Science.gov

Sample records for alcohols methanol ethanol

  1. Breakdown in vapors of alcohols: methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran Lj.; Sivos, Jelena; Skoro, Nikola; Maric, Dragana; Malovic, Gordana

    2014-10-01

    Breakdown data for vapors of the two simplest alcohols - methanol and ethanol - are presented. The breakdown is achieved between plan-parallel electrodes, where cathode is made of copper and anode is a thin film of platinum deposited on quartz window. Diameter of electrodes is 5.4 cm and electrode gap 1.1 cm. We compare breakdown voltages (Paschen curves) for methyl and ethyl alcohol in the pressure range 0.1--2 Torr. In both vapors, the pressure is kept well below the vapor pressure, to prevent formation of liquid droplets. For each point of Paschen curves corresponding axial profiles of emission are recorded by ICCD camera in visual part of the spectra. Axial intensity distributions reveal important processes of excitation. Both vapors show strong emission peak near the cathode at all pd values covered by measurements, which indicates that excitation by ions and fast neutrals play important role in the discharge. Preliminary spectrally resolved measurements of the discharge structure with optical filters show that dominantly emission comes from CH band at 431 nm. There is a very low intensity of H α emission detected in ethanol vapor at high E/N, while it is much stronger in methanol even at lower E/N. It is interesting to note that H α emission in methanol exhibits exponential increase of intensity from the cathode to the anode, so it comes mainly from excitation by electrons, not heavy particles. Supported by MESTD Projects ON171037 and III41011.

  2. Intercalation of alcohols methanol, ethanol and isopropanol into fullerene C 60 lattice

    NASA Astrophysics Data System (ADS)

    Vojinovic-Miloradov, Mirjana; Lazar, Dusan; Djordjevic, Aleksandar; Adamov, Jasna; Milic-Djordjevic, Vukosava; Vujic, Djura; Odavic-Josic, Jelica; Koruga, Djuro

    1998-11-01

    New non-covalent intermolecular fullerene system containing discrete C 60 and alcohol molecules have been prepared from the saturated solutions of fullerene in toluene with ethanol, methanol and isopropanol. The formation of intercalates with alcohols R-OH⊂C 60 (R=C 1-C 3) has not been described in the literature yet. Pure intercalates R-OH⊂C 60 were obtained in the direct synthesis of C 60 in toluene with R-OH (methanol, ethanol and isopropanol). UV and IR spectra of C 2H 5-OH⊂C 60 and C 3H 7-OH⊂C 60 showed no change compared to the pristine C 60. However, IR spectrum of the methanol intercalate contains additional peaks at 2920 and 3400 cm -1. There has also been no change in their diffraction images concerning the d-values (the diffractograms of powder), indicating that the compounds are isostructural with C 60. The appearance of a very intensive d 101 peak in the powder diffractogram of the methanol derivative indicates that stacking disorder is probably eliminated, which can be correlated to the additional bands in IR spectrum. Intermolecular interactions (of the type that exists in supramolecular systems) between C 60 and alcohol molecules C 1-C 3 exist because of the specific energy surfaces of C 60 molecule (the consequence of its electronic, vibrational and rotational properties) and the size, inductive, spatial and geometrical characteristics of intercalants (alcohols). The size and shape of the alcohols which form intercalates with C 60 is such that they nicely fit within the intermolecular distances of C 60 molecules (0.293 nm) in a hexagonal lattice.

  3. Alcohol fuels from biomass in Brazil: a comparative assessment of methanol and ethanol

    SciTech Connect

    Ghirardi, A.G.

    1983-01-01

    The prospect of an unprecedented production of ethanol for use as fuel has raised two general types of questions: (a) is sugar cane/ethanol the most cost-effective feedstock/product combination for a Brazilian alcohol-fuels program. (b) What are the potential environmental impacts of increased alcohol-fuels production, especially with respect to water quality and land use. This study uses a linear-programming model to evaluate options for future alcohol-fuels production in the state of Sao Paulo, Brazil. The results indicate that: (a) the expansion of alcohol distilleries located adjacent to sugar refineries was the best strategy for the first phase of the Program; (b) in the future, the use of wood methanol could be less costly than sugar ethanol produced in independent distilleries; (c) ethanol from manioc can be competitive only if the cost of manioc falls to half of its current value, but manioc could be used immediately as a backup feedstock in the sugar-cane off-season; (d) the displacement of other crops by sugar cane, as measured by current land prices, seems to have little impact on the cost of ethanol, but could pose problems in terms of increased food prices and loss of foreign exchange; (e) the enforcement of regional water-quality standards would require relocation of distilleries in order to protect areas which already show high levels of pollution; (f) from the standpoint of gasoline substitution, the use of pure alcohol fuels should be expanded as much as possible.

  4. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.

  5. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  6. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  7. The combined oxidation of methanol and ethanol on silver catalysts

    SciTech Connect

    Kurina, L.N.; Gryaznov, V.M.; Gul yanova, S.G.; Plakidkin, A.A.; Vedernikov, V.I.

    1985-10-01

    The authors study the oxidation of methanol, ethanol, and mixtures of these alcohols on industrial silver-pumice and silver membrane catalysts as well as the adsorption of these alcohols on silver. The oxidation of the alcohol mixture on the industrial silver-pumice catalyst gives higher yields of both formaldehyde and acetaldehyde than in the oxidation of the alcohols taken individually. It is also shown that an increase in the rates of formaldehyde formation in the combined oxidation of methanol and ethanol was observed on the silver membrane catalyst.

  8. Microwave Spectrum of the Ethanol-Methanol Dimer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Carroll, Brandon; Mead, Griffin; Blake, Geoffrey

    2016-06-01

    The hydrogen bond donor/acceptor competition in mixed alcohol clusters remains a fundamental question in physical chemistry. Previous theoretical work on the prototype ethanol-methanol dimer has been inconclusive in predicting the energetically preferred structure. Here, we report the microwave spectrum of the ethanol-methanol dimer between 8-18 GHz, using a chirped pulse Fourier transform microwave spectrometer. With the aid of ab initio calculations, 36 transitions have been fit and assigned to a t-ethanol-acceptor, methanol-donor structure in an argon-backed expansion. In a helium-backed expansion, a second excited conformer has been observed, and tentatively assigned to a g-ethanol-acceptor, methanol-donor structure. No ethanol-donor, methanol-acceptor structures have been found, suggesting such structures are energetically disfavored.

  9. Composites of polyvinyl alcohol and carbon (coils, undoped and nitrogen doped multiwalled carbon nanotubes) as ethanol, methanol and toluene vapor sensors.

    PubMed

    Greenshields, Márcia W C C; Hümmelgen, Ivo A; Mamo, Messai A; Shaikjee, Ahmed; Mhlanga, Sabelo D; van Otterlo, Willem A L; Coville, Neil J

    2011-11-01

    We investigate the chemical sensing behavior of composites prepared with polyvinyl alcohol and carbon materials (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and carbon nanocoils). We determine the sensitivity of thin films of these composites for ethanol, methanol and toluene vapor, comparing their conductance and capacitance responses. The composite that exhibits highest sensitivity depends on specific vapor, vapor concentration and measured electrical response, showing that the interactivity of the carbon structure with chemical species depend on structural specificities of the carbon structure and doping.

  10. A many-body model for alcohols: applications to the cyclic methanol/water hetero trimers, and to the (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n=2-6)

    NASA Astrophysics Data System (ADS)

    Flament, Michel Masella Jean-Pierre

    The TCPE many-body model for water has been adapted to alcohols. As for water, the model parameters have been assigned to reproduce ab initio results at the MP2 level with the methanol/water hetero dimers and the methanol cyclic trimer. Model results have been shown to be in good agreement with available ab initio calculations on methanol/water hetero cyclic trimers and with experiment for (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n = 2-6). Cooperative effects estimated from this model have been shown to increase with cluster size (from about 15% for n = 3 to about 25% for n = 6, and even 33% in the case of t-butanol), and the polarization many-body effects shown to represent more than 70% (81% for t-butanol) of the total cooperative effects in such systems. All of these results suggest that the TCPE model is well suited to use in simulations of alcohol or alcohol/water systems.

  11. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  12. Conversion of Methanol, Ethanol and Propanol over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcohols over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.

  13. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    PubMed

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  14. Net energy analysis of methanol and ethanol production

    NASA Astrophysics Data System (ADS)

    Perez-Blanco, H.; Hannon, B.

    1982-03-01

    Methanol (MeOH) and ethanol (EtOH) are industrial alcohols that can be used as liquid fuels. They may be obtained from renewable or non-renewable feedstocks. The production processes and end uses are analyzed in order to assess the potential energy savings introduced by alcohol production from renewable instead of nonrenewable feedstock. Whereas MeOH production from wood brings about energy savings, EtOH production from corn may or may not save energy depending on the end use of the alcohol. If the alcohol is used as a motor fuel, no overall energy savings are found. The economics and total labor requirements of each process are also considered.

  15. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.

    PubMed

    Olson, Edwin S; Sharma, Ramesh K; Aulich, Ted R

    2004-01-01

    The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the self-condensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol. All of these higher alcohols are useful as solvents, chemical intermediates, and fuel additives and, consequently, have higher market values than the simple alcohol intermediates. Several new catalysts for the condensation of ethanol and alcohol mixtures to higher alcohols were designed and tested under a variety of conditions. Reactions of methanol-ethanol mixtures gave as high as 100% conversion of the ethanol to form high yields of isobutanol with smaller amounts of 1-propanol, the amounts in the mixture depending on the starting mixture. The most successful catalysts are multifunctional with basic and hydrogen transfer components.

  16. Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Incidence of methanol contamination of traditionally fermented beverages is increasing globally resulting in the death of several persons. The source of methanol contamination has not been clearly established in most countries. While there were speculations that unscrupulous vendors might have deliberately spiked the beverages with methanol, it is more likely that the methanol might have been produced by contaminating microbes during traditional ethanol fermentation, which is often inoculated spontaneously by mixed microbes, with a potential to produce mixed alcohols. Methanol production in traditionally fermented beverages can be linked to the activities of pectinase producing yeast, fungi and bacteria. This study assessed some traditional fermented beverages and found that some beverages are prone to methanol contamination including cachaca, cholai, agave, arak, plum and grape wines. Possible microbial role in the production of methanol and other volatile congeners in these fermented beverages were discussed. The study concluded by suggesting that contaminated alcoholic beverages be converted for fuel use rather than out rightly banning the age-long traditional alcohol fermentation.

  17. Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Incidence of methanol contamination of traditionally fermented beverages is increasing globally resulting in the death of several persons. The source of methanol contamination has not been clearly established in most countries. While there were speculations that unscrupulous vendors might have deliberately spiked the beverages with methanol, it is more likely that the methanol might have been produced by contaminating microbes during traditional ethanol fermentation, which is often inoculated spontaneously by mixed microbes, with a potential to produce mixed alcohols. Methanol production in traditionally fermented beverages can be linked to the activities of pectinase producing yeast, fungi and bacteria. This study assessed some traditional fermented beverages and found that some beverages are prone to methanol contamination including cachaca, cholai, agave, arak, plum and grape wines. Possible microbial role in the production of methanol and other volatile congeners in these fermented beverages were discussed. The study concluded by suggesting that contaminated alcoholic beverages be converted for fuel use rather than out rightly banning the age-long traditional alcohol fermentation. PMID:27652180

  18. Standardized treatment of severe methanol poisoning with ethanol and hemodialysis

    SciTech Connect

    Ekins, B.R.; Rollins, D.E.; Duffy, D.P.; Gregory, M.C.

    1985-03-01

    Seven patients with methanol poisoning were treated with ethanol, hemodialysis and supportive measures. The interval between ingestion and initiation of ethanol therapy varied from 3 to 67 hours and from ingestion to dialysis from 9 to 93 hours. All patients survived, but one had permanent visual impairment. A 10% ethanol solution administered intravenously is a safe and effective antidote for severe methanol poisoning. Ethanol therapy is recommended when plasma methanol concentrations are higher than 20 mg per dl, when ingested doses are greater than 30 ml and when there is evidence of acidosis or visual abnormalities in cases of suspected methanol poisoning. 13 references, 1 figure, 2 table.

  19. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined. For purposes of section 4041(b)(2) and this section, qualified methanol or ethanol fuel is liquid motor...

  20. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  1. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  2. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  3. Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus.

    PubMed

    Matsushita, K; Takahashi, K; Takahashi, M; Ameyama, M; Adachi, O

    1992-06-01

    Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. [Concentration of endogenous ethanol and alcoholic motivation].

    PubMed

    Burov, Iu V; Treskov, V G; Kampov-Polevoĭ, A B; Kovalenko, A E; Rodionov, A P

    1983-11-01

    Trials with patients suffering from stage II chronic alcoholism and normal test subjects as well as experiments made on male C57BL mice (with genetically determined alcoholic motivation) and CBA mice (with genetically determined alcoholic aversion) and random-bred male rats with different levels of initial alcoholic motivation have shown the presence of reverse proportional dependence between blood plasma endogenous ethanol and alcoholic motivation.

  5. Hydrogen bond competition in the ethanol-methanol dimer.

    PubMed

    Finneran, Ian A; Carroll, P Brandon; Mead, Griffin J; Blake, Geoffrey A

    2016-08-10

    Previous theoretical work on the ethanol-methanol dimer has been inconclusive in predicting the preferred hydrogen bond donor/acceptor configuration. Here, we report the microwave spectrum of the dimer using a chirped pulse Fourier transform microwave spectrometer from 8-18 GHz. In an argon-backed expansion, 50 transitions have been assigned to a trans-ethanol-acceptor/methanol-donor structure that is likely stabilized by a secondary weak C-HO hydrogen bond. A higher energy conformer was observed in a helium-backed expansion and tentatively assigned to a gauche-ethanol-acceptor/methanol-donor structure. No ethanol-donor/methanol-acceptor dimers have been found, suggesting such interactions are energetically disfavored. A preliminary analysis of the A-E splitting due to the internal rotation of the methanol methyl group in the ground state species is also presented. We find evidence of the Ubbelohde effect in the measured A-E splittings of three deuterated isotopologues and the normal species of this conformer. PMID:27472828

  6. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  7. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  8. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  9. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  10. The potential of CO2 laser photoacoustic spectrometry for detection of methanol in alcoholic beverage

    NASA Astrophysics Data System (ADS)

    Lin, J.-W.; Shaw, S.-Y.

    2009-03-01

    The first use of CO2 laser photoacoustic measurements for detecting the methanol contents in alcohol-like solutions is presented. With an intracavity cell configuration, the minimum detectable concentration was ˜200 ppm for methanol and the linear range of the calibration curve for methanol was from 200 to 70000 ppm. For demonstrating the reliability of analysis in alcoholic beverages, a series of different concentrations of two-component samples was prepared and measured by the same procedures. The results showed the feasibility on determining methanol and ethanol contents accurately within a specific tolerance, limited mainly by background signal and laser stability. This potential method with no pre-treatment of samples takes only ˜10 min to finish one single measurement. It suggests that the PA detection is suitable for routine diagnosis of adulterated wines in commercial products.

  11. Analysis of methanol and ethanol in virgin olive oil

    PubMed Central

    Gómez-Coca, Raquel B.; Cruz-Hidalgo, Rosario; Fernandes, Gabriel D.; Pérez-Camino, María del Carmen; Moreda, Wenceslao

    2014-01-01

    This work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.55 mg kg−1 and its LOQ is 0.59 mg kg−1. Advantages of this method are:•Simultaneous determination of methanol and ethanol (the pre-existing Spanish specification UNE-EN 14110 only analyses methanol).•No need of equipment modifications (standard split injectors work perfectly). Use of a highly polar capillary GC column, leading in most cases to chromatograms in which only three dominant peaks are present – methanol, ethanol, and propanol (that is extremely positive for easy interpretation of results).•Use of an internal standard (1-propanol) to determine the concentration of the analytes, reducing the presence of error sources. PMID:26150954

  12. Contactless conductometric determination of methanol and ethanol in samples containing water after their electrophoretic desalination.

    PubMed

    Tůma, Petr; Opekar, František

    2015-08-01

    Determination of the contents of methanol and ethanol in aqueous solutions was performed by measuring the permittivity of solutions using a contactless conductivity detector (C(4) D) normally used for detection in capillary electrophoresis. The detection cell is a section of a fused silica capillary with an internal diameter of 50 μm with a pair of conductivity electrodes on the external walls. The C(4) D response to samples of methanol/water and ethanol/water mixtures is linear in the concentration interval of approx. 40-100% v/v alcohol content. In the analysis of technical samples of methanol and ethanol, the determination is disturbed by the presence of even trace amounts of salts. This interference can be effectively eliminated by integrated electrophoretic desalination of the sample by the application of a direct current electric voltage with a magnitude of 10 kV to the capillary with the injected sample zone. Under these conditions, the ions migrate out of the sample zone and the detector response is controlled purely by the permittivity of the solvent/water zone. Desalinating is effective for NaCl contents in the range from 0 to 5 mmol/L NaCl. The effectiveness of the desalinating process has been verified on MeOH/water samples and in determination of the ethanol content in distilled beverages normally available in the retail network.

  13. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  14. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    SciTech Connect

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N.; Westbrook, Charles K.

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  15. Enzyme electrode for on-line determination of ethanol and methanol

    SciTech Connect

    Belghith, H.; Romette, J.; Thomas, D.

    1987-01-01

    Since a stable alcohol oxidase with a high specific activity is not commercially available, they propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO/sub 2/ sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5 mM to 15 mM and for methanol from 10 mM to 300 mM. On repeated use, the electrode signal for 10 mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis.

  16. Vapor-liquid equilibria for methanol + ethanol + calcium chloride, + ammonium iodide, and + sodium iodide at 298.15 K

    SciTech Connect

    Yamamoto, Hideki; Terano, Tamotsu; Nishi, Yasuharu; Tokunaga, Junji

    1995-03-01

    Recently, an alternative extractive distillation using a salt as extractive solvent has attracted attention. Vapor-liquid equilibria for methanol + ethanol + CaCl{sub 2}, + NH{sub 4}I, and + NaI were measured at 298.15 {+-} 0.05 K using a static method. The data obtained in this apparatus were confirmed by comparison with the literature data of ethanol + water and ethanol + water + CaCl{sub 2} and tested for thermodynamic consistency. Any salt used in this work exerted salting-in effect on the methanol + ethanol system, the magnitude of which was CaCl{sub 2} > NaI > NH{sub 4}I. The observed data were correlated by use of Hala`s equation, and {beta} was determined for each system. The calculated result of each system reproduced experimental data within an accuracy of {+-}2.12% in vapor-phase mole fraction. From the results of comparison of {beta} obtained in this work with the kind of salt additive for methanol + ethanol and ethanol + water systems, it was found that {beta} depended mainly on the kind of salt but not on the kind of solvent mixture. The application of Hala`s model for an alcohol + alcohol + salt system was confirmed at a temperature of 298.15 K.

  17. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    PubMed

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  18. Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Hamieh, S.; Canaff, C.; Tayeb, K. Ben; Tarighi, M.; Maury, S.; Vezin, H.; Pouilloux, Y.; Pinard, L.

    2015-07-01

    Ethanol and methanol are converted using H-ZSM-5 zeolite at 623 K and 3.0 MPa into identical hydrocarbons (paraffins, olefins and aromatics) and moreover with identical selectivities. The distribution of olefins as paraffins follows the Flory distribution with a growth probability of 0.53. Regardless of the alcohol, the catalyst lifetime and selectivity into hydrocarbons C3+ are high in spite of an important coke content. The coke that poisons the Brønsted acid sites without blocking their access is composed in part of radical polyalkylaromatics. The addition of hydroquinone, an inhibitor of radicals, to the feed, provokes an immediate catalyst deactivation.

  19. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    PubMed

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1).

  20. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    PubMed

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.

  1. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  2. Desorption kinetics of methanol, ethanol, and water from graphene.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra. PMID:24654652

  3. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    PubMed

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  4. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Lin, Neng-Biao; Chai, Xin-Sheng; Zhong-Li; Barnes, Donald G

    2015-09-15

    This work reports on a full evaporation headspace gas chromatographic (FE HS-GC) method for simultaneously determining the ethanol (EtOH) and methanol (MeOH) content in wines. A small sample (10μL) was placed in a headspace sample vial, and a near-complete mass transfer of ethanol and methanol from the liquid sample to the vapor phase was obtained within three minutes at a temperature of 105°C, which allowed the measurement of the EtOH and MeOH content in the sample by GC. The results showed excellent precision and accuracy, as shown by the reproducibilities of 1.02% and 2.11% for EtOH and MeOH, respectively, and recoveries that ranged from 96.1% to 104% for both alcohols. The method is efficient, accurate and suitable for the determination of EtOH and MeOH in wine production and quality control.

  5. Hydrogen bonding of water-ethanol in alcoholic beverages.

    PubMed

    Nose, Akira; Hojo, Masashi

    2006-10-01

    An alcoholic beverage is a type of water-ethanol solution with flavor and taste. The properties of the hydrogen bonding of water-ethanol in alcoholic beverages have not been clarified sufficiently. We investigated factors that could affect the hydrogen-bonding structure of water-ethanol on the basis of proton nuclear magnetic resonance (1H NMR) chemical shifts of the OH of water-ethanol and Raman OH stretching spectra. Not only acids (H+ and HA: undissociated acids) but also bases (OH- and A-: conjugate-base anions from weak acids) strengthened the hydrogen-bonding structure of water-ethanol. It was also demonstrated that the hydrogen bonding is strengthened by chemical components in alcoholic beverages (whiskey, Japanese sake, shochu). It can be suggested that hydrogen-bonding donors as well as acceptors in alcohol beverages, which exist as the initial components or are gained later on, should cause the tight association between water and ethanol molecules. PMID:17116572

  6. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    SciTech Connect

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  7. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice

    PubMed Central

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence. PMID:27729866

  8. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    PubMed

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples.

  9. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  10. Behavioral teratology of alcoholic beverages compared to ethanol.

    PubMed

    Abel, E L; Dintcheff, B A; Bush, R

    1981-01-01

    Pregnant rats were intubated with beer, wine, whiskey, or ethanol (3 g/kg/day), twice daily, while control animals received an isocaloric solution. All animals were pair-fed to ethanol-treated animals. At birth, offspring were fostered to surrogate nondrug-treated dams. Congeners present in beverage alcohol did not exacerbate the effects of ethanol exposure. Ethanol-treated animals were less responsive than controls to a challenge dose of ethanol. Beer- and whiskey-treated animals were also less responsive than controls to ethanol challenge, but did not differ from ethanol-treated animals. Group differeces in Rotarod behavior, ambulation, rearing, or defecation in the activity box, activity wheel running, spontaneous alternation, and brain DNA, RNA, and protein content were not significant. Although beer-treated males performed better on the Rotarod than controls, beer-treated males did not differ significantly from controls on any other task.

  11. Inhibition of alcoholic fermentation by substrate and ethanol. [Candida pseudotropicalis

    SciTech Connect

    Maulin, H.B.; Galzy, P.

    1980-11-01

    The effect of ethanol and sugars on rates of fermentation was studied. A strain of Candida pseudotropicalis was used. The specific rate of fermentation was determined by using the Warburg manometer. The effect of ethanol was formulated as an exponential function of ethanol concentration, but the empirical constant was different when glucose or lactose was used as a substrate. The effects of both ethanol and substrate were formulated. It was demonstrated that when lactose and glucose were present in the medium with a small amount of alcohol, a synergistic effect on the rate of fermentation appeared. This phenomenon considerably limits the rate of fermentation.

  12. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values. PMID:27036455

  13. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  14. Optical properties of laser ablated Zn@ZnO in water, ethanol and methanol

    NASA Astrophysics Data System (ADS)

    Navas M., P.; Soni, R. K.

    2016-05-01

    Laser ablation of Zn was employed to successfully synthesis different Zn@ZnO nanoparticles in water, ethanol and methanol. Zn@ZnO growth and oxidation is controlled by varying ambient surrounding liquid. The band gap was obtained as 3.49 and 3.67 eV respectively for Zn-water and Zn-ethanol from the tau plot, but show respective particle size 13.5 and 16.4 nm in TEM analysis. Discrepancy in absorption spectra and TEM is clearly due to the restricted oxidation in bigger Zn-ethanol nanoparticles. Zn-water nanoparticles were irregular in shape and agglomerated whereas well dispersed and clearly spherical nanoparticle was observed in Zn-ethanol. In emission spectra Zn-water showed dominant excitonic emission but defect green emission dominated in Zn-ethanol and Zn-methanol. Zn-methanol showed strong oxygen deficiency even after one week and presented an intense green emission. In water Zn undergone fast oxidation into ZnO nanoparticle, but their stability was very poor and sediment within one week. Whereas in ethanol Zn experienced slow oxidation but held intense absorption as well as emission spectra and they displayed high stability.

  15. Robust and sensitive analysis of methanol and ethanol from cellulose degradation in mineral oils.

    PubMed

    Jalbert, Jocelyn; Duchesne, Steve; Rodriguez-Celis, Esperanza; Tétreault, Pierre; Collin, Pascal

    2012-09-21

    Methanol and ethanol have been identified as oil-soluble by-products generated by the aging of oil-impregnated cellulosic insulation materials of power transformers. Their presence provides useful information for diagnostics and end-of-life transformer estimation. Despite their value as cellulose degradation indicators, their sensitive and accurate determination is challenged by the complex oil matrix. To overcome this constraint, we present a simple, fast and direct procedure for their simultaneous determination in mineral insulating oil samples. The procedure uses a static headspace sampler coupled with a gas chromatograph equipped with a mass spectrometer. The selected method parameters permitted adequate separation of these two compounds from the complex oil matrix and quantification at ng g(-1) concentrations. An original internal standard procedure was developed, in which ethanol-d6 was added to all studied samples and blanks, with adequate resolution between the internal standard and its isotopomer ethanol. The method was validated in terms of accuracy and reproducibility for both analytes. The method detection limit, 4 ng g(-1) for methanol and ethanol, is well below the value (μg g(-1)) achieved by a standardized method for methanol determination in crude oil. During method validation studies, a relative error of approximately 6% was obtained for both methanol and ethanol with excellent reproducibility, average %RSD, below 2%. An experiment control chart, constructed to evaluate long-term reproducibility, indicate an overall good reproducibility (%RSD<3%) for 1000 ng g(-1) control solutions. The applicability of the method to the direct analysis of trace methanol and ethanol in oil from field transformer samples was successfully demonstrated. This analytical method is of high relevance to the electrical utilities as it allows indirectly assessment of the level of deterioration of the critical cellulose, an inaccessible part of a power transformer.

  16. From dimers to collective dipoles: Structure and dynamics of methanol/ethanol partition by narrow carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Garate, Jose A.; Perez-Acle, Tomas

    2016-02-01

    Alcohol partitioning by narrow single-walled carbon nanotubes (SWCNTs) holds the promise for the development of novel nanodevices for diverse applications. Consequently, in this work, the partition of small alcohols by narrow tubes was kinetically and structurally quantified via molecular dynamics simulations. Alcohol partitioning is a fast process in the order of 10 ns for diluted solutions but the axial-diffusivity within SWCNT is greatly diminished being two to three orders of magnitude lower with respect to bulk conditions. Structurally, alcohols form a single-file conformation under confinement and more interestingly, they exhibit a pore-width dependent transition from dipole dimers to a single collective dipole, for both methanol and ethanol. Energetic analyses demonstrate that this transition is the result of a detailed balance between dispersion and electrostatics interactions, with the latter being more pronounced for collective dipoles. This transition fully modifies the reorientational dynamics of the loaded particles, generating stable collective dipoles that could find usage in signal-amplification devices. Overall, the results herein have shown distinct physico-chemical features of confined alcohols and are a further step towards the understanding and development of novel nanofluidics within SWCNTs.

  17. Mutagenicity of soy sauce treated with nitrite in the presence of ethanol or alcoholic beverages.

    PubMed

    Higashimoto, M; Yamamoto, T; Kinouchi, T; Handa, Y; Matsumoto, H; Ohnishi, Y

    1995-12-01

    The mutagenicity induced by soy sauce after reaction with 50 mM nitrite at pH 3, 37 degrees C, for 60 min in the presence of 1.25-10% ethanol was reduced in proportion to the ethanol concentration. The mutagenicity of soy sauce treated with nitrite was also reduced in the presence of commercial alcoholic beverages, Japanese sake, wine, 'shochu', whiskey and brandy, but not beer, in proportion to the concentration. The mutagenicity of nitrite-treated tyramine, which is a major precursor of a mutagen in soy sauce treated with nitrite, was strongly reduced in the presence of ethanol, n-propanol or isopropanol and more strongly reduced in the presence of methanol, but was increased twofold in the presence of the sugars glucose or sucrose. The reduction of the mutagenicity of nitrite-treated tyramine required simultaneous treatment of tyramine with ethanol and nitrite. The mutagenicity of tyramine treated with nitrite was clearly reduced in the presence of shochu and whiskey, similarly to ethanol. Analysis by high-performance liquid chromatography revealed that the reduction of the mutagenicity of nitrite-treated tyramine in the presence of ethanol resulted from the reduced production of mutagenic 3-diazotyramine from tyramine.

  18. TRANSPORTATION FUEL FROM CELLULOSIC BIOMASS: A COMPARATIVE ASSESSMENT OF ETHANOL AND METHANOL OPTIONS

    EPA Science Inventory

    Future sources of renewable fuel energy will be needed to supplement or displace petroleum. Biomass can be converted to ethanol or methanol, either having good properties as motor fuel, but distinctly different production technology. Those technologies are compared in terms of ...

  19. 40 CFR 1065.269 - Photoacoustic analyzer for ethanol and methanol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Photoacoustic analyzer for ethanol and methanol. 1065.269 Section 1065.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  20. Neuroimaging in alcoholism: ethanol and brain damage.

    PubMed

    Mann, K; Agartz, I; Harper, C; Shoaf, S; Rawlings, R R; Momenan, R; Hommer, D W; Pfefferbaum, A; Sullivan, E V; Anton, R F; Drobes, D J; George, M S; Bares, R; Machulla, H J; Mundle, G; Reimold, M; Heinz, A

    2001-05-01

    This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The co-chairs were Karl Mann and Ingrid Agartz. The presentations were (1) Neuropathological changes in alcohol-related brain damage, by Clive Harper; (2) Regional brain volumes including the hippocampus and monoamine metabolites in alcohol dependence, by Ingrid Agartz, Susan Shoaf, Robert R, Rawlings, Reza Momenan, and Daniel W Hommer; (3) Diffusion tensor abnormalities in imaging of white matter alcoholism, by Adolf Pfefferbaum and Edith V. Sullivan; (4) Use of functional MRI to evaluate brain activity during alcohol cue exposure in alcoholics: Relationship to craving, by Raymond F. Anton, David J. Drobes, and Mark S. George; and (5) mu-Opiate receptor availability in alcoholism: First results from a positron emission tomography study, by Karl Mann, Roland Bares, Hans-Juergen Machulla, Goetz Mundle, Matthias Reimold, and Andreas Heinz.

  1. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns

    PubMed Central

    Hann, Claire T.; Bequette, Carlton J.; Dombrowski, James E.; Stratmann, Johannes W.

    2014-01-01

    Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs. PMID:25360141

  2. Effect of additions of C/sub 2/-C/sub 4/ alcohols on the catalytic activity of silver in the oxidation of methanol

    SciTech Connect

    Kurina, L.N.; Zeile, L.E.; Filicheva, O.D.; Roznina, M.I.

    1988-02-20

    The authors give the results of a study of the partial oxidation of methanol on a pumice-silver catalyst in the presence of ethyl, isopropyl, and isobutyl alcohol impurities that are contained in the methanol feedstock. The choice of alcohols as the materials of the investigation is related to the fact that in the rectification of the methanol feedstock the recovered methanol-fusel oil-water fraction, containing up to 33% water, 5% ethanol, and up to 13% higher alcohols, is burned, i.e., is irretrievably lost for industry, while this valuable chemical raw material can be used for formaldehyde synthesis. The gaseous reaction products were analyzed for CO, CO/sub 2/, H/sub 2/, and O/sub 2/ contents; the amount of the obtained formaldehyde was determined by the sulfite method, the acidity of the formaldehyde solution was determined titrimetrically, and the content of the unreacted methanol was determined chromatographically. The results of the analysis were used to calculate the yields of formaldehyde and gases and the selectivity as the ratio of the amount of methanol consumed for formaldehyde formation to all the reacted methanol.

  3. Ethanol and Methanol Can Improve Huperzine A Production from Endophytic Colletotrichum gloeosporioides ES026

    PubMed Central

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5–2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi. PMID:23613930

  4. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors.

  5. Ethanol modulation of gene networks: implications for alcoholism.

    PubMed

    Farris, Sean P; Miles, Michael F

    2012-01-01

    Alcoholism is a complex disease caused by a confluence of environmental and genetic factors influencing multiple brain pathways to produce a variety of behavioral sequelae, including addiction. Genetic factors contribute to over 50% of the risk for alcoholism and recent evidence points to a large number of genes with small effect sizes as the likely molecular basis for this disease. Recent progress in genomics (microarrays or RNA-Seq) and genetics has led to the identification of a large number of potential candidate genes influencing ethanol behaviors or alcoholism itself. To organize this complex information, investigators have begun to focus on the contribution of gene networks, rather than individual genes, for various ethanol-induced behaviors in animal models or behavioral endophenotypes comprising alcoholism. This chapter reviews some of the methods used for constructing gene networks from genomic data and some of the recent progress made in applying such approaches to the study of the neurobiology of ethanol. We show that rapid technology development in gathering genomic data, together with sophisticated experimental design and a growing collection of analysis tools are producing novel insights for understanding the molecular basis of alcoholism and that such approaches promise new opportunities for therapeutic development.

  6. Nonadditive empirical force fields for short-chain linear alcohols: methanol to butanol. Hydration free energetics and Kirkwood-Buff analysis using charge equilibration models.

    PubMed

    Zhong, Yang; Patel, Sandeep

    2010-09-01

    Building upon the nonadditive electrostatic force field for alcohols based on the CHARMM charge equilibration (CHEQ) formalism, we introduce atom-pair specific solute-solvent Lennard-Jones (LJ) parameters for alcohol-water interaction force fields targeting improved agreement with experimental hydration free energies of a series of small molecule linear alcohols as well as ab initio water-alcohol geometries and energetics. We consider short-chain, linear alcohols from methanol to butanol as they are canonical small-molecule organic model compounds to represent the hydroxyl chemical functionality for parametrizing biomolecular force fields for proteins. We discuss molecular dynamics simulations of dilute aqueous solutions of methanol and ethanol in TIP4P-FQ water, with particular discussion of solution densities, structure defined in radial distribution functions, electrostatic properties (dipole moment distributions), hydrogen bonding patterns of water, as well as a Kirkwood-Buff (KB) integral analysis. Calculation of the latter provides an assessment of how well classical force fields parametrized to at least semiquantitatively match experimental hydration free energies capture the microscopic structures of dilute alcohol solutions; the latter translate into macroscopic thermodynamic properties through the application of KB analysis. We find that the CHEQ alcohol force fields of this work semiquantitatively match experimental KB integrals for methanol and ethanol mole fractions of 0.1 and 0.2. The force field combination qualitatively captures the concentration dependence of the alcohol-alcohol and water-water KB integrals, but due to inadequacies in the representation of the microscopic structures in such systems (which cannot be parametrized in any systematic fashion), a priori quantitative description of alcohol-water KB integrals remains elusive.

