period in anterior-posterior diameter (9.4±2.2 cm to 16.2±1.1 cm), open angles in cervical lamina (46.5±16.0° to 77.2±13.1°), and sectional volume of cervical central canal (100.5±0.7 cm2 to 146.5±4.9 cm2) (p<0.001). The sagittal alignment of the cervical spine was well preserved (31.7±10.0° to 31.2±7.6°, p=0.877) during the follow-up period. The clinical results were successful, and there were no significant intraoperative complications except for screw displacement in two cases. The mini plate constructs did not fail during the 12 month follow-up period, and the decompression was maintained. Conclusion Despite the small cohort and short follow-up duration, the present study demonstrated that combined cervical expansive laminoplasty using the mini plate is an effective treatment for multilevel cervical stenosis. PMID:26217382

  8. Direct ortho-C-H functionalization of aromatic alcohols masked by acetone oxime ether via exo-palladacycle.

    PubMed

    Guo, Kun; Chen, Xiaolan; Guan, Mingyu; Zhao, Yingsheng

    2015-04-01

    A simple and practical exo-oxime ether auxilixary for ortho-C-H functionalization of aromatic alcohols has been developed. Selective olefination of aromatic alcohols were first achieved via a six- or seven-membered exo-acetone oxime ether palladacycle with broad substrate scope. In addition, the crystal of the exo-palladacycle intermediate was obtained for the first time, and the application of this method in total synthesis of 3-deoxyisoochracinic acid was accomplished via a novel retro-synthetic disconnection approach, thus demonstrating the utility of this transformation.

  9. Traceless OH-Directed Wacker Oxidation-Elimination, an Alternative to Wittig Olefination/Aldol Condensation: One-Pot Synthesis of α,β-Unsaturated and Nonconjugated Ketones from Homoallyl Alcohols.

    PubMed

    Bethi, Venkati; Fernandes, Rodney A

    2016-09-16

    A new method for one-pot synthesis of β-substituted and β,β-disubstituted α,β-unsaturated methyl ketones from homoallyl alcohols by sequential PdCl2/CrO3-promoted Wacker process followed by an acid-mediated dehydration reaction has been developed. Remarkably, internal homoallyl alcohols delivered regioselectively nonconjugated unsaturated carbonyl compounds under the same protocol. A new starting material-based synthesis of α,β-unsaturated and nonconjugated methyl ketones is demonstrated.

  10. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    SciTech Connect

    Klier, K.; Herman, R.G.

    1994-05-01

    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  11. Kinetics of the hydroxyethylation of n-octyl alcohol in the presence of the macrocyclic ether dibenzo-18-crown-6

    SciTech Connect

    Gus'kov, A.K.; Zolotarskii, V.A.; Makarov, M.G.; Shvets, V.F.

    1988-02-01

    A study has been made of the kinetics of the reaction of ethylene oxide with n-octyl alcohol catalyzed by potassium octylate in the presence of the macrocyclic ether dibenzo-18-crown-6. A kinetic model has been proposed, which satisfactorily represents the effect of dibenzo-18-crown-6 on the rate of hydroxyethylation over a wide range of molar ratios of dibenzo-18-crown-6:potassium octylate and initial alcohol concentrations.

  12. Unusual reaction behavior of gem-difluorocyclopropane derivatives: stereoselective synthesis of β-monofluoroallylic alcohols, ethers, esters, and amide.

    PubMed

    Nihei, Takashi; Hoshino, Tomoko; Konno, Tsutomu

    2014-08-15

    On treating gem-difluorocyclopropylstannanes, derived from the radical hydrostannation of gem-difluorocyclopropenes, with 1.5 equiv of MeLi in THF at -78 °C for 5 min, followed by quenching the reaction with various agents, such as H2O, alcohols, carboxylic acids, and tosylamide, the corresponding β-fluoroallylic alcohols, ethers, esters, and amide were obtained with exclusive Z-selectivity in acceptable yields.

  13. Raspberry Ketone

    MedlinePlus

    Raspberry ketone is a chemical from red raspberries, as well as kiwifruit, peaches, grapes, apples, other berries, vegetables such as rhubarb, and the bark of yew, maple, and pine trees. People take raspberry ketone by mouth for ...

  14. EVALUATION OF METHYL TERT-BUTYL ETHER (MTBE) AS AN INTERFERENCE ON COMMERCIAL BREATH-ALCOHOL ANALYZERS

    EPA Science Inventory

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...

  15. Reactions of NO 3 with the man-made emissions 2-methylpent-2-ene, ( Z)-3-methylpent-2-ene, ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone

    NASA Astrophysics Data System (ADS)

    Pfrang, Christian; Tooze, Christopher; Nalty, Andrew; Canosa-Mas, Carlos E.; Wayne, Richard P.

    Rate coefficients for reactions of nitrate radicals (NO 3) with the anthropogenic emissions 2-methylpent-2-ene, ( Z)-3-methylpent-2-ene, ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3±1.1)×10 -12, (9.3±3.2)×10 -12, (1.7±1.3)×10 -12 and (9.4±2.7)×10 -17 cm 3 molecule -1 s -1. We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO 3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, ( Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.

  16. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications.

    PubMed

    Tang, Shaokun; Baker, Gary A; Zhao, Hua

    2012-05-21

    In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and

  17. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications.

    PubMed

    Tang, Shaokun; Baker, Gary A; Zhao, Hua

    2012-05-21

    In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews that emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g. hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offers a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and

  18. Ether- and Alcohol-Functionalized Task-Specific Ionic Liquids: Attractive Properties and Applications

    PubMed Central

    Tang, Shaokun; Baker, Gary A.; Zhao, Hua

    2012-01-01

    In recent years, the designer nature of ionic liquids (ILs) has driven their exploration and exploitation in countless fields among the physical and chemical sciences. A fair measure of the tremendous attention placed on these fluids has been attributed to their inherent designer nature. And yet, there are relatively few examples of reviews which emphasize this vital aspect in an exhaustive or meaningful way. In this critical review, we systematically survey the physicochemical properties of the collective library of ether- and alcohol-functionalized ILs, highlighting the impact of ionic structure on features such as viscosity, phase behavior/transitions, density, thermostability, electrochemical properties, and polarity (e.g., hydrophilicity, hydrogen bonding capability). In the latter portions of this review, we emphasize the attractive applications of these functionalized ILs across a range of disciplines, including their use as electrolytes or functional fluids for electrochemistry, extractions, biphasic systems, gas separations, carbon capture, carbohydrate dissolution (particularly, the (ligno)celluloses), polymer chemistry, antimicrobial and antielectrostatic agents, organic synthesis, biomolecular stabilization and activation, and nanoscience. Finally, this review discusses anion-functionalized ILs, including sulfur- and oxygen-functionalized analogs, as well as choline-based deep eutectic solvents (DESs), an emerging class of fluids which can be sensibly categorized as semi-molecular cousins to the IL. Finally, the toxicity and biodegradability of ether- and alcohol-functionalized ILs are discussed and cautiously evaluated in light of recent reports. By carefully summarizing literature examples on the properties and applications of oxy-functional designer ILs up till now, it is our intent that this review offer a barometer for gauging future advances in the field as well as a trigger to spur further contemplation of these seemingly inexhaustible and

  19. Susceptibility of yeast isolates from cattle with otitis to aqueous solution of povidone iodine and to alcohol-ether solution.

    PubMed

    Duarte, E R; Hamdan, J S

    2006-06-01

    Lipid-dependent Malassezia species, Candida spp. and Rhodotorula mucilaginosa have been associated with bovine parasitic otitis. This paper evaluated the susceptibility of 63 yeast isolates from cattle with otitis to a povidone iodine aqueous solution (1% and 0.5% v/v) and to an alcohol-ether solution (1:1 v/v). The effectiveness of these antiseptics was assessed using the European suspension test. Products achieving equal to or greater than 5-log reduction in numbers of the challenge organism after 5 min contact are considered to have as acceptable microbicidal effect (ME). The two antiseptic solutions achieved ME greater than 5, when tested at 1 and 5 min contact time, against the majority of yeast strains. The exceptions were alcohol and ether solution against two Candida tropicalis strains. Urea broth macrodilution method was used to determine the minimum inhibitory concentration (MIC), defined as the lowest concentration that resulted in a visually negative urease test or, in the case of Candida spp., turbidity inhibition when compared with that produced by the growth control. Analysis of the results for all 63 isolates showed Malassezia sympodialis and Rhodotorula mucilaginosa to be more susceptible to povidone iodine and Malassezia furfur strains to be less susceptible. Malassezia sympodialis was significantly more susceptible to alcohol-ether solution than other species. This study showed the in vitro efficacy of alcohol-ether solution and povidone iodine and proposes the need for clinical evaluation of the topical treatment and control of bovine otitis with these antiseptics and their effects on the ear microbiota and the ear canal.

  20. Synthesis of a-Alkylated Ketones via Tandem Acceptorless Dehydrogenation/a-Alkylation from Secondary and Primary Alcohols Catalyzed by Metal-Ligand Bifunctional Iridium Complex [Cp*Ir(2,2'-bpyO)(H2O)].

    PubMed

    Wang, Rongzhou; Ma, Juan; Li, Feng

    2015-11-01

    A new strategy for the synthesis of α-alkylated ketones via tandem acceptorless dehydrogenation/α-alkylation from secondary and primary alcohols was proposed and accomplished. In the presence of metal-ligand bifunctional iridium complex [Cp*Ir(2,2'-bpyO)(H2O)], various desirable products were obtained in high yields. Compared with previous methods for the direct dehydrogenative coupling of secondary alcohols with primary alcohols to α-alkylated ketones, this protocol has obvious advantages including complete selectivity for α-alkylated ketones and more environmentally benign conditions. Notably, the study also exhibited the potential to develop tandem reactions catalyzed using a metal-ligand bifunctional iridium complex. PMID:26428210

  1. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  2. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  3. Hyperbranched exopolysaccharide-enhanced foam properties of sodium fatty alcohol polyoxyethylene ether sulfate.

    PubMed

    Deng, Quanhua; Li, Haiping; Sun, Haoyang; Sun, Yange; Li, Ying

    2016-05-01

    The foam properties, such as the foamability, foam stability, drainage, coalescence and bulk rheology, of aqueous solutions containing an eco-friendly exopolysaccharide (EPS) secreted by a deep-sea mesophilic bacterium, Wangia profunda SM-A87, and an anionic surfactant, sodium fatty alcohol polyoxyethylene ether sulfate (AES), were studied. Both the foamability and foam stability of the EPS/AES solutions are considerably higher than those of single AES solutions, even at very low AES concentrations, although pure EPS solutions cannot foam. The improved foamability and foam stability arise from the formation of the EPS/AES complex via hydrogen bonds at the interfaces. The synergism between the EPS and AES decreases the surface tension, increases the interfacial elasticity and water-carrying capacity, and suppresses the coalescence and collapse of the foams. The EPS/AES foams are more salt-resistant than the AES foams. This work provides not only a new eco-friendly foam with great potential for use in enhanced oil recovery and health-care products but also useful guidance for designing other environmentally friendly foam systems that exhibit high performance.

  4. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.

    PubMed

    Nealon, Christopher M; Welsh, Travis P; Kim, Chang Sup; Phillips, Robert S

    2016-09-15

    Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (SADH) reduces aliphatic ketones according to Prelog's Rule, with binding pockets for small and large substituents. It was shown previously that the I86A mutant SADH reduces acetophenone, which is not a substrate of wild-type SADH, to give the anti-Prelog R-product (Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S. ChemCatChem2009, 1, 89-93.). However, I86A SADH did not reduce aryl ketones with substituents larger than fluorine. We have now expanded the small pocket of the active site of I86A SADH by mutation of Cys-295 to alanine to allow reaction of substituted acetophenones. As predicted, the double mutant I86A/C295A SADH has broadened substrate specificity for meta-substituted, but not para-substituted, acetophenones. However, the increase of the substrate specificity of I86A/C295A SADH is accompanied by a decrease in the kcat/Km values of acetophenones, possibly due to the substrates fitting loosely inside the more open active site. Nevertheless, I86A/C295A SADH gives high conversions and very high enantiomeric excess of the anti-Prelog R-alcohols from the tested substrates. PMID:27495738

  5. Traceless OH-Directed Wacker Oxidation-Elimination, an Alternative to Wittig Olefination/Aldol Condensation: One-Pot Synthesis of α,β-Unsaturated and Nonconjugated Ketones from Homoallyl Alcohols.

    PubMed

    Bethi, Venkati; Fernandes, Rodney A

    2016-09-16

    A new method for one-pot synthesis of β-substituted and β,β-disubstituted α,β-unsaturated methyl ketones from homoallyl alcohols by sequential PdCl2/CrO3-promoted Wacker process followed by an acid-mediated dehydration reaction has been developed. Remarkably, internal homoallyl alcohols delivered regioselectively nonconjugated unsaturated carbonyl compounds under the same protocol. A new starting material-based synthesis of α,β-unsaturated and nonconjugated methyl ketones is demonstrated. PMID:27562136

  6. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  7. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.

    PubMed

    Schmidt, Torsten C; Schirmer, Mario; Weiss, Holger; Haderlein, Stefan B

    2004-06-01

    The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic

  8. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    PubMed

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  9. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    EPA Science Inventory

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  10. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  11. Ether production

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-05-14

    This patent describes a multistage process for etherifying a mixed C{sub 4} + olefinic hydrocarbon feedstock containing isoalkene. It comprises: contacting the olefinic feedstock and aliphatic alcohol in a first reaction stage under partial etherification conditions with a regenerable inorganic metal oxide acid solid catalyst to convert a major amount of the isoalkene to C{sub 5} + tertiary-alkyl ether; recovering a reactant effluent from the first stage containing ether product, unreacted alcohol and unreacted olefin including isoalkene; charging the first stage effluent to a second stage catalytic distillation column containing solid acid resin etherification catalyst in a plurality of fixed bed catalysis-distillation zones to complete substantially full etherification of isoalkene; recovering C{sub 5} + ether as a liquid from the catalytic distillation column; regenerating the first stage catalyst to remove feedstock impurity and coke and to acid activity; and continuing ether production with regenerated catalyst.

  12. Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp.

    PubMed

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2011-09-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed. PMID:21742915

  13. Syntheses of [omega]-alkynyl aldehydes and ketones via oxidation of [omega]-alkynyl alcohols with pyridinium dichromate

    SciTech Connect

    Bierer, D.E.; Kabalka, G.W. )

    1988-01-01

    Pyridinium dichromate (PDC) is an effective reagent for the oxidation of alcohols and a number of modifications of the original procedure have been reported. Interestingly, PDC has never been used to oxidize non-conjugated acetylenic alcohols. As a part of a project involving the chemical preparation of a number of unsaturated amino acids, the authors investigated the synthesis of a series of [omega]-alkynyl aldehydes. The authors now report that the PDC oxidation of [omega]-alkynyl alcohols is an effective route to the corresponding [omega]-alkynyl carbonyl compounds.

  14. 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone.

    PubMed

    Uyanik, Muhammet; Akakura, Matsujiro; Ishihara, Kazuaki

    2009-01-14

    Electron-donating group-substituted 2-iodoxybenzoic acids (IBXs) such as 5-Me-IBX (1g), 5-MeO-IBX (1h), and 4,5-Me(2)-IBX (1i) were superior to IBX 1a as catalysts for the oxidation of alcohols with Oxone (a trademark of DuPont) under nonaqueous conditions, although Oxone was almost insoluble in most organic solvents. The catalytic oxidation proceeded more rapidly and cleanly in nitromethane. Furthermore, 2-iodoxybenzenesulfonic acid (IBS, 6a) was much more active than modified IBXs. Thus, we established a highly efficient and selective method for the oxidation of primary and secondary alcohols to carbonyl compounds such as aldehydes, carboxylic acids, and ketones with Oxone in nonaqueous nitromethane, acetonitrile, or ethyl acetate in the presence of 0.05-5 mol % of 6a, which was generated in situ from 2-iodobenzenesulfonic acid (7a) or its sodium salt. Cycloalkanones could be further oxidized to alpha,beta-cycloalkenones or lactones by controlling the amounts of Oxone under the same conditions as above. When Oxone was used under nonaqueous conditions, Oxone wastes could be removed by simple filtration. Based on theoretical calculations, we considered that the relatively ionic character of the intramolecular hypervalent iodine-OSO(2) bond of IBS might lower the twisting barrier of the alkoxyperiodinane intermediate 16.

  15. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries. PMID:19115303

  16. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  17. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids.

    PubMed

    Dobson, Luca S; Pattison, Graham

    2016-09-25

    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  18. Integrated process for production of gasoline and ether from alcohol with feedstock extraction

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-09-10

    This patent describes a continuous process for converting crude methanol to methyl tertiary-alkyl ethers and gasoline. It comprises contacting a crude methanolic feedstock containing a minor amount of water with a liquid olefinic hydrocarbon extraction solvent stream rich in C{sub 4}{sup +} iso-alkene hydrocarbon under extraction conditions favorable to selective extraction of the methanol, thereby providing a non-aqueous organic extract liquid stream rich in methanol and an aqueous raffinate stream containing unextracted methanol; charging liquid hydrocarbon extractant and extracted methanol substantially free of water to a first etherification catalytic reaction zone for contact with acid etherification catalyst under etherification process conditions for converting methanol and iso-alkene hydrocarbon to predominantly methyl tertiary-alkyl ether.

  19. Ketones blood test

    MedlinePlus

    ... Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood ... A blood sample is needed. ... When the needle is inserted to draw blood, some people feel slight ... there may be some throbbing or a slight bruise. This soon ...

  20. Reactor system for conversion of alcohols to ether-rich gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1992-07-14

    This patent describes a continuous feedstock separation and etherification reactor system for converting crude methanol feedstock to methyl t-alkyl ether. It comprises extractor means; first catalytic reactor means operatively connected; effluent separation means; and second catalytic reactor means operatively connected, means for recovering and charging at least a portion of the C{sub 4}-C{sub 5} olefinic hydrocarbons rich in iso-olefin from the second reactor means to the extractor means as the liquid-olefinic hydrocarbon extraction stream.

  1. Evaluation of methyl tert-butyl ether (MTBE) as an interference on commercial breath-alcohol analyzers.

    PubMed

    Buckley, T J; Pleil, J D; Bowyer, J R; Davis, J M

    2001-12-01

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated this possibility in vitro by establishing a response curve for simulated breath containing MTBE in ethanol. Two types of breath-alcohol analyzers were evaluated. One analyzer's principle of operation involves in situ wet chemistry (oxidation of ethanol in a potassium dichromate solution) and absorption of visible light. The second instrument uses a combination of infrared absorption and an electrochemical sensor. Both types of instruments are currently used, although the former method represents older technology while the latter method represents newer technology.The percent blood alcohol response curve was evaluated over a breath concentration range thought to be relevant to high-level environmental or occupational exposure (0-361 microg/l). Results indicate that MTBE positively biases the response of the older technology Breathalyzer when evaluated as a single constituent or in combination with ethanol. We conclude that a false positive is possible on this instrument if the MTBE exposure is very high, recent with respect to testing, and occurs in combination with ethanol consumption. The interference can be identified on the older technology instrument by a time dependent post-reading increase in the instrument response that does not occur for ethanol alone. In contrast, the newer technology instrument using infrared and electrochemical detectors did not respond to MTBE at lower levels (0-36 microg/l), and at higher levels (>72 microg/l) the instrument indicated an "interference" or "error". For this instrument, a false positive does not occur even at high MTBE levels in the presence of ethanol. PMID:11728735

  2. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  3. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  4. Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels

    SciTech Connect

    Maben, G.D.; Shauck, M.E.; Zanin, M.G.

    1996-12-31

    This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

  5. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect

    Hadder, G.R.; McNutt, B.D.

    1996-02-01

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  6. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    PubMed

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  7. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  8. Regio- and stereoselective synthesis of ferrocene-containing β-iodoallylic esters and ethers from the iodofunctionalization of ferrocenylallene with carboxylic acids, phenols, and alcohols.

    PubMed

    Chen, Shufeng; Zhang, Hongli; Yan, Qing; Wang, Chenjun; Han, Fei; Zhang, Kaixin; Zhao, Haiying; Li, Baoguo

    2014-06-20

    The iodofunctionalization of ferrocenylallene with carboxylic acids, phenols, and alcohols is described. The reaction proceeds smoothly in the presence of molecule iodine as a halonium promoter and using various carboxylic acids, phenols, and alcohols as nucleophiles to give the corresponding ferrocene-containing β-iodoallylic ester and ether products in moderate to high yields and with high regio- and stereoselectivities. It can be envisaged that the regio- and stereoselectivity of this reaction may be controlled by the steric effect of the bulky ferrocene group. The presence of the C-I bond in the corresponding products makes these molecules highly attractive from a synthetic point of view, as it provides an opportunity for further transformations. Thus, palladium-catalyzed Heck coupling, Suzuki coupling, Sonogashira coupling, and copper-catalyzed click reactions were carried out successfully.

  9. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.

    PubMed

    Cho, Eun Na Rae; Li, Yinan; Kim, Hee Jin; Hyun, Myung Ho

    2011-04-01

    A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference. PMID:21384440

  10. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b)...

  11. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  12. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  13. On the possibility of conversion of alcohols to ketones and aldehydes by phosphinoboranes R2PBR'R'': a computational study.

    PubMed

    Privalov, Timofei

    2009-01-01

    Can phosphinoboranes promote hydrogenation of carbonyl moieties? By means of B3LYP and MPW1K density functional calculations the likelihood of the oxidation of alcohols by phosphinoboranes R(2)PBR'(2) (1) was explored. As a proof-of-principle, a theoretical study that tests the reversibility of the alcohol oxidation is reported. The potential of 1 as a metal-free hydrogenation mediator is discussed for a series of hydrogen sources such as primary and secondary alcohols. PMID:19123227

  14. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  15. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  16. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls

    PubMed Central

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D.; Krische, Michael J.

    2015-01-01

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo- and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k and 6m, respectively. Primary alcohols 2a, 2l and 2p were converted to the siloxy-crotylation products 3a, 3l and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  17. Orientation and dynamics of benzyl alcohol and benzyl alkyl ethers dissolved in nematic lyotropic liquid crystals. 2H NMR and molecular dynamics simulations.

