Science.gov

Sample records for alcohols structure-activity relationship

  1. Structure activity relationships of spiramycins.

    PubMed

    Omura, S; Sano, H; Sunazuka, T

    1985-07-01

    Sixty-six derivatives of spiramycin I and neospiramycin I were synthesized and evaluated by four parameters, MIC, affinity to ribosomes (ID50), therapeutic effect in mice and retention time in HPLC. Among the derivatives, 3,3'',4''-tri-O-propionyl- and 3,4''-di-O-acetyl-3''-O-butyrylspiramycin I showed the highest therapeutic effect which was superior to acetylspiramycin. Structure activity relationships of spiramycins are discussed.

  2. Peptide Bacteriocins--Structure Activity Relationships.

    PubMed

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here.

  3. Structure -activity relationships of PDE5 inhibitors.

    PubMed

    Eros, D; Szántai-Kis, Cs; Kiss, R; Kéri, Gy; Hegymegi-Barakonyi, B; Kövesdi, I; Orfi, L

    2008-01-01

    cGMP has a short-term effect on smooth muscle tone and a longer-term effect on responses to chronic drug treatment or proliferative signals. cGMP-Phosphodiesterase type 5 (PDE5) hydrolizes cGMP, and the result is smooth muscle contraction. PDE5 is a relatively novel therapeutic target of various diseases, such as erectile dysfunction and pulmonary hypertension. The most intensively examined and marketed PDE5 inhibitor was sildenafil (Viagra) but recently vardenafil (Levitra) and tadalafil (Cialis) were launched with beneficial ADME parameters and PDE5 selectivity. The increasing interest in PDE5 inhibition made it reasonable to collect the available inhibitory data from the scientific literature and set up a structure-activity relationship study. Chemical structures of 438 compounds and their cGMP-PDE5 inhibitory data (IC50) were collected from recently published articles. In this paper physiology, regulation and inhibition of PDE5 (and briefly other PDE-s) are discussed and inhibitors are tabulated by the core structures. Finally, a general QSAR model built from these data is presented. All data used in the QSAR study were summarized in a Supplement (for description please see the online version of the article).

  4. DEVELOPMENT OF STRUCTURE ACTIVITY RELATIONSHIPS FOR ASSESSING ECOLOGICAL RISKS

    EPA Science Inventory

    In the field of environmental toxicology, structure activity relationships (SARs) have developed as scientifically-credible tools for predicting the effects of chemicals when little or no empirical data are available.

  5. Quantitative structure-activity relationships for fluoroelastomer/chlorofluorocarbon systems

    SciTech Connect

    Paciorek, K.J.L.; Masuda, S.R.; Nakahara, J.H. ); Snyder, C.E. Jr.; Warner, W.M. )

    1991-12-01

    This paper reports on swell, tensile, and modulus data that were determined for a fluoroelastomer after exposure to a series of chlorofluorocarbon model fluids. Quantitative structure-activity relationships (QSAR) were developed for the swell as a function of the number of carbons and chlorines and for tensile strength as a function of carbon number and chlorine positions in the chlorofluorocarbons.

  6. Antiproliferative and Structure Activity Relationships of Amaryllidaceae Alkaloids.

    PubMed

    Cedrón, Juan C; Ravelo, Ángel G; León, Leticia G; Padrón, José M; Estévez-Braun, Ana

    2015-07-30

    The antiproliferative activity of a set of seven natural Amaryllidaceae alkaloids and 32 derivatives against four cancer cell lines (A2780, SW1573, T47-D and WiDr) was determined. The best antiproliferative activities were achieved with alkaloids derived from pancracine (2), haemanthamine (6) and haemantidine (7). For each skeleton, some structure-activity relationships were outlined.

  7. Research progress in structure-activity relationship of bioactive peptides.

    PubMed

    Li, Ying; Yu, Jianmei

    2015-02-01

    Bioactive peptides are specific protein fragments that have positive impact on health. They are important sources of new biomedicine, energy and high-performance materials. The beneficial effects of bioactive peptides are due to their antioxidant, antihypertensive, anticarcinogenic, antimicrobial, and immunomodulatory activities. The structure-activity relationship of bioactive peptides plays a significant role in the development of innovative and unconventional synthetic polymeric counterparts. It provides the basis of the stereospecific synthesis, transformation, and development of bioactive peptide products. This review covers the progress of studies in the structure-activity relationship of some bioactive peptides including antioxidant peptides, angiotensin-I-converting enzyme-inhibitory peptides, and anticarcinogenic peptides in the past decade.

  8. Structure-activity relationships of benzothiazole GPR35 antagonists.

    PubMed

    Abdalhameed, Manahil M; Zhao, Pingwei; Hurst, Dow P; Reggio, Patricia H; Abood, Mary E; Croatt, Mitchell P

    2017-02-01

    The first structure-activity relationships for a benzothiazole scaffold acting as an antagonist at GPR35 is presented. Analogues were designed based on a lead compound that was previously determined to have selective activity as a GPR35 antagonist. The synthetic route was modular in nature to independently explore the role of the middle and both ends of the scaffold. The activities of the analogues illustrate the importance of all three segments of the compound.

  9. Structure-activity relationships of benzothiazole GPR35 antagonists

    PubMed Central

    Abdalhameed, Manahil M.; Zhao, Pingwei; Hurst, Dow P.; Reggio, Patricia H.; Abood, Mary E.; Croatt, Mitchell P.

    2017-01-01

    The first structure-activity relationships for a benzothiazole scaffold acting as an antagonist at GPR35 is presented. Analogues were designed based on a lead compound that was previously determined to have selective activity as a GPR35 antagonist. The synthetic route was modular in nature to independently explore the role of the middle and both ends of the scaffold. The activities of the analogues illustrate the importance of all three segments of the compound. PMID:27989666

  10. Structure-activity relationship of crustacean peptide hormones.

    PubMed

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  11. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  12. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  13. Structure-Activity Relationship of Fluoroquinolones Against K. pneumoniae

    NASA Astrophysics Data System (ADS)

    Li, Xiao-hong; Zhang, Rui-zhou; Cheng, Xin-lu; Yang, Xiang-dong

    2007-04-01

    The structure-activity relationship of fluoroquinolones, which show anti-K. pneumoniae activity, was studied by using principal component analysis (PCA) and hierarchical cluster analysis (HCA). The PCA results showed that the lowest unoccupied molecular orbital energy, energy difference between the highest occupied and the lowest unoccupied molecular orbital, dipole moment, net atomic charge on atom I, molecular polarizability, partition coefficient and molecular refractivity of these compounds are responsible for the separation between high-activity and low-activity groups. The HCA results were similar to those obtained with PCA. By using the chemometric results, four synthetic compounds were analyzed through PCA and HCA, and three of them are proposed as active molecules against K. pneumoniae which is consistent with the results of clinical experiments. The methodologies of PCA and HCA provide a reliable rule for classifying new fluoroquinolones with anti-K. pneumoniae activity.

  14. Structure-activity relationship for the oxadiazole class of antibiotics.

    PubMed

    Spink, Edward; Ding, Derong; Peng, Zhihong; Boudreau, Marc A; Leemans, Erika; Lastochkin, Elena; Song, Wei; Lichtenwalter, Katerina; O'Daniel, Peter I; Testero, Sebastian A; Pi, Hualiang; Schroeder, Valerie A; Wolter, William R; Antunes, Nuno T; Suckow, Mark A; Vakulenko, Sergei; Chang, Mayland; Mobashery, Shahriar

    2015-02-12

    The structure-activity relationship (SAR) for the newly discovered oxadiazole class of antibiotics is described with evaluation of 120 derivatives of the lead structure. This class of antibiotics was discovered by in silico docking and scoring against the crystal structure of a penicillin-binding protein. They impair cell-wall biosynthesis and exhibit activities against the Gram-positive bacterium Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant and linezolid-resistant S. aureus. 5-(1H-Indol-5-yl)-3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole (antibiotic 75b) was efficacious in a mouse model of MRSA infection, exhibiting a long half-life, a high volume of distribution, and low clearance. This antibiotic is bactericidal and is orally bioavailable in mice. This class of antibiotics holds great promise in recourse against infections by MRSA.

  15. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  16. A structure-activity relationship study of ABCC2 inhibitors.

    PubMed

    Wissel, Gloria; Deng, Feng; Kudryavtsev, Pavel; Ghemtio, Leo; Wipf, Peter; Xhaard, Henri; Kidron, Heidi

    2017-02-07

    Multidrug resistance associated protein 2 (MRP2/ABCC2) is a membrane transport protein that can potentially affect the disposition of many substrate drugs and their metabolites. Recently, we studied the interaction of a library of 432 compounds with ABCC2, and the structure-activity relationship (SAR) of a subset of 64 compounds divided into four scaffolds (Wissel, G. et al., 2015. Bioorg Med Chem., 23(13), pp.3513-25). We have now expanded this test set by investigating 114 new compounds, of which 71 are representative of the previous four scaffolds and 43 compounds belong to a new scaffold. Interaction with ABCC2 was assessed by measuring the compounds effect on 5(6)-carboxy-2',7'-dichlorofluorescein transport in the vesicular transport assay. In line with our previous study, we observed that anionic charge is not essential for inhibition of ABCC2 transport, even though it often increases the inhibitory activity within the analogue series. Additionally, we found that halogen substitutions often increase the inhibitory activity. The results confirm the importance of structural features such as aromaticity and lipophilicity for ABCC2 inhibitory activity.

  17. Quantitative structure-activity relationship studies on nitrofuranyl antitubercular agents

    PubMed Central

    Hevener, Kirk E.; Ball, David M.; Buolamwini, John K.

    2008-01-01

    A series of nitrofuranylamide and related aromatic compounds displaying potent activity against M. tuberculosis has been investigated utilizing 3-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) techniques. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values against M. tuberculosis with the molecular structures of the active compounds. A training set of 95 active compounds was used to develop the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 15 compounds was used for the external validation. Different alignment and ionization rules were investigated as well as the effect of global molecular descriptors including lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR), on model predictivity. Models with greater than 70% predictive ability, as determined by external validation, and high internal validity (cross validated r2 > .5) have been developed. Incorporation of lipophilicity descriptors into the models had negligible effects on model predictivity. The models developed will be used to predict the activity of proposed new structures and advance the development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis agents. PMID:18701298

  18. Designing a Quantitative Structure-Activity Relationship for the ...

    EPA Pesticide Factsheets

    Toxicokinetic models serve a vital role in risk assessment by bridging the gap between chemical exposure and potentially toxic endpoints. While intrinsic metabolic clearance rates have a strong impact on toxicokinetics, limited data is available for environmentally relevant chemicals including nearly 8000 chemicals tested for in vitro bioactivity in the Tox21 program. To address this gap, a quantitative structure-activity relationship (QSAR) for intrinsic metabolic clearance rate was developed to offer reliable in silico predictions for a diverse array of chemicals. Models were constructed with curated in vitro assay data for both pharmaceutical-like chemicals (ChEMBL database) and environmentally relevant chemicals (ToxCast screening) from human liver microsomes (2176 from ChEMBL) and human hepatocytes (757 from ChEMBL and 332 from ToxCast). Due to variability in the experimental data, a binned approach was utilized to classify metabolic rates. Machine learning algorithms, such as random forest and k-nearest neighbor, were coupled with open source molecular descriptors and fingerprints to provide reasonable estimates of intrinsic metabolic clearance rates. Applicability domains defined the optimal chemical space for predictions, which covered environmental chemicals well. A reduced set of informative descriptors (including relative charge and lipophilicity) and a mixed training set of pharmaceuticals and environmentally relevant chemicals provided the best intr

  19. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation, and structure-activity relationship.

    PubMed

    Christensen, Mette K; Erichsen, Kamille D; Olesen, Uffe H; Tjørnelund, Jette; Fristrup, Peter; Thougaard, Annemette; Nielsen, Søren Jensby; Sehested, Maxwell; Jensen, Peter B; Loza, Einars; Kalvinsh, Ivars; Garten, Antje; Kiess, Wieland; Björkling, Fredrik

    2013-11-27

    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. By using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described, and the compounds are optimized. Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives, the new analogues exhibit an equally potent antiproliferative activity in vitro and comparable activity in vivo. The best performing compounds from these series showed subnanomolar antiproliferative activity toward a series of cancer cell lines (compound 15: IC50 0.025 and 0.33 nM, in A2780 (ovarian carcinoma) and MCF-7 (breast), respectively) and potent antitumor in vivo activity in well-tolerated doses in a xenograft model. In an A2780 xenograft mouse model with large tumors (500 mm(3)), compound 15 reduced the tumor volume to one-fifth of the starting volume at a dose of 3 mg/kg administered ip, bid, days 1-9. Thus, compounds found in this study compared favorably with compounds already in the clinic and warrant further investigation as promising lead molecules for the inhibition of NAMPT.

  20. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  1. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  2. Combination Chemistry: Structure-Activity Relationships of Novel Psychoactive Cannabinoids.

    PubMed

    Wiley, Jenny L; Marusich, Julie A; Thomas, Brian F

    2016-10-18

    Originally developed as research tools for use in structure-activity relationship studies, synthetic cannabinoids contributed to significant scientific advances in the cannabinoid field. Unfortunately, a subset of these compounds was diverted for recreational use beginning in the early 2000s. As these compounds were banned, they were replaced with additional synthetic cannabinoids with increasingly diverse chemical structures. This chapter focuses on integration of recent results with those covered in previous reviews. Whereas most of the early compounds were derived from the prototypic naphthoylindole JWH-018, currently popular synthetic cannabinoids include tetramethylcyclopropyl ketones and indazole-derived cannabinoids (e.g., AB-PINACA, AB-CHMINACA). Despite their structural differences, psychoactive synthetic cannabinoids bind with high affinity to CB1 receptors in the brain and, when tested, have been shown to activate these receptors and to produce a characteristic profile of effects, including suppression of locomotor activity, antinociception, hypothermia, and catalepsy, as well as Δ(9)-tetrahydrocannabinol (THC)-like discriminative stimulus effects in mice. When they have been tested, synthetic cannabinoids are often found to be more efficacious at activation of the CB1 receptor and more potent in vivo. Further, their chemical alteration by thermolysis during use and their uncertain stability and purity may result in exposure to degradants that differ from the parent compound contained in the original product. Consequently, while their intoxicant effects may be similar to those of THC, use of synthetic cannabinoids may be accompanied by unpredicted, and sometimes harmful, effects.

  3. Structure-activity relationship in cationic lipid mediated gene transfection.

    PubMed

    Niculescu-Duvaz, Dan; Heyes, James; Springer, Caroline J

    2003-07-01

    Non-viral synthetic vectors for gene delivery represent a safer alternative to viral vectors. Their main drawback is the low transfection efficiency, especially in vivo. Among the non-viral vectors currently in use, the cationic liposomes composed of cationic lipids are the most common. This review discusses the physicochemical properties of cationic lipids, the formation, macrostructure and specific parameters of the corresponding formulated liposomes, and the effect of all these parameters on transfection efficiency. The optimisation of liposomal vectors requires both the understanding of the biological variables involved in the transfection process, and the effect of the structural elements of the cationic lipids on these biological variables. The biological barriers relevant for in vitro and in vivo transfection are identified, and solutions to overcome them based on rational design of the cationic lipids are discussed. The review focuses on the relationship between the structure of the cationic lipid and the transfection activity. The structure is analysed in a modular manner. The hydrophobic domain, the cationic head group, the backbone that acts as a scaffold for the other domains, the linkers between backbone, hydrophobic domain and cationic head group, the polyethyleneglycol chains and the targeting moiety are identified as distinct elements of the cationic lipids used in gene therapy. The main chemical functionalities used to built these domains, as well as overall molecular features such as architecture and geometry, are presented. Studies of structure-activity relationships of each cationic lipid domain, including the authors', and the trends identified by these studies, help furthering the understanding of the mechanism governing the formation and behaviour of cationic liposomes in gene delivery, and therefore the rational design of new improved cationic lipids vectors capable of achieving clinical significance.

  4. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  5. Structure-Activity Relationship of Nerve-Highlighting Fluorophores

    PubMed Central

    Gibbs, Summer L.; Xie, Yang; Goodwill, Haley L.; Nasr, Khaled A.; Ashitate, Yoshitomo; Madigan, Victoria J.; Siclovan, Tiberiu M.; Zavodszky, Maria; Tan Hehir, Cristina A.; Frangioni, John V.

    2013-01-01

    Nerve damage is a major morbidity associated with numerous surgical interventions. Yet, nerve visualization continues to challenge even the most experienced surgeons. A nerve-specific fluorescent contrast agent, especially one with near-infrared (NIR) absorption and emission, would be of immediate benefit to patients and surgeons. Currently, there are only three classes of small molecule organic fluorophores that penetrate the blood nerve barrier and bind to nerve tissue when administered systemically. Of these three classes, the distyrylbenzenes (DSBs) are particularly attractive for further study. Although not presently in the NIR range, DSB fluorophores highlight all nerve tissue in mice, rats, and pigs after intravenous administration. The purpose of the current study was to define the pharmacophore responsible for nerve-specific uptake and retention, which would enable future molecules to be optimized for NIR optical properties. Structural analogs of the DSB class of small molecules were synthesized using combinatorial solid phase synthesis and commercially available building blocks, which yielded more than 200 unique DSB fluorophores. The nerve-specific properties of all DSB analogs were quantified using an ex vivo nerve-specific fluorescence assay on pig and human sciatic nerve. Results were used to perform quantitative structure-activity relationship (QSAR) modeling and to define the nerve-specific pharmacophore. All DSB analogs with positive ex vivo fluorescence were tested for in vivo nerve specificity in mice to assess the effect of biodistribution and clearance on nerve fluorescence signal. Two new DSB fluorophores with the highest nerve to muscle ratio were tested in pigs to confirm scalability. PMID:24039960

  6. Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Stout, Adam M; Mutka, Sarah C; Richards, Jane P; Rosenthal, Gary J

    2012-03-15

    The enzyme S-nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, gastrointestinal, and cardiovascular systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently in clinical development for acute asthma. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogs of N6022 focusing on carboxamide modifications on the pendant N-phenyl moiety. We have identified potent and novel GSNOR inhibitors that demonstrate efficacy in an ovalbumin (OVA) induced asthma model in mice.

  7. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    PubMed

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis.

  8. Structure-Activity Relationships of Agents Modifying Cholinergic Transmissions

    DTIC Science & Technology

    1983-09-01

    apparatus. .~."-t,,.•±.Lbiphenyl (4). Anhydrous ,\\LCl 3 "’..-7 ,, •.𔃾) ArtLh mixture of 10 mL of CS2 and 1.54 ; (0.01 ool) of Miphenyl. lcetyL...COo01). imeth:l Siyohen yl-4,4’-dicarboxy•late (6). Compound 5 (3 . jt •r"erin 75 L of anhydrous MeoH and 2 drops of cone HS heaied 0 inder rofA ui fhe... anhydrous tetrahydrofuran was added dropwise over 15 min at 0°C to a stirred solution of 2 mL of triethylamine and alcohol-free diazomethane (prepared

  9. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  10. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  11. Structure-activity relationships for perfluoroalkane-induced in vitro interference with rat liver mitochondrial respiration.

    PubMed

    Wallace, K B; Kissling, G E; Melnick, R L; Blystone, C R

    2013-10-09

    Perfluorinated alkyl acids (PFAAs) represent a broad class of commercial products designed primarily for the coatings industry. However, detection of residues globally in a variety of species led to the discontinuation of production in the U.S. Although PFAAs cause activation of the PPARα and CAR nuclear receptors, interference with mitochondrial bioenergetics has been implicated as an alternative mechanism of cytotoxicity. Although the mechanisms by which the eight carbon chain PFAAs interfere with mitochondrial bioenergetics are fairly well described, the activities of the more highly substituted or shorter chain PFAAs are far less well characterized. The current investigation was designed to explore structure-activity relationships by which PFAAs interfere with mitochondrial respiration in vitro. Freshly isolated rat liver mitochondria were incubated with one of 16 different PFAAs, including perfluorinated carboxylic, acetic, and sulfonic acids, sulfonamides and sulfamido acetates, and alcohols. The effect on mitochondrial respiration was measured at five concentrations and dose-response curves were generated to describe the effects on state 3 and 4 respiration and respiratory control. With the exception of PFOS, all PFAAs at sufficiently high concentrations (>20μM) stimulated state 4 and inhibited state 3 respiration. Stimulation of state 4 respiration was most pronounced for the carboxylic acids and the sulfonamides, which supports prior evidence that the perfluorinated carboxylic and acetic acids induce the mitochondrial permeability transition, whereas the sulfonamides are protonophoric uncouplers of oxidative phosphorylation. In both cases, potency increased with increasing carbon number, with a prominent inflection point between the six and eight carbon congeners. The results provide a foundation for classifying PFAAs according to specific modes of mitochondrial activity and, in combination with toxicokinetic considerations, establishing structure-activity

  12. Synthetic and structure-activity relationship of insecticidal bufadienolides.

    PubMed

    Hidayat, Ace Tatang; Zainuddin, Achmad; Dono, Danar; Hermawan, Wawan; Hayashi, Hideo; Supratman, Unang

    2014-07-01

    A new synthetic analog of bufadienolide, methyl isobryophyllinate A (1), and a known synthetic analog, methyl isobersaldegenate-1,3,5-orthoacetate (2), were obtained by methanolysis of bryophyllin A (3) and bersaldegenin-1,3,5-orthoacetate (5) in basic solution. Structure-insecticidal activity relationship studies revealed both orthoacetate and alpha-pyrone moieties seemed to be essential structural elements for exhibiting insecticidal activity, whereas oxygenated substituents in the C ring enhanced the insecticidal activity against the third instar larvae of silkworm (Bombyx mori).

  13. Activity Landscape Plotter: A Web-Based Application for the Analysis of Structure-Activity Relationships.

    PubMed

    González-Medina, Mariana; Méndez-Lucio, Oscar; Medina-Franco, José L

    2017-03-27

    Activity landscape modeling is a powerful method for the quantitative analysis of structure-activity relationships. This cheminformatics area is in continuous growth, and several quantitative and visual approaches are constantly being developed. However, these approaches often fall into disuse due to their limited access. Herein, we present Activity Landscape Plotter as the first freely available web-based tool to automatically analyze structure-activity relationships of compound data sets. Based on the concept of activity landscape modeling, the online service performs pairwise structure and activity relationships from an input data set supplied by the user. For visual analysis, Activity Landscape Plotter generates Structure-Activity Similarity and Dual-Activity Difference maps. The user can interactively navigate through the maps and export all the pairwise structure-activity information as comma delimited files. Activity Landscape Plotter is freely accessible at https://unam-shiny-difacquim.shinyapps.io/ActLSmaps /.

  14. Quantitative structure-activity relationships for nasal pungency thresholds of volatile organic compounds.

    PubMed

    Hau, K M; Connell, D W; Richardson, B J

    1999-01-01

    A model was developed for describing the triggering of nasal pungency in humans, based on the partition of volatile organic compounds (VOCs) between the air phase and the biophase. Two partition parameters are used in the model: the water-air partition coefficient and the octanol-water partition coefficient. The model was validated using data from the literature, principally on alcohols, acetates and ketones. The model suggests that all test compounds, regardless of their chemical functional groups, bind to a common receptor site within the hydrophobic interior of the bilayer membrane of the trigeminal nerve endings. There is probably only a slight, non-specific interaction between the VOC molecule and the receptor molecule, whereas this type of non-specific interaction for the detection of odor is much stronger. In practical terms, the suggestion that all VOCs share a common irritation receptor site implies that nasal-pungency thresholds of individual VOCs may be additive. Quantitative structure-activity relationships (QSARs) for nasal-pungency thresholds were also developed from the model, which can be used to predict nasal-pungency thresholds of common VOCs. Although the present model does not offer additional precision over that of M.H. Abraham et al., 1996, Fundam. Appl. Toxicol. 31, 71-76, it requires fewer descriptors and offers a physiological basis to the QSAR. Another advantage of the present model is that it also provides a basis for comparison between the olfactory process and nasal pungency.

  15. Relationship Functioning Among Adult Children of Alcoholics*

    PubMed Central

    Kearns-Bodkin, Jill N.; Leonard, Kenneth E.

    2008-01-01

    Objective: The purpose of the current research was to examine the impact of both maternal and paternal alcoholism on the relationship functioning of husbands and wives over the early years of marriage. Method: Couples (N = 634) were assessed at the time of marriage, and again at their first, second, and fourth anniversaries. Husbands and wives completed separate, self-administered questionnaires at home. Results: Results of separate repeated measures analyses of covariance revealed that, for both husbands and wives, the appraisal of their marital relationship was associated with alcoholism in the opposite gender parent. That is, for husbands, alcoholism in the mother was associated with lower marital satisfaction across the 4 years of marriage. For wives, alcoholism in the father was related to lower marital intimacy. Husbands' physical aggression was influenced by mother's and father's alcoholism; high levels of physical aggression were present among men with alcoholic mothers and nonalcoholic fathers. Interestingly, wives' experience of husband's aggression was also highest among women with alcoholic mothers and nonalcoholic fathers. Wives also reported engaging in high levels of physical aggression when they had an alcoholic mother and a nonalcoholic father, but this effect was restricted to the early part of the marriage. Finally, parental alcoholism was associated with both husbands' and wives' attachment representations. Conclusions: The present findings suggest that children raised in alcoholic families may carry the problematic effects of their early family environment into their adult romantic relationships. PMID:18925353

  16. ALCOHOLISM AND PSORIASIS-AN IMMUNOLOGICAL RELATIONSHIP

    PubMed Central

    Srinivasan, T.N.; Suresh, T.R.; Devar, J.V.; Jayaram, Vasantha

    1991-01-01

    SUMMARY Studies on association of psychiatric diseases and immunopathology has been an area of recent research activities. Alcohol has been implicated in some immune mediated disorders. Observation of occurrence of psoriasis, an immune mediated skin disorder in alcoholic patients has not been reported anywhere in literature. We report here 4 cases of alcoholism related psoriasis and discuss the possible immunological relationship between these two disorders. The need for study of effect of alcoholism on cell-medicated immunity associated conditions like auto-immune disorders and malignancy is presented. PMID:21897472

  17. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.

    PubMed

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2013-11-01

    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor.

  18. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    PubMed Central

    Zhang, Jun; Li, Chunxia; Yu, Guangli; Guan, Huashi

    2014-01-01

    Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined. PMID:24945415

  19. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists.

  20. DETERMINING THE STRUCTURE-ACTIVITY RELATIONSHIPS OF AMINOBIPHENYL AND BENZIDINE ANALOGS

    EPA Science Inventory

    Determining the structure-activity relationships of aminobiphenyl and benzidine analogues

    Benzidine is a confirmed human carcinogen causing bladder and other types of cancer in humans and animals. Many of the benzidine and related aminobiphenyl compounds are mutagenic in t...

  1. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  2. Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship.

    PubMed

    Kaneko, Masafumi; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2007-03-01

    The effects of the gangliosides isolated from echinoderms on the neuritogenesis of a rat pheochromocytoma cell line (PC-12 cells) in the presence of nerve growth factor were investigated. The results show that they displayed neuritogenic activity. Based on the observed results, a structure-activity relationship has been established.

  3. Communicating alcohol narratives: creating a healthier relationship with alcohol.

    PubMed

    Anderson, Peter; Amaral-Sabadini, Michaela Bitarello do; Baumberg, Ben; Jarl, Johan; Stuckler, David

    2011-08-01

    Alcohol, like mental health, is a neglected topic in public health discussions. However, it should be defined as a priority public health area because the evidence available to support this is very persuasive. Although only half the world's population drinks alcohol, it is the world's third leading cause of ill health and premature death, after low birth weight and unsafe sex, and the world's greatest cause of ill health and premature death among individuals between 25 and 59 years of age. This article aims to outline current global experiences with alcohol policies and suggests how to communicate better evidence-based policy responses to alcohol-related harm using narratives. The text summarizes 6 actions to provide incentives that would favor a healthier relationship with alcohol in contemporary society. Actions include price and availability changes, marketing regulations, changes in the format of drinking places and on the product itself, and actions designed to nudge people at the time of their purchasing decisions. Communicating alcohol narratives to policymakers more successfully will likely require a discourse emphasizing the reduction of heavy drinking occasions and the protection of others from someone else's problematic drinking.

  4. Structure-activity relationships of pyrrole based S-nitrosoglutathione reductase inhibitors: pyrrole regioisomers and propionic acid replacement.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Colagiovanni, Dorothy B; Mutka, Sarah C; Blonder, Joan P; Stout, Adam M; Richards, Jane P; Chun, Lawrence; Rosenthal, Gary J

    2011-06-15

    S-Nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, cardiovascular, and gastrointestinal systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently undergoing clinical development. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on scaffold modification and propionic acid replacement. We identified equally potent and novel GSNOR inhibitors having pyrrole regioisomers as scaffolds using a structure based approach.

  5. Antitumor activity and structure-activity relationship of diterpenoids with a dehydroabietyl skeleton.

    PubMed

    Rao, Xiaoping; Huang, Xiuzhi; He, Ling; Song, Jie; Song, Zhanqian; Shang, Shibin

    2012-12-01

    A series of novel diterpenoids including imines, amides and ureas with a dehydroabietyl skeleton were screened to hepatocellular carcinoma (SMMC-7721), lung cancer (A-549), glioma (C-6) and breast carcinoma (MCF-7) tumor cells by MTT method. Their antitumor activity and structure activity relationship were analyzed. Several of the title compounds such as I-2, I-10, I-6 and I-5, possess noticeable antitumor activity against SMMC-7721, A-549, C-6 and MCF-7 tumor cells, with lowest IC(50) values of 6.65, 0.75, 0.81 and 10.65μM, respectively. Based on the structure-activity relationship investigation, the three kinds of diterpenoids with a dehydroabietyl skeleton show high activity to SMMC-7721 cells. Imines derivatives exhibit broad spectrum and highly efficient activities to the selected four kinds of tumor cells.

  6. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  7. Synthesis and Structure activity relationships of EGCG Analogues, A Recently Identified Hsp90 Inhibitor

    PubMed Central

    Khandelwal, Anuj; Hall, Jessica

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the principal polyphenol isolated from green tea, was recently shown to inhibit Hsp90, however structure-activity relationships for this natural product have not yet been produced. Herein, we report the synthesis and biological evaluation of EGCG analogues to establish structure-activity relationships between EGCG and Hsp90. All four rings as well as the linker connecting the C- and the D-rings were systematically investigated, which led to the discovery of compounds that inhibit Hs90 and display improvement in efficacy over EGCG. Anti-proliferative activity of all the analogues was determined against MCF-7 and SKBr3 cell lines and Hsp90 inhibitory activity of four most potent analogues was further evaluated by western blot analyses and degradation of Hsp90-dependent client proteins. Prenyl substituted aryl ester of 3,5-dihydroxychroman-3-ol ring system was identified as novel scaffold that exhibit Hsp90 inhibitory activity. PMID:23834230

  8. Sphaeropsidones, phytotoxic dimedone methyl ethers produced by Diplodia cupressi: a structure-activity relationship study.

    PubMed

    Evidente, Antonio; Maddau, Lucia; Scanu, Bruno; Andolfi, Anna; Masi, Marco; Motta, Andrea; Tuzi, Angela

    2011-04-25

    Sphaeropsidone and episphaeropsidone are two phytotoxic dimedone methyl ethers produced by Diplodia cupressi, the causal agent of a canker disease of cypress in the Mediterranean area. In this study, eight derivatives obtained by chemical modifications and two natural analogues were assayed for phytotoxic and antifungal activities, and a structure-activity relationship was examined. Each compound was tested on nonhost plants and on five fungal pathogenic species belonging to the genus Phytophthora. The results provide insights into structure-activity relationships within these compounds. It was found that the hydroxy group at C-5, the absolute C-5 configuration, the epoxy group, and the C-2 carbonyl group appear to be structural features important in conferring biological activity. The conversion of sphaeropsidone into the corresponding 1,4-dione derivative led to a compound showing greater antifungal activity than its precursor. This finding could be useful in devising new natural fungicides for practical application in agriculture.

  9. Anticancer Activity of Estradiol Derivatives: A Quantitative Structure--Activity Relationship Approach

    NASA Astrophysics Data System (ADS)

    Muranaka, Ken

    2001-10-01

    Commercial packages to implement modern QSAR (quantitative structure-activity relationship) techniques are highly priced; however, the essence of QSAR can be taught without them. Microsoft Excel was used to analyze published data on anticancer activities of estradiol analogs by a QSAR approach. The resulting QSAR equations highly correlate the structural features and physicochemical properties of the analogs with the observed biological activities by multiple linear regression.

  10. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins.

    PubMed

    Zou, Tang-Bin; He, Tai-Ping; Li, Hua-Bin; Tang, Huan-Wen; Xia, En-Qin

    2016-01-12

    Peptides derived from dietary proteins, have been reported to display significant antioxidant activity, which may exert notably beneficial effects in promoting human health and in food processing. Recently, much research has focused on the generation, separation, purification and identification of novel peptides from various protein sources. Some researchers have tried to discover the structural characteristics of antioxidant peptides in order to lessen or avoid the tedious and aimless work involving the ongoing generated peptide preparation schemes. This review aims to summarize the current knowledge on the relationship between the structural features of peptides and their antioxidant activities. The relationship between the structure of the precursor proteins and their abilities to release antioxidant fragments will also be summarized and inferred. The preparation methods and antioxidant capacity evaluation assays of peptides and a prediction scheme of quantitative structure-activity relationship (QSAR) will also be pointed out and discussed.