  7. Effects of periadolescent ethanol exposure on alcohol preference in two BALB substrains.

    PubMed

    Blizard, David A; Vandenbergh, David J; Jefferson, Akilah L; Chatlos, Cynthia D; Vogler, George P; McClearn, Gerald E

    2004-01-01

    Ethanol exposure during adolescence is a rite of passage in many societies, but only a subset of individuals exposed to ethanol becomes dependent on alcohol. To explore individual differences in response to ethanol exposure, we compared the effects of periadolescent ethanol exposure on alcohol drinking in an animal model. Male and female mice of two BALB substrains were exposed to ethanol in one of three forms--choice [water vs. 10% (volume/volume) ethanol], forced (10% ethanol in a single bottle), or gradual (single bottle exposure, starting with 0.5% ethanol and increasing at 2-day intervals to 10% ethanol)--from the 6th through the 12th week of age and administered two-bottle alcohol preference tests (10% ethanol vs. water) for 15 days immediately thereafter. All three forms of ethanol exposure increased alcohol preference in male and female BALB/cByJ mice, relative to findings for ethanol-naive control animals. Only gradual ethanol exposure produced an increase in alcohol preference in BALB/cJ mice. During extended alcohol preference testing (for a total of 39 days) of mice in the gradual ethanol exposure group, the higher alcohol preference of the gradual ethanol-exposed BALB/cByJ male mice persisted, but alcohol preference of control group female mice in this strain--formerly ethanol naive, but at this point having received 10% ethanol in the two-bottle paradigm for 15 days--rose to the level of alcohol preference of female mice in the gradual ethanol exposure group. This finding demonstrated that both adolescent and adult ethanol exposure stimulated alcohol preference in female mice of this strain. Across days of testing in adulthood, alcohol preference of the gradual ethanol-exposed BALB/cJ mice decreased, resulting in a lack of effect of gradual exposure to ethanol on alcohol preference in both male and female mice of this strain during the period of extended testing. These strain differences support a genetic basis for the effects of ethanol exposure on

  8. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  9. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  10. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    NASA Astrophysics Data System (ADS)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  11. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction ▿

    PubMed Central

    Vishnivetskaya, Tatiana A.; Brandt, Craig C.; Madden, Andrew S.; Drake, Meghan M.; Kostka, Joel E.; Akob, Denise M.; Küsel, Kirsten; Palumbo, Anthony V.

    2010-01-01

    Microbial community responses to ethanol, methanol, and methanol plus humics amendments in relationship to U(VI) bioreduction were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, TN. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated that (i) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to the presence of Deltaproteobacteria and Betaproteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (ii) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2 to 92.8% of the family Methylophilaceae; and (iii) the addition of humics resulted in an increase of phylogenetic diversity of Betaproteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, and unclassified) and Firmicutes (Desulfosporosinus and Clostridium). PMID:20601514

  12. 40 CFR 1065.369 - H2O, CO, and CO2 interference verification for photoacoustic alcohol analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol analyzers. (a) Scope and frequency. If you measure ethanol or methanol using a photoacoustic... photoacoustic analyzer by causing a response similar to ethanol or methanol. If the photoacoustic analyzer...

  13. Pharmacokinetics and pharmacodynamics of ethanol, whiskey, and ethanol with n-propyl, n-butyl, and iso-amyl alcohols.

    PubMed

    Auty, R M; Branch, R A

    1977-08-01

    Plasma ethanol concentration, reaction time, and electroencephalogram (EEG) were recorded in 6 normal men after ingestion of ethanol along (Group 1), whiskey (Group 2), or a mixture of ethanol, n-propanol, n-butanol, and iso-amyl alcohol (Group 3). The peak plasma ethanol concentration and the total area under the plasma concentration:time curve of ethanol did not depend upon the type of drink given, but the half-life of the terminal exponential phase of ethanol elimination was longer in Group 3. In each study period reaction time increased, there was a relative increase in delta activity (2 to 3 Hz) and a fall in mean dominant frequency in EEG activity. The extent of increase in reaction time depended on the rate of increase in plasma ethanol concentration and correlated with the concentration of ethanol while the plasma concentration of ethanol was falling. Differences in the effects of ethanol between study periods were minimal.

  14. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE.

  15. [The comparison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence].

    PubMed

    Lukaszewicz, A; Markowski, T; Pawlak, D

    1997-01-01

    In this report the concentration of endogenous ethanol in blood serum in alcoholics at different stages of abstinence and in non-alcoholics was studied. 36 people--26 alcoholics and 10 non-alcoholics were examined and gas chromatography was used. It was revealed that the longer the period of abstinence in alcoholics, the lower the concentration of endogenous ethanol in blood serum. Moreover, the alcoholics showed a higher concentration of endogenous ethanol in blood serum as compared to non-alcoholics.

  16. Ethanol-based cleanser versus isopropyl alcohol to decontaminate stethoscopes.

    PubMed

    Lecat, Paul; Cropp, Elliott; McCord, Gary; Haller, Nairmeen Awad

    2009-04-01

    Approximately 1 in 20 hospital admissions is complicated by a health care-associated infection. Stethoscopes may play a role in spreading nosocomial infections. The objective of this study was to determine the effectiveness of an ethanol-based cleanser (EBC) compared with isopropyl alcohol pads in reducing bacterial contamination of stethoscope diaphragms. Stethoscopes were cultured from medical professionals on 4 medical floors before and after cleaning with either EBC or isopropyl alcohol pads. The numbers of colony-forming units (cfu) grown were compared between the 2 cleaners and to baseline values. A total of 99 stethoscopes were cultured (49 EBC; 50 isopropyl alcohol), and all were positive for growth. After cleaning, 28.28% of the stethoscopes were growth-free (12 EBC; 16 isopropyl alcohol). Cleaning with EBC and isopropyl alcohol pads significantly reduced the cfu counts (by 92.8% and 92.5%, respectively), but neither was found to be statistically superior (F = 1.22; P = .2721). Cleaning a stethoscope diaphragm using either EBC or isopropyl alcohol led to a significant reduction in bacterial growth in culture. As an extension of the hand, a stethoscope should be cleaned with the same frequency as the hands. The simultaneous cleaning of hands and stethoscope may further increase compliance with current standards.

  17. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10.).

    PubMed

    Liu, YuPing; Zhao, Shu-Feng; Guo, Si-Xuan; Bond, Alan M; Zhang, Jie; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2016-03-01

    Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation.

  18. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10.).

    PubMed

    Liu, YuPing; Zhao, Shu-Feng; Guo, Si-Xuan; Bond, Alan M; Zhang, Jie; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2016-03-01

    Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation. PMID:26848832

  19. Methanol or ethanol produced from woody biomass: which is more advantageous?

    PubMed

    Hasegawa, Fumio; Yokoyama, Shinya; Imou, Kenji

    2010-01-01

    In this study, two conversion technologies--methanol synthesis and ethanol fermentation--were compared and CO(2) mitigation effect was estimated. The biomethanol production process was revealed as being preferable to the bioethanol process in terms of thermal efficiency, carbon conversion and environmental burden except electrical energy consumption. When biofuels are employed in internal combustion engines, biomethanol has greater potential for gasoline substitution, but the difference in expected CO(2) reduction is rather small due to higher power consumption in methanol production. Consequently, from a short-term perspective, bioethanol is preferable since it can readily substitute the gasoline for conventional vehicles. From a long-term perspective, however, biomethanol has greater potential for gasoline substitution and CO(2) mitigation.

  20. Methanol or ethanol produced from woody biomass: which is more advantageous?

    PubMed

    Hasegawa, Fumio; Yokoyama, Shinya; Imou, Kenji

    2010-01-01

    In this study, two conversion technologies--methanol synthesis and ethanol fermentation--were compared and CO(2) mitigation effect was estimated. The biomethanol production process was revealed as being preferable to the bioethanol process in terms of thermal efficiency, carbon conversion and environmental burden except electrical energy consumption. When biofuels are employed in internal combustion engines, biomethanol has greater potential for gasoline substitution, but the difference in expected CO(2) reduction is rather small due to higher power consumption in methanol production. Consequently, from a short-term perspective, bioethanol is preferable since it can readily substitute the gasoline for conventional vehicles. From a long-term perspective, however, biomethanol has greater potential for gasoline substitution and CO(2) mitigation. PMID:19632825

  1. Gas-phase reactivity of metavanadate [VO3]- towards methanol and ethanol: experiment and theory.

    PubMed

    Waters, Tom; Wedd, Anthony G; O'Hair, Richard A J

    2007-01-01

    The gas-phase reactivity of the metavanadate anion [VO3]- towards methanol and ethanol was examined by a combination of ion-molecule reaction and isotope labelling experiments in a quadrupole ion-trap mass spectrometer. The experimental data were interpreted with the aid of density functional theory calculations. [VO3]- dehydrated methanol to eliminate water and form [VO2(eta2-OCH2)]-, which features an [eta2-C,O-OCH2]2- ligand formed by formal removal of two protons from methanol and which is isoelectronic with peroxide. [VO3]- reacted with ethanol in an analogous manner to form [VO2(eta2-OCHCH3)]-, as well as by loss of ethene to form [VO2(OH)2]-. The calculations predicted that important intermediates in these reactions were the hydroxo alkoxo anions [VO2(OH)(OCH2R)]- (R: H, CH3). These were predicted to undergo intramolecular hydrogen-atom transfer to form [VO(OH)2(eta1-OCHR)]- followed by eta1-O-->eta2-C,O rearrangements to form [VO(OH)2(eta2-OCHR)]-. The latter reacted further to eliminate water and generate the product [VO2(eta2-OCHR)]-. This major product observed for [VO3]- is markedly different from that observed previously for [NbO3]- containing the heavier Group 5 congener niobium. In that case, the major product of the reaction was an ion of stoichiometry [Nb, O3, H2]- arising from the formal dehydrogenation of methanol to formaldehyde. The origin of this difference was examined theoretically and attributed to the intermediate alkoxo anion [NbO2(OH)(OCH3)]- preferring hydride transfer to form [HNbO2(OH)]- with loss of formaldehyde. This contrasts with the hydrogen-atom-transfer pathway observed for [VO2(OH)(OCH3)]-. PMID:17661322

  2. Benzyl alcohol increases voluntary ethanol drinking in rats.

    PubMed

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated.

  3. The role of OH…O and CH…O hydrogen bonds and H…H interactions in ethanol/methanol-water heterohexamers.

    PubMed

    Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor

    2016-08-01

    Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.

  4. The role of OH…O and CH…O hydrogen bonds and H…H interactions in ethanol/methanol-water heterohexamers.

    PubMed

    Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor

    2016-08-01

    Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology. PMID:27417312

  5. Assessment of the Average Price and Ethanol Content of Alcoholic Beverages by Brand – United States, 2011

    PubMed Central

    DiLoreto, Joanna T.; Siegel, Michael; Hinchey, Danielle; Valerio, Heather; Kinzel, Kathryn; Lee, Stephanie; Chen, Kelsey; Shoaff, Jessica Ruhlman; Kenney, Jessica; Jernigan, David H.; DeJong, William

    2011-01-01

    Background There are no existing data on alcoholic beverage prices and ethanol content at the level of alcohol brand. A comprehensive understanding of alcohol prices and ethanol content at the brand level is essential for the development of effective public policy to reduce alcohol use among underage youth. The purpose of this study was to comprehensively assess alcoholic beverage prices and ethanol content at the brand level. Methods Using online alcohol price data from 15 control states and 164 online alcohol stores, we estimated the average alcohol price and percentage alcohol by volume for 900 brands of alcohol, across 17 different alcoholic beverage types, in the United States in 2011. Results There is considerable variation in both brand-specific alcohol prices and ethanol content within most alcoholic beverage types. For many types of alcohol, the within-category variation between brands exceeds the variation in average price and ethanol content among the several alcoholic beverage types. Despite differences in average prices between alcoholic beverage types, in 12 of the 16 alcoholic beverage types, customers can purchase at least one brand of alcohol that is under one dollar per ounce of ethanol. Conclusions Relying on data or assumptions about alcohol prices and ethanol content at the level of alcoholic beverage type is insufficient for understanding and influencing youth drinking behavior. Surveillance of alcohol prices and ethanol content at the brand level should become a standard part of alcohol research. PMID:22316218

  6. Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature

    NASA Astrophysics Data System (ADS)

    Kavinkumar, T.; Sastikumar, D.; Manivannan, S.

    2014-10-01

    Successful isolation of single layer of graphene from graphite by mechanical exfoliation method, attracted a great attention due to its unique structural, optical, mechanical and electronic properties. This makes the graphene as a promising material in many possible applications such as energy-storage, sensing, electronic, optical devices and polymer composite materials. High quality of reduced graphene oxide (rGO) material was prepared by chemical reduction method at 100°C. The structural and optical properties of the rGO sheets were characterized by FT-IR, micro Raman, powder XRD and UV-vis-NIR techniques. FT-IR reveals the absence of oxygen functional groups on rGO due to the reduction process. Powder XRD shows the broad peak at 2θ=24.3° corresponding to interlayer spacing 3.66Å which is smaller than the graphene oxide (GO). UV-vis-NIR of rGO displays the absorption peak at 271 nm indicates the reduction of GO and the restoration of C=C bonds in the rGO sheets. The cladding removed and rGO coated poly-methyl methacrylate (PMMA) optical fiber is used for methanol and ethanol vapors detection in the concentration ranging from 0 to 500 ppm at room temperature. The spectral characteristics along with output intensity modulation of cladding removed and rGO coated fiber optic sensor reveal the potential of methanol and ethanol vapor sensing properties.

  7. The "first hit" toward alcohol reinforcement: role of ethanol metabolites.

    PubMed

    Israel, Yedy; Quintanilla, María Elena; Karahanian, Eduardo; Rivera-Meza, Mario; Herrera-Marschitz, Mario

    2015-05-01

    This review analyzes literature that describes the behavioral effects of 2 metabolites of ethanol (EtOH): acetaldehyde and salsolinol (a condensation product of acetaldehyde and dopamine) generated in the brain. These metabolites are self-administered into specific brain areas by animals, showing strong reinforcing effects. A wealth of evidence shows that EtOH, a drug consumed to attain millimolar concentrations, generates brain metabolites that are reinforcing at micromolar and nanomolar concentrations. Salsolinol administration leads to marked increases in voluntary EtOH intake, an effect inhibited by mu-opioid receptor blockers. In animals that have ingested EtOH chronically, the maintenance of alcohol intake is no longer influenced by EtOH metabolites, as intake is taken over by other brain systems. However, after EtOH withdrawal brain acetaldehyde has a major role in promoting binge-like drinking in the condition known as the "alcohol deprivation effect"; a condition seen in animals that have ingested alcohol chronically, are deprived of EtOH for extended periods, and are allowed EtOH re-access. The review also analyzes the behavioral effects of acetate, a metabolite that enters the brain and is responsible for motor incoordination at low doses of EtOH. Also discussed are the paradoxical effects of systemic acetaldehyde. Overall, evidence strongly suggests that brain-generated EtOH metabolites play a major role in the early ("first-hit") development of alcohol reinforcement and in the generation of relapse-like drinking.

  8. Maintenance of homeostasis of endogenous ethanol as a method for the therapy of alcoholism.

    PubMed

    Nikolaenko, V N

    2001-03-01

    We propose a new method for the therapy of alcoholism based on maintenance of homeostasis of endogenous ethanol and inhibition of alcohol dehydrogenase with emetine. After the standard antialcohol therapy, activity of this enzyme remained high or even increased, and pathological alcohol addiction also increased. Emetine normalized activity of alcohol dehydrogenase and suppressed pathological alcohol addiction. After this therapy more than 50% patients achieved stable remissions from alcoholism over 1 year, which indicated high efficiency of the proposed method.

  9. [Endogenous blood ethanol in alcoholic patients and healthy subjects with and without a family history of alcoholism].

    PubMed

    Pron'ko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I; Ostrovskiĭ, Iu M

    1987-01-01

    Levels of endogenous ethanol were studied in healthy males, 12-13-year-old boys (sons of alcoholics and normal fathers) and alcoholic patients (after discontinuation of all drugs). The results showed no significant differences between the groups. On the other hand endogenous ethanol concentrations were higher than normal in oligophrenic boys irrespective of whether their fathers were alcoholics or healthy subjects. In the abstinence period endogenic ethanol concentrations were the minimal in patients with delirium tremens and a severe abstinence syndrome, the dynamics of this parameter in the process of treatment being dependent on the severity of the abstinence syndrome and on the nature of treatment.

  10. Vaporisation characteristics of methanol, ethanol and heptane droplets in opposed stagnation flow at low temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Kee, Robert J.; Chen, Longhua; Cao, Jingjing; Xu, Min; Zhang, Yuyin

    2012-08-01

    A computational model is developed and applied to study the vaporisation behaviour of three liquid fuels. This fundamental study is motivated by a need to understand how the performance of direct-injection-spark-ignition (DISI) engines may be affected by changes in fuel composition, especially alcohols. Currently, most DISI engines are designed for homogeneous-charge combustion, where the in-cylinder fuel injection, vaporisation and mixing is accomplished during the intake and early in the compression process. Thus the temperature and pressure are low, compared to post-compression conditions. The two-phase axisymmetric model is based upon an ideal opposed stagnation flow field. Liquid droplets are carried in one air stream that is met by an opposed air flow. Because of stagnation-flow similarity, the mathematical model can be represented as a one-dimensional boundary-value problem. Results show significant differences between methanol, ethanol and heptane fuels, which have potentially important impacts on the design and modification of fuel-injection systems for direct-injection engines with alternative fuels.

  11. An enzyme-amplified microtiter plate assay for ethanol: Its application to the detection of peanut ethanol and alcohol dehydrogenase

    SciTech Connect

    Chung, S.Y.; Vercellotti, J.R.; Sanders, T.H.

    1995-12-01

    A calorimetric microliter plate assay for ethanol amplified by aldehyde dehydrogenase (ALDH) was developed. In the assay ethanol from a sample took part in a chain-reaction catalyzed by alcohol dehydrogenase (ADH) and amplified by ALDH in the presence of NAD{sup +}, diaphorase, and p-ibdonitrotetrazolium-violet (INT-violet)(a precursor of red product). The resultant reaction gave a red color, the intensity of which was proportional to the amount of ethanol present. Using the technique, the content of activity from peanuts of differing maturity and curing stages were determined respectively. Data showed that immature peanuts had a higher level of ethanol and a lower ADH activity than mature peanuts, and that the level of ethanol and ADH activity decreased with the curing time. This indicates that peanut maturity and curing have an effect on ethanol. Also, this implies that other peanut volatiles could be affected in the same way as ethanol, a major volatile in peanuts.

  12. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid.

    PubMed

    Kramer, Patrick L; Giammanco, Chiara H; Fayer, Michael D

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water

  13. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Giammanco, Chiara H.; Fayer, Michael D.

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water

  14. Charge-transfer-to-solvent reactions from I(-) to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids.

    PubMed

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-21

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I(-)) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I(-). The photoelectron spectra for CTTS in H2O and D2O-measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]-indicate that internal conversion yields from the photoexcited I(-*) (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I(-*). The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time. PMID:27544114

  15. Charge-transfer-to-solvent reactions from I- to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-01

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I-) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I-. The photoelectron spectra for CTTS in H2O and D2O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I-* (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I-*. The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

  16. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse.

    PubMed

    Carnicella, Sebastien; Ron, Dorit; Barak, Segev

    2014-05-01

    One of the major challenges in preclinical studies of alcohol abuse and dependence remains the development of paradigms that will elicit high ethanol intake and mimic the progressive transition from low or moderate social drinking to excessive alcohol consumption. Exposure of outbred rats to repeated cycles of free-choice ethanol intake and withdrawal with the use of intermittent access to 20% ethanol in a 2-bottle choice procedure (IA2BC) has been shown to induce a gradual escalation of voluntary ethanol intake and preference, eventually reaching ethanol consumption levels of 5-6 g/kg/24 h, and inducing pharmacologically relevant blood ethanol concentrations (BECs). This procedure has recently been gaining popularity due to its simplicity, high validity, and reliable outcomes. Here we review experimental and methodological data related to IA2BC, and discuss the usefulness and advantages of this procedure as a valuable pre-training method for initiating operant ethanol self-administration of high ethanol intake, as well as conditioned place preference (CPP). Despite some limitations, we provide evidence that IA2BC and related operant procedures provide the possibility to operationalize multiple aspects of alcohol abuse and addiction in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake. Hence, IA2BC appears to be a useful and relevant procedure for preclinical evaluation of potential therapeutic approaches against alcohol abuse disorders.

  17. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats.

    PubMed

    Brasser, Susan M; Silbaugh, Bryant C; Ketchum, Myles J; Olney, Jeffrey J; Lemon, Christian H

    2012-03-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and alcohol-non-preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3-40%), sucrose (0.01-1 M), quinine (0.01-3 mM) and capsaicin (0.003-1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post-absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits.

  18. Substrate Specificity of the Purified Primary Alcohol Dehydrogenases from Methanol-Oxidizing Bacteria

    PubMed Central

    Sperl, George T.; Forrest, Hugh S.; Gibson, David T.

    1974-01-01

    Hyphomicrobium strain WC, Pseudomonas strain TP-1, and Pseudomonas strain W1 are capable of growth on methanol as the sole source of carbon and energy. Methanol-grown cells of each organism contain a primary alcohol dehydrogenase that has been purified to homogeneity. Each enzyme has a molecular weight of 120,000 and shows an in vitro requirement for phenazine methosulfate and ammonium ions for enzymatic activity. Normal aliphatic alcohols are oxidized rapidly by each enzyme. The presence of a methyl group on the carbon atom adjacent to the primary alcohol group lowers the enzymatic activity. This effect is reduced as the methyl substituent is moved further away from the hydroxyl group. The effect of other substituents on enzymatic activity is reported. Methanol, formaldehyde, and to a limited extent acetaldehyde are oxidized by the primary alcohol dehydrogenases. Higher aldehydes are not oxidized. A possible explanation for this specificity, with regard to aldehydes, is presented in terms of degree of hydration of the aldehyde. Images PMID:4828309

  19. Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass transition

    SciTech Connect

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2011-03-17

    Do liquid mixtures, cooled to temperatures below their freezing point, behave as normal liquids? We address this question using nanoscale films of methanol and ethanol supercooled liquid solutions of varying composition (7 -93% methanol) at temperatures near their glass transition,Tg. The permeation of Kr through these films is used to determine the diffusivities of the supercooled liquid mixtures. We find that the temperature dependent diffusivities of the mixtures are well-fit by a Vogel-Fulcher-Tamman equation indicating that the mixtures exhibit fragile behavior at temperatures just above their Tg. Further, for a given temperature, the composition dependent diffusivity is well-fit by a Vignes-type equation, i.e. the diffusivity of any mixture can be predicted using an exponential weighting of the diffusion of the pure methanol and ethanol diffusivities. These results show that deeply supercooled liquid mixtures can be used to provide valuable insight into the properties of normal liquid mixtures.

  20. Simultaneous Determination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID.

    PubMed

    Bursová, Miroslava; Hložek, Tomáš; Čabala, Radomír

    2015-01-01

    A simple, cost-effective headspace gas chromatography (GC) method coupled with GC with flame ionization detection for simultaneous determination of methanol, ethanol and formic acid was developed and validated for clinical and toxicological purposes. Formic acid was derivatized with an excess of isopropanol under acidic conditions to its volatile isopropyl ester while methanol and ethanol remained unchanged. The entire sample preparation procedure is complete within 6 min. The design of the experiment (the face-centered central composite design) was used for finding the optimal conditions for derivatization, headspace sampling and chromatographic separation. The calibration dependences of the method were quadratic in the range from 50 to 5,000 mg/L, with adequate accuracy (89.0-114.4%) and precision (<12%) in the serum. The new method was successfully used for determination of selected analytes in serum samples of intoxicated patients from among those affected by massive methanol poisonings in the Czech Republic in 2012.

  1. Ethanol treatment of lymphoblastoid cell lines from alcoholics and non-alcoholics causes many subtle changes in gene expression.

    PubMed

    McClintick, Jeanette N; Brooks, Andrew I; Deng, Li; Liang, Li; Wang, Jen C; Kapoor, Manav; Xuei, Xiaoling; Foroud, Tatiana; Tischfield, Jay A; Edenberg, Howard J

    2014-09-01

    To elucidate the effects of a controlled exposure to ethanol on gene expression, we studied lymphoblastoid cell lines (LCLs) from 21 alcoholics and 21 controls. We cultured each cell line for 24 h with and without 75 mM ethanol and measured gene expression using microarrays. Differences in expression between LCLs from alcoholics and controls included 13 genes previously identified as associated with alcoholism or related traits, including KCNA3, DICER1, ZNF415, CAT, SLC9A9, and PPARGC1B. The paired design allowed us to detect very small changes due to ethanol treatment: ethanol altered the expression of 37% of the probe sets (51% of the unique named genes) expressed in these LCLs, most by modest amounts. Ninety-nine percent of the named genes expressed in the LCLs were also expressed in brain. Key pathways affected by ethanol include cytokine, TNF, and NFκB signaling. Among the genes affected by ethanol were ANK3, EPHB1, SLC1A1, SLC9A9, NRD1, and SH3BP5, which were reported to be associated with alcoholism or related phenotypes in 2 genome-wide association studies. Genes that either differed in expression between alcoholics and controls or were affected by ethanol exposure are candidates for further study.

  2. Ethanol treatment of lymphoblastoid cell lines from alcoholics and non-alcoholics causes many subtle changes in gene expression

    PubMed Central

    McClintick, Jeanette N.; Brooks, Andrew I.; Deng, Li; Liang, Li; Wang, Jen C.; Kapoor, Manav; Xuei, Xiaoling; Foroud, Tatiana; Tischfield, Jay A.; Edenberg, Howard J.

    2016-01-01

    To elucidate the effects of a controlled exposure to ethanol on gene expression, we studied lymphoblastoid cell lines (LCLs) from 21 alcoholics and 21 controls. We cultured each cell line for 24 h with and without 75 mM ethanol and measured gene expression using microarrays. Differences in expression between LCLs from alcoholics and controls included 13 genes previously identified as associated with alcoholism or related traits, including KCNA3, DICER1, ZNF415, CAT, SLC9A9 and PPARGC1B. The paired design allowed us to detect very small changes due to ethanol treatment: ethanol altered the expression of 37% of the probe sets (51% of the unique named genes) expressed in these LCLs, most by modest amounts. 99% of the named genes expressed in the LCLs were also expressed in brain. Key pathways affected by ethanol include cytokine, TNF and NF-κB signaling. Among the genes affected by ethanol were ANK3, EPHB1, SLC1A1, SLC9A9, NRD1, and SH3BP5, which were reported to be associated with alcoholism or related phenotypes in two genome wide association studies. Genes that either differed in expression between alcoholics and controls or were affected by ethanol exposure are candidates for further study. PMID:25129674

  3. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  4. Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448

    PubMed Central

    Mirpour, Mirsasan; Gholizadeh Siahmazgi, Zohreh; Sharifi Kiasaraie, Masoumeh

    2015-01-01

    Introduction Antimicrobial compounds from herbal sources have good therapeutic potential. In this study, the antibacterial effects of clove and gall nut, methanolic and ethanolic extractions, were evaluated for their effect on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448, as both the two cause oral diseases. Method The clove and gall nut methanolic and ethanolic extracts were prepared and antibacterial activity was evaluated for S. mutans and S. salivarius in the base of inhibition zone diameter using agar diffusion method. In this part minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were assessed. Results These extracts showed effective antibacterial activity on bacteria. Antibacterial activity of Methanolic extract of clove was more than that of ethanolic extract, and ethanolic extracts of gall nut had antibacterial activity more than that of methanolic extracts. MIC and MBC results for clove methanolic extract were 1.5 mg/ml and 3 mg/ml for S. mutans and 6.25 mg/ml and 12.5 mg/ml for S. salivarius, respectively. These results for clove ethanolic extracts were 12.5 mg/ml and 25 mg/ml for S. mutans and 25 mg/ml and 50 mg/ml for S. salivarius, respectively. MIC and MBC results for gall nut methanolic extract were 25 mg/ml and 50 mg/ml for S. mutans and 12.5 mg/ml and 25 mg/ml for S. salivarius, respectively. These results for gall nut ethanolic extracts were 3.1 mg/ml and 6.2 mg/ml for S. mutans and 25 mg/ml and 50 mg/ml for S. salivarius, respectively. Discussion The results showed effective antibacterial activity using clove and gall nut methanolic extracts. If other properties such as tolerance of tissue can also be studied, these extracts can be used as a mouthwash. PMID:25853041

  5. Alcoholic fatty liver in rats: Role of fat and ethanol intake

    SciTech Connect

    Sankaran, H.; Deveney, C.W. ); Larkin, E.C.; Rao, G.A. )

    1991-03-11

    The claim that high intake of both ethanol and fat is essential to induce fatty liver and high blood alcohol levels (BAL) was tested. Two groups of rats were fed liquid diets containing 26% and 36% of calories as ethanol respectively. After 4 weeks, all rats were bled for BAL and some were sacrificed to obtain liver morphology. Remaining rats in Group 1 (26% ethanol) were switched to 36% ethanol diet and Group 2 (36% ethanol) to 26% ethanol diet. All rats were sacrificed after 4 weeks to obtain blood for BAL and liver morphology. The results indicate that high ethanol intake and high fat ingestion is not the criterion for induction of fatty liver. Inadequate ingestion of macronutrients plays a major role in alcoholic fatty liver and BAL.

  6. Alcohol-induced insulin resistance in liver: Potential roles in regulation of ADH expression; ethanol clearance and alcohol liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using total enteral nutrition (TEN), we demonstrated that low carbohydrate, high alcohol-containing diets (10-12 g/kg/dO produced alcoholic liver disease (ALD) in adult male Sprague-Dawley rats (300 g). Intragastric infusion of this diet generates regular pulses of blood ethanol concentrations (BEC...

  7. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes.

    PubMed

    Sakalli, Sidika; Burkina, Viktoriia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-01-01

    In vitro impacts of five organic solvents on cytochrome P450 (CYP450) enzyme activity were investigated using hepatic microsomes of rainbow trout. The rates of several CYP450-mediated reactions were investigated at solvent concentrations ranging from 0.01% to 3%. The solvents greatly affected all tested reactions. In at least 0.8% ethanol, 2% methanol or acetone, 1% acetonitrile or 3% dimethyl sulfoxide (DMSO), 7-ethoxyresorufin-O-deethylase (EROD) activity decreased and at 3% acetonitrile or ethanol, it was undetected. At 3%, all tested solvents except methanol reduced 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzylase (BFCOD) activity, but at low concentrations of ethanol (2% and lower) or DMSO (1% and lower), it was induced. This was not seen with the inclusion of a pre-incubation step. p-Nitrophenolhydroxylase (PNPH) activity was not affected at concentrations below 1% DMSO, and at 2% acetonitrile it was reduced, as it was above 1% methanol or 0.5% ethanol. Acetone did not affect PNPH activity with or without a pre-incubation step. In general, the degree of inhibition was similar with and without the pre-incubation step. We conclude that the concentration of organic solvent for solubilizing the substrate and inhibitor in in vitro microsomal studies should be minimized.

  8. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    PubMed Central

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  9. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  10. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures.

    PubMed

    Liu, Haichao; Iglesia, Enrique

    2005-02-17

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of Ru

  11. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures

    SciTech Connect

    Liu, Haichao; Iglesia, Enrique

    2004-03-04

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable

  12. An Indian herbal formula (SKV) for controlling voluntary ethanol intake in rats with chronic alcoholism.

    PubMed

    Shanmugasundaram, E R; Shanmugasundaram, K R

    1986-08-01

    Chronic ethanol ingestion in rats showed metabolic and physiological changes similar to alterations reported in human alcoholics. There was a lowering of blood glucose concentration, urea and plasma proteins and elevated concentrations of serum gamma-glutamyl transpeptidase. Administration of SKV, an Ayurvedic formula produced by fermentation of cane sugar with raisins and 12 herbal ingredients brought down voluntary ethanol ingestion in the rats and increased food intake. ECG and EEG studies in alcoholic rats showed cardiac depression, augmentation of frequency and amplitude of the alpha, delta and theta waves and weakness in the beta waves. These changes were reversed during SKV-induced voluntary alcohol restriction. The involvement in the ECG and EEG wave patterns was associated with improvement in blood glucose, plasma protein levels and reduction in gamma glutamyl transpeptidase activities. SKV appeared to have no adverse reaction with ethanol (it contains 1-2% ethanol) and appears to be a promising way to combat alcoholism. PMID:3796018

  13. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    PubMed

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  14. Influence of the aliphatic chain on the (hydrogen-bonded) p-aminobenzonitrile complexes with methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Alejandro, Estela; Landajo, Carlos; Longarte, Asier; Fernández, José A.; Castaño, Fernando

    2003-11-01

    The 4-aminobenzonitrile (ABN) molecule has two active sites amenable to hydrogen bonding to methanol (MeOH) and ethanol (EtOH): the amino, -NH2, and the cyano, -CN, groups. Two-color resonance enhanced multiphoton ionization time-of-flight mass spectroscopy and hole burning spectroscopy in addition to the ionization energies provides sound evidence of the occurrence of two isomers in the ABN(MeOH)1 complex and one single isomer for the ABN(EtOH)1 complex. Combining the outcomes from the ABN/methanol and ABN/ethanol experiments with ab initio computations at reliable theory levels one identifies the preferred solvation sites and the optimized geometries. A discussion of the role of the aliphatic chains on the geometry of the isomers and other properties is presented.

  15. Heterogeneous Catalytic Conversion of Dry Syngas to Ethanol and Higher Alcohols on Cu-Based Catalysts

    SciTech Connect

    Gupta, Mayank; Smith, Miranda L.; Spivey, James J.

    2011-04-19

    Ethanol and higher alcohols have been identified as potential fuel additives or hydrogen carriers for use in fuel cells. One method of ethanol production is catalytic conversion of syngas (a mixture of CO, H₂, CO₂, and H₂O), derived from biomass, coal, or natural gas. Thermodynamics of CO hydrogenation shows that ethanol is favored as the sole product at conditions of practical interest, but if methane is allowed as product in this analysis, essentially no ethanol is formed at equilibrium. The kinetics of ethanol formation must therefore be maximized. Although rhodium-based catalysts give C{sup 2+} oxygenates with high selectivity, their prohibitive cost has spurred research on less expensive copper-based alternatives. Copper-based catalysts require an optimum amount of promoter to suppress undesired reactions and maximize the yields of ethanol and higher alcohols. Common promoters include alkali, transition metals and their oxides, and rare earth oxides. Careful selection of operating variables is also necessary to achieve the desired activity and selectivity. This review describes the effects of promoters, supports, and operating conditions on the performance of copper-based catalysts for conversion of dry syngas to ethanol and higher alcohols. Proposed mechanisms from the literature for ethanol and higher-alcohol synthesis are outlined.

  16. Ethanol-Induced Alcohol Dehydrogenase E (AdhE) Potentiates Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E.; Pyo, Suhkneung

    2014-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. PMID:25312953

  17. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.

  18. Terahertz beats of vibrational modes in methanol and ethanol selectively excited by tr-CARS technique

    NASA Astrophysics Data System (ADS)

    He, Ping; Wang, HuiLi; Fan, RongWei; Chen, DeYing; Xia, YuanQin; Yu, Xin; Wang, JiaLing; Jiang, YuGang

    2012-12-01

    A recently developed time-resolved coherent anti-Stokes Raman scattering (tr-CARS) technique allows the measurement of vibrational coherences with high frequency differences with the ambient environment. The method is based on the short spatial extension of femtosecond pulses with a broadband tunable nonlinear optical parametric amplifier (NOPA) and an internal time delay between the probe and pump/Stokes pulse pair in the CARS process. The different beat frequencies between Raman modes can be selectively detected as oscillations in the tr-CARS transient signal with the broadband tunable NOPA. In this work, we aim at the Raman C—H stretching vibrations from 2800 cm-1 to 3000 cm-1, within which the different vibrational modes in both ethanol and methanol are selectively excited and simultaneously detected. The high time resolution of the experimental set-up allows one to monitor the vibrational coherence dynamics and to observe the quantum beat phenomena on a terahertz scale. This investigation indicates that the femtosecond tr-CARS technique is a powerful tool for the real-time monitoring and detection of molecular and biological agents, including airborne contaminants such as bacterial spores, viruses and their toxins.

  19. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin

    2015-06-01

    4:1 methanol-ethanol (ME) mixture and silicone oil are common, important pressure transmitting media used in high pressure diamond anvil cell (DAC) experiments. Their thermal conductivities and elastic properties are critical for modeling heat conduction in the DAC experiments and for determining thermal conductivity of measurement samples under extreme conditions. We used time-domain thermoreflectance and picosecond interferometry combined with the DAC to study the thermal conductivities and elastic constants C11 of the ME mixture and silicone oil at room temperature and to pressures as high as ≈23 GPa. We found that pressure dependence of the thermal conductivity of ME and silicone oil are both well described by the prediction of the minimum thermal conductivity model, confirming the diffusion of thermal energy between nonpropagating molecular vibrational modes is the dominant heat transport mechanism in a liquid and amorphous polymer. Our results not only provide new insights into the physics of thermal transport in these common pressure media for high pressure thermal measurements, but will also significantly extend the feasibility of using silicone fluid medium to much higher pressure and moderately high temperature conditions with higher measurement accuracy than other pressure media.