    PubMed

    Ahumada, H; Montecinos, R; Tieleman, D P; Weiss-López, B E

    2005-08-01

    Most drugs have to cross cell membranes to reach their final target. A better understanding of the distribution, interactions, and dynamics of biologically active molecules in model bilayers is of fundamental importance in understanding drug functioning and design. 2H NMR quadrupole splittings (delta nu(Q)) and longitudinal relaxation times (T1) from the aromatic ring of benzyl alcohol-d5 (C0), a commonly used anesthetic, and a series of linear alkyl benzyl-d5 ethers with chain lengths from 1 to 12 carbon atoms (C1-C12), were measured. The molecules were dissolved in a nematic discotic lyotropic liquid crystal solution made of tetradecyltrimethylammonium chloride (TTAC)/decanol (DeOH)/NaCl/H2O. Values of delta nu(Q) and T1 from 1,1-dideuteriodecanol (15% enriched) and DHO (H2O with 0.2% D2O) were also measured. Delta nu(Q) of DeOH and DHO remained constant throughout the series. The value of delta nu(Q) of the para position of the ring (delta nu(p)) in C1 is 30% smaller than the delta nu(p) of C0. This is attributed to the existence of an H-bond between the alcohol hydroxyl proton and the solvent, which influences the average orientation of the ring. The relaxation data show that T1o,m is always longer than T1p and both decrease with the increase in alkyl chain length. Molecular dynamics simulations of the experimentally studied systems were performed. The aggregate was represented as a bilayer. The distribution, average orientation, and order parameters of the aromatic ring of the guest molecules in the bilayer were examined. Rotational correlation functions of all the C-D bonds and the OH bond from H2O were evaluated, allowing an estimate of the correlation times and T1. According to these results all spins relax in extreme narrowing conditions, except DeOH. Experimental and calculated T1 values differ at most by a factor of 3. However, the order of magnitude and the observed trends are well reproduced by the calculations. The aromatic ring of C0 possesses a

  18. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  19. Potential Contributions of the Tobacco Nicotine-Derived Nitrosamine Ketone (NNK) in the Pathogenesis of Steatohepatitis in a Chronic Plus Binge Rat Model of Alcoholic Liver Disease

    PubMed Central

    Zabala, Valerie; Tong, Ming; Yu, Rosa; Ramirez, Teresa; Yalcin, Emine B.; Balbo, Silvia; Silbermann, Elizabeth; Deochand, Chetram; Nunez, Kavin; Hecht, Stephen; de la Monte, Suzanne M.

    2015-01-01

    Aims: Alcoholic liver disease (ALD) is linked to binge drinking and cigarette smoking. Heavy chronic ± binge alcohol, or low-level exposures to dietary nitrosamines cause steatohepatitis with insulin resistance and oxidative stress in animal models. This study examines hepatotoxic effects of sub-mutagenic exposures to tobacco-specific nitrosamine (NNK) in relation to ALD. Methods: Long Evans rats were fed liquid diets containing 0 or 26% (caloric) ethanol (EtOH) for 8 weeks. In Weeks 3 through 8, rats were treated with NNK (2 mg/kg) or saline by i.p. injection, 3×/week, and in Weeks 7 and 8, EtOH-fed rats were binge-administered 2 g/kg EtOH 3×/week; controls were given saline. Results: EtOH ± NNK caused steatohepatitis with necrosis, disruption of the hepatic cord architecture, ballooning degeneration, early fibrosis, mitochondrial cytopathy and ER disruption. Severity of lesions was highest in the EtOH+NNK group. EtOH and NNK inhibited insulin/IGF signaling through Akt and activated pro-inflammatory cytokines, while EtOH promoted lipid peroxidation, and NNK increased apoptosis. O6-methyl-Guanine adducts were only detected in NNK-exposed livers. Conclusion: Both alcohol and NNK exposures contribute to ALD pathogenesis, including insulin/IGF resistance and inflammation. The differential effects of EtOH and NNK on adduct formation are critical to ALD progression among alcoholics who smoke. PMID:25618784

  20. Synthesizing alcohols and ketones by photoinduced catalytic partial oxidation of hydrocarbons in TiO[sub 2] film reactors prepared by three different methods

    SciTech Connect

    Sahle-Demessie, E.; Gonzalez, M. ); Wang, Z.M.; Biswas, P. )

    1999-09-01

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV-irradiated titanium dioxide films in the presence of molecular oxygen at low temperatures and atmospheric pressure was studied. Three different coating methodologies (dip coating using titanium isopropoxide and commercially available titanium dioxide particles, sol-gel process, and flame aerosol process) were used to deposit the titanium dioxide films, and their effectiveness in partial oxidation of cyclohexane was compared. Conversions of the cyclohexane in the gas-phase reactor averaged between 1.1 and 8.7% per pass (8-s contact time) for the different film reactors. No detectable amount of carbon dioxide was generated. The selectivity for ketone formation ranged from 59 to 91%. The films produced by the flame aerosol method resulted in the highest yield per mass of catalyst used and showed no coking and deactivation for a total run time of approximately 10 h (2 cycles). The films were characterized by XRD, SEM, and TEM to establish the phase compositions, morphologies, and primary particle sizes, respectively. The flame aerosol coating resulted in the formation of high surface area aggregates consisting of nanometer-sized primary particles with high density (minimal internal porosity), whereas dip coating resulted in the formation of bulk crystallites that were more susceptible to coking and deactivation. The flame-aerosol-deposited titania particles had more surface sites per unit mass for photooxidation and minimal intraparticle diffusion limitations.

  1. Synthesizing alcohols and ketones by photoinduced catalytic partial oxidation of hydrocarbons in TiO{sub 2} film reactors prepared by three different methods

    SciTech Connect

    Sahle-Demessie, E.; Gonzalez, M.; Wang, Z.M.; Biswas, P.

    1999-09-01

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV-irradiated titanium dioxide films in the presence of molecular oxygen at low temperatures and atmospheric pressure was studied. Three different coating methodologies (dip coating using titanium isopropoxide and commercially available titanium dioxide particles, sol-gel process, and flame aerosol process) were used to deposit the titanium dioxide films, and their effectiveness in partial oxidation of cyclohexane was compared. Conversions of the cyclohexane in the gas-phase reactor averaged between 1.1 and 8.7% per pass (8-s contact time) for the different film reactors. No detectable amount of carbon dioxide was generated. The selectivity for ketone formation ranged from 59 to 91%. The films produced by the flame aerosol method resulted in the highest yield per mass of catalyst used and showed no coking and deactivation for a total run time of approximately 10 h (2 cycles). The films were characterized by XRD, SEM, and TEM to establish the phase compositions, morphologies, and primary particle sizes, respectively. The flame aerosol coating resulted in the formation of high surface area aggregates consisting of nanometer-sized primary particles with high density (minimal internal porosity), whereas dip coating resulted in the formation of bulk crystallites that were more susceptible to coking and deactivation. The flame-aerosol-deposited titania particles had more surface sites per unit mass for photooxidation and minimal intraparticle diffusion limitations.

  2. Decreased toxicity to terrestrial plants associated with a mixture of methyl tert-butyl ether and its metabolite tert-butyl alcohol.

    PubMed

    An, Youn-Joo; Lee, Woo-Mi

    2007-08-01

    The influence of the main fuel oxygenate methyl tert-butyl ether (MTBE) and its key metabolite, tert-butyl alcohol (TBA), on the growth of a plant seedling was studied separately and in combination. The test plants were mung bean (Phaseolus radiatus), cucumber (Cucumis sativus), wheat (Triticum aestivum), sorghum (Sorghum bicolor), kale (Brassica alboglabra), Chinese cabbage (Brassica campestris), and sweet corn (Zea mays). The growth of all the plants was adversely affected by TBA and MTBE. The 5-d median effective concentration (EC50) for the plants exposed to MTBE and TBA were in the range of 680 to 1,000 mg MTBE/kg soil (dry wt) and 1,200 to 3,500 mg TBA/kg soil (dry wt), respectively. The relative order of the sensitivity rankings is almost the same for MTBE and TBA. Methyl tert-butyl ether is more toxic than TBA to most of the test species. Based on the EC50 values, MTBE is approximately 1.5 to 3 times more potent than TBA. The sum of the toxic unit (TU) at 50% inhibition of the mixture (EC50mix) was calculated from the dose (TU-based)-response relationships using the trimmed Spearman-Karber method. The combined effect of MTBE + TBA on the plant growth was less than additive because the EC50mix values were greater than I TU. This phenomenon may be due to the competition of MTBE and TBA in terms of their intake by plants. The combined effects of MTBE and TBA should be taken into account to assess their risk in gasoline-contaminated sites.

  3. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  4. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  5. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  6. Combined toxicities of methyl tert-butyl ether and its metabolite tert-butyl alcohol on earthworms via different exposure routes.

    PubMed

    Lee, Woo-Mi; Yoon, Youngdae; An, Youn-Joo

    2015-06-01

    Methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) are among the major soil contaminants that threaten the health of soil ecosystems. Many MTBE-contaminated sites accumulate TBA, because TBA is the intermediate of MTBE biodegradation. To access the risk of MTBE and TBA in soil, we investigated the combined toxicities of MTBE and TBA using two earthworm species, Perionyx excavatus and Eisenia andrei, as well as the toxic effects via different exposure routes. The combined toxicity showed weak antagonistic effects (LC50mix values were slightly greater than 1.0), and sensitivity toward same pollutants differed in the two earthworm species. Moreover, the toxicity of MTBE and TBA was also affected by the exposure route; both filter paper and artificial soil tests showed that dermal-only exposure to MTBE had an even greater toxic effect than combined dermal and oral exposure. Thus, we suggest that diverse environmental factors including organic materials, the physicochemical properties of the contact media, and the exposure routes of the organism, should be taken into consideration when assessing the effects of pollutants on organisms in diverse environmental systems.

  7. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 002 TOXICOLOGICAL REVIEW OF METHYL ISOBUTYL KETONE ( CAS No . 108 - 10 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2003 U.S . Environmental Protection Agency Washington DC DISCLAIMER This document has been reviewed in accordan

  8. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  9. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  10. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  11. Chemoselective Deprotection of Triethylsilyl Ethers

    PubMed Central

    Chandra, Tilak; Broderick, William E.; Broderick, Joan B.

    2009-01-01

    An efficient and selective method was developed for the deprotection of triethylsilyl (TES) ethers using formic acid in methanol (5–10%) or in methylene chloride 2–5%) with excellent yields. TES ethers are selectively deprotected to the corresponding alcohols in high yields using formic acid in methanol under mild reaction conditions. Other hydroxyl protecting groups like t-butyldimethylsilyl (TBDMS) remain unaffected. PMID:20183570

  12. Biodegradation of gasoline ether oxygenates.

    PubMed

    Hyman, Michael

    2013-06-01

    Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments.

  13. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  14. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    PubMed

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. PMID:25345587

  15. Anti-inflammatory activity of p-coumaryl alcohol-γ-O-methyl ether is mediated through modulation of interferon-γ production in Th cells

    PubMed Central

    Yu, E-S; Min, H-J; Lee, K; Lee, M-S; Nam, J-W; Seo, E-K; Hong, J-H; Hwang, E-S

    2009-01-01

    Background and purpose: p-Coumaryl alcohol-γ-O-methyl ether (CAME) was isolated from Alpinia galanga and shown to contain a phenylpropanoid structure similar to p-coumaryl diacetate (CDA). CDA is known to have antioxidant and anti-inflammatory activity, but the biochemical activities of CAME are unknown. Inflammation is mediated by inflammatory cytokine production, in particular, by CD4+ T helper cells (Th cells), but it is unclear whether phenylpropanoids affect cytokine production in Th cells. In this study, we decided to investigate the functions of CAME and CDA in CD4+ Th cells. Experimental approach: Mouse CD4+ Th cells were isolated from C57BL6 mice and stimulated with an antibody against T cell receptors in the presence of phenylpropanoids. Cytokine production was measured by elisa and intracellular cytokine staining. Gene knockout mice and tetracycline-inducible transgenic mice were used to examine the molecular mechanisms of phenylpropanoids on modulation of cytokine production. Key results: CAME potently reduced intracellular reactive oxygen species in Th cells, as does CDA. However, although CDA was cytotoxic, CAME selectively and potently suppresses interferon-γ (IFNγ) production in CD4+ Th cells, without toxicity. This effect was caused by attenuated expression of the transcription factor, T-box protein expressed in T cells (T-bet), and T-bet was essential for CAME to inhibit IFNγ production in CD4+ Th cells. Conclusions and implications: CAME selectively and substantially suppresses IFNγ production in CD4+ Th cells by decreasing T-bet expression. As increased IFNγ production by CD4+ Th cells can mediate inflammatory immune responses, a selective IFNγ suppressor, such as CAME may be an effective, naturally occurring, compound for modulating inflammatory immune disorders. PMID:19226286

  16. Mechanism of the reactions of alcohols with o-benzynes.

    PubMed

    Willoughby, Patrick H; Niu, Dawen; Wang, Tao; Haj, Moriana K; Cramer, Christopher J; Hoye, Thomas R

    2014-10-01

    We have studied reactions of secondary and primary alcohols with benzynes generated by the hexadehydro-Diels-Alder (HDDA) reaction. These alcohols undergo competitive addition vs dihydrogen transfer to produce aryl ethers vs reduced benzenoid products, respectively. During the latter process, an equivalent amount of oxidized ketone (or aldehyde) is formed. Using deuterium labeling studies, we determined that (i) it is the carbinol C-H and adjacent O-H hydrogen atoms that are transferred during this process and (ii) the mechanism is consistent with a hydride-like transfer of the C-H. Substrates bearing an internal trap attached to the reactive, HDDA-derived benzyne intermediate were used to probe the kinetic order of the alcohol trapping agent in the H2-transfer as well as in the alcohol addition process. The H2-transfer reaction is first order in alcohol. Our results are suggestive of a concerted H2-transfer process, which is further supported by density functional theory (DFT) computational studies and results of a kinetic isotope effect experiment. In contrast, alcohol addition to the benzyne is second order in alcohol, a previously unrecognized phenomenon. Additional DFT studies were used to further probe the mechanistic aspects of the alcohol addition process.

  17. Mechanism of the Reactions of Alcohols with o-Benzynes

    PubMed Central

    2015-01-01

    We have studied reactions of secondary and primary alcohols with benzynes generated by the hexadehydro-Diels–Alder (HDDA) reaction. These alcohols undergo competitive addition vs dihydrogen transfer to produce aryl ethers vs reduced benzenoid products, respectively. During the latter process, an equivalent amount of oxidized ketone (or aldehyde) is formed. Using deuterium labeling studies, we determined that (i) it is the carbinol C–H and adjacent O–H hydrogen atoms that are transferred during this process and (ii) the mechanism is consistent with a hydride-like transfer of the C–H. Substrates bearing an internal trap attached to the reactive, HDDA-derived benzyne intermediate were used to probe the kinetic order of the alcohol trapping agent in the H2-transfer as well as in the alcohol addition process. The H2-transfer reaction is first order in alcohol. Our results are suggestive of a concerted H2-transfer process, which is further supported by density functional theory (DFT) computational studies and results of a kinetic isotope effect experiment. In contrast, alcohol addition to the benzyne is second order in alcohol, a previously unrecognized phenomenon. Additional DFT studies were used to further probe the mechanistic aspects of the alcohol addition process. PMID:25232890

  18. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.

    PubMed

    Adolph, H W; Maurer, P; Schneider-Bernlöhr, H; Sartorius, C; Zeppezauer, M

    1991-11-01

    1. The steady-state parameters kcat and Km and the rate constants of hydride transfer for the substrates isopropanol/acetone; (S)-2-butanol, (R)-2-butanol/2-butanone; (S)-2-pentanol, (R)-2-pentanol/2-pentanone; 3-pentanol/3-pentanone; (S)-2-octanol and (R)-2-octanol have been determined for the native Zn(II)-containing horse-liver alcohol dehydrogenase (LADH) and the specific active-site-substituted Co(II)LADH. 2. A combined evaluation of steady-state kinetic data and rate constants obtained from stopped-flow measurements, allowed the determination of all rate constants of the following ordered bi-bi mechanism: E in equilibrium E.NAD in equilibrium E.NAD.R1R2 CHOH in equilibrium E.NADH.R1R2CO in equilibrium E.NADH in equilibrium E. 3. On the basis of the different substrate specificities of LADH and yeast alcohol dehydrogenase (YADH), a procedure has been developed to evaluate the enantiomeric product composition of ketone reductions. 2-Butanone and 2-pentanone reductions revealed (S)-2-butanol (86%) and (S)-2-pentanol (95%) as the major products. 4. The observed enantioselectivity implies the existence of two productive ternary complexes; E.NADH.(pro-S) 2-butanone and E.NADH.(pro-R) 2-butanone. All rate constants describing the kinetic pathways of the system (S)-2-butanol, (R)-2-butanol/2-butanone have been determined. These data have been used to estimate the expected enantiomer product composition of 2-butanone reductions using apparent kcat/Km values for the two different ternary-complex configurations of 2-butanone. Additionally, these data have been used for computer simulations of the corresponding reaction cycles. Calculated, simulated and experimental data were found to be in good agreement. Thus, the system (S)-2-butanol, (R)-2-butanol/2-butanone is the first example of a LADH-catalyzed reaction for which the stereochemical course could be described in terms of rate constants of the underlying mechanism. 5. The effects of Co(II) substitution on the

  19. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts.

    PubMed

    Javidnia, K; Faghih-Mirzaei, E; Miri, R; Attarroshan, M; Zomorodian, K

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies.

  20. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts.

    PubMed

    Javidnia, K; Faghih-Mirzaei, E; Miri, R; Attarroshan, M; Zomorodian, K

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies. PMID:27168684

  1. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts

    PubMed Central

    Javidnia, K.; Faghih-Mirzaei, E.; Miri, R.; Attarroshan, M.; Zomorodian, K.

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies. PMID:27168684

  2. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China.

    PubMed

    Yang, Jianping; Wei, Qinzhi; Peng, Xiaochun; Peng, Xiaowu; Yuan, Jianhui; Hu, Dalin

    2016-01-01

    Methyl tertiary butyl ether (MTBE)-A well known gasoline additive substituting for lead alkyls-causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m³ and 286.64 ± 122.28 μg/m³ in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85-1.54; p > 0.05), 1.14 (95% CI: 0.81-1.32; p > 0.05), 1.52 (95% CI: 0.93-1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100-200 μg/m³, 200-300 μg/m³, and ≥300 μg/m³, respectively, as compared to the group (including men and women) ≤100 μg/m³. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of NAFLD

  3. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China.

    PubMed

    Yang, Jianping; Wei, Qinzhi; Peng, Xiaochun; Peng, Xiaowu; Yuan, Jianhui; Hu, Dalin

    2016-01-01

    Methyl tertiary butyl ether (MTBE)-A well known gasoline additive substituting for lead alkyls-causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m³ and 286.64 ± 122.28 μg/m³ in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85-1.54; p > 0.05), 1.14 (95% CI: 0.81-1.32; p > 0.05), 1.52 (95% CI: 0.93-1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100-200 μg/m³, 200-300 μg/m³, and ≥300 μg/m³, respectively, as compared to the group (including men and women) ≤100 μg/m³. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of NAFLD

  4. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China

    PubMed Central

    Yang, Jianping; Wei, Qinzhi; Peng, Xiaochun; Peng, Xiaowu; Yuan, Jianhui; Hu, Dalin

    2016-01-01

    Methyl tertiary butyl ether (MTBE)—A well known gasoline additive substituting for lead alkyls—causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m3 and 286.64 ± 122.28 μg/m3 in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85–1.54; p > 0.05), 1.14 (95% CI: 0.81–1.32; p > 0.05), 1.52 (95% CI: 0.93–1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100–200 μg/m3, 200–300 μg/m3, and ≥300 μg/m3, respectively, as compared to the group (including men and women) ≤100 μg/m3. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of

  5. Gold-catalyzed stereocontrolled oxacyclization/[4+2]-cycloaddition cascade of ketone-allene substrates.

    PubMed

    Teng, Tse-Min; Liu, Rai-Shung

    2010-07-14

    We report the first success on the Au-catalyzed tandem oxacyclization/[4+2]-cycloaddition cascade using ketone-allene substrates to give highly substituted oxacyclics with excellent stereocontrol. In contrast to oxo-alkyne substrates, the resulting cycloadducts are isolable and efficiently produced from a reasonable scope of enol ethers.

  6. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  7. Tetrabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tetrabromodiphenyl ether ; CASRN 40088 - 47 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  8. Pentabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Pentabromodiphenyl ether ; CASRN 32534 - 81 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  9. Hexabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Hexabromodiphenyl ether ; CASRN 36483 - 60 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  10. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  11. Octabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Octabromodiphenyl ether ; CASRN 32536 - 52 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  12. Tribromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tribromodiphenyl ether ; CASRN 49690 - 94 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  13. Nonabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Nonabromodiphenyl ether ; CASRN 63936 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  14. Ketone bodies as signaling metabolites

    PubMed Central

    Newman, John C.; Verdin, Eric

    2014-01-01

    Traditionally, the ketone body β-hydroxybutyrate (βOHB) has been looked upon as a carrier of energy from liver to peripheral tissues during fasting or exercise. However, βOHB also signals via extracellular receptors and acts as an endogenous inhibitor of histone deacetylases (HDACs). These recent findings support a model in which βOHB functions to link the environment, in this case the diet, and gene expression via chromatin modifications. Here, we review the regulation and functions of ketone bodies, the relationship between ketone bodies and calorie restriction, and the implications of HDAC inhibition by the ketone body βOHB in the modulation of metabolism, and diseases of aging. PMID:24140022

  15. Trimethylsilylethynyl ketones as surrogates for ethynyl ketones in the double Michael reaction.

    PubMed

    Holeman, Derrick S; Rasne, Ravindra M; Grossman, Robert B

    2002-05-01

    Trimethylsilylethynyl ketones can be desilylated in the presence of a tethered carbon diacid and induced to undergo a double Michael reaction in situ. The trimethylsilylethynyl ketones can serve as surrogates of ethynyl ketones that are difficult to prepare or isolate.

  16. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process. PMID:25251943

  17. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents.

    PubMed

    Wu, Jie; Yang, Xiaoqing; He, Zhi; Mao, Xianwen; Hatton, T Alan; Jamison, Timothy F

    2014-08-01

    We describe an efficient continuous flow synthesis of ketones from CO2 and organolithium or Grignard reagents that exhibits significant advantages over conventional batch conditions in suppressing undesired symmetric ketone and tertiary alcohol byproducts. We observed an unprecedented solvent-dependence of the organolithium reactivity, the key factor in governing selectivity during the flow process. A facile, telescoped three-step-one-flow process for the preparation of ketones in a modular fashion through the in-line generation of organometallic reagents is also established. PMID:24961600

  18. Role of guiding groups in cinchona-modified platinum for controlling the sense of enantiodifferentiation in the hydrogenation of ketones.