  11. Quantitative structure-activity relationships for the in vitro antimycobacterial activity of pyrazinoic acid esters.

    PubMed

    Bergmann, K E; Cynamon, M H; Welch, J T

    1996-08-16

    Substituted pyrazinoic acid esters have previously been reported to have in vitro activity against Mycobacterium avium and Mycobacterium kansasii as well as Mycobacterium tuberculosis. Modification of both the pyrazine nucleus and the ester functionality was successful in expanding the antimycobacterial activity associated with pyrazinamide to include M. avium and M. kansasii, organisms usually not susceptible to pyrazinamide. In an attempt to understand the relationship between the activity of the esters with the needed biostability, a quantitative structure-activity relationship has been developed. This derived relationship is consistent with the observation that tert-butyl 5-chloropyrazinoate (13) and 2'-(2'-methyldecyl) 5-chloropyrazinoate (25), compounds which are both 100-fold more active than pyrazinamide against M. tuberculosis and possess a serum stability 900-1000 times greater than the lead compounds in the series.

  12. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  13. Structure-activity relationships and action mechanisms of collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2017-01-01

    An antimicrobial triple-helical peptide, R3, was previously obtained from a collagen-like combinatorial peptide library. In this research, based on structure-activity relationship studies of R3, a more potent peptide, RR4, with increased positive net charge and charge density relative to R3, was developed. RR4 exhibited antimicrobial activity against both Gram-negative and Gram-positive bacterial strains, including multidrug-resistant strains. Its action could be attributed to entry into cells and interactions with intercellular molecules such as DNA/RNA that inhibited cell division rather than increasing bacterial membrane permeability. Furthermore, RR4 exhibited remarkable stability in serum and low cytotoxicity.

  14. Identification and structure-activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors.

    PubMed

    Alokam, Reshma; Jeankumar, Variam Ullas; Sridevi, Jonnalagadda Padma; Matikonda, Siddharth Sai; Peddi, Santosh; Alvala, Mallika; Yogeeswari, Perumal; Sriram, Dharmarajan

    2014-08-01

    In the present study, we identified carvacrol, a major phenolic component of oregano oil as a novel small molecule inhibitor of Mycobacterium tuberculosis (MTB) chorismate mutase (CM) enzyme with IC50 of 1.06 ± 0.4 µM. Virtual screening of the BITS-Pilani in-house database using the crystal structure of the MTB CM bound transition state intermediate (PDB: 2FP2) as framework identified carvacrol as a potential lead. Further various carvacrol derivatives were evaluated in vitro for their ability to inhibit MTB CM enzyme, whole cell MTB and cytotoxicity as steps toward the derivation of structure-activity relationships (SAR) and lead optimization.

  15. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis. PMID:24287985

  16. Synthesis, Acaricidal Activity, and Structure-Activity Relationships of Pyrazolyl Acrylonitrile Derivatives.

    PubMed

    Yu, Haibo; Cheng, Yan; Xu, Man; Song, Yuquan; Luo, Yanmei; Li, Bin

    2016-12-28

    A series of novel pyrazolyl acrylonitrile derivatives was designed, targeting Tetranychus cinnabarinus, and synthesized. Their structures were identified by combination of (1)H NMR, (13)C NMR, and MS spectra. The structures of compounds 18 and 19 were further confirmed by X-ray diffraction. Extensive greenhouse bioassays indicated that compound 19 exhibits excellent acaricidal activity against all developmental stages of T. cinnabarinus, which is better than the commercialized compounds cyenopyrafen and spirodiclofen. It was shown that the acute toxicity of compounds 19 to mammals is quite low. The structure-activity relationships are also discussed.

  17. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  18. A Receptor-Grounded Approach to Teaching Nonsteroidal Antiinflammatory Drug Chemistry and Structure-Activity Relationships

    PubMed Central

    2009-01-01

    Objective To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. Design Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. Assessment Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. Conclusion Student performance on NSAID-focused quizzes and examinations documented the success of this approach. PMID:20221336

  19. Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH

    PubMed Central

    Kirubakaran, Sivapriya; Gorla, Suresh Kumar; Sharling, Lisa; Zhang, Minjia; Liu, Xiaoping; Ray, Soumya S.; MacPherson, Iain S.; Striepen, Boris; Hedstrom, Lizbeth; Cuny, Gregory D.

    2012-01-01

    Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The C. parvum and C. hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro. PMID:22310229

  20. Discovery and structure-activity relationships of urea derivatives as potent and novel CCR3 antagonists.

    PubMed

    Nitta, Aiko; Iura, Yosuke; Tomioka, Hiroki; Sato, Ippei; Morihira, Koichiro; Kubota, Hirokazu; Morokata, Tatsuaki; Takeuchi, Makoto; Ohta, Mitsuaki; Tsukamoto, Shin-ichi; Imaoka, Takayuki; Takahashi, Toshiya

    2012-08-01

    The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.

  1. Substrate structure-activity relationships guide rational engineering of modular polyketide synthase ketoreductases.

    PubMed

    Bailey, Constance B; Pasman, Marjolein E; Keatinge-Clay, Adrian T

    2016-01-14

    Modular polyketide synthase ketoreductases can set two chiral centers through a single reduction. To probe the basis of stereocontrol, a structure-activity relationship study was performed with three α-methyl, β-ketothioester substrates and four ketoreductases. Since interactions with the β-ketoacyl moiety were found to be most critical, residues implicated in contacting this moiety were mutated. Two mutations were sufficient to completely reverse the stereoselectivity of the model ketoreductase EryKR1, converting it from an enzyme that generates (2S,3R)-products into one that yields (2S,3S)-products.

  2. A computational quantitative structure-activity relationship study of carbamate anticonvulsants using quantum pharmacological methods.

    PubMed

    Knight, J L; Weaver, D F

    1998-10-01

    A pattern recognition quantitative structure-activity relationship (QSAR) study has been performed to determine the molecular features of carbamate anticonvulsants which influence biological activity. Although carbamates, such as felbamate, have been used to treat epilepsy, their mechanisms of efficacy and toxicity are not completely understood. Quantum and classical mechanics calculations have been exploited to describe 46 carbamate drugs. Employing a principal component analysis and multiple linear regression calculations, five crucial structural descriptors were identified which directly relate to the bioactivity of the carbamate family. With the resulting mathematical model, the biological activity of carbamate analogues can be predicted with 85-90% accuracy.

  3. Structure activity relationship and modeling studies of inhibitors of lysine specific demethylase 1

    PubMed Central

    Lu, Lianghao; Wei, Liping; Pai, Eric; Yao, Yuan; Song, Yongcheng

    2017-01-01

    Post-translational modifications of histone play important roles in gene transcription. Aberrant methylation of histone lysine sidechains have been often found in cancer. Lysine specific demethylase 1 (LSD1), which can demethylate histone H3 lysine 4 (H3K4) and other proteins, has recently been found to be a drug target for acute myeloid leukemia. To understand structure activity/selectivity relationships of LSD1 inhibitors, several series of cyclopropylamine and related compounds were synthesized and tested for their activities against LSD1 and related monoamine oxidase (MAO) A and B. Several cyclopropylamine containing compounds were found to be highly potent and selective inhibitors of LSD1. A novel series cyclopropylimine compounds also exhibited strong inhibitory activity against LSD1. Structure activity relationships (SAR) of these compounds are discussed. Docking studies were performed to provide possible binding models of a representative compound in LSD1 and MAO-A. Moreover, these modeling studies can rationalize the observed SARs and selectivity. PMID:28158205

  4. A categorical structure-activity relationship analysis of GPR119 ligands.

    PubMed

    Kumar, Pritesh; Carrasquer, Carl A; Carter, Arren; Song, Zhao-Hui; Cunningham, Albert R

    2014-01-01

    The categorical structure-activity relationship (cat-SAR) expert system has been successfully used in the analysis of chemical compounds that cause toxicity. Herein we describe the use of this fragment-based approach to model ligands for the G protein-coupled receptor 119 (GPR119). Using compounds that are known GPR119 agonists and compounds that we have confirmed experimentally that are not GPR119 agonists, four distinct cat-SAR models were developed. Using a leave-one-out validation routine, the best GPR119 model had an overall concordance of 99%, a sensitivity of 99%, and a specificity of 100%. Our findings from the in-depth fragment analysis of several known GPR119 agonists were consistent with previously reported GPR119 structure-activity relationship (SAR) analyses. Overall, while our results indicate that we have developed a highly predictive cat-SAR model that can be potentially used to rapidly screen for prospective GPR119 ligands, the applicability domain must be taken into consideration. Moreover, our study demonstrates for the first time that the cat-SAR expert system can be used to model G protein-coupled receptor ligands, many of which are important therapeutic agents.

  5. Nuclear receptor engineering based on novel structure activity relationships revealed by farnesyl pyrophosphate.

    PubMed

    Goyanka, Ritu; Das, Sharmistha; Samuels, Herbert H; Cardozo, Timothy

    2010-11-01

    Nuclear receptors (NRs) comprise the second largest protein family targeted by currently available drugs, acting via specific ligand interactions within the ligand binding domain (LBD). Recently, farnesyl pyrophosphate (FPP) was shown to be a unique promiscuous NR ligand, activating a subset of NR family members and inhibiting wound healing in skin. The current study aimed at visualizing the unique basis of FPP interaction with multiple receptors in order to identify general structure-activity relationships that operate across the NR family. Docking of FPP to the 3D structures of the LBDs of a diverse set of NRs consistently revealed an electrostatic FPP pyrophosphate contact with an NR arginine conserved in the NR family, a hydrophobic farnesyl contact with NR helix-12 and a ligand binding pocket volume between 300 and 430 Å(3) as the minimal requirements for FPP activation of any NR. Lack of any of these structural features appears to render a given NR resistant to FPP activation. We used these structure-activity relationships to rationally design and successfully engineer several mutant human estrogen receptors that retain responsiveness to estradiol but no longer respond to FPP.

  6. Structure-Activity Relationships of Synthetic Coumarins as HIV-1 Inhibitors

    PubMed Central

    Kostova, I.; Raleva, S.; Genova, P.; Argirova, R.

    2006-01-01

    HIV/AIDS pandemics is a serious threat to health and development of mankind, and searching for effective anti-HIV agents remains actual. Considerable progress has been made in recent years in the field of drug development against HIV. A lot of structurally different coumarins were found to display potent anti-HIV activity. The current review demonstrates the variety of synthetic coumarins having unique mechanism of action referring to the different stages of HIV replication. Recent studies based on the account of various synthetic coumarins seem to indicate that some of them serve as potent non-nucleoside RT-inhibitors, another as inhibitors of HIV-integrase or HIV-protease. The merits of selecting potential anti-HIV agents to be used in rational combination drugs design and structure-activity relationships are discussed.The scientific community is looking actively for new drugs and combinations for treatment of HIV infection effective for first-line treatment, as well as against resistant mutants. The investigation on chemical anti-HIV agents gives hope and optimism about it. This review article describes recent progress in the discovery, structure modification, and structure-activity relationship studies of potent anti-HIV coumarin derivatives. PMID:17497014

  7. Agropyrenol, a phytotoxic fungal metabolite, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Zonno, Maria Chiara; Andolfi, Anna; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Evidente, Antonio

    2013-02-27

    Agropyrenol is a phytotoxic substituted salicylic aldehyde produced in liquid culture by Ascochyta agropyrina var. nana , a potential mycoherbicide proposed for the control of the perennial weed Elytrigia repens. In this study, six derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on non-host weedy and agrarian plants, fungi, Gram-positive and Gram-negative bacteria, and brine shrimp larvae. The results provide insights into the structure-activity relationships of agropyrenol. Both the double bond and the diol system of the 3,4-dihydroxypentenyl side chain as well as the aldehyde group at C-1 of the phenolic ring of agropyrenol proved to be important for the phytotoxicity. The lesser polar 3',4'-O,O'-isopropylidene of agropyrenol also showed significant zootoxic and slight antimicrobial activities. This finding could be useful in devising new natural herbicides for practical application in agriculture.

  8. Three data mining techniques to improve lazy structure-activity relationships for noncongeneric compounds.

    PubMed

    Sommer, Selina; Kramer, Stefan

    2007-01-01

    We present three simple, yet effective data mining techniques for lazy structure-activity relationships (SARs) of noncongeneric compounds. In lazy SARs, classifications are particularly tailored for each test compound. Therefore, it is possible to make the most of the structure of a test compound. In our case, we derive its substructures and use them to determine similar structures. To obtain a well-balanced and representative set of structural descriptors, we enrich this set by strongly activating or deactivating fragments from the training set and subsequently remove redundant fragments. Finally, we perform k-Nearest Neighbor classification for several values of k and take a vote among the resulting predictions. These techniques (enrichment, removing redundancy, and voting) are integrated into the system iSAR (instance-based structure-activity relationships) and tested individually to show the relative contribution to the system's performance. Experiments on three data sets indicate that this simple and lightweight approach performs at least on the same level as other, more complex approaches.

  9. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  10. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  11. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  12. Structure-activity relationships of polybiguanides with activity against human immunodeficiency virus type 1

    PubMed Central

    Passic, Shendra R.; Ferguson, Mary Lee; Catalone, Bradley J.; Kish-Catalone, Tina; Kholodovych, Vladyslav; Zhu, Wei; Welsh, William; Rando, Robert; Howett, Mary K.; Wigdahl, Brian; Labib, Mohamed; Krebs, Fred C.

    2013-01-01

    Previous investigations showing that polydisperse biguanide (PDBG) molecules have activity against human immunodeficiency virus type 1 (HIV-1) also suggested a relationship between PDBG biologic activity and the lengths of hydrocarbon linkers surrounding the positively charged biguanide unit. To better define structure-activity relationships, PDBG molecules with select linker lengths were evaluated for cytotoxicity, anti-HIV-1 activity, and in vivo toxicity. Results of the in vitro experiments demonstrated that increases in linker length (and, therefore, increases in compound lipophilicity) were generally associated with increases in cytotoxicity and antiviral activity against HIV-1. However, a relationship between linker length asymmetry and in vitro therapeutic index (TI) suggested structural specificity in the mechanism of action against HIV-1. Polyethylene hexamethylene biguanide (PEHMB; biguanide units spaced between alternating ethylene and hexamethylene linkers) was found to have the highest in vitro TI (CC50/IC50) among the compounds examined. Recent improvements in PEHMB synthesis and purification have yielded preparations of PEHMB with in vitro TI values of 266 and 7000 against HIV-1 strains BaL and IIIB, respectively. The minimal toxicity of PEHMB relative to polyhexamethylene biguanide (PHMB; biguanide units alternating with hexamethylene linkers) in a murine model of cervicovaginal microbicide toxicity was consistent with considerable differences in cytotoxicity between PEHMB and PHMB observed during in vitro experiments. These structure-activity investigations increase our understanding of PDBG molecules as agents with activity against HIV-1 and provide the foundation for further preclinical studies of PEHMB and other biguanide-based compounds as antiviral and microbicidal agents. PMID:21106331

  13. Comparison of quantitative structure-activity relationship model performances on carboquinone derivatives.

    PubMed

    Bolboacă, Sorana-Daniela; Jäntschi, Lorentz

    2009-10-14

    Quantitative structure-activity relationship (qSAR) models are used to understand how the structure and activity of chemical compounds relate. In the present study, 37 carboquinone derivatives were evaluated and two different qSAR models were developed using members of the Molecular Descriptors Family (MDF) and the Molecular Descriptors Family on Vertices (MDFV). The usual parameters of regression models and the following estimators were defined and calculated in order to analyze the validity and to compare the models: Akaike's information criteria (three parameters), Schwarz (or Bayesian) information criterion, Amemiya prediction criterion, Hannan-Quinn criterion, Kubinyi function, Steiger's Z test, and Akaike's weights. The MDF and MDFV models proved to have the same estimation ability of the goodness-of-fit according to Steiger's Z test. The MDFV model proved to be the best model for the considered carboquinone derivatives according to the defined information and prediction criteria, Kubinyi function, and Akaike's weights.

  14. A multi-dimensional Structure-Activity Relationship of a protein in its aggregated states

    PubMed Central

    Wang, Lei; Schubert, David; Sawaya, Michael R.; Eisenberg, David; Riek, Roland

    2010-01-01

    Protein aggregates are both associated with disease and function. Because a variety of factors induce protein aggregation, a given protein can aggregate into different states. Here, we compare the structures and activities of five distinct protein aggregates of a single protein. Despite the diverse chemical, physical and biological treatments used to induce aggregation, all aggregate types contain the cross-β-sheet motif. However, they are structurally distinct, having different segments of the protein sequence involved in secondary structure formation. Because of these structural differences each aggregate has a unique set of properties. These include affinity to ATP, Thioflavin T, DNA, and membrane mimics, and interference with cell viability. The key to their multiple properties may be that the repetitive nature of the cross-β-sheet motif guarantees for many potent activities through cooperativity. The observed multidimensional structure-activity relationship of protein aggregates may be important for amyloid diseases but may also be advantageous in nanotechnology. PMID:20397175

  15. Synthesis, Fungicidal Activity, and Structure Activity Relationship of β-Acylaminocycloalkylsulfonamides against Botrytis cinerea

    PubMed Central

    Liu, Chun-Hui; Chen, Xiao-Yuan; Qin, Pei-Wen; Qi, Zhi-Qiu; Ji, Ming-Shan; Liu, Xing-Yu; Babu, P. Vijaya; Li, Xing-Hai; Cui, Zi-Ning

    2017-01-01

    In order to discover new antifungal agrochemicals that could have highly active and novel motifs, thirty-six new 2-acylaminocycloalkylsulfonamides (IV) were synthesized. Their structures were characterized and confirmed by 1H NMR, 13C NMR, IR, MS, elemental analysis and X-ray single crystal diffraction. In vitro and in vivo activities against various Botrytis cinerea strains were evaluated. Bioassay results revealed that most of the title compounds exhibited excellent in vitro fungicidal activity, in which compound IV-26 showed the highest activity against sensitive, low-resistant, moderate-resistant and high-resistant strains of B. cinerea compared with the positive fungicide procymidone. Meanwhile in vivo fungicidal activity of compound IV-31 was better than the commercial fungicides procymidone and chesulfamide in greenhouse trial. The structure activity relationship (SAR) was also discussed and the results were of importance to the structural optimization and development of more potent sulfonamides antifungal agents. PMID:28176837

  16. Structure-Activity Relationship Studies of Cyclopropenimines as Enantioselective Brønsted Base Catalysts

    PubMed Central

    Bandar, Jeffrey S.; Barthelme, Alexandre P.; Mazori, Alon Y.; Lambert, Tristan H.

    2015-01-01

    We recently demonstrated that chiral cyclopropenimines are viable Brønsted base catalysts in enantioselective Michael and Mannich reactions. Herein, we describe a series of structure-activity relationship studies that provide an enhanced understanding of the effectiveness of certain cyclopropenimines as enantioselective Brønsted base catalysts. These studies underscore the crucial importance of dicyclohexylamino substituents in mediating both reaction rate and enantioselectivity. In addition, an unusual catalyst CH···O interaction, which provides both ground state and transition state organization, is discussed. Cyclopropenimine stability studies have led to the identification of new catalysts with greatly improved stability. Finally, additional demonstrations of substrate scope and current limitations are provided herein. PMID:26504512

  17. The structure-activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface.

    PubMed

    Camerino, Michelle A; Zhong, Nan; Dong, Aiping; Dickson, Bradley M; James, Lindsey I; Baughman, Brandi M; Norris, Jacqueline L; Kireev, Dmitri B; Janzen, William P; Arrowsmith, Cheryl H; Frye, Stephen V

    2013-11-01

    We recently reported the discovery of UNC1215, a potent and selective chemical probe for the L3MBTL3 methyllysine reader domain. In this article, we describe the development of structure-activity relationships (SAR) of a second series of potent L3MBTL3 antagonists which evolved from the structure of the chemical probe UNC1215. These compounds are selective for L3MBTL3 against a panel of methyllysine reader proteins, particularly the related MBT family proteins, L3MBTL1 and MBTD1. A co-crystal structure of L3MBTL3 and one of the most potent compounds suggests that the L3MBTL3 dimer rotates about the dimer interface to accommodate ligand binding.

  18. The structure-activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface

    PubMed Central

    Camerino, Michelle A.; Zhong, Nan; Dong, Aiping; Dickson, Bradley M.; James, Lindsey I.; Baughman, Brandi M.; Norris, Jacqueline L.; Kireev, Dmitri B.; Janzen, William P.; Arrowsmith, Cheryl H.

    2013-01-01

    We recently reported the discovery of UNC1215, a potent and selective chemical probe for the L3MBTL3 methyllysine reader domain. In this article, we describe the development of structure-activity relationships (SAR) of a second series of potent L3MBTL3 antagonists which evolved from the structure of the chemical probe UNC1215. These compounds are selective for L3MBTL3 against a panel of methyllysine reader proteins, particularly the related MBT family proteins, L3MBTL1 and MBTD1. A co-crystal structure of L3MBTL3 and one of the most potent compounds suggests that the L3MBTL3 dimer rotates about the dimer interface to accommodate ligand binding. PMID:24466405

  19. Structure-activity relationship study of opiorphin, a human dual ectopeptidase inhibitor with antinociceptive properties.

    PubMed

    Rosa, Mònica; Arsequell, Gemma; Rougeot, Catherine; Calle, Luis P; Marcelo, Filipa; Pinto, Marta; Centeno, Nuria B; Jiménez-Barbero, Jesús; Valencia, Gregorio

    2012-02-09

    Toward developing new potential analgesics, this first structure-activity relationship study of opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH), a human peptide inhibiting enkephalin degradation, was performed. A systematic Ala scanning proved that Phe(3) is a key residue for neprilysin and aminopeptidase N (AP-N) ectoenkephalinase inhibition. A series of Phe(3)-halogenated analogues revealed that halogen bonding based optimization strategies are not applicable to this residue. Additional substituted Phe(3) derivatives showed that replacing l-Phe(3) for d-Phe(3) increased the AP-N inhibition potency by 1 order of magnitude. NMR studies and molecular mechanics calculations indicated that the improved potency may be due to CH-π stacking interactions between the aromatic ring of d-Phe(3) and the Hγ protons of Arg(2). This structural motif is not possible for the native opiorphin and may be useful for the design of further potent and metabolically stable analogues.

  20. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  1. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review.

    PubMed

    Yadav, Geeta; Ganguly, Swastika

    2015-06-05

    Benzimidazoles are the fused heterocyclic ring systems which form an integral part of vitamin B12 and have been luring many researchers all over the world to assess their potential therapeutic significance. They are known for their crucial role in numerous diseases via various mechanisms. Substitution of benzimidazole nucleus is a crucial step in the drug discovery process. Therefore, it is necessary to gather the latest information along with the earlier information to understand the present status of benzimidazole nucleus in drug discovery. In the present review, benzimidazole derivatives with different pharmacological activities are described on the basis of SAR study using structural substitution pattern around the benzimidazole nucleus and aims to review the reported work related to the chemistry and pharmacological activities of benzimidazole derivatives during recent years. The present manuscript to the best of our knowledge is the first compilation on synthesis and medicinal aspects including structure-activity relationships of benzimidazole reported to date.

  2. A descriptor of amino acids: SVRG and its application to peptide quantitative structure-activity relationship.

    PubMed

    Tong, J; Che, T; Li, Y; Wang, P; Xu, X; Chen, Y

    2011-01-01

    In this work, a descriptor, SVRG (principal component scores vector of radial distribution function descriptors and geometrical descriptors), was derived from principal component analysis (PCA) of a matrix of two structural variables of coded amino acids, including radial distribution function index (RDF) and geometrical index. SVRG scales were then applied in three panels of peptide quantitative structure-activity relationships (QSARs) which were modelled by partial least squares regression (PLS). The obtained models with the correlation coefficient (R²(cum)), cross-validation correlation coefficient (Q²(LOO)) were 0.910 and 0.863 for 48 bitter-tasting dipeptides; 0.968 and 0.931 for 21 oxytocin analogues; and 0.992 and 0.954 for 20 thromboplastin inhibitors. Satisfactory results showed that SVRG contained much chemical information relating to bioactivities. The approach may be a useful structural expression methodology for studies on peptide QSAR.

  3. In vivo toxicity of nitroaromatics: A comprehensive quantitative structure-activity relationship study.

    PubMed

    Gooch, Aminah; Sizochenko, Natalia; Rasulev, Bakhtiyor; Gorb, Leonid; Leszczynski, Jerzy

    2017-02-07

    The toxicity data of 90 nitroaromatic compounds related to their 50% lethal dose concentration for rats (LD50) were analyzed to develop quantitative structure-activity relationship (QSAR) models. Quantum-chemically calculated descriptors together with molecular descriptors generated by DRAGON, PaDEL, and HiT-QSAR software were utilized to build QSAR models. Quality and validity of the models were determined by internal and external validation techniques. The results show that the toxicity of nitroaromatic compounds depends on various factors, such as the number of nitro-groups, the topological state, and the presence of certain structural fragments. The developed models based on the largest (to date) dataset of nitroaromatics in vivo toxicity showed a good predictive ability. The results provide important input that could be applied in a preliminary assessment of nitroaromatic compounds' toxicity to mammals. Environ Toxicol Chem 2017;9999:1-7. © 2017 SETAC.

  4. Modeling the nucleophilic reactivity of small organochlorine electrophiles: A mechanistically based quantitative structure-activity relationship

    SciTech Connect

    Verhaar, H.J.M.; Seinen, W.; Hermens, J.L.M.; Rorije, E.; Borkent, H.

    1996-06-01

    Environmental pollutants can be divided into four broad categories, narcosis-type chemicals, less inert (polar narcosis) chemicals, reactive chemicals, and specifically acting chemicals. For narcosis-type, or baseline, chemicals and for less inert chemicals, adequate quantitative structure-activity relationships (QSARs) are available for estimation of toxicity to aquatic species. This is not the case for reactive chemicals and specifically acting chemicals. A possible approach to develop aquatic toxicity QSARs for reactive chemicals based on simple considerations regarding their reactivity is given. It is shown that quantum chemical calculations on reaction transition states can be used to quantitatively predict the reactivity of sets of reactive chemicals. These predictions can then be used to develop aquatic toxicity QSARs.

  5. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds.

    PubMed

    Burgess, Steven J; Kelly, Jane X; Shomloo, Shawheen; Wittlin, Sergio; Brun, Reto; Liebmann, Katherine; Peyton, David H

    2010-09-09

    We have previously shown that a "reversed chloroquine (RCQ)" molecule, composed of a chloroquine-like moiety and a resistance reversal-like moiety, can overcome chloroquine resistance in P. falciparum ( Burgess , S. J. ; Selzer , A. ; Kelly , J. X. ; Smilkstein , M. J. ; Riscoe , M. K. ; Peyton , D. H. J. Med. Chem. 2006 , 49 , 5623 . Andrews , S. ; Burgess , S. J. ; Skaalrud , D. ; Kelly , J. X. ; Peyton , D. H. J. Med. Chem. 2010 , 53 , 916 ). Here, we present an investigation into the structure-activity relationship of the RCQ structures, resulting in an orally active molecule with good in vitro and in vivo antimalarial activity. We also present evidence of the mode of action, indicating that the RCQ molecules inhibit hemozoin formation in the parasite's digestive vacuole in a manner similar to that of chloroquine.

  6. Isoxazole analogues bind the System xc− Transporter: Structure-activity Relationship and Pharmacophore Model

    PubMed Central

    Patel, Sarjubhai A.; Rajale, Trideep; O’Brien, Erin; Burkhart, David J.; Nelson, Jared K.; Twamley, Brendan; Blumenfeld, Alex; Szabon-Watola, Monika I.; Gerdes, John M.; Bridges, Richard J.; Natale, Nicholas R.

    2009-01-01

    Analogues of amino methylisoxazole propionic acid (AMPA), were prepared from a common intermediate 12, including lipophilic analogues using lateral metalation and electrophilic quenching, and were evaluated at System xc−. Both the 5-naphthylethyl-(16) and 5-naphthylmethoxymethyl-(17) analogues adopt an E-conformation in the solid state, yet while the former has robust binding at System xc−, the latter is virtually devoid of activity. The most potent analogues were amino acid naphthyl-ACPA 7g, and hydrazone carboxylic acid, 11e Y=Y′=3,5-(CF3)2, which both inhibited glutamate up-take by the System xc− transporter with comparable potency to the endogenous substrate cystine, whereas in contrast the closed isoxazolo[3,4-d] pyridazinones 13 have significantly lower activity. A preliminary pharmacophore model has been constructed to provide insight into the analogue structure-activity relationships. PMID:19932968

  7. Exploration of the structure-activity relationship of 1,2,4-oxadiazole antibiotics.

    PubMed

    Ding, Derong; Boudreau, Marc A; Leemans, Erika; Spink, Edward; Yamaguchi, Takao; Testero, Sebastian A; O'Daniel, Peter I; Lastochkin, Elena; Chang, Mayland; Mobashery, Shahriar

    2015-11-01

    We have recently disclosed the discovery of the class of 1,2,4-oxadiazole antibiotics, which emerged from in silico docking and scoring efforts. This class of antibacterials exhibits Gram-positive activity, particularly against Staphylococcus aureus. We define the structure-activity relationship (SAR) of this class of antibiotics with the synthesis and evaluation of a series of 59 derivatives with variations in the C ring or C and D rings. A total of 17 compounds showed activity against S. aureus. Four derivatives were evaluated against a panel of 16 Gram-positive strains, inclusive of several methicillin-resistant S. aureus strains. These compounds are broadly active against Gram-positive bacteria.

  8. Cyclooxygenase active bioflavonoids from Balaton tart cherry and their structure activity relationships.

    PubMed

    Wang, H; Nair, M G; Strasburg, G M; Booren, A M; Gray, I; Dewitt, D L

    2000-03-01

    Several flavonoids and isoflavonoids isolated from Balaton tart cherry were assayed for prostaglandin H endoperoxide synthase (PGHS-1) enzyme or cyclooxygenase isoform-1 (COX-1) activity. Genistein showed the highest COX-1 inhibitory activity among the isoflavonoids studied, with an IC50 value of 80 microM. Kaempferol gave the highest COX-1 inhibitory activity among the flavonoids tested, with an IC50 value of 180 microM. The structure-activity relationships of flavonoids and isoflavonoids revealed that hydroxyl groups at C4', C5 and C7 in isoflavonoids were essential for appreciable COX-1 inhibitory activity. Also, the C2-C3 double bond in flavonoids is important for COX-1 inhibitory activity. However, a hydroxyl group at the position decreased COX-1 inhibitory activity by flavonoids.

  9. Synthesis and structure-activity relationship of novel cinnamamide derivatives as antidepressant agents.

    PubMed

    Han, Min; Ma, Xiaohui; Jin, Yuanpeng; Zhou, Wangyi; Cao, Jing; Wang, Yahu; Zhou, Shuiping; Wang, Guocheng; Zhu, Yonghong

    2014-11-15

    Cinnamamide 3a, a leading compound with antidepressant-like activity, and its derivatives were synthesized and their antidepressant activity and structure-activity relationship were investigated. Most of the compounds with trifluoromethyl group in methylenedioxyphenyl moiety (3f, 4b-c and 6a-b) exhibited significant antidepressant activity, measured in terms of percentage decrease in immobility duration by tail suspension test. In addition, the dose-dependent antidepressant effect of the most potent compound 3f was subsequently confirmed in tail suspension test and forced swim test. The test results showed that 3f was equal to or more effective than the standard drug fluoxetine at a concentration of 10mg/kg. Furthermore, compound 3f did not show any central nervous system stimulant properties in the open-field test and the preliminary results were promising enough to warrant further detailed antidepressant research around this scaffold.

  10. Structure-activity relationships of tulipalines, tuliposides, and related compounds as inhibitors of MurA.

    PubMed

    Mendgen, Thomas; Scholz, Therese; Klein, Christian D

    2010-10-01

    The enzyme MurA performs an essential step in peptidoglycan biosynthesis and is therefore a target for the discovery of novel antibacterial compounds. We report here the inhibition of MurA by natural products from tulips (tulipalines and tuliposides), and the structure-activity relationships of various derivatives. The inhibition of MurA can be related to antibacterial activity, and MurA is probably one of the relevant molecular targets of the tulipaline derivatives. MurA inhibition by this class of compounds depends on the presence of the substrate UNAG, which indicates non-covalent suicide inhibition as observed previously for cnicin. With respect to selectivity, however, the reactivity against arbitrary sulfhydryl groups, such as in glutathione, could not yet be sufficiently separated from MurA inhibition in the present dataset.

  11. Structure-activity relationship (SAR) analysis of a family of steroids acutely controlling steroidogenesis.

    PubMed

    Midzak, Andrew; Rammouz, Georges; Papadopoulos, Vassilios

    2012-11-01

    Steroids metabolically derive from lipid cholesterol, and vertebrate steroids additionally derive from the steroid pregnenolone. Pregnenolone is derived from cholesterol by hydrolytic cleavage of the aliphatic tail by mitochondrial cytochrome P450 enzyme CYP11A1, located in the inner mitochondrial membrane. Delivery of cholesterol to CYP11A1 comprises the principal control step of steroidogenesis, and requires a series of proteins spanning the mitochondrial double membranes. A critical member of this cholesterol translocation machinery is the integral outer mitochondrial membrane translocator protein (18kDa, TSPO), a high-affinity drug- and cholesterol-binding protein. The cholesterol-binding site of TSPO consists of a phylogenetically conserved cholesterol recognition/interaction amino acid consensus (CRAC). Previous studies from our group identified 5-androsten-3β,17,19-triol (19-Atriol) as drug ligand for the TSPO CRAC motif inhibiting cholesterol binding to CRAC domain and steroidogenesis. To further understand 19-Atriol's mechanism of action as well as the molecular recognition by the TSPO CRAC motif, we undertook structure-activity relationship (SAR) analysis of the 19-Atriol molecule with a variety of substituted steroids oxygenated at positions around the steroid backbone. We found that in addition to steroids hydroxylated at carbon C19, hydroxylations at C4, C7, and C11 contributed to inhibition of cAMP-mediated steroidogenesis in a minimal steroidogenic cell model. However, only substituted steroids with C19 hydroxylations exhibited specificity to TSPO, its CRAC motif, and mitochondrial cholesterol transport, as the C4, C7, and C11 hydroxylated steroids inhibited the metabolic transformation of cholesterol by CYP11A1. We thus provide new insights into structure-activity relationships of steroids inhibiting mitochondrial cholesterol transport and steroidogenic cholesterol metabolic enzymes.