  20. The Reinforcing Properties of Ethanol are Quantitatively Enhanced in Adulthood by Peri-Adolescent Ethanol, but not Saccharin, Consumption in Female Alcohol-Preferring (P) Rats

    PubMed Central

    Toalston, Jamie E.; Deehan, Gerald A.; Hauser, Sheketha R.; Engleman, Eric A.; Bell, Richard L.; Murphy, James M.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30–60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. PMID:26074425

  1. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    PubMed

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood.

  2. Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell.

    PubMed

    Brown, J M; Slutsky, L J; Nelson, K A; Cheng, L T

    1988-07-01

    The adaptability of laser-induced phonon spectroscopy to the determination of acoustic velocity and the equation of state in the diamond-anvil high-pressure cell is demonstrated. The technique provides a robust method for measurements at high pressure in both solids and liquids so that important problems in high-pressure elasticity and the earth sciences are now tractable. The velocity of sound and the density of methanol at 25 degrees C have been measured up to a pressure of 6.8 gigapascals. These results imply a higher density (by approximately 5 percent) for liquid methanol above 2.5 gigapascals than that given in existing compilations. The adiabatic bulk modulus increases by a factor of 50 at a maximum compression of 1.8. The thermodynamic Grüneisen parameters of methanol and ethanol both increase with increasing pressure, in contrast to the behavior of most solids. PMID:17815540

  3. Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups.

    PubMed

    Sha, Yunfei; Bai, Shizhe; Lou, Jiaying; Wu, Da; Liu, Baizhan; Ling, Yun

    2016-05-01

    Exploring the adsorption and separation of water, methanol, and ethanol is important concerning the use of a sustainable energy source from biofuel. In this paper, the effects of the flexibility of substituted groups have been studied based on three iso-reticular metal-organic frameworks (MOFs), in which the pore surface is decorated with propargyl (-CH2-C[triple bond, length as m-dash]CH), allyl (-CH2-CH[double bond, length as m-dash]CH2), and propyl (-CH2-CH2-CH3) groups respectively. These substituted groups stretch into the channel, acting as gates, and the gate-opening for guests is controlled by the flexibility as well as host-guest interactions. Our study results indicate that (i) the adsorption capacity of water, methanol and ethanol enhances accordingly with the increase of the flexibility of substituted groups; (ii) the adsorptive discrimination of water, methanol, and ethanol on this porous sorbent could be tuned by varying the substituted groups.

  4. Conversion of starch to ethanol in a recombinant saccharomyces cerevisiae strain expressing rice [alpha]-amylase from a novel Pichia pastoris alcohol oxidase promoter

    SciTech Connect

    Kumagai, M.H.; Sverlow, G.G.; della-Cioppa, G.; Grill, L.K. )

    1993-05-01

    A recombinant Saccharomyces cerevisiae, expressing and secreting rice [alpha]-amylase, converts starch to ethanol. The rice [alpha]-amylase gene (OS103) was placed under the transcriptional control of the promoter from a newly described Pichia pastoris alcohol oxidase genomic clone. The nucleotide sequences of ZZA1 and other methanol-regulated promoters were analyzed. A highly conserved sequence (TTG-N[sub 3]-GCTTCCAA-N[sub 5]-TGGT) was found in the 5' flanking regions of alcohol oxidase, methanol oxidase, and dihydroxyacetone synthase genes in Pichia pastoris, Hansenula polymorpha, and Candida biodinii S2. The yeast strain containing the ZZA1-OS103 fusion secreted biologically active enzyme into the culture media while fermenting soluble starch. 45 refs., 8 figs.

  5. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    PubMed

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition.

  6. Psoriasis and alcohol: is cutaneous ethanol one of the missing links?

    PubMed

    Farkas, A; Kemény, L

    2010-04-01

    Many exogenous factors including excessive alcohol consumption have been associated with psoriasis, but the underlying mechanisms still remain elusive. Drinking worsens therapeutic compliance, and decreases the efficacy and increases the toxicity of systemic antipsoriatic treatments. Excess alcohol intake results in compromised immunity and increased risk of infections, but alcohol can induce proinflammatory cytokine production in various cell types and can increase mitogen-derived lymphocyte proliferation and lymphocyte activation. As we have previously reported, alcohol and one of its metabolites, acetone, induce keratinocyte proliferation and increase the mRNA levels of genes characteristic for proliferating keratinocytes, such as alpha5 integrin, cyclin D1 and keratinocyte growth factor receptor. Recently the correlation between blood and skin ethanol levels in humans was determined by a transdermal alcohol monitoring device, against the 'gold standard' breath alcohol readings. Based on transdermal alcohol measurements it can be concluded that cutaneous alcohol concentrations can reach levels that induce proinflammatory cytokine production and lymphocyte and keratinocyte proliferation in vitro. It is expected that the development of methodologies measuring transdermal ethanol will provide additional tools to evaluate how alcohol influences skin physiology and different dermatological conditions including psoriasis. Our review focuses on the possible link between alcohol misuse and psoriasis, particularly on the possible role of cutaneous ethanol in precipitating the disease.

  7. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs.

  8. [What ethanol metabolites as biological markers tell us about alcohol use].

    PubMed

    Wurst, Friedrich Martin; Thon, Natasha; Weinmann, Wolfgang; Yegles, Michel; Preuss, Ulrich

    2014-01-01

    Alcohol and tobacco related disorders are the two leading and most expensive causes of illness in central Europe. In addition to self reports and questionnaires, biomarkers are of relevance in diagnosis and therapy of alcohol use disorders. Traditional biomarkers such as gamma glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to influence of age, gender and non alcohol related diseases, among others.Direct ethanol metabolites such as ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake--EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programs, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and fetal alcohol syndrome.

  9. [Direct metabolites of ethanol as biological markers of alcohol use: basic aspects and applications].

    PubMed

    Thon, N; Weinmann, W; Yegles, M; Preuss, U; Wurst, F M

    2013-09-01

    In addition to self reports and questionnaires, biomarkers are of relevance in the diagnosis of and therapy for alcohol use disorders. Traditional biomarkers such as gamma-glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to the influence of age, gender and non-alcohol related diseases, among others. Direct metabolites of ethanol such as ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake - EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programmes, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and foetal alcohol syndrome. Due to their properties, they open up new perspectives for prevention, interdisciplinary cooperation, diagnosis of and therapy for alcohol-related problems.

  10. Hydrogen bonding in alcoholic beverages (distilled spirits) and water-ethanol mixtures.

    PubMed

    Nose, Akira; Hamasaki, Tensei; Hojo, Masashi; Kato, Ryosuke; Uehara, Kenta; Ueda, Tadaharu

    2005-09-01

    The hydrogen-bonding properties of water-ethanol of alcoholic beverages and water-ethanol mixtures of the corresponding ethanol contents were examined on the basis of OH proton NMR chemical shifts and the Raman OH stretching spectra of water and ethanol. Japanese shochu, an unaged distilled spirit of 25% (v/v) alcoholic content made from various grains, was provided for the samples; it is a high-purity spirit as it contains only small amounts of dissolved components, like typical vodka, gin, and white rum. The hydrogen-bonding structure in shochu containing some acids was found to be different from that of the water-ethanol mixture with corresponding ethanol content. It was concluded that, by the presence of small amounts of organic acids, the water-ethanol hydrogen-bonding structure was strengthened, at the same time, the proton exchange between water and ethanol molecules was promoted in shochu, compared with the water-ethanol mixture. The NMR chemical shifts of fruit cocktail drinks suggested that the hydrogen bonding of water-ethanol in the solution was developed by organic acids and (poly)phenols from fruit juices. PMID:16131113

  11. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  12. Low-dose ethanol consumption allows strength recovery in chronic alcoholic myopathy.

    PubMed

    Fernández-Solà, J; Nicolás, J M; Sacanella, E; Robert, J; Cofan, M; Estruch, R; Urbano-Márquez, A

    2000-01-01

    Chronic skeletal myopathy may affect one third of chronic alcohol misusers. It is generally accepted that abstinence allows partial recovery, and that continued high-dose ethanol consumption progressively deteriorates muscle function. However, the effect of low-dose ethanol consumption in alcoholic myopathy has not been studied. We studied 58 chronic alcoholic male patients with biopsy-proven chronic alcoholic myopathy over 5 years. We evaluated ethanol intake, biochemical and nutritional parameters, and assessed muscle strength. Eighteen patients who remained abstinent showed marked improvement in muscle strength. As expected, the 19 patients who persisted in high-dose ethanol consumption further diminished in their muscle strength. In the 11 patients who maintained low-dose (ethanol/day) 'controlled' drinking, muscle strength improved (p=0.003), despite no change in nutritional and exercise status. There is a dose-dependent recovery in muscle strength according to the degree of ethanol consumption, and moderate controlled drinking of up to 60 g ethanol/day still allows improvement in muscle strength.

  13. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    PubMed

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's.

  14. Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome.

    PubMed

    Bilotta, Joseph; Barnett, Jalynn A; Hancock, Laura; Saszik, Shannon

    2004-01-01

    Prenatal exposure to alcohol has been shown to produce the overt physical and behavioral symptoms known as fetal alcohol syndrome (FAS) in humans. Also, it is believed that low concentrations and/or short durations of alcohol exposure can produce more subtle effects. The purpose of this study was to investigate the effects of embryonic ethanol exposure on the zebrafish (Danio rerio) in order to determine whether this species is a viable animal model for studying FAS. Fertilized embryos were reared in varying concentrations of ethanol (1.5% and 2.9%) and exposure times (e.g., 0-8, 6-24, 12-24, and 48-72 h postfertilization; hpf); anatomical measures including eye diameter and heart rate were compared across groups. Results found that at the highest concentration of ethanol (2.9%), there were more abnormal physical distortions and significantly higher mortality rates than any other group. Embryos exposed to ethanol for a shorter duration period (0-8 hpf) at a concentration of 1.5% exhibited more subtle effects such as significantly smaller eye diameter and lower heart rate than controls. These results indicate that embryonic alcohol exposure affects external and internal physical development and that the severity of these effects is a function of both the amount of ethanol and the timing of ethanol exposure. Thus, the zebrafish represents a useful model for examining basic questions about the effects of embryonic exposure to ethanol on development.

  15. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. PMID:23428971

  16. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    PubMed

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs.

  17. Effects of concurrent access to multiple ethanol concentrations and repeated deprivations on alcohol intake of high-alcohol-drinking (HAD) rats.

    PubMed

    Rodd, Zachary A; Bell, Richard L; Kuc, Kelly A; Murphy, James M; Lumeng, Lawrence; McBride, William J

    2009-04-01

    High-alcohol-drinking rats, given access to 10% ethanol, expressed an alcohol deprivation effect (ADE) only after multiple deprivations. In alcohol-preferring (P) rats, concurrent access to multiple ethanol concentrations combined with repeated cycles of EtOH access and deprivation produced excessive ethanol drinking. The current study was undertaken to examine the effects of repeated alcohol deprivations with concurrent access to multiple concentrations of ethanol on ethanol intake of HAD replicate lines of rats. HAD-1 and HAD-2 rats received access to 10, 20 and 30% (v/v) ethanol for 6 weeks. Rats from each replicate line were assigned to: (1) a non-deprived group; (2) a group initially deprived of ethanol for 2 weeks; or (3) a group initially deprived for 8 weeks. Following the restoration of the ethanol solutions, cycle of 2 weeks of ethanol exposure and 2 weeks of alcohol deprivation was repeated three times for a total of four deprivations. Following the initial ethanol deprivation period, deprived groups significantly increased ethanol intakes during the initial 24-hour re-exposure period. Multiple deprivations increased ethanol intakes, shifted preference to higher ethanol concentrations and prolonged the duration of the elevated ethanol intakes for up to 5 days. In addition, repeated deprivations increased ethanol intake in the first 2-hour re-exposure period as high as 5-7 g/kg (which are equivalent to amounts consumed in 24 hours by HAD rats), and produced blood ethanol levels in excess of 150 mg%. The results indicate that HAD rats exhibit 'loss-of-control' of alcohol drinking with repeated deprivations when multiple ethanol concentrations are available.

  18. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats

    PubMed Central

    Godfrey, Jessica; Jeanguenin, Lisa; Castro, Norma; Olney, Jeffrey J.; Dudley, Jason; Pipkin, Joseph; Walls, Stanley M.; Wang, Wei; Herr, Deron R.; Harris, Greg L.; Brasser, Susan M.

    2015-01-01

    Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by

  19. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo

    2014-09-01

    We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake.

  20. Differential rearing conditions and alcohol-preferring rats: consumption of and operant responding for ethanol.

    PubMed

    Deehan, Gerald A; Palmatier, Matthew I; Cain, Mary E; Kiefer, Stephen W

    2011-04-01

    Exposing rats to differential rearing conditions during early postweaning development has been shown to produce changes in a number of behaviors displayed during adulthood. The purpose of the present studies was to investigate whether rearing alcohol-preferring (P) and nonpreferring (NP) rats in an environmental enrichment condition (EC), a social condition (SC), or an impoverished condition (IC) would differentially affect self-administration of 10% ethanol. In Experiment 1, rats were tested for consumption of 10% ethanol in limited- and free-access tests. For Experiment 2, rats were trained to respond in an operant chamber for ethanol and then provided concurrent access to 10% ethanol and water. Each solution was presented in a separate liquid dipper after meeting the schedule of reinforcement on distinct levers. After concurrent access tests, the water lever/dipper was inactivated and a progressive ratio (PR) schedule was initiated. Three successive solutions (10% ethanol, 15% ethanol, and 10% sucrose) were tested under the PR. For P rats, rearing in an EC reduced ethanol consumption, preference, and motivation to obtain ethanol, relative to P rats reared in an IC. Thus, exposure to a novel environment immediately after weaning acted to decrease the reinforcing properties of ethanol in an animal model for alcoholism.

  1. Chemiluminescent imaging of transpired ethanol from the palm for evaluation of alcohol metabolism.

    PubMed

    Arakawa, Takahiro; Kita, Kazutaka; Wang, Xin; Miyajima, Kumiko; Toma, Koji; Mitsubayashi, Kohji

    2015-05-15

    A 2-dimensional imaging system was constructed and applied in measurements of gaseous ethanol emissions from the human palm. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide-horseradish peroxidase system. Conversions of ethanol distributions and concentrations to 2-dimensional chemiluminescence were conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. Thus, a mixture of a high-purity luminol solution of luminol sodium salt HG solution instead of standard luminol solution and an enhancer of eosin Y solution was adapted to refine the chemiluminescent intensity of the imaging system, and improved the detection limit to 3 ppm gaseous ethanol. The highly sensitive imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each site on the palm shows the reflection of ethanol concentrations distributions corresponding to the amount of alcohol metabolized upon consumption. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin.

  2. Irritative action of alcoholic beverages in rat stomachs: a comparative study with ethanol.

    PubMed

    Nakagiri, Akari; Kato, Shinichi; Takeuchi, Koji

    2005-01-01

    The mucosal irritative action of alcoholic beverages such as white wine, Japanese sake and whisky was examined in rat stomachs in vivo and in vitro, in comparison with ethanol. The concentration of ethanol in these alcoholic beverages was 15%. Mucosal application of ethanol (15%) and whisky in the chambered stomach caused a decrease in gastric potential difference (PD), while that of Japanese sake and white wine caused a slight increase but not decrease in PD. Likewise, both ethanol and whisky markedly reduced the cell viability of RGM1 cells after 5 min incubation, whereas neither Japanese sake nor white wine had any effect. In addition, supplementation of glucose, one of the non-alcoholic ingredients of white wine and Japanese sake, antagonized a reduction in both PD and cell viability caused by ethanol. These results suggest that the mucosal irritative action of Japanese sake and white wine is much less than that of ethanol or whisky and that these properties may be, at least partly, due to the glucose contained in these alcoholic beverages.

  3. Elution behavior of oligomers on a polyvinyl alcohol gel column with chloroform, methanol, and their mixtures

    SciTech Connect

    Mori, S. )

    1988-01-01

    Elution phenomena of size exclusion chromatography (SEC) plus superimposed adsorption effects for oligostyrenes, epoxy resins, methylated melamine-formaldehyde resin prepolymers, p-cresol-formaldehyde resin prepolymers, and phenol-formaldehyde resin prepolymers were investigated. SEC and superimposed adsorption effects could be elucidated from a concept of solubility parameter. Minimum retention volumes of these obligomers were obtained with the mobile phases of chloroform/methanol, 80/20 or 60/40 (v/v), and separation was expected to be mostly performed by SEC. The solubility parameter of polyvinyl alcohol gels was estimated to be between 21 and 23 from the above results. Elution for normal phase chromatography was in the order of increasing molecular weight and that for reversed-phase chromatography was in the order of decreasing molecular weight. These are reversed phenomena to those for low-molecular weigh compounds. Solubility of sample solutes to mobile phase must be considered. Methanol mobile phase-polyvinyl alcohol gel system might be exception.

  4. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    SciTech Connect

    Aliyu, S.U.; Upahi, L.

    1988-01-01

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.

  5. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  6. An attempt to evaluate diagnostic and prognostic significance of blood endogenous ethanol in alcoholics and their relatives.

    PubMed

    Ostrovsky, Y M; Pronko, P S; Shishkin, S N; Kolesnikov, V B; Volynets, S I

    1989-01-01

    Endogenous ethanol in the blood of human subjects was measured by gas chromatography. In healthy males, 12-13-year-old boys (sons of alcoholic and nonalcoholic fathers), and alcoholic inpatients (after cessation of all drugs), the endogenous ethanol levels ranged from 0 to 4.3 mg/l. The results showed no significant differences between the groups. At the period of alcohol withdrawal reactions the concentrations of endogenous ethanol were minimal in patients with delirium tremens and maximal in patients with mild alcohol withdrawal syndrome, the dynamics of this parameter being dependent on the severity of the alcohol withdrawal syndrome and the nature of the drugs prescribed.

  7. Asymptomatic blood methanol in emergency room patients.

    PubMed

    Wargotz, E S; Werner, M

    1987-06-01

    Over a four-month period, methanol was found in the blood of 18 patients among 687 sequential emergency room admissions screened for alcohols by gas chromatography. In the patients with positive results, blood ethanol ranged from 6 to 570 mg/dL (1.3-123.7 mmol/L), blood methanol from 2.3 to 4.0 mg/dL (0.72-1.25 mmol/L). Methanol exposure during preparation of the sampling site or in the course of specimen handling, ingestion of denatured alcohol, as well as methanol production from the metabolism of aspartame are ruled out as causes for these findings. The authors conclude that endogenous methanol production is the probable major cause, while methanol as a fermentation congener may be a contributory minor cause.

  8. USING EXPRESSION GENETICS TO STUDY THE NEUROBIOLOGY OF ETHANOL AND ALCOHOLISM

    PubMed Central

    Farris, Sean P.; Wolen, Aaron R.; Miles, Michael F.

    2012-01-01

    Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. PMID:20813241

  9. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  10. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    PubMed Central

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  11. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    PubMed

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.

  12. Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation.

    PubMed

    Wu, Haoxi; Li, Haijuan; Zhai, Yujuan; Xu, Xiaolong; Jin, Yongdong

    2012-03-22

    Macroscopic free-standing Pd and Pd/Pt bimetallic monolayer nanomembranes (Pd- and Pd/Pt-FNMs) derived from the spontaneous self-assembly of the as-produced Pd NPs and Pd/Pt bimetallic NPs at the water-air interface within 15 min are fabricated, respectively. The one-step method allows the growth of high-quality Pd-based FNMs with well-defined monolayer morphology, which exhibit significantly higher electrocatalytic activity for methanol/ethanol oxidation than commercial catalysts.

  13. Effects of acute administration of ethanol on cerebral glucose utilization in adult alcohol-preferring and alcohol-nonpreferring rats.

    PubMed

    Strother, Wendy N; McBride, William J; Lumeng, Lawrence; Li, Ting-Kai

    2005-02-01

    Local cerebral glucose utilization (LCGU) rates, as determined by the [(14)C]-2-deoxyglucose (2-DG) technique, were examined after acute ethanol administration within selected brain regions of alcohol-preferring (P) and alcohol-nonpreferring (NP) rats. Adult male P and NP rats were injected with saline, 0.25 g/kg, or 1.0 g/kg ethanol, intraperitoneally (ip), 10 min before an intravenous bolus of [(14)C]2-DG (125 microCi/kg). Timed arterial blood samples were collected over 45 min and assayed for plasma glucose, ethanol, and [(14)C]2-DG levels. Image densities were determined using quantitative autoradiography and LCGU values calculated. Data were collected from several key limbic, basal ganglionic, cortical, and subcortical structures. Low-dose ethanol (0.25 g/kg) significantly decreased LCGU rates in several brain regions including the medial prefrontal cortex, olfactory tubercles, and the CA1 subregion of the hippocampus of P rats. Low-dose ethanol had no significant effects on LCGU rates in the NP rats. Moderate-dose ethanol (1.0 g/kg) also significantly lowered LCGU rates in many brain regions of P rats, including key limbic structures, such as the medial prefrontal cortex, olfactory tubercles, ventral tegmental area, basolateral nucleus of the amygdala, lateral septum, and ventral pallidum. Moderate-dose ethanol also significantly lowered LCGU rates in the medial prefrontal cortex as well as in the habenula of NP rats. All other regions were unaffected in the NP rats. These findings support the suggestion that certain central nervous system regions of P rats may be more sensitive than those of NP rats to the effects of low to intermediate doses of ethanol.

  14. Determinants of alcohol preference in the AA and ANA rat lines selected for differential ethanol intake.

    PubMed

    Kiianmaa, K; Stenius, K; Sinclair, J D

    1991-01-01

    A selective breeding program conducted in this laboratory has resulted in the establishment of the alcohol-preferring AA (Alko Alcohol) and alcohol-avoiding ANA (Alko Nonalcohol) rat lines. These lines have been used as a tool for attempting to identify the behavioral, neurochemical, and biochemical correlates of differential voluntary ethanol consumption. Some of the differences that have been found between the lines involve differential reinforcement: AA rats, but not ANA rats, rapidly acquire an ethanol-reinforced operant response. The AA's greater development of tolerance to the depressant effects of ethanol and their faster ethanol metabolism would also allow them to drink more. Neurochemical studies have suggested differential functioning of brain monoaminergic mechanisms. The activity of tyrosine hydroxylase and dopa decarboxylase, and the brain dopamine concentrations are higher in the AA rats than in the ANA rats, and the maximal number of dopamine D2 receptors is lower in the AA rats. The concentration of noradrenaline is higher in the brain of ANA rats than in that of AA rats, while the 5-hydroxytryptamine levels do not seem to differ greatly. The importance of these differences to the line difference in ethanol intake is not, however, clear, since there appears to be no difference in the sensitivity of monoamine systems of the two lines to ethanol. PMID:1726981

  15. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  16. Evaluation and Comparison of the In Vitro Cytotoxic Activity of Withania somnifera Methanolic and Ethanolic Extracts against MDA-MB-231 and Vero Cell Lines

    PubMed Central

    Srivastava, A. N.; Ahmad, Rumana; Khan, Mohsin Ali

    2016-01-01

    Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies. PMID:27110497

  17. Evaluation and Comparison of the In Vitro Cytotoxic Activity of Withania somnifera Methanolic and Ethanolic Extracts against MDA-MB-231 and Vero Cell Lines.

    PubMed

    Srivastava, A N; Ahmad, Rumana; Khan, Mohsin Ali

    2016-01-01

    Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies. PMID:27110497

  18. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    PubMed Central

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  19. Non-oxidative ethanol metabolites as a measure of alcohol intake.

    PubMed

    Maenhout, Thomas M; De Buyzere, Marc L; Delanghe, Joris R

    2013-01-16

    Recent alcohol intake can be monitored by the measurement of indirect biomarkers. Elevated levels of liver enzymes (i.e. gamma-glutamyl transferase (GGT), alanine amino transferase (ALT) and aspartate amino transferase (AST)) in blood are commonly used in clinical practice as an indicator of alcohol-induced liver damage. With the exception of carbohydrate-deficient transferrin (CDT), the specificity of indirect markers is only moderate because many cases of elevated levels are unrelated to alcohol consumption. Because of their intermediate half-life and tendency to accumulate in hair, non-oxidative ethanol metabolites can be used as markers with an intermediate timeframe between ethanol measurements and GGT and CDT with regard to recent alcohol consumption occurring between hours to 1 week. Additionally, these biomarkers offer a high ethanol-specificity in combination with approximately a two-fold higher sensitivity in comparison with indirect alcohol markers. In case of forensic use of direct ethanol metabolites, caution has to be taken in interpretation and pre-analytical pitfalls should be considered.

  20. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli.

    PubMed

    Lewicka, Aleksandra J; Lyczakowski, Jan J; Blackhurst, Gavin; Pashkuleva, Christiana; Rothschild-Mancinelli, Kyle; Tautvaišas, Dainius; Thornton, Harry; Villanueva, Hugo; Xiao, Weike; Slikas, Justinas; Horsfall, Louise; Elfick, Alistair; French, Christopher

    2014-12-19

    Ethanol is an important biofuel. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) increases ethanol production in Escherichia coli. A fusion of PDC and ADH was generated and expressed in E. coli. The fusion enzyme was demonstrated to possess both activities. AdhB activity was significantly lower when fused to PDC than when the two enzymes were expressed separately. However, cells expressing the fusion protein generated ethanol more rapidly and to higher levels than cells coexpressing Pdc and AdhB, suggesting a specific rate enhancement due to the fusion of the two enzymes.

  1. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.

    PubMed

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn M; Bhandiwad, Ashwini; Rodriguez, Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-08-16

    Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  2. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  3. Influence of Cononsolvency on the Aggregation of Tertiary Butyl Alcohol in Methanol-Water Mixtures.

    PubMed

    Mochizuki, Kenji; Pattenaude, Shannon R; Ben-Amotz, Dor

    2016-07-27

    The term cononsolvency has been used to describe a situation in which a polymer is less soluble (and so is more likely to collapse and aggregate) in a mixture of two cosolvents than it is in either one of the pure solvents. Thus, cononsolvency is closely related to the suppression of protein denaturation by stabilizing osmolytes. Here, we show that cononsolvency behavior can also influence the aggregation of tertiary butyl alcohol in mixtures of water and methanol, as demonstrated using both Raman multivariate curve resolution spectroscopy and molecular dynamics simulations. Our results imply that cononsolvency results from the cosolvent-mediated enhancement of the attractive (solvophobic) mean force between nonpolar groups, driven by preferential solvation of the aggregates, in keeping with Wyman-Tanford theory. PMID:27363494

  4. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.

    PubMed

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.

  5. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    PubMed

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  6. Acute effects of ethanol on sex hormones in non-alcoholic men and women.

    PubMed

    Ellingboe, J

    1987-01-01

    Chronic alcohol consumption has long been known to interfere with reproductive function and sexual behavior, but specific effects of acute alcohol ingestion on sex hormones have been studied only recently. An attempt is made in this review to summarize and explain conflicting results from studies of the acute effects of alcohol on the hypothalamic-pituitary-gonadal axis, with healthy non-alcoholic men and women as subjects. In men, moderate to high doses of ethanol have been reported to suppress plasma testosterone. Although some clinical studies have not supported this observation, considerable evidence documents direct alcohol inhibition of testosterone biosynthesis in the testis. After alcohol ingestion, plasma LH remains unchanged or increases, probably because of reduced androgen negative feedback. In analogous studies with women during the late follicular phase of the menstrual cycle, alcohol does not decrease plasma estradiol or alter LH levels. Furthermore, it has been reported that plasma levels of estradiol, progesterone and testosterone increase during alcohol treatment in the midluteal phase, while gonadotropins tend to decrease. Alcohol has no effect on LH secretion in post-menopausal women. Because reports on the acute effects of alcohol in men have not been consistent, it remains to be determined if acute alcohol effects in men and women are really different. In men, provocative tests of gonadotropin response to LHRH stimulation were normal during periods of intoxication and hangover, indicating that ethanol has no significant direct effect on LH secretion at the pituitary level. It seems more likely that alcohol changes plasma levels of sex steroids by altering hepatic, gonadal, and possibly adrenal metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of alcohols, alkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10485 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as...

  8. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of alcohols, alkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10485 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as...

  9. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    SciTech Connect

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  10. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  11. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  12. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  13. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  14. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alcohol test system. 862.3040 Section 862.3040....3040 Alcohol test system. (a) Identification. An alcohol test system is a device intented to measure alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood,...

  15. Daily patterns of ethanol drinking in peri-adolescent and adult alcohol-preferring (P) rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Sable, Helen J K; Schultz, Jonathon A; Hsu, Cathleen C; Lumeng, Lawrence; Murphy, James M; McBride, William J

    2006-01-01

    Alcohol abuse among adolescents continues to be a major health problem for our society. Our laboratory has used the peri-adolescent alcohol-preferring, P, rat as an animal model of adolescent alcohol abuse. Even though peri-adolescent P rats consume more alcohol (g/kg/day) than their adult counterparts, it is uncertain whether their drinking is sufficiently aggregated to result in measurable blood ethanol concentrations (BECs). The objectives of this study were to examine daily alcohol drinking patterns of adolescent and adult, male and female P rats, and to determine whether alcohol drinking episodes were sufficiently aggregated to result in meaningful BECs. Male and female P rats were given 30 days of 24 h free-choice access to alcohol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a "lickometer" set-up. The results indicated that (a) peri-adolescent P rats consumed more water and total fluids than adult P rats, (b) female P rats consumed more water and total fluids than male P rats, (c) there were differences in alcohol, and water, licking patterns between peri-adolescent and adult and female and male P rats, (d) individual licking patterns revealed that alcohol was consumed in bouts often exceeding the amount required to self-administer 1 g/kg of alcohol, and (e) BECs at the end of the dark cycle, on the 30th day of alcohol access, averaged 50 mg%, with alcohol intakes during the last 1 to 2 h averaging 1.2 g/kg. Overall, these findings indicate that alcohol drinking patterns differ across the age and sex of P rats. This suggests that the effectiveness of treatments for reducing excessive alcohol intake may vary depending upon the age and/or sex of the subjects being tested.

  16. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD. PMID:27186793

  17. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement

    PubMed Central

    Marrs, James A.; Clendenon, Sherry G.; Ratcliffe, Don R.; Fielding, Stephen M.; Liu, Qin; Bosron, William F.

    2009-01-01

    This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid signaling caused by embryonic ethanol. Retinoic acid deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100 mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with retinoic acid at a low concentration (10−9 M) and 100 mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100 mM ethanol alone. The rescue phenotype that we observed was quantitatively more similar to embryos treated with 10−9 M retinoic acid alone (retinoic acid toxicity) than to untreated or 100 mM ethanol treated embryos. Retinoic acid rescues defects caused by 100 mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation and ear development. Morphological evidence also suggests that other characteristic features of FASD (e. g., neural axis patterning) are rescued by retinoic acid supplement. PMID:20036484

  18. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement.

    PubMed

    Marrs, James A; Clendenon, Sherry G; Ratcliffe, Don R; Fielding, Stephen M; Liu, Qin; Bosron, William F

    2010-01-01

    This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid (RA) signaling caused by embryonic ethanol exposure. RA deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with RA at a low concentration (10(-9)M) and 100mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100mM ethanol alone. The rescued phenotype that we observed was quantitatively more similar to embryos treated with 10(-9)M RA alone (RA toxicity) than to untreated or 100mM ethanol-treated embryos. RA rescued defects caused by 100mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation, and ear development. Morphological evidence also suggests that other characteristic features of FASD (e.g., neural axis patterning) are rescued by RA supplement.

  19. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae

    SciTech Connect

    Kapoun, A.M.; Geer, B.W.; Heinstra, P.W.H. ); Corbin, V. ); McKechnie, S.W. )

    1990-04-01

    The activity of alcohol dehydrogenase, the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh{sup n2} larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol.l An examination of P element transformant lines with specific deletions in the 5{prime} regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between {minus}660 and about {minus}5,000 of the distal transcript start site was important for the down-regulation of the induction response.

  20. Promoting Bio-Ethanol in the United States by Incorporating Lessons from Brazil's National Alcohol Program

    ERIC Educational Resources Information Center

    Du, Yangbo

    2007-01-01

    Current U.S. energy policy supports increasing the use of bio-ethanol as a gasoline substitute, which Brazil first produced on a large scale in response to the 1970s energy crises. Brazil's National Alcohol Program stood out among its contemporaries regarding its success at displacing a third of Brazil's gasoline requirements, primarily due to…

  1. Physico-chemical and excess thermodynamic properties of methanol & ethanol with 1, 4-dioxane at 308 K

    NASA Astrophysics Data System (ADS)

    Bedare, G. R.; Bhandakkar, V. D.; Suryavanshi, B. M.

    2012-12-01

    The molecular interaction studies in the binary liquid mixtures of two aliphatic alcohols with 1, 4-dioxane has been carried out at 308 K using ultrasonic technique. Using measured values of ultrasonic velocity, density and viscosity, acoustical parameters such as adiabatic compressibility, free volume, free length and their excess values like VfE, ßaE, LfE are evaluated. From the properties of these excess parameters, the nature and the strength of interactions in these binary systems are discussed. It has been observed that, weak dispersive type intermolecular interactions are confirmed in the systems investigated. Dipole inducement is found to be more predominant in methanol system.

  2. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1.

  3. A simple lattice model for the microstructure of neat alcohols: Application to liquid methanol

    NASA Astrophysics Data System (ADS)

    Ciach, Alina; Perera, Aurélien

    2009-07-01

    Simple lattice model for self-associating molecules such as methanol or tert-butanol is proposed and studied in mean-field (MF) approximation in the case of methanol. In addition to the isotropic van der Waals interaction, the hydrogen bonding is present in this model when the neighboring alcohol molecules are in appropriate orientations. The orientation of the polar molecule is given by the unit vector n̂ parallel to the vector connecting the center of the tail group with the center of the head group of the molecule. Stability region of the uniform fluid phase against gas-liquid separation and order-disorder transition is obtained for neat methanol in MF approximation. In order to describe the self-association patterns in the liquid, we consider the grand-canonical ensemble average of the scalar product of the orientations of the molecules ⟨n̂(x)ṡn̂(x +Δx)⟩ as a function of the vector Δx describing the separation between the centers of the molecules. For methanol we find in MF oscillatory decay of ⟨n ̂(x)ṡn̂(x +Δx)⟩ for Δx ⊥n̂(x) and for Δx ∥n̂(x); the wavelength is somewhat less than two molecular diameters in both cases, and the decay length is larger in the perpendicular direction. This indicates that on average alternating antiparallel and parallel orientations of the second molecule are found for increasing separation from the first molecule in both directions. Such local orientational ordering of the molecules is consistent with association into zigzag chainlike clusters found in recent spectroscopic measurements and computer simulations. In Fourier representation the above structure function assumes maximum for the wave number that coincides with the prepeak position for site-site correlations found in simulations. We argue that ⟨n̂(x)ṡn̂(x +Δx)⟩ can provide a useful tool for discriminating between different local arrangements of any polar molecules.

  4. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    PubMed

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children.

  5. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing.

    PubMed

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-09-01

    Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and "non-fermented" food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the "categories" bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the "categories," exposure rose to 12.5-23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children. PMID:27405361

  6. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.

    PubMed

    Fernández-Naveira, Ánxela; Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2016-05-01

    Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents have not thoroughly been studied. Therefore, different batch bottle experiments were carried out with the bacterial species Clostridium carboxidivorans using CO as carbon source for butanol-ethanol fermentation. A maximum specific growth rate of 0.086 ± 0.004 h(-1) and a biomass yield of 0.011 gbiomass/gCO were found, which is significantly lower than in other clostridia grown on sugars. Besides, three assays were carried out to check the inhibitory effect of butanol, ethanol, and their mixtures. Butanol had a higher inhibitory effect on the cells than ethanol and showed a lower IC50, reduced growth rate, and slower CO consumption with increasing alcohol concentrations. A concentration of 14-14.50 g/L butanol caused 50 % growth inhibition in C. carboxidivorans, and 20 g/L butanol resulted in complete inhibition, with a growth rate of 0 h(-1). Conversely, 35 g/L ethanol decreased by 50 % the final biomass concentration respect to the control and yielded the lowest growth rate of 0.024 h(-1). The inhibitory effect of mixtures of both alcohols was also checked adding similar, near identical, concentrations of each one. Growth decreased by 50 % in the presence of a total concentration of alcohols of 16.22 g/L, consisting of similar amounts of each alcohol. Occasional differences in initially added concentrations of alcohols were minimal. The lowest growth rate (0.014 h(-1)) was observed at the highest concentration assayed (25 g/L).