    PubMed

    Hoxha, Fatos; Königsmann, Lucia; Vargas, Angelo; Ferri, Davide; Mallat, Tamas; Baiker, Alfons

    2007-08-29

    Systematic structural variations of cinchona-type modifiers used in the platinum-catalyzed hydrogenation of ketones give insight into the adsorption mode of the modifier and its interaction with the substrate on the platinum surface under truly in situ conditions. The performance of a new modifier, O-(2-pyridyl)-cinchonidine, is compared to that of O-phenyl-cinchonidine and cinchonidine (CD). In the hydrogenation of ethyl pyruvate, ketopantolactone, and 2-methoxyacetophenone, CD gives the (R)-alcohol in excess. Introduction of the bulky O-phenyl group favors the (S)-enantiomer, whereas upon replacement of the phenyl by a 2-pyridyl group the (R)-alcohol is again the major product. This finding is particularly striking, because the two ether groups have virtually identical van der Waals volumes. A catalytic study including the nonlinear behavior of modifier mixtures, and attenuated total reflection infrared spectroscopy of the solid-liquid interface in the presence of hydrogen, revealed the adsorption mode and strength of the modifiers on Pt. Theoretical calculations of the modifier-substrate interactions offered a feasible explanation for the different role of the bulky ether groups: repulsion by the phenoxy and attraction by the 2-pyridoxy groups. Simulation of the interaction of o-pyridoxy-CD with ketopantolactone on a model Pt surface suggests that formation of two N-H-O-type H-bonds--involving the quinuclidine and pyridine N atoms, and the two keto-carbonyls in the substrate--controls the adsorption of the substrate during hydrogen uptake. This mechanistic study demonstrates the potential of insertion of suitable substituents into CD and their influence on adsorption and stereocontrol on the platinum surface.

  19. Metal-Catalysed Transfer Hydrogenation of Ketones.

    PubMed

    Štefane, Bogdan; Požgan, Franc

    2016-04-01

    We highlight recent developments of catalytic transfer hydrogenation of ketones promoted by transition metals, while placing it within its historical context. Since optically active secondary alcohols are important building blocks in fine chemicals synthesis, the focus of this review is devoted to chiral catalyst types which are capable of inducing high stereoselectivities. Ruthenium complexes still represent the largest part of the catalysts, but other metals (e.g. Fe) are rapidly penetrating this field. While homogeneous transfer hydrogenation catalysts in some cases approach enzymatic performance, the interest in heterogeneous catalysts is constantly growing because of their reusability. Despite excellent activity, selectivity and compatibility of metal complexes with a variety of functional groups, no universal catalysts exist. Development of future catalyst systems is directed towards reaching as high as possible activity with low catalyst loadings, using "greener" conditions, and being able to operate under mild conditions and in a highly selective manner for a broad range of substrates. PMID:27573143

  20. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  1. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  2. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOEpatents

    Crivello, J.V.

    1996-01-23

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} (V) wherein n is an integer from one to six and A is selected from cyclic ethers, polyether, and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  3. Production of liquid hydrocarbon and ether mixtures

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-05-16

    An integrated process is described for the production of ether-rich liquid fuels, comprising: (a) etherifying a mixture of excess lower alkyl alcohol and aliphatic hydrocarbon feedstock rich in C/sub 4/+isoalkenes in the presence of acid etherification catalyst whereby lower alkyl tertiary alkyl ethers are produced; (b) separating etherification effluent from step(a) to provide a gasoline stream rich in C/sub 5/+ ethers and a stream comprising unreacted alcohol and alkenes; (c) contacting the unreacted alcohol and alkenes with an acidic metallosilicate zeolite conversion catalyst under olefinic and oxygenates conversion conditions at a temperature of at least 200/sup 0/C (392/sup 0/F) whereby a conversion effluent stream rich in C/sub 4/+ isoalkenes is produced; (d) recycling at least a portion of the conversion effluent stream to step (a) for etherification.

  4. Chiral spiroaminoborate ester as a highly enantioselective and efficient catalyst for the borane reduction of furyl, thiophene, chroman and thiochroman containing ketones

    PubMed Central

    Stepanenko, Viatcheslav; De Jesús, Melvin; Correa, Wildeliz; Bermúdez, Lorianne; Vázquez, Cindybeth; Guzmán, Irisbel; Ortiz-Marciales, Margarita

    2009-01-01

    Prochiral heteroaryl ketones containing furan, thiophene, chroman and thiochroman moieties were successfully reduced in the presence of 1 – 10 mol % of spiroaminoborate ester 1 with different borane sources to afford non-racemic alcohols in up to 99% ee. In addition, modest enantioselectivity, around 80% ee, was achieved in the reduction of linear α,β-unsaturated heteroaryl ketones. PMID:20161579

  5. Asymmetric hydrogenation of aromatic ketones by new recyclable ionic tagged ferrocene-ruthenium catalyst system.

    PubMed

    Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun

    2015-05-01

    Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing.

  6. Use of experimental design for the purge-and-trap-gas chromatography-mass spectrometry determination of methyl tert.-butyl ether, tert.-butyl alcohol and BTEX in groundwater at trace level.

    PubMed

    Bianchi, F; Careri, M; Marengo, E; Musci, M

    2002-10-25

    An efficient method for the simultaneous determination of methyl tert.-butyl ether, tert.-butyl alcohol, benzene, toluene, ethylbenzene and xylene isomers in groundwater by purge-and-trap-gas chromatography-mass spectrometry was developed and validated. Experimental design was used to investigate the effects of temperature of extraction, time of extraction and percentage of salt added to the water samples. Regression models and desirability functions were applied to find the experimental conditions providing the highest global extraction yield. Validation was carried out in terms of limits of detection (LOD), limits of quantitation (LOQ), linearity and precision. LOD values ranging from 2.6 to 23 ng l(-1) were achieved, whereas linearity was statistically verified over two orders of magnitude for each compound. Precision was evaluated testing two concentration levels. Good results were obtained both in terms of intra-day repeatability and intermediate precision: RSD% lower than 4.5% at the highest concentration and lower than 13% at the lowest one were calculated for intra-day repeatability. A groundwater sample suspected of contamination by leaking underground petroleum storage tanks was analysed and some of the analytes were detected and quantitated.

  7. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  8. Highly functionalized tertiary-carbinols and carbinamines from the asymmetric γ-alkoxyallylboration of ketones and ketimines with the borabicyclodecanes.

    PubMed

    Muñoz-Hernández, Lorell; Seda, Luis A; Wang, Bo; Soderquist, John A

    2014-08-01

    The first asymmetric γ-alkoxyallylboration of representative ketones provides β-alkoxy tert-homoallylic alcohols 10 whose diastereoselectivities range from 99% syn (acetophenone) to 99% anti (pinacolone) both with high ee (>95%). This distribution is attributable to the c/t isomerization of the BBD reagents and the greater reactivity of 7 vs 1 and of aromatic vs alkyl ketones. A ketone-based direct synthesis of a fostriecin intermediate and the tert-amine 26 are reported, each with high selectivities.

  9. Asymmetric Propargylation of Ketones using Allenylboronates Catalyzed by Chiral Biphenols

    PubMed Central

    Barnett, David S.; Schaus, Scott E.

    2011-01-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3′-Br2-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60 – 98%) and high enantiomeric ratios (3:1 – 99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr > 86:14) and enantioselectivities (er > 92:8) under the catalytic conditions. PMID:21732609

  10. Asymmetric propargylation of ketones using allenylboronates catalyzed by chiral biphenols.

    PubMed

    Barnett, David S; Schaus, Scott E

    2011-08-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3'-Br(2)-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60-98%) and high enantiomeric ratios (3:1-99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr >86:14) and enantioselectivities (er >92:8) under the catalytic conditions. PMID:21732609

  11. Copper-catalyzed asymmetric hydrogenation of aryl and heteroaryl ketones.

    PubMed

    Krabbe, Scott W; Hatcher, Mark A; Bowman, Roy K; Mitchell, Mark B; McClure, Michael S; Johnson, Jeffrey S

    2013-09-01

    High throughput screening enabled the development of a Cu-based catalyst system for the asymmetric hydrogenation of prochiral aryl and heteroaryl ketones that operates at H2 pressures as low as 5 bar. A ligand combination of (R,S)-N-Me-3,5-xylyl-BoPhoz and tris(3,5-xylyl)phosphine provided benzylic alcohols in good yields and enantioselectivities. The electronic and steric characteristics of the ancillary triarylphosphine were important in determining both reactivity and selectivity. PMID:23980941

  12. Phase Behavior of Poly(vinylidene fluoride)-graft-poly(diethylene glycol methyl ether methacrylate) in Alcohol-Water System: Coexistence of LCST and UCST.

    PubMed

    Kuila, Atanu; Maity, Nabasmita; Chatterjee, Dhruba P; Nandi, Arun K

    2016-03-10

    A thermoresponsive polymer poly(diethylene glycol methyl ether methacrylate) (PMeO2MA) is grafted from poly(vinylidene fluoride) (PVDF) backbone by using a combined ATRC and ATRP technique with a high conversion (69%) of the monomer to produce the graft copolymer (PD). It is highly soluble polymer and its solution property is studied by varying polarity in pure solvents (water, methanol, isopropanol) and also in mixed solvents (water-methanol and water-isopropanol) by measuring the hydrodynamic size (Z-average) of the particles by dynamic light scattering (DLS). The variation of Z-average size with temperature of the PD solution (0.2%, w/v) indicates a lower critical solution temperature (LCST)-type phase transition (T(PL)) in aqueous medium, an upper critical solution temperature (UCST)-type phase transition (T(PU)) in isopropanol medium, and no such phase transition for methanol solution. In the mixed solvent (water + isopropanol) at 0-20% (v/v) isopropanol the TPL increases, whereas the T(PU) decreases at 92-100% with isopropanol content. For the mixture 20-90% isopropanol, PD particles having larger sizes (400-750 nm) exhibit neither any break in Z-average size-temperature plot nor any cloudiness, indicating their dispersed swelled state in the medium. In the methanol + water mixture with methanol content of 0-30%, T(PL) increases, and at 40-60% both UCST- and LCST-type phase separations occur simultaneously, but at 70-90% methanol the swelled state of the particles (size 250-375 nm) is noticed. For 50 vol % methanol by varying polymer concentration (0.07-0.2% w/v) we have drawn a quasibinary phase diagram that indicates an approximate inverted hourglass phase diagram where a swelled state exists between two single phase boundary produced from LCST- and UCST-type phase transitions. An attempt is made to understand the phase separation process by temperature-dependent (1)H NMR spectroscopy along with transmission electron microscopy. PMID:26859626

  13. Spiroborate ester-mediated asymmetric synthesis of beta-hydroxy ethers and its conversion to highly enantiopure beta-amino ethers.

    PubMed

    Huang, Kun; Ortiz-Marciales, Margarita; Correa, Wildeliz; Pomales, Edgardo; López, Xaira Y

    2009-06-01

    Borane-mediated reduction of aryl and alkyl ketones with alpha-aryl- and alpha-pyridyloxy groups affords beta-hydroxy ethers in high enantiomeric purity (up to 99% ee) and in good yield, using as catalyst 10 mol % of spiroborate ester 1 derived from (S)-diphenylprolinol. Representative beta-hydroxy ethers are successfully converted to beta-amino ethers, with minor epimerization, by phthalimide substitution under Mitsunobu's conditions followed by hydrazinolysis to obtain primary amino ethers or by imide reduction with borane to afford beta-2,3-dihydro-1H-isoindol ethers. Nonracemic Mexiletine and nAChR analogues with potential biological activity are also synthesized in excellent yield by mesylation of key beta-hydroxy pyridylethers and substitution with five-, six-, and seven-membered ring heterocyclic amines. PMID:19413288

  14. Separation of methyl t-butyl ether from close boiling C[sub 5] hydrocarbons by extractive distillation

    SciTech Connect

    Berg, L.

    1993-07-20

    A method for recovering methyl t-butyl ether from a mixture of methyl t-butyl ether and 1-pentene which comprises distilling a mixture of methyl t-butyl ether and 1-pentene in the presence of about one part of an extractive agent per part of methyl t-butyl ether -- 1-pentene mixture, recovering the 1-pentene as overhead product and obtaining the methyl t-butyl ether and the extractive agent from the still pot, wherein said extractive agent consists of one material selected from the group consisting of sulfolane, nitroethane, t-butanol, ethylene glycol diacetate, 1-methoxy-2-propanol acetate, methyl isoamyl ketone, ethylene glycol methyl ether, propylene glycol phenyl ether and diethyl malonate.

  15. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  16. Fueling Performance: Ketones Enter the Mix.

    PubMed

    Egan, Brendan; D'Agostino, Dominic P

    2016-09-13

    Ketone body metabolites serve as alternative energy substrates during prolonged fasting, calorie restriction, or reduced carbohydrate (CHO) availability. Using a ketone ester supplement, Cox et al. (2016) demonstrate that acute nutritional ketosis alters substrate utilization patterns during exercise, reduces lactate production, and improves time-trial performance in elite cyclists. PMID:27626197

  17. New aromatic activated dihalides and bisphenol monomers for the preparation of novel poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Wolfe, James F.

    1993-01-01

    The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.

  18. Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes

    PubMed Central

    2015-01-01

    A catalytic, enantioselective, Lewis base-catalyzed α-sulfenylation of silyl enol ethers has been developed. To avoid acidic hydrolysis of the silyl enol ether substrates, a sulfenylating agent that did not require additional Brønsted acid activation, namely N-phenylthiosaccharin, was developed. Three classes of Lewis bases—tertiary amines, sulfides, and selenophosphoramides—were identified as active catalysts for the α-sulfenylation reaction. Among a wide variety of chiral Lewis bases in all three classes, only chiral selenophosphoramides afforded α-phenylthio ketones in generally high yield and with good enantioselectivity. The selectivity of the reaction does not depend on the size of the silyl group but is highly sensitive to the double bond geometry and the bulk of the substituents on the double bond. The most selective substrates are those containing a geminal bulky substituent on the enoxysilane. Computational analysis revealed that the enantioselectivity arises from an intriguing interplay among sterically guided approach, distortion energy, and orbital interactions. PMID:25192220

  19. Cutaneous metabolism of glycol ethers.

    PubMed

    Lockley, David J; Howes, Douglas; Williams, Faith M

    2005-03-01

    The toxicity of glycol ethers is associated with their oxidation to the corresponding aldehyde and alkoxyacetic acid by cytosolic alcohol dehydrogenase (ADH; EC 1.1.1.1.) and aldehyde dehydrogenase (ALDH; 1.2.1.3). Dermal exposure to these compounds can result in localised or systemic toxicity including skin sensitisation and irritancy, reproductive, developmental and haemotological effects. It has previously been shown that skin has the capacity for local metabolism of applied chemicals. Therefore, there is a requirement to consider metabolism during dermal absorption of these compounds in risk assessment for humans. Cytosolic fractions were prepared from rat liver, and whole and dermatomed skin by differential centrifugation. Rat skin cytosolic fractions were also prepared following multiple dermal exposure to dexamethasone, ethanol or 2-butoxyethanol (2-BE). The rate of ethanol, 2-ethoxyethanol (2-EE), ethylene glycol, 2-phenoxyethanol (2-PE) and 2-BE conversion to alkoxyacetic acid by ADH/ALDH in these fractions was continuously monitored by UV spectrophotometry via the conversion of NAD+ to NADH at 340 nm. Rates of ADH oxidation by rat liver cytosol were greatest for ethanol followed by 2-EE >ethylene glycol >2-PE >2-BE. However, the order of metabolism changed to 2-BE >2-PE >ethylene glycol >2-EE >ethanol using whole and dermatomed rat skin cytosolic fractions, with approximately twice the specific activity in dermatomed skin cytosol relative to whole rat skin. This suggests that ADH and ALDH are localised in the epidermis that constitutes more of the protein in dermatomed skin than whole skin cytosol. Inhibition of ADH oxidation in rat liver cytosol by pyrazole was greatest for ethanol followed by 2-EE >ethylene glycol >2-PE >2-BE, but it only inhibited ethanol metabolism by 40% in skin cytosol. Disulfiram completely inhibited alcohol and glycol ether metabolism in the liver and skin cytosolic fractions. Although ADH1, ADH2 and ADH3 are expressed at the

  20. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.

    PubMed

    Hosseini, Abolfazl; Seidel, Daniel; Miska, Andreas; Schreiner, Peter R

    2015-06-01

    The fluoride-assisted ethynylation of ketones and aldehydes is described using commercially available calcium carbide with typically 5 mol % of TBAF·3H2O as the catalyst in DMSO. Activation of calcium carbide by fluoride is thought to generate an acetylide "ate"-complex that readily adds to carbonyl groups. Aliphatic aldehydes and ketones generally provide high yields, whereas aromatic carbonyls afford propargylic alcohols with moderate to good yields. The use of calcium carbide as a safe acetylide ion source along with economic amounts of TBAF·3H2O make this procedure a cheap and operationally simple method for the preparation of propargylic alcohols.

  1. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1996-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  2. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction.

    PubMed

    Rulli, Giuseppe; Heidlindemann, Marcel; Berkessel, Albrecht; Hummel, Werner; Gröger, Harald

    2013-11-01

    The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with "free" enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor.

  3. Enzymatic Chemoselective Aldehyde-Ketone Cross-Couplings through the Polarity Reversal of Methylacetoin.

    PubMed

    Bernacchia, Giovanni; Bortolini, Olga; De Bastiani, Morena; Lerin, Lindomar Alberto; Loschonsky, Sabrina; Massi, Alessandro; Müller, Michael; Giovannini, Pier Paolo

    2015-06-01

    The thiamine diphosphate (ThDP) dependent enzyme acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The recombinant enzyme shared close similarities with the acetylacetoin synthase (AAS) partially purified from Bacillus licheniformis suggesting that they could be the same enzyme. The product scope of the recombinant Ao:DCPIP OR was expanded to chiral tertiary α-hydroxy ketones through the rare aldehyde-ketone cross-carboligation reaction. Unprecedented is the use of methylacetoin as the acetyl anion donor in combination with a range of strongly to weakly activated ketones. In some cases, Ao:DCPIP OR produced the desired tertiary alcohols with stereochemistry opposite to that obtained with other ThDP-dependent enzymes. The combination of methylacetoin as acyl anion synthon and novel ThDP-dependent enzymes considerably expands the available range of C-C bond formations in asymmetric synthesis. PMID:25914187

  4. Crown ethers in graphene

    SciTech Connect

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  5. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  6. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from

  7. A novel C-C single bond formation by use of ketones, alkylmagnesium bromide, and low-valent vanadium in the presence of a catalytic amount of molecular oxygen

    SciTech Connect

    Kataoka, Yasutaka; Akiyama, Hiroaki; Makihira, Isamu; Tani, Kazuhide

    1996-09-06

    Reductive coupling of ketones mediated by MeMgBr, vanadium, and O{sub 2} is described. Multiple examples of this reaction are discussed. Both a C-C bond formation product and an alcohol product are formed.

  8. ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...

  9. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  10. Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and a hydrogen donor.

    PubMed

    Castellanos-Blanco, Nahury; Arévalo, Alma; García, Juventino J

    2016-09-14

    We report a nickel(0)-catalyzed direct transfer hydrogenation (TH) of a variety of alkyl-aryl, diaryl, and aliphatic ketones with ethanol. This protocol implies a reaction in which a primary alcohol serves as a hydrogen atom source and solvent in a one-pot reaction without any added base. The catalytic activity of the nickel complex [(dcype)Ni(COD)] (e) (dcype: 1,2-bis(dicyclohexyl-phosphine)ethane, COD: 1,5-cyclooctadiene), towards transfer hydrogenation (TH) of carbonyl compounds using ethanol as the hydrogen donor was assessed using a broad scope of ketones, giving excellent results (up to 99% yield) compared to other homogeneous phosphine-nickel catalysts. Control experiments and a mercury poisoning experiment support a homogeneous catalytic system; the yield of the secondary alcohols formed in the TH reaction was monitored by gas chromatography (GC) and NMR spectroscopy. PMID:27511528

  11. Disposition of acetone, methyl ethyl ketone and cyclohexanone in acute poisoning.

    PubMed

    Sakata, M; Kikuchi, J; Haga, M; Ishiyama, N; Maeda, T; Ise, T; Hikita, N

    1989-01-01

    A case of coma due to the drinking of a liquid cement for polyvinyl chloride resin, containing acetone, methyl ethyl ketone, cyclohexanone and polyvinyl chloride is described. The patient also simultaneously ingested the alcoholic beverage, sake. After gastric lavage, plasma exchanges and direct hemoperfusions, the patient recovered. The concentrations of these chemicals in plasma and urine were analyzed at various time intervals to estimate the clearance. The elimination half lives for acetone and methyl ethyl ketone were 18 hours and 10 hours, respectively. Although cyclohexanone made up the largest component in the solvents, the blood level was extremely low and a large amount of cyclohexanol, a metabolite of cyclohexanone was detected in the blood and urine. The glucuronide metabolite of cyclohexanol was also estimated after the hydrolysis with beta-glucuronidase. Since the conversion of cyclohexanone to cyclohexanol is known to be catalyzed by alcohol dehydrogenase, possible interactions between sake ingestion and cyclohexanone metabolism is proposed.

  12. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    PubMed

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  13. Catalytic oxidation of dimethyl ether

    DOEpatents

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  14. Microbial production of natural raspberry ketone.

    PubMed

    Beekwilder, Jules; van der Meer, Ingrid M; Sibbesen, Ole; Broekgaarden, Mans; Qvist, Ingmar; Mikkelsen, Joern D; Hall, Robert D

    2007-10-01

    Raspberry ketone is an important compound for the flavour industry. It is frequently used in products such as soft drinks, sweets, puddings and ice creams. The compound can be produced by organic synthesis. Demand for "natural" raspberry ketone is growing considerably. However, this product is extremely expensive. Consequently, there is a remaining desire to better understand how raspberry ketone is synthesized in vivo, and which genes and enzymes are involved. With this information we will then be in a better position to design alternative production strategies such as microbial fermentation. This article focuses on the identification and application of genes potentially linked to raspberry ketone synthesis. We have isolated candidate genes from both raspberry and other plants, and these have been introduced into bacterial and yeast expression systems. Conditions have been determined that result in significant levels of raspberry ketone, up to 5 mg/L. These results therefore lay a strong foundation for a potentially renewable source of "natural" flavour compounds making use of plant genes.