  12. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  13. Development and validation of quantitative structure-activity relationship models for compounds acting on serotoninergic receptors.

    PubMed

    Zydek, Grażyna; Brzezińska, Elżbieta

    2012-01-01

    A quantitative structure-activity relationship (QSAR) study has been made on 20 compounds with serotonin (5-HT) receptor affinity. Thin-layer chromatographic (TLC) data and physicochemical parameters were applied in this study. RP2 TLC 60F(254) plates (silanized) impregnated with solutions of propionic acid, ethylbenzene, 4-ethylphenol, and propionamide (used as analogues of the key receptor amino acids) and their mixtures (denoted as S1-S7 biochromatographic models) were used in two developing phases as a model of drug-5-HT receptor interaction. The semiempirical method AM1 (HyperChem v. 7.0 program) and ACD/Labs v. 8.0 program were employed to calculate a set of physicochemical parameters for the investigated compounds. Correlation and multiple linear regression analysis were used to search for the best QSAR equations. The correlations obtained for the compounds studied represent their interactions with the proposed biochromatographic models. The good multivariate relationships (R(2) = 0.78-0.84) obtained by means of regression analysis can be used for predicting the quantitative effect of biological activity of different compounds with 5-HT receptor affinity. "Leave-one-out" (LOO) and "leave-N-out" (LNO) cross-validation methods were used to judge the predictive power of final regression equations.

  14. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-04

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  15. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test

    SciTech Connect

    Schueuermann, G.; Somashekar, R.K.; Kristen, U.

    1996-10-01

    Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tube growth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolute sensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure-activity relationships using lipophilicity (log K{sub ow}), acidity (pK{sub a}), and quantum chemical parameters to model intrinsic acidity, solvation interactions, and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotic-type relationship is derived, which, however, shows marked differences in slope and intercept when compared to reference regression equations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action: oxidative uncoupling activity is associated with a pK{sub a} window from 3.8 to 8.5, and more acidic congeners with diortho-substitution show a transition from uncoupling to a narcotic mode of action with decreasing pK{sub a} and log K{sub ow}. Model calculations for phenol nucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds.

  16. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics.

  17. Plasma Protein Binding Structure-Activity Relationships Related to the N-Terminus of Daptomycin.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Han, Meiling; Zhu, Yan; Nang, Sue; Khoo, Keith K; Mak, Johnson; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2017-03-10

    Daptomycin is a lipopeptide antibiotic that is highly bound to plasma proteins. To date, the plasma components and structure-activity relationships responsible for the plasma protein binding profile of daptomycin remain uncharacterized. In the present study we have employed a surface plasmon resonance assay together with molecular docking techniques to investigate the plasma protein binding structure-activity relationships related to the N-terminal fatty acyl of daptomycin. Three compounds were investigated: (1) native daptomycin, which displays an N-terminal n-decanoyl fatty acid side chain, and two analogues with modifications to the N-terminal fatty acyl chain; (2) des-acyl daptomycin; and (3) acetyl-daptomycin. The surface plasmon resonance (SPR) data showed that the binding profile of native daptomycin was in the rank order human serum albumin (HSA) ≫ α-1-antitrypsin > low-density lipoprotein ≥ hemoglobin > sex hormone binding globulin > α-1-acid-glycoprotein (AGP) > hemopexin > fibrinogen > α-2-macroglobulin > β2-microglobulin > high-density lipoprotein > fibronectin > haptoglobulin > transferrin > immunoglobulin G. Notably, binding to fatty acid free HSA was greater than binding to nondelipidated HSA. SPR and ultrafiltration studies also indicated that physiological concentrations of calcium increase binding of daptomycin and acetyl-daptomycin to HSA and AGP. A molecular model of the daptomycin-human serum albumin A complex is presented that illustrates the pivotal role of the N-terminal fatty acyl chain of daptomycin for binding to drug site 1 of HSA. In proof-of-concept, the capacity of physiological cocktails of the identified plasma proteins to inhibit the antibacterial activity of daptomycin was assessed with in vitro microbiological assays. We show that HSA, α-1-antitrypsin, low-density lipoprotein, sex hormone binding globulin, α-1-acid-glycoprotein, and hemopexin are responsible for the majority of the sequestering activity in human plasma

  18. Structure-activity relationships of receptor binding of 1,4-dihydropyridine derivatives.

    PubMed

    Takahashi, Daiki; Oyunzul, Luvsandorj; Onoue, Satomi; Ito, Yoshihiko; Uchida, Shinya; Simsek, Rahime; Gunduz, Miyase Gozde; Safak, Chiat; Yamada, Shizuo

    2008-03-01

    The present study was undertaken to investigate binding activity of synthesized 1,4-dihydropyridine (1,4-DHP) derivatives (Compounds 1--124) to 1,4-DHP calcium channel antagonist receptors in rat brain. Sixteen 1,4-DHP derivatives inhibited specific (+)-[3H]PN 200-110 binding in rat brain in a concentration-dependent manner with IC50 value of 0.43 to 3.49 microM. Scatchard analysis revealed that compounds 54, 69, 85, like nifedipine, caused a significant increase in apparent dissociation constant (Kd) for (+)-[3H]PN 200-110, while compounds 68, 69 and 80 caused a significant decrease in maximal number of bindings sites (Bmax). These data suggest that compounds 68, 69 and 80 exert longer-acting antagonistic effects of 1,4-DHP receptors than compounds 54, 69 and 85. The structure-activity relationship study has revealed that 1) ester groups in 3- and 5-positions are the most effective, 2) the aryl group in the 4-position of 1,4-DHP ring is the basic requirement for optimal activity, 3) position and type of electron-withdrawing groups on phenyl group at position 4 would affect the receptor-binding activity. Furthermore, compound 58 exerted alpha1 receptor binding activity, being 1.6 times greater than 1,4-DHP receptors. Compounds 81, 84, 91, 94, 106, 108 and 109 showed significant binding of ATP-sensitive potassium (K ATP) channel, and the binding activities of compounds 81, 84, 108 and 109 were 1.6--3.8 times greater than the binding activity for 1,4-DHP receptors. Compounds 91 and 106 had similar binding activity for K ATP channel and 1,4-DHP receptors. In conclusion, the present study has shown that novel 1,4-DHP derivatives exert relatively high binding affinity to 1,4-DHP receptors and has revealed new aspect of structure-activity relationships of 1,4-DHP derivatives, especially hexahydroquinoline derivatives.

  19. Quantifying the fingerprint descriptor dependence of structure-activity relationship information on a large scale.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2013-09-23

    It is well-known that different molecular representations, e.g., graphs, numerical descriptors, fingerprints, or 3D models, change the numerical results of molecular similarity calculations. Because the assessment of structure-activity relationships (SARs) requires similarity and potency comparisons of active compounds, this representation dependence inevitably also affects SAR analysis. But to what extent? How exactly does SAR information change when alternative fingerprints are used as descriptors? What is the proportion of active compounds with substantial changes in SAR information induced by different fingerprints? To provide answers to these questions, we have quantified changes in SAR information across many different compound classes using six different fingerprints. SAR profiling was carried out on 128 target-based data sets comprising more than 60,000 compounds with high-confidence activity annotations. A numerical measure of SAR discontinuity was applied to assess SAR information on a per compound basis. For ~70% of all test compounds, changes in SAR characteristics were detected when different fingerprints were used as molecular representations. Moreover, the SAR phenotype of ~30% of the compounds changed, and distinct fingerprint-dependent local SAR environments were detected. The fingerprints we compared were found to generate SAR models that were essentially not comparable. Atom environment and pharmacophore fingerprints produced the largest differences in compound-associated SAR information. Taken together, the results of our systematic analysis reveal larger fingerprint-dependent changes in compound-associated SAR information than would have been anticipated.

  20. Synthesis and structure-activity relationship of oleanolic mono- or di-glycosides against Magnaporthe oryzae.

    PubMed

    Huo, G; Liu, C; Hui, Y; Chen, X; Xiao, D

    2016-09-23

    Saponins are naturally-occurring units with broad diversity and are usually recognized as phytoanticipins. In order to develop new saponin chemical entities with high activity against Magnaporthe oryzae, we selected oleanolic acid (OA), which has wide natural distribution and rich content in plants. We used the ability of OA to act as an aglycone for glycosylation to obtain information on the structure-activity relationship (SAR) for rational molecular pesticide design. Oleanolic mono- or di-glycosides were synthesized at either the C3-hydroxy and/or C28-carboxyl position, using trichloroacetimidate or glycosyl bromide donors, respectively. Structures were confirmed by [(1)H]-,[(13)C]-NMR. Furthermore, the activity of the synthesized glycosides against M. oryzae was assessed in vitro, based on the mycelium growth rate. The twenty five oleanolic mono- or di-glycosides comprised fourteen saponins with 3-monosaccharide residue 1a-1n, six saponins with 28-monosaccharide residue 2a-2f, and five saponins with 3, 28-monosaccharide residue 3a-3e; all showed different activities against M. oryzae according to their different structures. We concluded that the optimal oleanolic mono- and di-glycoside structure for activity against M. oryzae is a C3 connection of a hexose such as mannose, galactose, or glucose, in combination with a C28 connection to a small group such as allyl or a C3 connection to a pentose accompanied by a larger group such as another pentose or heptenyl at C28.

  1. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  2. Immunostimulation by Synthetic Lipopeptide-Based Vaccine Candidates: Structure-Activity Relationships

    PubMed Central

    Zaman, Mehfuz; Toth, Istvan

    2013-01-01

    Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting). Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signaling via Toll-like receptor 2 (TLR2). Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this mini review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems. PMID:24130558

  3. Virtual screening for environmental pollutants: structure-activity relationships applied to a database of industrial chemicals.

    PubMed

    Oberg, Tomas

    2006-04-01

    The current risk paradigm calls for individual consideration and evaluation of each separate environmental pollutant, but this does not reflect accurately the cumulative impact of anthropogenic chemicals. In the present study, previously validated structure-activity relationships were used to estimate simultaneously the baseline toxicity and atmospheric persistence of approximately 50,000 compounds. The results from this virtual screening indicate fairly stable statistical distributions among small anthropogenic compounds. The baseline toxicity was not changed much by halogen substitution, but a distinct increase seemed to occur in the environmental persistence with increased halogenation. The ratio of the atmospheric half-lives to the median lethal concentrations provides a continuous scale with which to rank and summarize the incremental environmental impacts in a mixture-exposure situation. Halogenated compounds as a group obtained a high ranking in this data set, with well-known pollutants at the very top: DDT metabolites and derivatives, polychlorinated biphenyls, diphenyl ethers and dibenzofurans, chlorinated paraffins, chlorinated benzenes and derivatives, hydrochlorofluorocarbons, and dichlorononylphenol. Environmentally friendly chemicals that obtained the lowest rank are nearly all hydroxylated and water-soluble. Virtual screening can assist with "green chemistry" in designing safe and degradable products and enable assessment of the efficiency in chemicals risk management.

  4. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship.

    PubMed

    Navarro-Retamal, Carlos; Caballero, Julio

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure-activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities.

  5. Utilization of quantitative structure-activity relationships (QSARs) in risk assessment: Alkylphenols

    SciTech Connect

    Beck, B.D.; Toole, A.P.; Callahan, B.G.; Siddhanti, S.K. )

    1991-12-01

    Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromatic ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.

  6. Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships.

    PubMed

    Amico, Vincenzo; Barresi, Vincenza; Condorelli, Daniele; Spatafora, Carmela; Tringali, Corrado

    2006-02-08

    Bioassay-guided fractionation of the EtOAc crude extract from Sicilian almond hulls, a waste material from Prunus dulcis crop, allowed identification of 10 constituents, isolated as pure compounds (1-5, 7, and 10) or unseparable mixtures (5 + 6 and 8 + 9). All compounds were subjected to spectroscopic analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide bioassay on MCF-7 human breast cancer cells. In addition to the main components oleanolic (1), ursolic (2), and betulinic (3) acids, the 2-hydroxy analogues alphitolic (4), corosolic (5), and maslinic (6) acids, as well as the related aldehydes, namely, betulinic (7), oleanolic (8), and ursolic (9), were identified. From a more polar fraction, the beta-sitosterol 3-O-glucoside (10) was also identified. A sample of commercially available betulin (11) was also included in bioassays as further support to a structure-activity relationship study. Betulinic acid showed antiproliferative activity toward MCF-7 cells (GI50 = 0.27 microM), higher than the anticancer drug 5-fluorouracil.

  7. Structure-activity relationship studies of flavonol analogues on pollen germination.

    PubMed

    Forbes, Alaina M; Meier, G Patrick; Haendiges, Stacey; Taylor, Loverine P

    2014-03-12

    Flavonoids are polyphenolic compounds required in the fertilization process in many, if not all, plants. However, the exact biological mechanism(s) and the interacting proteins are unknown. To determine the characteristics important in activating or inhibiting the pollination sequence, a structure-activity relationship analysis of natural and synthetic flavonols was conducted. Flavonol analogues were synthesized through a modified "one-pot" procedure that utilized a Baker-Venkataraman type rearrangement and a Suzuki-Miyaura cross-coupling of a halo-flavonol with an organotrifluoroborate. Of the flavonols tested, kaempferol was the only compound to act as a full agonist. The other smaller, less sterically hindered flavonols (galangin, kaempferide, and 4'-methyl flavonol) acted as partial agonists. Larger more hydrophobic flavonol analogues (3'- and 4'-benzoyl, 3'- and 4'-phenyl, and 3'- and 4'-iodo flavonols) had minimal or no agonist activity. Competition assays between kaempferol and these minimally activating flavonols showed that these analogues inhibited the action of kaempferol in a manner consistent with noncompetitive antagonism. The results suggest that steric hindrance is the most important factor in determining a good agonist. Hydrogen bonding also had a positive effect as long as the substituent did not cause any steric hindrance.

  8. Design, synthesis, and structure-activity relationship studies of a potent PACE4 inhibitor.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Desjardins, Roxane; Beauchemin, Sophie; Prahl, Adam; Lammek, Bernard; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2014-01-09

    PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through detailed structure-activity relationship studies. A variety of ML-peptide analogues modified at the P8-P5 positions with leucine isomers (Nle, DLeu, and DNle) or substituted at the P1 position with arginine mimetics were tested for their inhibitory activity, specificity, stability, and antiproliferative effect. By incorporating d isomers at the P8 position or a decarboxylated arginine mimetic, we obtained analogues with an improved stability profile and excellent antiproliferative properties. The DLeu or DNle residue also has improved specificity toward PACE4, whereas specificity was reduced for a peptide modified with the arginine mimetic, such as 4-amidinobenzylamide.

  9. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    PubMed

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds.

  10. Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    PubMed Central

    de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.

    2013-01-01

    The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 μg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152

  11. Macrocyclic inhibitors for peptide deformylase: a structure-activity relationship study of the ring size.

    PubMed

    Hu, Xubo; Nguyen, Kiet T; Jiang, Vernon C; Lofland, Denene; Moser, Heinz E; Pei, Dehua

    2004-09-23

    Peptide deformylase (PDF) catalyzes the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria. Its essential role in bacterial cells but not in mammalian cells makes it an attractive target for antibacterial drug design. We have previously reported an N-formylhydroxylamine-based, metal-chelating macrocyclic PDF inhibitor, in which the P(1)' and P(3)' side chains are covalently joined. In this work, we have carried out a structure-activity relationship study on the size of the macrocycle and found that 15-17-membered macrocycles are optimal for binding to the PDF active site. Unlike the acyclic compounds, which are simple competitive inhibitors, the cyclic compounds all act as slow-binding inhibitors. As compared to their acyclic counterparts, the cyclic inhibitors displayed 20-50-fold higher potency against the PDF active site (K(I) as low as 70 pM), improved selectivity toward PDF, and improved the metabolic stability in rat plasma. Some of the macrocyclic inhibitors had potent, broad spectrum antibacterial activity against clinically significant Gram-positive and Gram-negative pathogens. These results suggest that the macrocyclic scaffold provides an excellent lead for the development of a new class of antibiotics.

  12. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

    PubMed Central

    Zarghi, Afshin; Arfaei, Sara

    2011-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the undesired side effects arise from inhibition of COX-1 activity. Thus, it was though that more selective COX-2 inhibitors would have reduced side effects. Based upon a number of selective COX-2 inhibitors (rofecoxib, celecoxib, valdecoxibetc.) were developed as safer NSAIDs with improved gastric safety profile. However, the recent market removal of some COXIBs such as rofecoxib due to its adverse cardiovascular side effects clearly encourages the researchers to explore and evaluate alternative templates with COX-2 inhibitory activity. Recognition of new avenues for selective COX-2 inhibitors in cancer chemotherapy and neurological diseases such as Parkinson and Alzheimer’s diseases still continues to attract investigations on the development of COX-2 inhibitors. This review highlights the various structural classes of selective COX-2 inhibitors with special emphasis on their structure-activity relationships. PMID:24250402

  13. Introducing Spectral Structure Activity Relationship (S-SAR) Analysis. Application to Ecotoxicology

    PubMed Central

    Putz, Mihai V.; Lacrămă, Ana-Maria

    2007-01-01

    A novel quantitative structure-activity (property) relationship model, namely Spectral-SAR, is presented in an exclusive algebraic way replacing the old-fashioned multi-regression one. The actual S-SAR method interprets structural descriptors as vectors in a generic data space that is further mapped into a full orthogonal space by means of the Gram-Schmidt algorithm. Then, by coordinated transformation between the data and orthogonal spaces, the S-SAR equation is given under simple determinant form for any chemical-biological interactions under study. While proving to give the same analytical equation and correlation results with standard multivariate statistics, the actual S-SAR frame allows the introduction of the spectral norm as a valid substitute for the correlation factor, while also having the advantage to design the various related SAR models through the introduced “minimal spectral path” rule. An application is given performing a complete S-SAR analysis upon the Tetrahymena pyriformis ciliate species employing its reported eco-toxicity activities among relevant classes of xenobiotics. By representing the spectral norm of the endpoint models against the concerned structural coordinates, the obtained S-SAR endpoints hierarchy scheme opens the perspective to further design the ecotoxicological test batteries with organisms from different species.

  14. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs.

    PubMed

    Caruso, Enrico; Gariboldi, Marzia; Sangion, Alessandro; Gramatica, Paola; Banfi, Stefano

    2017-02-01

    Here we report the synthesis of eleven new BODIPYs (14-24) characterized by the presence of an aromatic ring on the 8 (meso) position and of iodine atoms on the pyrrolic 2,6 positions. These molecules, together with twelve BODIPYs already reported by us (1-12), represent a large panel of BODIPYs showing different atoms or groups as substituent of the aromatic moiety. Two physico-chemical features ((1)O2 generation rate and lipophilicity), which can play a fundamental role in the outcome as photosensitizers, have been studied. The in vitro photo-induced cell-killing efficacy of 23 PSs was studied on the SKOV3 cell line treating the cells for 24h in the dark then irradiating for 2h with a green LED device (fluence 25.2J/cm(2)). The cell-killing efficacy was assessed with the MTT test and compared with that one of meso un-substituted compound (13). In order to understand the possible effect of the substituents, a predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, was developed. The results clearly indicate that the presence of an aromatic ring is fundamental for an excellent photodynamic response, whereas the electronic effects and the position of the substituents on the aromatic ring do not influence the photodynamic efficacy.

  15. A Combined Quantitative Structure-Activity Relationship Research of Quinolinone Derivatives as Androgen Receptor Antagonists.

    PubMed

    Wang, Yuwei; Bai, Fang; Cao, Hong; Li, Jiazhong; Liu, Huanxiang; Gramatica, Paola

    2015-01-01

    Antiandrogens bicalutamide, flutamide and enzalutamide etc. have been used in clinical trials to treat prostate cancer by binding to and antagonizing androgen receptor (AR). Although initially effective, the drug resistance problem will emerge eventually, which results in a high medical need for novel AR antagonist exploitation. Here in this work, to facilitate the rational design of novel AR antagonists, we studied the structure-activity relationships of a series of 2-quinolinone derivatives and investigated the structural requirements for their antiandrogenic activities. Different modeling methods, including 2D MLR, 3D CoMFA and CoMSIA, were implemented to evolve QSAR models. All these models, thoroughly validated, demonstrated satisfactory results especially for the good predictive abilities. The contour maps from 3D CoMFA and CoMSIA models provide visualized explanation of key structural characteristics relevant to the antiandrogenic activities, which is summarized to a position-specific conclusion at the end. The obtained results from this research are practically useful for rational design and screening of promising chemicals with high antiandrogenic activities.

  16. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    PubMed

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  17. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.

    PubMed

    Kato, Atsushi; Nasu, Norio; Takebayashi, Kenji; Adachi, Isao; Minami, Yasuhiro; Sanae, Fujiko; Asano, Naoki; Watson, Alison A; Nash, Robert J

    2008-06-25

    Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.

  18. Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure-activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Jukić, Marijana; Rastija, Vesna; Opačak-Bernardi, Teuta; Stolić, Ivana; Krstulović, Luka; Bajić, Miroslav; Glavaš-Obrovac, Ljubica

    2017-04-01

    The aim of this study was to evaluate nine newly synthesized amidine derivatives of 3,4- ethylenedioxythiophene (3,4-EDOT) for their cytotoxic activity against a panel of human cancer cell lines and to perform a quantitative structure-activity relationship (QSAR) analysis for the antitumor activity of a total of 27 3,4-ethylenedioxythiophene derivatives. Induction of apoptosis was investigated on the selected compounds, along with delivery options for the optimization of activity. The best obtained QSAR models include the following group of descriptors: BCUT, WHIM, 2D autocorrelations, 3D-MoRSE, GETAWAY descriptors, 2D frequency fingerprint and information indices. Obtained QSAR models should be relieved in elucidation of important physicochemical and structural requirements for this biological activity. Highly potent molecules have a symmetrical arrangement of substituents along the x axis, high frequency of distance between N and O atoms at topological distance 9, as well as between C and N atoms at topological distance 10, and more C atoms located at topological distances 6 and 3. Based on the conclusion given in the QSAR analysis, a new compound with possible great activity was proposed.

  19. Structure-activity relationships of resveratrol and derivatives in breast cancer cells.

    PubMed

    Lappano, Rosamaria; Rosano, Camillo; Madeo, Antonio; Albanito, Lidia; Plastina, Pierluigi; Gabriele, Bartolo; Forti, Luca; Stivala, Lucia Anna; Iacopetta, Domenico; Dolce, Vincenza; Andò, Sebastiano; Pezzi, Vincenzo; Maggiolini, Marcello

    2009-07-01

    Resveratrol (RSV) is classified as a phytoestrogen due to its ability to interact with estrogen receptors (ERs). We assessed structure-activity relationships of RSV and the analogs 4,4'-dihydroxystilbene (4,4'-DHS), 3,5-dihydroxystilbene (3,5-DHS), 3,4'-dihydroxystilbene (3,4'-DHS), 4-hydroxystilbene (4-HS) using as model systems the ERalpha-positive and negative MCF7 and SkBr3 breast cancer cells, respectively. In binding assays and transfection experiments RSV and the analogs showed the following order of agonism for ERalpha: 3,4'-DHS > 4,4'-DHS > 4-HS > RSV, while 3,5-DHS did not elicit any ligand properties. Computational docking analysis and real-time PCR revealed for each analog a distinct ERalpha binding orientation and estrogen target gene expression profile. Interestingly, the aforementioned order of ligand activity was confirmed in proliferation assays which also showed the lack of growth stimulation by 3,5-DHS. Our data suggest that subtle changes in the structure of the RSV derivatives examined may be responsible for the different ERalpha-mediated biological responses observed in estrogen-sensitive cancer cells.

  20. Biocidal Compounds from Mentha sp. Essential Oils and Their Structure-Activity Relationships.

    PubMed

    Kimbaris, Athanasios C; González-Coloma, Azucena; Andrés, Maria Fe; Vidali, Veroniki P; Polissiou, Moschos G; Santana-Méridas, Omar

    2017-03-01

    Essential oils from Greek Mentha species showed different chemical compositions for two populations of M. pulegium, characterized by piperitone and pulegone. Mentha spicata essential oil was characterized by endocyclic piperitenone epoxide, piperitone epoxide, and carvone. The bioactivities of these essential oils and their components have been tested against insect pests (Leptinotarsa decemlineata, Spodoptera littoralis and Myzus persicae), root-knot nematodes (Meloydogine javanica) and plants (Lactuca sativa, Lolium perenne, Solanum lycopersicum). The structure-activity relationships of these compounds have been studied including semi-synthetic endocyclic trans-carvone epoxide, exocyclic carvone epoxide, a new exocyclic piperitenone epoxide and trans-pulegone epoxide. Leptinotarsa decemlineata feeding was affected by piperitenone and piperitone epoxide. Spodoptera littoralis was affected by piperitone epoxide and pulegone. The strongest nematicidal agent was piperitenone epoxide, followed by piperitone epoxide, piperitenone and carvone. Germination of S. lycopersicum and L. perenne was significantly affected by piperitenone epoxide. This compound and carvone epoxide inhibited L. perenne root and leaf growth. Piperitenone epoxide also inhibited the root growth of S. lycopersicum. The presence of a C(1) epoxide resulted in strong antifeedant, nematicidal and phytotoxic compounds regardless of the C(4) substituent. New natural crop protectants could be developed through appropriate structural modifications in the p-menthane skeleton.

  1. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-07-25

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents.

  2. Structure- and ligand-based structure-activity relationships for a series of inhibitors of aldolase.

    PubMed

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2012-12-01

    Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r²=0.98 and q²=0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pKi values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.

  3. Quantitative structure-activity relationship of organophosphate compounds based on molecular interaction fields descriptors.

    PubMed

    Zhao, Jinsong; Yu, Shuxia

    2013-03-01

    By using multi-block partial least-squares (MBPLS) method, quantitative structure-activity relationship (QSAR) between 35 organophosphate compounds (OP) and their 24h acute toxicities towards the housefly (Musca nebulo L.) was built on the molecular interaction fields (MIF) descriptors, which were obtained with O, N and DRY as probes, and then normalised with block unscaled weights (BUW) technique. The best QSAR model had 8 principal components, with the coefficient of determination R(2)=0.995 and that of leave-one-out cross-validation Q(2)=0.865, and the corresponding standard deviation of error 0.076 and 0.361, respectively. Block importance in the prediction (BIP) for O, N and DRY probe were 1.030, 0.962 and 1.007, respectively. Contour map of variable coefficients showed that hydrogen bonding between the O atom in PO and the NH groups in acetylcholinesterase (AChE) played an important role in the interaction between OP and AChE. Meanwhile, the hydrophobicity of OP also had significant contribution. QSAR based on the MIF descriptors could be a potential means to interpret the mechanisms of ligand-receptor interaction when the receptor was well known.

  4. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).

    PubMed

    Bujak, Renata; Struck-Lewicka, Wiktoria; Kaliszan, Michał; Kaliszan, Roman; Markuszewski, Michał J

    2015-04-10

    The goal of the present paper was to develop a quantitative structure-activity relationship (QSAR) method using a simple statistical approach, such as multiple linear regression (MLR) for predicting the blood-brain barrier (BBB) permeability of chemical compounds. The "best" MLR models, comprised logP and either molecular mass (M) or isolated atomic energy (E(isol)), tested on a structurally diverse set of 66 compounds, is characterized the by correlation coefficients (R) around 0.8. The obtained models were validated using leave-one-out (LOO) cross-validation technique and the correlation coefficient of leave-one-out- R(LOO)(2) (Q(2)) was at least 0.6. Analysis of a case from legal medicine demonstrated informative value of our QSAR model. To best authors' knowledge the present study is a first application of the developed QSAR models of BBB permeability to case from the legal medicine. Our data indicate that molecular energy-related descriptors, in combination with the well-known descriptors of lipophilicity may have a supportive value in predicting blood-brain distribution, which is of utmost importance in drug development and toxicological studies.

  5. Quantitative structure-activity relationships of imidazole-containing farnesyltransferase inhibitors using different chemometric methods.

    PubMed

    Shayanfar, Ali; Ghasemi, Saeed; Soltani, Somaieh; Asadpour-Zeynali, Karim; Doerksen, Robert J; Jouyban, Abolghasem

    2013-05-01

    Farnesyltranseferase inhibitors (FTIs) are one of the most promising classes of anticancer agents, but though some compounds in this category are in clinical trials there are no marketed drugs in this class yet. Quantitative structure activity relationship (QSAR) models can be used for predicting the activity of FTI candidates in early stages of drug discovery. In this study 192 imidazole-containing FTIs were obtained from the literature, structures of the molecules were optimized using Hyperchem software, and molecular descriptors were calculated using Dragon software. The most suitable descriptors were selected using genetic algorithms-partial least squares (GA-PLS) and stepwise regression, and indicated that the volume, shape and polarity of the FTIs are important for their activities. 2D-QSAR models were prepared using both linear methods, i.e., multiple linear regression (MLR), and non-linear methods, i.e., artificial neural networks (ANN) and support vector machines (SVM). The proposed QSAR models were validated using internal and external validation methods. The results show that the proposed 2D-QSAR models are valid and that they can be applied to predict the activities of imidazole-containing FTIs. The prediction capability of the 2D-QSAR (linear and non-linear) models is comparable to and somewhat better than that of previous 3D-QSAR models and the non-linear models are more accurate than the linear models.

  6. Structure-Activity Relationships in Salinomycin: Cytotoxicity and Phenotype Selectivity of Semi-synthetic Derivatives.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Hegardt, Cecilia; Oredsson, Stina; Strand, Daniel

    2017-02-10

    The ionophore salinomycin has attracted attention for its exceptional ability to selectively reduce the proportion of cells with stem-like properties in cancer cell populations of varying origin. Targeting the tumorigenicity of such cells is of interest as they are implicated in recurrence, metastasis, and drug resistance. Structural derivatives of salinomycin are thus sought after, both as tools for probing the molecular mechanism(s) underlying the observed phenotype effects, and for improving selectivity and activity against cancer stem cells. Synthetic strategies for modification of each of the directly accessible functional groups of salinomycin are presented and the resulting library of analogues was investigated to establish structure-activity relationships, both with respect to cytotoxicity and phenotype selectivity in breast cancer cells. 20-O-Acylated derivatives stand out by exhibiting both improved selectivity and activity. Mechanistically, the importance of the ionophore properties of salinomycin is highlighted by a significant loss of activity by modifications directly interfering with either of the two primary ion coordinating motifs in salinomycin, the C11 ketone and the C1 carboxylate.

  7. Structure-Activity Relationship of a U-Type Antimicrobial Microemulsion System

    PubMed Central

    Zhang, Hui; Taxipalati, Maierhaba; Yu, Liyi; Que, Fei; Feng, Fengqin

    2013-01-01

    The structure-activity relationship of a U-type antimicrobial microemulsion system containing glycerol monolaurate and ethanol at a 1∶1 mass ratio as oil phase and Tween 20 as surfactant were investigated along a water dilution line at a ratio of 80∶20 mass% surfactant/oil phase, based on a pseudo-ternary phase diagram. The differential scanning calorimetry results showed that in the region of up to 33% water, all water molecules are confined to the hydrophilic core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, and transforms into bicontinuous in the region of 33–39% water, and finally the microemulsion become o/w in the region of above 39% water. The microstructure characterization was confirmed by the dynamic light scattering measurements and freeze-fracture transmission electron microscope observation. The antimicrobial activity assay using kinetics of killing analysis demonstrated that the microemulsions in w/o regions exhibited relatively high antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the antimicrobial oil phase as the continuous phase, while the antimicrobial activity started to decrease when the microemulsions entered the bicontinuous region, and decreased rapidly as the water content increased in the o/w region, as a result of the dilution of antimicrobial oil droplets in the aqueous continuous phase. PMID:24204605

  8. Structure-activity relationship of a u-type antimicrobial microemulsion system.

    PubMed

    Zhang, Hui; Taxipalati, Maierhaba; Yu, Liyi; Que, Fei; Feng, Fengqin

    2013-01-01

    The structure-activity relationship of a U-type antimicrobial microemulsion system containing glycerol monolaurate and ethanol at a 1∶1 mass ratio as oil phase and Tween 20 as surfactant were investigated along a water dilution line at a ratio of 80∶20 mass% surfactant/oil phase, based on a pseudo-ternary phase diagram. The differential scanning calorimetry results showed that in the region of up to 33% water, all water molecules are confined to the hydrophilic core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, and transforms into bicontinuous in the region of 33-39% water, and finally the microemulsion become o/w in the region of above 39% water. The microstructure characterization was confirmed by the dynamic light scattering measurements and freeze-fracture transmission electron microscope observation. The antimicrobial activity assay using kinetics of killing analysis demonstrated that the microemulsions in w/o regions exhibited relatively high antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the antimicrobial oil phase as the continuous phase, while the antimicrobial activity started to decrease when the microemulsions entered the bicontinuous region, and decreased rapidly as the water content increased in the o/w region, as a result of the dilution of antimicrobial oil droplets in the aqueous continuous phase.

  9. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents.