  7. Comparison of enteral ethanol and benzodiazepines for alcohol withdrawal in neurocritical care patients.

    PubMed

    Gipson, Gregory; Tran, Kim; Hoang, Cuong; Treggiari, Miriam

    2016-09-01

    We designed a study to evaluate the use of benzodiazepines and ethanol in patients being assessed for alcohol withdrawal and compare outcomes between the two agents. This is a retrospective chart review of patients admitted to neurocritical care or neurosurgical services who were at risk for ethanol withdrawal between June 2011 and September 2015. Patients were divided into two groups based on the first medication administered for alcohol withdrawal management, either benzodiazepine (n=50) or enteral ethanol (n=50). The primary endpoint was the maximum change in Clinical Institute Withdrawal Assessment of Alcohol scale (CIWA) score within the first 24hours. Secondary endpoints included maximum and minimum CIWA score in 5days, length of stay, and change in Glasgow Coma Scale. Study groups differed by mortality risk, level of coma at admission, and other clinical characteristics, with the ethanol group appearing less severely ill. There was no significant difference between the two groups in the maximum change in CIWA score at 24hours (-0.97, 95%CI: -3.21 to 1.27, p=0.39). Hospital and intensive care unit length of stay was 6.5 days and 1 day shorter for the ethanol group (p=0.03 and p=0.02, respectively). In summary, enteral ethanol was preferentially used in patients who are more likely to be capable of tolerating oral intake. We found that the change from baseline in CIWA score or other physiologic variables was not substantially different between the two agents. The overall utility of benzodiazepines and enteral ethanol remains unclear for this population and further study is needed to determine superiority.

  8. Carbon microspheres from ethanol at low temperature: Fabrication, characterization and their use as an electrocatalyst support for methanol oxidation

    SciTech Connect

    Lian, Suoyuan; Ming, Hai; Huang, Hui; Kang, Zhenhui; Liu, Yang

    2012-11-15

    Highlights: ► Carbon microbeads were prepared by the carbonization of ethanol at low temperature. ► The low temperature carbonization of ethanol was catalyzed by iodine. ► Carbon microbeads can serve as ideal candidate for catalyst supports. -- Abstract: Carbon microspheres (CMSs) with a diameter range of 2–3 μm were prepared by the iodine-catalyzed carbonization of ethanol at low temperatures by solvothermal synthesis. The reaction time, concentrations of reactants, temperatures, different alcohols as carbon precursors and reaction environments were systematically altered to determine the optimal synthesis conditions. The size and shape were characterized by scanning and transmission electron microscopy and their structure was characterized by X-ray powder diffraction and Raman spectroscopy. Energy dispersive X-ray spectroscopy, Fourier transform infrared and X-ray photoelectron spectroscopy showed that abundant oxygen-containing functional groups remain on the surface of the carbon spheres. The formation mechanism involves iodine promotion of the oxidation of ethanol, which results in formation of the CMSs. The specific activity of the CMS-supported Pt catalyst is higher than that of a commercial Pt catalyst from E-TEK or the unsupported Pt catalyst.

  9. Near infrared excited micro-Raman spectra of 4:1 methanol-ethanol mixture and ruby fluorescence at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, X. B.; Shen, Z. X.; Tang, S. H.; Kuok, M. H.

    1999-06-01

    Near infrared (NIR) lasers, as a new excitation source for Raman spectroscopy, has shown its unique advantages and is being increasingly used for some special samples, such as those emitting strong fluorescence in the visible region. This article focuses on some issues related to high-pressure micro-Raman spectroscopy using NIR excitation source. The Raman spectra of 4:1 methanol-ethanol mixture (4:1 M-E) show a linear variation in both Raman shifts and linewidths under pressure up to 18 GPa. This result is useful in distinguishing Raman scattering of samples from that of the alcohol mixture, an extensively used pressure-transmitting medium. The R1 fluorescence in the red region induced by two-photon absorption of the NIR laser is strong enough to be used as pressure scale. The frequency and line width of the R1 lines are very sensitive to pressure change and the glass transition of the pressure medium. Our results manifest that it is reliable and convenient to use NIR induced two-photon excited fluorescence of ruby for both pressure calibration and distribution of pressure in the 4:1 M-E pressure transmitting medium.

  10. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats.

    PubMed

    Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L

    2011-09-01

    Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [P<.02] and 4.8±0.4nM, [P<.05], respectively). Extraction fractions were significantly (P<.0002) different between the alcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may

  11. Enduring effects of chronic ethanol in the CNS: basis for alcoholism.

    PubMed

    Diana, Marco; Brodie, Mark; Muntoni, Annalisa; Puddu, Maria C; Pillolla, Giuliano; Steffensen, Scott; Spiga, Saturnino; Little, Hilary J

    2003-02-01

    This symposium focused on functional alterations in the mesolimbic dopamine system during the abstinence phase after chronic alcohol intake. Mark Brodie first described his recordings from midbrain slices prepared after chronic alcohol treatment in vivo by daily injection in C57BL/6J mice. No changes were found in the baseline firing frequency of dopaminergic neurones in the VTA (ventral tegmental area), but the excitation produced in these neurones by an acute ethanol challenge was significantly increased in neurons from ethanol-treated mice compared with those from the saline-treated controls. There was also a significant decrease in the inhibitory response to GABA by the dopamine neurones following the chronic ethanol treatment. These data suggest that the timing pattern and mode of ethanol administration may determine the types of changes observed in dopaminergic reward area neurons. Annalisa Muntoni lectured on the relationship between electrophysiological and biochemical in vivo evidence supporting a reduction in tonic activity of dopamine neurons projecting to the nucleus accumbens at various times after suspension of chronic ethanol treatment and morphological changes affecting dopamine neurons in rat VTA. Hilary J. Little then described changes in dopaminergic neurone function in the VTA during the abstinence phase. Decreases in baseline firing were seen at 6 days after withdrawal of mice from chronic ethanol treatment but were not apparent after 2 months abstinence. Increases in the affinity of D1 receptors in the striatum, but not in the cerebral cortex, were seen however up to 2 months after withdrawal. Scott Steffensen then described his studies recording in vivo from GABA containing neurones in the VTA in freely moving rats. Chronic ethanol administration enhanced the baseline activity of these neurones and resulted in tolerance to the inhibition by ethanol of these neurones. His results demonstrated selective adaptive circuit responses within the VTA

  12. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.

  13. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Mol...

  14. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  15. Place conditioning with ethanol in rats bred for high (UChB) and low (UChA) voluntary alcohol drinking.

    PubMed

    Quintanilla, María Elena; Tampier, Lutske

    2011-12-01

    The main goal of this study was to investigate the ability of an ethanol dose (1g/kg) administered intraperitoneally to induce conditioned place preference (CPP) and/or conditioned place aversion (CPA) in two lines of rats selectively bred for their high (UChB) or low (UChA) voluntary ethanol intake. It was found that five pairings with ethanol induced CPA in ethanol-naïve rats of both lines, but the magnitude of avoidance was lower in the UChB relative to the UChA rats, indicating that ethanol was less aversive to naïve rats bred for high alcohol drinking. After 2 months of high voluntary ethanol drinking (~6-7g/kg/day), in free choice between 10% ethanol and water, ethanol produced CPP in UChB rats, reflecting that ethanol had become rewarding to these rats. By contrast, the low voluntary ethanol intake (<1g/kg/day) displayed by UChA rats preexposed for 2 months in free choice did not change ethanol-induced CPA. However, preexposure of UChA rats to forced ethanol drinking (~5.7g/kg/day) and the later inhibition of ethanol-derived acetaldehyde by 4-methylpyrazole (10mg/kg intraperitoneal), an inhibitor of the enzyme alcohol dehydrogenase, not only increased their voluntary ethanol intake in free choice, but also had a facilitating effect on the development of CPP. Taken together, these results show that the expression of the reinforcing effects of ethanol required a period of voluntary ethanol intake in UChB rats, whereas in UChA rats, both prior exposure to forced ethanol drinking and reduction of high blood ethanol-derived acetaldehyde were required.

  16. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    PubMed Central

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  17. Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X = ethanol, methanol and water)

    NASA Astrophysics Data System (ADS)

    Dhumal, Nilesh R.

    2011-08-01

    In the present work, we have studied the electronic structure, molecular electrostatic potential (MEP) and hydrogen bonding in DMSO-ethanol, DMSO-methanol and DMSO-water complexes by employing the MP2 method. Different conformers were simulated on the basis of possible binding sites guided by molecular electrostatic potential topology. The stronger hydrogen bonded interaction lowers the energy of the conformer. Molecular electron density topology and natural bond orbital analysis were used to explain the strength of interactions. Experimental vibrations are also compared with the calculated normal vibrations. Blue shift is predicted for SC vibration in experimental and theoretical spectra as well. Molecular electrostatic potential and topology are used to understand the interaction strength of the conformer.

  18. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.

    PubMed

    Liu, Zhelin; Zhao, Bo; Guo, Cunlan; Sun, Yujing; Shi, Yan; Yang, Haibin; Li, Zhuang

    2010-11-01

    In this paper, raspberry hollow Pd nanospheres (HPNs)-decorated carbon nanotube (CNT) was developed for electro-oxidation of methanol, ethanol, and formic acid in alkaline media. The electrocatalyst was fabricated simply by attaching HPNs onto the surface of CNT which had been functionalized by polymer wrapping. The as-prepared HPN-CNTs (CHPNs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The increasing interest and intensive research on fuel cell inspire us to investigate the electrocatalytic properties of the prepared nanostructures. Besides that, previous reports about alkaline other than acidic media could supply a more active environment guide us to examine the electrocatalytic properties in alkaline electrolyte. It is found that this novel hybrid electrocatalyst exhibits excellent electrocatalytic properties and can be further applied in fuel cells, catalysts, and sensors.

  19. FORMATION OF CARBON DIOXIDE, METHANOL, ETHANOL, AND FORMIC ACID ON AN ICY GRAIN ANALOG USING FAST OXYGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.

    2010-03-20

    Carbon dioxide (CO{sub 2}), methanol (CH{sub 3}OH), ethanol (CH{sub 3}CH{sub 2}OH), and formic acid (HCOOH) have been formed in collisions of a superthermal, 9 eV beam of O({sup 3} P) atoms with CH{sub 4} molecules, with an over coat of CO molecules, adsorbed on a gold surface at 4.8 K. The products are detected using temperature programmed-desorption and quadrupole mass spectrometry. Identification of the species is carried out through use of the Metropolis random walk algorithm as constrained by the fractionation patterns of the detected species. Relative formation yields are reported and reaction sequences are given to account for possible formation routes.

  20. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-01

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  1. [Effect of tranquilizing agents on the blood level of endogenous ethanol in alcoholics].

    PubMed

    Burov, Iu V; Treskov, V G; Drozdov, E S; Kovalenko, A E

    1983-01-01

    Experiments on alcohol addicts blood were made to study the time course of the endogenous ethanol level after a single administration of mebicar (1.5 g), a derivative of bicyclic bisuria, 50 ml of 5% sodium hydroxybutyric syrup, a derivative of gamma-hydroxybutyric acid, and 20 mg diazepam, a derivative of 1,4-benzodiazepines. The clinical effect was recorded simultaneously. It was established that different tranquilizers stimulate the increase in the endogenous ethanol level as regards the spectrum of psychotropic activity. This effect was the most pronounced with mebicar and to a less measure with diazepam.

  2. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    PubMed

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-01-01

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol. PMID:27295340

  3. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer

    PubMed Central

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-01-01

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol. PMID:27295340

  4. A re-appraisal of the concept of ideal mixtures through a computer simulation study of the methanol-ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Mijaković, Marijana; Sokolić, Franjo; Perera, Aurélien

    2016-08-01

    Methanol-ethanol mixtures under ambient conditions of temperature and pressure are studied by computer simulations, with the aim to sort out how the ideality of this type of mixtures differs from that of a textbook example of an ideal mixture. This study reveals two types of ideality, one which is related to simple disorder, such as in benzene-cyclohexane mixtures, and another found in complex disorder mixtures of associated liquids. It underlines the importance of distinguishing between concentration fluctuations, which are shared by both types of systems, and the structural heterogeneity, which characterises the second class of disorder. Methanol-1propanol mixtures are equally studied and show a quasi-ideality with many respect comparable to that of the methanol-ethanol mixtures, hinting at the existence of a super-ideality in neat mono-ol binary mixtures, driven essentially by the strong hydrogen bonding and underlying hydroxyl group clustering.

  5. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens.

    PubMed

    Cozier, G E; Giles, I G; Anthony, C

    1995-06-01

    The 1.94 A structure of methanol dehydrogenase has been used to provide a model structure for part of a membrane quinohaemoprotein alcohol dehydrogenase. The basic superbarrel structure and the active-site region are retained, indicating essentially similar mechanisms of action, but there are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site.

  6. Technoeconomic Analysis of a Lignocellulosic Biomass Indirect Gasification Process to Make Ethanol via Mixed Alcohols Synthesis

    SciTech Connect

    Phillips, S. D.

    2007-01-01

    A technoeconomic analysis of a 2000 tonne/day lignocellulosic biomass conversion process to make mixed alcohols via gasification and catalytic synthesis was completed. The process, modeled using ASPEN Plus process modeling software for mass and energy calculations, included all major process steps to convert biomass into liquid fuels, including gasification, gas cleanup and conditioning, synthesis conversion to mixed alcohols, and product separation. The gas cleanup area features a catalytic fluidized-bed steam reformer to convert tars and hydrocarbons into syngas. Conversions for both the reformer and the synthesis catalysts were based on research targets expected to be achieved by 2012 through ongoing research. The mass and energy calculations were used to estimate capital and operating costs that were used in a discounted cash flow rate of return analysis for the process to calculate a minimum ethanol selling price of $0.267/L ($1.01/gal) ethanol (U.S.$2005).

  7. Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures

    NASA Astrophysics Data System (ADS)

    Saghir, M. Z.; Jiang, C. G.; Derawi, S. O.; Stenby, E. H.; Kawaji, M.

    2004-11-01

    In multicomponent mixtures, a much richer variety of phenomena can occur than in simple (single-component) fluids. Natural convection in single-component fluids is due to buoyancy forces caused by temperature gradients. In multicomponent mixtures, buoyancy forces may also be caused by concentration gradients. Because natural convection, molecular diffusion, and thermal conduction have different relaxation time scales, a wide variety of resulting convective motions and heat and mass distributions might occur. In some fluid mixtures such as water-ethanol system, for instance, ethanol diffuses much more slowly than heat, and because of this difference in time scales oscillatory convection might occur. In a multicomponent mixture, the total molar flux consists of two parts: the convective molar flux and the diffusive molar flux (resulting from the difference between the component velocity and the bulk velocity). The diffusion molar flux of a component depends, not only on its own mole fraction gradient (Fickian diffusion), but also on the gradient of all the components present in the mixture (cross-molecular diffusion). The diffusion flux depends also on the pressure gradient (pressure diffusion; the so-called gravitational effect) and temperature gradient (thermal diffusion; the so-called Soret effect). Firoozabadi's thermal diffusion model was applied to calculate the Soret coefficient, as well as the thermal diffusion coefficient and molecular diffusion coefficient for methanol-water and ethanol-water mixtures at 310.65 K temperature and 1 bar pressure with 10% water mass fraction. The results were compared with experimental data (J.K. Platten, in Proceedings of the 5th International Meeting on Thermodiffusion (IMT5), Lyngby, Aug. 2002, Philos. Mag. 83, Nos. 17-18 (2003)), as well as theoretical predictions with other models. A better agreement with the experimental data using the Firoozabadi model was achieved.

  8. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  9. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  10. [Endogenous ethanol and its possible participation in the activity of the central nervous system in healthy subjects and alcoholics].

    PubMed

    Kudriavtsev, R V; Ushakova, M M; Nebarakova, T P; Valentik, Iu V; Ionova, K P

    1987-01-01

    Blood concentrations of endogenous ethanol (EE) reflects the effects of various psychic and medicinal impacts. EE levels in alcoholic patients depend on the severity of alcoholism, emotional status and efficacy of treatment. Actualization of the pathologic craving for alcohol and other types of emotional excitement are attended by reduced EE concentrations whereas the disactualization of the pathological craving for alcohol and relaxation increase the EE levels. Stabilization of alcoholic patients' clinical status is attended by stabilization of EE values. It is suggested that acetaldehyde acts as a modulator of catecholamine levels both in normal subjects and alcoholics ensuring connection between EE levels and the status of the central nervous system.

  11. Tolcapone suppresses ethanol intake in alcohol preferring rats performing a novel cued access protocol

    PubMed Central

    McCane, Aqilah M.; Czachowski, Cristine L.; Lapish, Christopher C.

    2014-01-01

    Background Dopamine (DA) has been shown to play a central role in regulating motivated behavior and encoding reward. Chronic drug abuse elicits a state of hypodopaminergia in the mesocorticolimbic (MCL) system in both humans and preclinical rodent models of addiction, including those modeling alcohol use disorders (AUD). Methods Working under the hypothesis that reductions in the bioavailability of DA play an integral role in the expression of the excessive drinking phenotype, the COMT inhibitor Tolcapone was used as a means to amplify cortical DA efflux and drinking behaviors were then assessed. Sucrose and ethanol consumption were measured in P and Wistar rats in both a free choice drinking protocol and a novel cued access protocol. Results Tolcapone attenuated the consumption of ethanol, and to a lesser extent sucrose, in P rats in the cued access protocol, while no effect was observed in the free choice drinking protocol. Tolcapone also decreased ethanol consumption in high drinking Wistar rats. A follow-up experiment using the DA agonist D-amphetamine (AMPH) showed no change in ethanol consumption. Conclusions Collectively, these data suggest that COMT inhibitors may be capable of alleviating the extremely motivating or salient nature of stimuli associated with alcohol. The hypothesis is put forth that the relative specificity of Tolcapone for cortical DA systems may mediate the suppression of the high seeking/drinking phenotype. PMID:25257296

  12. Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress.

    PubMed

    Bahi, Amine

    2013-07-01

    Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.

  13. Effect of concurrent saccharin intake on ethanol consumption by high-alcohol-drinking (UChB) rats.

    PubMed

    Tampier, Lutske; Quintanilla, Maria Elena

    2009-07-01

    This study examined the effect of concurrent presentation of a highly palatable saccharin solution on ethanol consumption during the acquisition or maintenance of ethanol drinking by high-alcohol-drinking (UChB) rats. Rats were exposed to ethanol (10% v/v) and water under a home cage, two-bottle, free-choice regimen with unlimited access for 24 hours/day. After 7 days (acquisition) of ethanol exposure, a third bottle containing saccharin (0.2% w/v) was concomitantly offered for an additional seven consecutive days, and the same process was repeated after 3 months (maintenance) of ethanol exposure. We found that concurrent saccharin intake significantly reduced ethanol intake by UChB rats after 7 days of ethanol exposure indicating that preference for sweet taste tends to override the preference for ethanol. However, the concurrent saccharin presentation to rats after 3 months of stable ethanol consumption did not reduce ethanol intake, whereas their saccharin consumption reached polydipsic-like values. These results support the notion that in UChB rats, a time-dependent sensitization to the rewarding effects of ethanol is developed that may account for the increases in ethanol volition seen following chronic ethanol intake.

  14. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  15. A rapid increase in lipoprotein (a) levels after ethanol withdrawal in alcoholic men

    SciTech Connect

    Kervinen, K.; Savolainen, J.J.; Kesaeniemi, Y.A. )

    1991-01-01

    Plasma concentrations of lipoprotein (a) (Lp(a)) were studied in 11 male alcoholics at the end of a drinking period and monitored during subsequent abstinence. Lp(a) levels showed a daily increase for four consecutive days after the beginning of abstinence, the values for the third and the fourth day being significantly higher than those of the first day. The changes in Lp(a) showed no association with the changes in low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol levels. In one alcoholic subject with a heterozygous form of familial hypercholesterolemia who was monitored for 11 days, the Lp(a) levels rose up to the fourth day and remained at a high level thereafter. These results suggest that ethanol ingestion may be associated with a lower of Lp(a) levels, which may contribute to the delayed progression of atherosclerosis observed in alcohol drinkers.

  16. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. PMID:27486067

  17. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.

  18. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium

    PubMed Central

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26–34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0–110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  19. Alcohol Consumption during Pregnancy: Analysis of Two Direct Metabolites of Ethanol in Meconium.

    PubMed

    Sanvisens, Arantza; Robert, Neus; Hernández, José María; Zuluaga, Paola; Farré, Magí; Coroleu, Wifredo; Serra, Montserrat; Tor, Jordi; Muga, Robert

    2016-01-01

    Alcohol consumption in young women is a widespread habit that may continue during pregnancy and induce alterations in the fetus. We aimed to characterize prevalence of alcohol consumption in parturient women and to assess fetal ethanol exposure in their newborns by analyzing two direct metabolites of ethanol in meconium. This is a cross-sectional study performed in September 2011 and March 2012 in a series of women admitted to an obstetric unit following childbirth. During admission, socio-demographic and substance use (alcohol, tobacco, cannabis, cocaine, and opiates) during pregnancy were assessed using a structured questionnaire and clinical charts. We also recorded the characteristics of pregnancy, childbirth, and neonates. The meconium analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the presence of ethyl glucuronide (EtG) and ethyl sulfate (EtS). Fifty-one parturient and 52 neonates were included and 48 meconium samples were suitable for EtG and EtS detection. The median age of women was 30 years (interquartile range (IQR): 26-34 years); EtG was present in all meconium samples and median concentration of EtG was 67.9 ng/g (IQR: 36.0-110.6 ng/g). With respect to EtS, it was undetectable (<0.01 ng/g) in the majority of samples (79.1%). Only three (6%) women reported alcohol consumption during pregnancy in face-to-face interviews. However, prevalence of fetal exposure to alcohol through the detection of EtG and EtS was 4.2% and 16.7%, respectively. Prevention of alcohol consumption during pregnancy and the detection of substance use with markers of fetal exposure are essential components of maternal and child health. PMID:27011168

  20. Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol.

    PubMed

    Singh, Rawel; Srivastava, Vartika; Chaudhary, Kajal; Gupta, Piyush; Prakash, Aditya; Balagurumurthy, Bhavya; Bhaskar, Thallada

    2015-01-01

    Hydrothermal liquefaction of rice straw has been carried out using various organic solvents (CH3OH, C2H5OH) at different temperatures (250, 280 and 300 °C) and residence times (15, 30 and 60 min) to understand the effect of solvent and various reaction parameters on product distribution. Maximum liquid product yield (47.52 wt%) was observed using ethanol at 300 °C and 15 min reaction time. FTIR and NMR ((1)H and (13)C) of liquid product indicate that lignin in rice straw was converted to various monomeric phenols. GC-MS of the liquid product showed the presence of various phenol and guaiacol derivatives. Main compounds observed in liquid product were phenol, 4-ethylphenol, 4-ethyl-2-methoxyphenol (4-ethylguaiacol), 2,6-dimethoxyphenol (syringol), 2-isopropyl-5-methylphenol (thymol). Powder XRD and SEM of bio-residue showed that rice straw was decomposed to low molecular weight monomeric phenols.

  1. Inhibition of muscarinic receptor-induced proliferation of astroglial cells by ethanol: mechanisms and implications for the fetal alcohol syndrome.

    PubMed

    Costa, Lucio G; Guizzetti, Marina

    2002-12-01

    In utero exposure to ethanol is deleterious to fetal brain development. Children born with the fetal alcohol syndrome (FAS) display a number of abnormalities, the most significant of which are central nervous system (CNS) dysfunctions, such as microencephaly and mental retardation. An interaction of ethanol with glial cells, particularly astrocytes, has been suggested to contribute to the developmental neurotoxicity of this alcohol. At low concentrations (10-100 mM) ethanol inhibits the proliferation of astroglial cells in vitro, particularly when stimulated by acetycholine through muscarinic M3 receptors. Of the several signal transduction pathways activated by these receptors in astrocytes or astrocytoma cells, which are involved in mitogenic signaling, only some (e.g. protein kinase C (PKC) zeta, p70S6 kinase) appear to be targeted by ethanol at the same low concentrations which effectively inhibit proliferation. Inhibition of astroglial proliferation by ethanol may contribute to the microencephaly seen in FAS.

  2. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    PubMed Central

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  3. Influence of gender on ethanol-induced ventricular myocyte contractile depression in transgenic mice with cardiac overexpression of alcohol dehydrogenase.

    PubMed

    Duan, Jinhong; Esberg, Lucy B; Ye, Gang; Borgerding, Anthony J; Ren, Bonnie H; Aberle, Nicholas S; Epstein, Paul N; Ren, Jun

    2003-03-01

    Acute ethanol exposure depresses ventricular contractility and contributes to alcoholic cardiomyopathy in both men and women chronically consuming ethanol. However, a gender-related difference in the severity of myopathy exists with female being more sensitive to ethanol-induced tissue damage. Acetaldehyde (ACA), the major oxidized product of ethanol, has been implicated to play a role in the pathogenesis and gender-related difference of alcoholic cardiomyopathy, possibly due to its direct cardiac effect and interaction with estrogen. This study was designed to compare the effects of cardiac overexpression of alcohol dehydrogenase (ADH), which converts ethanol into ACA, on the cardiac contractile response to ethanol in ventricular myocytes isolated from age-matched adult male and female transgenic (ADH) and wild-type (FVB) mice. Mechanical properties were measured with an IonOptix SoftEdge system. ACA production was assessed by gas chromatography. The ADH myocytes from both genders exhibited similar mechanical properties but a higher efficacy to produce ACA compared to FVB myocytes. Exposure to ethanol (80-640 mg/dl) for 60 min elicited concentration-dependent decrease of cell shortening in both FVB and ADH groups. The ethanol-induced depression on cell shortening was significantly augmented in female but not male ADH group. ADH transgene did not exacerbate the ethanol-induced inhibition of maximal velocity of shortening/relengthening in either gender. In addition, neither ethanol nor ADH transgene affect the duration of shortening and relengthening in male or female mice. These data suggest that females may be more sensitive to ACA-induced cardiac contractile depression than male, which may attribute to the gender-related difference of alcoholic cardiomyopathy.

  4. [Ethanol metabolism and pathobiochemistry of organ damage--1992. IV. Ethanol in relation to the cardiovascular system. Hematologic, immunologic, endocrine disorders and muscle and bone damage caused by ethanol. Fetal alcohol syndrome].

    PubMed

    Zima, T

    1993-01-01

    Peripheral vasodilatation with increased cardiac output, tachycardia and increased blood pressure are described after alcohol administration. An increased HDL-cholesterol is found in moderate drinkers (both HDL-2 and HDL-3 fractions), with diminishing risk of coronary heart diseases. Acute ethanol intake causes an increased the level of triglycerides without changes in HDL-cholesterol level. This may be put into correlation with higher incidence of cardiovascular diseases in so-called "week-end" drinkers. Alcohol abuse may result in central diabetes insipidus. An increased elimination of lactate diminishes tubular secretion of uric acid with subsequent secondary hyperuricemia. Ethanol reduced the number of lymphocytes, reduces phagocytosis by macrophages and diminishes the activity of NK-cells. Bone marrow cellulity diminishes with the subsequent reduction in erythropoiesis, trombopoiesis and leukopoiesis. Alcohol may cause sideropenic and megaloblastic anemia. There are two forms of alcohol muscle injury: the acute one, with myonecrosis and inflammatory reaction, and chronic one, with muscle weakness and atrophy. Alcohol is one of etiologic factors of osteoporosis. An acute intoxication result in transitory hypoparatthyreoidism, while chronic ethanol intake make grow the PTH level and decreases the level of D vitamin metabolises. Stimulation of cortisol secretion, decrease of testosterone level and a reversible decrease of T3 and T4 levels have been described following ethanol administration. Hypothalamic-pituitary-adrenal axis suffers alteration in alcoholics, and secondary amenorrhea is observed in female alcoholics. Ethanol behaves as an agonist on GABA receptor. Fetal alcohol syndrome together with Down's syndrome and spina bifida are the most frequent reasons of mental retardation in developed countries. Toxicity of ethanol affects the whole pregnancy period.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  6. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  7. Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action

    PubMed Central

    Muggironi, Giulia; Fois, Giulia R.; Diana, Marco

    2013-01-01

    Acetaldehyde (ACD), the first metabolite of ethanol (EtOH), has been implicated in several actions of alcohol, including its reinforcing effects. Previously considered an aversive compound, ACD was useful in alcoholic’s pharmacological treatment aimed at discouraging alcohol drinking. However, it has recently been shown that EtOH-derived ACD is necessary for EtOH-induced place preference and self-administration, thereby suggesting a possible involvement of ACD in EtOH motivational properties. In addition, EtOH-stimulating properties on DA neurons are prevented by pharmacological blockade of local catalase H2O2 system, the main metabolic step for biotransformation of EtOH into ACD within the central nervous system. It was further shown that pretreatment with thiol compounds, like L-Cysteine or D-Penicillamine, reduced EtOH and ACD-induced motivational effects, in fact preventing self-administration of both EtOH and ACD, thus suggesting a possible role for ACD as a biomarker useful in evaluating potential innovative treatments of alcohol abuse. These findings suggest a key role of ACD in the EtOH reinforcing effects. In the present paper we review the role of EtOH-derived ACD in the reinforcing effects of EtOH and the possibility that ACD may serve as a therapeutically targetable biomarker in the search for novel treatments in alcohol abuse and alcoholism. PMID:23882197

  8. Glycine and GABA(A) ultra-sensitive ethanol receptors as novel tools for alcohol and brain research.

    PubMed

    Naito, Anna; Muchhala, Karan H; Asatryan, Liana; Trudell, James R; Homanics, Gregg E; Perkins, Daya I; Davies, Daryl L; Alkana, Ronald L

    2014-12-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.

  9. Ethyl alcohol (ethanol)-containing cologne, perfume, and after-shave ingestions in children.

    PubMed

    Scherger, D L; Wruk, K M; Kulig, K W; Rumack, B H

    1988-06-01

    Colognes, perfumes, and after-shaves containing ethyl alcohol (ethanol) are frequently ingested by children. These products may contain from 50% to 99% ethanol. To determine if ingestion of colognes, perfumes, or after-shaves by children results in serious ethanol toxic reactions, this retrospective study was performed. One hundred twenty-three cases of children younger than 6 years old who ingested these products were reviewed. The cases were arbitrarily divided into three groups based on the amount ingested by history. Group 1 included children in whom less than 30 mL was ingested; group 2, 30 to 60 mL was ingested; and group 3, more than 60 to 105 mL was ingested. Of the 102 patients in group 1, no children experienced symptoms or signs. One of 17 children in group 2 was described by parents as sleepy but was asymptomatic one hour later. Two of four children in group 3 behaved as if intoxicated, yet blood ethanol levels were undetectable within 2 1/2 hours after ingestion. Based on our study, asymptomatic children who ingested by history less than 105 mL of a cologne, perfume, or after-shave and remain asymptomatic can be safely watched at home. All children with symptoms of intoxication need health care facility referral.

  10. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.

  11. The enthalpies and entropies of pefloxacin dissolution in methanol, ethanol, 1-Propanol, 2-Propanol, acetone, and chloroform at 293.15-323.15 K

    NASA Astrophysics Data System (ADS)

    Zhang, C.-L.; Cui, S.-J.; Wang, Y.

    2012-12-01

    The solubilities of pefloxacin in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform have been determined from 293.15 to 323.15 K by a static equilibrium method. The experimental data were correlated with the modified Apelblat equation. The positive Δsol H and Δsol S for each system revealed that pefloxacin dissolution in each solvent is an entropy-driven process.

  12. Reduced blood clearance and increased urinary excretion of N-nitrosodimethylamine in patas monkeys exposed to ethanol or isopropyl alcohol.

    PubMed

    Anderson, L M; Koseniauskas, R; Burak, E S; Moskal, T J; Gombar, C T; Phillips, J M; Sansone, E B; Keimig, S; Magee, P N; Rice, J M

    1992-03-15

    Low concentrations of N-nitrosodimethylamine are metabolized in rodent and human liver by cytochrome P450IIE1, an activity competitively inhibitable by ethanol. In rodents coadministration of ethanol with N-nitrosodimethylamine results in increased tumorigenicity in extrahepatic organs, probably as a result of reduced hepatic clearance. To test this concept in a primate, the effects of ethanol cotreatment on the pharmacokinetics of N-nitrosodimethylamine were measured in male patas monkeys. Ethanol, 1.2 g/kg given p.o. before i.v. N-nitrosodimethylamine (1 mg/kg) or concurrently with an intragastric dose resulted in a 10-50-fold increase in the area under the blood concentration versus time curves and a 4-13-fold increase in mean residence times for N-nitrosodimethylamine. Isopropyl alcohol, 3.2 g/kg 24 h before N-nitrosodimethylamine, also increased these parameters 7-10-fold; this effect was associated with persistence of isopropyl alcohol and its metabolic product acetone, both IIE1 inhibitors, in the blood. While no N-nitrosodimethylamine was detected in expired air, trace amounts were found in urine. Ethanol and isopropyl alcohol pretreatment increased the maximum urinary N-nitrosodimethylamine concentration 15-50-fold and the percentage of the dose excreted in the urine by 100-800-fold. Thus ethanol and isopropyl alcohol greatly increase systemic exposure of extrahepatic organs to N-nitrosodimethylamine in a primate.

  13. Ethanol impairs Rho GTPase signaling and differentiation of cerebellar granule neurons in a rodent model of fetal alcohol syndrome.

    PubMed

    Joshi, S; Guleria, R S; Pan, J; Bayless, K J; Davis, G E; Dipette, D; Singh, U S

    2006-12-01

    Developmental exposure to ethanol impairs fetal brain development and causes fetal alcohol syndrome. Although the cerebellum is one of the most alcohol-sensitive brain areas, signaling mechanisms underlying the deleterious effects of ethanol on developing cerebellar granule neurons (CGNs) are largely unknown. Here we describe the effects of in vivo ethanol exposure on neurite formation in CGNs and on the activation of Rho GTPases (RhoA and Rac1), regulators of neurite formation. Exposure of 7-day-old rat pups to ethanol for 3 h moderately increased blood alcohol concentration (BAC) ( approximately 40 mM) and inhibited neurite formation and Rac1 activation in CGNs. Longer exposure to ethanol for 5 h resulted in higher BAC ( approximately 80 mM), induced apoptosis, inhibited Rac1, and activated RhoA. Studies demonstrated a regulatory role of Rho GTPases in differentiation of cerebellar neurons, and indicated that ethanol-associated impairment of Rho GTPase signaling might contribute to brain defects observed in fetal alcohol syndrome.

  14. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  15. Maternal ethanol ingestion effects on fetal rat brain vitamin A as a model for fetal alcohol syndrome.

    PubMed

    Grummer, M A; Langhough, R E; Zachman, R D

    1993-06-01

    Fetal embryo, head, and brain tissue from different gestational ages were analyzed for retinol content, nuclear retinoic acid receptor and cytosolic retinoic acid binding protein levels after maternal ethanol ingestion and compared with fetal levels in control diet pregnancies. Retinol levels in fetal embryo and brain of ethanol-ingesting pregnancies were 2- to 3-fold higher than fetal embryo and brain retinol of control pregnancies. Nuclear retinoic acid receptor was lower in 10-day embryo of ethanol pregnancies and apparently unaffected in fetal head and brain by maternal ethanol consumption at other days of gestation. In fetal head there was a significant overall ethanol effect on cytosolic retinoic acid binding protein, with increased levels in fetal tissue from ethanol-consuming pregnancies. These observations of altered embryo, fetal head, and fetal brain retinol and receptor protein levels support the hypothesis of a possible role of vitamin A in fetal alcohol syndrome. PMID:8333589

  16. Conversion du methanol en ethanol par carbonylation suivie d'hydrogenolyse

    NASA Astrophysics Data System (ADS)

    Gaucher, Melissa

    Ce projet de maîtrise s'inscrit dans le cadre des nouvelles filières énergétiques renouvelables et s'effectue au sein de la Chaire de recherche industrielle sur l'éthanol cellulosique créée par trois partenaires industriels (Enerkem, CRB et Ethanol Greenfield) et le gouvernement du Québec en collaboration avec l'Université de Sherbrooke. La stratégie d'un des partenaires, Enerkem, est de convertir par gazéification des résidus de biomasse non homogène en Syngas, ce gaz est ensuite converti en méthanol puis en éthanol. L'objectif principal de ce projet est la conversion catalytique de l'acétate en alcool. Un catalyseur commercial, composé de cuivre et de chrome, a permis l'obtention des conversions de plus de 95 % et une sélectivité pour l'éthanol de plus de 50 % avec l'acétate de méthyle, de 99 % avec l'acétate d'éthyle et de 50 % avec l'acétate de butyle. Les conditions optimales trouvées impliquent une température de 215 °C, une pression de 350 psig, une vitesse spatiale de 1800 h -1 H2 STP et un ratio H2 : Acétate de 7. Un catalyseur alternatif, à base de cuivre et de zinc, a aussi été testé. L'objectif secondaire est la carbonylation du méthanol en acétate. Cette étape a été réalisée en phase gazeuse où des rendements très élevés, soit plus de 2000 kg d'acétate de méthyle par kg de métal précieux à l'heure (kg AM/ kg métal précieux/h), ont été obtenus. Les conditions d'opérations testées impliquent une température variant entre 200-240 °C, une pression entre 250-600 psig, des ratios McOH : CO de 1 à 2,5. Mots clés: Carbonylation, Éthanol, Hydrogénolyse, Catalyse hétérogène.