  15. Stereoselective Formation of Fully Substituted Ketone Enolates.

    PubMed

    Haimov, Elvira; Nairoukh, Zackaria; Shterenberg, Alexander; Berkovitz, Tiran; Jamison, Timothy F; Marek, Ilan

    2016-04-25

    The application of stereochemically defined acyclic fully substituted enolates of ketones to the enantioselective synthesis of quaternary carbon stereocenters would be highly valuable. Herein, we describe an approach leading to the formation of several new stereogenic centers through a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined α,α-disubstituted enolates of ketone as a single stereoisomer. This approach could produce a series of aldol and Mannich products from enol carbamate with excellent diastereomeric ratios. PMID:27027778

  16. Stereoselective Formation of Fully Substituted Ketone Enolates.

    PubMed

    Haimov, Elvira; Nairoukh, Zackaria; Shterenberg, Alexander; Berkovitz, Tiran; Jamison, Timothy F; Marek, Ilan

    2016-04-25

    The application of stereochemically defined acyclic fully substituted enolates of ketones to the enantioselective synthesis of quaternary carbon stereocenters would be highly valuable. Herein, we describe an approach leading to the formation of several new stereogenic centers through a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined α,α-disubstituted enolates of ketone as a single stereoisomer. This approach could produce a series of aldol and Mannich products from enol carbamate with excellent diastereomeric ratios.

  17. The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2012-12-01

    Studies of hydrothermal reactions involving organic compounds suggest complex, possibly reversible, reaction pathways that link functional groups from reduced alkanes all the way to oxidized carboxylic acids. Ketones represent a critical functional group because they occupy a central position in the reaction pathway, at the point where Csbnd C bond cleavage is required for the formation of the more oxidized carboxylic acids. The mechanisms for the critical bond cleavage reactions in ketones, and how they compete with other reactions are the focus of this experimental study. We studied a model ketone, dibenzylketone (DBK), in H2O at 300 °C and 70 MPa for up to 528 h. Product analysis was performed as a function of time at low DBK conversions to reveal the primary reaction pathways. Reversible interconversion between ketone, alcohol, alkene and alkane functional groups is observed in addition to formation of radical coupling products derived from irreversible Csbnd C and Csbnd H homolytic bond cleavage. The product distributions are time-dependent but the bond cleavage products dominate. The major products that accumulate at longer reaction times are toluene and larger, dehydrogenated structures that are initially formed by radical coupling. The hydrogen atoms generated by dehydrogenation of the coupling products are predominantly consumed in the formation of toluene. Even though bond cleavage products dominate, no carboxylic acids were observed on the timescale of the reactions under the chosen experimental conditions.

  18. MEASUREMENT OF EXHALED BREATH AND VENOUS BLOOD TO DEVELOP A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURE TO METHYL TERTIARY-BUTYL ETHER AND THE PRODUCTION OF THE BIOMARKER TERTIARY-BUTYL ALCOHOL

    EPA Science Inventory

    Methyl tertiary-butyl ether (MTBE) is a common fuel additive used to increase the availability of oxygen in gasoline to reduce winter-time carbon monoxide emissions from automobiles. Also, MTBE boosts gasoline "octane" rating and, as such, allows reduction of benzene...

  19. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  20. Vapor pressures and gas-film coefficients for ketones

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Comparison of handbook vapor pressures for seven ketones with more recent literature data showed large differences for four of the ketones. Gas-film coefficients for the volatilization of these ketones from water determined by two different methods were in reasonable agreement. ?? 1987.

  1. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  2. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  3. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  4. Stereoselective borylative ketone-diene coupling.

    PubMed

    Cho, Hee Yeon; Yu, Zhiyong; Morken, James P

    2011-10-01

    In the presence of catalytic Ni(cod)(2) and P(t-Bu)(3), ketones, dienes, and B(2)(pin)(2) undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product.

  5. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones.

    PubMed

    Rodríguez, Cristina; Borzęcka, Wioleta; Sattler, Johann H; Kroutil, Wolfgang; Lavandera, Iván; Gotor, Vicente

    2014-01-28

    Lactobacillus brevis ADH (LBADH) is an alcohol dehydrogenase that is commonly employed to reduce alkyl or aryl ketones usually bearing a methyl, an ethyl or a chloromethyl as a small ketone substituent to the corresponding (R)-alcohols. Herein we have tested a series of 24 acetophenone derivatives differing in their size and electronic properties for their reduction employing LBADH. After plotting the relative activity against the measured substrate volumes we observed that apart from the substrate size other effects must be responsible for the activity obtained. Compared to acetophenone (100% relative activity), other small substrates such as propiophenone, α,α,α-trifluoroacetophenone, α-hydroxyacetophenone, and benzoylacetonitrile had relative activities lower than 30%, while medium-sized ketones such as α-bromo-, α,α-dichloro-, and α,α-dibromoacetophenone presented relative activities between 70% and 550%. Moreover, the comparison between the enzymatic activity and the obtained final conversions using an excess or just 2.5 equiv. of the hydrogen donor 2-propanol, denoted again deviations between them. These data supported that these hydrogen transfer (HT) transformations are mainly thermodynamically controlled. For instance, bulky α-halogenated derivatives could be quantitatively reduced by LBADH even employing 2.5 equiv. of 2-propanol independently of their kinetic values. Finally, we found good correlations between the IR absorption band of the carbonyl groups and the degrees of conversion obtained in these HT processes, making this simple method a convenient tool to predict the success of these transformations.

  6. Electron transfer in reactions of ketones with organolithium reagents. A carbon-14 kinetic isotope effect probe

    SciTech Connect

    Yamataka, H.; Fujimura, N.; Kawafuji, Y.; Hanafusa, T.

    1987-07-08

    Kinetic isotope effects have been determined for reactions of ketones labeled with carbon-14 at the carbonyl carbon with MeLi and Me/sub 2/CuLi in diethyl ether at 0/sup 0/C. Observed isotope effects were as follows: (C/sub 6/H/sub 5/)/sub 2/C double bonds O + MeLi, /sup 12/k//sup 14/k = 1.000 +/- 0.002; (C/sub 6/H/sub 5/)/sub 2/C double bonds O + Me/sub 2/CuLi, 1.029 +/- 0.005; 2,4,6-Me/sub 3/C/sub 6/H/sub 2/COC/sub 6/H/sub 5/ + MeLi, 1.023 +/- 0.004. The relative reactivities of ortho-, meta-, and para-substituted benzophenones with these reagents were also determined by the competition experiments. These results are consistent with an electron-transfer step which is followed by a carbon-carbon bond-forming step that is or is not rate determining depending on the structure of ketones and reagents. The reaction of benzophenone with MeLi proceeds via rate-determining electron transfer; the change in nucleophile from MeLi to Me/sub 2/CuLi shifts the rate-determining step from electron transfer to recombination; the change in ketone from benzophenone to 2,4,6-trimethylbenzophenone also shifts the rate-determining step from electron transfer to recombination because the latter step becomes slower for the more hindered ketone. The extent of the geometrical change of the substrate at the electron-transfer transition state of the reaction of benzophenone with MeLi was estimated to be small on the basis of the magnitude of the KIE and the rho value of the Hammett correlation.

  7. CONVERSION OF DIMETHYL ETHER-BORON TRIFLUORIDE COMPLEX TO POTASSIUM FLUOBORATE

    DOEpatents

    Eberle, A.R.

    1957-06-18

    A method of preparing KBF/sub 4/ from the dimethyl ether complex of BF/sub 3/ is given. This may be accomplished by introducing the dimethyl ether complex of BF/sub 3/ into an aqueous solution of KF and alcohol, expelling the ether liberated from the complex by heating or stirring and recovering the KBF/sub 4/ so formed. The KBF/sub 4/ is then filtered from the alcohol-water solution, which may be recycled, to reduce the loss of KBF/sub 4/ which is not recovered by filtration.

  8. Conversion of dimethyl ether--boron trifluoride complex to potassium fluoborate

    DOEpatents

    Eberle, A.R.

    1957-06-18

    A method of preparing KBF/sub 4/ from the dimethyl ether complex of BF/sub 3/ is given. This may be accomplished by introducing the dimethyl ether complex of BF/sub 3/ into an aqueous solution of KF and alcohol, expelling the ether liberated from the complex by heating or stirring and recovering the KBF/sub 4/ so formed. The KBF/sub 4/ is then filtered from the alcohol-water solution, which may be recycled, to reduce the loss of KBF/sub 4/ which is not recovered by filtration.

  9. 1,4-Addition of bis(iodozincio)methane to α,β-unsaturated ketones: chemical and theoretical/computational studies.

    PubMed

    Sada, Mutsumi; Furuyama, Taniyuki; Komagawa, Shinsuke; Uchiyama, Masanobu; Matsubara, Seijiro

    2010-09-10

    1,4-Addition of bis(iodozincio)methane to simple α,β-unsaturated ketones does not proceed well; the reaction is slightly endothermic according to DFT calculations. In the presence of chlorotrimethylsilane, the reaction proceeded efficiently to afford a silyl enol ether of β-zinciomethyl ketone. The C--Zn bond of the silyl enol ether could be used in a cross-coupling reaction to form another C--C bond in a one-pot reaction. In contrast, 1,4-addition of the dizinc reagent to enones carrying an acyloxy group proceeded very efficiently without any additive. In this case, the product was a 1,3-diketone, which was generated in a novel tandem reaction. A theoretical/computational study indicates that the whole reaction pathway is exothermic, and that two zinc atoms of bis(iodozincio)methane accelerate each step cooperatively as effective Lewis acids. PMID:20645344

  10. Bifunctional Ligand-Assisted Catalytic Ketone α-Alkenylation with Internal Alkynes: Controlled Synthesis of Enones and Mechanistic Studies.

    PubMed

    Mo, Fanyang; Lim, Hee Nam; Dong, Guangbin

    2015-12-16

    Here, we describe a detailed study of the rhodium(I)-catalyzed, bifunctional ligand-assisted ketone α-C-H alkenylation using internal alkynes. Through controlling the reaction conditions, conjugated enamines, α,β- or β,γ-unsaturated ketones, can be selectively accessed. Both aromatic and aliphatic alkynes can be employed as coupling partners. The reaction conditions also tolerate a broad range of functional groups, including carboxylic esters, malonates, secondary amides, thioethers, and free alcohols. In addition, excellent E-selectivity was observed for the tetra-substituted alkene when forming the α,β-unsaturated ketone products. The mechanism of this transformation was explored through control experiments, kinetic monitoring, synthesizing the rhodium-hydride intermediates and their reactions with alkynes, deuterium-labeling experiments, and identification of the resting states of the catalyst. PMID:26565679

  11. Mechanism and an Improved Asymmetric Allylboration of Ketones Catalyzed by Chiral Biphenols**

    PubMed Central

    Barnett, David S.; Moquist, Philip N.; Schaus, Scott E.

    2010-01-01

    A mechanistic study of the enantioselective asymmetric allylboration of ketones with allyldiisopropoxyborane catalyzed by chiral biphenols resulted in the development of improved reaction process. In a ligand exchange process involving the chiral biphenol and the boronate to liberate isopropanol as the key step, addition of isopropanol to the reaction was found to increase the overall rate and enantioselectivity. In the design of an improved reaction, a boronate possessing a tethered alcohol would more readily liberate catalyst at the end of a reaction. The use of allyldioxaborinane with 2 mol% (S)-3,3′-Br2-BINOL and 2 equivalents t-BuOH relative to ketone at room temperature results in high yields and enantioselectivities. Insight gathered from the mechanistic investigation resulted in the development of a reaction process that uses less catalyst (from 15 mol% to 2 mol%) at warmer temperatures (from -35 °C to room temperature). PMID:19816902

  12. Chirally functionalized SBA-15 as efficient heterogeneous catalyst for asymmetric ketone reduction.

    PubMed

    Balakrishnan, Umesh; Velmathi, Sivan

    2013-04-01

    Chiral amine catalyst was synthesized using (1R, 2S)-(-)-norephedrine and 5-chlorosalicylaldehyde by reductive amination. The structure of the catalyst was confirmed using 1H-NMR and 13C-NMR spectroscopic method. The catalyst was immobilized onto SBA-15 via covalent bonding using 3-chloropropyltrimethoxysilane as a reactive surface modifier under reflux condition using toluene as a solvent. The supported chiral catalyst was characterized using various physico-chemical techniques like XRD, SEM, N2 adsorption isotherm, FTIR and UV-DRS to study the morphology, pore dimension, functional group analysis and catalyst loading in the mesoporous material. The immobilized catalyst was studied for prochiral ketone reduction using 30 mol% of chiral catalyst and boranedimethylsulphide as a stoichiometric reductant in toluene under inert atmosphere for 30 minutes. Secondary alcohols were formed up to 79% enantiomeric excess for selective ketones. Catalyst was recycled from the reaction mixture and used for further reaction without much effect on the catalytic conversion.

  13. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  14. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  15. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  16. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  17. p-Bromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p - Bromodiphenyl ether ; CASRN 101 - 55 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  18. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  19. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  20. Synthesis of 1-octanol and 1,1-dioctyl ether from biomass-derived platform chemicals.

    PubMed

    Julis, Jennifer; Leitner, Walter

    2012-08-20

    The happy medium: A new catalytic pathway for the synthesis of the linear primary C(8) alcohol products 1-octanol and dioctyl ether from furfural and acetone has been developed using retrosynthetic analysis. This opens a general strategy for the synthesis of medium-chain-length alcohols from carbohydrate feedstock. PMID:22778056

  1. The Oxidation of Secondary Alcohols with Cr (VI).

    ERIC Educational Resources Information Center

    Mason, Timothy J.

    1982-01-01

    Describes experiments in which acid chromate oxidation rates of four secondary alcohols are determined and related to the differences in strain relief involved in the conversion of the alcohols to their respective ketone products. All four oxidations can be completed in a 4-hour laboratory period. (Author/JN)

  2. Ether and hydrocarbon production

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-03-19

    This patent describes a continuous process for converting lower aliphatic alkanol and olefinic hydrocarbon to alkyl tertiary-alkyl ethers and C{sub 5} + gasoline boiling range hydrocarbons. It comprises contacting alkanol and a light olefinic hydrocarbon stream rich in isobutylene and other C{sub 4} isomeric hydrocarbons under iso-olefin etherification conditions in an etherification reaction zone containing acid etherification catalyst; separating etherification effluent to recover a light stream comprising unreacted alkanol and light olefinic hydrocarbon and a liquid product stream containing alkyl tertiary-butyl ether; and contacting the light stream with acidic, medium pore metallosilicate catalyst under alkanol and hydrocarbon conversion conditions whereby C{sub 5} + gasoline boiling range hydrocarbons are produced.

  3. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX5-[3,3] Rearrangement

    PubMed Central

    Fleming, Fraser F.; Ravikumar, P. C.; Yao, Lihua

    2009-01-01

    Sequential addition of vinylmagnesium bromide and NbCl5, or NbBr5, to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide. PMID:20046989

  4. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  5. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  6. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  7. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    PubMed

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes.

  8. Rheology and mechanics of polyether(ether)ketone - Polyetherimide blends for composites in aeronautics

    NASA Astrophysics Data System (ADS)

    Rosa, Mattia; Grassia, Luigi; D'Amore, Alberto; Carotenuto, Claudia; Minale, Mario

    2016-05-01

    In the present work rheological and mechanical properties of PEEK-PEI blends were investigated. Besides the pure components, blends with PEI concentration ranging from 10% to 90% in mass were considered. Oscillatory experiments in controlled atmosphere were conducted at different frequencies and temperatures. The frequency responses at different temperatures allowed using the TTS principle to reconstruct the master curves. All systems showed a shear thinning behavior and a flux index increasing with the percentage of PEI. The zero-shear viscosity was computed with the implementation of the Cross model and showed a decreasing behavior with the percentage of PEI. The relaxation time estimated from the crossover value of storage and loss moduli didn't change significantly with blend composition, suggesting the non-sensibility of the elasticity of the system. Lastly, tensile tests were executed to investigate the dependence of Young modulus in the different blends.

  9. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    PubMed

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. PMID:27286776

  10. Palladium-Catalyzed Benzylic Arylation of Pyridylmethyl Silyl Ethers: One-Pot Synthesis of Aryl(pyridyl)methanols.

    PubMed

    Rivero, Alexandra R; Kim, Byeong-Seon; Walsh, Patrick J

    2016-04-01

    An efficient palladium-catalyzed direct arylation of pyridylmethyl silyl ethers with aryl bromides is described. A Pd(OAc)2/NIXANTPHOS-based catalyst provides aryl(pyridyl)methyl alcohol derivatives in good to excellent yields (33 examples, 57-100% yield). This protocol is compatible with different silyl ether protecting groups, affording either the protected or the free alcohols in an effective one-pot process. The scalability of the reaction is demonstrated. PMID:27004592

  11. Uncatalyzed Meerwein-Ponndorf-Oppenauer-Verley reduction of aldehydes and ketones under supercritical conditions.

    PubMed

    Sominsky, Lena; Rozental, Esther; Gottlieb, Hugo; Gedanken, Aharon; Hoz, Shmaryahu

    2004-03-01

    When a solution of a carbonyl compound in alcohol (primary or secondary) is heated to ca. 300 degrees C, a disproportionation reaction, in which a carbonyl compound is reduced to the corresponding alcohol and the alcohol is oxidized to the corresponding ketone, takes place. This uncatalyzed variation of the Meerwein-Ponndorf-Oppenauer-Verley reaction gives, in certain cases, e.g., reduction of acetophenone or benzaldehyde by i-PrOH, almost quantitative yields. Yields are higher with secondary alcohols such as i-PrOH than with a primary alcohol such as EtOH. The reactions were also performed in a flow system by passing at a slow rate the same solutions through a glass or a metal coil heated to elevated temperatures. Ab initio calculations performed at the B3LYP/6-31G* level show that thermodynamically i-PrOH is a more potent reducing agent than EtOH by ca. 4 kcal/mol. The computations also show that in cases of aromatic carbonyl compounds, part of the deriving force is obtained from the entropy change of the reaction. The major contributor to the high yield, however, is the excess alcohol used, which shifts the equilibrium to the right. Calculated entropy of activation as well as isotopic H/D labeling suggest a cyclic transition state. PMID:14987002

  12. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  13. Intercalation of cyclic ketones into vanadyl phosphate

    SciTech Connect

    Zima, Vitezslav . E-mail: vitezslav.zima@upce.cz; Melanova, Klara; Benes, Ludvik; Trchova, Miroslava; Dybal, Jiri

    2005-01-15

    Intercalation compounds of vanadyl phosphate with cyclic ketones (cyclopentanone, cyclohexanone, 4-methylcyclohexanone, and 1,4-cyclohexanedione) were prepared from corresponding propanol or ethanol intercalates by a molecular exchange. The intercalates prepared were characterized using powder X-ray diffraction and thermogravimetric analysis. The intercalates are stable in dry environment and decompose slowly in humid air. Infrared and Raman spectra indicate that carbonyl oxygens of the guest molecules are coordinated to the vanadium atoms of the host layers. The local structure and interactions in the cyclopentanone intercalate have been suggested on the basis of quantum chemical calculations.

  14. The rotational spectrum of diethyl ketone.

    PubMed

    Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2011-07-11

    We report on the rotational spectrum of diethyl ketone, C(2)H(5)-C(=O)-C(2)H(5), as observed by Fourier transform microwave spectroscopy under pulsed molecular beam conditions. Almost all lines were split into narrow quartets in a range from 10 kHz up to 2 MHz, arising from the hindered rotation of the two equivalent terminal methyl groups. In a global analysis using the xiam code, which is based on the rho axis method, three rotational constants, five quartic centrifugal distortion constants, the torsional barrier of the terminal methyl groups, and the angles between the principal inertial axes and the internal rotor axes were determined. The methyl torsional barrier was found to be 771.93(27) cm(-1). In total, 199 lines were fitted to a standard deviation of 3.5 kHz. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces describing the rotation of both ethyl groups against the C=O frame were calculated with the MP2 method as well as the DFT method using the 6-311++G(d,p) basis set and the B3LYP functional, respectively. Combining the experimental and theoretical results, an effective structure with C(2v) symmetry was deduced for the diethyl ketone molecule. Moreover, the torsional barrier of the methyl groups was determined by ab initio methods.

  15. Inborn errors of ketone body utilization.

    PubMed

    Hori, Tomohiro; Yamaguchi, Seiji; Shinkaku, Haruo; Horikawa, Reiko; Shigematsu, Yosuke; Takayanagi, Masaki; Fukao, Toshiyuki

    2015-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency and mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase or T2) deficiency are classified as autosomal recessive disorders of ketone body utilization characterized by intermittent ketoacidosis. Patients with mutations retaining no residual activity on analysis of expression of mutant cDNA are designated as severe genotype, and patients with at least one mutation retaining significant residual activity, as mild genotype. Permanent ketosis is a pathognomonic characteristic of SCOT-deficient patients with severe genotype. Patients with mild genotype, however, may not have permanent ketosis, although they may develop severe ketoacidotic episodes similar to patients with severe genotype. Permanent ketosis has not been reported in T2 deficiency. In T2-deficient patients with severe genotype, biochemical diagnosis is done on urinary organic acid analysis and blood acylcarnitine analysis to observe characteristic findings during both ketoacidosis and non-episodic conditions. In Japan, however, it was found that T2-deficient patients with mild genotype are common, and typical profiles were not identified on these analyses. Based on a clinical study of ketone body utilization disorders both in Japan and worldwide, we have developed guidelines for disease diagnosis and treatment. These diseases are treatable by avoiding fasting and by providing early infusion of glucose, which enable the patients to grow without sequelae. PMID:25559898

  16. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  17. Demonstration of Redox Potential of Metschnikowia koreensis for Stereoinversion of Secondary Alcohols/1,2-Diols

    PubMed Central

    Meena, Vachan Singh; Banoth, Linga; Banerjee, U. C.