    PubMed

    Jadhavar, Pradeep S; Dhameliya, Tejas M; Vaja, Maulikkumar D; Kumar, Dinesh; Sridevi, Jonnalagadda Padma; Yogeeswari, Perumal; Sriram, Dharmarajan; Chakraborti, Asit K

    2016-06-01

    2-Styrylquinazolones are reported as a novel class of potent anti-mycobacterial agents. Forty-six target compounds have been synthesized using one pot reaction involving isatoic anhydride, amine, and triethyl orthoacetate followed by aldehyde to construct the 2-styrylquinazolone scaffold. The anti-mycobacterial potency of the compounds was determined against H37Rv strain. Twenty-six compounds exhibited anti-Mtb activity in the range of 0.40-6.25μg/mL. Three compounds 8c, 8d and 8ab showed MIC of 0.78μg/mL and were found to be non-toxic (<50% inhibition at 50μg/mL) to HEK 293T cell lines with the therapeutic index >64. The most potent compound 8ar showed MIC of 0.40μg/mL with the therapeutic index >125. An early structure activity relationship for this class of compounds has been established. The computational studies indicate the possibility of these compounds binding to the penicillin binding proteins (PBPs).

  10. Antimalarial activity of molecules interfering with Plasmodium falciparum phospholipid metabolism. Structure-activity relationship analysis.

    PubMed

    Calas, M; Cordina, G; Bompart, J; Ben Bari, M; Jei, T; Ancelin, M L; Vial, H

    1997-10-24

    A series of 80 compounds, primary, secondary, and tertiary amines and quaternary ammonium and bisammonium salts, most of them synthesized as potential choline or ethanolamine analogs, were tested against the in vitro growth of Plasmodium falciparum, the human malaria parasite. They were active over the 10(-3)-10(-8) M concentration range. A structure-activity relationship study was carried out using autocorrelation vectors as structural descriptors, and multidimensional analysis. Principal component analysis, ascending hierarchical classification, and stepwise discriminant analysis showed that both the size and shape of the molecule were essential for antimalarial potency, making the lipophilicity and electronegativity distribution in the molecular space essential. Using the autocorrelogram describing the molecular shape and the electronegativity distribution on the molecular graph, 98% of the molecules were correctly classified either as poorly active or active with only three explanatory variables. The most active compounds were quaternary ammoniums salts whose nitrogen atom had only one long lipophilic chain of 11 or 12 methylene groups (E5, E6, E10, E13, E20, E21, E22, E23, F4, F8), or the bisammoniums whose polar heads were linked by linear alkyl chains of 10 to 12 carbon atoms (G4, G23). The hydroxyethyl group of choline was not very beneficial, whereas the charge and substitutions of nitrogen (aimed at increasing lipophilicity) were essential for optimal interactions. A crude topographic model of the ligand (choline) binding site was thus drawn up.

  11. Quantitative structure-activity relationship analysis of β-amyloid aggregation inhibitors

    NASA Astrophysics Data System (ADS)

    Stempler, Shiri; Levy-Sakin, Michal; Frydman-Marom, Anat; Amir, Yaniv; Scherzer-Attali, Roni; Buzhansky, Ludmila; Gazit, Ehud; Senderowitz, Hanoch

    2011-02-01

    Inhibiting the aggregation process of the β-amyloid peptide is a promising strategy in treating Alzheimer's disease. In this work, we have collected a dataset of 80 small molecules with known inhibition levels and utilized them to develop two comprehensive quantitative structure-activity relationship models: a Bayesian model and a decision tree model. These models have exhibited high predictive accuracy: 87% of the training and test sets using the Bayesian model and 89 and 93% of the training and test sets, respectively, by the decision tree model. Subsequently these models were used to predict the activities of several new potential β-amyloid aggregation inhibitors and these predictions were indeed validated by in vitro experiments. Key chemical features correlated with the inhibition ability were identified. These include the electro-topological state of carbonyl groups, AlogP and the number of hydrogen bond donor groups. The results demonstrate the feasibility of the developed models as tools for rapid screening, which could help in the design of novel potential drug candidates for Alzheimer's disease.

  12. Structure-activity relationships for antibacterial to antifungal conversion of kanamycin to amphiphilic analogues.

    PubMed

    Fosso, Marina; AlFindee, Madher N; Zhang, Qian; Nziko, Vincent de Paul Nzuwah; Kawasaki, Yukie; Shrestha, Sanjib K; Bearss, Jeremiah; Gregory, Rylee; Takemoto, Jon Y; Chang, Cheng-Wei Tom

    2015-05-01

    Novel fungicides are urgently needed. It was recently reported that the attachment of an octyl group at the O-4″ position of kanamycin B converts this antibacterial aminoglycoside into a novel antifungal agent. To elucidate the structure-activity relationship (SAR) for this phenomenon, a lead compound FG03 with a hydroxyl group replacing the 3″-NH2 group of kanamycin B was synthesized. FG03's antifungal activity and synthetic scheme inspired the synthesis of a library of kanamycin B analogues alkylated at various hydroxyl groups. SAR studies of the library revealed that for antifungal activity the O-4″ position is the optimal site for attaching a linear alkyl chain and that the 3″-NH2 and 6″-OH groups of the kanamycin B parent molecule are not essential for antifungal activity. The discovery of lead compound, FG03, is an example of reviving clinically obsolete drugs like kanamycin by simple chemical modification and an alternative strategy for discovering novel antimicrobials.

  13. Applications of Systematic Molecular Scaffold Enumeration to Enrich Structure-Activity Relationship Information.

    PubMed

    Mok, N Yi; Brown, Nathan

    2017-01-23

    Establishing structure-activity relationships (SARs) in hit identification during early stage drug discovery is important in accelerating hit confirmation and expansion. We describe the development of EnCore, a systematic molecular scaffold enumeration protocol using single atom mutations, to enhance the application of objective scaffold definitions and to enrich SAR information from analysis of high-throughput screening output. A list of 43 literature medicinal chemistry compound series, each containing a minimum of 100 compounds, published in the Journal of Medicinal Chemistry was collated to validate the protocol. Analysis using the top representative Level 1 scaffolds this list of literature compound series demonstrated that EnCore could mimic the scaffold exploration conducted when establishing SAR. When EnCore was applied to analyze an HTS library containing over 200 000 compounds, we observed that over 70% of the molecular scaffolds matched extant scaffolds within the library after enumeration. In particular, over 60% of the singleton scaffolds with only one representative compound were found to have structurally related compounds after enumeration. These results illustrate the potential of EnCore to enrich SAR information. A case study using literature cyclooxygenase-2 inhibitors further demonstrates the advantage of EnCore application in establishing SAR from structurally related scaffolds. EnCore complements literature enumeration methods in enabling changes to the physicochemical properties of molecular scaffolds and structural modifications to aliphatic rings and linkers. The enumerated scaffold clusters generated would constitute a comprehensive collection of scaffolds for scaffold morphing and hopping.

  14. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  15. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses.

    PubMed

    Beck, Jeremy M; Springer, Clayton

    2014-04-28

    The concepts of activity cliffs and matched molecular pairs (MMP) are recent paradigms for analysis of data sets to identify structural changes that may be used to modify the potency of lead molecules in drug discovery projects. Analysis of MMPs was recently demonstrated as a feasible technique for quantitative structure-activity relationship (QSAR) modeling of prospective compounds. Although within a small data set, the lack of matched pairs, and the lack of knowledge about specific chemical transformations limit prospective applications. Here we present an alternative technique that determines pairwise descriptors for each matched pair and then uses a QSAR model to estimate the activity change associated with a chemical transformation. The descriptors effectively group similar transformations and incorporate information about the transformation and its local environment. Use of a transformation QSAR model allows one to estimate the activity change for novel transformations and therefore returns predictions for a larger fraction of test set compounds. Application of the proposed methodology to four public data sets results in increased model performance over a benchmark random forest and direct application of chemical transformations using QSAR-by-matched molecular pairs analysis (QSAR-by-MMPA).

  16. Red Wine Tannin Structure-Activity Relationships during Fermentation and Maceration.

    PubMed

    Yacco, Ralph S; Watrelot, Aude A; Kennedy, James A

    2016-02-03

    The correlation between tannin structure and corresponding activity was investigated by measuring the thermodynamics of interaction between tannins isolated from commercial red wine fermentations and a polystyrene divinylbenzene HPLC column. Must and/or wine samples were collected throughout fermentation/maceration from five Napa Valley wineries. By varying winery, fruit source, maceration time, and cap management practice, it was considered that a reasonably large variation in commercially relevant tannin structure would result. Tannins were isolated from samples collected using low pressure chromatography and were then characterized by gel permeation chromatography and acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis). Corresponding tannin activity was determined using HPLC by measuring the thermodynamics of interaction between isolated tannin and a polystyrene divinylbenzene HPLC column. This measurement approach was designed to determine the ability of tannins to hydrophobically interact with a hydrophobic surface. The results of this study indicate that tannin activity is primarily driven by molecular size. Compositionally, tannin activity was positively associated with seed tannins and negatively associated with skin and pigmented tannins. Although measured indirectly, the extent of tannin oxidation as determined by phloroglucinolysis conversion yield suggests that tannin oxidation at this stage of production reduces tannin activity. Based upon maceration time, this study indicates that observed increases in perceived astringency quality, if related to tannin chemistry, are driven by tannin molecular mass as opposed to pigmented tannin formation or oxidation. Overall, the results of this study give new insight into tannin structure-activity relationships which dominate during extraction.

  17. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    PubMed

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors.

  18. Natural and Synthetic Flavonoids: Structure-Activity Relationship and Chemotherapeutic Potential for the Treatment of Leukemia.

    PubMed

    Menezes, José C J M D S; Orlikova, Barbora; Morceau, Franck; Diederich, Marc

    2016-07-29

    Flavonoids and their derivatives are polyphenolic secondary metabolites with an extensive spectrum of pharmacological activities, including antioxidants, antitumor, anti-inflammatory, and antiviral activities. These flavonoids can also act as chemopreventive agents by their interaction with different proteins and can play a vital role in chemotherapy, suggesting a positive correlation between a lower risk of cancer and a flavonoid-rich diet. These agents interfere with the main hallmarks of cancer by various individual mechanisms, such as inhibition of cell growth and proliferation by arresting the cell cycle, induction of apoptosis and differentiation, or a combination of these mechanisms. This review is an effort to highlight the therapeutic potential of natural and synthetic flavonoids as anticancer agents in leukemia treatment with respect to the structure-activity relationship (SAR) and their molecular mechanisms. Induction of cell death mechanisms, production of reactive oxygen species, and drug resistance mechanisms, including p-glycoprotein efflux, are among the best-described effects triggered by the flavonoid polyphenol family.

  19. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  20. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies.

    PubMed

    Migliore, Marco; Habrant, Damien; Sasso, Oscar; Albani, Clara; Bertozzi, Sine Mandrup; Armirotti, Andrea; Piomelli, Daniele; Scarpelli, Rita

    2016-02-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) exert their pharmacological effects by inhibiting cyclooxygenase (COX)-1 and COX-2. Though widely prescribed for pain and inflammation, these agents have limited utility in chronic diseases due to serious mechanism-based adverse events such as gastrointestinal damage. Concomitant blockade of fatty acid amide hydrolase (FAAH) enhances the therapeutic effects of the NSAIDs while attenuating their propensity to cause gastrointestinal injury. This favorable interaction is attributed to the accumulation of protective FAAH substrates, such as the endocannabinoid anandamide, and suggests that agents simultaneously targeting COX and FAAH might provide an innovative strategy to combat pain and inflammation with reduced side effects. Here, we describe the rational design and structure-active relationship (SAR) properties of the first class of potent multitarget FAAH-COX inhibitors. A focused SAR exploration around the prototype 10r (ARN2508) led to the identification of achiral (18b) as well as racemic (29a-c and 29e) analogs. Absolute configurational assignment and pharmacological evaluation of single enantiomers of 10r are also presented. (S)-(+)-10r is the first highly potent and selective chiral inhibitor of FAAH-COX with marked in vivo activity, and represents a promising lead to discover novel analgesics and anti-inflammatory drugs.

  1. Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles.

    PubMed

    Argese, E; Bettiol, C; Giurin, G; Miana, P

    1999-04-01

    The toxicity of a series of chlorophenols, determined by a short-term in vitro assay utilizing mammalian submitochondrial particles, was related to the physicochemical and structural properties of these compounds. Quantitative Structure-Activity Relationships were defined by correlating EC50 values with six molecular descriptors, chosen to represent lipophilic, electronic and steric effects: the n-octanol/water partition coefficient (log Kow), the constant of Hammett (sigma sigma), the acid dissociation constant (pKa), the first order valence molecular connectivity index (1 chi v), the perimeter of the efficacious section (sigma D) and the melting point (m.p.). The results of regression analysis showed that log Kow is the most successful descriptor, indicating that the ability of chlorophenols to partition into the lipid bilayer of the mitochondrial membrane has an important role in determining their toxic effects. These results are consistent with a molecular mechanism of uncoupling action based on the chemiosmotic theory and on the protonophoric properties of chlorophenols. The quality of the QSAR models confirms the suitability of the SMP assay as a short-term prediction tool for aquatic toxicity of environmental pollutants acting on respiratory functions.

  2. Anti-proliferative activities of terpenoids isolated from Alisma orientalis and their structure-activity relationships.

    PubMed

    Xu, Wen; Li, Ting; Qiu, Jian-Fang; Wu, Shui-Sheng; Huang, Ming-Qing; Lin, Li-Gen; Zhang, Qing-Wen; Chen, Xiu-Ping; Lu, Jin-Jian

    2015-01-01

    This study aimed to isolate terpenoids from Alisma orientalis (Sam.) Juzep. and elucidate their antiproliferative activities, as well as structure-activity relationships. Fourteen protostane-type triterpenoids were isolated from the rhizome of A. orientalis. Among these triterpenoids, alisol A (1), alisol A 24-acetate (2), alisol B (3), alisol B 23-acetate (4), and alisol G (8) presented inhibitory effects on cancer cell lines tested. Compounds 3 and 4 showed the highest potential; IC50 values for HepG2, MDA-MB-231, and MCF-7 cells were 16.28, 14.47, and 6.66 μM for 3 and 18.01, 15.97, and 13.56 μM for 4, respectively. Based on these results, we concluded that the degree of C-16 oxidation and the double bond between C-13 and C-17 may be significant in anti-proliferative activities. Further study showed that 3 and 4 effectively induced apoptosis, as confirmed by flow cytometry. Increased intracellular calcium concentration and endoplasmic reticulum stress were detected after treatment with 4 in HepG2 cells. Although compounds 1 and 2 induced minimal apoptosis, they evidently delayed the G2/M phase in HepG2 cells. Further study showed that 1-4 also enhanced LC3II expression, indicating autophagy is occured.

  3. Structure-activity relationship studies on a novel family of specific HIV-1 reverse transcriptase inhibitors.

    PubMed

    Bonache, María-Cruz; Chamorro, Cristina; Lobatón, Esther; De Clercq, Erik; Balzarini, Jan; Velázquez, Sonsoles; Camarasa, María-José; San-Félix, Ana

    2003-09-01

    We have previously reported the discovery and preliminary structure-activity relationships of a new class of specific HIV-1 reverse transcriptase (RT) inhibitors whose prototype compound is the 1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3-N-[(carboxy) methyl]-thymine. In an attempt to increase the inhibitory efficacy against HIV-1 RT of this new class of nucleosides, and to further explore the structural features required for anti-HIV-1 activity, different types of modifications have been carried out on the prototype compound. These include substitution of the tert-butyldimethylsilyl groups by other liphophilic groups, replacement of the carboxy group at the N-3 position of the nucleobase by other functional groups, change in the length of the spacer between the thymine and the carboxylic acid residue and substitution of the thymine moiety by other pyrimidine (uracil, 5-ethyluracil) or purine (hypoxanthine) nucleobases. In addition, the most salient structural features of this new class of HIV-1-specific nucleosides have been incorporated into classical HIV RT nucleoside inhibitors such as ddl, AZT, d4T. Our studies demonstrate that both the carboxymethyl moiety at the nucleobase and tert-butyldimethylsilyl groups at the sugar are important structural components since deletion of either of them is detrimental to the antiviral activity.

  4. Quantitative structure-activity relationship study using refractotopological state atom index on some neonicotinoid insecticides.

    PubMed

    Debnath, Bikash; Gayen, Shovanlal; Basu, Anindya; Ghosh, Balaram; Srikanth, Kolluru; Jha, Tarun

    2004-12-01

    Importance of atom-level topological descriptors like electrotopological state atom (E-state) index in QSAR study is increasing. These descriptors help to relate structure and activity at atomic/fragmental level. In view of the earlier success of E-state index on some azidopyridinyl neonicotinoid insecticides, a relatively new atom-level topological descriptor; refractotopological state atom (R-state) index was used in this work. This was used to identify the important atoms/fragments related to dispersive/van der Waals interactions of neonicotinoids with the nicotinic acetylcholine receptor (nAChR). This study showed the structural requirements for the mammal alpha(4)beta(2) and Drosophila nAChR agonistic activity. It also revealed that substituted imine, nitromethylene at X-position were selective to the insecticidal activity. Azido substitution at pyridine ring of neonicotinoids disfavored the binding with the receptors. This study confirmed the validity of the R-state index as a new tool for quantitative structure-activity relationships. It has the ability to find out the required structural features as well as to predict the activity of the neonicotinoids.

  5. The Structure Activity Relationship of Urea Derivatives as Anti-Tuberculosis Agents

    PubMed Central

    Brown, Joshua R.; North, Elton J.; Hurdle, Julian G.; Morisseau, Christophe; Scarborough, Jerrod S.; Sun, Dianqing; Korduláková, Jana; Scherman, Michael S.; Jones, Victoria; Grzegorzewicz, Anna; Crew, Rebecca M.; Jackson, Mary; McNeil, Michael R.; Lee, Richard E.

    2011-01-01

    The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolyase enzymes. The inhibitors also showed potent inhibition of humans soluble expoxide hydrolyase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolyase inhibition towards the M. tuberculosis enzymes. PMID:21840723

  6. Structure-activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan.

    PubMed

    Zhang, Z; Till, S; Jiang, C; Knappe, S; Reutterer, S; Scheiflinger, F; Szabo, C M; Dockal, M

    2014-03-03

    Fucoidan is a highly complex sulfated polysaccharide commonly extracted from brown seaweed. In addition to their many biological activities, fucoidans have recently been demonstrated to inhibit or increase coagulation at different concentration ranges. Their structural features, i.e. molecular weight (Mw), Mw distribution, degree of sulfation, monosaccharide composition, and different linkages, are known to affect these activities. Therefore, structure-activity relationship (SAR) analysis of fucoidan is crucial for its potential use as a procoagulant. In this study, Fucus vesiculosus (F.v.) fucoidan was fractionated by charge and size as well as over- and desulfated to different degrees to yield preparations with various structural properties. The fractions' pro- and anticoagulant activities were assessed by calibrated automated thrombography (CAT) and activated partial thromboplastin time(aPTT) assays. Binding to and inhibition of the anticoagulant protein tissue factor pathway inhibitor (TFPI) and the ability to activate coagulation via the contact pathway were also investigated. This paper discusses the impact of charge density, size, and sugar composition on fucoidan's pro- and anticoagulant activities. Fucoidan requires a minimal charge density of 0.5 sulfates per sugar unit and a size of 70 sugar units to demonstrate desired procoagulant activities for improvement of haemostasis in factor VIII/factor IX-deficient plasma.

  7. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  8. Deciphering structure-activity relationships in a series of Tat/TAR inhibitors.

    PubMed

    Pascale, Lise; González, Alejandro López; Di Giorgio, Audrey; Gaysinski, Marc; Teixido Closa, Jordi; Tejedor, Roger Estrada; Azoulay, Stéphane; Patino, Nadia

    2016-11-01

    A series of pentameric "Polyamide Amino Acids" (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.

  9. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    PubMed

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors.

  10. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2013-01-01

    The inhibitory effects of dietary polyphenols against α-amylase have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of polyphenols inhibiting α-amylase. The molecular structures that influence the inhibition are the following: (1) The hydroxylation of flavonoids improved the inhibitory effect on α-amylase; (2) Presence of an unsaturated 2,3-bond in conjugation with a 4-carbonyl group has been associated with stronger inhibition; (3) The glycosylation of flavonoids decreased the inhibitory effect on α-amylase depending on the conjugation site and the class of sugar moiety; (4) The methylation and methoxylation of flavonoids obviously weakened the inhibitory effect; (5) The galloylated catechins have higher inhibition than nongalloylated catechins; the catechol-type catechins were stronger than the pyrogallol-type catechins; the inhibition activities of the catechins with 2,3-trans structure were higher than those of the catechins with 2,3-cis structure; (6) Cyanidin-3-glucoside showed higher inhibition against than cyanidin and cyanidin-3-galactoside and cyanidin-3,5-diglucoside had no inhibitory activity; (7) Ellagitannins with β-galloyl groups at glucose C-1 positions have higher inhibitory effect than the α-galloyl and nongalloyl compounds and the molecular weight of ellagitannins is not an important element.

  11. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B.

    PubMed

    Harper, Jacquie L; Khalil, Iman M; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R

    2015-08-10

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds.

  12. Structure-Activity Relationships of the Peptide Kappa Opioid Receptor Antagonist Zyklophin

    PubMed Central

    Joshi, Anand A.; Murray, Thomas F.; Aldrich, Jane V.

    2016-01-01

    The dynorphin (Dyn) A analog zyklophin ([N-benzyl-Tyr1-cyclo(D-Asp5,Dap8)]dynorphin A(1-11)NH2) is a kappa opioid receptor (KOR) selective antagonist in vitro, is active in vivo and antagonizes KOR in the CNS after systemic administration. Hence, we synthesized zyklophin analogs to explore the structure-activity relationships of this peptide. The synthesis of selected analogs required modification to introduce the N-terminal amino acid due to poor solubility and/or to avoid epimerization of this residue. Among the N-terminal modifications the N-phenethyl and the N-cyclopropylmethyl substitutions resulted in the analogs with the highest KOR affinities. Pharmacological results for the alanine-substituted analogs indicated that Phe4 and Arg6, but interestingly not the Tyr1, phenol are important for zyklophin’s KOR affinity, and Arg7 was important for KOR antagonist activity. In the GTPγS assay while all of the cyclic analogs exhibited negligible KOR efficacy, the N-phenethyl-Tyr1, N-CPM-Tyr1 and the N-benzyl-Phe1 analogs were 8- to 24-fold more potent KOR antagonists than zyklophin. PMID:26491810

  13. [Development and study of structure-activity relationship of drugs against Mycobacterium tuberculosis].

    PubMed

    Baska, Ferenc; Székely, Edina Rita; Szántai-Kis, Csaba; Bánhegyi, Péter; Hegymegi-Barakonyi, Bálint; Németh, Gábor; Breza, Nóra; Zsákai, Lilian; Greff, Zoltán; Pató, János; Kéri, György; Orfi, Lászlo

    2013-01-01

    Tuberculosis is considered to be one of the major health problem not only in the less developed countries but in the economically developed countries as well. Roughly one third of the world's population are infected with Mycobacterium tuberculosis and a significant part of them are carriers of latent tuberculosis. From ten percent of these latent infections are developing the active TB disease and fifty percent of them die from the illness without appropriate treatment. The drug-resistant Mycobacterium tuberculosis (MDR-TB, XDR-TB) and TB-HIV co-infection attracted attention to the most serious infectious disease. Inhibition of alternative signaling pathways were an important part of the research strategies for cancer and inflammatory diseases in recent years. In case of Mycobacterium tuberculosis such pathways were also identified, for example, three serine-threonine kinases (PknA, PknB, PknG) which are necessary and essential for bacterial growth. In this paper we summarize our best anti-TB active compounds, their biological effects and structure-activity relationships using in silico modeling, biochemical measurements and tests on active bacteria.

  14. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  15. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao-Feng; Zhang, Hang; Underwood, Christina R.; Harpsøe, Kasper; Gardella, Thomas J.; Wöldike, Mie F.; Mannstadt, Michael; Gloriam, David E.; Bräuner-Osborne, Hans; Strømgaard, Kristian

    2016-11-01

    G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781. The versatility of the synthetic approach also enabled the design and synthesis of ten analogues, which provided the first structure-activity relationship study for this class of compounds. Pharmacological characterization of all the compounds at Gq-, Gi- and Gs-mediated signalling provided succinct information on the structural requirements for inhibition, and demonstrated that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition.

  16. Application of quantitative structure activity relationship (QSAR) models to predict ozone toxicity in the lung.

    PubMed

    Kafoury, Ramzi M; Huang, Ming-Ju

    2005-08-01

    The sequence of events leading to ozone-induced airway inflammation is not well known. To elucidate the molecular and cellular events underlying ozone toxicity in the lung, we hypothesized that lipid ozonation products (LOPs) generated by the reaction of ozone with unsaturated fatty acids in the epithelial lining fluid and cell membranes play a key role in mediating ozone-induced airway inflammation. To test our hypothesis, we ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and generated LOPs. Confluent human bronchial epithelial cells were exposed to the derivatives of ozonized POPC-9-oxononanoyl, 9-hydroxy-9-hydroperoxynonanoyl, and 8-(5-octyl-1,2,4-trioxolan-3-yl-)octanoyl-at a concentration of 10 muM, and the activity of phospholipases A2 (PLA2), C (PLC), and D (PLD) was measured (1, 0.5, and 1 h, respectively). Quantitative structure-activity relationship (QSAR) models were utilized to predict the biological activity of LOPs in airway epithelial cells. The QSAR results showed a strong correlation between experimental and computed activity (r = 0.97, 0.98, 0.99, for PLA2, PLC, and PLD, respectively). The results indicate that QSAR models can be utilized to predict the biological activity of the various ozone-derived LOP species in the lung.

  17. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy.

    PubMed

    Paraskar, Abhimanyu S; Soni, Shivani; Chin, Kenneth T; Chaudhuri, Padmaparna; Muto, Katherine W; Berkowitz, Julia; Handlogten, Michael W; Alves, Nathan J; Bilgicer, Basar; Dinulescu, Daniela M; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-07-13

    Cisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation. We engineered a novel polymer, glucosamine-functionalized polyisobutylene-maleic acid, where platinum (Pt) can be complexed to the monomeric units using a monocarboxylato and an O --> Pt coordinate bond. We show that at a unique platinum to polymer ratio, this complex self-assembles into a nanoparticle, which releases cisplatin in a pH-dependent manner. The nanoparticles are rapidly internalized into the endolysosomal compartment of cancer cells, and exhibit an IC50 (4.25 +/- 0.16 microM) comparable to that of free cisplatin (3.87 +/- 0.37 microM), and superior to carboplatin (14.75 +/- 0.38 microM). The nanoparticles exhibited significantly improved antitumor efficacy in terms of tumor growth delay in breast and lung cancers and tumor regression in a K-ras(LSL/+)/Pten(fl/fl) ovarian cancer model. Furthermore, the nanoparticle treatment resulted in reduced systemic and nephrotoxicity, validated by decreased biodistribution of platinum to the kidney as quantified using inductively coupled plasma spectroscopy. Given the universal need for a better platinate, we anticipate this coupling of nanotechnology and structure-activity relationship to rationally reengineer cisplatin could have a major impact globally in the clinical treatment of cancer.

  18. Structure-activity relationships of pyrazole derivatives as potential therapeutics for immune thrombocytopenias.

    PubMed

    Purohit, Meena K; Chakka, Sai Kumar; Scovell, Iain; Neschadim, Anton; Bello, Angelica M; Salum, Noruê; Katsman, Yulia; Bareau, Madeleine C; Branch, Donald R; Kotra, Lakshmi P

    2014-05-01

    Idiopathic or immune thrombocytopenia (ITP) is a serious clinical disorder involving the destruction of platelets by macrophages. Small molecule therapeutics are highly sought after to ease the burden on current therapies derived from human sources. Earlier, we discovered that dimers of five-membered heterocycles exhibited potential to inhibit phagocytosis of human RBCs by macrophages. Here, we reveal a structure-activity relationship of the bis-pyrazole class of molecules with -C-C-, -C-N- and -C-O- linkers, and their evaluation as inhibitors of phagocytosis of antibody-opsonized human RBCs as potential therapeutics for ITP. We have uncovered three potential candidates, 37, 47 and 50, all carrying a different linker connecting the two pyrazole moieties. Among these compounds, hydroxypyrazole derivative 50 is the most potent compound with an IC50 of 14 ± 9 μM for inhibiting the phagocytosis of antibody-opsonized human RBCs by macrophages. None of the compounds exhibited significant potential to induce apoptosis in peripheral blood mononuclear cells (PBMCs). Current study has revealed specific functional features, such as up to 2-atom spacer arm and alkyl substitution at one of the N(1) positions of the bivalent pyrazole core to be important for the inhibitory activity.

  19. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-12-25

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.

  20. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models.

    PubMed

    Hämmerling, Frank; Ladd Effio, Christopher; Andris, Sebastian; Kittelmann, Jörg; Hubbuch, Jürgen

    2017-01-10

    Precipitation of proteins is considered to be an effective purification method for proteins and has proven its potential to replace costly chromatography processes. Besides salts and polyelectrolytes, polymers, such as polyethylene glycol (PEG), are commonly used for precipitation applications under mild conditions. Process development, however, for protein precipitation steps still is based mainly on heuristic approaches and high-throughput experimentation due to a lack of understanding of the underlying mechanisms. In this work we apply quantitative structure-activity relationships (QSARs) to model two parameters, the discontinuity point m* and the β-value, that describe the complete precipitation curve of a protein under defined conditions. The generated QSAR models are sensitive to the protein type, pH, and ionic strength. It was found that the discontinuity point m* is mainly dependent on protein molecular structure properties and electrostatic surface properties, whereas the β-value is influenced by the variance in electrostatics and hydrophobicity on the protein surface. The models for m* and the β-value exhibit a good correlation between observed and predicted data with a coefficient of determination of R(2)≥0.90 and, hence, are able to accurately predict precipitation curves for proteins. The predictive capabilities were demonstrated for a set of combinations of protein type, pH, and ionic strength not included in the generation of the models and good agreement between predicted and experimental data was achieved.

  1. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron.

    PubMed

    Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin

    2016-01-01

    Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity.

  2. Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides

    PubMed Central

    Mojsoska, Biljana; Zuckermann, Ronald N.

    2015-01-01

    The constant emergence of new bacterial strains that resist the effectiveness of marketed antimicrobials has led to an urgent demand for and intensive research on new classes of compounds to combat bacterial infections. Antimicrobial peptoids comprise one group of potential candidates for antimicrobial drug development. The present study highlights a library of 22 cationic amphipathic peptoids designed to target bacteria. All the peptoids share an overall net charge of +4 and are 8 to 9 residues long; however, the hydrophobicity and charge distribution along the abiotic backbone varied, thus allowing an examination of the structure-activity relationship within the library. In addition, the toxicity profiles of all peptoids were assessed in human red blood cells (hRBCs) and HeLa cells, revealing the low toxicity exerted by the majority of the peptoids. The structural optimization also identified two peptoid candidates, 3 and 4, with high selectivity ratios of 4 to 32 and 8 to 64, respectively, and a concentration-dependent bactericidal mode of action against Gram-negative Escherichia coli. PMID:25941221

  3. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    SciTech Connect

    J Beierlein; N Karri; A Anderson

    2011-12-31

    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  4. Quantitative Structure-Activity Relationships for the Nucleophilicity of Trivalent Boron Compounds.

    PubMed

    García-López, Diego; Cid, Jessica; Marqués, Ruben; Fernández, Elena; Carbó, Jorge J

    2017-04-11

    We describe herein the development of quantitative structure-activity relationships (QSAR) for the nucleophilicity of trivalent boron compounds covering boryl fragments bonded to alkali and alkaline-earth metals, to transition metals, and to sp(3) boron units in diboron reagents. We used the charge of the boryl fragment (q[B]) and the boron p/s population ratio (p/s) to describe the electronic structures of boryl moieties, whereas the distance-weighted volume (Vw ) descriptor was used to evaluate the steric effects. The three-term easy-to-interpret QSAR model showed statistical significance and predictive ability (r(2) =0.88, q(2) =0.83). The use of chemically meaningful descriptors has allowed identification of the factors governing the boron nucleophilicity and indicates that the most efficient nucleophiles are those with enhanced the polarization of the B-X bond towards the boron atom and reduced steric bulk. A detailed analysis of the potential energy surfaces of different types of boron substituents has provided insight into the mechanism and established an order of nucleophilicity for boron in B-X: X=Li>Cu>B(sp(3) )>Pd. Finally, we used the QSAR model to make a priori predictions of experimentally untested compounds.

  5. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3β.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3β were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3β ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSSβ leading to the identification of key molecular features that contribute to a high GSK3β inhibitory activity.

  6. Structure-activity relationships for a new family of sulfonylurea herbicides

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Guo; Li, Zheng-Ming; Ma, Ning; Wang, Bao-Lei; Jiang, Lin; Pang, Siew Siew; Lee, Yu-Ting; Guddat, Luke W.; Duggleby, Ronald G.

    2005-11-01

    Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro- N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.

  7. Fundamental Structure-Activity Relationships of Titanium Dioxide-Based Photocatalysts

    NASA Astrophysics Data System (ADS)

    Roberts, Charles A.