  17. The interaction of ethanol and vitamin A as a potential mechanism for the pathogenesis of Fetal Alcohol syndrome.

    PubMed

    Zachman, R D; Grummer, M A

    1998-10-01

    The mechanism of the fetal embryopathology resulting from ethanol ingestion during pregnancy is not established. This review summarizes recent research on the interaction of ethanol and vitamin A in models that explore if an interaction between these two compounds might potentially be the mechanism for fetal alcohol syndrome. The rationale for this hypothesis includes the known facts that: (1) in adults, ethanol ingestion alters vitamin A metabolism and tissue distribution; (2) there are many phenotypic similarities between fetal alcohol syndrome and malformations of both vitamin A toxicity and deficiency; and (3) the vitamin A metabolite, retinoic acid (RA), is a potent mediator in embryogenesis and differentiation. One interaction that could possibly alter fetal development is that the synthesis of RA from retinol, catalyzed by alcohol dehydrogenase, might be competitively inhibited by ethanol leading to RA deficiency. Controversy over this hypothesis continues. Another model demonstrates in vivo effects of pregnant rat mother's ethanol consumption on retinol, retinyl ester, RA content, RA receptor (RAR) binding, and the levels of RAR expression in developing fetal organs. The variable responses in this model still need clarification, and specific defects resulting from specific RAR changes have not yet been identified. In a quail embryo model, ethanol treatment mimics vitamin A deficiency, and RA appears to prevent the adverse effects of ethanol. Finally, RA and ethanol reverse or block each other's effects in studies on isolated neuroblastoma cells. Taken together, these experiments show definite interactions between ethanol and vitamin A. Further studies are needed to determine if any of these mechanisms significantly contribute to prenatal ethanol consumption embryopathy; but, clearly this hypothesis is gaining experimental support. PMID:9802541

  18. Effects of naltrexone and LY255582 on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats.

    PubMed

    Dhaher, Ronnie; Toalston, Jamie E; Hauser, Sheketha R; Bell, Richard L; McKinzie, David L; McBride, William J; Rodd, Zachary A

    2012-02-01

    Research indicates opioid antagonists can reduce alcohol drinking in rodents. However, tests examining the effects of opioid antagonists on ethanol seeking and relapse behavior have been limited. The present study examined the effects of two opioid antagonists on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats. Adult P rats were self-trained in two-lever operant chambers to self-administer 15% (vol/vol) ethanol on a fixed-ratio 5 (FR5) versus water on a FR1 concurrent schedule of reinforcement in daily 1-h sessions. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without ethanol or water to measure responses on the ethanol and water levers for four sessions. After a subsequent 2 weeks in the home cage, without access to ethanol, rats were returned to the operant chambers with ethanol and water available. Effects of antagonists on maintenance responding were tested after several weeks of daily 1-h sessions. Naltrexone (NAL; 1-10mg/kg, subcutaneously [s.c.]; n=8/dose), LY255582 (LY; 0.03-1mg/kg, s.c.; n=8/dose), or vehicle were injected 30min before the first session (in the absence of ethanol), following 2 weeks in their home cages, and for four consecutive sessions of ethanol self-administration under maintenance and relapse conditions. Both NAL and LY reduced responses on the ethanol lever without any fluids present, and ethanol self-administration under relapse and on-going drinking conditions, with LY being more potent than NAL. Both NAL and LY were less effective in reducing responding in the absence of ethanol than in reducing ethanol self-administration. Overall, the results indicate that the opioid system is involved in mediating ethanol seeking, and ethanol self-administration under relapse and on-going alcohol drinking, but that different neurocircuits may underlie these behaviors.

  19. Effects of naltrexone and LY255582 on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats

    PubMed Central

    Dhaher, Ronnie; Toalston, Jamie E.; Hauser, Sheketha R.; Bell, Richard L.; McKinzie, David L.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Research indicates opioid antagonists can reduce alcohol drinking in rodents. However, tests examining the effects of opioid antagonists on ethanol seeking and relapse behavior have been limited. The present study examined the effects of two opioid antagonists on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats. Adult P rats were self-trained in two-lever operant chambers to self-administer 15% (vol/vol) ethanol on a fixed-ratio 5 (FR5) versus water on a FR1 concurrent schedule of reinforcement in daily 1-h sessions. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without ethanol or water to measure responses on the ethanol and water levers for four sessions. After a subsequent 2 weeks in the home cage, without access to ethanol, rats were returned to the operant chambers with ethanol and water available. Effects of antagonists on maintenance responding were tested after several weeks of daily 1-h sessions. Naltrexone (NAL; 1–10 mg/kg, subcutaneously [s.c.]; n = 8/dose), LY255582 (LY; 0.03–1 mg/kg, s.c.; n = 8/dose), or vehicle were injected 30 min before the first session (in the absence of ethanol), following 2 weeks in their home cages, and for four consecutive sessions of ethanol self-administration under maintenance and relapse conditions. Both NAL and LY reduced responses on the ethanol lever without any fluids present, and ethanol self-administration under relapse and on-going drinking conditions, with LY being more potent than NAL. Both NAL and LY were less effective in reducing responding in the absence of ethanol than in reducing ethanol self-administration. Overall, the results indicate that the opioid system is involved in mediating ethanol seeking, and ethanol self-administration under relapse and on-going alcohol drinking, but that different neurocircuits may underlie these behaviors. PMID:21962974

  20. Design and implementation of a wireless passive microsensor for methanol detection

    NASA Astrophysics Data System (ADS)

    Sanz, Diego; Rosas, Walter; Unigarro, Edgar; Vargas, Watson; Segura-Quijano, Fredy

    2013-03-01

    Methanol is a public health concern due to its toxicity, characterized by metabolic acidosis and blindness, among others. The third world population affected by the exposure to this compound is increasing, mainly due to the consumption of illicit distilled or adulterated alcoholic beverages. Although methanol is naturally present in some alcoholic drinks, the maximum allowed concentration cannot exceed 10 g of methanol per liter of anhydrous alcohol (0.4% (v/v) at 40% of ethanol) according to the general EU limit. A wireless passive microsensor was designed to detect small amounts of methanol at 40% of alcoholic dissolutions. The sensor consists of a planar inductor in series with an interdigital capacitor that changes its capacitance with the solution's dielectric constant. An antenna is used to readout the real part of the impedance to obtain the resonant frequencies for different amounts of methanol in the solution. The aim of this work was to develop a low cost wireless sensor with the capability to detect concentrations of at least 0.4% (v/v) of methanol in a 40% of alcoholic solution. The results obtained show variations of 403 kHz in the resonant frequency for changes of 0.2% (v/v) on the concentration of methanol in a 40% alcoholic ethanol-based solution. This project was possible thanks to the collaboration of the Department of Electrical and Electronics Engineering and the Department of Chemical Engineering of Universidad de los Andes.

  1. Effects of neuropeptide Y and ethanol on arousal and anxiety-like behavior in alcohol-preferring rats.

    PubMed

    Gilpin, Nicholas W; Henderson, Angela N; Badia-Elder, Nancy E; Stewart, Robert B

    2011-03-01

    Neuropeptide Y (NPY) is abundant in the mammalian brain and plays a prominent role in behaviors related to negative affect and alcohol. NPY suppresses anxiety-like behavior and alcohol-drinking behaviors in a wide array of rodent models and also affects changes in these behaviors produced by fearful and stressful stimuli. Rats selectively bred for high alcohol preference (P rats) appear to be particularly sensitive to the behavioral effects of NPY. The dual purpose of the present investigation was to determine the effects of intraventricular NPY on (1) the acoustic startle response (ASR) of P rats in a high-anxiety setting and (2) social interaction behavior of P rats. In experiment 1, P rats were either cycled through periods of long-term ethanol access and abstinence or they remained ethanol naive. Rats were injected with one of four NPY doses and tested for ASR before and after footshock stress. NPY suppressed ASR in all P rats regardless of shock condition or drinking history. In experiment 2, rats received intraventricular infusion of one of four NPY doses and were then injected with either ethanol (0.75 g/kg) or saline and tested for social interaction. NPY increased social interaction in P rats even at doses that suppressed locomotor activity, regardless of ethanol dose. Suppression of anxiety-like and arousal behaviors by NPY in the present study confirm a role for NPY in alcohol-related behaviors in alcohol-preferring P rats.

  2. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  3. Serotonin-3 receptors in the posterior ventral tegmental area regulate ethanol self-administration of alcohol-preferring (P) rats.

    PubMed

    Rodd, Zachary A; Bell, Richard L; Oster, Scott M; Toalston, Jamie E; Pommer, Tylene J; McBride, William J; Murphy, James M

    2010-05-01

    Several studies indicated the involvement of serotonin-3 ([5-hydroxy tryptamine] 5-HT(3)) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT(3) receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers (Coulbourn Instruments, Allentown, PA) were used to examine the effects of seven consecutive bilateral microinfusions of ICS 205-930 (ICS), a 5-HT(3) receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (vol/vol) ethanol self-administration. P rats readily acquired ethanol self-administration by the fourth session. The three highest doses (0.125, 0.25, and 1.25 microg) of ICS prevented acquisition of ethanol self-administration. During the acquisition postinjection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the three highest doses (0.75, 1.0, and 1.25 microg) of ICS significantly increased responding on the ethanol lever; after the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Microinfusion of ICS into the posterior VTA did not alter the low responding on the water lever and did not alter saccharin (0.0125% wt/v) self-administration. Microinfusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT(3) receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration and/or repeated treatments with a 5-HT(3) receptor antagonist may alter neuronal circuitry within the posterior VTA.

  4. Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    PubMed Central

    Rodd, Zachary A.; Bell, Richard L.; Oster, Scott M.; Toalston, Jamie E.; Pommer, Tylene J.; McBride, William J.; Murphy, James M.

    2015-01-01

    Several studies indicated the involvement of serotonin-3 (5-HT3) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self-administration. P rats readily acquired ethanol self-administration by the 4th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self-administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT3 receptor antagonist may alter neuronal circuitry within the posterior VTA. PMID:20682192

  5. Microscopic roots of alcohol-ketone demixing: infrared spectroscopy of methanol-acetone clusters.

    PubMed

    Kollipost, Franz; Domanskaya, Alexandra V; Suhm, Martin A

    2015-03-19

    Infrared spectra of isolated methanol-acetone clusters up to tetramers are experimentally characterized for the first time. They show evidence for a nanometer-scale demixing trend of the cold species. In combination with quantum calculations, the mutual repulsion is demonstrated to start beyond three molecular units, whereas individual molecules still prefer to form a mixed complex.

  6. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  7. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  8. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  9. Chronic alcoholic myopathy: diagnostic clues and relationship with other ethanol-related diseases.

    PubMed

    Sacanella, E; Fernández-Solà, J; Cofan, M; Nicolás, J M; Estruch, R; Antúnez, E; Urbano-Márquez, A

    1995-11-01

    We report the clinical, laboratory, functional and histological features of 100 male alcoholic patients of whom 44 had chronic alcoholic myopathy (CAM). We evaluated the use of non-invasive tests in detecting CAM, and examined its relationship with other ethanol-related diseases such as cirrhosis and cardiomyopathy. Of the CAM patients, 24 (55%) presented clinical symptoms of myopathy, whereas proximal muscle atrophy was observed in 15 patients (35%). Thirty-seven (80%) had significantly decreased muscle strength by myometric measurement and 27 (60%) had abnormally increased serum muscle enzymes. In most of these patients, the myopathy was classified as mild. The most frequent histological findings were myocytolysis, fibre size variability and type II fibre atrophy. As there was a good correlation between clinical symptoms, decreased muscle strength on myometry and histological evidence of CAM, muscle biopsy may be avoidable in some of these patients. Cardiomyopathy and liver cirrhosis were more frequent in patients with CAM, and should be checked for in chronic alcoholics with skeletal myopathy.

  10. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  11. Ginsenoside-free molecules from steam-dried ginseng berry promote ethanol metabolism: an alternative choice for an alcohol hangover.

    PubMed

    Lee, Do Ik; Kim, Seung Tae; Lee, Dong Hoon; Yu, Jung Min; Jang, Su Kil; Joo, Seong Soo

    2014-07-01

    Ethanol metabolism produces harmful compounds that contribute to liver damage and cause an alcohol hangover. The intermediate metabolite acetaldehyde is responsible for alcohol hangover and CYP2E1-induced reactive oxygen species damage liver tissues. In this study, we examined whether ginsenoside-free molecules (GFMs) from steam-dried ginseng berries promote ethanol metabolism and scavenge free radicals by stimulating primary enzymes (alcohol dehydrogenase, aldehyde dehydrogenase, CYP2E1, and catalase) and antioxidant effects using in vitro and in vivo models. The results revealed that GFM effectively scavenged 2,2-diphenyl-1-picrylhydrazyl hydrate radicals and hydroxyl radicals. Notably, GFM significantly enhanced the expression of primary enzymes within 2 h in HepG2 cells. GFM clearly removed the consumed ethanol and significantly reduced the level of acetaldehyde as well as enhancement of primary gene expression in BALB/c mice. Moreover, GFM successfully protected HepG2 cells from ethanol attack. Of the major components identified in GFM, it was believed that linoleic acid was the most active ingredient. Based on these findings, we conclude that GFM holds promise for use as a new candidate for ethanol metabolism and as an antihangover agent.

  12. Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer.

    PubMed

    Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2015-03-25

    An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film. PMID:25756646

  13. Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer.

    PubMed

    Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2015-03-25

    An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film.

  14. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    PubMed

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats.

  15. Ceftriaxone, a beta-lactam antibiotic, attenuates relapse-like ethanol-drinking behavior in alcohol-preferring rats.

    PubMed

    Qrunfleh, Abeer M; Alazizi, Adnan; Sari, Youssef

    2013-06-01

    Relapse-like ethanol-drinking behavior depends on increased glutamate transmission in the mesocorticolimbic motive circuit. Extracellular glutamate is regulated by a number of glutamate transporters. Of these transporters, glutamate transporter 1 (GLT1) is responsible for the majority of extracellular glutamate uptake. We have recently reported that ceftriaxone (CEF) treatment (i.p.), a β-lactam antibiotic known to elevate GTL1 expression, reduced ethanol intake in male alcohol-preferring (P) rats. We investigated here whether CEF treatment attenuates relapse-like ethanol-drinking behavior. P rats were exposed to free choice of 15% and 30% ethanol for 5 weeks and treated with CEF (50 and 100 mg/kg, i.p.) during the last 5 days of the 2-week deprivation period. Rats treated with CEF during the deprivation period showed a reduction in ethanol intake compared with saline-treated rats upon re-exposure to ethanol; this effect persisted for 9 days. Moreover, CEF-mediated attenuation in relapse to ethanol-drinking behavior was associated with upregulation of GLT1 level in prefrontal cortex and nucleus accumbens core. GLT1 upregulation was revealed only at the higher dose of CEF. In addition, CEF has no effect on relapse-like sucrose-drinking behavior. These findings suggest that ceftriaxone might be used as a potential therapeutic treatment for the attenuation of relapse-like ethanol-drinking behavior.

  16. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  17. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L.

    PubMed

    Kern, Kátia Aparecida; Pergo, Erica Marusa; Kagami, Fernanda Lima; Arraes, Luis Saraiva; Sert, Maria Aparecida; Ishii-Iwamoto, Emy Luiza

    2009-01-01

    This study investigated the effects of exogenously applied ethanol on Euphorbia heterophylla L., a troublesome weed in field and plantation crops. Ethanol at concentrations ranging from 0.25 to 1.5% caused a dose-dependent inhibition of germination and growth of E. heterophylla. Measurements of respiratory activity and alcohol dehydrogenase (E.C. 1.1.1.1) activity during seed imbibition and initial seedling growth revealed that ethanol induces a prolongation of hypoxic conditions in the growing tissues. In isolated mitochondria, ethanol inhibited the respiration coupled to ADP phosphorylation, an action that probably contributed to modifications observed in the respiratory activity of embryos. A comparison of the effects of methanol, ethanol, propanol and acetaldehyde on germination and growth of E. heterophylla indicates that alcohol dehydrogenase activity is required for the observed effects, with the conversion of ethanol to acetaldehyde playing a role in the ethanol-induced injuries.

  18. Acceptorless photocatalytic dehydrogenation for alcohol decarbonylation and imine synthesis.

    PubMed

    Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D

    2012-08-20

    It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H(2). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H(2). PMID:22847764

  19. Acceptorless Photocatalytic Dehydrogenation for Alcohol Decarbonylation and Imine Synthesis

    SciTech Connect

    Ho, Hung-An; Manna, Kuntal; Sadow, Aaron D.

    2012-07-29

    It has come to light: Renewed interest in conversions of highly oxygenated materials has motivated studies of the organometallic-catalyzed photocatalytic dehydrogenative decarbonylation of primary alcohols into alkanes, CO, and H2 (see scheme). Methanol, ethanol, benzyl alcohol, and cyclohexanemethanol are readily decarbonylated. The photocatalysts are also active for amine dehydrogenation to give N-alkyl aldimines and H2.

  20. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs.

    PubMed

    Petitpas, F; Sichel, F; Hébert, B; Lagadu, S; Beljean, M; Pottier, D; Laurentie, M; Prevost, V

    2013-03-01

    Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P < 0.0001). Our results suggest that alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis.

  1. Stability of explosive residues in methanol/water extracts, on alcohol wipes and on a glass surface.

    PubMed

    Song-im, Nopporn; Benson, Sarah; Lennard, Chris

    2013-03-10

    The stability of four target organic explosives [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and triacetone triperoxide (TATP)] and two inorganic anions (chlorate and nitrate) on polyester-based alcohol wipes and in 60% (v/v) methanol/water extracts, stored over 30 days in clear and amber glass vials at three different temperatures, was investigated in order to establish storage recommendations. The retention of all six representative compounds on a glass surface at two different storage temperatures was also included as a preliminary study on the stability of explosive residues on stored exhibits (such as post-blast debris). The results from the stability study suggested that, after sampling, the wipes should be stored in a dark and low temperature environment. Also, after extracting the wipes with 60% (v/v) methanol/water (as in our previously reported recommended protocol), the extracts should be stored in a similar fashion. The results from the retention study on the glass substrate suggested that exhibits should be stored at the lowest temperature possible to minimise the loss of TNT or TATP (or similar target compounds) that might be present as residues. PMID:23419970

  2. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode.

    PubMed

    Das, Madhuri; Barbora, Lepakshi; Das, Priyanki; Goswami, Pranab

    2014-09-15

    We report here an alcohol oxidase (AOx) based third generation bioanode for generating power from methanol substrate in a fuel cell setup using air breathed laccase biocathode. A composite three dimensional microporous matrix containing multiwalled carbon nanotubes, carbon paste and nafion was used as electroactive support for immobilization of the enzymes on toray carbon paper as supporting electrode in the fabrication of the bioelectrodes. Polyethylenimine was used to electrostatically stabilize the AOx (pI 4.3) on the anode operating on direct electrochemistry principle. Osmium tetroxide on poly (4-vinylpyridine) was used to wire the laccase for electron transfer in the biocathode. The enzymatic biofuel cell (EFC) generated an open circuit potential of 0.61 (±0.02) V with a maximum power density of 46 (±0.002) µW cm(-2) at an optimum of 1M methanol, 25 °C and an internal resistance of 0.024 µΩ. The operation and storage half life (t1/2) of the EFC were 17.22 h and 52 days, respectively at a fixed load of 1.85 Ω. The findings have demonstrated the feasibility of developing EFC using AOx based bioanode and laccase based biocathode without applying any toxic free mediator and metal electrode supports for generating electricity. PMID:24727604

  3. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  4. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  5. [Pecularities of correction of alcohol affctions of liver in patients with acute ethanol poisoning in the setting of consequence of toxic effect of ethanol].

    PubMed

    Shilov, V V; batotsyrenov, B V; Vasil'ev, S A; Shikalova, I A; Kuznetsov, O A

    2012-06-01

    The aim of this work was to test the usage of infusion of hepatoprotector "remaxol" in intensive therapy of acute ethanol poisoning accompanied with severe alcohol affections of the lever. In the result of the examination and treatment of 130 patients it was established that severe alcohol poisonings registered on alcohol abused patients with toxic hepatopathy, are always accompanied with serious metabolic violations. In the process of a comparative valuation of the using of heptral (ademethionin) and remaxol in the intensive therapy of alcohol poisonings it has been revealed that the using of remaxol led to improvement of the clinic of that poisonings, what had been registered as a decrease of frequency and duration of an alcohol delirium from 33,9% to 10,8%, a decrease of frequency of secondary lung complication from 18,5 to 3,1%, a decrease of a duration of treatment in intensive care unit from 7,3 +/- 0,6 to 5,6 +/- 0,3 and a hospital treatment duration from 11,8 +/- 0,5 to 9,0 +/- 0,3 days. Biochemical investigation has shown that using as heptral, as remaxol led to improvement of lever damages due to alcohol. However remaxol compared with heptral was better in the treatment of metabolic violations.

  6. Avermectins differentially affect ethanol intake and receptor function: Implications for developing new therapeutics for alcohol use disorders

    PubMed Central

    Asatryan, Liana; Yardley, Megan M.; Khoja, Sheraz; Trudell, James R.; Hyunh, Nhat; Louie, Stan G.; Petasis, Nicos A.; Alkana, Ronald L.; Davies, Daryl L.

    2014-01-01

    Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Prior work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM’s ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM’s effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABA ARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAA receptor function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs. PMID:24451653

  7. Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders.

    PubMed

    Asatryan, Liana; Yardley, Megan M; Khoja, Sheraz; Trudell, James R; Hyunh, Nhat; Louie, Stan G; Petasis, Nicos A; Alkana, Ronald L; Davies, Daryl L

    2014-06-01

    Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABAARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAAR function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs. PMID:24451653

  8. Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders.

    PubMed

    Asatryan, Liana; Yardley, Megan M; Khoja, Sheraz; Trudell, James R; Hyunh, Nhat; Louie, Stan G; Petasis, Nicos A; Alkana, Ronald L; Davies, Daryl L

    2014-06-01

    Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABAARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAAR function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs.

  9. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats.

    PubMed

    Rosas, Michela; Zaru, Alessandro; Sabariego, Marta; Giugliano, Valentina; Carboni, Ezio; Colombo, Giancarlo; Acquas, Elio

    2014-08-01

    Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol.

  10. Thermal conductivity of molecular crystals of monatomic alcohols: From methanol to butanol

    NASA Astrophysics Data System (ADS)

    Korolyuk, O. A.

    2011-05-01

    Experimental data on the thermal conductivity κ(T) of some simple alcohols have been compared, analyzed, and generalized. The objects of study were methyl, protonated and deuterated ethyl, 1-propyl and 1-butyl alcohols in the thermodynamically equilibrium phase with complete orientational order. The temperature ranged from 2 K to the melting point at the equilibrium vapor pressure. In the region above the temperature of the maximum thermal conductivity, κ(T) deviates from a 1/T dependence. This is because the total thermal conductivity has an extra contribution κII(T) from short-lived phonons in addition to kI(T) owing to propagating phonons; i.e., κ(T) = kI(T) + κII(T). kI(T) is well described by the Debye-Peierls model for phonon-phonon processes and scattering of phonons by dislocations. For T > 40 K, kI(T) varies as A/T and κII(T) is essentially temperature-independent. The Debye temperature ΘD of the alcohols depends on the molecular mass as ΘD = 678М-0.42 K and the coefficient A characterizing the rate of phonon-phonon scattering increases with the molecular mass of the simple monatomic alcohols as A = 0.85М0.8 W/m, which suggests a decreasing intensity of the phonon-phonon process.

  11. Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine.

    PubMed

    Perez, Erika; Quijano-Cardé, Natalia; De Biasi, Mariella

    2015-09-01

    Alcohol and nicotine are among the top causes of preventable death in the United States. Unfortunately, people who are dependent on alcohol are more likely to smoke than individuals in the general population. Similarly, smokers are more likely to abuse alcohol. Alcohol and nicotine codependence affects health in many ways and leads to poorer treatment outcomes in subjects who want to quit. This study examined the interaction of alcohol and nicotine during withdrawal and compared abstinence symptoms during withdrawal from one of the two drugs only vs both. Our results indicate that simultaneous withdrawal from alcohol and nicotine produces physical symptoms that are more severe and last longer than those experienced during withdrawal from one of the two drugs alone. In animals experiencing withdrawal after chronic ethanol treatment, acute nicotine exposure was sufficient to prevent abstinence symptoms. Similarly, symptoms were prevented when alcohol was injected acutely in mice undergoing nicotine withdrawal. These experiments provide evidence for the involvement of the nicotinic cholinergic system in alcohol withdrawal. Furthermore, the outcomes of intracranial microinfusions of mecamylamine, a nonselective nicotinic receptor antagonist, highlight a major role for the nicotinic receptors expressed in medial habenula and interpeduncular nucleus during withdrawal. Overall, the data support the notion that modulating the nicotinic cholinergic system might help to maintain long-term abstinence from alcohol.

  12. A Simple Visual Ethanol Biosensor Based on Alcohol Oxidase Immobilized onto Polyaniline Film for Halal Verification of Fermented Beverage Samples

    PubMed Central

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%–0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  13. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples.

    PubMed

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-27

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.

  14. Differential permeation of artemia cysts and cucumber seeds by alcohols

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Siegel, S. M.

    1975-01-01

    The rate of penetration of the simpler alcohols into brine shrimp cysts and cucumber seeds was studied. In solutions below 70% the rate of penetration is related to lipid solvent capacity of the alcohol. In concentrations above 70%, particularly in absolute alcohols, methanol penetrates brine shrimp rapidly and ethanol penetrates slowly. All the other alcohols tested did not penetrate the dormant structures. Ethionine and deuteroxy-methanol did not affect the rate of penetration of methanol. It is suggested that in dehydrated membranes the lipid moiety is protected by a continuous sheet of protein. Methanol, which is fairly similar to water, is probably able to penetrate the membrane by initiating a conformation change in the protein, exposing the lipid which subsequently dissolves in the methanol thus destroying the membrane.

  15. THE CYCLIC PATTERN OF BLOOD ALCOHOL LEVELS DURING CONTINUOUS ETHANOL FEEDING IN RATS. THE EFFECT OF FEEDING S-ADENOSYLMETHIONINE

    PubMed Central

    Bardag-Gorce, F; Li, J; Oliva, J; Lu, SC; French, BA; French, SW

    2010-01-01

    S-adenosylmethionine (SAMe), the major methyl donor for DNA and histone methylation was fed with ethanol for one month in order to modify the effects of ethanol on rat liver. The following parameters were studied to determine the effects of SAMe; liver histology, the blood alcohol cycle (BAL), changes in gene expression mined from microarray analysis, changes in histone methylation, changes in liver SAMe levels and its metabolites and ADH. SAMe changed the type of fatty liver, reduced liver ALT levels and prevented the BAL cycle caused by intragastric ethanol feeding. Microarray analysis showed that SAMe feeding prevented most of the changes in gene expression induced by ethanol feeding, presumably by inducing H3K27me3 and gene silencing. H3K27me3 was significantly increased by SAMe with or without ethanol feeding. It is concluded that SAMe feeding stabilized global gene expression so that the changes in gene expression involved in the blood alcohol cycle were prevented. PMID:20303346

  16. Effect of gestational ethanol exposure on parvalbumin and calretinin expressing hippocampal neurons in a chick model of fetal alcohol syndrome.

    PubMed

    Marshall, Audrey G; McCarthy, Molly M; Brishnehan, Kirk M; Rao, Venugopal; Batia, Lyn M; Gupta, Madhul; Das, Srijit; Mitra, Nilesh K; Chaudhuri, Joydeep D

    2009-03-01

    Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by physical deformities and learning and memory deficits. The chick hippocampus, whose functions are controlled by interneurons expressing calcium-binding proteins parvalbumin (PV) and calretinin (CR), is involved in learning and memory mechanisms. Effects on growth and development and hippocampal morphology were studied in chick embryos exposed to 5% and 10% ethanol volume/volume (vol/vol) for 2 or 8 days of gestation. There was a significant dose-dependent reduction (P<.05) in body weight and mean number per section of PV and CR expressing hippocampal neurons in ethanol-exposed chicks, without alterations in neuronal nuclear size or hippocampal volume, compared appropriate controls. Moreover, when chicks exposed to 5% ethanol for 2 and 8 days of gestation were compared, no significant differences were found in body parameters or neuronal counts. Similarly, exposure to 10% ethanol did not induce any significant changes in chicks exposed for 2 or 8 gestational days. Thus, these results suggest that gestational ethanol exposure induces a reduction in the mean number per section of PV and CR expressing hippocampal neurons, and could be a possible mechanism responsible for learning and memory disorders in FAS.

  17. Enzymatic single-drop microextraction for the assay of ethanol in alcohol-free cosmetics using microvolume fluorospectrometry detection.

    PubMed

    Cabaleiro, Noelia; de la Calle, Inmaculada; Bendicho, Carlos; Lavilla, Isela

    2012-07-01

    A green assay based on the development of an enzymatic reaction in drop format under headspace single-drop microextraction conditions is described for the first time. An aqueous drop containing the enzyme alcohol dehydrogenase and the cofactor β-Nicotinamide adenine dinucleotide has been used as fluorescence probe for determining ethanol in alcohol-free cosmetics by microvolume fluorospectrometry. Experimental parameters affecting the microextraction performance were carefully optimized. Under the conditions employed, the contribution of other alcohols was found to be negligible. After 10 min of microextraction, a detection limit of 0.04 μg g(-1) ethanol, a repeatability, expressed as relative standard deviation, of 5.3% for a 0.05 mM ethanol standard and a preconcentration factor of 391, were reached. Accuracy of the proposed methodology was evaluated by comparison of calibration slopes corresponding to external calibration with aqueous standards and standard addition calibration. The method was successfully applied to different alcohol-free cosmetics (external calibration was carried out in all cases). Additional advantages such as simplicity and high sample throughput can be highlighted. The greenness profile of proposed methodology was established using NEMI criteria (US National Environmental Methods Index).

  18. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats.

    PubMed

    Myers, R D; Robinson, D E; West, M W; Biggs, T A; McMillen, B A

    1998-11-01

    A genetically based animal model of alcoholism has been developed in a relatively short period of 3 years. The new strain is characterized by an intense preference for ethanol over water as well as unique behavioral, neurochemical and other attributes. This new strain, termed high-ethanol-preferring (HEP) rats, was derived initially from selective cross-breeding of a variant strain of female Harlan Sprague-Dawley (SD) rats with the outbred Wistar line of male ethanol-preferring (P) rats. In this study, drinking patterns of both genders were obtained over 10 days by presenting water and ethanol in concentrations ranging from 3% to 30%. To expedite the development of the new strain, only three to five female and male rats served as breeders, which were chosen from all litters on the basis of their maximum g/kg intake integrated with proportion of ethanol to total fluid values. Profiles of intake of preferred concentrations of ethanol were obtained over 24 h of unlimited access as well as during 2-h intervals of limited access to ethanol. Levels of blood ethanol were measured in both female and male HEP animals during bouts of ethanol drinking in the limited access paradigm. By the sixth generation of HEP rats, ethanol consumption of the females often exceeded that of any other rat genetically bred to drink ethanol (e.g., at a concentration of 15.7%, 10.3 g/kg per day). Seven additional characteristics are notable: 1) the HEP rats prefer ethanol in the presence of a nutritious chocolate drink or nonnutrient sweetened solution (aspartame); 2) high levels of blood ethanol are associated with their drinking; 3) females drink significantly greater g/kg amounts of ethanol than HEP males and prefer a higher percent concentration of ethanol; 4) the drinking of ethanol by the female HEP animals does not fluctuate during the estrous cycle; 5) neurochemical assays show differential profiles of 5-HT, dopamine, and their metabolites in different regions of the brain; 6) measures

  19. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    PubMed

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  20. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol.

    PubMed

    Ericson, Mia; Chau, Peipei; Adermark, Louise; Söderpalm, Bo

    2013-01-01

    Alcohol misuse and addiction is a worldwide problem causing enormous individual suffering as well as financial costs for the society. To develop pharmacological means to reduce suffering, we need to understand the mechanisms underlying the effects of ethanol in the brain. Ethanol is known to increase extracellular levels of both dopamine and taurine in the nucleus accumbens (nAc), a part of the brain reward system, but the two events have not been connected. In previous studies we have demonstrated that glycine receptors in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region. By means of in vivo microdialysis in freely moving rats we here demonstrate that the endogenous glycine receptor ligand taurine mimics ethanol in activating the brain reward system. Furthermore, administration of systemic ethanol diluted in an isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline solution was investigated with respect to extracellular levels of taurine and dopamine in the nAc. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations of both taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine elevating effect of systemic ethanol also when given in a hypertonic solution. We conclude that the elevations of taurine and dopamine in the nAc are closely related and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also -provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration and that taurine is a prominent participant in activating the brain reward system.

  1. Anti-Ulcerogenic Effect of Methanolic Extracts from Enicosanthellum pulchrum (King) Heusden against Ethanol-Induced Acute Gastric Lesion in Animal Models

    PubMed Central

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712

  2. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models.

    PubMed

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.

  3. The Role of Ethanol Metabolism in Development of Alcoholic Steatohepatitis in the Rat

    PubMed Central

    Ronis, Martin J.; Korourian, Soheila; Blackburn, Michael L.; Badeaux, Jamie; Badger, Thomas M.