    2014-01-01

    The present work reports the Metschnikowia koreensis-catalyzed one-pot deracemization of secondary alcohols/1,2-diols and their derivatives with in vivo cofactor regeneration. Reaction is stereoselective and proceeds with sequential oxidation of (R)-secondary alcohols to the corresponding ketones and the reduction of the ketones to (S)-secondary alcohols. Method is applicable to a repertoire of racemic aryl secondary alcohols and 1,2-diols establishing a wide range of substrate specificity of M. koreensis. This ecofriendly method afforded the product in high yield (88%) and excellent optical purity (>98% ee), minimizing the requirement of multistep reaction and expensive cofactor. PMID:24592389

  18. Novel syntheses of 1-propenyl ethers and dialkylphenacylsulfonium salts and their applications in cationic photopolymerization

    NASA Astrophysics Data System (ADS)

    Kong, Shengqian

    2000-10-01

    Two investigations in the area of photoinduced cationic polymerization have been conducted. These research efforts were intended to provide efficient, low cost preparation of cationically polymerizable monomers and cationic photoinitiators and to evaluate these compounds in photopolymerization applications. In the first project, a new, convenient method for the isomerization of allyl ethers and related compounds has been developed. Alkyl and aryl allyl ethers can be smoothly isomerized to the desired 1-propenyl ethers by refluxing in a basic ethanol/water solution containing pentacarbonyliron as a catalyst. This method was combined with Williamson ether synthesis to make 1-propenyl ether compounds in a one-pot fashion. Further, cationic polymerizations of aryl 1-propenyl ethers were studied using diaryliodonium salt photoinitiators. These compounds fail to undergo efficient cationic polymerization due to chain-transfer by Friedel-Crafts alkylation. The second project involves the development of a new, simplified method for the synthesis of dialkylphenacylsulfonium salt cationic photoinitiators. This novel method was successfully used for the preparation of dialkylphenacylsulfonium salts bearing a wide variation in the length and structure of the alkyl chains as well as the light absorbing aryl ketone chromophores and the anions. Photopolymerization studies revealed that these photoinitiators are capable of initiating the cationic polymerization of a wide variety of epoxy and vinyl ether monomers directly on irradiation with UV light or by using visible light irradiation in the presence of photosensitizers. Kinetic studies show that they compare favorably with respect to their reactivity to diaryliodonium and triarylsulfonium salt photoinitiators in the polymerization of epoxides. The photopolymerizations of vinyl and 1-propenyl ethers display a marked induction period consistent with termination of the growing chains by reaction with the photogenerated ylides

  19. IRIS TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (2003 Final)

    EPA Science Inventory

    EPA is announcing the release of the final report, "Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS)". The updated Summary for Methyl Ethyl Ketone and accompanying Quickview have also been added to the IRIS Database.

  20. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  1. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  2. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  3. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  4. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  5. Ether production with multi-stage reaction of olefins

    SciTech Connect

    Harandi, M.N.

    1993-07-13

    A multistage process is described for etherifying a mixed C[sub 4] + olefinic hydrocarbon feedstock containing diene, isoalkene and nalkene, comprising: contacting the olefinic feedstock and aliphatic alcohol in a first reaction stage reaction zone under etherification conditions with acid etherification catalyst to convert a major amount of the isoalkene to C[sub 5] + tertiary-alkyl ether; recovering a reactant effluent from the first stage containing tertiary-alkyl ether product, unreacted alcohol and unreacted olefin comprising n-alkene and diene; separating an ether-rich C[sub 5] + liquid product stream from the first stage effluent in a first product recovery section; reacting at least a fraction of the first stage effluent unconverted olefins and alcohol fraction under low severity oligomerization conditions comprising moderate temperature between 70 C and 280 C and space velocity of 0.5-50 WHSV based on total olefin in the feed in a secondary stage catalytic reaction zone containing porous solid acid oligomerization catalyst particles to oligomerize a major portion of diene; recovering a C[sub 5]+ liquid product stream from secondary stage effluent; and recovering n-alkene substantially free of diene from secondary stage effluent.

  6. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.

    PubMed

    Baratta, Walter; Baldino, Salvatore; Calhorda, Maria José; Costa, Paulo J; Esposito, Gennaro; Herdtweck, Eberhardt; Magnolia, Santo; Mealli, Carlo; Messaoudi, Abdelatif; Mason, Sax A; Veiros, Luis F

    2014-10-13

    Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted. PMID:25195979

  7. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  8. Engineering of Bacterial Methyl Ketone Synthesis for Biofuels

    PubMed Central

    Goh, Ee-Been; Baidoo, Edward E. K.; Keasling, Jay D.

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C11 to C15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications. PMID:22038610

  9. Polyarylene Ethers with Improved Properties

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor); Jensen, B. J. (Inventor); Havens, S. J. (Inventor)

    1986-01-01

    This invention relates to novel polyarylene ethers which possess the combination of high strength, toughness, and high use temperature with ease of extrusion and formation into complex objects. These polyarylene ethers are suitable for use in adhesives, coatings, films, membranes, and composite matrices. The polyarylene ethers of this invention are the polycondensation products from the reaction of either 1,3-bis (4-chloro or fluorobenzoyl) benzene with any one of the following bisphenolic compounds: bis (3-hydroxyphenyl) methane; bis (4-hydroxyphenyl) methane; 1,1-dimethyl-bis (4-hydroxyphenyl)methane, or 9,9-bis (4-hydroxyphenyl) fluorene. Random and block copolymers are also comprehended.

  10. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers.

    PubMed

    Ozanne, Aurélie; Pouységu, Laurent; Depernet, Dominique; François, Bruno; Quideau, Stéphane

    2003-08-01

    [reaction: see text] SIBX is a nonexplosive formulation of IBX that can be used as a suspension in a variety of standard organic solvents such as refluxing EtOAc and THF to oxidize safely alcohols into aldehydes and ketones. The use of hot THF is limited to the oxidation of allylic and benzylic alcohols. Most yields are comparable to those obtained with IBX or DMP. SIBX can also be used to perform oxygenative demethylation of 2-methoxyarenols into orthoquinones and catechols.

  11. Point-of-Care Glucose and Ketone Monitoring.

    PubMed

    Chong, Siew Kim; Reineke, Erica L

    2016-03-01

    Early and rapid identification of hypo- and hyperglycemia as well as ketosis is essential for the practicing veterinarian as these conditions can be life threatening and require emergent treatment. Point-of-care testing for both glucose and ketone is available for clinical use and it is important for the veterinarian to understand the limitations and potential sources of error with these tests. This article discusses the devices used to monitor blood glucose including portable blood glucose meters, point-of-care blood gas analyzers and continuous glucose monitoring systems. Ketone monitoring options discussed include the nitroprusside reagent test strips and the 3-β-hydroxybutyrate ketone meter. PMID:27451045

  12. Practical and Broadly Applicable Catalytic Enantioselective Additions of Allyl-B(pin) Compounds to Ketones and α-Ketoesters.

    PubMed

    Robbins, Daniel W; Lee, KyungA; Silverio, Daniel L; Volkov, Alexey; Torker, Sebastian; Hoveyda, Amir H

    2016-08-01

    A set of broadly applicable methods for efficient catalytic additions of easy-to-handle allyl-B(pin) (pin=pinacolato) compounds to ketones and acyclic α-ketoesters was developed. Accordingly, a large array of tertiary alcohols can be obtained in 60 to >98 % yield and up to 99:1 enantiomeric ratio. At the heart of this development is rational alteration of the structures of the small-molecule aminophenol-based catalysts. Notably, with ketones, increasing the size of a catalyst moiety (tBu to SiPh3 ) results in much higher enantioselectivity. With α-ketoesters, on the other hand, not only does the opposite hold true, since Me substitution leads to substantially higher enantioselectivity, but the sense of the selectivity is reversed as well.

  13. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  14. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  15. Regioselectivity of the Claisen rearrangement in meta-allyloxy aryl ketones: an experimental and computational study, and application in the synthesis of (R)-(-)-pestalotheol D.

    PubMed

    Lucas, Catherine L; Lygo, Barry; Blake, Alexander J; Lewis, William; Moody, Christopher J

    2011-02-01

    A study of the regioselectivity of the Claisen rearrangement of meta-allyloxy aryl ketones showed that the electron-withdrawing carbonyl group has a major influence and strongly directs rearrangement to the more hindered ortho position. However, when the ketone is part of a ring structure, its electronic effect can be negated by conversion into its triisopropylsilyl enol ether, which dramatically reverses the regiochemistry of the Claisen rearrangement. DFT calculations suggest that the effect is electronic although there is also a steric effect of the bulky silyl group. This strategy for influencing the regiochemical outcome of the Claisen rearrangement was then employed in a short synthesis of the furo[2,3-g]chromene, (-)-pestalotheol D, that confirms the absolute stereochemistry of the natural product. PMID:21274949

  16. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    PubMed

    Park, Soo J; Morelli, Renata; Hanssen, Benjamin L; Jamie, Joanne F; Jamie, Ian M; Siderhurst, Matthew S; Taylor, Phillip W

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605

  17. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    PubMed Central

    Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605

  18. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  19. Rearrangements of Cycloalkenyl Aryl Ethers.

    PubMed

    Törincsi, Mercedesz; Nagy, Melinda; Bihari, Tamás; Stirling, András; Kolonits, Pál; Novak, Lajos

    2016-01-01

    Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed. PMID:27104504

  20. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  1. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  2. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  3. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  4. Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones.

    PubMed

    Diaba, Faïza; Montiel, Juan A; Serban, Georgeta; Bonjoch, Josep

    2015-08-01

    An unexpected C-C bond cleavage was observed in trichloroacetamide-tethered ketones under amine treatment and exploited to develop a new synthesis of normophans from 4-amidocyclohexanones. The reaction involves an unprecedented intramolecular haloform-type reaction of trichloroacetamides promoted by enamines (generated in situ from ketones) as counter-reagents. The methodology was applied to the synthesis of compounds embodying the 6-azabicyclo[3.2.1]octane framework.

  5. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.

    PubMed

    Sergeev, Alexey G; Hartwig, John F

    2011-04-22

    Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>Ar-OMe>ArCH(2)-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons. PMID:21512027

  6. Rotational Spectroscopy of Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Methyl vinyl ketone, MVK, along with previously studied by our team methacrolein, is a major oxidation product of isoprene, which is one of the primary contributors to annual global VOC emissions. In this talk we present the analysis of the rotational spectrum of MVK recorded at room temperature in the 50 -- 650 GHz region using the Lille spectrometer. The spectroscopic characterization of MVK ground state will be useful in the detailed analysis of high resolution infrared spectra. Our study is supported by high level quantum chemical calculations to model the structure of the two stable s-trans and s-cis conformers and to obtain the harmonic force field parameters, internal rotation barrier heights, and vibrational frequencies. In the Doppler-limited spectra the splittings due to the internal rotation of methyl group are resolved, therefore for analysis of this molecule we used the Rho-Axis-Method Hamiltonian and RAM36 code to fit the rotational transitions. At the present time the ground state of two conformers is analyzed. Also we intend to study some low lying excited states. The analysis is in progress and the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged.

  7. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  8. Space, Time, Ether, and Kant

    NASA Astrophysics Data System (ADS)

    Wong, Wing-Chun Godwin

    This dissertation focused on Kant's conception of physical matter in the Opus postumum. In this work, Kant postulates the existence of an ether which fills the whole of space and time with its moving forces. Kant's arguments for the existence of an ether in the so-called Ubergang have been acutely criticized by commentators. Guyer, for instance, thinks that Kant pushes the technique of transcendental deduction too far in trying to deduce the empirical ether. In defense of Kant, I held that it is not the actual existence of the empirical ether, but the concept of the ether as a space-time filler that is subject to a transcendental deduction. I suggested that Kant is doing three things in the Ubergang: First, he deduces the pure concept of a space-time filler as a conceptual hybrid of the transcendental object and permanent substance to replace the category of substance in the Critique. Then he tries to prove the existence of such a space-time filler as a reworking of the First Analogy. Finally, he takes into consideration the empirical determinations of the ether by adding the concept of moving forces to the space -time filler. In reconstructing Kant's proofs, I pointed out that Kant is absolutely committed to the impossibility of action-at-a-distance. If we add this new principle of no-action-at-a-distance to the Third Analogy, the existence of a space-time filler follows. I argued with textual evidence that Kant's conception of ether satisfies the basic structure of a field: (1) the ether is a material continuum; (2) a physical quantity is definable on each point in the continuum; and (3) the ether provides a medium to support the continuous transmission of action. The thrust of Kant's conception of ether is to provide a holistic ontology for the transition to physics, which can best be understood from a field-theoretical point of view. This is the main thesis I attempted to establish in this dissertation.

  9. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  10. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  11. Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3 and (MoO3)3 clusters.

    PubMed

    Rousseau, Roger; Dixon, David A; Kay, Bruce D; Dohnálek, Zdenek

    2014-11-21

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article, we review the synthesis and activity of well-defined model WO3 and MoO3 catalysts that are prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketones, and ethers is employed to probe the structure-activity relationships on model catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. The catalytic activity for a range of interrogated (WO3)3 motifs (from unsupported clusters to nanoporous films) further sheds light onto the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity. PMID:24553750

  12. Dehydration, Dehydrogenation, and Condensation of Alcohols on Supported Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters

    SciTech Connect

    Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.; Dohnalek, Zdenek

    2014-01-01

    Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlying reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.

  13. Neurotoxicity associated with occupational exposure to acetone, methyl ethyl ketone, and cyclohexanone.

    PubMed

    Mitran, E; Callender, T; Orha, B; Dragnea, P; Botezatu, G

    1997-01-01

    The neurotoxic effects of acetone, methyl ethyl ketone (MEK), and cyclohexanone on Romanian workers and the impact of those effects on industry environmental standards have been controversial subjects. To scientifically substantiate the standards, a study was conducted on three groups of workers to determine the changes induced by ketone solvents on the central and peripheral nervous systems. Groups of exposed workers and matched controls were studied for each solvent: acetone, 71 exposed and 86 controls from a coin printing factory; MEK, 41 exposed and 63 controls from a cable factory; and cyclohexanone, 75 exposed and 85 controls from a furniture factory. The subjects' mean age was 36 years. The mean length of exposure was 14 years. Study participants completed a questionnaire, responded to questions about alcohol consumption, submitted to a clinical examination, submitted samples for identification of biological exposure markers, and underwent motor nerve conduction velocity and neurobehavioral tests. Results showed that workers exposed to acetone were most affected in terms of human performance and evidence of neurotoxicity, followed by workers exposed to MEK and workers exposed to cyclohexanone. On the basis of the results, it was proposed that the 6-hr permissible exposure limits for acetone, MEK, and cyclohexanone be reduced to less than 500, 200, and 150 mg/m3, respectively.

  14. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    PubMed

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  15. Synthesis and Characterization of bis(Tetrahydrofurfuryl) Ether

    PubMed Central

    Stenger‐Smith, John D.; Baldwin, Lawrence; Chafin, Andrew

    2016-01-01

    Abstract Despite the availability of a large number of alkyl tetrahydrofurfuryl ethers that have a wide range of applications, pure bis(tetrahydrofurfuryl) ether (BTHFE) has not been previously synthesized. Here, we report the synthesis of BTHFE (consisting of the RR, SS, and meso stereoisomers) at greater than 99 % purity from tetrahydrofurfuryl alcohol, using (tetrahydrofuran‐2‐yl)methyl methanesulfonate as an intermediate. Additionally, we demonstrate that BTHFE can be used as a non‐volatile solvent in poly(3,4‐propylenedioxythiophene)‐based supercapacitors. Supercapacitor devices employing solutions of the ionic liquid 1‐ethyl‐3‐methyl‐imidizolium bis(trifluoromethylsulfonyl)imide in BTHFE display similar performances to those prepared by using the neat ionic liquid as an electrolyte, although solution‐based devices exhibit a somewhat higher resistance. PMID:27547636

  16. Radical arylation of phenols, phenyl ethers, and furans.

    PubMed

    Wetzel, Alexander; Pratsch, Gerald; Kolb, Roman; Heinrich, Markus R

    2010-02-22

    Radical arylations of para-substituted phenols and phenyl ethers proceeded with good regioselectivity at the ortho position with respect to the hydroxy or alkoxy group. The reactions were conducted with arenediazonium salts as the aryl radical source, titanium(III) chloride as the reductant, and diluted hydrochloric acid as the solvent. Substituted biaryls were obtained from hydroxy- and alkoxy-substituted benzylamines, phenethylamines, and aromatic amino acids. The methodology described offers a fast, efficient, and cost-effective new access to diversely functionalized biphenyl alcohols and ethers. Free phenolic hydroxy groups, aromatic and aliphatic amines, as well as amino acid substructures, are well tolerated. Two examples for the applicability of the methodology are the partial synthesis of a beta-secretase inhibitor and the synthesis of a calcium-channel modulator. PMID:20066707

  17. Synthesis and Characterization of bis(Tetrahydrofurfuryl) Ether.

    PubMed

    Stenger-Smith, John D; Baldwin, Lawrence; Chafin, Andrew; Goodman, Paul A

    2016-08-01

    Despite the availability of a large number of alkyl tetrahydrofurfuryl ethers that have a wide range of applications, pure bis(tetrahydrofurfuryl) ether (BTHFE) has not been previously synthesized. Here, we report the synthesis of BTHFE (consisting of the RR, SS, and meso stereoisomers) at greater than 99 % purity from tetrahydrofurfuryl alcohol, using (tetrahydrofuran-2-yl)methyl methanesulfonate as an intermediate. Additionally, we demonstrate that BTHFE can be used as a non-volatile solvent in poly(3,4-propylenedioxythiophene)-based supercapacitors. Supercapacitor devices employing solutions of the ionic liquid 1-ethyl-3-methyl-imidizolium bis(trifluoromethylsulfonyl)imide in BTHFE display similar performances to those prepared by using the neat ionic liquid as an electrolyte, although solution-based devices exhibit a somewhat higher resistance. PMID:27547636

  18. Tandem Bond-Forming Reactions of 1-Alkynyl Ethers.

    PubMed

    Minehan, Thomas G

    2016-06-21

    Electron-rich alkynes, such as ynamines, ynamides, and ynol ethers, are functional groups that possess significant potential in organic chemistry for the formation of carbon-carbon bonds. While the synthetic utility of ynamides has recently been expanded considerably, 1-alkynyl ethers, which possess many of the reactivity features of ynamides, have traditionally been far less investigated because of concerns about their stability. Like ynamides, ynol ethers are relatively unhindered to approach by functional groups present in the same or different molecules because of their linear geometry, and they can potentially form up to four new bonds in a single transformation. Ynol ethers also possess unique reactivity features that make them complementary to ynamides. Research over the past decade has shown that ynol ethers formed in situ from stable precursors engage in a variety of useful carbon-carbon bond-forming processes. Upon formation at -78 °C, allyl alkynyl ethers undergo a rapid [3,3]-sigmatropic rearrangement to form allyl ketene intermediates, which may be trapped with alcohol or amine nucleophiles to form γ,δ-unsaturated carboxylic acid derivatives. The process is stereospecific, takes place in minutes at cryogenic temperatures, and affords products containing (quaternary) stereogenic carbon atoms. Trapping of the intermediate allyl ketene with carbonyl compounds, epoxides, or oxetanes instead leads to complex α-functionalized β-, γ-, or δ-lactones, respectively. [3,3]-Sigmatropic rearrangement of benzyl alkynyl ethers also takes place at temperatures ranging from -78 to 60 °C to afford substituted 2-indanones via intramolecular carbocyclization of the ketene intermediate. tert-Butyl alkynyl ethers containing pendant di- and trisubstituted alkenes and enol ethers are stable to chromatographic isolation and undergo a retro-ene/[2 + 2] cycloaddition reaction upon mild thermolysis (90 °C) to afford cis-fused cyclobutanones and donor

  19. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system.

  20. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system. PMID:18960346

  1. DETERMINATION OF SURFACTANT SODIUM LAURYL ETHER SULFATE BY ION PAIRING CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY DETECTION

    EPA Science Inventory

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES)....

  2. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  3. Novel dimethoxy(aminoalkoxy)borate derived from (S)-diphenylprolinol as highly efficient catalyst for the enantioselective boron-mediated reduction of prochiral ketones

    PubMed Central

    Stepanenko, Viatcheslav; Ortiz-Marciales, Margarita; Barnes, Charles L.; Garcia, Carmelo

    2008-01-01

    The novel dimethoxyl(aminoalkoxy)borate 1 was isolated as a white crystalline dimer joined by H–bonding as evidenced by X-ray analysis, and demonstrated to be a highly effective catalyst for the asymmetric reduction of representative prochiral ketones with borane-DMS. Optically pure alcohols were obtained using only 1 mol% of catalyst 1 in up to 99% ee. PMID:20160845

  4. Ether resistance in Drosophila melanogaster.

    PubMed

    Deery, B J; Parsons, P A

    1972-01-01

    Strains set up from single inseminated females of D. melanogaster from the wild differ in their resistance to the anaesthetics, ether and chloroform. The main differences between four selected extreme strains could be explained by additive genes, which in the case of ether resistance were located to regions of chromosomes 2 and 3. The lack of correspondence between ether and chloroform resistance between strains indicates that although the type of genetic architecture controlling the traits is similar, the actual genes differ, which is reasonable in view of their differing chemical structures. Quite high heritabilities were found for resistance to ether based on five inbred strains. No significant associations between resistance to ether and body weight, developmental rate or longevity were found.It is clear that resistance to both anaesthetics would be amenable to more detailed genetic analyses. It is pointed out that the general conclusions reached from such studies will have implications with respect to the effect of chemicals such as insecticides, not naturally present in nature.

  5. The partitioning of ketones between the gas and aqueous phases

    NASA Astrophysics Data System (ADS)

    Betterton, Eric A.

    Most ketones are not significantly hydrated; they therefore retain their chromophore and they could be photolytically degraded in solution yielding a variety of products including carboxylic acids, aldehydes and radicals. It is difficult to accurately model the partitioning of ketones between the gas phase and aqueous phase because of the lack suitable estimates of the Henry's Law constants; consequently the fate and environmental effects of ketones cannot be confidently predicted. Here we report the experimental determination of the Henry's Law constants of a series of ketones that has yielded a simple straight line equation to predict the Henry's Law constants of simple aliphatic ketones: log H ∗ =0.23Σσ ∗ + 1.51; where H ∗ is the effective Henry's Law constant (M atm -1, and Σσ ∗ is the Taft polar substituents constants. The results for 25°C are (M atm -1) CH 3COCH 3, 32; C 6H 5COCH 3, 110; CH 2ClCOCH 3, 59; CH 3COCOCH 3, 74; CF 3COCH 3, 138. Acetophenone appears to have an abnormally high H ∗. Most low molecular weight aliphatic ketones are predicted to characterized by H ∗⩾30 M atm -1 and therefore they are expected to be found in the aqueous phase at concentrations of ⩾5 - 0.5 μM (given a typical gas-phase concentration range of 1-10 ppbv). The expected rate of decomposition of ketones due to photolysis in hydrometers is briefly discussed.

  6. Ketone body utilization drives tumor growth and metastasis

    PubMed Central

    Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P.