    Heterogeneous photocatalysis has been identified as a means of using renewable solar energy to produce the sustainable, non-carbon fuel H 2 and a variety of useful chemical intermediates. Currently, however, heterogeneous photocatalytic reactions are too inefficient to be industrially relevant and a deeper understanding of the effect of fundamental photocatalytic material properties on photoactivity is needed to further enhance the yields of desired products. In the general field of heterogeneous catalysis, structure-activity relationships aid in the rational design of improved catalysts and this ideology was applied to photocatalytic reactions over TiO2 based photocatalysts and model supported TiO2/SiO2 catalysts in this study. The model supported TiO2/SiO2 catalysts contain well-defined TiOx nanodomain structures that vary in domain size and electronic structure and greatly facilitate the determination of structure-photoactivity relationships. These catalysts were used in reactor studies during photocatalytic water splitting and cyclohexane photo-oxidation, and were monitored for production of H2 and cyclohexanone, respectively. It was found that for both reactions the trend in photoactivity for the TiOx nanodomains proceeded as: pure TiO2 (anatase) (24 nm) > TiO2 (anatase) nanoparticles (4--11 nm) > polymeric surface TiO5 (˜1 nm) > surface isolated TiO4 (˜0.4 nm). Photoluminescence (PL) spectroscopy was employed to yield insight into how exciton generation and recombination are related to TiOx domain size and, thus, to the photoactivity of the examined reactions. Transient PL decay studies determined that the larger bulk structure found in TiO 2 (anatase) nanoparticles (NPs) acts as a reservoir for excitons exhibiting slow recombination kinetics, which have an increased opportunity to participate in photochemistry at the surface active sites. The reactions were also studied using in situ attenuated total reflectance (ATR) Fourier transform infrared

  8. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396

    PubMed Central

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K.

    2016-01-01

    ABSTRACT HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation

  9. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  10. Chronological relationship between antisocial personality disorder and alcohol dependence.

    PubMed

    Bahlmann, M; Preuss, U W; Soyka, M

    2002-11-01

    Personality disorders, and particularly antisocial personality disorder (ASPD), frequently co-occur with alcohol dependence. ASPD is considered to be an important cofactor in the pathogenesis and clinical course of alcohol dependence. The chronological relationship between the onset of symptoms of ASPD and alcohol-dependence characteristics has not yet been studied in great detail and the role of ASPD in classification schemes of alcohol dependence as suggested by Cloninger and Schuckit has yet to be determined. We studied 55 alcohol-dependent patients to assess the prevalence and age at manifestation of ASPD, conduct disorder characteristics as well as alcohol dependence by employing the Semi-Structured Assessment for the Genetics of Alcoholism and the Structured Clinical Interview for DSM-III-R. Results indicate that the onset of ASPD characteristics precede that of alcohol dependence by some 4 years. This finding suggests that in patients with ASPD, alcohol dependence might be a secondary syndrome as suggested by previous research.

  11. Young People and Alcohol in Italy: An Evolving Relationship

    ERIC Educational Resources Information Center

    Beccaria, Franca; Prina, Franco

    2010-01-01

    In Italy, commonly held opinions and interpretations about the relationship between young people and alcohol are often expressed as generalizations and approximations. In order to further understanding of the relationship between young people and alcohol in contemporary Italy, we have gathered, compared and discussed all the available data, both…

  12. Synthesis, biological evaluation and structure-activity relationships of new quinoxaline derivatives as anti-Plasmodium falciparum agents.

    PubMed

    Gil, Ana; Pabón, Adriana; Galiano, Silvia; Burguete, Asunción; Pérez-Silanes, Silvia; Deharo, Eric; Monge, Antonio; Aldana, Ignacio

    2014-02-18

    We report the synthesis and antimalarial activities of eighteen quinoxaline and quinoxaline 1,4-di-N-oxide derivatives, eight of which are completely novel. Compounds 1a and 2a were the most active against Plasmodium falciparum strains. Structure-activity relationships demonstrated the importance of an enone moiety linked to the quinoxaline ring.

  13. Structure-activity relationship in binding ligands to library of artificial receptors: the search for biocompatible sensor.

    PubMed

    Frączyk, Justyna; Mrozek, Agnieszka; Kamiński, Zbigniew J

    2010-11-01

    Structure-activity relationship (SAR) analysis was applied for studies of docking of colored ligands to library of artificial receptors formed by self-assembly of N-lipidated amino acids immobilised on the cellulose support. The studies show that the binding depends mainly on the structure of amino acid fragment but influence of N-lipidic fragment is less important.

  14. Relocating alcohol advertising research: examining socially mediated relationships with alcohol.

    PubMed

    Cherrington, Jane; Chamberlain, Kerry; Grixti, Joe

    2006-03-01

    This article reviews, critiques and politicises the positivist approaches that presently dominate alcohol advertising health research, and considers the benefits of a culturalist alternative. Positivist research in this area is identified as: (1) atheoretical and methods-driven; (2) restricted in focus, leaving critical issues unconsidered; and (3) inappropriately conceptualizing the 'normal' drinking person as rational and safe. The culturist alternative proposed is argued to present a more adequate framework, which can include and address problematic issues that are presently excluded, including: the pleasures associated with alcohol use, the involvements of 'normal' people in problem drinking, the inadequacy of present risk categories and the complexities of wider mediatory processes about alcohol in society. We argue for the adoption of more informed, culturalist approaches to alcohol advertising research.

  15. Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides

    PubMed Central

    Nie, Kaiying; Wang, Zhaojing

    2016-01-01

    In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000–100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara. PMID:27685320

  16. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect

  17. [Perspective of predictive toxicity assessment of in vivo repeated dose toxicity using structural activity relationship].

    PubMed

    Ono, Atsushi

    2010-01-01

    Tens of thousands of existing chemicals have been widely used for manufacture, agriculture, household and other purposes in worldwide. Only approximately 10% of chemicals have been assessed for human health hazard. The health hazard assessment of residual large number of chemicals for which little or no information of their toxicity is available is urgently needed for public health. However, the conduct of traditional toxicity tests which involves using animals for all of these chemicals would be economically impractical and ethically unacceptable. (Quantitative) Structure-Activity Relationships [(Q)SARs] are expected as method to have the potential to estimate hazards of chemicals from their structure, while reducing time, cost and animal testing currently needed. Therefore, our studies have been focused on evaluation of available (Q)SAR systems for estimating in vivo repeated toxicity on the liver. The results from our preliminary analysis showed the distribution for LogP of the chemicals which have potential to induce liver toxicity was bell-shape and indicating the possibility to estimate liver toxicity of chemicals from their physicochemical property. We have developed (Q)SAR models to in vivo liver toxicity using three commercially available systems (DEREK, ADMEWorks and MultiCASE) as well as combinatorial use of publically available chemoinformatic tools (CDK, MOSS and WEKA). Distinct data-sets of the 28-day repeated dose toxicity test of new and existing chemicals evaluated in Japan were used for model development and performance test. The results that concordances of commercial systems and public tools were almost same which below 70% may suggest currently attainable knowledge of in silico estimation of complex biological process, though it possible to obtain complementary and enhanced performance by combining predictions from different programs. In future, the combinatorial application of in silico and in vitro tests might provide more accurate

  18. Structure-activity relationships and receptor profiles of some ocular hypotensive prostanoids.

    PubMed

    Resul, B; Stjernschantz, J; Selén, G; Bito, L

    1997-02-01

    A novel series of prostaglandin F (PGF) analogues have been prepared and evaluated in vivo and in vitro. Their intraocular pressure (IOP) lowering effects and potential side-effects, as prodrug eye drops, have been tested in cats, monkeys and rabbits. Furthermore, the PGF-analogues were tested as free acids for FP-receptor agonistic activity on cat iris sphincter. The results were compared to that of PGF2 alpha (C#1). Based on the structure-activity relationship investigations, inversion of the configuration, at carbon-9 (C#3) or carbon-11 (C#4), changes the potency and the receptor profile of PGF2 alpha. Replacement part of the omega-chain of PGF2 alpha with a benzene ring changes the potency and receptor profile of PGF2 alpha. The optimal position of the benzene ring is on carbon-17, 17-phenyl-18,19,20-trinor PGF2 alpha-isopropyl ester (C#8), and exhibited a much higher therapeutic index in the eye than PGF2 alpha or its ester. The biological activity of different substituents on the C#8 benzene ring have also been studied. Interestingly, introduction of a methyl group at positions 2 or 3 of the benzene ring (C#16 or C#17) affords compounds which are biologically more active than the methyl group at the 4-position (C#18). Furthermore, one of the analogues 13,14-dihydro-17-phenyl-18,19,20-trinor PGF2 alpha-isopropyl ester (latanoprost), has been found in clinical studies to be a highly potent and efficacious IOP-reducing agent for the treatment of glaucoma.

  19. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species.

    PubMed Central

    Tong, W; Perkins, R; Strelitz, R; Collantes, E R; Keenan, S; Welsh, W J; Branham, W S; Sheehan, D M

    1997-01-01

    The recognition of adverse effects due to environmental endocrine disruptors in humans and wildlife has focused attention on the need for predictive tools to select the most likely estrogenic chemicals from a very large number of chemicals for subsequent screening and/or testing for potential environmental toxicity. A three-dimensional quantitative structure-activity relationship (QSAR) model using comparative molecular field analysis (CoMFA) was constructed based on relative binding affinity (RBA) data from an estrogen receptor (ER) binding assay using calf uterine cytosol. The model demonstrated significant correlation of the calculated steric and electrostatic fields with RBA and yielded predictions that agreed well with experimental values over the entire range of RBA values. Analysis of the CoMFA three-dimensional contour plots revealed a consistent picture of the structural features that are largely responsible for the observed variations in RBA. Importantly, we established a correlation between the predicted RBA values for calf ER and their actual RBA values for human ER. These findings suggest a means to begin to construct a more comprehensive estrogen knowledge base by combining RBA assay data from multiple species in 3D-QSAR based predictive models, which could then be used to screen untested chemicals for their potential to bind to the ER. Another QSAR model was developed based on classical physicochemical descriptors generated using the CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) program. The predictive ability of the CoMFA model was superior to the corresponding CODESSA model. Images Figure 2. Figure 3. Figure 4. Figure 5. PMID:9353176

  20. Structure-activity relationship study on the binding of PBDEs with thyroxine transport proteins.

    PubMed

    Yang, Weihua; Shen, Shide; Mu, Lailong; Yu, Hongxia

    2011-11-01

    Molecular docking and three-dimensional quantitative structure-activity relationships (3D-QSAR) were used to develop models to predict binding affinity of polybrominated diphenyl ether (PBDE) compounds to the human transthyretin (TTR). Based on the molecular conformations derived from the molecular docking, predictive comparative molecular similarity indices analysis (CoMSIA) models were developed. The results of CoMSIA models were as follows: leave-one-out (LOO) cross-validated squared coefficient q² (LOO) = 0.827 (full model, for all 28 compounds); q² (LOO) = 0.752 (split model, for 22 compounds in the training set); leave-many-out (LMO) cross-validated squared coefficient q² (LMO, two groups) = 0.723 ± 0.100 (full model, for all 28 compounds); q² (LMO, five groups) = 0.795 ± 0.030 (full model, for all 28 compounds); and the predictive squared correlation coefficient r²(pred)  = 0.928 (for six compounds in the test set). The developed CoMSIA models can be used to infer the activities of compounds with similar structural characteristics. In addition, the interaction mechanism between hydroxylated polybrominated diphenyl ethers (HO-PBDEs) and the TTR was explored. Hydrogen bonding with amino acid residues Asp74, Ala29, and Asn27 may be an important determinant for HO-PBDEs binding to TTR. Among them, forming hydrogen bonds with amino acid residues Asp74 might exert a more important function.

  1. Structure-activity relationship of synthetic branched-chain distearoylglycerol (distearin) as protein kinase C activators

    SciTech Connect

    Zhou, Qingzhong; Raynor, R.L.; Wood, M.G. Jr.; Menger, F.M.; Kuo, J.F. )

    1988-09-20

    Several representative branched-chain analogues of distearin (DS) were synthesized and tested for their abilities to activate protein kinase C (PKC) and to compete for the binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) to the enzyme. Substitutions of stearoyl moieties at sn-1 and sn-2 with 8-methylstearate decreased activities on these parameters, relative to those of the parental diacylglycerol DS, a weak PKC activator. Substitutions with 8-butyl, 4-butyl, or 8-phenyl derivatives, on the other hand, increased activities of the resulting analogues to levels comparable to those seen for diolein (DO), a diacylglycerol prototype shown to be a potent PKC activator. Kinetic analysis indicated that 8-methyldistearin (8-MeDS) acted by decreasing, whereas 8-butyldistearin (8-BuDS) and 8-phenyldistearin (8-PhDS) acted by increasing, the affinities of PKC for phosphatidylserine (PS, a phospholipid cofactor) and Ca{sup 2+} compared to the values seen in the absence or presence of DS. The stimulatory effect of 8-BuDS and 8-PhDS on PKC, as DO, was additive to that of 1,2-(8-butyl)distearoylphosphatidylcholine (1,2(8-Bu)DSPC) and, moreover, they abolished the marked inhibition of the enzyme activity caused by high concentrations of 1,2(8-Bu)DSPC. The present findings demonstrated a structure-activity relationship of the branched-chain DS analogues in the regulation of PKC, perhaps related to their abilities to specifically modify interactions of PKC with PS and/or Ca{sup 2+} critically involved in enzyme activation/inactivation.

  2. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives.

    PubMed

    Srivastava, Sanjay K; Jha, Amrita; Agarwal, Shiv K; Mukherjee, Rama; Burman, Anand C

    2007-11-01

    The disease of cancer has been ranked second after cardiovascular diseases and plant-derived molecules have played an important role for the treatment of cancer. Nine cytotoxic plant-derived molecules such as vinblastine, vincristine, navelbine, etoposide, teniposide, taxol, taxotere, topotecan and irinotecan have been approved as anticancer drugs. Recently, epothilones are being emerging as future potential anti-tumor agents. However, targeted cancer therapy has now been rapidly expanding and small organic molecules are being exploited for this purpose. Amongst target specific small organic molecules, quinazoline was found as one of the most successful chemical class in cancer chemotherapy as three drugs namely Gefitinib, Erlotinib and Canertinib belong to this series. Now, quinazoline related chemical classes such as quinolines and naphthyridines are being exploited in cancer chemotherapy and a number of molecules such as compounds EKB-569 (52), HKI-272 (78) and SNS-595 (127a) are in different phases of clinical trials. This review presents the synthesis of quinolines and naphthyridines derivatives, screened for anticancer activity since year 2000. The synthesis of most potent derivatives in each prototype has been delineated. A brief structure activity relationship for each prototype has also been discussed. It has been observed that aniline group at C-4, aminoacrylamide substituents at C-6, cyano group at C-3 and alkoxy groups at C-7 in the quinoline ring play an important role for optimal activity. While aminopyrrolidine functionality at C-7, 2'-thiazolyl at N-1 and carboxy group at C-3 in 1,8-naphthyridine ring are essential for eliciting the cytotoxicity. This review would help the medicinal chemist to design and synthesize molecules for targeted cancer chemotherapy.

  3. Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction

    PubMed Central

    Frimayanti, Neni; Yam, Mun Li; Lee, Hong Boon; Othman, Rozana; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.

    2011-01-01

    Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r2 value, r2 (CV) value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set. PMID:22272096

  4. Structure-activity relationship of (-) mammea A/BB derivatives against Leishmania amazonensis.

    PubMed

    Brenzan, Mislaine Adriana; Nakamura, Celso Vataru; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia; Young, Maria Claudia M; Côrrea, Arlene Gonçalves; Alvim, Joel; dos Santos, Adriana Oliveira; Cortez, Diógenes Aparício Garcia

    2008-11-01

    To study the structure-activity relationship of coumarin (-) mammea A/BB isolated from the CH(2)Cl(2) extract of Calophyllum brasiliense leaves, we evaluated the antileishmanial activity of natural, synthetic and derivatives of this coumarin, against promastigote and intracellular amastigote forms of Leishmania amazonensis, and their cytotoxicity to J774G8 murine macrophages. The derivatives were obtained by hydrogenation and methoxylation reactions. The compound structures were elucidated on the basis of spectroscopic data. The compounds 5,7-dihydroxy-8-(2-methylbutanoyl)-6-(3-methylbutyl)-4-phenyl-chroman-2-one (3), 7-hydroxy-5-methoxy-8-(2-methylbutanoyl)-6-(3-methylbut-2-en-1-yl)-4-phenylcoumarin (4) and 5,7-dimethoxy-8-(1-methoxy-2-methylbutyl)-6-(3-methylbut-2-en-1-yl)-4 phenylcoumarin (6) were more biologically active than the compound (-) mammea A/BB (1) (7.4 microM), with IC(50) values from 0.9, 2.4 and 1.9 microM respectively; compound (3) displayed the highest activity. The compounds mammea B/BB (2), 5,7-dimethoxy-8-(2-methylbutanoyl)-6-(3-methylbut-2-en-1-yl)-4-phenylcoumarin (5) and 5,7-dihydroxy-4-phenylcoumarin (7) were less active than (-) mammea A/BB (1), with IC(50) of 30.1, 15.1 and 60.2 microM respectively; compound (7) showed the lowest antileishmanial activity of all. Compounds (1), (3), (4) and (6) were active not only against promastigote forms of L. amazonensis, but also against intracellular amastigote forms with IC(50) of 14.3, 0.6, 34.0 and 22.2 microM, respectively. Interestingly, compound (3) showed the most antileishmanial activity of all. This study demonstrated that several aspects of the structure were important for antileishmanial activity.

  5. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  6. Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors

    NASA Astrophysics Data System (ADS)

    Oprea, Tudor I.; García, Angel E.

    1996-06-01

    Inhibition of aromatase, a cytochrome P450 that converts androgens to estrogens, is relevant in the therapeutic control of breast cancer. We investigate this inhibition using a three-dimensional quantitative structure-activity relationship (3D QSAR) method known as Comparative Molecular Field Analysis, CoMFA [Cramer III, R.D. et al., J. Am. Chem. Soc., 110 (1988) 5959]. We analyzed the data for 50 steroid inhibitors [Numazawa, M. et al., J. Med. Chem., 37 (1994) 2198, and references cited therein] assayed against androstenedione on human placental microsomes. An initial CoMFA resulted in a three-component model for log(1/Ki), with an explained variance r2 of 0.885, and a cross-validated q2 of 0.673. Chemometric studies were performed using GOLPE [Baroni, M. et al., Quant. Struct.-Act. Relatsh., 12 (1993) 9]. The CoMFA/GOLPE model is discussed in terms of robustness, predictivity, explanatory power and simplicity. After randomized exclusion of 25 or 10 compounds (repeated 25 times), the q2 for one component was 0.62 and 0.61, respectively, while r2 was 0.674. We demonstrate that the predictive r2 based on the mean activity (Ym) of the training set is misleading, while the test set Ym-based predictive r2 index gives a more accurate estimate of external predictivity. Using CoMFA, the observed differences in aromatase inhibition among C6-substituted steroids are rationalized at the atomic level. The CoMFA fields are consistent with known, potent inhibitors of aromatase, not included in the model. When positioned in the same alignment, these compounds have distinct features that overlap with the steric and electrostatic fields obtained in the CoMFA model. The presence of two hydrophobic binding pockets near the aromatase active site is discussed: a steric bulk tolerant one, common for C4, C6-alpha and C7-alpha substitutents, and a smaller one at the C6-beta region.

  7. Ranking of hair dye substances according to predicted sensitization potency: quantitative structure-activity relationships.

    PubMed

    Søsted, H; Basketter, D A; Estrada, E; Johansen, J D; Patlewicz, G Y

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye substances registered in Europe and to provide their tonnage data. The sensitization potential of each substance was then estimated by using a quantitative structure-activity relationship (QSAR) model and the substances were ranked according to their predicted potency. A cluster analysis was performed in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization potential. Predictions for sensitization potential were made for the 229 substances that could be identified by means of a chemical structure, the majority of these hair dyes (75%) being predicted to be strong/moderate sensitizers. Only 22% were predicted to be weak sensitizers and 3% were predicted to be extremely weak or non-sensitizing. Eight of the most widely used hair dye substances were predicted to be strong/moderate sensitizers, including PPD - which is the most commonly used hair dye allergy marker in patch testing. A cluster analysis by using TOPS-MODE descriptors as inputs helped us group the hair dye substances according to their chemical similarity. This would facilitate the selection of potential substances for clinical patch testing. A patch-test series

  8. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer.

  9. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives.

    PubMed

    Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo

    2016-11-10

    Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy.

  10. Selective CB2 receptor agonists. Part 2: Structure-activity relationship studies and optimization of proline-based compounds.

    PubMed

    Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S

    2015-02-01

    Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia.

  11. Tobacco and alcohol tax relationships with suicide in Switzerland.

    PubMed

    Yamasaki, Akiko; Chinami, Masanobu; Suzuki, Masao; Kaneko, Yoshihiro; Fujita, Daisuke; Shirakawa, Taro

    2005-08-01

    Previous research has shown an empirical link between tobacco and alcohol use and suicide. If tobacco and alcohol use contribute to suicidal behaviors, then policies designed to reduce the tobacco and alcohol consumption may succeed in reducing suicides as well. To test this hypothesis, correlations for suicide rates with alcohol consumption, taxes on alcohol and tobacco in Switzerland were examined using sets of time-series data from Switzerland in 1965-1994. The tax on tobacco correlated significantly negatively with male standardized suicide rate. The tax on alcohol also correlated significantly with male standardized suicide rate in an autoregressive model. On the other hand, significant relationships with female suicide rate were not found. Policies designed to reduce tobacco consumption are consistent with a benefit of reducing suicides, particularly for men in this sample.

  12. Integration of graph theory and quantum chemistry for structure-activity relationships.

    PubMed

    Balasubramanian, K

    1994-01-01

    The objective of this article is to outline both graph-theoretically based and quantum chemically based structural indices of potential use in quantitative structure activity correlations. We consider graph-theoretical indices such as the connectivity index, topological index, Wiener index and molecular ID indices. Several structural and geometry-dependent indices can be derived from semiempirical and ab initio quantum calculations based on the charge densities, overlap matrices, frontier orbitals, molecular hardness, free valence, density matrices, quantum spectral difference indices, quantum spectral indices and bond matrices. Finally, the use of electrostatic potentials and charge densities for the prediction of reactive sites will be discussed.

  13. Does technology use moderate the relationship between parental alcoholism and adolescent alcohol and cigarette use?

    PubMed

    Ohannessian, Christine McCauley

    2009-01-01

    The primary goals of this study were to examine the associations between technology use and alcohol and cigarette use during adolescence and to explore whether technology use moderates the relationship between parental alcoholism and substance use (alcohol and cigarette use). The sample included 328 14-16 year-old adolescent boys and girls. The adolescents completed a battery of self-report questionnaires which included measures that assessed their substance use, their use of technology, and their parents' alcohol use (including alcoholism). Results indicated that adolescents who had an alcoholic parent reported relatively higher levels of alcohol consumption. Heavier use of technology (particularly text messaging, e-mailing/IMing, and watching television) also was related to earlier and heavier substance use during adolescence. Moreover, these effects tended to be more pronounced in adolescents with an alcoholic parent. Results from this study suggest that high levels of technology use during adolescence may be related to an increased risk of alcohol and cigarette use, particularly for children of alcoholic parents (COAs).

  14. Structure-activity relationships for the inhibition of DNA polymerase alpha by aphidicolin derivatives.

    PubMed Central

    Prasad, G; Edelson, R A; Gorycki, P D; Macdonald, T L

    1989-01-01

    Aphidicolin and 17 derivatives that have been structurally modified in the A- and D-rings were assessed for their ability to inhibit DNA polymerase alpha. No derivative surpassed the activity of aphidicolin; derivatives with structural alterations in the A-ring exhibited significantly greater loss of activity relative to derivatives with structural alterations in the D-ring. The conclusions of these studies indicate a critical role for the C-18 function in the interaction of aphidicolin with polymerase alpha. Molecular modelling studies could not identify structural features of the aphidicolin-dCTP "overlap" that is unique to dCTP, relative to the remaining dNTPs, and that is consistent with the extant structure-activity data. PMID:2505232

  15. Structure activity relationships of benzylproline-derived inhibitors of the glutamine transporter ASCT2.

    PubMed

    Singh, Kurnvir; Tanui, Rose; Gameiro, Armanda; Eisenberg, Gilad; Colas, Claire; Schlessinger, Avner; Grewer, Christof

    2017-02-01

    The glutamine transporter ASCT2 has been identified as a promising target to inhibit rapid growth of cancer cells. However, ASCT2 pharmacology is not well established. In this report, we performed a systematic structure activity analysis of a series of substituted benzylproline derivatives. Substitutions on the phenyl ring resulted in compounds with characteristics of ASCT2 inhibitors. Apparent binding affinity increased with increasing hydrophobicity of the side chain. In contrast, interaction of the ASCT2 binding site with specific positions on the phenyl ring was not observed. The most potent compound inhibits the ASCT2 anion conductance with a Ki of 3μM, which is in the same range as that of more bulky and higher molecular weight inhibitors recently reported by others. The experimental results are consistent with computational analysis based on docking of the inhibitors against an ASCT2 homology model. The benzylproline scaffold provides a valuable tool for further improving binding potency of future ASCT2 inhibitors.

  16. Marihuana, Alcohol and Tobacco: Reassessment of a Presumed Relationship.

    ERIC Educational Resources Information Center

    Dull, R. Thomas; Williams, Franklin P., III

    1981-01-01

    Concludes little relationship exists between the three substances marihuana, alcohol and tobacco. Youthful subjects tend to overestimate the relationships between the three substances and cannot be generalized to other populations. Suggests an explanation of this youthful association focuses on simultaneous experimentation rather than causal…

  17. Quantitative structure-activity relationship (QSAR) study of a series of benzimidazole derivatives as inhibitors of Saccharomyces cerevisiae.

    PubMed

    Podunavac-Kuzmanović, Sonja O; Cvetković, Dragoljub D; Jevrić, Lidija R; Uzelac, Natasa J

    2013-01-01

    A quantitative structure activity relationship (QSAR) has been carried out on a series of benzimidazole derivatives to identify the structural requirements for their inhibitory activity against yeast Saccharomyces cerevisiae. A multiple linear regression (MLR) procedure was used to model the relationships between various physicochemical, steric, electronic, and structural molecular descriptors and antifungal activity of benzimidazole derivatives. The QSAR expressions were generated using a training set of 16 compounds and the predictive ability of the resulting models was evaluated against a test set of 8 compounds. The best QSAR models were further validated by leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. Therefore, satisfactory relationships between antifungal activity and molecular descriptors were found. QSAR analysis reveals that lipophilicity descriptor (logP), dipole moment (DM) and surface area grid (SAG) govern the inhibitory activity of compounds studied against Saccharomyces cerevisiae.

  18. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  19. Violent crime and alcohol availability: relationships in an urban community.

    PubMed

    Speer, P W; Gorman, D M; Labouvie, E W; Ontkush, M J

    1998-01-01

    The relationship between violent crime, neighborhood sociodemographic characteristics, and alcohol outlet densities in Newark, New Jersey is reported, thus extending previous research of municipalities at more refined levels of analysis. Alcohol outlet densities were significant predictors in regression models, but rates of violent crime were better predicted in larger units (R2 = .673 for the census tract level vs. .543 at the census block group level). Alcohol outlet densities, however, were more predictive of violent crime at smaller units of analysis (change in R2 with the addition of alcohol outlet densities was .194 at the census tract level vs. .278 at the census block group level). Findings suggest that alcohol outlets represent a form of "undesirable land use" in urban neighborhoods that are a manifestation of increasingly concentrated economic disadvantage in the United States.

  20. Total Synthesis of Aspergillomarasmine A and Related Compounds: A Sulfamidate Approach Enables Exploration of Structure-Activity Relationships.

    PubMed

    Albu, Silvia A; Koteva, Kalinka; King, Andrew M; Al-Karmi, Salma; Wright, Gerard D; Capretta, Alfredo

    2016-10-10

    The fungal secondary metabolite aspergillomarasmine A (AMA) has recently been identified as an inhibitor of metallo-β-lactamases NDM-1 and VIM-2. Described herein is an efficient and practical route to AMA and its related compounds by a sulfamidate approach. In addition, a series of derivatives has been prepared and tested for biological activity in an effort to explore preliminary structure activity relationships. While it was determined that natural LLL isomer of AMA remains the most effective inactivator of NDM-1 enzyme activity both in vitro and in cells, the structure is highly tolerant of the changes in the stereochemistry at positions 3, 6, and 9.

  1. Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells

    PubMed Central

    Chen, Hong; Zhong, Lili; Long, Yuhua; Li, Jia; Wu, Jueheng; Liu, Lan; Chen, Shengping; Lin, Yongcheng; Li, Mengfeng; Zhu, Xun; She, Zhigang

    2012-01-01

    A series of new derivatives (5–29) of marine-derived bostrycin (1) were synthesized. The in vitro cytotoxic activities of all compounds were evaluated against MCF-7, MDA-MB-435, A549, HepG2, HCT-116 and MCF-10A cells using the MTT method. The compounds 7, 8, 22, 23, 25, 28 and 29 of the total showed comparable activity to epirubicin, the positive control, against the tested cancer cell lines. However, these compounds also exhibited cytotoxicity towards MCF-10A cells. The structure-activity relationship (SAR) of bostrycin derivatives was also discussed based on the obtained experimental data. PMID:22690152

  2. Quantitative structure-activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors.

    PubMed

    Gramatica, Paola; Papa, Ester; Marrocchi, Assunta; Minuti, Lucio; Taticchi, Aldo

    2007-03-01

    Various polycyclic aromatic hydrocarbons (PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A homogeneous set of mutagenicity data (TA98 and TA100,+S9) for 32 benzocyclopentaphenanthrenes/chrysenes was modeled by the quantitative structure-activity relationship classification methods k-nearest neighbor and classification and regression tree, using theoretical holistic molecular descriptors. Genetic algorithm provided the selection of the best subset of variables for modeling mutagenicity. The models were validated by leave-one-out and leave-50%-out approaches and have good performance, with sensitivity and specificity ranges of 90-100%. Mutagenicity assessment for these PAHs requires only a few theoretical descriptors of their molecular structure.

  3. Structure-activity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase.

    PubMed

    Mao, Jialin; Eoh, Hyungjin; He, Rong; Wang, Yuehong; Wan, Baojie; Franzblau, Scott G; Crick, Dean C; Kozikowski, Alan P

    2008-10-01

    We report on a target-based approach to identify possible Mycobacterium tuberculosis DXS inhibitors from the structure of a known transketolase inhibitor. A small focused library of analogs was assembled in order to begin elucidating some meaningful structure-activity relationships of 3-(4-chloro-phenyl)-5-benzyl-4H-pyrazolo[1,5-a]pyrimidin-7-one. Ultimately we found that 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolo[1,5-a]pyrimidin-7-one, although still weak, was able to inhibit M. tuberculosis DXS with an IC(50) of 10.6 microM.

  4. Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization.

    PubMed

    Soares de Melo, Candice; Candice, Soares de Melo; Feng, Tzu-Shean; van der Westhuyzen, Renier; Gessner, Richard K; Street, Leslie J; Morgans, Garreth L; Warner, Digby F; Moosa, Atica; Naran, Krupa; Lawrence, Nina; Boshoff, Helena I M; Barry, Clifton E; Harris, C John; Gordon, Richard; Chibale, Kelly

    2015-11-15

    Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified.

  5. Structure-activity relationship study of 2,4-diaminothiazoles as cdk5/p25 kinase inhibitors

    PubMed Central

    Laha, Joydev K.; Zhang, Xuemei; Qiao, Lixin; Liu, Min; Chatterjee, Snigdha; Robinson, Shaughnessy; Kosik, Kenneth S.; Cuny, Gregory D.

    2011-01-01

    Cdk5/p25 has emerged as a principle therapeutic target for numerous acute and chronic neurodegenerative diseases, including Alzheimer’s disease. A structure-activity relationship study of 2,4-diaminothiazole inhibitors revealed that increased Cdk5/p25 inhibitory activity could be accomplished by incorporating pyridines on the 2-amino group and addition of substituents to the 2- or 3-position of the phenyl ketone moiety. Interpretation of the SAR results for many of the analogs was aided through in silico docking with Cdk5/p25 and calculating protein hydrations sites using WaterMap. Finally, improved in vitro mouse microsomal stability was also achieved. PMID:21353545

  6. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship.

    PubMed

    Naim, Mohd Javed; Alam, Md Jahangir; Ahmad, Shujauddin; Nawaz, Farah; Shrivastava, Neelima; Sahu, Meeta; Alam, Ozair

    2017-03-31

    Thiazolidinedione is an important heterocyclic ring system, a pharmacophore and a privileged scaffold in medicinal chemistry; is a derivative of thiazolidine ring which came into existence for its role as antihyperglycemic agent and a specific ligand of PPAR's (Peroxisome proliferator activated receptor). Exhaustive research has led to determination of its vast biological profile with wide range of therapeutic applications. This review covers recent pharmacological advancements of thiazolidinedione moiety along with structure activity relationship so as to provide better correlation among different structures and their receptor interactions.

  7. Synthesis and structure-activity relationship of beta-defensins, multi-functional peptides of the immune system.

    PubMed

    Klüver, Enno; Adermann, Knut; Schulz, Axel

    2006-04-01

    beta-defensins are a large family of multiple disulfide-bonded peptides occurring in mammals and birds. They play an important role in the innate immune system, directly killing microbial organisms. Recent research has demonstrated that beta-defensins are important for other biological functions beyond antimicrobial effects, including inhibition of viral infection, interaction with Toll-like receptors, chemotactic effects, and sperm function. The corresponding broad spectrum of activities makes this peptide class an important subject and tool in immunologic research. In this review, we summarize the current status of the routes to obtain synthetic beta-defensins, their major structural properties and structure-activity relationship.

  8. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-12-23

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models.

  9. Structure-activity relationship study of 1,4-dihydropyridine derivatives blocking N-type calcium channels.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Ohno, Seiji; Onishi, Tomoyuki; Matsueda, Hiroyuki; Koganei, Hajime; Uneyama, Hisayuki; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Shoji, Masataka

    2006-02-15

    Cilnidipine is a 1,4-dihydropyridine derived L/N-type calcium channel dual blocker possessing neuroprotective and analgesic effects which are related to its N-type calcium channel inhibitory activity. In order to find specific N-type calcium channel blockers with the least effects on cardiovascular system, we performed structure-activity relationship study on APJ2708, which is a derivative of cilnidipine, and found a promising N-type calcium channel blocker 21b possessing analgesic effect in vivo with a 1600-fold lower activity against L-type calcium channels than that of cilnidipine.