    2009-01-01

    The importance of ethanol (EtOH) metabolism in development of alcoholic liver disease remains controversial. The current study examined the effects of selective inhibition of the cytochrome P450 enzyme CYP2E1 compared to inhibition of overall EtOH metabolism on the development of alcoholic steatohepatitis. Adult male Sprague-Dawley rats were fed via total enteral nutrition for 45 d with or without 10–12 g/kg/d EtOH. Some groups were given 200 mg/kg/d of the CYP2E1 inhibitor diallylsulfide (DAS). Other groups were treated with 164 mg/kg/d of the alcohol dehydrogenase inhibitor 4-methylpyazole (4MP) and dosed at 2–3 g/kg/d EtOH to maintain similar average urine EtOH concentrations. Liver pathology scores and levels of apoptosis were elevated by EtOH (P< 0.05), but did not differ significantly on co-treatment with DAS or 4MP. However, liver triglycerides were lower when EtOH was fed with DAS or 4MP (P< 0.05). Serum alanine aminotransferase (ALT) values were significantly lower in EtOH-fed 4MP-treated rats indicating reduced necrosis. Hepatic oxidative stress and the endoplasmic reticulum (ER) stress marker TRB3 were increased after EtOH (P<0.05); further increased by DAS; but partly attenuated by 4MP. DAS and 4MP both reversed EtOH increases in the cytokine, tumor necrosis factor (TNF)α, and the chemokine CXCL-2 (P<0.05). However, neither inhibitor prevented EtOH suppression of interleukins IL-4 or IL-12. Moreover, neither inhibitor prevented EtOH increases in tumor growth factor (TGF)β mRNA. EtOH and DAS additively induced hepatic hyperplasia (P<0.05). These data suggest that a significant proportion of hepatic injury following EtOH exposure is independent of alcohol metabolism. EtOH metabolism by CYP2E1 may be linked in part to triglyceride accumulation; to induction of TNFα; and to chemokine production. EtOH metabolism by ADH may be linked in part to oxidative and ER stress and necrotic injury. PMID:20116195

  4. Association between in vivo alcohol metabolism and genetic variation in pathways that metabolize the carbon skeleton of ethanol and NADH reoxidation in the Alcohol Challenge Twin Study

    PubMed Central

    Lind, Penelope A; Macgregor, Stuart; Heath, Andrew C; Madden, Pamela AF; Montgomery, Grant W; Martin, Nicholas G; Whitfield, John B

    2013-01-01

    Background Variation in alcohol metabolism affects the duration of intoxication and alcohol use. While the majority of genetic association studies investigating variation in alcohol metabolism have focused on polymorphisms in alcohol or aldehyde dehydrogenases, we have now tested for association with genes in alternative metabolic pathways that catalyze the carbon skeleton of ethanol and NADH reoxidation. Methods 950 single nucleotide polymorphisms (SNPs) spanning 14 genes (ACN9, ACSS1, ACSS2, ALDH1A1, CAT, CYP2E1, GOT1, GOT2, MDH1, MDH2, SLC25A10, SLC25A11, SLC25A12, SLC25A13) were genotyped in 352 young adults who participated in an alcohol challenge study. Traits tested were blood and breath alcohol concentration, peak alcohol concentration and rates of alcohol absorption and elimination. Allelic association was tested using quantitative univariate and multivariate methods. Results A CYP2E1 promoter SNP (rs4838767, minor allele frequency 0.008) exceeded the threshold for study-wide significance (4.01 × 10−5) for two early blood alcohol concentration (BAC), eight breath alcohol concentration (BrAC) measures and the peak BrAC. For each phenotype the minor C-allele was related to a lower alcohol concentration, most strongly for the fourth BrAC (P = 2.07 × 10−7) explaining ~8% of the phenotypic variance. We also observed suggestive patterns of association with variants in ALDH1A1 and on chromosome 17 near SLC25A11 for aspects of blood and breath alcohol metabolism. A SNP upstream of GOT1 (rs2490286) reached study-wide significance for multivariate BAC metabolism (P = 0.000040). Conclusions Overall, we did not find strong evidence that variation in genes coding for proteins that further metabolize the carbon backbone of acetaldehyde, or contribute to mechanisms for regenerating NAD from NADH, affects alcohol metabolism in our European-descent subjects. However, based on the breath alcohol data, variation in the promoter of CYP2E1 may play a role in pre

  5. Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol

    PubMed Central

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2014-01-01

    Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol). PMID:25035710

  6. The effect of maternal ethanol ingestion on fetal rat heart vitamin A: a model for fetal alcohol syndrome.

    PubMed

    DeJonge, M H; Zachman, R D

    1995-04-01

    Ethanol consumption during pregnancy can cause fetal alcohol syndrome (FAS). Although the exact mechanism is unknown, nutritional alterations caused by ethanol exposure may be an etiologic factor in FAS. The congenital heart defects seen in FAS are similar to those found in vitamin A teratogenesis. Because ethanol ingestion alters vitamin A metabolism, we hypothesized that the cardiac manifestations seen in FAS result from an alteration in vitamin A metabolism or function in the developing fetus. Twenty-day gestation fetal rat hearts from ethanol-exposed and control pregnancies were analyzed for 1) levels of endogenous retinol, retinyl palmitate, and retinoic acid by quantitative HPLC; 2) binding activity levels of both retinol by cellular retinol binding protein and retinoic acid by cellular retinoic acid binding protein using specific competitive binding assays; and 3) relative abundance of cellular retinol binding protein and retinoic acid receptor alpha, beta, and gamma subtype message as expressed in mRNA. Levels of retinol and retinyl palmitate were significantly higher (p < 0.01) and the level of retinoic acid was significantly lower (p < 0.02) in the ethanol-exposed fetal hearts. Binding activity levels of cellular retinol binding protein and cellular retinoic acid binding protein were not different in the two groups. The message for retinoic acid receptor alpha (3.7 kb) was increased (p < 0.01) and the message for retinoic acid receptor beta was decreased (p < 0.05) in the ethanol-exposed hearts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7596680

  7. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    PubMed

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS. PMID:26675916

  8. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    PubMed

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  9. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Eglesia, E.

    1995-10-24

    Mechanistic and kinetic studies of methanol and ethanol coupling reactions on Cs/Cu/ZnO and Cu/ZnO/MnO catalysts using isotopically-labeled compounds have confirmed that coupling reactions proceed via intermediate dehydrogenation of alcohols to aldehydes. Ethanol coupling reactions are much faster than those of methanol because ethanol forms a more thermodynamically favored intermediate (acetaldehyde), with aldol condensation pathways kinetically available for chain growth. Cs decreases the rate of formation of aldehydes in alcohol dehydrogenation reaction and inhibits the undesired conversion of methanol and ethanol to synthesis gas (CO/H{sub 2}). Construction and start-up of the Catalytic Microreactor Unit (CMRU) for high pressure isobutanol synthesis studies have been completed. Initial certification runs have reproduced catalytic CO conversion rates on a standard APCI material (Cs/Cu/ZnO/Al{sub 2}O{sub 3}). Condensation of higher alcohols in the transfer lines appears to be responsible for the observed low apparent selectivity to higher alcohols. The design and construction of the Temperature-Programmed Surface Reaction (TPSR) Unit for the study of the adsorption and reaction properties of alcohols and other oxygenates on isobutanol, synthesis catalysts and components is complete. The reduction of CuO powder and of a Cs/Cu/ZnO catalyst were used to certify the apparatus before proceeding with alcohol adsorption and reaction studies.

  10. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    SciTech Connect

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  11. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc., Vicksburg, Mississippi

    SciTech Connect

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains a summary of the environmental, health, safety, and socioeconomic factors involved in the siting, construction and operation of the plant.

  12. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    PubMed

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.

  13. Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Zhang, Zong-Wen; Cui, Ying; Zhang, Yan

    2015-11-01

    Porous Pt-Cu alloy networks are synthesized through a one-pot hydrothermal process, with ethylene glycol as the reducing agent and the block copolymer Pluronic F127 as structure-directing agent. The structure, porosity and surface chemical state of as-prepared Pt-Cu alloy with different composition are characterized. The formation mechanism of the porous structure is investigated by time sequential experiments. The obtained Pt53Cu47 alloy possesses a unique 3D hierarchical porous network structure assembled by interconnected nanodendrites as building blocks. Because of the high surface area, concave surface topology and open porous structure, the Pt53Cu47 alloy catalyst exhibits enhanced catalytic activity towards methanol and ethanol electro-oxidation in comparison with commercial Pt black and the Pt73Cu27 alloy synthesized following the same process as Pt53Cu47.

  14. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  15. Effects of short deprivation and re-exposure intervals on the ethanol drinking behavior of selectively bred high alcohol-consuming rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Schultz, Jonathon A; Peper, Caron L; Lumeng, Lawrence; Murphy, James M; McBride, William J

    2008-08-01

    Alcoholics generally display cycles of excessive ethanol intake, abstinence and relapse behavior. Using an animal model of relapse-like drinking, the alcohol deprivation effect (ADE), our laboratory has shown that repeated 2-week cycles of ethanol deprivation and re-exposure, following an initial 6-week access period, result in a robust ADE by alcohol-preferring (P) and high alcohol-drinking (HAD-1 and HAD-2) rats. These rat lines have been selectively bred to prefer a 10% ethanol solution over water. The present study examined whether P and HAD rats would display an ADE using much shorter ethanol deprivation and re-exposure intervals. Rats were given either continuous or periodic concurrent access to multiple concentrations (10%, 20%, and 30% [vol/vol]) of ethanol. The periodic protocol involved access to ethanol for 12 days followed by four cycles of 4 days of deprivation and 4 days of re-exposure to ethanol access. High-alcohol-drinking rats displayed a robust 24-h ADE upon first re-exposure (HAD-1: approximately 5 vs. 8g/kg/day; HAD-2: approximately 6 vs. 9g/kg/day, baseline vs. re-exposure), whereas P rats ( approximately 7 vs. 8g/kg/day) displayed a modest, nonsignificant, increase in 24-h intake. In a separate group of rats, ethanol intake and blood alcohol concentrations after the first hour of the fourth re-exposure cycle were HAD-1: 2.0g/kg and 97 mg%, HAD-2: 2.3g/kg and 73 mg%, and P: 1.2g/kg and 71 mg%; with all three lines displaying a robust first hour ADE. These findings suggest that (a) an ADE may be observed with short ethanol deprivation and re-exposure intervals in HAD rats, and (b) the genetic make-up of the P and HAD rats influences the expression of this ADE.

  16. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  17. Alcohol dehydrogenase activities and ethanol tolerance in Anastrepha (Diptera, Tephritidae) fruit-fly species and their hybrids

    PubMed Central

    2009-01-01

    The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits. PMID:21637665

  18. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2013-07-01

    Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.

  19. Rotational spectral studies of O(1D) insertion reactions with methane and ethylene: Methanol and vinyl alcohol in a supersonic expansion

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Wehres, Nadine; DePrince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob C.; Widicus Weaver, Susanna L.

    2015-06-01

    We report a new apparatus for millimeter/submillimeter spectroscopic studies of O(1D) insertion reactions to produce molecules of astrophysical interest. This study focuses on the insertion of O(1D) into methane to form methanol, and the insertion of O(1D) into ethylene to form vinyl alcohol (CH2CHOH). The O(1D) was produced via laser photodissociation of O3 in a fused silica tube and mixed with a hydrocarbon before a supersonic expansion. Direct absorption millimeter/submillimeter spectroscopy was used to monitor the products. The methanol study was used as an experimental benchmark, while the vinyl alcohol study extended rotational spectroscopic measurements to higher frequencies. Observed products from both insertion reactions included, but were not limited to, H2CO, HO2, and CH3O. Methanol and vinyl alcohol were only produced in detectable quantities when the fused silica tube was included, indicating that collisions before the expansion are required for production and stabilization of the O(1D) insertion products.

  20. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chuang, L. C.; Kannan, A. M.; Lin, C. W.

    A series of hydrocarbon membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and poly(vinyl pyrrolidone) (PVP) were synthesized and characterized for direct methanol fuel cell (DMFC) applications. Fourier transform infrared (FT-IR) spectra confirm a semi-interpenetrating (SIPN) structure based on a cross-linked PVA/SSA network and penetrating PVP molecular chains. A SIPN membrane with 20% PVP (SIPN-20) exhibits a proton conductivity value comparable to Nafion ® 115 (1.0 × 10 -2 S cm -1 for SIPN-20 and 1.4 × 10 -2 S cm -1 for Nafion ® 115). Specifically, SIPN membranes reveal excellent methanol resistance for both sorption and transport properties. The methanol self-diffusion coefficient through a SIPN-20 membrane conducted by pulsed field-gradient nuclear magnetic resonance (PFG-NMR) technology measures 7.67 × 10 -7 cm 2 s -1, which is about one order of magnitude lower than that of Nafion ® 115. The methanol permeability of SIPN-20 membrane is 5.57 × 10 -8 cm 2 s -1, which is about one and a half order of magnitude lower than Nafion ® 115. The methanol transport behaviors of SIPN-20 and Nafion ® 115 membranes correlate well with their sorption characteristics. Methanol uptake in a SIPN-20 membrane is only half that of Nafion ® 115. An extended study shows that a membrane-electrode assembly (MEA) made of SIPN-20 membrane exhibits a power density comparable to Nafion ® 115 with a significantly higher open current voltage. Accordingly, SIPN membranes with a suitable PVP content are considered good methanol barriers, and suitable for DMFC applications.

  1. Relative Fluid Novelty Differentially Alters the Time Course of Limited-Access Ethanol and Water Intake in Selectively Bred High Alcohol Preferring Mice

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2015-01-01

    Background The influence of previous alcohol (ethanol) drinking experience on increasing the rate and amount of future ethanol consumption might be a genetically-regulated phenomenon critical to the development and maintenance of repeated excessive ethanol abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge-ethanol consumption over repeated Drinking-in-the-Dark (DID) ethanol access sessions (i.e. ‘front-loading’). The primary goal of the present study was to evaluate identical parameters in High Alcohol Preferring (HAP) mice to determine if similar temporal alterations in limited-access ethanol drinking develop in a population selected for high ethanol preference/intake under continuous (24hr) access conditions. Methods Using specialized volumetric drinking devices, HAP mice received 14 daily 2 hour DID ethanol or water access sessions. A subset of these mice was then given one day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter administered ethanol. Results The amount of ethanol consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, ethanol front-loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of ethanol access. Conclusions These data further illustrate the complexity and importance of the temporal aspects of limited-access ethanol consumption, and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of ethanol and water consumption

  2. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  3. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  4. Nucleoside adducts are formed by cooperative reaction of acetaldehyde and alcohols: possible mechanism for the role of ethanol in carcinogenesis.

    PubMed

    Fraenkel-Conrat, H; Singer, B

    1988-06-01

    The exocyclic amino groups of ribonucleosides and deoxyribonucleosides react rapidly at ambient temperature with acetaldehyde and alcohols to yield mixed acetals [--NH--CH(CH3)OR]. Nucleotides and nucleoside di- and triphosphates also react. Depending on the nucleoside used and on the relative amounts of aldehyde, alcohol, and water, preparative reactions reach equilibrium with yields up to 75% in a few hours. The structures have been confirmed by fast atom bombardment MS and proton NMR. Half-lives at 37 degrees C have been determined, and maximum stability is in the pH range of 7.5-9.5. In the absence of alcohol, acetaldehyde-nucleoside adducts could be isolated at 4 degrees C, but these were too unstable to characterize except for their UV spectra, also at 4 degrees C. Ethanol is often present in human blood and tissues, and acetaldehyde is its initial metabolic product, as well as being formed by many other metabolic processes. Both chemicals have separately been implicated in carcinogenic and other cytopathologic processes, but no cooperative mechanism has been proposed. The reactions reported here are of biological concern because they also occur in dilute aqueous solution. These findings supply a mechanism by which ethanol can be covalently bound to nucleic acids under physiological conditions.

  5. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  6. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  7. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  8. Effect of Alcohol on Interaction of Model Biological Membrane with Steroids

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Mura, Manuela; Famili, Marjan; Zhou, Yuhua; Zvelindovsky, Andrei

    2014-03-01

    The effect of alcohol in the lipid bilayer changes the gel-phase structure of the lipid bilayer. Interactions between the alcohol molecules and the lipid bilayer were investigated using molecular dynamics. Alcohols such as ethanol and methanol are often used in drug delivery application. Ethanol is used to dissolve hydrophobic steroidal drugs such as Beclamethasone dipropionate, Fluticasone propionate and Prednisone. All the systems considered were equilibrated at 310K and ran for 100ns in the presence of dimyristoylphosphatidylcholine (DMPC) lipid bilayer. In addition the simulations were performed to investigate the behaviour of anti-asthma drugs such as Beclamethasone dipropionate in the water environment and 2.5% of ethanol.

  9. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    PubMed

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. PMID:27012191

  10. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    PubMed

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.

  11. Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed

    2005-01-01

    The effect of substrate concentration on the rate of enzymatic reaction was investigated and typical Michaelis-Mentin kinetics was observed during the first week. The first order reaction at relatively low concentrations of ethanol and the pseudo zero-order reaction at high concentrations of ethanol were emphasized.

  12. Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats.

    PubMed

    Sari, Y; Sreemantula, S N

    2012-12-27

    We have previously shown that ceftriaxone, β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake in alcohol-preferring (P) rats. GLT1 is a glial glutamate transporter that regulates the majority of extracellular glutamate uptake. We tested in this study the effects of neuroimmunophilin GPI-1046 (3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate), known also to upregulate GLT1 expression, in ethanol intake in P rats. Male P rats had concurrent access to free choice of 15% and 30% ethanol, water, and food for five weeks. On Week 6, P rats continued in this drinking and food regimen and they were administered either 10 or 20mg/kg GPI-1046 (i.p.), or a vehicle for five consecutive days. Body weight, ethanol intake, and water consumption were measured daily for 8 days starting on Day 1 of GPI-1046 or vehicle i.p. injections. We have also tested the effect of GPI-1046 (20mg/kg) on daily sucrose (10%) intake. The data revealed significant dose-dependent effects in the reduction of ethanol intake starting 48 h after the first treatment with GPI-1046 throughout treatment and post-treatment periods. There were also dose-dependent increases in water intake. However, GPI-1046 treatment did not affect the body weight of all animals nor sucrose intake. Importantly, GPI-1046 (20mg/kg) increased GLT1 level compared to all groups in nucleus accumbens core (NAc-core). Alternatively, GPI-1046 (10mg/kg) upregulated GLT1 level in NAc-core compared to vehicle (ethanol naïve) group. Moreover, both doses of GPI-1046 increased significantly GLT1 level in the prefrontal cortex (PFC) compared to ethanol naïve vehicle group. GPI-1046 (20mg/kg) increased GLT1 level in PFC compared to naïve control group that was exposed to water and food only. These findings demonstrated that neuroimmunophilin GPI-1046 attenuates ethanol intake in part through the upregulation of GLT1 in PFC and NAc-core.

  13. Early ethanol and water intake: choice mechanism and total fluid regulation operate in parallel in male alcohol preferring (P) and both Wistar and Sprague Dawley rats.

    PubMed

    Azarov, Alexey V; Woodward, Donald J

    2014-01-17

    The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol/water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol/water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol/water choice.

  14. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice.

    PubMed

    Fiore, Marco; Laviola, Giovanni; Aloe, Luigi; di Fausto, Veronica; Mancinelli, Rosanna; Ceccanti, Mauro

    2009-01-01

    Ethanol exposure during pregnancy is one of the major causes of mental retardation in western countries by inducing fetal-alcohol-like-syndromes. Red wine is known to contain ethanol but also compounds with putative antioxidant properties. It has also been shown that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are severely affected by ethanol during prenatal and postnatal life. The aim of the current study was to investigate in male CD1 mice brain alterations in NGF and BDNF due to chronic early exposure to ethanol solution (11 vol%) or to red wine at the same alcohol concentration starting from 60 days before pregnancy up to pups weaning. Data revealed no differences between groups of dams in pregnancy duration, neither in pups delivery, pups mortality and sex ratio. Data also showed that adult animals exposed to only ethanol had disrupted levels of both NGF and BDNF in the hippocampus and other brain areas. This profile was associated with impaired ChAT immunopositivity in the septum and Nuclei Basalis and with altered cognition and emotional behavior. Quite interestingly mice exposed to red wine had no change in the behavior or in ChAT immunopositivity but a decrease in hippocampal BDNF and a mild NGF decrease in the cortex. Also NGF-induced neuritic outgrowth in PC-12 cells was still present when exposed to red wine but not when exposed to ethanol solution only. Data suggest differences in ethanol-induced neurotoxicity between red wine and ethanol solution only.

  15. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice.

    PubMed

    Fiore, Marco; Laviola, Giovanni; Aloe, Luigi; di Fausto, Veronica; Mancinelli, Rosanna; Ceccanti, Mauro

    2009-01-01

    Ethanol exposure during pregnancy is one of the major causes of mental retardation in western countries by inducing fetal-alcohol-like-syndromes. Red wine is known to contain ethanol but also compounds with putative antioxidant properties. It has also been shown that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are severely affected by ethanol during prenatal and postnatal life. The aim of the current study was to investigate in male CD1 mice brain alterations in NGF and BDNF due to chronic early exposure to ethanol solution (11 vol%) or to red wine at the same alcohol concentration starting from 60 days before pregnancy up to pups weaning. Data revealed no differences between groups of dams in pregnancy duration, neither in pups delivery, pups mortality and sex ratio. Data also showed that adult animals exposed to only ethanol had disrupted levels of both NGF and BDNF in the hippocampus and other brain areas. This profile was associated with impaired ChAT immunopositivity in the septum and Nuclei Basalis and with altered cognition and emotional behavior. Quite interestingly mice exposed to red wine had no change in the behavior or in ChAT immunopositivity but a decrease in hippocampal BDNF and a mild NGF decrease in the cortex. Also NGF-induced neuritic outgrowth in PC-12 cells was still present when exposed to red wine but not when exposed to ethanol solution only. Data suggest differences in ethanol-induced neurotoxicity between red wine and ethanol solution only. PMID:19100286

  16. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols.

    PubMed

    Prieto, Gonzalo; Beijer, Steven; Smith, Miranda L; He, Ming; Au, Yuen; Wang, Zi; Bruce, David A; de Jong, Krijn P; Spivey, James J; de Jongh, Petra E

    2014-06-16

    Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

  17. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  18. Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats.

    PubMed

    Bahi, Amine

    2013-10-01

    Whether metabotropic glutamate 7 (mGluR7) -activation enhances or diminishes the reinforcing properties of psychostimulants remains unclear. We have previously shown that systemic mGluR7 activation reduced alcohol consumption and preference as well as locomotor-stimulating and rewarding properties of ethanol. In this study, we further examined the contribution of mGluR7 on the effect of ethanol within the nucleus accumbens (NAcc), a neural target for many drugs of abuse. Using short hairpin RNA (shRNA)-expressing lentiviral vectors (LV) to alter locally the activity of mGluR7 in male rats, we have shown that blocking mGluR7 expression increased ethanol consumption and preference in a two-bottle choice drinking paradigm with no effect either on saccharin or on quinine used for taste discrimination. In addition, mGluR7 knockdown increases preference for environments previously paired with low doses of ethanol in the conditioned place preference (CPP) test, as it shifted the dose-response curve for ethanol CPP to the left, indicating alterations in the rewarding effects of alcohol. More importantly, mGluR7 blockade in the dorsal striatum (DS) neither affected ethanol consumption nor ethanol-elicited CPP. These results show that levels of mGluR7 in the NAcc regulate responsiveness to alcohol. Taken together, these findings clearly demonstrate that mGluR7 signaling within the NAcc is a key modulator of functional responses to ethanol and offer an important target for regulating the addictive effects of alcohol.

  19. A major QTL for acute ethanol sensitivity in the alcohol tolerant and non-tolerant selected rat lines.

    PubMed

    Radcliffe, R A; Erwin, V G; Bludeau, P; Deng, X; Fay, T; Floyd, K L; Deitrich, R A

    2009-08-01

    The Alcohol Tolerant and Alcohol Non-Tolerant rats (AT, ANT) were selectively bred for ethanol-induced ataxia as measured on the inclined plane. Here we report on a quantitative trait locus (QTL) study in an F(2) intercross population derived from inbred AT and ANT (IAT, IANT) and a follow-up study of congenics that were bred to examine one of the mapped QTLs. Over 1200 F(2) offspring were tested for inclined plane sensitivity, acute tolerance on the inclined plane, duration of the loss of righting reflex (LORR) and blood ethanol at regain of the righting reflex (BECRR). F(2) rats that were in the upper and lower 20% for inclined plane sensitivity were genotyped with 78 SSLP markers. Significant QTLs for inclined plane sensitivity were mapped on chromosomes 8 and 20; suggestive QTLs were mapped on chromosomes 1, 2 and 3. Highly significant QTLs for LORR duration (LOD = 12.4) and BECRR (LOD = 5.7) were mapped to the same locus on chromosome 1. Breeding and testing of reciprocal congenic lines confirmed the chromosome 1 LORR/BECRR QTL. A series of recombinant congenic sub-lines were bred to fine-map this QTL. Current results have narrowed the QTL to an interval of between 5 and 20 Mb. We expect to be able to narrow the interval to less than 5 Mb with additional genotyping and continued breeding of recombinant sub-congenic lines.

  20. Energy inputs and outputs of fuel-alcohol production. Appendices A and B. Ethanol from grain

    SciTech Connect

    Not Available

    1982-04-01

    Estimates are developed of present energy requirements for producing five grains (corn, grain, sorghum, winter wheat, barley and oats) and of energy requirements for increasing production of two of these grains (corn and grain sorghum). Brief discussions are also included of the overall potential for increasing crop land and for increasing grain production for conversion to ethanol. The energy and materials consumption of both wet and dry milling technologies are considered for the conversion of grain to ethanol.

  1. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol.

    PubMed

    Kremer, Florian; Blank, Lars M; Jones, Patrik R; Akhtar, M Kalim

    2015-01-01

    Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability. PMID:26301219

  2. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol.

    PubMed

    Kremer, Florian; Blank, Lars M; Jones, Patrik R; Akhtar, M Kalim

    2015-01-01

    Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability.

  3. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol

    PubMed Central

    Kremer, Florian; Blank, Lars M.; Jones, Patrik R.; Akhtar, M. Kalim

    2015-01-01

    Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability. PMID:26301219

  4. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju

    2016-09-01

    Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.

  5. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation

    NASA Astrophysics Data System (ADS)

    Zhu, Fuchun; Ma, Guanshui; Bai, Zhongchao; Hang, Ruiqiang; Tang, Bin; Zhang, Zhonghua; Wang, Xiaoguang

    2013-11-01

    In this study, we have synthesized a series of multi-walled carbon nanotubes supported Pd, PdCu(molar ratio 1:1), PdSn(1:1) and PdCuSn(1:1:1) catalysts by chemical reduction with NaBH4 as a reducing agent. These catalysts are characterized using X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry and chronoamperometry. During the potential cycling activation, it is found that the additive Cu is prone to suffer leaching while the dissolution of Sn rarely occurs. Electrochemical measurements demonstrate that, the co-alloying of Pd with Cu and Sn can trigger the best catalytic activity enhancement as compared with the binary PdCu/CNTs, PdSn/CNTs and mono-component Pd/CNTs catalysts. The PdCuSn/CNTs reveals the most excellent activities toward methanol, ethanol and formic acid electro-oxidation and the corresponding mass activity can attain to 395.94, 872.70 and 534.83 mA mg-1 Pd, respectively. The possible promotion effect of additive Sn or/and Cu on the electrocatalytic activity improvement is also analyzed.

  6. [Characteristics of the pharmacological treatment of toxic liver damage in patients with an alcohol abused syndrome and an acute severe ethanol poison].

    PubMed

    Shilov, V V; Shikalova, I A; Vasil'ev, S A; Loladze, A T; Batotsyrenov, B V

    2012-01-01

    The examination of 130 patients with an alcohol abused syndrome and a severe ethanol poison have revealed that ethanol action are accompanied by significant metabolic disturbances. The comparative evaluation of the inclusion of heptral and remaxol in the treatment has shown that remaxol improves the clinical course of mentioned disorders decreasing the frequency and duration of alcohol delirium. Patients treated with this drug spent less time in acute care and their treatment duration was shorter. Remaxol reduces more effectively the severity of metabolic disorders.

  7. Evidence for the generation of transaminase inhibitor(s) during ethanol metabolism by rat liver homogenates: a potential mechanism for alcohol toxicity.

    PubMed

    Solomon, L R

    1987-08-01

    Since ethanol consumption decreases hepatic aminotransferase activities in vivo, mechanisms of ethanol-mediated transaminase inhibition were explored in vitro using mitochondria-depleted rat liver homogenates. When homogenates were incubated at 37 degrees with 50 mM ethanol for 1 hr, alanine aminotransferase decreased by 20%, while aspartate aminotransferase was unchanged. After 2 hr, aspartate aminotransferase decreased by 20% and by 3 hr, alanine and aspartate aminotransferases were decreased by 31 and 23%, respectively. Levels of acetaldehyde generated during ethanol oxidation were 525 +/- 47 microM at 1 hr, 855 +/- 14 microM at 2 hr, and 1293 +/- 140 microM at 3 hr. Although inhibition of alcohol oxidation with methylpyrazole or cyanide markedly decreased ethanol-mediated transaminase inhibition, neither incubation with acetate nor generation of reducing equivalents by oxidation of lactate, malate, xylitol, or sorbitol altered the activity of either enzyme. However, semicarbazide, an aldehyde scavenger, prevented inhibition of both aminotransferases by ethanol. Moreover, incubation with 5 mM acetaldehyde for 1 hr inhibited alanine and aspartate aminotransferases by 36 and 26%, respectively. Cyanamide, an aldehyde dehydrogenase inhibitor, had little effect on ethanol-mediated transaminase inhibition. Thus, metabolism of ethanol by rat liver homogenates produces transaminase inhibition similar to that described in vivo and this effect requires acetaldehyde generation but not acetaldehyde oxidation. Since addition of pyridoxal 5'-phosphate to assay mixes did not reverse ethanol effects, aminotransferase inhibition does not result from displacement of vitamin B6 coenzymes.

  8. Evidence for the generation of transaminase inhibitor(s) during ethanol metabolism by rat liver homogenates: a potential mechanism for alcohol toxicity.

    PubMed

    Solomon, L R

    1987-08-01

    Since ethanol consumption decreases hepatic aminotransferase activities in vivo, mechanisms of ethanol-mediated transaminase inhibition were explored in vitro using mitochondria-depleted rat liver homogenates. When homogenates were incubated at 37 degrees with 50 mM ethanol for 1 hr, alanine aminotransferase decreased by 20%, while aspartate aminotransferase was unchanged. After 2 hr, aspartate aminotransferase decreased by 20% and by 3 hr, alanine and aspartate aminotransferases were decreased by 31 and 23%, respectively. Levels of acetaldehyde generated during ethanol oxidation were 525 +/- 47 microM at 1 hr, 855 +/- 14 microM at 2 hr, and 1293 +/- 140 microM at 3 hr. Although inhibition of alcohol oxidation with methylpyrazole or cyanide markedly decreased ethanol-mediated transaminase inhibition, neither incubation with acetate nor generation of reducing equivalents by oxidation of lactate, malate, xylitol, or sorbitol altered the activity of either enzyme. However, semicarbazide, an aldehyde scavenger, prevented inhibition of both aminotransferases by ethanol. Moreover, incubation with 5 mM acetaldehyde for 1 hr inhibited alanine and aspartate aminotransferases by 36 and 26%, respectively. Cyanamide, an aldehyde dehydrogenase inhibitor, had little effect on ethanol-mediated transaminase inhibition. Thus, metabolism of ethanol by rat liver homogenates produces transaminase inhibition similar to that described in vivo and this effect requires acetaldehyde generation but not acetaldehyde oxidation. Since addition of pyridoxal 5'-phosphate to assay mixes did not reverse ethanol effects, aminotransferase inhibition does not result from displacement of vitamin B6 coenzymes. PMID:3663401

  9. Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol

    PubMed Central

    Trim, Ryan S.; Simmons, Alan N.; Tolentino, Neil J.; Hall, Shana A.; Matthews, Scott C.; Robinson, Shannon K.; Smith, Tom L.; Padula, Claudia B.; Paulus, Martin P.; Tapert, Susan F.; Schuckit, Marc A.

    2013-01-01

    Background A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk for alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. Methods 30 matched high- and low-LR pairs (N=60 healthy young adults) were recruited from the University of California, San Diego and administered a structured diagnostic interview and laboratory alcohol challenge followed by two fMRI sessions under placebo and alcohol conditions, in randomized order. Task performance and BOLD response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task was examined across 120 fMRI sessions. Results Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p<.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. Conclusions Alcohol had differential effects on brain activation for low and high LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR, and identify brain regions that may be associated with the low LR response. PMID:20477775

  10. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation.

    PubMed

    Lin, Xing; Zhang, Shijun; Huang, Renbin; Wei, Ling; Tan, Shimei; Liang, Shuang; Tian, Yuanchun; Wu, Xiaoyan; Lu, Zhongpeng; Huang, Quanfang

    2014-06-01

    A compound was isolated from Centipeda minima using bioassay-guided screening. The structure of this compound was elucidated based on its spectral data, and it was identified as helenalin. The hepatoprotective effect of helenalin was evaluated using a liver fibrosis model induced by intragastric administration with alcohol within 24 weeks in rats. The results revealed that helenalin significantly prevented alcohol-induced hepatic injury and fibrogenesis, as evidenced by the decrease in serum aminotransferase, the attenuation of histopathological changes, and the inhibition of the hepatic fibrosis indicators, such as hyaluronic acid, type III precollagen, laminin, hydroxyproline and collagen α type I. Mechanistically, studies showed that helenalin expedited ethanol metabolism by enhancing the alcohol and aldehyde dehydrogenase activities. Furthermore, helenalin alleviated lipid peroxidation, recruited the antioxidative defense system, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TGF-β1, TNF-α, IL-6 and IL-1β and myeloperoxidase, via down-regulation of NF-κB. Helenalin significantly decreased collagen deposition by reducing the profibrotic cytokines like transforming growth factor-β, platelet-derived growth factor-β and connective tissue growth factor, and promoted extracellular matrix degradation by modulating the levels of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9. In addition, helenalin inhibited HSC activation as evidenced by the down-regulation of α-SMA and TGF-β levels. In conclusion, helenalin had a significant protective effect on chronic ethanol-induced hepatic fibrosis and may be a major bioactive ingredient of C. minima.

  11. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    SciTech Connect

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  12. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    PubMed

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.

  13. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    PubMed

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  14. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    PubMed

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive

  15. Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase.

    PubMed

    Brooks, Sarah J; Nikodinovic, Jasmina; Martin, Leona; Doyle, Evelyn M; O'Sullivan, Timothy; Guiry, Patrick J; Coulombel, Lydie; Li, Zhi; O'Connor, Kevin E

    2013-05-01

    1-(3,4-Dihydroxyphenyl) ethanol was produced biocatalytically for the first time using mushroom tyrosinase. 4-Ethylphenol at 1 mM was consumed over 12 min giving 0.23 mM 4-ethylcatechol and 0.36 mM (R/S)-1-(3,4-dihydroxyphenyl) ethanol (ee 0.5 %). Mushroom tyrosinase consumed 4-ethylphenol at 6.7 μmol min(-1) mg protein(-1) while the rates of formation of 4-ethylcatechol and 1-(3,4-dihydroxyphenyl) ethanol were 1.1 and 1.9 μmol min(-1) mg protein(-1). Addition of the ascorbic acid, as a reducing agent to biotransformation reactions, increased 4-ethylcatechol formation by 340 %. However, accumulation of 1-(3,4-dihydroxyphenyl) ethanol was not observed in the presence of ascorbic acid. While the 1-(3,4-dihydroxyphenyl) ethanol was racemic, it is the first chiral product produced by tyrosinase starting from a non-chiral substrate.

  16. Alcohol fuels program technical review

    SciTech Connect

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  17. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    PubMed Central

    Dopico, Alex M.; Bukiya, Anna N.; Martin, Gilles E.

    2014-01-01

    In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca2+i), BK subunit composition and post-translational modifications, and the channel's lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction. PMID:25538625

  18. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Mason, Stephen; Anthony, Bruce; Lai, Xianyin; Ringham, Heather N.; Wang, Mu; Witzmann, Frank A.; You, Jin-Sam; Zhou, Feng C.

    2012-01-01

    Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P < 0.01), and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function. PMID:22745907

  19. Dual-function of alcohols in gold-mediated selective coupling of amines and alcohols.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2012-02-20

    Oxidative coupling of alcohols (methanol and ethanol) and dimethylamine on atomic-oxygen-activated Au(111) occurs entirely on the surface to form the corresponding amides when the alkoxy of the alcohol and the amide derived from the amine are co-adsorbed. For effective oxygen-assisted coupling the formation of the amide requires excess methanol. Mechanistic studies reveal that molecularly adsorbed methanol removes excess adsorbed atomic oxygen efficiently, precluding either secondary oxidation or oxidative dehydrogenation of dimethylamide to the imine. The adsorbed amide then can react with the aldehyde produced by β-hydride elimination from the alkoxy to form the hemiaminal, the reactive intermediate leading to coupling. The selectivity for formamide production can be increased to nearly 100 % in excess methanol. PMID:22253014

  20. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  1. MAMMALIAN METABOLISM AND DISTRIBUTION OF PERFLUOROOCTYL ETHANOL (8-2 TELOMER ALCOHOL) AND ITS OXIDATION METABOLITES

    EPA Science Inventory

    Perfluorinated compounds have been shown to be globally distributed, bioaccumulative, persistent and potentially toxic. It has been hypothesized that many precursor fluorinated compounds, including the telomer alcohols, degrade or metabolize to the common metabolite PFOA.

  2. Neutrophil elastase activity in differentiating HL-60 promyelocytes is decreased by culture with ethanol and elastase deficient neutrophils are produced in alcoholics

    SciTech Connect

    Sachs, C.; Christianson, R.; Pratt, P.; Lynn, W.