    2012-01-01

    We have previously proposed that catabolic fibroblasts generate mitochondrial fuels (such as ketone bodies) to promote the anabolic growth of human cancer cells and their metastasic dissemination. We have termed this new paradigm “two-compartment tumor metabolism.” Here, we further tested this hypothesis by using a genetic approach. For this purpose, we generated hTERT-immortalized fibroblasts overexpressing the rate-limiting enzymes that promote ketone body production, namely BDH1 and HMGCS2. Similarly, we generated MDA-MB-231 human breast cancer cells overexpressing the key enzyme(s) that allow ketone body re-utilization, OXCT1/2 and ACAT1/2. Interestingly, our results directly show that ketogenic fibroblasts are catabolic and undergo autophagy, with a loss of caveolin-1 (Cav-1) protein expression. Moreover, ketogenic fibroblasts increase the mitochondrial mass and growth of adjacent breast cancer cells. However, most importantly, ketogenic fibroblasts also effectively promote tumor growth, without a significant increase in tumor angiogenesis. Finally, MDA-MB-231 cells overexpressing the enzyme(s) required for ketone re-utilization show dramatic increases in tumor growth and metastatic capacity. Our data provide the necessary genetic evidence that ketone body production and re-utilization drive tumor progression and metastasis. As such, ketone inhibitors should be designed as novel therapeutics to effectively treat advanced cancer patients, with tumor recurrence and metastatic disease. In summary, ketone bodies behave as onco-metabolites, and we directly show that the enzymes HMGCS2, ACAT1/2 and OXCT1/2 are bona fide metabolic oncogenes. PMID:23082722

  7. Ketone body utilization drives tumor growth and metastasis.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2012-11-01

    We have previously proposed that catabolic fibroblasts generate mitochondrial fuels (such as ketone bodies) to promote the anabolic growth of human cancer cells and their metastasic dissemination. We have termed this new paradigm "two-compartment tumor metabolism." Here, we further tested this hypothesis by using a genetic approach. For this purpose, we generated hTERT-immortalized fibroblasts overexpressing the rate-limiting enzymes that promote ketone body production, namely BDH1 and HMGCS2. Similarly, we generated MDA-MB-231 human breast cancer cells overexpressing the key enzyme(s) that allow ketone body re-utilization, OXCT1/2 and ACAT1/2. Interestingly, our results directly show that ketogenic fibroblasts are catabolic and undergo autophagy, with a loss of caveolin-1 (Cav-1) protein expression. Moreover, ketogenic fibroblasts increase the mitochondrial mass and growth of adjacent breast cancer cells. However, most importantly, ketogenic fibroblasts also effectively promote tumor growth, without a significant increase in tumor angiogenesis. Finally, MDA-MB-231 cells overexpressing the enzyme(s) required for ketone re-utilization show dramatic increases in tumor growth and metastatic capacity. Our data provide the necessary genetic evidence that ketone body production and re-utilization drive tumor progression and metastasis. As such, ketone inhibitors should be designed as novel therapeutics to effectively treat advanced cancer patients, with tumor recurrence and metastatic disease. In summary, ketone bodies behave as onco-metabolites, and we directly show that the enzymes HMGCS2, ACAT1/2 and OXCT1/2 are bona fide metabolic oncogenes. PMID:23082722

  8. 1-Heteroaryl-3-phenoxypropan-2-ones as inhibitors of cytosolic phospholipase A₂α and fatty acid amide hydrolase: Effect of the replacement of the ether oxygen with sulfur and nitrogen moieties on enzyme inhibition and metabolic stability.

    PubMed

    Sundermann, Tom; Fabian, Jörg; Hanekamp, Walburga; Lehr, Matthias

    2015-05-15

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that certain 3-phenoxy-substituted 1-heteroarylpropan-2-ones are inhibitors of cPLA2α and/or FAAH. Starting from 1-[2-oxo-3-(4-phenoxyphenoxy)propyl]indole-5-carboxylic acid (3) and 1-(1H-benzotriazol-1-yl)-3-(4-phenoxyphenoxy)propan-2-one (4), the effect of the replacement of the oxygen in position 3 of the propan-2-one scaffold by sulfur and nitrogen containing moieties on inhibition of cPLA2α and fatty acid amide hydrolase as well as on metabolic stability in rat liver S9 fractions was investigated. As a result of these structure-activity relationship studies it was found that the ether oxygen is of great importance for enzyme inhibitory potency. Replacement by sulfur led to an about 100-fold decrease of enzyme inhibition, nitrogen and substituted nitrogen atoms at this position even resulted in inactivity of the compounds. The effect of the structural variations performed on metabolic stability of the important ketone pharmacophore was partly different in the two series of compounds. While introduction of SO and SO2 significantly increased stability of the ketone against reduction in case of the indole-5-carboxylic acid 3, it had no effect in case of the benzotriazole 4. Further analysis of the metabolism of 3 and 4 in rat liver S9 fractions revealed that the major metabolite of 3 was the alcohol 53 formed by reduction of the keto group. In contrast, in case of 4 beside keto reduction an excessive hydroxylation of the terminal phenoxy group occurred leading to the dihydroxy compound 50. Experiments with enzyme inhibitors showed that the phenylhydroxylation of 4 was catalyzed by tranylcypromine sensitive cytochrome P450 isoforms, while the reduction of the ketone function of 3 and 4 was mainly caused by cytosolic short chain dehydrogenases

  9. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    SciTech Connect

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong

    2016-01-01

    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presence of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.

  10. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes.

    PubMed

    Elangovan, Saravanakumar; Topf, Christoph; Fischer, Steffen; Jiao, Haijun; Spannenberg, Anke; Baumann, Wolfgang; Ludwig, Ralf; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced. PMID:27219853

  11. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes.

    PubMed

    Elangovan, Saravanakumar; Topf, Christoph; Fischer, Steffen; Jiao, Haijun; Spannenberg, Anke; Baumann, Wolfgang; Ludwig, Ralf; Junge, Kathrin; Beller, Matthias

    2016-07-20

    Hydrogenations constitute fundamental processes in organic chemistry and allow for atom-efficient and clean functional group transformations. In fact, the selective reduction of nitriles, ketones, and aldehydes with molecular hydrogen permits access to a green synthesis of valuable amines and alcohols. Despite more than a century of developments in homogeneous and heterogeneous catalysis, efforts toward the creation of new useful and broadly applicable catalyst systems are ongoing. Recently, Earth-abundant metals have attracted significant interest in this area. In the present study, we describe for the first time specific molecular-defined manganese complexes that allow for the hydrogenation of various polar functional groups. Under optimal conditions, we achieve good functional group tolerance, and industrially important substrates, e.g., for the flavor and fragrance industry, are selectively reduced.

  12. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  13. P(MeNCH2CH2)3N: an efficient catalyst for the desilylation of tert-butyldimethylsilyl ethers

    PubMed

    Yu; Verkade

    2000-04-01

    tert-Butyldimethylsilyl (TBDMS) ethers of primary, secondary, and tertiary alcohols and phenolic TBDMS ethers are desilylated to their corresponding alcohols and phenols, respectively, in DMSO, at 80 degrees C, in 68-94% yield in the presence of 0.2-0.4 equiv of P(MeNCH2CH2)3N. Using P(i-PrNCH2-CH2)3N as the catalyst, 85-97% yields of desilylated alcohols were obtained from TBDMS ethers of 1-octanol, 2-phenoxyethanol, and racemic alpha-phenyl ethanol. These are the first examples of desilylations of silyl ethers catalyzed by nonionic bases. Both catalysts were much less effective for the desilylation of tert-butyldiphenylsilyl (TBDPS) ethers (22-45% yield) under the same conditions as used for TBDMS ethers. Possible pathways involving nucleophilic attack of the anion of the solvent molecule (generated by the catalyst) at the Si-O bond of silyl ether or a prior activation of the silyl ether by the catalyst via a P-Si interaction followed by nucleophilic attack of the solvent anion are proposed on the basis of 1H and 31P NMR experimental data.

  14. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. PMID:26055441

  15. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  16. Ethereal embodiment of cancer patients.

    PubMed

    van der Riet, P

    1999-10-01

    Ethereal embodiment is the attending and focusing on the body through discourses such as meditation, visualisation and massage, and the experiencing a new sense of the embodied being as balanced, connected, centred and of being made whole. This paper continues a previous article titled 'Massaged embodiment of cancer patients'. Data from my doctoral studies are analysed utilising crucial concepts of poststructuralism such as subjectivity, discourse, power and history to examine ethereal embodiment. This paper will address the advantages of visualisation and discusses the link between spirituality, embodiment, and memory.

  17. Grignard Reactions in "Wet" Ether

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    1999-10-01

    A small laboratory ultrasonic bath can be used to initiate the Grignard reaction of alkyl or aryl bromides in regular laboratory-quality, undried, diethyl ether and in simple undried test tubes. The reaction typically starts within 30 to 45 seconds and is self-sustaining. Yields and products are the same as obtained with carefully dried ether and equipment. We normally run this reaction at the 1.5-gram scale, but the procedure can be scaled up to at least 10 g of the bromide.

  18. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified.

  19. One-pot synthesis of ferrocenyl ketones containing biaryls and 6-aryl-2-ferrocenylquinolines via Ir/Pd-cocatalyzed α-alkylation/Suzuki reaction.

    PubMed

    Xu, Chen; Hao, Xin-Qi; Xiao, Zhi-Qiang; Wang, Zhi-Qiang; Yuan, Xiao-Er; Fu, Wei-Jun; Ji, Bao-Ming; Song, Mao-Ping

    2013-09-01

    An efficient PPh3-cyclometalated iridium(III) benzo[h]quinoline hydride 1/Pd(OAc)2-cocatalyzed three-component α-alkylation/Suzuki reaction has been developed. The three-component reaction of 4-bromobenzyl alcohol, acetylferrocene, and arylboronic acids gives ferrocenyl ketones containing biaryls in moderate to good yields. This method was successfully applied to a one-pot synthesis of 6-aryl-2-ferrocenyl quinolines, using (2-amino-5-bromophenyl)methanol instead of 4-bromobenzyl alcohol. PMID:23924342

  20. Toughening of BIS maleimide resins: Synthesis and characterization of maleimide terminated poly(arylene ether) oligomers and polymers

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.

    1986-01-01

    Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.

  1. Synthesis and Applications of iso-Hajos–Parrish Ketones**

    PubMed Central

    Eagan, James M.; Hori, Masahiro; Wu, Jianbin; Kanyiva, Kyalo Stephen; Snyder, Scott A.

    2015-01-01

    Although numerous natural products possess ring systems and functionality for which “iso-Hajos–Parrish” ketones would be of value, such building blocks have not been exploited to the same degree as the more typical Hajos–Parrish hydrindane. Herein we outline an efficient three-step synthesis of such materials fueled by a simple method for the rapid preparation of highly functionalized cyclopentenones, several of which are new chemical entities that would be challenging to access through other approaches. We then show how one iso-Hajos–Parrish ketone can be converted into two distinct natural product analogs as well as one natural product. As one indication of the value of these new building blocks, that latter target was obtained in 10 steps, having previously been accessed in 18 steps using the Hajos–Parrish ketone. PMID:25974879

  2. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  3. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  4. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  5. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  6. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  7. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  8. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject...

  9. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject...

  10. 40 CFR 721.3437 - Dialkyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this...

  11. 40 CFR 721.3380 - Anilino ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Anilino ether. 721.3380 Section 721... Anilino ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino ether (P-83-910) is subject to reporting under this section...

  12. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  13. 40 CFR 721.3380 - Anilino ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Anilino ether. 721.3380 Section 721... Anilino ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino ether (P-83-910) is subject to reporting under this section...

  14. 40 CFR 721.3437 - Dialkyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this...

  15. Obligate role for ketone body oxidation in neonatal metabolic homeostasis.

    PubMed

    Cotter, David G; d'Avignon, D André; Wentz, Anna E; Weber, Mary L; Crawford, Peter A

    2011-03-01

    To compensate for the energetic deficit elicited by reduced carbohydrate intake, mammals convert energy stored in ketone bodies to high energy phosphates. Ketone bodies provide fuel particularly to brain, heart, and skeletal muscle in states that include starvation, adherence to low carbohydrate diets, and the neonatal period. Here, we use novel Oxct1(-/-) mice, which lack the ketolytic enzyme succinyl-CoA:3-oxo-acid CoA-transferase (SCOT), to demonstrate that ketone body oxidation is required for postnatal survival in mice. Although Oxct1(-/-) mice exhibit normal prenatal development, all develop ketoacidosis, hypoglycemia, and reduced plasma lactate concentrations within the first 48 h of birth. In vivo oxidation of (13)C-labeled β-hydroxybutyrate in neonatal Oxct1(-/-) mice, measured using NMR, reveals intact oxidation to acetoacetate but no contribution of ketone bodies to the tricarboxylic acid cycle. Accumulation of acetoacetate yields a markedly reduced β-hydroxybutyrate:acetoacetate ratio of 1:3, compared with 3:1 in Oxct1(+) littermates. Frequent exogenous glucose administration to actively suckling Oxct1(-/-) mice delayed, but could not prevent, lethality. Brains of newborn SCOT-deficient mice demonstrate evidence of adaptive energy acquisition, with increased phosphorylation of AMP-activated protein kinase α, increased autophagy, and 2.4-fold increased in vivo oxidative metabolism of [(13)C]glucose. Furthermore, [(13)C]lactate oxidation is increased 1.7-fold in skeletal muscle of Oxct1(-/-) mice but not in brain. These results indicate the critical metabolic roles of ketone bodies in neonatal metabolism and suggest that distinct tissues exhibit specific metabolic responses to loss of ketone body oxidation. PMID:21209089

  16. Bis(chloroethyl)ether (BCEE)

    Integrated Risk Information System (IRIS)

    Bis ( chloroethyl ) ether ( BCEE ) ; CASRN 111 - 44 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  17. p,p\\'-Dibromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p , p ' - Dibromodiphenyl ether ; CASRN 2050 - 47 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  18. Bis(chloromethyl)ether (BCME)

    Integrated Risk Information System (IRIS)

    Bis ( chloromethyl ) ether ( BCME ) ; CASRN 542 - 88 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  19. Propylene glycol monomethyl ether (PGME)

    Integrated Risk Information System (IRIS)

    Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  20. Lacinilene C 7-methyl ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lacinilene C 7-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells....

  1. Desoxyhemigossypol-6-methyl-ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desoxyhemigossypol-6-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells...

  2. Enantioselective Organocatalytic α-Fluorination of Cyclic Ketones

    PubMed Central

    Kwiatkowski, Piotr; Beeson, Teresa D.; Conrad, Jay C.

    2011-01-01

    The first highly enantioselective α-fluorination of ketones using organocatalysis has been accomplished. The long-standing problem of enantioselective ketone α-fluorination via enamine activation has been overcome via high-throughput evaluation of a new library of amine catalysts. The optimal system, a primary amine functionalized Cinchona alkaloid, allows the direct and asymmetric α-fluorination of a variety of carbo- and heterocyclic substrates. Furthermore, this protocol also provides diastereo-, regio- and chemoselective catalyst control in fluorinations involving complex carbonyl systems. PMID:21247133

  3. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-01

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed.

  4. Sulfoximine-mediated syntheses of optically active alcohols. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stark, C. J., Jr.

    1978-01-01

    Several routes are described for the production of optically active secondary and tertiary alcohols. In all cases, the asymmetry emanates from the use of (+)-(S)-N,S-dimethyl-S-phenyl-sulfoximine (1) at some point in the variation of the diastereomers. One route relies upon the separation of the diastereomers produced from the condensation of (+)-(S)-(N-methylphenyl-sulfonimidoyl) methyllithium with prochiral aldehydes and ketones. Subsequent carbon-sulfur bond cleavage of the separated diastereomeric beta-hydroxysulfoximines yields optically active alcohols. Alternatively, beta-hydroxysulfoximines were produced from the reduction of chiral beta-ketosulfoximines. The reductions were most successfully achieved with diborane generated externally and bubbled into a toluene solution of the ketone at -78 C. Optically active alcohols were also produced from prochiral ketones by reduction with diborane or lithium aluminum hydride complexes of resolved diastereomers of beta-hydroxysulfoximines.

  5. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    PubMed

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (<10%) in all ionic liquids, which are the result of acetophenone radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, the main products generated were alcohols (>50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion.

  6. A sequential Pd/norbornene-catalyzed process generates o-biaryl carbaldehydes or ketones via a redox reaction or 6H-dibenzopyrans by C-O ring closure.

    PubMed

    Motti, Elena; Della Ca', Nicola; Xu, Di; Piersimoni, Anna; Bedogni, Elena; Zhou, Zhi-Ming; Catellani, Marta

    2012-11-16

    o-Biaryl carbaldeydes and ketones are obtained through the one-pot reaction of o-aryl iodides with o-bromobenzyl alcohols under the catalytic action of Pd and norbornene, in the presence of a base. The same reaction can also give dibenzopyrans by Pd and norbornene catalysis with a different termination, leading to C-O ring closure. In both cases the process first leads to a five-membered palladacycle, which controls C-C coupling, then to a seven-membered oxapalladacycle, which gives aldehydes and ketones or dibenzopyrans. PMID:23134173

  7. Myths about drinking alcohol

    MedlinePlus

    ... to. I spend a lot of time getting alcohol, drinking alcohol, or recovering from the effects of alcohol. ... Institute on Alcohol Abuse and Alcoholism. Overview of Alcohol Consumption. www.niaaa.nih.gov/alcohol-health/overview-alcohol- ...

  8. Molecular and Merrifield supported chiral diamines for enantioselective addition of ZnR2 (R = Me, Et) to ketones.

    PubMed

    Calvillo-Barahona, Mercedes; Cordovilla, Carlos; Genov, Miroslav N; Martínez-Ilarduya, Jesús M; Espinet, Pablo

    2013-10-28

    Chiral 1,2-ethylenediamines have been previously reported as active catalysts in the enantioselective addition reactions of ZnR2 to either methyl- or trifluoromethyl-ketones. Subtle changes in the molecular structure of different catalysts are described herein and lead to a dramatic effect in their catalytic activity. From these findings, we demonstrate the selective reactivity of the ligands used in the addition of ZnR2 (R = Me, Et) to methyl- and trifluoromethyl-ketones offering an enantioselective access either to chiral non-fluorinated alcohols or to chiral fluorinated tertiary alcohols. Considering the importance of the chiral trifluoromethyl carbinol fragment in several biologically active compounds, we have extended the scope of the addition reaction of ZnEt2 to several trifluoromethylketones catalyzed by (R,R)-1,2-diphenylethylenediamine derivatives. This work explores a homogeneous approach that provides excellent yields and very high ee and the use of a heterogenized tail-tied ligand affording moderate ee, high yields and allowing an easier handling and recycling.

  9. Exposure to methyl tertiary-butyl ether from oxygenated gasoline in Stamford, Connecticut

    SciTech Connect

    White, M.C.; Johnson, C.A.; Ashley, D.L.

    1995-05-01

    In 1993, state health officials in Connecticut invited the Centers for Disease Control and Prevention (CDC) to assist in an investigation of exposure to methyl tertiary-butyl ether in oxygenated gasoline in Stamford, Connecticut. Venous blood samples were collected from 14 commuters and from 30 other persons who worked in the vicinity of traffic or automobiles, and the samples were analyzed for methyl tertiary-butyl ether, tertiary-butyl alcohol, benzene, m-/p-xylene, o-xylene, and toluene. The highest levels of methyl tertiary-butyl ether in blood were measured among gasoline service station attendants (median = 15 {mu}g/l, range = 7.6-28.9 {mu}g/l). Blood levels of methyl tertiary-butyl ether were highly variable among persons who worked in car-repair shops (median = 1.73 {mu}g/l, range = 0.17-36.7 {mu}/l) and were generally lowest among commuters (median = 0.11 {mu}g/l, range = <0.05-2.60 {mu}g/l). Blood levels of methyl tertiary-butyl ether were correlated strongly with personal-breathing-zone samples of methyl tertiary-butyl ether and blood levels of other volatile organic compounds. This exposure information should prove useful to a future risk analysis of this high-volume chemical. 18 refs., 5 figs., 2 tabs.

  10. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  11. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Biphenyl alkyl morpholino ketone... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section...

  12. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Biphenyl alkyl morpholino ketone... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section...

  13. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Biphenyl alkyl morpholino ketone... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section...

  14. Extractive recovery of phenol and p-alkylphenols from aqueous solutions with hydrophobic ketones

    SciTech Connect

    Korenman, Ya.I.; Ermolaeva, T.N.; Podolina, E.A.

    1994-03-10

    Aliphatic and cyclic hydrophobic ketones were used for extractive recovery of phenol and p-alkylphenols from aqueous solutions, giving a 95-98% extraction of toxicants under the recommended conditions. The extracting agents were cyclohexanone, methylcyclohexanone, butyl methyl ketone, and isobutyl methyl ketone.

  15. Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis.

    PubMed

    Misra, S; Oliver, N S

    2015-01-01

    Ketone measurement is advocated for the diagnosis of diabetic ketoacidosis and assessment of its severity. Assessing the evidence base for ketone measurement in clinical practice is challenging because multiple methods are available but there is a lack of consensus about which is preferable. Evaluating the utility of ketone measurement is additionally problematic because of variability in the biochemical definition of ketoacidosis internationally and in the proposed thresholds for ketone measures. This has led to conflicting guidance from expert bodies on how ketone measurement should be used in the management of ketoacidosis. The development of point-of-care devices that can reliably measure the capillary blood ketone β-hydroxybutyrate (BOHB) has widened the spectrum of applications of ketone measurement, but whether the evidence base supporting these applications is robust enough to warrant their incorporation into routine clinical practice remains unclear. The imprecision of capillary blood ketone measures at higher values, the lack of availability of routine laboratory-based assays for BOHB and the continued cost-effectiveness of urine ketone assessment prompt further discussion on the role of capillary blood ketone assessment in ketoacidosis. In the present article, we review the various existing methods of ketone measurement, the precision of capillary blood ketone as compared with other measures, its diagnostic accuracy in predicting ketoacidosis and other clinical applications including prevention, assessment of severity and resolution of ketoacidosis.

  16. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... such as acetone) and for monitoring patients on ketogenic diets and patients with diabetes....

  17. Ketone body metabolism in the mother and fetus.

    PubMed

    Shambaugh, G E

    1985-04-01

    Pregnancy is characterized by a rapid accumulation of lipid stores during the first half of gestation and a utilization of these stores during the latter half of gestation. Lipogenesis results from dietary intake, an exaggerated insulin response, and an intensified inhibition of glucagon release. Increasing levels of placental lactogen and a heightened response of adipose tissue to additional lipolytic hormones balance lipogenesis in the fed state. Maternal starvation in late gestation lowers insulin, and lipolysis supervenes. The continued glucose drain by the conceptus aids in converting the maternal liver to a ketogenic organ, and ketone bodies produced from incoming fatty acids are not only utilized by the mother but cross the placenta where they are utilized in several ways by the fetus: as a fuel in lieu of glucose; as an inhibitor of glucose and lactate oxidation with sparing of glucose for biosynthetic disposition; and for inhibition of branched-chain ketoacid oxidation, thereby maximizing formation of their parent amino acids. Ketone bodies are widely incorporated into several classes of lipids including structural lipids as well as lipids for energy stores in fetal tissues, and may inhibit protein catabolism. Finally, it has recently been shown that ketone bodies inhibit the de novo biosynthesis of pyrimidines in fetal rat brain slices. Thus during maternal starvation ketone bodies may maximize chances for survival both in utero and during neonatal life by restraining cell replication and sustaining protein and lipid stores in fetal tissues.