  10. Novel structure-activity relationships and selectivity profiling of cage dimeric 1,4-dihydropyridines as multidrug resistance (MDR) modulators.

    PubMed

    Coburger, Claudius; Wollmann, Jörg; Krug, Martin; Baumert, Christiane; Seifert, Marianne; Molnár, Joséf; Lage, Hermann; Hilgeroth, Andreas

    2010-07-15

    Synthesized series of cage dimeric 1,4-dihydropyridines have been systematically evaluated as MDR modulators in in vitro assays to investigate structure-dependent selectivity properties of inhibiting most cancer-relevant efflux pump proteins. Structure-activity relationships of each P-glycoprotein (P-gp) and multidrug resistance associated protein (MRP) 1 and MRP2 inhibition are discussed and prove to be mainly determined by certain aromatic substitution patterns. The characterization of breast cancer resistance protein (BCRP) inhibition results in the discovery of benzyloxy substituted derivatives as selective P-gp inhibitors.

  11. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents.

    PubMed

    Matos, Maria J; Vazquez-Rodriguez, Saleta; Santana, Lourdes; Uriarte, Eugenio; Fuentes-Edfuf, Cristina; Santos, Ysabel; Muñoz-Crego, Angeles

    2013-01-24

    A new series of amino/nitro-substituted 3-arylcoumarins were synthesized and their antibacterial activity against clinical isolates of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) was evaluated. Some of these molecules exhibited antibacterial activity against S. aureus comparable to the standards used (oxolinic acid and ampicillin). The preliminary structure-activity relationship (SAR) study showed that the antibacterial activity against S. aureus depends on the position of the 3-arylcoumarin substitution pattern. With the aim of finding the structural features for the antibacterial activity and selectivity, in the present manuscript different positions of nitro, methyl, methoxy, amino and bromo substituents on the 3-arylcoumarin scaffold were reported.

  12. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships.

    PubMed

    Chen, Shaodan; Li, Xiangmin; Yong, Tianqiao; Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B

    2017-02-07

    We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds.

  13. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  14. Relationships among Alcohol Outlet Density, Alcohol Use, and Intimate Partner Violence Victimization among Young Women in the United States

    ERIC Educational Resources Information Center

    Waller, Martha W.; Iritani, Bonita J.; Christ, Sharon L.; Clark, Heddy Kovach; Moracco, Kathryn E.; Halpern, Carolyn Tucker; Flewelling, Robert L.

    2012-01-01

    Greater access to alcohol has been widely found to be associated with many negative outcomes including violence perpetration. This study examines the relationship between alcohol outlet density, alcohol use, and intimate partner violence (IPV) victimization among young women in the United States. A direct association between alcohol outlet density…

  15. Structure activity relationships of benzylproline-derived inhibitors of the glutamine transporter ASCT2

    PubMed Central

    Singh, Kurnvir; Tanui, Rose; Gameiro, Armanda; Eisenberg, Gilad; Colas, Claire; Schlessinger, Avner; Grewer, Christof

    2017-01-01

    The glutamine transporter ASCT2 has been identified as a promising target to inhibit rapid growth of cancer cells. However, ASCT2 pharmacology is not well established. In this report, we performed a systematic structure activity analysis of a series of substituted benzylproline derivatives. Substitutions on the phenyl ring resulted in compounds with characteristics of ASCT2 inhibitors. Apparent binding affinity increased with increasing hydrophobicity of the side chain. In contrast, interaction of the ASCT2 binding site with specific positions on the phenyl ring was not observed. The most potent compound inhibits the ASCT2 anion conductance with a Ki of 3 μM, which is in the same range as that of more bulky and higher molecular weight inhibitors recently reported by others. The experimental results are consistent with computational analysis based on docking of the inhibitors against an ASCT2 homology model. The benzylproline scaffold provides a valuable tool for further improving binding potency of future ASCT2 inhibitors. PMID:28057420

  16. Quantitative structure-activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors.

    PubMed

    Mitra, Indrani; Saha, Achintya; Roy, Kunal

    2009-05-01

    We have modeled antioxidant activities of hydroxybenzalacetones against lipid peroxidation induced by t-butyl hydroperoxide (pC1), gamma-irradiation (pC2) and also their 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity (pC3) using quantitative structure-activity relationship technique. The quantitative structure-activity relationship models were developed using different statistical methods like stepwise multiple linear regression, genetic function approximation and genetic partial least squares with descriptors of different categories (quantum chemical, physicochemical, spatial and substituent constants). The models were validated by internal validation and randomization techniques. The model predictivity was judged on the basis of their cross-validated squared correlation coefficient (Q2) and modified r2 (r m 2) values. The best models for the two responses, pC1 and pC2, were obtained by genetic partial least squares technique while the best model for the third response, pC3, was obtained by genetic function approximation technique. The developed models suggest that the distribution of charges on the phenolic nucleus and the phenolic oxygen as well as the charged surface areas of the molecules together with the geometry and orientation of the substituents significantly influence all the three types of responses (pC1, pC2 and pC3). The developed models may be used to design hydroxybenzalacetones with better antioxidant activities.

  17. Quantitative structure-activity relationship analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors.

    PubMed

    Moosus, M; Maran, U

    2011-10-01

    Quantitative structure-activity relationship analysis and estimation of toxicological effects at lower-mid trophic levels provide first aid means to understand the toxicity of chemicals. Daphnia magna serves as a good starting point for such toxicity studies and is also recognized for regulatory use in estimating the risk of chemicals. The ECOTOX database was queried and analysed for available data and a homogenous subset of 253 compounds for the endpoint LC50 48 h was established. A four-parameter quantitative structure-activity relationship was derived (coefficient of determination, r (2) = 0.740) for half of the compounds and internally validated (leave-one-out cross-validated coefficient of determination, [Formula: see text] = 0.714; leave-many-out coefficient of determination, [Formula: see text] = 0.738). External validation was carried out with the remaining half of the compounds (coefficient of determination for external validation, [Formula: see text] = 0.634). Two of the descriptors in the model (log P, average bonding information content) capture the structural characteristics describing penetration through bio-membranes. Another two descriptors (energy of highest occupied molecular orbital, weighted partial negative surface area) capture the electronic structural characteristics describing the interaction between the chemical and its hypothetic target in the cell. The applicability domain was subsequently analysed and discussed.

  18. Quantitative structure-activity relationship study on BTK inhibitors by modified multivariate adaptive regression spline and CoMSIA methods.

    PubMed

    Xu, A; Zhang, Y; Ran, T; Liu, H; Lu, S; Xu, J; Xiong, X; Jiang, Y; Lu, T; Chen, Y

    2015-01-01

    Bruton's tyrosine kinase (BTK) plays a crucial role in B-cell activation and development, and has emerged as a new molecular target for the treatment of autoimmune diseases and B-cell malignancies. In this study, two- and three-dimensional quantitative structure-activity relationship (2D and 3D-QSAR) analyses were performed on a series of pyridine and pyrimidine-based BTK inhibitors by means of genetic algorithm optimized multivariate adaptive regression spline (GA-MARS) and comparative molecular similarity index analysis (CoMSIA) methods. Here, we propose a modified MARS algorithm to develop 2D-QSAR models. The top ranked models showed satisfactory statistical results (2D-QSAR: Q(2) = 0.884, r(2) = 0.929, r(2)pred = 0.878; 3D-QSAR: q(2) = 0.616, r(2) = 0.987, r(2)pred = 0.905). Key descriptors selected by 2D-QSAR were in good agreement with the conclusions of 3D-QSAR, and the 3D-CoMSIA contour maps facilitated interpretation of the structure-activity relationship. A new molecular database was generated by molecular fragment replacement (MFR) and further evaluated with GA-MARS and CoMSIA prediction. Twenty-five pyridine and pyrimidine derivatives as novel potential BTK inhibitors were finally selected for further study. These results also demonstrated that our method can be a very efficient tool for the discovery of novel potent BTK inhibitors.

  19. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors.

    PubMed

    Doiron, Jérémie A; Leblanc, Luc M; Hébert, Martin J G; Levesque, Natalie A; Paré, Aurélie F; Jean-François, Jacques; Cormier, Marc; Surette, Marc E; Touaibia, Mohamed

    2016-09-26

    Leukotrienes (LTs) are a class of lipid mediators implicated in numerous inflammatory disorders. Caffeic acid phenethyl ester (CAPE) possesses potent anti-LTs activity through the inhibition of 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of LTs. In this study, we describe the design and synthesis of CAPE analogs as radical scavengers and 5-LO inhibitors. Caffeic esters bearing propargyl and allyl linkers between the caffeoyl and aryl moieties (4a-i and 5a-i, respectively) were synthesized by Sonogashira and Heck cross-coupling reactions to probe the effects of flexibility and aryl substitution on 5-LO inhibition. Caffeoyl alcohol and ethers (6, 7a-b) as well as caffeoyl aldehyde and ketones (8a-e) were synthesized to elucidate the importance of the ester linkage for inhibitory activity. All tested compounds proved to be good radical scavengers (IC50 of 10-30 μm). After preliminary anti-LTs activity screening in HEK293 cell models, 5-LO inhibition potential of selected compounds was determined in human polymorphonuclear leukocytes (PMNL). Most screened compounds outperformed CAPE 3 in concentration-dependent assays on PMNL, with ester dimers 4i and 5i along with caffeoyl ethers 7a-b being roughly eight-, seven-, and 16-fold more potent than Zileuton, with IC50 values of 0.36, 0.43, and 0.18 μm, respectively.

  20. Synthesis, antimicrobial evaluation, and structure-activity relationship of α-pinene derivatives.

    PubMed

    Dhar, Preeti; Chan, PuiYee; Cohen, Daniel T; Khawam, Fadi; Gibbons, Sarah; Snyder-Leiby, Teresa; Dickstein, Ellen; Rai, Prashant Kumar; Watal, Geeta

    2014-04-23

    Several (+)- and (-)-α-pinene derivatives were synthesized and evaluated for their antimicrobial activity toward Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and the unicellular fungus Candida albicans using bioautographic assays. (+)-α-Pinene 1a showed modest activity against the test organisms, whereas (-)-α-pinene 1b showed no activity at the tested concentration. Of all the α-pinene derivatives evaluated, the β-lactam derivatives (10a and 10b) were the most antimicrobial. The increase in the antimicrobial activity of 10a compared to 1a ranged from nearly 3.5-fold (C. albicans) to 43-fold (S. aureus). The mean ± standard deviation for the zone of inhibition (mm) for 10a (C. albicans) was 31.9 ± 4.3 and that for S. aureus was 51.1 ± 2.9. Although (-)-α-pinene 1b was not active toward the test microorganisms, the corresponding β-lactam 10b, amino ester 13b, and amino alcohol 14b showed antimicrobial activity toward the test microorganisms. The increase in the antimicrobial activity of 10b compared to 1b ranged from 32-fold (S. aureus) to 73-fold (M. luteus). The mean ± standard deviation for the zone of inhibition (mm) for 10b (S. aureus) was 32.0 ± 0.60 and that for M. luteus was 73.2 ± 0.30.

  1. Inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) as hypocholesterolemic agents: synthesis and structure-activity relationships of novel series of sulfonamides, acylphosphonamides and acylphosphoramidates.

    PubMed

    Lee, H T; Roark, W H; Picard, J A; Sliskovic, D R; Roth, B D; Stanfield, R L; Hamelehle, K L; Bousley, R F; Krause, B R

    1998-02-03

    Sulfoacetic acid, phosphoramidate, and phosphoramide analogs of the ACAT inhibitors, CI-999 and CI-1011 were synthesized. The structure-activity relationships of these compounds as ACAT inhibitors are described.

  2. Structure-activity relationship for the reactivators of acetylcholinesterase inhibited by nerve agent VX.

    PubMed

    Kuca, Kamil; Musilek, Kamil; Jun, Daniel; Karasova, Jana; Soukup, Ondrej; Pejchal, Jaroslav; Hrabinova, Martina

    2013-08-01

    Nerve agents such as sarin, VX and tabun are organophosphorus compounds able to inhibit an enzyme acetylcholinesterase (AChE). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None from the known AChE reactivators is able to reactivate AChE inhibited by all kinds of nerve agents. In this work, reactivation potency of seventeen structurally different AChE reactivators was tested in vitro and subsequently, relationship between their chemical structure and biological activity was outlined. VX was chosen as appropriate member of the nerve agent family.

  3. Study of structure-activity relationship in Aurein 1.2 analogs.

    PubMed

    Soufian, Safieh; Hassani, Leila

    2011-07-15

    Two new analogs of Aurein 1.2 antimicrobial peptide were synthesized and the antimicrobial activities were investigated. The results showed that the activity of G1R/F3W analog was higher than the native peptide and the F3W analog. Circular dichroism studies also showed that the secondary structure of the F3W was concentration-dependent, whereas, there was no such relationship seen in the case of G1R/F3W analog. It has been proposed that G1R/F3W activity was based on a single mechanism (snorkeling), while Aurein 1.2 and F3W utilized the snorkeling mechanism at low concentrations (0-0.01 mM) and the carpet mechanism at higher concentrations (0.01-0.1 mM). This study suggests that one pay attention to the concentration of biomolecules in peptide-based drug design.

  4. Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium.

    PubMed

    El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa

    2012-03-01

    Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.

  5. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action

    NASA Astrophysics Data System (ADS)

    Anouar, El Hassane; Raweh, Salwa; Bayach, Imene; Taha, Muhammad; Baharudin, Mohd Syukri; Di Meo, Florent; Hasan, Mizaton Hazizul; Adam, Aishah; Ismail, Nor Hadiani; Weber, Jean-Frédéric F.; Trouillas, Patrick

    2013-11-01

    Phenolic Schiff bases are known for their diverse biological activities and ability to scavenge free radicals. To elucidate (1) the structure-antioxidant activity relationship of a series of thirty synthetic derivatives of 2-methoxybezohydrazide phenolic Schiff bases and (2) to determine the major mechanism involved in free radical scavenging, we used density functional theory calculations (B3P86/6-31+(d,p)) within polarizable continuum model. The results showed the importance of the bond dissociation enthalpies (BDEs) related to the first and second (BDEd) hydrogen atom transfer (intrinsic parameters) for rationalizing the antioxidant activity. In addition to the number of OH groups, the presence of a bromine substituent plays an interesting role in modulating the antioxidant activity. Theoretical thermodynamic and kinetic studies demonstrated that the free radical scavenging by these Schiff bases mainly proceeds through proton-coupled electron transfer rather than sequential proton loss electron transfer, the latter mechanism being only feasible at relatively high pH.

  6. Synthesis, antioxidant and cytoprotective evaluation of potential antiatherogenic phenolic hydrazones. A structure-activity relationship insight.

    PubMed

    Vanucci-Bacqué, Corinne; Carayon, Chantal; Bernis, Corinne; Camare, Caroline; Nègre-Salvayre, Anne; Bedos-Belval, Florence; Baltas, Michel

    2014-08-01

    A novel series of hydrazones derived from substituted benzaldehydes have been synthesized as potential antiatherogenic agents. Several methods were used for exploring their antioxidant and cytoprotective properties, such as their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, the inhibition of superoxide anion (O₂(·-)) generation and the measurement of cell-induced low-density lipoprotein oxidation (monitored by the formation of TBARS). The cytoprotective efficacy was also evaluated by measuring the cell viability (monitored by the MTT assay) in the presence of cytotoxic oxidized LDL. In this report, we discuss the relationship between the chemical structure of phenolic hydrazones and their antioxidant and cytoprotective activities, for subsequent application as antiatherogenic agents. This SAR study confirms that the phenolic frame is not the only prerequisite for antioxidant activity and N-methylbenzothiazole hydrazone moiety magnifies the dual required properties in two most interesting derivatives.

  7. Design, Synthesis, and Structure-Activity Relationship of New Pyrimidinamine Derivatives Containing an Aryloxy Pyridine Moiety.

    PubMed

    Guan, Aiying; Liu, Changling; Chen, Wei; Yang, Fan; Xie, Yong; Zhang, Jinbo; Li, Zhinian; Wang, Mingan

    2017-02-15

    The pyrimidinamine diflumetorim is an ideal template for the discovery of agrochemical lead compounds due to its unique mode of action, novel chemical structure, and lack of reported resistance. To develop a new pyrimidinamine fungicide effective against cucumber downy mildew (CDM), a series of new pyrimidinamine derivatives containing an aryloxy pyridine moiety were designed and synthesized by employing the recently reported intermediate derivatization method (IDM). The structures of all compounds were identified by (1)H NMR, elemental analyses, HRMS, and X-ray diffraction. Bioassays demonstrated that some of the title compounds exhibited excellent fungicidal activities against CDM. Compound 9 gave the best activity (EC50 = 0.19 mg/L), which is significantly better than the commercial fungicides diflumetorim, flumorph, and cyazofamid. The relationship between structure and fungicidal activity of the synthesized pyrimidinamines was explored. The study showed that compound 9 is a promising fungicide candidate for further development.

  8. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action.

    PubMed

    Anouar, El Hassane; Raweh, Salwa; Bayach, Imene; Taha, Muhammad; Baharudin, Mohd Syukri; Di Meo, Florent; Hasan, Mizaton Hazizul; Adam, Aishah; Ismail, Nor Hadiani; Weber, Jean-Frédéric F; Trouillas, Patrick

    2013-11-01

    Phenolic Schiff bases are known for their diverse biological activities and ability to scavenge free radicals. To elucidate (1) the structure-antioxidant activity relationship of a series of thirty synthetic derivatives of 2-methoxybezohydrazide phenolic Schiff bases and (2) to determine the major mechanism involved in free radical scavenging, we used density functional theory calculations (B3P86/6-31+(d,p)) within polarizable continuum model. The results showed the importance of the bond dissociation enthalpies (BDEs) related to the first and second (BDEd) hydrogen atom transfer (intrinsic parameters) for rationalizing the antioxidant activity. In addition to the number of OH groups, the presence of a bromine substituent plays an interesting role in modulating the antioxidant activity. Theoretical thermodynamic and kinetic studies demonstrated that the free radical scavenging by these Schiff bases mainly proceeds through proton-coupled electron transfer rather than sequential proton loss electron transfer, the latter mechanism being only feasible at relatively high pH.

  9. Potential antitumor agents. 29. Quantitative structure-activity relationships for the antileukemic bisquaternary ammonium heterocycles.

    PubMed

    Denny, W A; Atwell, G J; Baguley, B C; Cain, B F

    1979-02-01

    Quantitative relationships between physicochemical drug properties and antileukemic (L1210) efficacy have been examined for a series of bisquaternary ammonium heterocycles employing multiple variable regression analysis. Three measures of biologic response were examined: ILSmax, the percentage increase in mean life span of leukemic animals at the LD10 dose; D40, the drug dose necessary to provide 40% increase in life span; and CI (=LD 10/D40), the chemotherapeutic index. A cross correlation matrix between these three measures and the LD10 values demonstrates ILSmax and CI to be independent of toxicity. D40 is highly inversely correlated with LD10 and positively correlated with ILSmax, suggesting that this parameter measures a composite of both drug selectivity and toxicity. Superior regression equations resulted at all stages employing ILSmax as a measure of antitumor selectivity. Acceptable equations modeling LD10 could not be obtained. There was a parabolic relationship between agent lipophilic-hydrophilic balance, measured as chromatographic Rm values, and ILSmax. To reduce residual variance in the L1210 screening data, not accepted by this parabolic equation, measures of agent-DNA interaction were investigated as possible indices of site fit. Relative levels of drug-DNA interaction were obtained by spectrofluorimetric quantitation of drug displacement of DNA-bound ethidium. Addition to regression equations of agent C50 values for calf thymus DNA, those micromolar drug concentrations necessary to displace 50% of the ethidium bound to that DNA, provided a significant reduction in the screening data variance. C50 values for drug interactions with poly[d(A-T)] and poly[d(G-C)] were also investigated as possible indicators of drug selectivity towards different DNA sites. Marked differences were observed in the C50 values for the two synthetic nucleic acids, with those for calf thymus DNA and poly[d(G-C)] proving highly covariant. A regression equation containing a

  10. Reconsidering the Relationship between Alcohol and Lethal Violence

    ERIC Educational Resources Information Center

    Phillips, Scott; Matusko, Jacqueline; Tomasovic, Elizabeth

    2007-01-01

    Prior event-based research regarding the relationship between alcohol and violence suffers from important limitations, including the absence of a comparison group, an inappropriate comparison group, or a comparison group that could be considered appropriate but does not control for potential confounders. To overcome such limitations, we use a…

  11. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    PubMed

    Sahu, Pramod K

    2016-10-04

    New fourteen 3,4-dihydropyrimidine derivatives/analogues of curcumin (2a-2n) were designed, synthesized and biologically evaluated for their cytotoxicity and antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines HeLa, HCT-116 and QG-56 by MTT assay method. From SAR study, it has been revealed that particularly, compound 2e and 2j (IC50 value 12.5 μM) have shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 3,4-dihydropyrimidines of curcumin, 2c, 2d, 2j and 2n exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. Therefore, we conclude that physico-chemical analyses may prove structural features of curcumin analogues with their promising combined cytotoxicity/antioxidant activity and it is also concluded from virtual and practical screening that the compounds were varied to possess a broad range of lipophilic character, revealed by Log P values.

  12. Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4.

    PubMed

    Zhang, Chongqian; Du, Chunmiao; Feng, Zhiwei; Zhu, Jingyu; Li, Youyong

    2015-02-01

    CXCR4 plays a crucial role as a co-receptor with CCR5 for HIV-1 anchoring to mammalian cell membrane and is implicated in cancer metastasis and inflammation. In the current work, we study the relationship of structure and activity of AMD11070 derivatives and other inhibitors of CXCR4 using HQSAR, docking and molecular dynamics (MD) simulations. We obtain an HQSAR model (q(2) = 0.779), and the HQSAR result illustrates that AMD11070 shows a high antiretroviral activity. As HQSAR only provides 2D information, we perform docking and MD to study the interaction of It1t, AMD3100, and AMD3465 with CXCR4. Our results illustrate that the binding are affected by two crucial residues Asp97 and Glu288. The butyl amine moiety of AMD11070 contributes to its high antiretroviral activity. Without a butyl amine moiety, (2,7a-Dihydro-1H-benzoimidazol-2-ylmethyl)-methyl-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (compound 5a) shows low antiretroviral activity. Our results provide structural details about the interactions between the inhibitors and CXCR4, which are useful for rational drug design of CXCR4.

  13. Structure-activity relationship among purpurinimides and bacteriopurpurinimides: trifluoromethyl substituent enhanced the photosensitizing efficacy.

    PubMed

    Gryshuk, Amy; Chen, Yihui; Goswami, Lalit N; Pandey, Suresh; Missert, Joseph R; Ohulchanskyy, Tymish; Potter, William; Prasad, Paras N; Oseroff, Allan; Pandey, Ravindra K

    2007-04-19

    At similar lipophilicity, compared to the nonfluorinated purpurinimide 11, the corresponding fluorinated analog 8 with a trifluoromethyl substituent at the lower half (position-132) of the molecule showed enhanced photosensitizing efficacy. The structural parameters established in purpurinimides (lambdamax: 700 nm) were successfully translated to the bacteriopurpurin imide system 19 (lambdamax: 792 nm) and within both series, a monotonic relationship between the lipophilicity and the in vivo PDT activity was observed. For preparing water-soluble compounds, the photosensitizers 8 and 19 were converted into the corresponding aminobenzyl-diethylenetriamine pentaacetate conjugates 23 and 26. Acid treatment of purpurinimide 23 produced the corresponding water-soluble analog 24. Bacteriochlorin 26 under acidic or basic conditions mainly gave the decomposition products. At similar in vivo treatment conditions (C3H mice with RIF tumors and BALB-C mice with colon-26 tumors) the water-soluble purpurinimide 24 was found to be more effective than the methyl ester analog 8. These results suggest that besides overall lipophilicity the inherent charge of the photosensitizer also influences the PDT efficacy.

  14. Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships

    PubMed Central

    Mizuno, Kazue; Zhiyentayev, Timur; Huang, Liyi; Khalil, Sarwat; Nasim, Faria; Tegos, George P; Gali, Hariprasad; Jahnke, Ashlee; Wharton, Tim; Hamblin, Michael R

    2011-01-01

    Photosensitive dyes or photo sensitizers (PS) in combination with visible light and oxygen produce reactive oxygen species that kill cells in the process known as photodynamic therapy (PDT). Antimicrobial PDT employs PS that is selective for microbial cells and is a new treatment for infections. Most antimicrobial PS is based on tetrapyrrole or phenothiazinium structures that have been synthesized to carry quaternary cationic charges or basic amino groups. However we recently showed that cationic-substituted fullerene derivative were highly effective in killing a broad spectrum of microbial cells after illumination with white light. In the present report we compared a new group of synthetic fullerene derivatives that possessed either basic or quaternary amino groups as antimicrobial PS against Gram-positive (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli) and fungi (Candida albicans). Quantitative structure-function relationships were derived with LogP and hydrophilic lipophilic balance parameters. Compounds with non-quaternary amino groups tended to form nanoaggregates in water and were only effective against S. aureus. The most important determinant of effectiveness was an increased number of quaternary cationic groups that were widely dispersed around the fullerene cage to minimize aggregation. S. aureus was most susceptible; E. coli was intermediate, while C. albicans was the most resistant species tested. The high effectiveness of antimicrobial PDT with quaternized fullerenes suggest they may have applications in treatment of superficial infections (for instance in wounds and burns) where light penetration into tissue is not problematic. PMID:21743839

  15. Structure-activity relationships of lipopolysaccharide sequestration in N-alkylpolyamines.

    PubMed

    Shrestha, Anurupa; Sil, Diptesh; Malladi, Subbalakshmi S; Warshakoon, Hemamali J; David, Sunil A

    2009-05-01

    We have previously shown that simple N-acyl or N-alkyl polyamines bind to and sequester Gram-negative bacterial lipopolysaccharide, affording protection against lethality in animal models of endotoxicosis. Several iterative design-and-test cycles of SAR studies, including high-throughput screens, had converged on compounds with polyamine scaffolds which have been investigated extensively with reference to the number, position, and length of acyl or alkyl appendages. However, the polyamine backbone itself had not been explored sufficiently, and it was not known if incremental variations on the polymethylene spacing would affect LPS-binding and neutralization properties. We have now systematically explored the relationship between variously elongated spermidine [NH(2)-(CH(2))(3)-NH-(CH(2))(4)-NH(2)] and norspermidine [NH(2)-(CH(2))(3)-NH-(CH(2))(3)-NH(2)] backbones, with the N-alkyl group being held constant at C(16) in order to examine if changing the spacing between the inner secondary amines may yield additional SAR information. We find that the norspermine-type compounds consistently showed higher activity compared to corresponding spermine homologues.

  16. Pinus massoniana Bark Extract: Structure-Activity Relationship and Biomedical Potentials.

    PubMed

    Feng, Jiao; Zhang, Xiao-Lu; Li, Ying-Ya; Cui, Ying-Yu; Chen, Yi-Han

    2016-01-01

    Proanthocyanidins (PAs) belong to the condensed tannin subfamily of natural flavonoids. Recent studies have shown that the main bioactive compounds of Pinus massoniana bark extract (PMBE) are PAs, especially the proanthocyanidins B series, which play important roles in cell cycle arrest, apoptosis induction and migration inhibition of cancer cells in vivo and in vitro. PA-Bs are mixtures of oligomers and polymers composed of flavan-3-ol, and the relationship between their structure and corresponding biomedical potentials is summarized in this paper. The hydroxyl at certain positions or the linkage between different carbon atoms of different rings determines or affects their anti-oxidant and free radical scavenging bioactivities. The degree of polymerization and the water solubility of the reaction system also influence their biomedical potential. Taken together, PMBE has a promising future in clinical drug development as a candidate anticancer drug and as a food additive to prevent tumorigenesis. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of PMBE, its active constituents and their derivatives.

  17. Structure-activity relationships and prediction of the phototoxicity and phototoxic potential of new drugs.

    PubMed

    Barratt, Martin D

    2004-11-01

    Relationships between the structure and properties of chemicals can be programmed into knowledge-based systems such as DEREK for Windows (DEREK is an acronym for "Deductive Estimation of Risk from Existing Knowledge"). The DEREK for Windows computer system contains a subset of over 60 rules describing chemical substructures (toxophores) responsible for skin sensitisation. As part of the European Phototox Project, the rule base was supplemented by a number of rules for the prospective identification of photoallergens, either by extension of the scope of existing rules or by the generation of new rules where a sound mechanistic rationale for the biological activity could be established. The scope of the rules for photoallergenicity was then further refined by assessment against a list of chemicals identified as photosensitisers by the Centro de Farmacovigilancia de la Comunidad Valenciana, Valencia, Spain. This paper contains an analysis of the mechanistic bases of activity for eight important groups of photoallergens and phototoxins, together with rules for the prospective identification of the photobiological activity of new or untested chemicals belonging to those classes. The mechanism of action of one additional chemical, nitrofurantoin, is well established; however, it was deemed inappropriate to write a rule on the basis of a single chemical structure.

  18. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship

    PubMed Central

    Navarro-Retamal, Carlos

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure–activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities. PMID:27517610

  19. Disubstituted amino-, nitroso-, and nitrofluorenes: a physicochemical basis for structure-activity relationships in Salmonella typhimurium

    SciTech Connect

    Vance, W.A.; Wang, Y.Y.; Okamoto, H.S.

    1987-01-01

    Twenty-nine derivatives of fluorene were tested for mutagenic potency in four strains of Salmonella typhimurium with and/or without S9 microsomal activation. The effects of a second functional group on the mutagenic activity of an amino-nitroso-, and nitrofluorene were correlated with its physical and chemical properties. When the functional group is conjugated by resonance, both inductive and resonance effects are determinants of mutagenic potency. Electron-withdrawing groups such as the halogens (F, Cl, Br, and I), nitro, nitroso, and cyano at C-7 increased the mutagenic potency of 2-nitrofluorene. Acetylation of a hydroxy or an amino group at C-7 increased the mutagenic potency of 2-nitrofluorene. The physical properties of a second functional group are expected to exert their effect(s) at three points in the metabolic activation of 2,7-disubstituted fluorene derivatives: 1) initial reduction of the nitro group (redox effect), 2) stabilization of the hydroxylamine (inductive effect), and 3) stabilization/destabilization of the nitrenium ion (resonance and inductive effects). The relationships between the physical properties of a second functional group and their effects on biological activities of nitro- and aminofluorenes in the Ames Salmonella assay may be of predictive value in a first approximation of both the mutagenic and carcinogenic potency of chemicals with comparable structures such as fluoranthene and biphenyl.

  20. [The manipulation of information of developed formulas for the study of structure-activity relationships. Application to antiparasitic agents].

    PubMed

    Doré, J C; Lacroix, J; Lacroix, R; Viel, C

    1990-01-01

    Beside traditional univariate methods of pharmacochemical (pharmacomodulation...), and of molecular pharmacology ("binding"...) most global approach (multivariate) of structure-activity and structure-toxicity relationships may been in action with processing implement. Developed formula may been treated by different algorithmic methods as molecular connectivity matrix which use atoms, bindings, chemical functions, fragments, of any molecule. This technique allows to research and to automatically count structural fragments of molecule, different in their chemical aspect but having the same port of activity. So, with this profile of fragments it is possible to build a spanning tree (PRIM'S arborescent skeleton) and to place a priori on it, new structures with other properties to value their activity level in the designed field. We applied these techniques to 50 most prescribed antiparasitic active principles.

  1. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents.

    PubMed

    Yang, Chun; Shao, Yonghua; Zhi, Xiaoyan; Huan, Qu; Yu, Xiang; Yao, Xiaojun; Xu, Hui

    2013-09-01

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, four series of novel cholesterol-based hydrazone derivatives were synthesized, and their insecticidal activity was tested against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at 1mg/mL. All the derivatives showed the better insecticidal activity than their precursor cholesterol. Quantitative structure-activity relationship (QSAR) model demonstrated that six descriptors such as RDF085v, Mor06u, Mor11u, Dv, HATS0v and H-046, are likely to influence the insecticidal activity of these compounds. Among them, two important ones are the Mor06u and RDF085v.

  2. Discovery and Structure-Activity Relationship of a Bioactive Fragment of ELABELA that Modulates Vascular and Cardiac Functions.

    PubMed

    Murza, Alexandre; Sainsily, Xavier; Coquerel, David; Côté, Jérôme; Marx, Patricia; Besserer-Offroy, Élie; Longpré, Jean-Michel; Lainé, Jean; Reversade, Bruno; Salvail, Dany; Leduc, Richard; Dumaine, Robert; Lesur, Olivier; Auger-Messier, Mannix; Sarret, Philippe; Marsault, Éric

    2016-04-14

    ELABELA (ELA) was recently discovered as a novel endogenous ligand of the apelin receptor (APJ), a G protein-coupled receptor. ELA signaling was demonstrated to be crucial for normal heart and vasculature development during embryogenesis. We delineate here ELA's structure-activity relationships and report the identification of analogue 3 (ELA(19-32)), a fragment of ELA that binds to APJ, activates the Gαi1 and β-arrestin-2 signaling pathways, and induces receptor internalization similarly to its parent endogenous peptide. An alanine scan performed on 3 revealed that the C-terminal residues are critical for binding to APJ and signaling. Finally, using isolated-perfused hearts and in vivo hemodynamic and echocardiographic measurements, we demonstrate that ELA and 3 both reduce arterial pressure and exert positive inotropic effects on the heart. Altogether, these results present ELA and 3 as potential therapeutic options in managing cardiovascular diseases.