    1987-05-01

    Serum-free culture of HL-60 in the presence of recombinant Granulocyte-Macrophage Colony Stimulating Factor in four days elicits a five-fold increase in esterolytic neutrophil elastase (NE) like activity measured with methoxy-succinyl-ala-ala-pro-val p-nitroanilide and purified NE standard but does not cause terminal differentiation. Simultaneous exposure to 0.2, 0.4, or 0.6% (vol./vol.) ethanol blocks this increase in NE activity. Exposure to 0.85% ethanol promotes terminal differentiation to elastase-deficient granulocytes which as been described using DMSO. To ascertain if ethanol may have similar effects on granulocytic differentiation in vivo, they compared oxidase and elastase activities of PMN's in male alcoholics on a binge (ethanol > 200 mg/dl.). In 29 patients an average of 872 (+/- 237) (SD) ng./10/sup 6/ PMN's of active NE was found compared to 1571 (+/- 177) in 13 controls. Patients admitted for treatment of alcoholism had similar NE activity in 3-4 days, showed a slight increase in activity within one week and had NE activity comparable to controls within 2-3 weeks. These findings support the previous observation that smoking related emphysema is less prevalent and severe in patients who regularly consume alcohol. They conclude that ethanol may visibly alter responsiveness of promyelocytic precursors to regulatory differentiating factors.

  3. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats.

    PubMed

    Rao, P S S; Goodwani, S; Bell, R L; Wei, Y; Boddu, S H S; Sari, Y

    2015-06-01

    Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.

  4. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  5. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    PubMed Central

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães

    2014-01-01

    Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  6. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    PubMed

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  7. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    PubMed

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  8. The Bifunctional Alcohol and Aldehyde Dehydrogenase Gene, adhE, Is Necessary for Ethanol Production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    PubMed Central

    Lo, Jonathan; Zheng, Tianyong; Hon, Shuen; Olson, Daniel G.

    2015-01-01

    ABSTRACT Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. IMPORTANCE Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol

  9. Developmental regulation of neuroligin genes in Japanese ricefish (Oryzias latipes) embryogenesis maintains the rhythm during ethanol-induced fetal alcohol spectrum disorder.

    PubMed

    Haron, Mona H; Khan, Ikhlas A; Dasmahapatra, Asok K

    2014-01-01

    Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level.

  10. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat.

    PubMed

    Gamella, M; Campuzano, S; Manso, J; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2014-01-01

    A non-invasive, passive and simple to use skin surface based sensing device for determining the blood's ethanol content (BAC) by monitoring transdermal alcohol concentration (TAC) is designed and developed. The proposed prototype is based on bienzyme amperometric composite biosensors that are sensitive to the variation of ethanol concentration. The prototype correlates, through previous calibration set-up, the amperometric signal generated from ethanol in sweat with its content in blood in a short period of time. The characteristics of this sensor device permit determination of the ethanol concentration in isolated and in continuous form, giving information of the BAC of a subject either in a given moment or its evolution during long periods of time (8h). Moreover, as the measurements are performed in a biological fluid, the evaluated individual is not able to alter the result of the analysis. The maximum limit of ethanol in blood allowed by legislation is included within the linear range of the device (0.0005-0.6 g L(-1)). Moreover, the device shows higher sensitivity than the breathalyzers marketed at the moment, allowing the monitoring of the ethanol content in blood to be obtained just 5 min after ingestion of the alcoholic drink. The comparison of the obtained results using the proposed device in the analysis of 40 volunteers with those provided by the gas chromatographic reference method for determination of BAC pointed out that there were no significant differences between both methods.

  11. Facile Synthesis of Pt-/Pd-MODIFIED NiTi Electrode with Superior Electro-Catalytic Activities Toward Methanol, Ethanol and Ethylene Glycol Oxidation

    NASA Astrophysics Data System (ADS)

    He, Yongwei; Wang, Mei; Ma, Zizai; Li, Ruixue; Kundu, Manab; Ma, Guanshui; Lin, Naiming; Tang, Bin; Wang, Xiaoguang

    2016-11-01

    Surface functional modification of NiTi electrode with noble Pt and Pd metal has been successfully carried out by simple and cost effective electro-spark deposition technique (ESD). Thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and cyclic voltammetry (CV) have been carried out in order to investigate the structure, morphology, chemical composition and electrochemical behavior of the modified electrode surface. The modified Pt/NiTi and Pd/NiTi electrode surface exhibit a circular splash pattern with a tiny amount of Pt (˜5.30 at.% Pt) and Pd (˜5.71 at.% Pd) existence. The electrochemical results demonstrate that the Pt/NiTi and Pd/NiTi electrode possess an improved electro-catalytic activities toward methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) oxidation in alkaline media in comparison with the bare NiTi electrode. In acidic environments, the Pt/NiTi electrode exhibits even much better catalytic activities than the pure Pt sheet electrode due to the bi-functional mechanism. In the same way, the electro-catalytic activity of the modified Pd/NiTi electrode is also slightly larger than that of the pure Pd sheet electrode in alkaline environment. The electro-spark surface modification approach is rapid and environmentally-benign, being attractive to widen the application of traditional surface modification technique in the field of material surface/interface design and functionalization.

  12. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    PubMed

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. PMID:23201265

  13. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism.

  14. Antidotes for poisoning by alcohols that form toxic metabolites.

    PubMed

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience.

  15. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface.

    PubMed

    Ballal, Deepti; Chapman, Walter G

    2013-09-21

    Aqueous solutions of alcohols are interesting because of their anomalous behavior that is believed to be due to the molecular structuring of water and alcohol around each other in solution. The interfacial structuring and properties are significant for application in alcohol purification processes and biomolecular structure. Here we study aqueous mixtures of short alcohols (methanol, ethanol, 1-propanol, and 2-propanol) at a hydrophobic surface using interfacial statistical associating fluid theory which is a perturbation density functional theory. The addition of a small amount of alcohol decreases the interfacial tension of water drastically. This trend in interfacial tension can be explained by the structure of water and alcohol next to the surface. The hydrophobic group of an added alcohol preferentially goes to the surface preserving the structure of water in the bulk. For a given bulk alcohol concentration, water mixed with the different alcohols has different interfacial tensions with propanol having a lower interfacial tension than methanol and ethanol. 2-propanol is not as effective in decreasing the interfacial tension as 1-propanol because it partitions poorly to the surface due to its larger excluded volume. But for a given surface alcohol mole fraction, all the alcohol mixtures give similar values for interfacial tension. For separation of alcohol from water, methods that take advantage of the high surface mole fraction of alcohol have advantages compared to separation using the vapor in equilibrium with a water-alcohol liquid.

  16. Comparison of urinary 5-hydroxytryptophol, breath ethanol, and self-report for detection of recent alcohol use during outpatient treatment: a study on methadone patients.

    PubMed

    Helander, A; von Wachenfeldt, J; Hiltunen, A; Beck, O; Liljeberg, P; Borg, S

    1999-08-01

    This study compared urinary 5-hydroxytryptophol (5HTOL) with breath-ethanol testing as objective ways to disclose recent drinking by outpatients attending a methadone maintenance treatment clinic. Information about quantity and frequency of alcohol use was obtained by confidential self-reports. Random screening was performed on Mondays-Fridays in connection with routine clinic visits for methadone dosing. An observed urine sample for monitoring of illicit drug use and determination of 5HTOL, expressed as a ratio to 5-hydroxyindole-3-acetic acid (5HIAA), was obtained from 202 patients (59 women and 143 men), 16 of whom refused to complete the self-report and/or do a breath-ethanol test. Patients taking disulfiram or calcium carbimide for alcohol detoxification were excluded. Among the 177 subjects remaining, 47 (26.6%) reported intake of any alcohol on the previous day (range, 10-230 g ethanol; median, 40). Only four of those could be identified by a positive breath-test, while 17 showed a urinary 5HTOL/5HIAA ratio above the cutoff limit. Their alcohol consumption (median, 60 g) was significantly higher compared with those showing ratios within the reference interval (median, 35 g). The sensitivity of 5HTOL/5HIAA testing for detecting self-reported drinking in excess of 50 g ethanol was 77%. An additional nine patients who claimed abstinence still showed abnormal 5HTOL/5HIAA ratios, and so did three of the patients who refused to do a breath-ethanol test and/or complete the self-report. Altogether, 59 of 190 methadone-maintained patients (31.1%) had been drinking any alcohol on the previous day (i.e. Sunday-Thursday) according to self-report and/or urinalysis data, 29 (49.2%) of whom were identified by the urinary 5HTOL/5HIAA ratio and only four (6.8%) by utilizing breathalyzer. PMID:10462090

  17. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  18. Fast quantification of ethanol in whole blood specimens by the enzymatic alcohol dehydrogenase method. Optimization by experimental design.

    PubMed

    Kristoffersen, Lena; Skuterud, Bjørn; Larssen, Bente R; Skurtveit, Svetlana; Smith-Kielland, Anne

    2005-01-01

    A sensitive, fast, simple, and high-throughput enzymatic method for the quantification of ethanol in whole blood (blood) on Hitachi 917 is presented. Alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde using the coenzyme nicotinamide adenine dinucleotide (NAD), which is concurrently reduced to form NADH. Method development was performed with the aid of factorial design, varying pH, and concentrations of NAD+ and ADH. The linear range increased and reaction end point decreased with increasing NAD+ concentration and pH. The method was linear in the concentration range 0.0024-0.4220 g/dL. The limits of detection and quantification were 0.0007 g/dL and 0.0024 g/dL, respectively. Relative standard deviations for the repeatability and within-laboratory reproducibility were in the ranges 0.7-5.7% and 1.6-8.9%, respectively. The correlation coefficient when compared with headspace gas chromatography-flame ionization detection methods was 0.9903. Analysis of authentic positive blood specimens gave results that were slightly lower than those of the reference method.

  19. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    PubMed Central

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  20. 2D spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism.

    PubMed

    Wang, Xin; Ando, Eri; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Saito, Hirokazu; Mitsubayashi, Kohji

    2010-08-15

    A novel 2-dimensional spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism has been developed, which employed a low level light CCD camera to detect chemiluminescence (CL) generated by catalytic reactions of standard gaseous ethanol and expired gaseous ethanol after oral administration. First, the optimization of the substrates for visualization and the concentration of luminol solution for CL were investigated. The cotton mesh and 5.0 mmol L(-1) luminol solution were selected for further investigations and this system is useful for 0.1-20.0 mmol L(-1) of H(2)O(2) solution. Then, the effect of pH condition of Tris-HCl buffer solution was also evaluated with CL intensity and under the Tris-HCl buffer solution pH 10.1, a wide calibration range of standard gaseous ethanol (30-400 ppm) was obtained. Finally, expired air of 5 healthy volunteers after oral administration was measured at 15, 30, 45, 60, 75, 90, 105 and 120 min after oral administration, and this system showed a good sensitivity on expired gaseous ethanol for alcohol metabolism. The peaks of expired gaseous ethanol concentration appeared within 30 min after oral administration. During the 30 min after oral administration, the time variation profile based on mean values showed the absorption and distribution function, and the values onward showed the elimination function. The absorption and distribution of expired gaseous ethanol in 5 healthy volunteers following first-order absorption process were faster than the elimination process, which proves efficacious of this system for described alcohol metabolism in healthy volunteers. This system is expected to be used as a non-invasive method to detect VOCs as well as several other drugs in expired air for clinical purpose.

  1. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  2. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    PubMed Central

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P < 0.05) when compared with the matched healthy control group. However, CYP2E1 was elevated in all the samples examined. Chronic exposure to alcohol has the potential to reduce the levels of pulmonary vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system. PMID:27795667

  3. Platelet uptake of serotonin (5-HT) during ethanol withdrawal in male alcoholics

    SciTech Connect

    Neiman, J.; Beving, H.; Malmgren, R.

    1987-06-15

    Changes in the kinetic variables of the platelet serotonin uptake, Km and Vmax, were studied in 7 male alcoholics, admitted for detoxification and in sex- and age-matched volunteers. On admission the alcoholics had lower Km values than reference subjects (p less than 0.05). During detoxification the Km values normalized. Vmax was normal throughout the study in spite of the changes in platelet count. The results of the study suggest that the affinity of serotonin to its uptake receptor is transiently increased after a period of heavy drinking.

  4. Adolescent alcohol exposure reduces behavioral flexibility, promotes disinhibition, and increases resistance to extinction of ethanol self-administration in adulthood.

    PubMed

    Gass, Justin T; Glen, William Bailey; McGonigal, Justin T; Trantham-Davidson, Heather; Lopez, Marcelo F; Randall, Patrick K; Yaxley, Richard; Floresco, Stan B; Chandler, L Judson

    2014-10-01

    The prefrontal cortex (PFC) is a brain region that is critically involved in cognitive function and inhibitory control of behavior, and adolescence represents an important period of continued PFC development that parallels the maturation of these functions. Evidence suggests that this period of continued development of the PFC may render it especially vulnerable to environmental insults that impact PFC function in adulthood. Experimentation with alcohol typically begins during adolescence when binge-like consumption of large quantities is common. In the present study, we investigated the effects of repeated cycles of adolescent intermittent ethanol (AIE) exposure (postnatal days 28-42) by vapor inhalation on different aspects of executive functioning in the adult rat. In an operant set-shifting task, AIE-exposed rats exhibited deficits in their ability to shift their response strategy when the rules of the task changed, indicating reduced behavioral flexibility. There were no differences in progressive ratio response for the reinforcer suggesting that AIE did not alter reinforcer motivation. Examination of performance on the elevated plus maze under conditions designed to minimize stress revealed that AIE exposure enhanced the number of entries into the open arms, which may reflect either reduced anxiety and/or disinhibition of exploratory-like behavior. In rats that trained to self-administer ethanol in an operant paradigm, AIE increased resistance to extinction of ethanol-seeking behavior. This resistance to extinction was reversed by positive allosteric modulation of mGluR5 during extinction training, an effect that is thought to reflect promotion of extinction learning mechanisms within the medial PFC. Consistent with this, CDPPB was also observed to reverse the deficits in behavioral flexibility. Finally, diffusion tensor imaging with multivariate analysis of 32 brain areas revealed that while there were no differences in the total brain volume, the volume of

  5. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production.

    PubMed

    Khan, Abdul Quaiyoom; Nafees, Sana; Sultana, Sarwat

    2011-01-11

    Oxidative stress and inflammation are two major etiological factors that are suggested to play key roles in the development of ethanol induced liver injury. Release of proinflammatory cytokine like tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa-B (NFκ-B) may strongly intensify inflammation and cell damage. Additionally, reactive oxygen species (ROS) also exerts significant effect in this whole cell signaling machinery. The present study was designed to investigate the protective effects of perillyl alcohol (POH) on ethanol-induced acute liver injury in Wistar rats and its probable mechanism. We have successfully demonstrated that pre-treatment with POH, besides exerting antioxidant activity might be able to modulate TNF-α release and NFκ-B activation. Rats were divided into five groups and treated with ethanol or POH via an intragastric tube for one week. Control group was treated with vehicle, and ethanol treated group was given ethanol (5 g/kg body wt). Animal of treatment groups were pretreated with POH (50 & 100 mg/kg body wt) and have been given ethanol. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase and hepatic malondialdehyde were increased significantly by ethanol treatment. Ethanol administration decreased hepatic reduced glutathione content and various antioxidant enzymes activity. TNF-α production and NFκ-B activation was also found to be increased after ethanol administration. POH pre-treatment significantly ameliorates ethanol induced acute liver injury possibly by inhibition of lipid peroxidation, replenishment of endogenous enzymatic and non-enzymatic defense system, downregulation of TNF-α as well as NFκ-B.

  6. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats

    PubMed Central

    Das, Sujan C.; Yamamoto, Bryan K.; Hristov, Alexandar M.; Sari, Youssef

    2015-01-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol abuse. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1. PMID:26002627

  7. Establishment of steady-state metabolism of ethanol in perfused rat liver: the quantitative analysis using kinetic mechanism-based rate equations of alcohol dehydrogenase.

    PubMed

    Yao, Chung-Tay; Lai, Ching-Long; Hsieh, Hsiu-Shan; Chi, Chin-Wen; Yin, Shih-Jiun

    2010-09-01

    Alcohol dehydrogenase (ADH) catalyzes oxidation of ingested ethanol to acetaldehyde, the first step in hepatic metabolism. The purpose of this study was to establish an ex vivo rat liver perfusion system under defined and verified steady states with respect to the metabolites and the metabolic rates, and to quantitatively correlate the observed rates with simulations based on the kinetic mechanism-based rate equations of rat liver ADH. Class I ADH1 was isolated from male Sprague-Dawley rats and characterized by steady-state kinetics in the Krebs-Ringer perfusion buffer with supplements. Nonrecirculating liver perfusion with constant input of ethanol at near physiological hepatic blood flow rate was performed in situ. Ethanol and the related metabolites acetaldehyde, acetate, lactate, and pyruvate in perfusates were determined. Results of the initial velocity, product, and dead-end inhibition studies showed that rat ADH1 conformed to the Theorell-Chance Ordered Bi Bi mechanism. Steady-state metabolism of ethanol in the perfused liver maintained up to 3h as evidenced by the steady-state levels of ethanol and metabolites in the effluent, and the steady-state ethanol disappearance rates and acetate production rates. The changes of the metabolic rates were qualitatively and in general quantitatively correlated to the results from simulations with the kinetic rate equations of ADH1 under a wide range of ethanol, in the presence of competitive inhibitor 4-methylpyrazole and of uncompetitive inhibitor isobutyramide. Preliminary flux control analysis estimated that apparent C(ADH)(J) in the perfused liver may approximate 0.7 at constant infusion with 1-2 mM ethanol, suggesting that ADH plays a major but not the exclusive role in governing hepatic ethanol metabolism. The reported steady-state rat liver perfusion system may potentially be applicable to other drug or drug-ethanol interaction studies.

  8. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  9. Comparison of direct and indirect alcohol markers with PEth in blood and urine in alcohol dependent inpatients during detoxication.

    PubMed

    Winkler, M; Skopp, G; Alt, A; Miltner, E; Jochum, Th; Daenhardt, C; Sporkert, F; Gnann, H; Weinmann, W; Thierauf, A

    2013-07-01

    The importance of direct and indirect alcohol markers to evaluate alcohol consumption in clinical and forensic settings is increasingly recognized. While some markers are used to prove abstinence from ethanol, other markers are suitable for detection of alcohol misuse. Phosphatidyl ethanol (PEth) is ranked among the latter. There is only little information about the correlation between PEth and other currently used markers (ethyl glucuronide, ethyl sulfate, carbohydrate deficient transferrin, gamma-glutamyl transpeptidase, and methanol) and about their decline during detoxification. To get more information, 18 alcohol-dependent patients in withdrawal therapy were monitored for these parameters in blood and urine for up to 19 days. There was no correlation between the different markers. PEth showed a rapid decrease at the beginning of the intervention, a slow decline after the first few days, and could still be detected after 19 days of abstinence from ethanol. PMID:23274938

  10. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination.

    PubMed

    Hnaien, M; Lagarde, F; Jaffrezic-Renault, N

    2010-04-15

    A new conductometric biosensor has been developed for the determination of short chain primary aliphatic alcohols. The biosensor assembly was prepared through immobilization of alcohol oxidase from Hansenula sp. and bovine liver catalase in a photoreticulated poly(vinyl alcohol) membrane at the surface of interdigitated microelectrodes. The local conductivity increased rapidly after alcohol addition, reaching steady-state within 10 min. The sensitivity was maximal for methanol (0.394+/-0.004 microS microM(-1), n=5) and decreased by increasing the alcohol chain length. The response was linear up to 75 microM for methanol, 70 microM for ethanol and 65 microM for 1-propanol and limits of detection were 0.5 microM, 1 microM and 3 microM, respectively (S/N=3). No significant loss of the enzyme activities was observed after 3 months of storage at 4 degrees C in a 20mM phosphate buffer solution pH 7.2 (two or three measurements per week). After 4 months, 95% of the initial signal still remained. The biosensor response to ethanol was not significantly affected by acetic, lactic, ascorbic, malic, oxalic, citric, tartaric acids or glucose. The bi-enzymatic sensor was successfully applied to the determination of ethanol in different alcoholic beverages. PMID:20188912

  11. Physicochemical characterization of the human nail: solvent effects on the permeation of homologous alcohols.

    PubMed

    Walters, K A; Flynn, G L; Marvel, J R

    1985-11-01

    To assess how vehicles might influence permeation through human nail, the diffusion of homologous alcohols (methanol to decanol) administered as neat liquids through finger nail plate has been studied using in-vitro diffusion cell methods and compared with permeation data for the same compounds in aqueous media. Permeation rates of the homologous alcohols through lipid depleted nail plate have also been assessed and the influences of dimethylsulphoxide (DMSO) and isopropyl alcohol on permeation rates of methanol and hexanol have been examined. With the exception of methanol, permeability coefficients are uniformly about five-fold smaller when the alcohols are undiluted than when they are applied in water. Overall parallelism in the permeability profiles under these separate circumstances of application is an indication that the external concentrations of the alcohols themselves are a determinant of their permeation velocities through the nail plate matrix. The even separation of the profiles suggests a facilitating role of water within the nail matrix. Chloroform/methanol delipidization of the nail led to increased penetration rates of water, methanol, ethanol and butanol. On the other hand, it caused a six-fold decrease in the permeation rate of decanol. Application of methanol and hexanol in DMSO somewhat retards their rates of permeation. Isopropyl alcohol also slows the permeation rate of hexanol but has little influence on that of methanol. Thus it appears that solvents which tend to promote diffusion through the skin horny layer have little promise as accelerants of nail plate permeability.

  12. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  13. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  14. Methanol: a chemical Trojan horse as the root of the inscrutable U.

    PubMed

    Monte, Woodrow C

    2010-03-01

    Until 200 years ago, methanol was an extremely rare component of the human diet and is still rarely consumed in contemporary hunter and gatherer cultures. With the invention of canning in the 1800s, canned and bottled fruits and vegetables, whose methanol content greatly exceeds that of their fresh counterparts, became far more prevalent. The recent dietary introduction of aspartame, an artificial sweetener 11% methanol by weight, has also greatly increased methanol consumption. Moreover, methanol is a major component of cigarette smoke, known to be a causative agent of many diseases of civilization (DOC). Conversion to formaldehyde in organs other than the liver is the principal means by which methanol may cause disease. The known sites of class I alcohol dehydrogenase (ADH I), the only human enzyme capable of metabolizing methanol to formaldehyde, correspond to the sites of origin for many DOC. Variability in sensitivity to exogenous methanol consumption may be accounted for in part by the presence of aldehyde dehydrogenase sufficient to reduce the toxic effect of formaldehyde production in tissue through its conversion to the much less toxic formic acid. The consumption of small amounts of ethanol, which acts as a competitive inhibitor of methanol's conversion to formaldehyde by ADH I, may afford some individuals protection from DOC.

  15. Classification and determination of alcohol in gasoline using NIR spectroscopy and the successive projections algorithm for variable selection

    NASA Astrophysics Data System (ADS)

    Ouyang, Aiguo; Liu, Jun

    2013-02-01

    A methodology for the classification and determination of alcohol (methanol/ethanol) in gasoline using near-infrared reflectance spectrometry and variable selection was proposed. Methanol gasoline and ethanol gasoline were prepared in the laboratory and gasoline (93#) was acquired from a local gas station. Partial least squares (PLS) multivariate calibrations were used to predict methanol/ethanol content. Principal component analysis was used for spectrum classification, obtaining a desirable classification accuracy. Using this strategy, it was feasible to classify alcohol gasoline rapidly. Concerning the multivariate calibration models, the results show that PLS, successive projections algorithm (SPA)-PLS and genetic algorithm (GA)-PLS models are good for predicting methanol and ethanol contents in gasoline; the respective root-mean-square errors of prediction were 0.216 (PLS), 0.163 (SPA-PLS) and 0.210 v/v% (GA-PLS) for methanol gasoline, corresponding to 0.348, 0.235 and 0.203 for ethanol gasoline. The results obtained in this investigation suggest that the proposed methodology is a promising alternative for the determination of alcohol content in gasoline.

  16. Methanol test

    MedlinePlus

    ... sources of methanol in the body include fruits, vegetables, and diet drinks that contain aspartame. Methanol is ... eat or drink it in toxic amounts. Methanol poisoning mainly affects the digestive system, nervous system, and ...

  17. Determination of Ethanol in Alcohol Samples Using a Modular Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Sanford, Caryn L.; Mantooth, Brent A.; Jones, Bradley T.

    2001-09-01

    This paper describes an inexpensive modular Raman spectrometer for use in the undergraduate laboratory. An Ar+ ion laser operating at 105-mW is used as the source. A small, computer-controlled CCD spectrometer is used as the detector. The instrumental design is simple enough that students can readily assemble the components themselves, but they require assistance to align the optics. Because of the samples chosen, no sample preparation is necessary. The analytical performance of the instrument was evaluated by determining the ethanol content in vodka, gin, Everclear, rum, and whiskey .

  18. Enhanced PDE4B expression augments LPS-inducible TNF expression in ethanol-primed monocytes: relevance to alcoholic liver disease.

    PubMed

    Gobejishvili, Leila; Barve, Shirish; Joshi-Barve, Swati; McClain, Craig

    2008-10-01

    Increased plasma and hepatic TNF-alpha expression is well documented in patients with alcoholic hepatitis and is implicated in the pathogenesis of alcoholic liver disease. We have previously shown that monocytes from patients with alcoholic hepatitis show increased constitutive and LPS-induced NF-kappaB activation and TNF-alpha production. Our recent studies showed that chronic ethanol exposure significantly decreased cellular cAMP levels in both LPS-stimulated and unstimulated monocytes and Kupffer cells, leading to an increase in LPS-inducible TNF-alpha production by affecting NF-kappaB activation and induction of TNF mRNA expression. Accordingly, the mechanisms underlying this ethanol-induced decrease in cellular cAMP leading to an increase in TNF expression were examined in monocytes/macrophages. In this study, chronic ethanol exposure was observed to significantly increase LPS-inducible expression of cAMP-specific phosphodiesterase (PDE)4B that degrades cellular cAMP. Increased PDE4B expression was associated with enhanced NF-kappaB activation and transcriptional activity and subsequent priming of monocytes/macrophages leading to enhanced LPS-inducible TNF-alpha production. Selective inhibition of PDE4 by rolipram abrogated LPS-mediated TNF-alpha expression at both protein and mRNA levels in control and ethanol-treated cells. Notably, PDE4 inhibition did not affect LPS-inducible NF-kappaB activation but significantly decreased NF-kappaB transcriptional activity. These findings strongly support the pathogenic role of PDE4B in the ethanol-mediated priming of monocytes/macrophages and increased LPS-inducible TNF production and the subsequent development of alcoholic liver disease (ALD). Since enhanced TNF expression plays a significant role in the evolution of clinical and experimental ALD, its downregulation via selective PDE4B inhibitors could constitute a novel therapeutic approach in the treatment of ALD. PMID:18687753

  19. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  20. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    PubMed Central

    2011-01-01

    Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with

  1. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    PubMed

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  2. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    PubMed

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  3. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours.

  4. Effect of chronic ethanol ingestion on the metabolism of copper, iron, manganese, selenium, and zinc in an animal model of alcoholic cardiomyopathy

    SciTech Connect

    Bogden, J.D.; Al-Rabiai, S.; Gilani, S.H.

    1984-01-01

    Alcoholic cardiomyopathy (AC) is one of the diseases caused by alcohol abuse, and there has been considerable debate about the possibility that nutritional factors may be important in the etiology of AC. In addition, there is evidence that ethanol may affect the metabolism of trace elements. The purpose of this investigation was to determine if chronic ethanol administration produces changes in the metabolism of the essential metals copper, iron, manganese, zinc, and selenium using an animal model of AC. Eighteen male Sprague-Dawley rats were divided into three groups; an ad libitum control group (AL), a pair-fed control group (PF), and an ethanol-dosed group (ETOH). The latter group received gradually increasing concentrations (5-25%) of ethanol in the drinking water for 15 wk. Food intake was monitored and urine and feces collected for a 4-d period during the study to determine ethanol effects on trace-element balance. Growth of both the PF and ETOH animals was inhibited. Ethanol produced substantial increases in liver manganese and decreases in liver copper and zinc. Metal concentrations in heart and concentrations in other tissues studied (spleen, testes, brain, bone, kidney, and muscle) did not differ significantly among the groups, except for testes selenium and kidney zinc. Reduced food intake and ethanol ingestion were associated with a reduced percentage of ingested selenium excreted in the urine. Deficiencies of copper, iron, manganese, selenium, and zinc in myocardial tissue are not likely to be involved in the pathogenesis of AC in the rat. 38 references, 1 figure, 4 tables.

  5. Future of alcohol fuels programs in Brasil

    NASA Astrophysics Data System (ADS)

    Carvalho, A. V., Jr.; Rechtschaffen, E.; Goldstein, L., Jr.

    An updating is given of the Brazilian National Alcohol Program's production and utilization achievements to date in the substitution of ethanol and methanol for imported oil products. A series of Eucalyptus forestry and processing-industry projections are made for fuel output and jobs creation that may be expected by the year 2000. With few exceptions, methanol produced from wood grown on poorer soils than can now be used for sugarcane substitute for oil products and result in jobs creation several orders of magnitude higher than petroleum fuels.

  6. Nafion/PTFE composite membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Li; Yu, T. Leon; Huang, Li-Ning; Chen, Li-Chung; Shen, Kun-Sheng; Jung, Guo-Bin

    Using dynamic light scattering and scanning electron microscope (SEM), it is shown that a high-carbon-number alcohol/water, i.e., 2-propanol/water, mixed solvent is more effective than low-carbon-number alcohol/water, i.e., ethanol/water and methanol/water, mixed solvents in dispersing Nafion molecules. Thus, it is a better solvent for the preparation of Nafion/PTFE (poly(tetrafluoroethylene)) composite membranes. The performance of direct methanol fuel cells (DMFCs) with a Nafion/PTFE composite membrane, which was prepared in-house, a commercial Nafion-117 membrane, or a commercial Nafion-112 membrane were investigated by feeding various concentrations, i.e., 2-5 M, of methanol to the anode. The Nafion/PTFE composite membrane gave a better DMFC performance than that obtained with Nafion-117 or Nafion-112 membranes. Using a DMFC model and varying the methanol concentration at the anode, cell voltage data were analyzed with respect to methanol concentration and cell current. The results indicate that inserting porous PTFE into Nafion polymer causes a reduction not only in methanol diffusion cross-over but also in the electro-osmosis of methanol cross-over in the membrane.

  7. Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes

    NASA Astrophysics Data System (ADS)

    Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E.

    1999-08-01

    The explosion or burning of methanol, ethanol, n-propanol, and isopropanol in large small-necked bottles when ignited with a match has been studied with respect to the nature of the alcohol, temperature, concentration dilutions with water, oxygen concentration, plastic versus glass bottles, and salts added for color. The various effects are explained in terms of vapor pressures. Safety guidelines are emphasized.

  8. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  9. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  10. Comparative exergy analysis of direct alcohol fuel cells using fuel mixtures

    NASA Astrophysics Data System (ADS)

    Leo, Teresa J.; Raso, Miguel A.; Navarro, Emilio; Sánchez-de-la-Blanca, Emilia

    Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptional among all other types of fuel as is the only chemical fuel in renewable supply. The aim of this study is to investigate the possibility of using direct alcohol fuel cells fed with alcohol mixtures. For this purpose, a comparative exergy analysis of a direct alcohol fuel cell fed with alcohol mixtures against the same fuel cell fed with single alcohols is performed. The exergetic efficiency and the exergy loss and destruction are calculated and compared in each case. When alcohol mixtures are fed to the fuel cell, the contribution of each fuel to the fuel cell performance is weighted attending to their relative proportion in the aqueous solution. The optimum alcohol composition for methanol/ethanol mixtures has been determined.

  11. Excretion of low-molecular weight volatile substances in human breath: focus on endogenous ethanol.

    PubMed

    Jones, A W

    1985-01-01

    This paper describes a gas chromatographic method suitable for the analysis of low-molecular endogenous volatiles in human breath. The use of an on-column gas sampling device allowed serial determinations at 10-min intervals. With a flame ionization detector and Porapak Q as stationary phase, the four major endogenous breath volatiles were methanol, ethanol, acetone, and isoprene (2-methyl-1,3-butadiene). These same compounds were present in the breath of healthy individuals and abstinent alcoholics. In 10 healthy men, the breath concentration of endogenous ethanol, methanol, and acetone ranged from 0.07 to 0.39 microgram/L, 0.21 to 0.07 microgram/L, and 0.57 to 4.01 micrograms/L, respectively. When a man drank 5 g of exogenous ethanol, the blood concentration increased 200 times above the endogenous level. This small dose of ethanol was eliminated with a half-life of 16 min.

  12. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    PubMed Central

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  13. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.

    PubMed

    Witthoff, Sabrina; Mühlroth, Alice; Marienhagen, Jan; Bott, Michael

    2013-11-01

    Methanol is considered an interesting carbon source in "bio-based" microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert (13)C-labeled methanol to (13)CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.

  14. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  15. Influence of apple cultivar and juice pasteurization on hard cider and eau-de-vie methanol content.

    PubMed

    Hang, Yong D; Woodams, Edward E

    2010-02-01

    Apple eau-de-vie is a traditional alcoholic beverage produced in France by distillation of fermented apple juice (hard cider). The current research was undertaken to determine the methanol content of hard cider and apple eau-de-vie made from four apple cultivars grown in the Finger Lakes region of New York State. The methanol concentration of hard cider varied from 0.037% to approximately 0.091%, and the methanol content of apple eau-de-vie ranged from below 200 mg to more than 400 mg/100mL of 40% ethanol. The United States legal limit of methanol for fruit brandy is 0.35% by volume or 280 mg/100mL of 40% ethanol. Of the four apple cultivars examined, Crispin apples yielded significantly more methanol in hard cider and eau-de-vie than Empire, Jonagold or Pacific Rose apples. Pasteurization of Crispin apple juice prior to alcoholic fermentation significantly reduced the methanol content of hard cider and eau-de-vie.

  16. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    PubMed Central

    Alpat, Şenol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity. PMID:22315566

  17. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    PubMed Central

    Ohta, K; Beall, D S; Mejia, J P; Shanmugam, K T; Ingram, L O

    1991-01-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA). PMID:2059047

  18. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    PubMed

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  19. Different pituitary. beta. -endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism

    SciTech Connect

    Gianoulakis, C.G.; Beliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. )

    1989-01-01

    The purpose of the present studies was to investigate the activity of the adrenal gland and the pituitary {beta}-endorphin system in individuals from families with a 3 generation history of alcoholism, High Risk group, or from families without history of alcoholism, Low Risk group. On the day of testing, blood sample was taken at 9:00 a.m., then the subject drank a placebo drink or an ethanol solution. Additional blood samples were taken at 15, 45 and 120 minutes post-drink. Results indicated that individuals of the High Risk group had lower basal levels of {beta}-endorphin like immunoreactivity ({beta}-EPLIR) than individuals of the Low Risk group. The dose of 0.5 g ethanol/kg B.Wt. induced an induce an increase in the plasma content of {beta}-EPLIR of the High Risk group, but not of the Low Risk group. In the Low Risk group ethanol did not induce an increase above the 9:00 a.m. levels, however, it attenuated the {beta}-endorphin decrease overtime, observed following the placebo drink. Analysis of {beta}-endorphin-like peptides in the plasma of the High Risk group, with Sephadex G-75 chromatography indicated that the major component of the plasma {beta}-EPLIR was {beta}-lipotropin. Plasma cortisol levels, following ethanol intake, presented a small increase in the High Risk group but not in the Low Risk group.

  20. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  1. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  2. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  3. Gene-specific of endocannabinoid receptor 1 (cnr1a) by ethanol probably leads to the development of fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes) embryogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental ethanol exposure is able to induce Fetal Alcohol Spectrum Disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes). This study investigated possible differential expression of cannabinoid receptor (cnr) mRNAs during Japanese rice fish embryogenesis and variability to ethanol-...

  4. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    PubMed

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism.

  5. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  6. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle

    PubMed Central

    Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.

    2014-01-01

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  7. Comparison of dehydroepiandrosterone (DHEA) and pregnanolone with existing pharmacotherapies for alcohol abuse on ethanol- and food-maintained responding in male rats

    PubMed Central

    Hulin, Mary W.; Lawrence, Michelle N.; Amato, Russell J.; Weed, Peter F.; Winsauer, Peter J.