  18. Ketone body metabolism and sleep homeostasis in mice.

    PubMed

    Chikahisa, Sachiko; Shimizu, Noriyuki; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2014-04-01

    A link has been established between energy metabolism and sleep homeostasis. The ketone bodies acetoacetate and β-hydroxybutyrate, generated from the breakdown of fatty acids, are major metabolic fuels for the brain under conditions of low glucose availability. Ketogenesis is modulated by the activity of peroxisome proliferator-activated receptor alpha (PPARα), and treatment with a PPAR activator has been shown to induce a marked increase in plasma acetoacetate and decreased β-hydroxybutyrate in mice, accompanied by increased slow-wave activity during non-rapid eye movement (NREM) sleep. The present study investigated the role of ketone bodies in sleep regulation. Six-hour sleep deprivation increased plasma ketone bodies and their ratio (acetoacetate/β-hydroxybutyrate) in 10-week-old male mice. Moreover, sleep deprivation increased mRNA expression of ketogenic genes such as PPARα and 3-hydroxy-3-methylglutarate-CoA synthase 2 in the brain and decreased ketolytic enzymes such as succinyl-CoA: 3-oxoacid CoA transferase. In addition, central injection of acetoacetate, but not β-hydroxybutyrate, markedly increased slow-wave activity during NREM sleep and suppressed glutamate release. Central metabolism of ketone bodies, especially acetoacetate, appears to play a role in the regulation of sleep homeostasis.

  19. Direct Catalytic Enantio- and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates**

    PubMed Central

    delaCampa, Raquel; Ortín, Irene; Dixon, Darren J

    2015-01-01

    A catalytic asymmetric aldol addition/cyclization reaction of unactivated ketones with isocyanoacetate pronucleophiles has been developed. A quinine-derived aminophosphine precatalyst and silver oxide were found to be an effective binary catalyst system and promoted the reaction to afford chiral oxazolines possessing a fully substituted stereocenter with good diastereoselectivities and excellent enantioselectivities. PMID:25735645

  20. Diastereoselective synthesis of substituted diaziridines from simple ketones and aldehydes.

    PubMed

    Beebe, Alexander W; Dohmeier, Emma F; Moura-Letts, Gustavo

    2015-09-11

    Diastereopure substituted diaziridines from simple ketones, aldehydes and amines are here reported. These important chemical scaffolds are obtained in the presence of a weak inorganic base and hydroxylamine O-sulfonic acid (HOSA). This method introduces three stereocenters in one step to provide a wide variety of substituted diaziridines with high yields and diastereoselectivities.

  1. Dielectric behavior of some small ketones as ideal polar molecules.

    PubMed

    Shikata, Toshiyuki; Yoshida, Nao

    2012-05-17

    The dielectric behaviors of some small symmetric ketone molecules, including acetone, 3-pentanone, cyclopentanone, 4-heptanone, and cyclohexanone, were investigated as a function of temperature (T) over a wide frequency range from 50 MHz (3.14 × 10(8) s(-1), in angular frequency) to 3 THz (1.88 × 10(13) s(-1)). The temperature dependencies of the rotational diffusion times (τ(r)) determined using (17)O NMR spin-lattice relaxation time (T(1)) measurements and viscosities of the ketones were also examined. The obtained temperature dependencies of the parameters for the ketones were compared with those of ideal polar molecules, which obey the Stokes-Einstein-Debye (SED) relationship without the formation of intermolecular dimeric associations and without orientational correlations between dipoles (molecular axes), that is, free rotation. Kirkwood correlation factors (g(K)) of only acetone and 3-pentanone were close to unity over a wide temperature range, whereas those of other ketones were obviously less than unity. These results revealed that no correlations exist between the rotational motions of dipoles in acetone and 3-pentanone, as expected in ideal polar molecules. However, other ketones exhibited orientational correlations in their dipoles because of dipole-dipole interactions via antiparallel configurations. Furthermore, because acetone and 3-pentanone satisfied the SED relationship and because their microscopic dielectric relaxation times (τ(μ)), which were calculated from the determined dielectric relaxation times (τ(D)) via the relationship τ(μ) = τ(D)g(K)(-1), were identical to 3τ(r) and were proportional to Vη(k(B)T)(-1) over the wide temperature range examined, where V, k(B), and η represent the effective molecular volume, Boltzmann's constant, and the viscosity of the liquid molecules, respectively, these two ketone molecules behave as ideal polar molecules. In addition, other ketones not significantly larger than acetone and 3-pentanone in

  2. Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHEW), Chevy Chase, MD. National Clearinghouse for Mental Health Information.

    This concise survey presents some of the highlights of modern research on drinking and alcoholism, as based on technical articles published in the scientific literature and the views expressed by leading authorities in the field. Contents include discussions about: (1) the nature and scope of the problem; (2) the chemical composition of alcoholic…

  3. Rh(III)-catalyzed dehydrogenative alkylation of (hetero)arenes with allylic alcohols, allowing aldol condensation to indenes.

    PubMed

    Shi, Zhuangzhi; Boultadakis-Arapinis, Mélissa; Glorius, Frank

    2013-07-25

    Efficient Rh(III)-catalyzed C-H activation of different classes of (hetero)arenes such as 2-phenylpyridine, indoles, aryl ketones and acetanilide and their dehydrogenative cross-coupling with allylic alcohols are described. Several important skeletons such as β-aryl aldehydes and ketones, 2-acetylindenes, 3,4-dihydro-1H-quinolin-2-one and quinoline could be produced using this protocol. PMID:23765402

  4. Measuring exposures to glycol ethers.

    PubMed Central

    Clapp, D E; Zaebst, D D; Herrick, R F

    1984-01-01

    In 1981, NIOSH began investigating the potential reproductive health effects resulting from exposures to a class of organic solvents known generically as glycol ethers (GE). This research was begun as a result of the NIOSH criteria document development program which revealed little data available on the health effects of glycol ether exposure. Toxicologic research was begun by NIOSH and other researchers which suggested substantial reproductive effects in animals. These animal data motivated a study of human exposures in the occupational setting. In 1981 and 1982 NIOSH conducted several walk-through surveys which included preliminary measurements of exposures in a variety of industries including painting trades, coal mining, production blending and distribution facilities, aircraft fueling, and communications equipment repair facilities. The human exposure data from these surveys is summarized in this paper with most results well below 1 parts per million (ppm) and only a few values approaching 10 ppm. Blood samples were collected at one site resulting in GE concentrations below the limit of detection. Exposures to airborne glycol ethers, in the industries investigated during the collection of this data, revealed several problems in reliably sampling GE at low concentrations. It became apparent, from the data and observations of work practices, that air monitoring alone provided an inadequate index of GE exposure. Further field studies of exposure to GE are anticipated, pending location of additional groups of exposed workers and development of more reliable methods for characterizing exposure, especially biological monitoring. PMID:6499824

  5. Carbon isotopic fractionation during anaerobic biotransformation of methyl tert-butyl ether and tert-amyl methyl ether.

    PubMed

    Somsamak, Piyapawn; Richnow, Hans H; Häggblom, Max M

    2005-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE) has been frequently detected in groundwater and surface water. Since contaminated sites are often subsurface, anaerobic degradation of MTBE will likely be significant for remediation. As traditional approaches to evaluate biodegradation generally involve laboratory microcosm studies which require time and resources, innovative approaches are needed to demonstrate active in situ biodegradation of MTBE. This study was conducted to gather information at the laboratory level to evaluate the potential of applying carbon isotope fractionation as an indicator for in situ biodegradation of the fuel oxygenates MTBE and tert-amyl methyl ether (TAME). In this study, MTBE utilization was observed in a methanogenic sediment microcosm after a lengthy lag period of about 400 days. MTBE utilization was sustained upon refeeding and subculturing. tert-Butyl alcohol (TBA) was found to accumulate after propagation of cultures. The MTBE-grown cultures also utilized TAME and produced tert-amyl alcohol (TAA). The detection of TBA and TAA indicated that ether bond cleavage was the initial step in degradation for both compounds. Carbon isotope fractionation during anaerobic MTBE and TAME degradation was studied, and isotopic enrichment factors (epsilon) with 95% confidence intervals of -15.6 +/-4.1% and -13.7+/-4.5% were estimated for anaerobic MTBE and TAME degradation, respectively. Addition of 2-bromoethanesulfonic acid, an inhibitor of methanogenesis, substantially prolonged the lag period before transformation, but did not influence carbon isotope fractionation. Our experiment provided strong evidence of significant carbon isotope fractionation during anaerobic MTBE and TAME degradation, demonstrating that this technique can be used as an indicator for in situ MTBE and TAME degradation.

  6. Alcohol use disorder

    MedlinePlus

    ... Alcohol abuse; Problem drinking; Drinking problem; Alcohol addiction; Alcoholism - alcohol use; Substance use - alcohol ... The National Institute on Alcohol Abuse and Alcoholism ... 1 drink per day Men should not drink more than 2 drinks per day

  7. Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties.

    PubMed

    Siddiq, Abdur R; Kennedy, Andrew R

    2015-02-01

    Porous PEEK structures with approximately 85% open porosity have been made using PEEK-OPTIMA® powder and a particulate leaching technique using porous, near-spherical, sodium chloride beads. A novel manufacturing approach is presented and compared with a traditional dry mixing method. Irrespective of the method used, the use of near-spherical beads with a fairly narrow size range results in uniform pore structures. However the integration, by tapping, of fine PEEK into a pre-existing network salt beads, followed by compaction and "sintering", produces porous structures with excellent repeatability and homogeneity of density; more uniform pore and strut sizes; an improved and predictable level of connectivity via the formation of "windows" between the cells; faster salt removal rates and lower levels of residual salt. Although tapped samples show a compressive yield stress >1 MPa and stiffness >30 MPa for samples with 84% porosity, the presence of windows in the cell walls means that tapped structures show lower strengths and lower stiffnesses than equivalent structures made by mixing.

  8. Time dependent physical properties of semicrystalline poly(arylene ether ether ketone) (PEEK) above its glass transition temperature: Physical aging vs. secondary crystallization

    SciTech Connect

    Velikov, V.; Verma, R.; marand, H.

    1995-12-01

    We monitored the change in small strain short term isothermal creep compliance of semicrystalline. PEEK (T{sub g} {approx} 150{degrees}C - 165{degrees}C) at various temperatures from 120{degrees}C to 260{degrees}C. With increase of aging times creep curves are shifted to longer times, implying slowing down of the mechanical relaxation of the polymer. The isothermal horizontal shift rate is close to unity below and above T{sub g} and exhibits significant drop in the glass transition region.

  9. Polyphenylene ethers with imide linking groups

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Burks, H. D. (Inventor)

    1984-01-01

    Novel polyphenylene ethers with imide linking units are disclosed. These polymers incorporate the solvent and thermal resistance of polyimides and the processability of polyphenylene ethers. Improved physical properties over those of the prior art are obtained by incorporating meta linked ethers and/or polyphenylene oxides into the polymer backbone. A novel process for making polymers of this type is also disclosed. The process is unique in that the expected need of high process temperatures and/or special atmospheres are eliminated.

  10. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  11. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  12. A green chemistry approach to a more efficient asymmetric catalyst: solvent-free and highly concentrated alkyl additions to ketones.

    PubMed

    Jeon, Sang-Jin; Li, Hongmei; Walsh, Patrick J

    2005-11-30

    There is a great demand for development of catalyst systems that are not only efficient and highly enantioselective but are also environmentally benign. Herein we report investigations into the catalytic asymmetric addition of alkyl and functionalized alkyl groups to ketones under highly concentrated and solvent-free conditions. In comparison with standard reaction conditions employing toluene and hexanes, the solvent-free and highly concentrated conditions permit reduction in catalyst loading by a factor of 2- to 40-fold. These new conditions are general and applicable to a variety of ketones and dialkylzinc reagents to provide diverse tertiary alcohols with high enantioselectivities. Using cyclic conjugated enones, we have performed a tandem asymmetric addition/diastereoselective epoxidation using the solvent-free addition conditions followed by introduction of a 5.5 M decane solution of tert-butyl hydroperoxide (TBHP) to generate epoxy alcohols. This one-pot procedure allows access to syn epoxy alcohols with three contiguous stereocenters with excellent enantio- and diastereoselectivities and high yields. Both the solvent-free asymmetric additions and asymmetric addition/diastereoselective epoxidation reactions have been conducted on larger scale (5 g substrate) with 0.5 mol % catalyst loadings. In these procedures, enantioselectivities equal to or better than 92% were obtained with isolated yields of 90%. The solvent-free and highly concentrated conditions are a significant improvement over previous solvent-based protocols. Further, this chemistry represents a rare example of a catalytic asymmetric reaction that is highly enantioselective under more environmentally friendly solvent-free conditions. PMID:16305227

  13. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  14. Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes

    PubMed Central

    Herbinet, Olivier; Bax, Sarah; Glaude, Pierre-Alexandre; Carré, Vincent; Battin-Leclerc, Frédérique

    2013-01-01

    Cyclic ethers are important intermediate species formed during the low-temperature oxidation of hydrocarbons. Along with ketones and aldehydes, they could consequently represent a significant part of the heavy oxygenated pollutants observed in the exhaust gas of engines. Apart a few of them such as ethylene oxide and tetrahydrofuran, cyclic ethers have not been much studied and very few of them are available for calibration and identification. Electron impact mass spectra are available for very few of them, making their detection in the exhaust emissions of combustion processes very difficult. The main goal of this study was to complete the existing set of mass spectra for this class of molecules. Thus cyclic ethers have been analyzed in the exhaust gases of a jet-stirred reactor in which the low-temperature oxidation of a series of n-alkanes was taking place. Analyzes were performed by gas chromatography coupled to mass spectrometry and to MS/MS. The second goal of this study was to derive some rules for the fragmentation of cyclic ethers in electron impact mass spectrometry and allow the identification of these species when no mass spectrum is available. PMID:24092947

  15. Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes.

    PubMed

    Herbinet, Olivier; Bax, Sarah; Glaude, Pierre-Alexandre; Carré, Vincent; Battin-Leclerc, Frédérique

    2011-02-01

    Cyclic ethers are important intermediate species formed during the low-temperature oxidation of hydrocarbons. Along with ketones and aldehydes, they could consequently represent a significant part of the heavy oxygenated pollutants observed in the exhaust gas of engines. Apart a few of them such as ethylene oxide and tetrahydrofuran, cyclic ethers have not been much studied and very few of them are available for calibration and identification. Electron impact mass spectra are available for very few of them, making their detection in the exhaust emissions of combustion processes very difficult. The main goal of this study was to complete the existing set of mass spectra for this class of molecules. Thus cyclic ethers have been analyzed in the exhaust gases of a jet-stirred reactor in which the low-temperature oxidation of a series of n-alkanes was taking place. Analyzes were performed by gas chromatography coupled to mass spectrometry and to MS/MS. The second goal of this study was to derive some rules for the fragmentation of cyclic ethers in electron impact mass spectrometry and allow the identification of these species when no mass spectrum is available. PMID:24092947

  16. Preparation and characterization of poly (arylene ether isoxazole)s by fluoride ion-mediated aromatic nucleophilic displacement reactions

    NASA Technical Reports Server (NTRS)

    Herbert, C. G.; Bass, R. G.

    1994-01-01

    As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.

  17. Arterial ketone body ratio during and after cardiopulmonary bypass.

    PubMed

    Nomoto, S; Shimahara, Y; Kumada, K; Ogino, H; Okamoto, Y; Ban, T

    1992-06-01

    This study is the first to investigate the alteration in hepatic function during and after cardiopulmonary bypass in 30 patients by measuring the arterial ketone body ratio, an index of mitochondrial redox potential (oxidized nicotinamide-adenine dinucleotide/reduced nicotinamide-adenine dinucleotide). Although the preoperative arterial ketone body ratio was within normal limits (1.24 +/- 0.63), it decreased markedly 5 minutes after the start of cardiopulmonary bypass to 0.35 +/- 0.12 and remained at this low level throughout bypass. After bypass it continued to rise in a time-dependent fashion, returning to its preoperative level by the morning of the second postoperative day in normal convalescent patients. However, the ratio recovered more slowly in patients who required prolonged circulatory or respiratory support than in other patients. Thus we suggest that cardiopulmonary bypass had deleterious effects on the hepatic mitochondrial redox potential, which may contribute to homeostatic derangements and metabolic abnormalities.

  18. Isothermal physical aging characterization of Polyether-ether-ketone (PEEK) and Polyphenylene sulfide (PPS) films by creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Bradshaw, Roger D.

    2007-03-01

    This paper considers the experimental characterization of isothermal physical aging of PEEK and PPS films using a dynamic mechanical analyzer. Using the short-term test method established by Struik, momentary creep and stress relaxation curves were measured at several temperatures within 15-35°C below the glass transition temperature ( T g ) at various aging times. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates using the PHYAGE program. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results.

  19. A novel ketone monooxygenase from Pseudomonas cepacia. Purification and properties.

    PubMed

    Britton, L N; Markovetz, A J

    1977-12-10

    A ketone monooxygenase was purified from cells of Pseudomonas cepacia grown on 2-tridecanone as sole carbon source. Enzyme stability is maintained by the addition of ethanol, EDTA, and dithiothreitol. Stoichiometric studies show that for 1 mol of undecyl acetate formed, 1 mol of O2 is consumed and 1 mol of NADPH is oxidized. The monooxygenase, purified to homogeneity, has a molecular weight of approximately 123,000 and consists of two equal subunits with molecular weights of 55,000. The enzyme contains FAD and exhibits absorption maxima at 375 and 488 nm. Enzyme activity is inhibited by thiol-active reagents and the inhibition by the cations, cadmium, copper, zinc, and mercury, is reversed by dithiothreitol, indicating the presence of essential sulfhydryl groups. Substrate specificity tests show that acetate esters are formed from methyl ketones from C-7 through C-14. The oxygenase is also active on isomers of 2-tridecanone forming esters from 3- through 7-tridecanone. With 6-tridecanone, two esters are formed, heptyl hexanoate and pentyl octanoate, indicating that oxygen is inserted on either side of the carbonyl group. In addition, the enzyme catalyzes the lactonization of the cyclic ketone, cyclopentanone, with the formation of 5-valerolactone. PMID:925012

  20. The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase.

    PubMed

    Dong, X; Mumper, R J

    2006-09-01

    Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (<100 nm) were engineered from oil-in-water microemulsion precursors using emulsifying wax NF as the oil phase and polyoxyethylene 20-stearyl ether (Brij 78) as the surfactant. Emulsifying wax contains both cetyl and stearyl alcohols. NPs were incubated with the enzyme and NAD+ at 37 degrees C for up to 48 h, and the concentrations of fatty alcohols were quantitatively determined over time by gas chromatography (GC). The concentrations of cetyl alcohol and stearyl alcohol within the NPs decreased to only 10-20% remaining after 15-24 h of incubation. In parallel, NP size, turbidity and the fluorescence intensity of NADH all increased over time. It was concluded that horse liver alcohol dehydrogenase/NAD+ was able to metabolize the fatty alcohols within the NPs, suggesting that NPs made of fatty alcohols may be metabolized in the body via endogenous alcohol dehydrogenase enzyme systems. PMID:16954110

  1. The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase.

    PubMed

    Dong, X; Mumper, R J

    2006-09-01

    Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (<100 nm) were engineered from oil-in-water microemulsion precursors using emulsifying wax NF as the oil phase and polyoxyethylene 20-stearyl ether (Brij 78) as the surfactant. Emulsifying wax contains both cetyl and stearyl alcohols. NPs were incubated with the enzyme and NAD+ at 37 degrees C for up to 48 h, and the concentrations of fatty alcohols were quantitatively determined over time by gas chromatography (GC). The concentrations of cetyl alcohol and stearyl alcohol within the NPs decreased to only 10-20% remaining after 15-24 h of incubation. In parallel, NP size, turbidity and the fluorescence intensity of NADH all increased over time. It was concluded that horse liver alcohol dehydrogenase/NAD+ was able to metabolize the fatty alcohols within the NPs, suggesting that NPs made of fatty alcohols may be metabolized in the body via endogenous alcohol dehydrogenase enzyme systems.

  2. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  3. Methyl t-Butyl Ether Mineralization in Surface-Water Sediment Microcosms under Denitrifying Conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.

  4. Enantioselective synthesis of hindered cyclic dialkyl ethers via catalytic oxa-Michael/Michael desymmetrization†

    PubMed Central

    Corbett, Michael T.; Johnson, Jeffrey S.

    2014-01-01

    An asymmetric oxa-Michael/Michael cascade reaction of p-quinols and α,β-unsaturated aldehydes provides access to hindered dialkyl ethers. A highly enantioselective oxa-Michael addition of a tertiary alcohol precedes an intramolecular cyclohexadienone desymmetrization, which allows for the concomitant formation of four contiguous stereocenters in a single step. The highly functionalized bicyclic frameworks are rapidly obtained from simple starting materials with good diastereoselection and serve as valuable precursors for further manipulation. PMID:24683449

  5. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    2012-09-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear & friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  6. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  7. The EIMS fragmentation mechanisms of the sesquiterpenes corvol ethers A and B, epi-cubebol and isodauc-8-en-11-ol.