  3. Evaluation and structure-activity relationship study of acute toxicity of naphthoquinones to Photobacterium phosphoreum, Photobacterium T3B.

    PubMed

    Ding, Feng; Guo, Jing; Li, Zhen; Li, Li Ying; Zhang, Jin Yang; Zhang, Jin Hua; Lian, Jie; Song, Wen Hua; Zhu, Lin

    2010-08-01

    The acute toxicities of five naphthoquinone compounds to Photobacterium phosphoreum were determined. We evaluated the mechanism of toxicity using the structure-activity relationship technique. The results showed that some factors, including the species of substituents, shape/size of molecule and oil-water partition coefficient (log P) played the important roles in the interaction between the naphthoquinones and the target. Among of these, the toxicities of Atovaquone and Buparvaquone were lower than the other naphthoquinones we tested because of the alkyl-substitution with the bigger volume and strong hydrophobicity. Conversely, Menadione had the highest toxicity because of the appropriate log P and shape/size of molecule resulting in the easier interaction with the target.

  4. Quantitative structure-activity relationship studies of a series of sulfa drugs as inhibitors of Pneumocystis carinii dihydropteroate synthetase.

    PubMed

    Johnson, T; Khan, I A; Avery, M A; Grant, J; Meshnick, S R

    1998-06-01

    Sulfone and sulfanilamide sulfa drugs have been shown to inhibit dihydropteroate synthetase (DHPS) isolated from Pneumocystis carinii. In order to develop a pharmacophoric model for this inhibition, quantitative structure-activity relationships (QSAR) for sulfa drugs active against DHPS have been studied. Accurate 50% inhibitory concentrations were collected for 44 analogs, and other parameters, such as partition coefficients and molar refractivity, were calculated. Conventional multiple regression analysis of these data did not provide acceptable QSAR. However, three-dimensional QSAR provided by comparative molecular field analysis did give excellent results. Upon removal of poorly correlated analogs, a data set of 36 analogs, all having a common NHSO2 group, provided a cross-validated r2 value of 0.699 and conventional r2 value of 0.964. The resulting pharmacophore model should be useful for understanding and predicting the binding of DHPS by new sulfa drugs.

  5. Structure-Activity Relationships and Anti-inflammatory Activities of N-Carbamothioylformamide Analogues as MIF Tautomerase Inhibitors.

    PubMed

    Zhang, Yu; Xu, Lei; Zhang, Zhiqiang; Zhang, Zhiyu; Zheng, Longtai; Li, Dan; Li, Youyong; Liu, Feng; Yu, Kunqian; Hou, Tingjun; Zhen, Xuechu

    2015-09-28

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is an attractive therapeutic target for the treatment of inflammatory diseases. In our previous study, 3-[(biphenyl-4-ylcarbonyl)carbamothioyl]amino benzoic acid (compound 1) was discovered as a potent inhibitor of MIF by docking-based virtual screening and bioassays. Here, a series of analogues of compound 1 derived from similarity search and chemical synthesis were evaluated for their MIF tautomerase activities, and their structure-activity relationships were then analyzed. The most potent inhibitor (compound 5) with an IC50 of 370 nM strongly suppressed lipopolysaccharide (LPS)-induced production of TNF-α and IL-6 in a dose-dependent manner and significantly enhanced the survival rate of mice with LPS-induced endotoxic shock from 0 to 35% at 0.5 mg/kg and to 45% at 1 mg/kg, highlighting the therapeutic potential of the MIF tautomerase inhibition in inflammatory diseases.

  6. Protegrin structure-activity relationships: using homology models of synthetic sequences to determine structural characteristics important for activity.

    PubMed

    Ostberg, Nathan; Kaznessis, Yiannis

    2005-02-01

    The protegrin family of antimicrobial peptides is among the shortest in sequence length while remaining very active against a variety of microorganisms. The major goal of this study is to characterize easily calculated molecular properties, which quantitatively show high correlation with antibacterial activity. The peptides studied have high sequence similarity but vary in activity over more than an order of magnitude. Hence, sequence analysis alone cannot be used to predict activity for these peptides. We calculate structural properties of 62 protegrin and protegrin-analogue peptides and correlate them to experimental activities against six microbe species, as well as hemolytic and cytotoxic activities. Natural protegrins structures were compared with synthetic derivatives using homology modeling, and property descriptors were calculated to determine the characteristics that confer their antimicrobial activity. A structure-activity relationship study of all these peptides provides information about the structural properties that affect activity against different microbial species.

  7. [A new SVRDF 3D-descriptor of amino acids and its application to peptide quantitative structure activity relationship].

    PubMed

    Tong, Jian-Bo; Zhang, Sheng-Wan; Cheng, Su-Li; Li, Gai-Xian

    2007-01-01

    To establish a new amino acid structure descriptor that can be applied to polypeptide quantitative structure activity relationship (QSAR) studies, a new descriptor, SVRDF, was derived from a principal components analysis of a matrix of 150 radial distribution function index of amino acids. The scale was then applied in three panels of peptide QSAR that were molded by partial least squares regression. The obtained models with the correlation coefficients (R2(cum)), cross-validation correlation coefficients (Q2(cum)) were 0.766 and 0.724 for 48 bitter tasting dipeptides; 0.941 and 0.811 for 21 oxytocin analogues; 0.996 and 0.919 for 20 thromboplastin inhibitors. Satisfactory results showed that information related to biological activity can be systemically expressed by SVRDF scales, which may be an useful structural expression methodology for the study of peptides QSAR.

  8. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  9. Modeling structure-activity relationships of prodiginines with antimalarial activity using GA/MLR and OPS/PLS.

    PubMed

    de Campos, Luana Janaína; de Melo, Eduardo Borges

    2014-11-01

    In the present study, we performed a multivariate quantitative structure-activity relationship (QSAR) analysis of 52 prodiginines with antimalarial activity. Variable selection was based on the genetic algorithm (GA) and ordered predictor selection (OPS) approaches, and the models were built using the multiple linear regression (MLR) and partial least squares (PLS) regression methods. The leave-N-out crossvalidation and y-randomization tests showed that the models were robust and free from chance correlation. The mechanistic interpretation of the results was supported by earlier findings. In addition, the comparison of our models with those previously described indicated that the OPS/PLS-based model had a higher quality of external prediction. Thus, this study provides a comprehensive approach to the evaluation of the antimalarial activity of prodiginines, which may be used as a support tool in designing new therapeutic agents for malaria.

  10. A quantitative structure-activity relationship study on a few series of anti-hepatitis C virus agents.

    PubMed

    Varshney, Jonish; Sharma, Anjana; Gupta, Satya P

    2012-05-01

    A 2-Dimensional Quantitative Structure-Activity Relationship study has been performed on 2 series of hepatitis C virus (HCV) inhibitors, i.e., Isothiazoles and Thiazolones. In each case significant correlations are found between the anti-HCV potencies and some physicochemical, electronic and steric properties of the compounds, indicating that for the first series the activity is controlled by density and two indicator parameters (one for halogen and other for methyl), while for the second series density, Hammett constant and Kier's first order valence molecular connectivity index are important for anti-HCV activity. The validity of the correlation has been judged by leave-one-out jackknife procedure and predicting the activity of some test compounds. Using the correlations obtained, some new compounds of high potency have been predicted in each series.

  11. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.

    PubMed

    Bhatia, Chitra; Oerum, Stephanie; Bray, James; Kavanagh, Kathryn L; Shafqat, Naeem; Yue, Wyatt; Oppermann, Udo

    2015-06-05

    Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles.

  12. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ.

    PubMed

    Stokes, Neil R; Baker, Nicola; Bennett, James M; Chauhan, Pramod K; Collins, Ian; Davies, David T; Gavade, Maruti; Kumar, Dushyant; Lancett, Paul; Macdonald, Rebecca; Macleod, Leanne; Mahajan, Anu; Mitchell, Jeffrey P; Nayal, Narendra; Nayal, Yashodanand Nandan; Pitt, Gary R W; Singh, Mahipal; Yadav, Anju; Srivastava, Anil; Czaplewski, Lloyd G; Haydon, David J

    2014-01-01

    The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.

  13. An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents.

    PubMed

    Arshad, Laiba; Haque, Md Areeful; Abbas Bukhari, Syed Nasir; Jantan, Ibrahim

    2017-04-10

    Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.

  14. Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139

    PubMed Central

    Shehata, Mohamed A.; Nøhr, Anne C.; Lissa, Delphine; Bisig, Christoph; Isberg, Vignir; Andersen, Kirsten B.; Harpsøe, Kasper; Björkling, Fredrik; Bräuner-Osborne, Hans; Gloriam, David E.

    2016-01-01

    GPR139 is an orphan class A G protein-coupled receptor found mainly in the central nervous system. It has its highest expression levels in the hypothalamus and striatum, regions regulating metabolism and locomotion, respectively, and has therefore been suggested as a potential target for obesity and Parkinson’s disease. The two aromatic amino acids L-Trp and L-Phe have been proposed as putative endogenous agonists, and three structurally related benzohydrazide, glycine benzamide, and benzotriazine surrogate agonist series have been published. Herein, we assayed 158 new analogues selected from a pharmacophore model, and identified 12 new GPR139 agonists, containing previously untested bioisosteres. Furthermore, we present the first combined structure-activity relationships, and a refined pharmacophore model to serve as a rationale for future ligand identification and optimization. PMID:27830715

  15. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities.

  16. Multistep continuous-flow synthesis in medicinal chemistry: discovery and preliminary structure-activity relationships of CCR8 ligands.

    PubMed

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia C; Thiele, Stefanie; Rosenkilde, Mette M; Ritzén, Andreas; Ulven, Trond

    2013-07-08

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49-94%. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure-activity-relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single-digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry.

  17. A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors

    PubMed Central

    Sadeghian-Rizi, Sedighe; Sakhteman, Amirhossein; Hassanzadeh, Farshid

    2016-01-01

    In the current study, both ligand-based molecular docking and receptor-based quantitative structure activity relationships (QSAR) modeling were performed on 35 diaryl urea derivative inhibitors of V600EB-RAF. In this QSAR study, a linear (multiple linear regressions) and a nonlinear (partial least squares least squares support vector machine (PLS-LS-SVM)) were used and compared. The predictive quality of the QSAR models was tested for an external set of 31 compounds, randomly chosen out of 35 compounds. The results revealed the more predictive ability of PLS-LS-SVM in analysis of compounds with urea structure. The selected descriptors indicated that size, degree of branching, aromaticity, and polarizability affected the inhibition activity of these inhibitors. Furthermore, molecular docking was carried out to study the binding mode of the compounds. Docking analysis indicated some essential H-bonding and orientations of the molecules in the active site. PMID:28003837

  18. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  19. Cationic Membrane Peptides: Atomic-Level Insight of Structure-Activity Relationships from Solid-State NMR

    PubMed Central

    Su, Yongchao; Li, Shenhui; Hong, Mei

    2012-01-01

    Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this mini-review we will summarize high-resolution structural and dynamic findings towards the understanding of the structure-activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane. PMID:23108593

  20. Synthesis and structure-activity relationship of novel conformationally restricted analogues of serotonin as 5-HT6 receptor ligands.

    PubMed

    Nirogi, Ramakrishna V S; Kambhampati, Ramasastri; Kothmirkar, Prabhakar; Konda, Jagadishbabu; Bandyala, Thrinath Reddy; Gudla, Parandhama; Arepalli, Sobhanadri; Gangadasari, Narasimhareddy P; Shinde, Anil K; Deshpande, Amol D; Dwarampudi, Adireddy; Chindhe, Anil K; Dubey, Pramod Kumar

    2012-06-01

    5-Hydroxytryptamine 6 receptors (5-HT(6)R) are being perceived as the possible target for treatment of cognitive disorders as well as obesity. The present article deals with the design, synthesis, in vitro binding and structure-activity relationship of a novel series of tetracyclic tryptamines with the rigidized N-arylsulphonyl, N-arylcarbonyl and N-benzyl substituents as 5-HT(6) receptor ligands. The chiral sulphonyl derivatives 15a and 17a showed high affinity at 5-HT(6)R with the K(i) of 23.4 and 20.5 nM, respectively. The lead compound from the series 15a has acceptable ADME properties, adequate brain penetration and is active in animal models of cognition like Novel Object Recognition Task (NORT) and water maze.

  1. Synthesis and structure-active relationship of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline anticonvulsants.

    PubMed

    Gitto, Rosaria; De Luca, Laura; Ferro, Stefania; Agnello, Stefano; Russo, Emilio; De Sarro, Giovanbattista; Chimirri, Alba

    2010-12-01

    We have previously disclosed that some 6,7-dimethoxyisoquinoline derivatives are able to produce anticonvulsant effects in different animal models of epilepsy. Following these studies this paper describes the synthesis of a small series of new 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines strictly related to previously reported analogues. This novel series of isoquinolines was designed on the basis of well defined structure-active relationship (SAR) information already acquired for this class of anticonvulsant agents. The pharmacological effects of the new synthesized compounds were evaluated against audiogenic seizures in Dilute Brown non-Agouti (DBA/2) mice. The preliminary pharmacological screening led to the identification of a new active molecule the 2-acetyl-1-(4'-methylphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (6d) that displayed significant anticonvulsant activity. Computational studies helped to rationalize these obtained pharmacological results.

  2. Estimating the persistence of organic contaminants in indirect potable reuse systems using quantitative structure activity relationship (QSAR).

    PubMed

    Lim, Seung Joo; Fox, Peter

    2012-09-01

    Predictions from the quantitative structure activity relationship (QSAR) model EPI Suite were modified to estimate the persistence of organic contaminants in indirect potable reuse systems. The modified prediction included the effects of sorption, biodegradation, and oxidation that may occur during sub-surface transport. A retardation factor was used to simulate the mobility of adsorbed compounds during sub-surface transport to a recovery well. A set of compounds with measured persistent properties during sub-surface transport was used to validate the results of the modifications to the predictions of EPI Suite. A comparison of the predicted values and measured values was done and the residual sum of the squares showed the importance of including oxidation and sorption. Sorption was the most important factor to include in predicting the fates of organic chemicals in the sub-surface environment.

  3. Thrombospondin-1 Mimetic Agonist Peptides Induce Selective Death in Tumor Cells: Design, Synthesis, and Structure-Activity Relationship Studies.

    PubMed

    Denèfle, Thomas; Boullet, Héloise; Herbi, Linda; Newton, Clara; Martinez-Torres, Ana-Carolina; Guez, Alexandre; Pramil, Elodie; Quiney, Claire; Pourcelot, Marilyne; Levasseur, Mikail D; Lardé, Eva; Moumné, Roba; Ogi, François-Xavier; Grondin, Pascal; Merle-Beral, Hélène; Lequin, Olivier; Susin, Santos A; Karoyan, Philippe

    2016-09-22

    Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.

  4. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure-activity relationships.

    PubMed

    Adam, Julia M; Bennett, D Jonathan; Bom, Anton; Clark, John K; Feilden, Helen; Hutchinson, Edward J; Palin, Ronald; Prosser, Alan; Rees, David C; Rosair, Georgina M; Stevenson, Donald; Tarver, Gary J; Zhang, Ming-Qiang

    2002-04-25

    A series of mono- and per-6-substituted cyclodextrin derivatives were synthesized as synthetic receptors (or host molecules) of rocuronium bromide, the most widely used neuromuscular blocker in anaesthesia. By forming host-guest complexes with rocuronium, these cyclodextrin derivatives reverse the muscle relaxation induced by rocuronium in vitro and in vivo and therefore can be used as reversal agents of the neuromuscular blocker to assist rapid recovery of patients after surgery. Because this supramolecular mechanism of action does not involve direct interaction with the cholinergic system, the reversal by these compounds, e.g., compound 14 (Org 25969), is not accompanied by cardiovascular side effects usually attendant with acetylcholinesterase inhibitors such as neostigmine. The structure-activity relationships are consistent with this supramolecular mechanism of action and are discussed herein. These include the effects of binding cavity size and hydrophobic and electrostatic interaction on the reversal activities of these compounds.

  5. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Andolfi, Anna; Zonno, Maria Chiara; Boari, Angela; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Ash, Gavin; Evidente, Antonio

    2013-10-09

    Phomentrioloxin is a phytotoxic geranylcyclohexenetriol produced in liquid culture by Phomopsis sp. (teleomorph: Diaporthe gulyae), a potential mycoherbicide proposed for the control of the annual weed Carthamus lanatus. In this study, seven derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on nonhost weedy and agrarian plants, fungi, Gram+ and Gram- bacteria, and on brine shrimp larvae. The results provide insights into an investigation of the structural requirements for activity. The hydroxy groups at C-2 and C-4 appeared to be important features for the phytotoxicity, as well as an unchanged cyclohexentriol ring. A role seemed also to be played by the unsaturations of the geranyl side chain. These findings could be useful for understanding the mechanisms of action of new natural products, for identifying the active sites, and possibly in devising new herbicides of natural origin.

  6. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  7. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors

    PubMed Central

    2013-01-01

    Background In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Results Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. Conclusions A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation. PMID:24171724

  8. The moderating role of social networks in the relationship between alcohol consumption and treatment utilization for alcohol-related problems.

    PubMed

    Mowbray, Orion

    2014-01-01

    Many individuals wait until alcohol use becomes severe before treatment is sought. However, social networks, or the number of social groups an individual belongs to, may play a moderating role in this relationship. Logistic regression examined the interaction of alcohol consumption and social networks as a predictor of treatment utilization while adjusting for sociodemographic and clinical variables among 1,433 lifetime alcohol-dependent respondents from wave 2 of the National Epidemiologic Survey on Alcohol Related Conditions (NESARC). Results showed that social networks moderate the relationship between alcohol consumption and treatment utilization such that for individuals with few network ties, the relationship between alcohol consumption and treatment utilization was diminished, compared to the relationship between alcohol consumption and treatment utilization for individuals with many network ties. Findings offer insight into how social networks, at times, can influence individuals to pursue treatment, while at other times, influence individuals to stay out of treatment, or seek treatment substitutes.

  9. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the van't Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while

  10. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships.

    PubMed

    Jung, Yearam; Shin, Soon Young; Yong, Yeonjoong; Jung, Hyeryoung; Ahn, Seunghyun; Lee, Young Han; Lim, Yoongho

    2015-05-01

    Although several plant-derived flavones inhibit aurora B kinase (aurB), quantitative relationships between the structural properties of plant-derived flavones and their inhibitory effects on aurB remain unclear. In this report, these quantitative structure-activity relationships were obtained. For quercetagetin, found in the Eriocaulon species, showing the best IC50 value among the flavone derivatives tested in this report, further biological tests were performed using cell-based assays, including Western blot analysis, flow cytometry, and immunofluorescence microscopy. In vitro cellular experiments demonstrated that quercetagetin inhibits aurB. The molecular-binding mode between quercetagetin and aurB was elucidated using in silico docking. Quercetagetin binds to aurB, aurA, and aurC and prevents the active phosphorylation of all three aurora kinases. In addition, quercetagetin triggers mitotic arrest and caspase-mediated apoptosis. These observations suggest that quercetagetin is an aurora kinase inhibitor. Induction of mitosis-associated tumor cell death by quercetagetin is a promising strategy for developing novel chemotherapeutic anticancer agents.

  11. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test

    SciTech Connect

    Hermens, J.; Busser, F.; Leeuwangh, P.; Musch, A.

    1985-02-01

    Quantitative structure-activity relationships were calculated for the inhibition of bioluminescence of Photobacterium phosphoreum by 22 nonreactive organic chemicals. The inhibition was measured using the Microtox test and correlated with the partition coefficient between n-octanol and water (Poct), molar refractivity (MR), and molar volume (MW/d). At log Poct less than 1 and greater than 3, deviations from linearity were observed. Introduction of MR and MW/d improved the quality of the relationships. The influences of MR or MW/d may be related with an interaction of the tested chemicals to the enzyme system which produces the light emission. The sensitivity of the Microtox test to the 22 tested compounds is comparable to a 14-day acute mortality test with guppies for chemicals with log Poct less than 4. The inhibition of bioluminescence by a mixture of the tested compounds was slightly less than was expected in case of concentration addition. The Microtox test can give a good estimate of the total aspecific minimum toxicity of polluted waters. When rather lipophilic compounds or pollutants with more specific modes of action are present, this test will underestimate the toxicity to other aquatic life.

  12. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Application of Quantitative Structure Activity/Selectivity Relationships

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    While the synthetic utility of asymmetric phase transfer catalysis continues to expand, the number of proven catalyst types and design criteria remains limited. At the origin of this scarcity is a lack in understanding of how catalyst structural features affect the rate and enantioselectivity of phase transfer catalyzed reactions. Described in this paper is the development of quantitative structure-activity relationships (QSAR) and -selectivity relationships (QSSR) for the alkylation of a protected glycine imine with libraries of quaternary ammonium ion catalysts. Catalyst descriptors including ammonium ion accessibility, interfacial adsorption affinity, and partition coefficient were found to correlate meaningfully with catalyst activity. The physical nature of the descriptors was rationalized through differing contributions of the interfacial and extraction mechanisms to the reaction under study. The variation in the observed enantioselectivity was rationalized employing a comparative molecular field analysis (CoMFA) using both the steric and electrostatic fields of the catalysts. A qualitative analysis of the developed model reveals preferred regions for catalyst binding to afford both configurations of the alkylated product. PMID:21446723

  13. SARANEA: a freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets.

    PubMed

    Lounkine, Eugen; Wawer, Mathias; Wassermann, Anne Mai; Bajorath, Jürgen

    2010-01-01

    We introduce SARANEA, an open-source Java application for interactive exploration of structure-activity relationship (SAR) and structure-selectivity relationship (SSR) information in compound sets of any source. SARANEA integrates various SAR and SSR analysis functions and utilizes a network-like similarity graph data structure for visualization. The program enables the systematic detection of activity and selectivity cliffs and corresponding key compounds across multiple targets. Advanced SAR analysis functions implemented in SARANEA include, among others, layered chemical neighborhood graphs, cliff indices, selectivity trees, editing functions for molecular networks and pathways, bioactivity summaries of key compounds, and markers for bioactive compounds having potential side effects. We report the application of SARANEA to identify SAR and SSR determinants in different sets of serine protease inhibitors. It is found that key compounds can influence SARs and SSRs in rather different ways. Such compounds and their SAR/SSR characteristics can be systematically identified and explored using SARANEA. The program and source code are made freely available under the GNU General Public License.

  14. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity relationship analysis for polar narcotics.

    PubMed

    Chen, Chung-Yuan; Ko, Chia-Wen; Lee, Po-I

    2007-06-01

    This study evaluated the toxic effects of substituted anilines on Pseudokirchneriella subcapitata with the use of a closed algal toxicity testing technique with no headspace. Two response endpoints (i.e., dissolved oxygen production [DO] and algal growth rate) were used to evaluate the toxicity of anilines. Both DO and growth rate endpoints revealed similar sensitivity to the effects of anilines. However, trichloroanilines showed stronger inhibitory effects on microalgal photosynthetic reactions than that on algal growth. For various aquatic organisms, the relative sensitivity relationship for anilines is Daphnia magna > luminescent bacteria (Microtox) > or = Pocelia reticulata > or = Pseudokirchneriella subcapitata > or = fathead minnow > Tetrahymena pyriformis. The susceptibility of P. subcapitata to anilines is similar to fish, but P. subcapitata is apparently less sensitive than the water flea. The lack of correlation between the toxicity revealed by different aquatic organisms (microalgae, D. magna, luminescent bacteria, and P. reticulata) suggests that anilines might have different metabolic routes in these organisms. Both hydrogen bonding donor capacity (the lowest unoccupied molecular orbital energy, Elumo) and hydrophobicity (1-octanol:water partition coefficient, Kow) were found to provide satisfactory descriptions for the toxicity of polar narcotics (substituted anilines and chlorophenols). Quantitative structure-activity relationships (QSARs) based on Elumo, log Kow, or both values were established with r2 values varying from 0.75 to 0.92. The predictive power for the QSAR models were found to be satisfactory through leave-one-out cross-validation. Such relationships could provide useful information for the estimation of toxicity for other polar narcotic compounds.

  15. Baclofen for alcohol dependence: Relationships between baclofen and alcohol dosing and the occurrence of major sedation.

    PubMed

    Rolland, Benjamin; Labreuche, Julien; Duhamel, Alain; Deheul, Sylvie; Gautier, Sophie; Auffret, Marine; Pignon, Baptiste; Valin, Thomas; Bordet, Régis; Cottencin, Olivier

    2015-10-01

    High-dose baclofen, i.e., 300 mg/d or more, has recently emerged as a strategy for treating alcohol dependence. The impact that the co-exposure of large amounts of alcohol and baclofen has on sedation is unclear. In a prospective cohort of 253 subjects with alcohol dependence, we collected daily alcohol and baclofen doses across the first year of baclofen treatment and the monthly maximum subjective sedation experienced by each patient (0-10 visual analog scale). For each patient-month, we determined the average weekly alcohol consumption (AWAC; standard-drinks/week) and the maximum daily dose of baclofen (DDB; mg/d). The occurrence of an episode of major sedation (EMS) during a patient-month was defined as a sedation score ≥7. The relationship between the EMS occurrence and the concurrent AWAC and DDB was investigated using a generalized estimating equation model. In total, 1528 patient-months were compiled (70 with an EMS). Univariate analyses demonstrated that the rate of patient-month to EMS increased gradually with AWAC (p<0.001), from 0.9% for AWAC=0 to 9.4% for AWAC >35. There was also a significant gradual risk for EMS associated with DDB (<0.001). Multivariate analysis demonstrated a significant interaction between DDB and AWAC on EMS risk (p=0.047). Each 20mg/d increase in DDB was associated with an OR of EMS in AWAC >35 of 1.22 (95%CI, 1.08-1.38) versus 1.11 (95%CI, 0.96-1.29) in AWAC=1-35, and 0.95 (95%CI, 0.76-1.19) in AWAC=0. The level of sedation observed in patients using baclofen for alcohol dependence appears to directly depend on the immediate doses of both the baclofen and the alcohol.

  16. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.

  17. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp.

    PubMed

    Coulerie, Paul; Nour, Mohammed; Maciuk, Alexandre; Eydoux, Cécilia; Guillemot, Jean-Claude; Lebouvier, Nicolas; Hnawia, Edouard; Leblanc, Karine; Lewin, Guy; Canard, Bruno; Figadère, Bruno

    2013-09-01

    Dengue virus is the world's most prevalent human pathogenic arbovirus. There is currently no treatment or vaccine, and solutions are urgently needed. We previously demonstrated that biflavonoids from Dacrydium balansae, an endemic gymnosperm from New Caledonia, are potent inhibitors of the Dengue virus NS5 RNA-dependent RNA polymerase. Herein we describe the structure-activity relationship study of 23 compounds: biflavonoids from D. balansae (1-4) and from D. araucarioides (5-10), hexamethyl-amentoflavone (11), cupressuflavone (12), and apigenin derivatives (13-23). We conclude that 1) over the four different biflavonoid skeletons tested, amentoflavone (1) and robustaflavone (5) are the most promising ones for antidengue drug development, 2) the number and position of methyl groups on the biflavonoid moiety modulate their inhibition of Dengue virus NS5 RNA-dependent RNA polymerase, and 3) the degree of oxygenation of flavonoid monomers influences their antidengue potential. Sotetsuflavone (8), with an IC50 = 0.16 µM, is the most active compound of this series and is the strongest inhibitor of the Dengue virus NS5 RNA-dependent RNA polymerase described in the literature.

  18. Biologically relevant chemical space navigator: from patent and structure-activity relationship analysis to library acquisition and design.

    PubMed

    Rabal, Obdulia; Oyarzabal, Julen

    2012-12-21

    A new and versatile visualization tool, based on a descriptor accounting for ligand-receptor interactions (LiRIf), is introduced for guiding medicinal chemists in analyzing the R-groups from a congeneric series. Analysis is performed in a reference-independent scenario where the whole biologically relevant chemical space (BRCS) is represented. Using a real project-based data set, we show the impact of this tool on four key navigation strategies for the drug discovery process. First, this navigator analyzes competitors' patents, including a comparison of patents coverage and the identification of the most frequent fragments. Second, the tool analyzes the structure-activity relationship (SAR) leading to the representation of reference-independent activity landscapes that enable the identification not only of critical ligand-receptor interactions (LRI) and substructural features but also of activity cliffs. Third, this navigator enables comparison of libraries, thus selecting commercially available molecules that complement unexplored spaces or areas of interest. Finally, this tool also enables the design of new analogues, which is based on reaction types and the exploration purpose (focused or diverse), selecting the most appropriate reagents.

  19. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    PubMed

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  20. Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders--A Review of Structure-Activity Relationships.

    PubMed

    Gunia-Krzyżak, Agnieszka; Pańczyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk

    2015-08-01

    The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ-aminobutyric acid type A (GABAA ) receptors, N-methyl-D-aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage-gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target-based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure-activity relationships discussed.

  1. Isolation of Insecticidal Constituent from Ruta graveolens and Structure-Activity Relationship Studies against Stored-Food Pests (Coleoptera).

    PubMed

    Jeon, Ju-Hyun; Lee, Sang-Guei; Lee, Hoi-Seon

    2015-08-01

    Isolates from essential oil extracted from the flowers and leaves of Ruta graveolens and commercial phenolic analogs were evaluated using fumigant and contact toxicity bioassays against adults of the stored-food pests Sitophilus zeamais, Sitophilus oryzae, and Lasioderma serricorne. The insecticidal activity of these compounds was then compared with that of the synthetic insecticide dichlorvos. To investigate the structure-activity relationships, the activity of 2-isopropyl-5-methylphenol and its analogs was examined against these stored-food pests. Based on the 50% lethal dose, the most toxic compound against S. zeamais was 3-isopropylephenol, followed by 2-isopropylphenol, 4-isopropylphenol, 5-isopropyl-2-methylphenol, 2-isopropyl-5-methylphenol, 3-methylphenol, and 2-methylphenol. Similar results were observed with phenolic compounds against S. oryzae. However, when 2-isopropyl-5-methylphenol isolated from R. graveolens oil and its structurally related analogs were used against L. serricorne, little or no insecticidal activity was found regardless of bioassay. These results indicate that introducing and changing the positions of functional groups in the phenol skeleton have an important effect on insecticidal activity of these compounds against stored-food pests.

  2. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.

  3. Structure-activity relationships of seco-prezizaane terpenoids in gamma-aminobutyric acid receptors of houseflies and rats.

    PubMed

    Kuriyama, Tadahiko; Schmidt, Thomas J; Okuyama, Emi; Ozoe, Yoshihisa

    2002-06-01

    Thirteen seco-prezizaane terpenoids isolated from star anise species (Illcium floridanum, Illcium parviflorum, and Illcium verum) were investigated for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist of gamma-aminobutyric acid (GABA) receptors, to housefly-head and rat-brain membranes. Veranisatin A was found to be the most potent inhibitor in both membranes, with an IC(50)(fly) of 78.5 nM and an IC(50)(rat) of 271 nM, followed by anisatin (IC(50)(fly)=123 nM; IC(50)(rat)=282 nM). Six of the other 11 tested compounds were effective only in housefly-head membranes. Pseudoanisatin proved to display a high (>26-fold) selectivity for housefly versus rat GABA receptors (IC(50)(fly)=376 nM; IC(50)(rat) >10,000 nM). Although pseudoanisatin does not structurally resemble EBOB, Scatchard plots indicated that the two compounds bind to the same site in housefly receptors. Anisatin and pseudoanisatin exhibited moderate insecticidal activity against German cockroaches. Comparative molecular field analysis (CoMFA), a method of three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, demonstrated that seco-prezizaane terpenoids can bind to the same site as do picrotoxane terpenoids such as picrotoxinin and picrodendrins, and the CoMFA maps allowed us to identify the parts of the molecules essential to high activity in housefly GABA receptors.

  4. Comprehensive Analysis of Structure Activity Relationships of α-Ketoheterocycles as sn-1-Diacylglycerol Lipase α Inhibitors

    PubMed Central

    Janssen, Freek J.; Baggelaar, Marc P.; Hummel, Jessica J. A.; Overkleeft, Herman S.; Cravatt, Benjamin F.; Boger, Dale L.; van der Stelt, Mario

    2015-01-01

    Diacylglycerol lipase α (DAGLα) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα inhibitors are required to study the physiological role of 2-AG. Previously, we identified the α-ketoheterocycles as potent and highly selective DAGLα inhibitors. Here, we present the first comprehensive structure-activity relationship study of α-ketoheterocycles as DAGLα inhibitors. Our findings indicate that the active site of DAGLα is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGLα homology model. Altogether our results may guide the design of future DAGLα inhibitors as leads for molecular therapies to treat neuroinflammation, obesity and related metabolic disorders. PMID:26584396

  5. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  6. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    SciTech Connect

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  7. Structure-Activity Relationships of a Novel Pyranopyridine Series of Gram-negative Bacterial Efflux Pump Inhibitors

    PubMed Central

    Nguyen, Son T.; Kwasny, Steven M.; Ding, Xiaoyuan; Cardinale, Steven C.; McCarthy, Courtney T.; Kim, Hong-Suk; Nikaido, Hiroshi; Peet, Norton P.; Williams, John D.; Bowlin, Terry L.; Opperman, Timothy J.