    2015-01-01

    The present study compared two putative pharmacotherapies for alcohol abuse and dependence, dehydroepiandrosterone (DHEA) and pregnanolone, with two Food and Drug Administration (FDA)-approved pharmacotherapies, naltrexone and acamprosate. Experiment 1 assessed the effects of different doses of DHEA, pregnanolone, naltrexone, and acamprosate on both ethanol- and food-maintained responding under a multiple fixed-ratio (FR)-10 FR-20 schedule, respectively. Experiment 2 assessed the effects of different mean intervals of food presentation on responding for ethanol under an FR-10 variable-interval (VI) schedule, whereas Experiment 3 assessed the effects of a single dose of each drug under a FR-10 VI-80 schedule. In Experiment 1, all four drugs dose-dependently decreased response rate for both food and ethanol, although differences in the rate-decreasing effects were apparent among the drugs. DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding, whereas the reverse was true for naltrexone. Acamprosate decreased responding for both reinforcers with equal potency. In Experiment 2, different mean intervals of food presentation significantly affected the number of food reinforcers obtained per session; however, changes in the number of food reinforcements did not significantly affect responding for ethanol. Under the FR-10 VI-80 schedule in Experiment 3, only naltrexone significantly decreased both the dose of alcohol presented and blood ethanol concentration (BEC). Acamprosate and pregnanolone had no significant effects on any of the dependent measures, whereas DHEA significantly decreased BEC, but did not significantly decrease response rate or the dose presented. In summary, DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding under a multiple FR-10 FR-20 schedule, and were more selective for decreasing ethanol self-administration than either naltrexone or

  8. Comparison of dehydroepiandrosterone (DHEA) and pregnanolone with existing pharmacotherapies for alcohol abuse on ethanol- and food-maintained responding in male rats.

    PubMed

    Hulin, Mary W; Lawrence, Michelle N; Amato, Russell J; Weed, Peter F; Winsauer, Peter J

    2015-03-01

    The present study compared two putative pharmacotherapies for alcohol abuse and dependence, dehydroepiandrosterone (DHEA) and pregnanolone, with two Food and Drug Administration (FDA)-approved pharmacotherapies, naltrexone and acamprosate. Experiment 1 assessed the effects of different doses of DHEA, pregnanolone, naltrexone, and acamprosate on both ethanol- and food-maintained responding under a multiple fixed-ratio (FR)-10 FR-20 schedule, respectively. Experiment 2 assessed the effects of different mean intervals of food presentation on responding for ethanol under a FR-10 variable-interval (VI) schedule, whereas Experiment 3 assessed the effects of a single dose of each drug under a FR-10 VI-80 schedule. In Experiment 1, all four drugs dose-dependently decreased response rate for both food and ethanol, although differences in the rate-decreasing effects were apparent among the drugs. DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding, whereas the reverse was true for naltrexone. Acamprosate decreased responding for both reinforcers with equal potency. In Experiment 2, different mean intervals of food presentation significantly affected the number of food reinforcers obtained per session; however, changes in the number of food reinforcements did not significantly affect responding for ethanol. Under the FR-10 VI-80 schedule in Experiment 3, only naltrexone significantly decreased both the dose of alcohol presented and blood ethanol concentration (BEC). Acamprosate and pregnanolone had no significant effects on any of the dependent measures, whereas DHEA significantly decreased BEC, but did not significantly decrease response rate or the dose presented. In summary, DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding under a multiple FR-10 FR-20 schedule, and were more selective for decreasing ethanol self-administration than either naltrexone or

  9. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  10. Urinary excretion of methanol and 5-hydroxytryptophol as biochemical markers of recent drinking in the hangover state.

    PubMed

    Bendtsen, P; Jones, A W; Helander, A

    1998-01-01

    Twenty healthy social drinkers (9 women and 11 men) drank either 50 g of ethanol (mean intake 0.75 g/kg) or 80 g (mean 1.07 g/kg) according to choice as white wine or export beer in the evening over 2 h with a meal. After the end of drinking, at bedtime, in the following morning after waking-up, and on two further occasions during the morning and early afternoon, breath-alcohol tests were performed and samples of urine were collected for analysis of ethanol and methanol and the 5-hydroxytryptophol (5-HTOL) to 5-hydroxyindol-3-ylacetic acid (5-HIAA) ratio. The participants were also asked to quantify the intensity of hangover symptoms (headache, nausea, anxiety, drowsiness, fatigue, muscle aches, vertigo) on a scale from 0 (no symptoms) to 5 (severe symptoms). The first morning urine void collected 6-11 h after bedtime as a rule contained measurable amounts of ethanol, being 0.09 +/- 0.03 g/l (mean +/- SD) after 50 g and 0.38 +/- 0.1 g/l after 80 g ethanol. The corresponding breath-alcohol concentrations were zero, except for three individuals who registered 0.01-0.09g/l. Ethanol was not measurable in urine samples collected later in the morning and early afternoon. The peak urinary methanol occurred in the first morning void, when the mean concentration after 80 g ethanol was approximately 6-fold higher than pre-drinking values. This compares with a approximately 50-fold increase for the 5-HTOL/5-HIAA ratio in the first morning void. Both methanol and the 5-HTOL/5-HIAA ratio remained elevated above pre-drinking baseline values in the second and sometimes even the third morning voids. Most subjects experienced only mild hangover symptoms after drinking 50 g ethanol (mean score 2.4 +/- 2.6), but the scores were significantly higher after drinking 80 g (7.8 +/- 7.1). The most common symptoms were headache, drowsiness, and fatigue. A highly significant correlation (r = 0.62-0.75, P <0.01) was found between the presence of headache, nausea, and vertigo and the urinary

  11. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  12. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  13. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  14. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  15. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  16. Effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male, alcohol-preferring rats.

    PubMed

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef

    2015-06-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior.

  17. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  18. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  19. The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania.

    PubMed

    Song; Pratsinis

    2000-11-15

    Bimodally porous titania powders were made by hydrolysis of titanium tetraisopropoxide (TTIP) dissolved in various alcohols (methanol, ethanol, isopropanol, and sec-butanol). The specific surface area (SSA) of the powders dried at 150 degrees C ranged from 332 to 624 m(2)/g as determined by nitrogen adsorption. At excess alcohol concentration, the SSA of the dried powders decreased in the order of sec-butanol, iso-propanol, ethanol, and methanol at a constant alcohol/TTIP molar ratio. The pore size distribution was bimodal with fine intraparticle pore diameters at 1-6 nm and larger interparticle pore diameters at 30-120 nm as determined by nitrogen adsorption isotherms. The average intraparticle pore diameter decreased with increasing alcohol concentration for methanol and ethanol, while it was rather constant at 3.3 nm, irrespective of alcohol concentration for iso-propanol and sec-butanol. The evolution of particle phase composition was determined by X-ray diffraction ranging from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature and to a lesser extent on the type and concentration of alcohols. Copyright 2000 Academic Press. PMID:11049679

  20. Removal of isopropyl alcohol and methanol in ultrapure water production system using a 185 nm ultraviolet and ion exchange system.

    PubMed

    Choi, Jeongyun; Kim, Jong-Oh; Chung, Jinwook

    2016-08-01

    The oxidation of low-molecular-weight (LMW) compounds, including isopropyl alcohol (IPA) and methanol in ultrapure water (UPW) production system was evaluated using the continuously operating 185 nm total organic carbon (TOC) reduction UV and ion exchange system. The initial concentration of compounds was in the range of tens of ppb which was the general feed condition of UV system located after 2 pass reverse osmosis (RO) in the UPW production system. UV irradiation transformed the compounds to less oxidative products that were ultimately converted to CO2. The ion exchange system then removed carboxyl-containing organic acids generated by UV oxidation. It means that the oxidation efficiency of organic compounds by UV irradiation can be accurately measured by the summation of the final product (CO2) and the by-product containing carboxyl functional group. The removal efficiency of LMW compounds decreased when either the initial TOC concentration increased or the UV intensity was reduced. Finally, the insertion of a baffle into the UV oxidation system was found to enhance solution turbulence and improve the oxidation efficiency. PMID:27183336

  1. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats.

    PubMed

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE+ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE+HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE+HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a "two-programming" hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is "the first programming", and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as "the second programming".

  2. Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol.

    PubMed

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2015-12-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (-)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  3. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    PubMed Central

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  4. Process for producing ethanol from syngas

    SciTech Connect

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  5. Methanol related deaths in Edirne.

    PubMed

    Azmak, Derya

    2006-01-01

    In this retrospective autopsy study, a detailed analysis of methanol related deaths in Trakya region of Turkey is presented and departmental autopsy records, toxicology and histopathology results are analyzed. We found that methanol poisonings comprise 2.83% of all forensic autopsies (n:18), 88.8% of the cases were male, most of the victims were aged between 41 and 45. Blood methanol concentrations range widely from 55 to 479 mg per 100ml. Ethyl alcohol was detected in 44.4% of the cases. Most of the cases died in hospital and were poisoned through the consumption of alcoholic beverages from illicit sources and colognes. It is important for physicians to be aware of methanol poisoning symptoms and for forensic pathologists to obtain samples for toxicology during autopsies. Some preventative strategies including to routine control of the stores, to prevent the production of illegal alcoholic beverages, etc. should be developed.

  6. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.

    PubMed

    Manda, Katrin; Gördes, Dirk; Mikolasch, Annett; Hammer, Elke; Schmidt, Enrico; Thurow, Kerstin; Schauer, Frieder

    2007-08-01

    Laccase-catalyzed reactions lead to oxidation of the substrate via a cation radical, which has been described to undergo proton addition to form a quinonoid derivative or nucleophilic attack by itself producing homomolecular dimers. In this study, for the substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide, we show that, besides the quinonoid form of substrate, all products formed are nonhomomolecular ones. Indeed, without addition of a reaction partner, heteromolecular products are formed from the quinonoid form of the laccase-substrate and the solvents water or methanol present in the incubation assay. Consequently, in laccase catalyzed syntheses performed in aqueous solutions or in the presence of methanol or other alcohols, undesirable heteromolecular coupling reactions between the laccase substrate and solvents must be taken into account. Additionally, it could be shown at the example of methanol and other alcohols that C-O-bound cross-coupling of dihydroxylated aromatic substances with the hydroxyl group of aliphatic alcohols can be catalyzed by fungal laccases.

  7. Effect of Alcohols and Their Interaction with Ethylene on the Ripening of Epidermal Pericarp Discs of Tomato Fruit 1

    PubMed Central

    Saltveit, Mikal E.

    1989-01-01

    Ethanol concentrations that were induced in pericarp discs of mature-green tomato fruit (Lycopersicon esculentum Mill, cv Castlemart) either by anaerobic metabolism or by exposure to ethanol vapor inhibited ripening without increasing the rate of ion leakage. Inhibition of ripening (i.e. lycopene synthesis) of excised tomato pericarp tissue by ethanol vapor was reversed by increasing concentrations of the plant hormone ethylene. A Lineweaver-Burk plot indicated noncompetitive interaction between ethanol and ethylene. Methanol and n-propanol also inhibited lycopene synthesis without significantly increasing ion leakage. The similar inhibitory effects of methanol, ethanol, and n-propanol at concentrations which did not stimulate ion leakage, and the relationship between activity and lipophilia of the alcohols suggest that their mode of action was through disruption of membranes associated with ethylene action. PMID:16666729

  8. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-γ agonists.

    PubMed

    Kane, Cynthia J M; Phelan, Kevin D; Han, Lihong; Smith, Renea R; Xie, Jin; Douglas, James C; Drew, Paul D

    2011-06-01

    Fetal alcohol spectrum disorders (FASD) result from ethanol exposure to the developing fetus and are the most common cause of mental retardation in the United States. These disorders are characterized by a variety of neurodevelopmental and neurodegenerative anomalies which result in significant lifetime disabilities. Thus, novel therapies are required to limit the devastating consequences of FASD. Neuropathology associated with FASD can occur throughout the central nervous system (CNS), but is particularly well characterized in the developing cerebellum. Rodent models of FASD have previously demonstrated that both Purkinje cells and granule cells, which are the two major types of neurons in the cerebellum, are highly susceptible to the toxic effects of ethanol. The current studies demonstrate that ethanol decreases the viability of cultured cerebellar granule cells and microglial cells. Interestingly, microglia have dual functionality in the CNS. They provide trophic and protective support to neurons. However, they may also become pathologically activated and produce inflammatory molecules toxic to parenchymal cells including neurons. The findings in this study demonstrate that the peroxisome proliferator-activated receptor-γ agonists 15-deoxy-Δ12,15 prostaglandin J2 and pioglitazone protect cultured granule cells and microglia from the toxic effects of ethanol. Furthermore, investigations using a newly developed mouse model of FASD and stereological cell counting methods in the cerebellum elucidate that ethanol administration to neonates is toxic to both Purkinje cell neurons as well as microglia, and that in vivo administration of PPAR-γ agonists protects these cells. In composite, these studies suggest that PPAR-γ agonists may be effective in limiting ethanol-induced toxicity to the developing CNS.

  9. Alcohol Use and Older Adults

    MedlinePlus

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  10. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: implications for the prevention of fetal alcohol spectrum disorders.

    PubMed

    Dong, Jian; Sulik, Kathleen K; Chen, Shao-Yu

    2008-12-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is important in protection against oxidative stress. This study was designed to determine the role of Nrf2 signaling in transcriptional activation of detoxifying and antioxidant genes in an in vivo mouse fetal alcohol syndrome model. Maternal ethanol treatment was found to increase both Nrf2 protein levels and Nrf2-ARE binding in mouse embryos. It also resulted in a moderate increase in the mRNA expression of Nrf2 downstream target detoxifying and antioxidant genes as well as an increase in the expression of antioxidant proteins. Pretreatment with the Nrf2 inducer, 3H-1,2 dithiole-3-thione (D3T), significantly increased Nrf2 protein levels and Nrf2-ARE binding, and strongly induced the mRNA expression of Nrf2 downstream target genes. It also increased the expression of antioxidant proteins and the activities of the antioxidant enzymes. Additionally, D3T pretreatment resulted in a significant decrease in ethanol-induced reactive oxygen species generation and apoptosis in mouse embryos. These results demonstrate that Nrf2 signaling is involved in the induction of antioxidant response in ethanol-exposed embryos. In addition, the potency of D3T in inducing antioxidants as well as in diminishing ethanol-induced apoptosis suggests that further exploration of the antiteratogenic effect of this compound will be fruitful.

  11. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: Studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Bagchi, Biman

    2013-10-01

    In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.

  12. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats

    PubMed Central

    Hakami, Alqassem Y.; Hammad, Alaa M.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence. PMID:27199635

  13. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry.

    PubMed

    Jones, A W; Mårdh, G; Anggård, E

    1983-01-01

    We describe methods for the determination of endogenous ethanol in biological specimens from healthy abstaining subjects. The analytical methods were headspace gas chromatography (GC) for plasma samples and gas chromatography-mass spectometry (GC/MS) with deuterium labelled species 2H3-ethanol and 2H5-ethanol as internal standards for breath analysis. Ethanol in rebreathed air was about 10% higher than in directly analysed end-expired alveolar air. Known volumes of rebreathed air were passed through a liquid-N2 freeze trap and the volatile constituents of breath were concentrated prior to analysis by GC or GC/MS. Besides endogenous ethanol, peaks were seen on the chromatograms for methanol, acetone and acetaldehyde as well as several as yet unidentified substances. The endogenous alcohols ethanol and methanol were confirmed from their mass chromatograms and the GC/MS profile also indicated the presence of endogenous propan-1-ol. The concentration of endogenous ethanol in plasma showed wide inter-subject variations ranging from below detection limits to 1.6 micrograms/ml (34.8 mumol/l) and with mean +/- SD of 0.39 +/- 0.45 micrograms/ml (8.5 +/- 9.8 mumol/l). We aim to characterise further the role of endogenous ethanol with the main focus on dynamic aspects such as the rate of formation and turnover.

  14. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation.

    PubMed

    Mantha, Katarzyna; Laufer, Benjamin I; Singh, Shiva M

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.

  15. Alcohol Fuels Program technical review, Spring 1984

    SciTech Connect

    Not Available

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  16. Fumigation of Alcohol in a Light Duty Automotive Diesel Engine

    NASA Technical Reports Server (NTRS)

    Broukhiyan, E. M. H.; Lestz, S. S.

    1981-01-01

    A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.

  17. Energy and precious fuels requirements of fuel alcohol production. Volume 1

    SciTech Connect

    Weinblatt, H.; Lawrence, M.F.; Jenkins, D.

    1982-12-01

    In this study, energy requirements for producing alcohol fuels are estimated and are compared to the energy content of the alcohol produced. The comparisons are developed for three alcohol production alternatives: ethanol from grain, methanol from cellulose, and methanol from coal. In the analysis, alcohol fuel and all nonrenewable fuels are valued on the basis of their higher heating value (in Btu), while byproducts and grain and cellulose feedstocks are valued on the basis of the effect their production would have on the consumption of nonrenewable fuels. The effects of changes in agricultural production were analyzed on the basis of their effects on overall agricultural energy consumption (not on average energy consumption associated with present production). All three alcohol production alternatives were found to be effective means of increasing supplies of liquid fuels. The cellulose-to-methanol alternative, however, produces more energy than it consumes. (The favorable energy balance for this feedstock results largely from the use of cellulose as a boiler fuel as well as a feedstock.) The grain-to-ethanol alternative yields a slightly negative energy balance, while the coal-to-methanol alternative (which uses a nonrenewable fuel as both feedstock and boiler fuel) results in a substantially negative energy balance. The report is presented in four volumes. Volume I (NASA CR-168090) contains the main body of the report, and the other three volumes contain appendices.

  18. Development of an Oral Operant Nicotine/Ethanol Co-Use Model in Alcohol-Preferring (P) Rats

    PubMed Central

    Hauser, Sheketha R.; Katner, Simon N.; Deehan, Gerald A.; Ding, Zheng-Ming; Toalston, Jamie E.; Scott, Briana J.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.

    2012-01-01

    Background Alcohol abuse is frequently associated with nicotine use. The current experiments were conducted to establish an oral operant ethanol + nicotine (EtOH + Nic) co-use model, and to characterize some aspects of EtOH + Nic co-use. Methods: Rats were allowed to choose between EtOH alone or EtOH + Nic solutions. Additionally, P rats were allowed to concurrently self-administer 3 distinct EtOH solutions (10, 20, and 30%) with varying amounts of nicotine (0.07, 0.14, or 0.21 mg/ml) under operant conditions. P rats were also allowed to concurrently self-administer 2 distinct amounts of nicotine (0.07 and 0.14 mg/ml) added to saccharin (0.025%) solutions. Results During acquisition, P rats responded for the EtOH + Nic solutions at the same level as for EtOH alone, and responding for EtOH + Nic solutions was present throughout all drinking conditions. P rats also readily maintained stable self-administration behaviors for Nic + Sacc solutions. The results demonstrated that P rats readily acquired and maintained stable self-administration behaviors for EtOH + 0.07 and EtOH + 0.14 mg/ml Nic solutions. Self-administration of EtOH+ 0.21 mg/ml Nic was established in only 50% of the subjects. P rats readily expressed seeking behaviors for the EtOH + Nic solutions, and reacquired EtOH + Nic self-administration during relapse testing. In addition, tailblood samples indicated that EtOH + Nic co-use resulted in pharmacologically relevant levels of both EtOH and Nic in the blood. Discussion Overall, the results indicate that P rats readily consume EtOH + Nic solutions concurrently in the presence of EtOH alone, express drug-seeking behaviors, and will concurrently consume physiologically relevant levels of both drugs. These results support the idea that this oral operant EtOH + Nic co-use model would be suitable for studying the development of co-abuse and the consequences of long-term chronic co-abuse. PMID:22486609

  19. Early ethanol and water consumption: accumulating experience differentially regulates drinking pattern and bout parameters in male alcohol preferring (P) vs. Wistar and Sprague Dawley rats.

    PubMed

    Azarov, Alexey V; Woodward, Donald J

    2014-01-17

    Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different genetic backgrounds, vs. features that are unique to each. Under sole-fluid conditions P, Wistar and SD rats all consumed water at a high initial rate followed by a slow maintenance phase, but 10E - in a distinctly different step-like pattern of evenly distributed bouts. During choice period, 10E vs. water patterns for P rat appeared as an overlap of sole-fluid patterns. The SD rat choice patterns resembled sole-fluid patterns but were less regular. Choice patterns in Wistar differed from both P and SD rats, by consisting of intermixed small frequent episodes of drinking both 10E and water. Wistar and SD rats increased choice ethanol intake by elevating the number of bouts. A key finding was that P rat increased choice ethanol intake through a gradual increase of the bout size and duration, but kept bout number constant. This supports the hypothesis that genetic selection modifies microbehavioral machinery controlling drinking bout initiation, duration, and other pattern features. Precision analysis of drinking patterns and bouts allows differentiation between genetic lines, and provides a venue for study of localized circuit and transmitter influences mediating mesolimbic control over ethanol consumption.

  20. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  1. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    SciTech Connect

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH.

  2. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  3. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

    PubMed

    Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

    2014-02-25

    The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

  4. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  5. The effect of ethanol on the formation of N2-ethylidene-dG adducts in mice: implications for alcohol-related carcinogenicity of the oral cavity and esophagus.

    PubMed

    Yu, Hsu-Sheng; Oyama, Tsunehiro; Matsuda, Tomonari; Isse, Toyohi; Yamaguchi, Tetsunosuke; Tanaka, Masayuki; Tsuji, Mayumi; Kawamoto, Toshihiro

    2012-05-01

    The present study aimed to experimentally confirm that long-term alcohol drinking causes a high risk of oral and esophageal cancer in aldehyde dehydrogenase 2 (ALDH2)-deficient individuals. Aldh2 knockout mice, an animal model of ALDH2-deficiency, were treated with 8% ethanol for 14 months. Levels of acetaldehyde-derived DNA adducts were increased in esophagus, tongue and submandibular gland. Our finding that a lack of Aldh2 leads to more DNA damage after chronic ethanol treatment in mice supports epidemiological findings on the carcinogenicity of alcohol in ALDH2-deficient individuals who drink chronically. PMID:22416850

  6. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production.

    PubMed

    Yuan, Yongbo; Bi, Changhao; Nicolaou, Sergios A; Zingaro, Kyle A; Ralston, Matthew; Papoutsakis, Eleftherios T

    2014-10-01

    A major challenge in producing chemicals and biofuels is to increase the tolerance of the host organism to toxic products or byproducts. An Escherichia coli strain with superior ethanol and more generally alcohol tolerance was identified by screening a library constructed by randomly integrating Lactobacillus plantarum genomic DNA fragments into the E. coli chromosome via Cre-lox recombination. Sequencing identified the inserted DNA fragment as the murA2 gene and its upstream intergenic 973-bp sequence, both coded on the negative genomic DNA strand. Overexpression of this murA2 gene and its upstream 973-bp sequence significantly enhanced ethanol tolerance in both E. coli EC100 and wild type E. coli MG1655 strains by 4.1-fold and 2.0-fold compared to control strains, respectively. Tolerance to n-butanol and i-butanol in E. coli MG1655 was increased by 1.85-fold and 1.91-fold, respectively. We show that the intergenic 973-bp sequence contains a native promoter for the murA2 gene along with a long 5' UTR (286 nt) on the negative strand, while a noncoding, small RNA, named MurA2S, is expressed off the positive strand. MurA2S is expressed in E. coli and may interact with murA2, but it does not affect murA2's ability to enhance alcohol tolerance in E. coli. Overexpression of murA2 with its upstream region in the ethanologenic E. coli KO11 strain significantly improved ethanol production in cultures that simulate the industrial Melle-Boinot fermentation process.

  7. Ethanol administration dampens the prolactin response to psychosocial stress exposure in sons of alcohol-dependent fathers.

    PubMed

    Zimmermann, Ulrich S; Buchmann, Arlette F; Spring, Constance; Uhr, Manfred; Holsboer, Florian; Wittchen, Hans-Ulrich

    2009-08-01

    Genetic predisposition and exposure to alcohol and stress increase the risk for alcoholism, possibly by forming a threefold interaction. This is suggested by various aspects of alcohol-induced stress response dampening in offspring of alcoholics. We tested whether such an interaction is also revealed by prolactin secretion, which is predominantly controlled by hypothalamic dopamine. Plasma prolactin was measured during four experimental days in 26 young males with a paternal history of alcoholism (PHA) and in 22 family history negative (FHN) controls. A public speaking stress paradigm was applied on the first 2 days, and a non-stress acoustic startle experiment on the others. Before the tests, subjects drank alcohol (0.6 g/kg) or placebo in a randomized, double-blind crossover design. During placebo experiments, prolactin levels significantly increased after stress, but not after startle, and did not differ between risk groups. Alcohol administration significantly increased prolactin before stress and during startle in both groups, did not alter stress-induced prolactin stimulation in FHN, but significantly attenuated the prolactin stress response in PHA subjects. The alcohol effects on prolactin, cortisol, and adrenocorticotropin stress response were positively interrelated with each other. These data confirm that alcohol specifically dampens the stress response in PHA but not FHN subjects. Since prolactin responses to stress alone and alcohol alone were normal in PHA, we conclude that this genetic effect is not related to altered physiology of the hypothalamic dopaminergic system, but to risk-group specific alcohol effects on hierarchically higher brain areas controlling the stress response in general. PMID:19243891

  8. The Quality of Alcohol Products in Vietnam and Its Implications for Public Health

    PubMed Central

    Lachenmeier, Dirk W.; Anh, Pham Thi Hoang; Popova, Svetlana; Rehm, Jürgen

    2009-01-01

    Four homemade (artisanally manufactured and unrecorded) and seven commercial (industrially manufactured and taxed) alcohol products from Vietnam were collected and chemically analyzed for toxicologically relevant substances. The majority of both types had alcohol contents between 30 and 40% vol. Two homemade samples contained significantly higher concentrations of 45 and 50% vol. In one of these homemade samples the labeled alcoholic strength was exceeded by nearly 20% vol. All other analyzed constituents of the samples (e.g., methanol, acetaldehyde, higher alcohols, esters, metals, anions) were found in concentrations that did not pose a threat to public health. A peculiarity was a homemade sample of alcohol with pickled snakes and scorpions that contained 77% vol of alcohol, allegedly used as traditional Chinese medicine. Based on this small sample, there is insufficient evidence to conclude that alcohol quality, beyond the effects of ethanol, has an influence on health in Vietnam. However, future research with larger samples is needed. PMID:19742208

  9. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOEpatents

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  10. Alcohol-mediated haemolysis in yeast.

    PubMed

    Shuster, Amir; Osherov, Nir; Rosenberg, Mel

    2004-12-01

    Although yeast are generally non-haemolytic, we have found that addition of alcohol vapour confers haemolytic properties on many strains of yeast and other fungi. We have called this phenomenon 'microbial alcohol-conferred haemolysis' (MACH). MACH is species- and strain-specific: whereas all six Candida tropicalis strains tested were haemolytic in the presence of ethanol, none among 10 C. glabrata strains tested exhibited this phenomenon. Among 27 C. albicans strains and 11 Saccharomyces cerevisiae strains tested, ethanol-mediated haemolysis was observed in 11 and 4 strains, respectively. Haemolysis is also dependent on the alcohol moiety: n-butanol and n-pentanol could also confer haemolysis, whereas methanol and 2-propanol did not. Haemolysis was found to be dependent on initial oxidation of the alcohol. Reduced haemolysis was observed in specific alcohol dehydrogenase mutants of both Aspergillus nidulans and S. cerevisiae. MACH was not observed during anaerobic growth, and was reduced in the presence of pararosaniline, an aldehyde scavenger. Results suggest that initial oxidation of the alcohol to the corresponding aldehyde is an essential step in the observed phenomenon.

  11. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase.

  12. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  13. Chemical Components of Noncommercial Alcohol Beverage Samples: A Study With the Viewpoint of Toxic Components in Mashhad, Iran

    PubMed Central

    Dadpour, Bita; Hedjazi, Arya; Ghorbani, Hamideh; Khosrojerdi, Hamid; Vaziri, Seyed Mohsen; Malek Zadeh, Haleh; Habibi Tamijani, Amir

    2016-01-01

    Background Iran has one of the lowest alcoholic beverage use rates in comparison with other countries, because it is legally forbidden and because of religious beliefs. Even so, unrecorded and noncommercial alcohol remains a considerable concern, which needs special attention. Objectives In the current research, we have studied the general composition of noncommercial alcohol samples to identify potentially toxic components in the context of the city of Mashhad in IR Iran. Patients and Methods Using a descriptive study, chemical composition records of alcohol samples obtained from Mashhad and its suburbs (from March 2013 to March 2014) were evaluated in terms of ethanol percentage and methanol percentage using gas chromatography. Likewise, the pH of the alcohol and the location of the sample were also considered. Some substances, such as inorganic elements, were not included because there was no information about these substances in the records. Results Of 877 reports of alcohol samples, more than 50% were obtained from Mashhad and the rest were from the suburbs. Of the reports, 57.5% were in the spring and summer, followed by 42.5% in the fall and winter. The mean (min-max) of ethanol percentage was 30.04% (0 - 98.4). In four cases, methanol was detected. The mean (min-max) of methanol percentage was 23% (4 - 95).The majority of the samples had an acidic pH. Conclusions The composition of unrecorded samples did not raise major toxicological concern beyond ethanol in alcohol products. However, concentration levels of methanol in some unrecorded alcohol samples made these samples detrimental for human consumption. PMID:27622171

  14. Catalyst for producing lower alcohols

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  15. Autophagy and ethanol neurotoxicity

    PubMed Central

    Luo, Jia

    2015-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  16. Ethanol production utilizing waste heat. Submission of initial information. Task 2. Market study for fuel alcohol and by-products

    SciTech Connect

    Hand, C.

    1982-01-01

    The two purposes of this report are to provide initial information on the markets for the ethanol and by-products from the Paducah ethanol plant, and to provide initial unit revenue estimates for project feasibility calculations. The body of the report provides information related to the former purpose. This section provides the initial estimates on unit product revenues. Several applications are feasible for each of the products; ethanol and the by-products of distillers' grains and CO/sub 2/. The most studied application of the ethanol is as a gasoline blend. That for the distillers' grains is for a bulk animal feed. Projections for 25 years of unit revenues for these two applications are provided. For initial product estimates, these serve as the unit revenues. These are initial, incomplete estimates only. Further refinement requires more detailed study of the conditions in the Paducah area and the specifics of plant output. In addition, no product revenue estimates are provided for the CO/sub 2/. Some studies indicate that these revenues can make a contribution to plant income. However, the market and revenue potential are very site-specific. Further analysis, of conditions in the Paducah area, is needed to assess the revenue potential from the CO/sub 2/. 5 references, 3 figures, 17 tables.

  17. SELECTIVE VULNERABILITY OF EMBRYONIC CELL POPULATIONS TO ETHANOL-INDUCED APOPTOSIS: IMPLICATIONS FOR ALCOHOL RELATED BIRTH DEFECTS AND NEURODEVELOPMENTAL DISORDER

    EPA Science Inventory

    The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...

  18. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to α4/6β3δ GABAA receptors

    PubMed Central

    Hanchar, H. Jacob; Chutsrinopkun, Panida; Meera, Pratap; Supavilai, Porntip; Sieghart, Werner; Wallner, Martin; Olsen, Richard W.

    2006-01-01

    Although GABAA receptors have long been implicated in mediating ethanol (EtOH) actions, receptors containing the “nonsynaptic” δ subunit only recently have been shown to be uniquely sensitive to EtOH. Here, we show that δ subunit-containing receptors bind the imidazo-benzodiazepines (BZs) flumazenil and Ro15-4513 with high affinity (Kd < 10 nM), contrary to the widely held belief that these receptors are insensitive to BZs. In immunopurified native cerebellar and recombinant δ subunit-containing receptors, binding of the alcohol antagonist [3H]Ro15-4513 is inhibited by low concentrations of EtOH (Ki ≈ 8 mM). Also, Ro15-4513 binding is inhibited by BZ-site ligands that have been shown to reverse the behavioral alcohol antagonism of Ro15-4513 (i.e., flumazenil, β-carbolinecarboxylate ethyl ester (β-CCE), and N-methyl-β-carboline-3-carboxamide (FG7142), but not including any classical BZ agonists like diazepam). Experiments that were designed to distinguish between a competitive and allosteric mechanism suggest that EtOH and Ro15-4513 occupy a mutually exclusive binding site. The fact that only Ro15-4513, but not flumazenil, can inhibit the EtOH effect, and that Ro15-4513 differs from flumazenil by only a single group in the molecule (an azido group at the C7 position of the BZ ring) suggest that this azido group in Ro15-4513 might be the area that overlaps with the alcohol-binding site. Our findings, combined with previous observations that Ro15-4513 is a behavioral alcohol antagonist, suggest that many of the behavioral effects of EtOH at relevant physiological concentrations are mediated by EtOH/Ro15-4513-sensitive GABAA receptors. PMID:16581914

  19. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    SciTech Connect

    Haghighi Poodeh, Saeid; Alhonen, Leena; Salonurmi, Tuire; Savolainen, Markku J.

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  20. Preparation and ethanol sensing properties of the superstructure SnO{sub 2}/ZnO composite via alcohol-assisted hydrothermal route

    SciTech Connect

    Jia, Xiaohua; Fan, Huiqing

    2010-10-15

    Self-assembled superstructure of SnO{sub 2}/ZnO composite was synthesized by using alcohol-assisted hydrothermal method gas sensing properties of the material were investigated by using a static test system. The structure and morphology of the products were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The diameter of the SnO{sub 2} nanorods was about 40 nm with a length of about 300 nm, SnO{sub 2} nanorods and ZnO nanosheets interconnect each other to form a superstructure. The gas sensing properties of superstructure SnO{sub 2}/ZnO composite with different content of ZnO were investigated. Furthermore, the superstructure SnO{sub 2}/ZnO composite sensor is characterized at different operating temperatures and its long-term stability in response to ethanol vapor is tested over a period of 3 months.

  1. Ethanol battle heats up over EPA rule, tax credit

    SciTech Connect

    Begley, R.

    1992-08-12

    The ongoing political battle over ethanol's role in federal clean fuels programs is heating up. The Senate passed an energy bill containing additional tax credits for ethanol, and the corn growers lobby last Wednesday called on the Administration to make a decision on the alcohol's place in reformulated gasoline by August 25. In late March, the Environment Protection Agency proposed a Clean Air Act reformulated gasoline oxygenate rule based on earlier negotiations that included the enthanol industry. The industry now says the rule, which is to take effect in 1995 in the nine cities with the worst ozone pollution, would restrict gasoline blended with ethanol due to strict volatility requirements. Four powerful senators wrote a letter to EPA Administrator WIlliam K. Reilly protesting ethanol's de facto exclusion from the clean fuels initiative, charging that the Clean Air Act is being used as a methanol mandate at the expense of ethanol'. The energy bill passed by the Senate July 30 includes an amendment by Sen. Tom Daschle (D. SD) to extend the tax exemption enjoyed ten percent by ethanol gasoline blends to lower concentrations.

  2. Characterization of reactive impurities in methanol, ethanol, and 2-propanol by monitoring the activities of added ionic probes with ion selective electrodes

    SciTech Connect

    Deshmukh, B.K.; Coetzee, J.F.

    1984-11-01

    The presence of reactive impurities compromises many important applications of solvents. It is shown that a wide variety of impurities can be detected and determined by adding such highly reactive probes as hydrogen, methoxide, copper(II), mercury(II), and fluoride ions and monitoring their activities over an appropriately wide range with the corresponding ion selective electrodes. The results for the alcohols show that typical reagent grades of these solvents contain amines at the 10/sup -5/ - 10/sup -4/ M (1-10 ppm) level as well as other reactive impurities. This approach is applicable to most polar solvents. It has the overriding merits that it detects impurities on the basis on their reactivities (rather than only their concentrations) and that its lower detection limit is self-adjusting in that it is lowest (most favorable) in the very solvents in which impurities are most harmful, i.e., relatively inert solvent. In such solvents, its lower detection limit can be much lower than that attainable with gas chromatography.

  3. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  4. Methanol poisoning

    MedlinePlus

    Wood alcohol poisoning ... number will let you talk to experts in poisoning. They will give you further instructions. This is ... should call if you have any questions about poisoning or poison prevention. You can call 24 hours ...

  5. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567