    PubMed

    Rabe, Patrick; Dickschat, Jeroen S

    2016-01-01

    Farnesyl diphosphate (FPP) and all fifteen positional isomers of ((13)C1)FPP were enzymatically converted by the bacterial terpene cyclases corvol ether synthase from Kitasatospora setae, the epi-cubebol synthase from Streptosporangium roseum, and the isodauc-8-en-11-ol synthase from Streptomyces venezuelae. The enzyme products were analysed by GC-MS and GC-QTOF MS(2) and the obtained data were used to delineate the EIMS fragmentation mechanisms of the two sesquiterpene ethers corvol ethers A and B, and the sesquiterpene alcohols epi-cubebol and isodauc-8-en-11-ol. PMID:27559388

  8. The EIMS fragmentation mechanisms of the sesquiterpenes corvol ethers A and B, epi-cubebol and isodauc-8-en-11-ol

    PubMed Central

    Rabe, Patrick

    2016-01-01

    Summary Farnesyl diphosphate (FPP) and all fifteen positional isomers of (13C1)FPP were enzymatically converted by the bacterial terpene cyclases corvol ether synthase from Kitasatospora setae, the epi-cubebol synthase from Streptosporangium roseum, and the isodauc-8-en-11-ol synthase from Streptomyces venezuelae. The enzyme products were analysed by GC–MS and GC–QTOF MS2 and the obtained data were used to delineate the EIMS fragmentation mechanisms of the two sesquiterpene ethers corvol ethers A and B, and the sesquiterpene alcohols epi-cubebol and isodauc-8-en-11-ol. PMID:27559388

  9. Effect of ethanol, carbon tetrachloride, and methyl ethyl ketone on butanol oxidase activity in rat lung and liver

    SciTech Connect

    Carlson, G.P. )

    1989-01-01

    Tha ability of the rat liver to oxidize 2-butanol via a cytochrome P-450-mediated mixed-function oxidase reaction is well known. The purpose of this study was to examine this microsomal alcohol oxidizing system in rat lung and determine if it could be altered by treatments that inhibit or induce this activity. 2-Butanol was incubated with microsomal preparations from male rats, and methyl ethyl ketone production was measured by gas chromatography. The rate was six to eight times lower in lung than in liver. Administration of low doses of ethanol (0.5 ml/kg and 1.0 ml/kg) ip for 7 d did not alter activity in the liver but was inhibitory in the lung, as was a high dose of 3.0 ml/kg in the liver. Carbon tetrachloride (1.0 ml/kg, ip) decreased activity in both tissues, especially the lung. The effects of the two inhibitors were not additive. Methyl ethyl ketone induced 2-butanol oxidation in both tissues. The lung possesses butanol oxidase activity that is alterable by both inhibitors and inducers.

  10. An expedient synthesis of linden ether.

    PubMed

    Serra, Stefano; Cominetti, Alessandra A

    2014-03-01

    We here describe a comprehensive study on the preparation of the intensive flavor 3,9-epoxy-p-mentha-1,4(8)-diene (1). Key steps of the presented synthesis are the selective addition of MeLi to the keto-ester 7, the regioselective cyclization of the obtained triol to give the ethers 4 and 8 and the selective dehydration of ether 4 through the use of POCI3 and pyridine. It is worth noting that the presented synthesis represents the first expedient and reliable entry to ether 1. Being present in linden honey, 1 is also known as linden ether and it has been regarded as a potential marker for the authentication of the linden honey origin. Therefore, ether 1 can be used as a useful reference standard for the analysis of the natural flavors, as we demonstrated by means of its identification in a sample ofunifloral linden honey.

  11. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    EPA Science Inventory

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  12. Oxidative rearrangement of cyclic tertiary allylic alcohols with IBX in DMSO.

    PubMed

    Shibuya, Masatoshi; Ito, Shinichiro; Takahashi, Michiyasu; Iwabuchi, Yoshiharu

    2004-11-11

    A practical and environmentally friendly method for oxidative rearrangement of five- and six-membered cyclic tertiary allylic alcohols to beta-disubstituted alpha,beta-unsaturated ketones by the IBX/DMSO reagent system is described. Several conventional protecting groups (e.g., Ac, MOM, and TBDPS) are compatible under the reaction conditions prescribed.

  13. Catalytic Rearrangement of 2-Alkoxy Diallyl Alcohols: Access to Polysubstituted Cyclopentenones.

    PubMed

    Lempenauer, Luisa; Duñach, Elisabet; Lemière, Gilles

    2016-03-18

    A catalytic rearrangement of diallyl alcohols comprising a cyclic enol ether has been developed using very mild conditions. Bismuth(III) triflate was found to be a very active catalyst for the ring rearrangement of a range of tertiary allylic alcohols to efficiently afford polysubstituted cyclopentenones with a high degree of diastereoselectivity. PMID:26927227

  14. Overview of Alcohol Consumption

    MedlinePlus

    ... Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol ... other questions about alcohol. Here’s what we know: Alcohol’s effects vary from person to person, depending on a ...

  15. Alcohol and pregnancy

    MedlinePlus

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... When a pregnant woman drinks alcohol, the alcohol travels through her blood and into the baby's blood, tissues, and organs. Alcohol breaks down much more slowly in ...

  16. Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition.

    PubMed

    Wood, Michael R; Noetzel, Meredith J; Tarr, James C; Rodriguez, Alice L; Lamsal, Atin; Chang, Sichen; Foster, Jarrett J; Smith, Emery; Chase, Peter; Hodder, Peter S; Engers, Darren W; Niswender, Colleen M; Brandon, Nicholas J; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2016-09-01

    This Letter describes the chemical optimization of a novel series of M4 PAMs based on a non-enolizable ketone core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent, selective and CNS penetrant; however, the compound was highly cleared in vitro and in vivo. SAR provided analogs for which M4 PAM potency and CNS exposure were maintained; yet, clearance remained high. Metabolite identification studies demonstrated that this series was subject to rapid, and near quantitative, reductive metabolism to the corresponding secondary alcohol metabolite that was devoid of M4 PAM activity.

  17. Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition.

    PubMed

    Wood, Michael R; Noetzel, Meredith J; Tarr, James C; Rodriguez, Alice L; Lamsal, Atin; Chang, Sichen; Foster, Jarrett J; Smith, Emery; Chase, Peter; Hodder, Peter S; Engers, Darren W; Niswender, Colleen M; Brandon, Nicholas J; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2016-09-01

    This Letter describes the chemical optimization of a novel series of M4 PAMs based on a non-enolizable ketone core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent, selective and CNS penetrant; however, the compound was highly cleared in vitro and in vivo. SAR provided analogs for which M4 PAM potency and CNS exposure were maintained; yet, clearance remained high. Metabolite identification studies demonstrated that this series was subject to rapid, and near quantitative, reductive metabolism to the corresponding secondary alcohol metabolite that was devoid of M4 PAM activity. PMID:27476142

  18. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  19. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    PubMed

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  20. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  1. Catalytic Enantioselective Carbon-Oxygen Bond Formation: Phosphine-Catalyzed Synthesis of Benzylic Ethers via the Oxidation of Benzylic C-H Bonds.

    PubMed

    Ziegler, Daniel T; Fu, Gregory C

    2016-09-21

    Benzylic alcohols and ethers are common subunits in bioactive molecules, as well as useful intermediates in organic chemistry. In this Communication, we describe a new approach to the enantioselective synthesis of benzylic ethers through the chiral phosphine-catalyzed coupling of two readily available partners, γ-aryl-substituted alkynoates and alcohols, under mild conditions. In this process, the alkynoate partner undergoes an internal redox reaction. Specifically, the benzylic position is oxidized with good enantioselectivity, and the alkyne is reduced to the alkene. PMID:27618638

  2. Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp

    PubMed Central

    Hardison, L. K.; Curry, S. S.; Ciuffetti, L. M.; Hyman, M. R.

    1997-01-01

    In this study, evidence for two novel metabolic processes catalyzed by a filamentous fungus, Graphium sp. strain ATCC 58400, is presented. First, our results indicate that this Graphium sp. can utilize the widely used solvent diethyl ether (DEE) as the sole source of carbon and energy for growth. The kinetics of biomass accumulation and DEE consumption closely followed each other, and the molar growth yield on DEE was indistinguishable from that with n-butane. n-Butane-grown mycelia also immediately oxidized DEE without the extracellular accumulation of organic oxidation products. This suggests a common pathway for the oxidation of both compounds. Acetylene, ethylene, and other unsaturated gaseous hydrocarbons completely inhibited the growth of this Graphium sp. on DEE and DEE oxidation by n-butane-grown mycelia. Second, our results indicate that gaseous n-alkane-grown Graphium mycelia can cometabolically degrade the gasoline oxygenate methyl tert-butyl ether (MTBE). The degradation of MTBE was also completely inhibited by acetylene, ethylene, and other unsaturated hydrocarbons and was strongly influenced by n-butane. Two products of MTBE degradation, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), were detected. The kinetics of product formation suggest that TBF production temporally precedes TBA accumulation and that TBF is hydrolyzed both biotically and abiotically to yield TBA. Extracellular accumulation of TBA accounted for only a maximum of 25% of the total MTBE consumed. Our results suggest that both DEE oxidation and MTBE oxidation are initiated by cytochrome P-450-catalyzed reactions which lead to scission of the ether bonds in these compounds. Our findings also suggest a potential role for gaseous n-alkane-oxidizing fungi in the remediation of MTBE contamination. PMID:16535667

  3. The effect of ketone bodies on renal ammoniogenesis

    PubMed Central

    Lemieux, Guy; Vinay, Patrick; Robitaille, Pierre; Plante, Gérard E.; Lussier, Yolande; Martin, Pierre

    1971-01-01

    Infusion of ketone bodies to ammonium chloride-loaded acidotic dogs was found to induce significant reduction in urinary excretion of ammonia. This effect could not be attributed to urinary pH variations. Total ammonia production by the left kidney was measured in 25 animals infused during 90 min with the sodium salt of D,L-β-hydroxybutyric acid adjusted to pH 6.0 or 4.2. Ketonemia averaged 4.5 mM/liter. In all experiments the ammonia content of both urine and renal venous blood fell markedly so that ammoniogenesis was depressed by 60% or more within 60 min after the onset of infusion. Administration of equimolar quantities of sodium acetoacetate adjusted to pH 6.0 resulted in a 50% decrease in renal ammonia production. Infusion of ketone bodies adjusted to pH 6.0 is usually accompanied by a small increase in extracellular bicarbonate (3.7 mM/liter). However infusion of D,L-sodium lactate or sodium bicarbonate in amounts sufficient to induce a similar rise in plasma bicarbonate resulted in only a slight decrement in ammonia production (15%). The continuous infusion of 5% mannitol alone during 90-150 min failed to influence renal ammoniogenesis. Infusion of pure sodium-free β-hydroxybutyric acid prepared by ion exchange (pH 2.2) resulted in a 50% decrease in renal ammoniogenesis in spite of the fact that both urinary pH and plasma bicarbonate fell significantly. During all experiments where ketones were infused, the renal extraction of glutamine became negligible as the renal glutamine arteriovenous difference was abolished. Renal hemodynamics did not vary significantly. Infusion of β-hydroxybutyrate into the left renal artery resulted in a rapid decrease in ammoniogenesis by the perfused kidney. The present study indicates that ketone bodies exert their inhibitory influence within the renal tubular cell. Since their effect is independent of urinary or systemic acid-base changes, it is suggested that they depress renal ammoniogenesis by preventing the

  4. Methyl isobutyl ketone as a solvent for wax deoiling

    SciTech Connect

    Larikov, V.I.; Pereverzev, A.N.; Roshchin, Y.N.; Sokolova, S.P.

    1983-09-01

    The solvency of methyl isobutyl ketone (MIBK) for use in deoiling and cold-fractionation of solid paraffin waxes is investigated by a visual polytherm method in the temperature interval 0-36 C. The capability of MIBK for precipitating solid hydrocarbons from solution was found to be greater than acetone/toluene or MEK/toluene, with only MEK better in this respect than MIBK. The quantity of wax remaining in the filtrate is examined. The critical solution temperatures are investigated and it is shown that MIBK surpasses MEK. The results obtained indicate that MIBK is extremely promising for use in processes of deoiling and cold fractionation of waxes.

  5. Bioreduction of aldehydes and ketones using Manihot species.

    PubMed

    Machado, Luciana L; Souza, João Sammy N; de Mattos, Marcos Carlos; Sakata, Solange K; Cordell, Geoffrey A; Lemos, Telma L G

    2006-08-01

    Biocatalysis constitutes an important tool in organic synthesis, especially for the preparation of chiral molecules of biological interest. A series of aliphatic and aromatic aldehydes and two ketones were reduced using plant cell preparations from Manihot esculenta and Manihot dulcis roots. The reduced products were typically obtained in excellent yields (80-96%), and with excellent enantiomeric excess (94-98%), except for vanillin. Esters, a nitrile, and an amide were also examined, but were not reduced. Preliminary conversion rate studies are reported. This is the first attempt to perform the biotransformation of carbonyl compounds using Manihot species. PMID:16603212

  6. Catalytic enantioselective peroxidation of alpha,beta-unsaturated ketones.

    PubMed

    Lu, Xiaojie; Liu, Yan; Sun, Bingfeng; Cindric, Brittany; Deng, Li

    2008-07-01

    Despite the potential of chiral peroxides as biologically interesting or even clinically important compounds, no catalytic enantioselective peroxidation has been reported. With a chiral catalyst not only to induce enantioselectivity but also to convert a well established epoxidation pathway into a peroxidation pathway, the first efficient catalytic peroxidation has been successfully developed. Employing readily available alpha,beta-unsaturated ketones and hydroperoxides and an easily accessible cinchona alkaloid catalyst, this novel reaction will open new possibilities in the asymmetric synthesis of chiral peroxides. Under different conditions a highly enantioselective epoxidation with the same starting materials, reagents, and catalyst has was also established.

  7. Low temperature (550-700 K) oxidation pathways of cyclic ketones: dominance of HO2-elimination channels yielding conjugated cyclic coproducts.

    PubMed

    Scheer, Adam M; Welz, Oliver; Vasu, Subith S; Osborn, David L; Taatjes, Craig A

    2015-05-14

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8=O), cyclohexanone (CHO; C6H10=O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3-C5H7=O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formed via fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. The photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd-Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. The calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. The prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines. PMID:25877515

  8. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    DOE PAGES

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-eliminationmore » yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  9. Microscopic roots of alcohol-ketone demixing: infrared spectroscopy of methanol-acetone clusters.

    PubMed

    Kollipost, Franz; Domanskaya, Alexandra V; Suhm, Martin A

    2015-03-19

    Infrared spectra of isolated methanol-acetone clusters up to tetramers are experimentally characterized for the first time. They show evidence for a nanometer-scale demixing trend of the cold species. In combination with quantum calculations, the mutual repulsion is demonstrated to start beyond three molecular units, whereas individual molecules still prefer to form a mixed complex.

  10. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  11. Chirally modified platinum generated by adsorption of cinchonidine ether derivatives: towards uncovering the chiral sites.

    PubMed

    Bonalumi, Norberto; Vargas, Angelo; Ferri, Davide; Baiker, Alfons

    2007-01-01

    The adsorption behavior of O-methyl and O-trimethylsilyl derivatives of cinchonidine (CD), employed as chiral modifiers for heterogeneous enantioselective hydrogenations on supported Pt catalysts, has been investigated by using attenuated total reflection infrared spectroscopy (ATR-IR) and density functional theory (DFT) electronic structure calculations. The ATR-IR spectroscopic investigation provided detailed insight of the adsorbed modifiers under conditions close to those employed during catalytic processes, and electronic structure calculations were used as a complement to the experiments to uncover the implications of conformational changes in generating the topology of the surface chiral site. The structural investigation of the adsorbed modifiers revealed a relationship between the spatial positions of the ether substituents and the enantiodifferentiation induced by the modified catalyst observed in the hydrogenation of alpha-activated ketones. Experiments and calculations corroborate a model, according to which the addition of a bulky ether group to CD reshapes the chiral sites, thus generating catalytic chiral surfaces with different and, in some cases (e.g. hydrogenation of ketopantolactone), even opposite enantioselective properties to those obtained with CD without altering the absolute configuration of the modifier. The study also confirms that active surface conformations of cinchona modifiers are markedly different from those existing in vacuum and in solution, thus underlying the necessity of investigating the surface-modifier interaction in order to understand enantioselectivity.

  12. Synthesis, conformational parameters and packing considerations of methyl bispyridyl ketones

    NASA Astrophysics Data System (ADS)

    Weck, Christian; Katzsch, Felix; Gruber, Tobias

    2015-10-01

    The crystal structures of two bispyridyl ketones featuring either two methyl residues or one methyl and one bromomethyl residue, respectively, are presented. In order to elucidate the influence of the substituents, a comprehensive comparison with the non-methylated mother compound has been performed. A special focus lies thereby on the relative position of the heteroatoms and their free electron pairs. The two methyl groups at the bispyridyl ketone result in two molecules in the asymmetric unit adopting rather different conformations. Due to the fast crystallization conditions and a melting point differing from the literature, a polymorph close to a local minimum in the energy hypersurface seems possible. After introducing a bromine atom to one of the two methyl groups, the molecular conformation is very similar to the unsubstituted molecule. The packing of both title compounds is dominated by weak contacts of the C-H⋯π and C-H⋯Y type (Y = O, N) and C-H⋯Br- and Br⋯π-contacts for the brominated molecule.

  13. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells.

    PubMed

    Grabacka, Maja M; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  14. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  15. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity

    PubMed Central

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H.; Rosenberger, Thad A.; Haughey, Norman J.; Masino, Susan A.; Geiger, Jonathan D.

    2012-01-01

    HIV-1 associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. PMID:22524563

  16. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    SciTech Connect

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  17. Characterization of synthetic routes to 'Bromo-DragonFLY' and benzodifuranyl isopropylamine homologues utilizing ketone intermediates. Part 1: synthesis of ketone precursors.

    PubMed

    O'Connor, Richard E; Keating, John J

    2014-01-01

    Bromo-DragonFLY (BDF) and many of its analogues are misused as recreational drugs due to their potency as psychoactive substances. To date, none of the published routes to these designer amphetamines have exploited a ketone intermediate. It is well known that benzyl methyl ketone (BMK) can be employed as a precursor in the synthesis of amphetamine. Similarly, it is reasonable to assume that ketone precursors may potentially be utilized in the clandestine synthesis of BDF and its homologues. This paper describes the multifaceted synthesis of novel precursor ketones structurally related to BDF, namely benzodifuranyl propanone 16, its tetrahydrobenzodifuranyl homologue 8, and their brominated analogues 12 and 20. Their characterization by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy ((1) H-NMR), carbon nuclear magnetic resonance spectroscopy ((13) C-NMR), high performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS) is also described. PMID:23794359

  18. Phenylethynl-terminated poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)

    1993-01-01

    Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro- 4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350 C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.

  19. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    PubMed

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. PMID:26898532

  20. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  1. Further research on the biological activities and the safety of raspberry ketone are needed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry ketone supplements have grabbed consumer attention with the possibility they might help burn fat and aid weight loss. While raspberry ketone occurs naturally, and is found in raspberry fruit, most is synthetically produced for use in commercial products as flavorings, fragrances, or dietar...

  2. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for...

  3. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for...

  4. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for...

  5. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    PubMed

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins.

  6. A One-Pot Tandem Strategy in Catalytic Asymmetric Vinylogous Aldol Reaction of Homoallylic Alcohols.

    PubMed

    Hou, Xufeng; Jing, Zhenzhong; Bai, Xiangbin; Jiang, Zhiyong

    2016-01-01

    Reported is a rationally-designed one-pot sequential strategy that allows homoallylic alcohols to be employed in a catalytic, asymmetric, direct vinylogous aldol reaction with a series of activated acyclic ketones, including trifluoromethyl ketones, γ-ketoesters, and α-keto phosphonates, in high yields (up to 95%) with excellent regio- and enantio-selectivity (up to 99% ee). This modular combination, including Jones oxidation and asymmetric organocatalysis, has satisfactory compatibility and reliability even at a 20 mmol scale, albeit without intermediary purification. PMID:27355935

  7. Enzyme-triggered and self-cleaving fragrant alcohol precursors.

    PubMed

    Flachsmann, Felix; Gautschi, Markus; Bachmann, Jean-Pierre; Brunner, Gerhard

    2008-06-01

    The high volatility and water solubility of many natural perfumery alcohols leads to their rapid loss in fabric-care and personal-care applications. A dramatically enhanced substantivity is achieved by the use of fragrance precursors as controlled-release systems. In the first part of this article, we present multi-odorant precursors, in which the enzymatic cleavage of esters or carbonates of fragrant alcohols triggers subsequent steps leading to the release of fragrant ketones, lactones, and additional fragrant alcohols. In the second part, a study on oligocarbonates of fragrant alcohols is presented. Therein, the outstanding enzyme-independent performance of gluconolactone oligocarbonate 27 for the long-lasting release of (Z)-hex-3-en-1-ol is highlighted. We show that these polyfunctional compounds undergo complex rearrangements and intramolecular substitution reactions which lead to the observed release kinetics.

  8. Amino ketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations

    PubMed Central

    Turner, J. M.; Willetts, A. J.

    1967-01-01

    1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol

  9. Alcohol during Pregnancy

    MedlinePlus

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  10. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 17728 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  11. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  12. 27 CFR 19.746 - Authorized materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ketone; (vii) Mixed isomers of nitropropane; (viii) Heptane; (ix) Ethyl tertiary butyl ether (ETBE); (x... isomers of nitropropane, heptane, toluene, and isopropyl alcohol are found in part 21, subpart E, of...

  13. 27 CFR 19.746 - Authorized materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ketone; (vii) Mixed isomers of nitropropane; (viii) Heptane; (ix) Ethyl tertiary butyl ether (ETBE); (x... isomers of nitropropane, heptane, toluene, and isopropyl alcohol are found in part 21, subpart E, of...

  14. 27 CFR 19.746 - Authorized materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ketone; (vii) Mixed isomers of nitropropane; (viii) Heptane; (ix) Ethyl tertiary butyl ether (ETBE); (x... isomers of nitropropane, heptane, toluene, and isopropyl alcohol are found in part 21, subpart E, of...

  15. 27 CFR 19.746 - Authorized materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ketone; (vii) Mixed isomers of nitropropane; (viii) Heptane; (ix) Ethyl tertiary butyl ether (ETBE); (x... isomers of nitropropane, heptane, toluene, and isopropyl alcohol are found in part 21, subpart E, of...

  16. 21 CFR 184.1278 - Diacetyl.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chemically synthesized from methyl ethyl ketone. It is miscible in water, glycerin, alcohol, and ether, and... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon...

  17. 21 CFR 184.1278 - Diacetyl.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chemically synthesized from methyl ethyl ketone. It is miscible in water, glycerin, alcohol, and ether, and... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon...

  18. 21 CFR 184.1278 - Diacetyl.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chemically synthesized from methyl ethyl ketone. It is miscible in water, glycerin, alcohol, and ether, and... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon...

  19. 21 CFR 184.1278 - Diacetyl.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chemically synthesized from methyl ethyl ketone. It is miscible in water, glycerin, alcohol, and ether, and... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon...

  20. 21 CFR 184.1278 - Diacetyl.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methyl ethyl ketone. It is miscible in water, glycerin, alcohol, and ether, and in very dilute water... recognized as safe (GRAS) as a direct human food ingredient is based upon the following current...