    2015-01-01

    Recently we described a novel pyranopyridine inhibitor (MBX2319) of RND-type efflux pumps of the Enterobacteriaceae. MBX2319 (3,3-dimethyl-5-cyano-8-morpholino-6-(phenethylthio)-3,4-dihydro-1H-pyrano[3,4-c]pyridine) is structurally distinct from other known Gram-negative efflux pump inhibitors (EPIs), such as 1-(1-naphthylmethyl)-piperazine (NMP), phenylalanylarginine-β-naphthylamide (PAβN), D13-9001, and the pyridopyrimidine derivatives. Here, we report the synthesis and biological evaluation of 60 new analogs of MBX2319 that were designed to probe the structure activity relationships (SARs) of the pyranopyridine scaffold. The results of these studies produced a molecular activity map of the scaffold, which identifies regions that are critical to efflux inhibitory activities and those that can be modified to improve potency, metabolic stability and solubility. Several compounds, such as 22d–f, 22i and 22k, are significantly more effective than MBX2319 at potentiating the antibacterial activity of levofloxacin and piperacillin against Escherichia coli. PMID:25818767

  8. Structure-activity relationships for a class of selective inhibitors of the major cysteine protease from Trypanosoma cruzi.

    PubMed

    Guido, Rafael V C; Trossini, Gustavo H G; Castilho, Marcelo S; Oliva, Glaucius; Ferreira, Elizabeth I; Andricopulo, Adriano D

    2008-12-01

    Chagas' disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q(2) = 0.75 and r(2) = 0.96; classical QSAR, q(2) = 0.72 and r(2) = 0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(2)(pred) = 0.95; classical QSAR, r(2)(pred) = 0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

  9. Quantitative structure-activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents.

    PubMed

    Papa, E; Luini, M; Gramatica, P

    2009-10-01

    Fragrance materials are used as ingredients in many consumer and personal care products. The wide and daily use of these substances, as well as their mainly uncontrolled discharge through domestic sewage, make fragrance materials both potential indoor and outdoor air pollutants which are also connected to possible toxic effects on humans (asthma, allergies, headaches). Unfortunately, little is known about the environmental fate and toxicity of these substances. However, the use of alternative, predictive approaches, such as quantitative structure-activity relationships (QSARs), can help in filling the data gap and in the characterization of the environmental and toxicological profile of these substances. In the proposed study, ordinary least squares regression-based QSAR models were developed for three toxicological endpoints: mouse oral LD(50), inhibition of NADH-oxidase (EC(50) NADH-Ox) and the effect on mitochondrial membrane potential (EC(50) DeltaPsim). Theoretical molecular descriptors were calculated by using DRAGON software, and the best QSAR models were developed according to the principles defined by the Organization for Economic Co-operation and Development.

  10. Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna.

    PubMed

    Toropova, Alla P; Toropov, Andrey A; Veselinović, Aleksandar M; Veselinović, Jovana B; Leszczynska, Danuta; Leszczynski, Jerzy

    2016-11-01

    Quantitative structure-activity relationships (QSARs) for toxicity of a large set of 758 organic compounds to Daphnia magna were built up. The simplified molecular input-line entry system (SMILES) was used to represent the molecular structure. The Correlation and Logic (CORAL) software was utilized as a tool to develop the QSAR models. These models are built up using the Monte Carlo method and according to the principle "QSAR is a random event" if one checks a group of random distributions in the visible training set and the invisible validation set. Three distributions of the data into the visible training, calibration, and invisible validation sets are examined. The predictive potentials (i.e., statistical characteristics for the invisible validation set of the best model) are as follows: n = 87, r(2)  = 0.8377, root mean square error = 0.564. The mechanistic interpretations and the domain of applicability of built models are suggested and discussed. Environ Toxicol Chem 2016;35:2691-2697. © 2016 SETAC.

  11. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    PubMed Central

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  12. Approach on quantitative structure-activity relationship for design of a pH neutral carrier containing tertiary amino group.

    PubMed

    Cao, Zhong; Gong, Fu-Chun; Li, He-Ping; Xiao, Zhong-Liang; Long, Shu; Zhang, Ling; Peng, San-Jun

    2007-01-02

    The quantitative structure-activity relationship (QSAR) for neutral carriers used to prepare hydrogen ion sensors has been studied. A series of synthesized carrier compounds were taken as the training set. Five molecular structure parameters of the compounds were calculated by using CNDO/2 algorithm and used as feature variables in constructing QSAR model. The lower and upper limits of the linear pH response range were taken as the activity measure. The corresponding model equations were derived from the stepwise regression procedure. With the established QSAR model, a new pH carrier, (4-hydroxybenzyl) didodecylamine (XIII) was proposed and synthesized. The PVC membrane pH electrode based on carrier XIII with a wide pH linear response range of 2.0-12.5 was prepared. Having a theoretical Nernstian response slope of 57.2+/-0.3 mV/pH (n=5 at 25 degrees C) without a super-Nernstian phenomenon, the sensor had low resistance, short response time, high selectivity and good reproducibility. Moreover, the sensor was successfully applied to detecting the pH value of serum samples.

  13. A structure-activity relationship study of catechol- O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods

    NASA Astrophysics Data System (ADS)

    Tervo, Anu J.; Nyrönen, Tommi H.; Rönkkö, Toni; Poso, Antti

    2003-12-01

    A panel of 92 catechol- O-methyltransferase (COMT) inhibitors was used to examine the molecular interactions affecting their biological activity. COMT inhibitors are used as therapeutic agents in the treatment of Parkinson's disease, but there are limitations in the currently marketed compounds due to adverse side effects. This study combined molecular docking methods with three-dimensional structure-activity relationships (3D QSAR) to analyse possible interactions between COMT and its inhibitors, and to incite the design of new inhibitors. Comparative molecular field analysis (CoMFA) and GRID/GOLPE models were made by using bioactive conformations from docking experiments, which yielded q2 values of 0.594 and 0.636, respectively. The docking results, the COMT X-ray structure, and the 3D QSAR models are in agreement with each other. The models suggest that an interaction between the inhibitor's catechol oxygens and the Mg2+ ion in the COMT active site is important. Both hydrogen bonding with Lys144, Asn170 and Glu199, and hydrophobic contacts with Trp38, Pro174 and Leu198 influence inhibitor binding. Docking suggests that a large R1 substituent of the catechol ring can form hydrophobic contacts with side chains of Val173, Leu198, Met201 and Val203 on the COMT surface. Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity.

  14. Predictive three-dimensional quantitative structure-activity relationship of cytochrome P450 1A2 inhibitors.

    PubMed

    Korhonen, Laura E; Rahnasto, Minna; Mähönen, Niina J; Wittekindt, Carsten; Poso, Antti; Juvonen, Risto O; Raunio, Hannu

    2005-06-02

    The purpose of this study was to determine the cytochrome P450 1A2 (CYP1A2) inhibition potencies of structurally diverse compounds to create a comprehensive three-dimensional quantitative structure-activity relationship (3D-QSAR) model of CYP1A2 inhibitors and to use this model to predict the inhibition potencies of an external set of compounds. Fifty-two compounds including naphthalene, lactone and quinoline derivatives were assayed in a 96-well plate format for CYP1A2 inhibition activity using 7-ethoxyresorufin O-dealkylation as the probe reaction. The IC50 values of the tested compounds varied from 2.3 microM to over 40,000 microM. On the basis of this data set, a comparative molecular field analysis (CoMFA) and GRID/GOLPE models were created that yielded novel structural information about the interaction between inhibitory molecules and the CYP1A2 active site. The created CoMFA model was able to accurately predict inhibitory potencies of several structurally unrelated compounds, including selective inhibitors of other cytochrome P450 forms.

  15. Structure-Activity Relationship Study of the Neuritogenic Potential of the Glycan of Starfish Ganglioside LLG-3 ‡

    PubMed Central

    Yamagishi, Megumi; Hosoda-Yabe, Ritsuko; Tamai, Hideki; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Yabe, Tomio; Ando, Hiromune; Kiso, Makoto

    2015-01-01

    LLG-3 is a ganglioside isolated from the starfish Linchia laevigata. To clarify the structure-activity relationship of the glycan of LLG-3 toward rat pheochromocytoma PC12 cells in the presence of nerve growth factor, a series of mono- to tetrasaccharide glycan derivatives were chemically synthesized and evaluated in vitro. The methyl group at C8 of the terminal sialic acid residue was crucial for neuritogenic activity, and the terminal trisaccharide moiety was the minimum active motif. Furthermore, the trisaccharide also stimulated neuritogenesis in human neuroblastoma SH-SY5Y cells via mitogen-activated protein kinase (MAPK) signaling. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was rapidly induced by adding 1 or 10 nM of the trisaccharide. The ratio of phosphorylated ERK to ERK reached a maximum 5 min after stimulation, and then decreased gradually. However, the trisaccharide did not induce significant Akt phosphorylation. These effects were abolished by pretreatment with the MAPK inhibitor U0126, which inhibits enzymes MEK1 and MEK2. In addition, U0126 inhibited the phosphorylation of ERK 1/2 in response to the trisaccharide dose-dependently. Therefore, we concluded that the trisaccharide promotes neurite extension in SH-SY5Y cells via MAPK/ERK signaling, not Akt signaling. PMID:26690179

  16. Structure-activity relationship of a recombinant hybrid Manganese superoxide dismutase of Staphylococcus saprophyticus/S. equorum.

    PubMed

    Retnoningrum, Debbie S; Arumsari, Sekar; Artarini, Anita; Ismaya, Wangsa T

    2017-05-01

    Recombinant hybrid Manganese superoxide dismutase from Staphyloccus saphropyticus/S. equorum (rMnSODSeq) exhibits stability at high temperatures. The enzyme occurs as a dimer that dissociates around 52°C prior to unfolding of the monomer around 64°C, demonstrating contribution of the dimeric form to stability. Here, structure - activity relationship of rMnSODSeq was evaluated on the basis of its activity and stability in the presence of inhibitors, NaCl, denaturants, detergents, reducing agents, and at different pH values. The activity was evaluated at both 37°C and 52°C, which the latter is the temperature for dissociation of the dimer. Dimer to monomer transition coincided with significant decrease in residual activity at 52°C. However, the activity assay results at 52°C and 37°C suggest spontaneous re-association of the monomer into dimer. Intriguingly, various new species with melting temperature (TM) values other than those of the dimer or monomer were observed. These species displayed medium to comparable level of residual activities to the native at 37°C. This report suggests that dimer to monomer transition may be not the only explanation for activity loss or decrease.

  17. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.

    PubMed

    Gupta, S; Basant, N; Singh, K P

    2015-01-01

    In this study, structure-activity relationship (SAR) models have been established for qualitative and quantitative prediction of the blood-brain barrier (BBB) permeability of chemicals. The structural diversity of the chemicals and nonlinear structure in the data were tested. The predictive and generalization ability of the developed SAR models were tested through internal and external validation procedures. In complete data, the QSAR models rendered ternary classification accuracy of >98.15%, while the quantitative SAR models yielded correlation (r(2)) of >0.926 between the measured and the predicted BBB permeability values with the mean squared error (MSE) <0.045. The proposed models were also applied to an external new in vitro data and yielded classification accuracy of >82.7% and r(2) > 0.905 (MSE < 0.019). The sensitivity analysis revealed that topological polar surface area (TPSA) has the highest effect in qualitative and quantitative models for predicting the BBB permeability of chemicals. Moreover, these models showed predictive performance superior to those reported earlier in the literature. This demonstrates the appropriateness of the developed SAR models to reliably predict the BBB permeability of new chemicals, which can be used for initial screening of the molecules in the drug development process.

  18. Effects of taurine and some structurally related analogues on the central mechanism of thermoregulation: a structure-activity relationship study.

    PubMed

    Frosini, M; Sesti, C; Saponara, S; Donati, A; Palmi, M; Valoti, M; Machetti, F; Sgaragli, G

    2000-01-01

    There is large body of evidences on the role of taurine in the central mechanisms of thermoregulation in mammals, but it is not clear, whether the hypothermic effect of taurine depends on its interaction with GABA receptors or with a specific receptor. In order to answer this question, we have performed a structure-activity relationship study by using both in vitro and in vivo preparations. MicroM amounts of taurine or each of 20 analogues were injected intracerebroventricularly in conscious, restrained rabbits while rectal temperature was recorded. Receptor-binding studies, with synaptic membrane preparations from rabbit brain were used to determine the affinities of these compounds for GABA(A) and GABA(B) receptors. Furthermore, the interaction with presynaptic GABA and taurine uptake systems was studied using crude synaptosomal preparations from rabbit brain. Among the compounds tested, (+/-)-cis-2-aminocyclohexanesulfonic acid, induced hypothermia, but did not interact with GABA(A) and GABA(B) receptors neither did it affect GABA and taurine uptake, thus suggesting that its effect on body temperature is not mediated by the central GABAergic system. Interestingly, the trans-isomer was devoid of effects either in vivo or in vitro. In order to explain (+/-)-cis-2-aminocyclohexanesulfonic acid-induced hypothermia, a stereoscopic model was produced showing its possible interactions with a putative taurine brain receptor.

  19. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)

    PubMed Central

    Baqi, Younis; Weyler, Stefanie; Iqbal, Jamshed; Zimmermann, Herbert

    2008-01-01

    Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM). PMID:18528783

  20. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study

    PubMed Central

    Satpathy, Raghunath; Guru, R. K.; Behera, R.; Nayak, B.

    2015-01-01

    Context: Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. Aims: To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. Materials and Methods: In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Statistical Analysis Used: Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. Results: From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Conclusions: Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. PMID:25709332

  1. Structure-activity relationships for vitamin D3-based aromatic a-ring analogues as hedgehog pathway inhibitors.

    PubMed

    Deberardinis, Albert M; Madden, Daniel J; Banerjee, Upasana; Sail, Vibhavari; Raccuia, Daniel S; De Carlo, Daniel; Lemieux, Steven M; Meares, Adam; Hadden, M Kyle

    2014-05-08

    A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 μM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.

  2. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries.

  3. Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties.

    PubMed

    Quirós, Ana; del Mar Contreras, María; Ramos, Mercedes; Amigo, Lourdes; Recio, Isidra

    2009-10-01

    Physiological digestion plays a key role in the formation and degradation of angiotensin-converting enzyme (ACE)-inhibitory peptides. In this study, we evaluated the impact of a simulated gastrointestinal digestion on the stability of eight peptides previously identified in fermented milk with antihypertensive activity. Two of these identified peptides with sequences LHLPLP and LVYPFPGPIPNSLPQNIPP, possess ACE-inhibitory activity in vitro and antihypertensive activity in vivo. The results showed that LHLPLP was resistant to digestive enzymes. In contrast, LVYPFPGPIPNSLPQNIPP was totally hydrolyzed and its activity decreased after incubation with pepsin and a pancreatic extract. The peptide LHLPLP was incubated with ACE and was found to be a true inhibitor of the enzyme and to exhibit a competitive inhibitor pattern. A structure-activity relationship study of this peptide was carried out by synthesizing several modified peptides related to the sequence LHLPLP. The substitution of amino acid Leu in the penultimate position by Gly improved the ACE-inhibitory activity twofold and the substitution of Pro at C-terminal position by Arg increased the activity twofold, with an IC50 of LHLPLR as low as 1.8 microM.

  4. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds.

  5. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-06-20

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.

  6. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics

    PubMed Central

    Hothersall, J. Daniel; Guo, Dong; Sarda, Sunil; Sheppard, Robert J.; Chen, Hongming; Keur, Wesley; Waring, Michael J.; IJzerman, Adriaan P.; Hill, Stephen J.; Dale, Ian L.

    2017-01-01

    The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy. PMID:27803241

  7. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  8. Novel N-2-(Furyl)-2-(chlorobenzyloxyimino) Ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-Activity Relationship

    PubMed Central

    Mohammadhosseini, Negar; Pordeli, Mahboobeh; Safavi, Maliheh; Firoozpour, Loghman; Amin, Fatame; Kabudanian Ardestani, Sussan; Edraki, Najmeh; Shafiee, Abbas; Foroumadi, Alireza

    2015-01-01

    Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cytotoxic potential against some cancerous cells. In present study, synthesis and cytotoxic activity evaluation of new series of N-pipearzinyl quinolones containing N-2-(furyl-2 or 3-yl)-2-(chlorobenzyloxyimino) ethyl moiety 7a-i have been studied. Reaction of quinolone, with 2-bromo-1-(furan-2 or 3-yl)ethanone-O-substituted chlorobenzyloxime in DMF in presence of NaHCO3 at room temperature, gave the title compounds N-2-(furan-2 or 3-yl)-2-(chlorobenzyloxyiminoethyl) quinolone 7a-i. Synthesized compounds were further evaluated in-vitro against three human breast tumor cell lines. Preliminary screening indicated that compound 7 g demonstrated significant growth inhibitory potential against all evaluated cell lines. The results of structure-activity relationship study exhibited that quinolone derivatives are superior in cytotoxic potential compared to 1, 8-naphthyridone series. Furthermore, ethyl quinolone derivatives were more potent cytotoxic agents comparing with cyclopropyl quinolones. PMID:26664376

  9. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    We propose interspecies quantitative structure-activity-activity relationships (QSAARs), that is, QSARs with descriptors, to estimate species-specific acute aquatic toxicity. Using training datasets consisting of more than 100 aromatic amines and phenols, we found that the descriptors that predicted acute toxicities to fish (Oryzias latipes) and algae were daphnia toxicity, molecular weight (an indicator of molecular size and uptake) and selected indicator variables that discriminated between the absence or presence of various substructures. Molecular weight and the selected indicator variables improved the goodness-of-fit of the fish and algae toxicity prediction models. External validations of the QSAARs proved that algae toxicity could be predicted within 1.0 log unit and revealed structural profiles of outlier chemicals with respect to fish toxicity. In addition, applicability domains based on leverage values provided structural alerts for the predicted fish toxicity of chemicals with more than one hydroxyl or amino group attached to an aromatic ring, but not for fluoroanilines, which were not included in the training dataset. Although these simple QSAARs have limitations, their applicability is defined so clearly that they may be practical for screening chemicals with molecular weights of ≤364.9.

  10. Inhibitors of the kinase IspE: structure-activity relationships and co-crystal structure analysis.

    PubMed

    Hirsch, Anna K H; Alphey, Magnus S; Lauw, Susan; Seet, Michael; Barandun, Luzi; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N; Bacher, Adelbert; Diederich, François

    2008-08-07

    Enzymes of the non-mevalonate pathway for isoprenoid biosynthesis are therapeutic targets for the treatment of important infectious diseases. Whereas this pathway is absent in humans, it is used by plants, many eubacteria and apicomplexan protozoa, including major human pathogens such as Plasmodium falciparum and Mycobacterium tuberculosis. Herein, we report on the design, preparation and biological evaluation of a new series of ligands for IspE protein, a kinase from this pathway. These inhibitors were developed for the inhibition of IspE from Escherichia coli, using structure-based design approaches. Structure-activity relationships (SARs) and a co-crystal structure of Aquifex aeolicus IspE bound to a representative inhibitor validate the proposed binding mode. The crystal structure shows that the ligand binds in the substrate-rather than the adenosine 5'-triphosphate (ATP)-binding pocket. As predicted, a cyclopropyl substituent occupies a small cavity not used by the substrate. The optimal volume occupancy of this cavity is explored in detail. In the co-crystal structure, a diphosphate anion binds to the Gly-rich loop, which normally accepts the triphosphate moiety of ATP. This structure provides useful insights for future structure-based developments of inhibitors for the parasite enzymes.

  11. Two- and Three-Dimensional Quantitative Structure-Activity Relationships Studies on a Series of Liver X Receptor Ligands

    PubMed Central

    Honório, Káthia M; Salum, Lívia B; Garratt, Richard C; Polikarpov, Igor; Andricopulo, Adriano D

    2008-01-01

    Liver X receptor (LXR) is an attractive drug target for the development of novel therapeutic agents for the treatment of dyslipidaemia and cholestasis. In the present work, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of potent LXR ligands. Significant correlation coefficients (CoMFA, r2 = 0.98 and q2 = 0.69; HQSAR, r2 = 0.99 and q2 = 0.85) were obtained, indicating the potential of the models for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values obtained from the 2D and 3D models were in good agreement with the experimental results. The final QSAR models, along with the information obtained from 3D steric and electrostatic contour maps and 2D contribution maps should be useful for the design of novel LXR ligands having improved potency. PMID:19696872

  12. Quantitative structure-activity relationship of hydroxyl-substituent Schiff bases in radical-induced hemolysis of human erythrocytes.

    PubMed

    Tang, You-Zhi; Liu, Zai-Qun

    2008-01-01

    The major objective of this work was to explore the quantitative structure-activity relationship (QSAR) of hydroxyl-substituent Schiff bases in protecting human erythrocytes against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)- induced hemolysis, in which 10 Schiff bases including 4-phenyliminomethylphenol (PIH); 4-((4-hydroxybenzylidene) amino)phenol (PAH); 2-methoxy-4-((4-hydroxyphenylimino)methyl)phenol (PMH); 4-((furan-2-ylmethylene)amino) phenol (FAH); 4-((4-N,N-dimethylaminobenzylidene)amino)phenol (PDH); 2-((4-N,N-dimethylaminobenzylidene)amino) phenol (ODH); 2-(naphthalene-1-yliminomethyl)phenol (NAH); 2-(benzyliminomethyl)phenol (BPH); 1,4-di((2-hydroxyphenylimino) methyl)benzene (DOH); 1,4-di((4-hydroxyphenylimino)methyl)benzene DPH, were available for this in vitro experimental system. The results revealed that the radical-scavenging activity of the --OH attached to the para position of methylene in Schiff base was much lower than that attached to the ortho position of the N atom. The large conjugate system and low steric hindrance in the framework of Schiff base benefit the Schiff base to trap radicals. Meanwhile, since a Schiff base, even without any substituent, can also play an antioxidative role in this experimental system, the QSAR results suggest that hydroxyl-substituent Schiff bases are potential drugs in the treatment of radical-related diseases, and provide more information for designing novel drugs.

  13. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy.

    PubMed

    Jeon, Ju-Hyun; Lee, Hoi-Seon

    2014-08-27

    The acaricidal and insecticidal potential of the active constituent isolated from Citrullus colocynthis fruits and its structurally related analogues was evaluated by performing leaf disk, contact toxicity, and fumigant toxicity bioassays against Tetranychus urticae, Sitophilus oryzae, and Sitophilus zeamais adults. The active constituent of C. colocynthis fruits was isolated by chromatographic techniques and was identified as 4-methylquinoline on the basis of spectroscopic analyses. To investigate the structure-activity relationships, 4-methylquinoline and its structural analogues were tested against mites and two insect pests. On the basis of the LC50 values, 7,8-benzoquinoline was the most effective against T. urticae. Quinoline, 8-hydroxyquinoline, 2-methylquinoline, 4-methylquinoline, 6-methylquinoline, 8-methylquinoline, and 7,8-benzoquinoline showed high insecticidal activities against S. oryzae and S. zeamais regardless of the application method. These results indicate that introduction of a functional group into the quinoline skeleton and changing the position of the group have an important influence on the acaricidal and insecticidal activities. Furthermore, 4-methylquinoline isolated from C. colocynthis fruits, along with its structural analogues, could be effective natural pesticides for managing spider mites and stored grain weevils.

  14. Analysis of positions and substituents on genotoxicity of fluoroquinolones with quantitative structure-activity relationship and 3D Pharmacophore model.

    PubMed

    Fengxian, Chen; Reti, Hai

    2017-02-01

    The genotoxicity values of 21 quinolones were studied to establish a quantitative structure-activity relationship model and 3D Pharmacophore model separately for screening essential positions and substituents that contribute to genotoxicity of fluoroquinolones (FQs). A full factor experimental design was performed to analyze the specific main effect and second-order interaction effect of different positions and substituents on genotoxicity, forming a reasonable modification scheme which was validated on typical FQ with genotoxicity and efficacy data. Four positions (1, 5, 7, 8) were screened finally to form the full factorial experimental design which contained 72 congeners in total, illustrating that: the dominant effect of 5 and 7-positions on genotoxicity of FQs is main effect; meanwhile the effect of 1 and 8-positions is a second-order interaction effect; two adjacent positions always have stronger second-order interaction effect and lower genotoxicity; the obtained modification scheme had been validated on typical FQ congeners with the modified compound has a lower genotoxicity, higher synthesis feasibilities and efficacy.

  15. Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor.

    PubMed

    Piir, G; Sild, S; Maran, U

    2013-01-01

    Quantitative structure-activity relationships (QSARs) are broadly classified as global or local, depending on their molecular constitution. Global models use large and diverse training sets covering a wide range of chemical space. Local models focus on smaller structurally or chemically similar subsets that are conventionally selected by human experts or alternatively using clustering analysis. The current study focuses on the comparative analysis of different clustering algorithms (expectation-maximization, K-means and hierarchical) for seven different descriptor sets as structural characteristics and two rule-based approaches to select subsets for designing local QSAR models. A total of 111 local QSAR models are developed for predicting bioconcentration factor. Predictions from local models were compared with corresponding predictions from the global model. The comparison of coefficients of determination (r(2)) and standard deviations for local models with similar subsets from the global model show improved prediction quality in 97% of cases. The descriptor content of derived QSARs is discussed and analyzed. Local QSAR models were further consolidated within the framework of consensus approach. All different consensus approaches increased performance over the global and local models. The consensus approach reduced the number of strongly deviating predictions by evening out prediction errors, which were produced by some local QSARs.

  16. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  17. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    PubMed

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.

  18. The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure-activity relationship.

    PubMed

    Shigetomi, Kengo; Shoji, Kazuaki; Mitsuhashi, Shinya; Ubukata, Makoto

    2010-02-01

    6-Tuliposide B is a secondary metabolite occurring specifically in tulip anthers. Recently, a potent antibacterial activity of 6-tuliposide B has been reported. However, its molecular target has not yet been established, nor its action mechanism. To shed light on such issues, 6-tuliposide B and tulipalin B analogues were synthesized and a structure-activity relationship (SAR) was examined using a broad panel of bacterial strains. As the results of SAR among a total of 25 compounds, only tulipalin B and the compounds having 3',4'-dihydroxy-2'-methylenebutanoate (DHMB) moieties showed any significant antibacterial activity. Moreover, the 3'R analogues of these compounds displayed essentially the same activities as 6-tuliposide B and the structure of the 3'R-DMBA moiety was the same as that of the proposed active moiety of cnicin. These results suggest that 6-tuliposide B has the same action mechanism as proposed for cnicin and bacterial MurA is one of the major molecular targets of 6-tuliposide B.

  19. Using three-dimensional quantitative structure-activity relationships to examine estrogen receptor binding affinities of polychlorinated hydroxybiphenyls

    SciTech Connect

    Waller, C.L.; Minor, D.L.; McKinney, J.D.

    1995-07-01

    Certain phenyl-substituted hydrocarbons of environmental concern have the potential to disrupt the endocrine system of animals, apparently in association with their estrogenic properties. Competition with natural estrogens for the estrogen receptor is a possible mechanism by which such effects could occur. We used comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (QSAR) paradigm, to examine the underlying structural properties of ortho-chlorinated hydroxybiphenyl analogs known to bind to the estrogen receptor. The cross-validated and conventional statistical results indicate a high degree of internal predictability for the molecules included in the training data set. In addition to the phenolic (A) ring system, conformational restriction of the overall structure appears to play an important role in estrogen receptor binding affinity. Hydrophobic character as assessed using hydropathic interaction fields also contributes in a positive way to binding affinity. The CoMFA-derived QSARs may be useful in examining the estrogenic activity of a wider range of phenyl-substituted hydrocarbons of environmental concern. 37 refs., 2 figs., 2 tabs.

  20. Design, synthesis and structure-activity relationships studies on the D ring of the natural product triptolide.

    PubMed

    Xu, Hongtao; Tang, Huanyu; Feng, Huijin; Li, Yuanchao

    2014-02-01

    Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti-inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five-membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure-activity relationship studies have not yet been reported. Here, four types of D ring-modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV-3) and prostate (PC-3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues.

  1. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: chemical synthesis and structure - activity relationships.

    PubMed

    Gulea, Aurelian; Poirier, Donald; Roy, Jenny; Stavila, Vitalie; Bulimestru, Ion; Tapcov, Victor; Birca, Maria; Popovschi, Lilia

    2008-12-01

    The present paper describes the synthesis, characterization and in vitro biological evaluation screening of different classes (ammoniacates, dioximates, carboxylates, semi- and thiosemicarbazidates) of Co(II), Co(III), Cu(II), Ni(II), Mn(II), Zn(II) and Fe(III) complexes. Schiff bases were obtained from the reaction of some salicyl aldehydes with, respectively, furoylhydrazine, benzoylhydrazine, semicarbazide, thiosemicarbazide and S-methylthiosemicarbazide to give tridentate ligands containing ONO, ONS or ONN as donor atoms. The synthetic metal complexes are of various geometrical and electronic structures, thermodynamic and thermal stabilities, and magnetic and conductance properties. All complexes, except those of Cu, are octahedral. Some Cu, Co and Mn compounds have a dimeric or a polymeric structure. The composition and structure of complexes were analysed by elemental analysis, IR and (1)H NMR and (13)C NMR spectroscopies, and magnetochemical, thermoanalytical and molar conductance measurements. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60) cells growth, and the most potent, the Cu(II) complexes, have been also tested for their in vitro antibacterial and antifungal activities. Structure-activity relationships were carried out.

  2. Dechlorination of chlorinated compounds by Trametes versicolor ATCC 200801 crude laccase and quantitative structure-activity relationship of toxicity.

    PubMed

    Çabuk, Ahmet; Sidir, Yadigar G; Aytar, Pinar; Gedikli, Serap; Sidir, İsa

    2012-01-01

    Chlorinated compounds constitute an important class of xenobiotics. Crude laccase was produced using Trametes versicolor ATCC (200801) in potato dextrose broth, with wheat bran as an inducing medium, and its ability to dechlorinate eight compounds was determined. The compounds were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, heptachlor and pentachlorophenol. A range of parameters for the dechlorination of some compounds was tested, including incubation period, pH, initial substrate concentration, temperature, and enzyme quantity. The oxygen consumption was determined during each dechlorination process, under pre-determined optimum conditions. The changes in chemical structure of the compounds were also determined, by using FTIR analysis, following dechlorination of test chlorophenolics. Strong interactions were found to lead to the reactivity of hydroxyl groups in some cases and chlorine atoms were released from the benzene ring. The changes in compound toxicity were monitored before and after enzymatic treatment, using Microtox. Quantitative structure-activity relationships for the toxicity of the chlorinated compounds were developed. Consequently, the toxic activity of the test compounds was controlled by electrophilic index and electronic properties.

  3. Structure-Activity Relationship of Indole-Tethered Pyrimidine Derivatives that Concurrently Inhibit Epidermal Growth Factor Receptor and Other Angiokinases

    PubMed Central

    Song, Jiho; Yoo, Jakyung; Kwon, Ara; Kim, Doran; Nguyen, Hong Khanh; Lee, Bong-Yong; Suh, Wonhee; Min, Kyung Hoon

    2015-01-01

    Antiangiogenic agents have been widely investigated in combination with standard chemotherapy or targeted cancer agents for better management of advanced cancers. Therapeutic agents that concurrently inhibit epidermal growth factor receptor and other angiokinases could be useful alternatives to combination therapies for epidermal growth factor receptor-dependent cancers. Here, we report the synthesis of an indole derivative of pazopanib using a bioisosteric replacement strategy, which was designated MKP101. MKP101 inhibited not only the epidermal growth factor receptor with an IC50 value of 43 nM but also inhibited angiokinases as potently as pazopanib. In addition, MKP101 effectively inhibited vascular endothelial growth factor-induced endothelial proliferation, tube formation, migration of human umbilical vein endothelial cells and proliferation of HCC827, an epidermal growth factor receptor-addicted cancer cell line. A docking model of MKP101 and the kinase domain of the epidermal growth factor receptor was generated to predict its binding mode, and validated by synthesizing and evaluating MKP101 derivatives. Additionally, a study of structure-activity relationships of indolylamino or indolyloxy pyrimidine analogues derived from MKP101 demonstrated that selectivity for epidermal growth factor receptor and other angiokinases, especially vascular endothelial growth factor receptor 2 depends on the position of substituents on pyrimidine and the type of link between pyrimidine and the indole moiety. We believe that this study could provide a basis for developing angiokinase inhibitors having high affinity for the epidermal growth factor receptor, from the pyrimidine scaffold. PMID:26401847

  4. Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships.

    PubMed

    Kortagere, Sandhya; Ekins, Sean; Welsh, William J

    2008-09-01

    The properties of chemicals are rooted in their molecular structure. It follows that structural analysis of specific interactions between ligands and biomolecules at the molecular level is invaluable for defining structure-activity relationships (SARs) and structure-toxicity relationships (STRs). This study has elucidated the structural and molecular basis of interactions of biomolecules with alkyl and aryl halides that are extensively used as components in many commercial pesticides, disinfectants, and drugs. We analyzed the protein structures deposited in Protein Data Bank (PDB) for structural information associated with interactions between halogenated ligands and proteins. This analysis revealed distinct patterns with respect to the nature and structural characteristics of halogen interactions with specific types of atoms and groups in proteins. Fluorine had the highest propensity of interactions for glycine, while chlorine for leucine, bromine for arginine, and iodine for lysine. Chlorine, bromine and iodine had the lowest propensity of interactions for cysteine, while fluorine had a lowest propensity for proline. These trends for highest propensity shifted towards the hydrophobic residues for all the halogens when only interactions with the side chain were considered. Halogens had equal propensities of interaction for the halogen bonding partners (nitrogen and oxygen atoms), albeit with different geometries. The optimal angle for interactions with halogens was approximately 120 degrees for oxygen atoms, and approximately 96 degrees for nitrogen atoms. The distance distributions of halogens with various amino acids were mostly bimodal, and the angle distributions were unimodal. Insights gained from this study have implications for the rational design of safer drugs and commercially important chemicals.

  5. Moderators of the Relationship between Physical Activity and Alcohol Consumption in College Students

    ERIC Educational Resources Information Center

    Buscemi, Joanna; Martens, Matthew P.; Murphy, James G.; Yurasek, Ali M.; Smith, Ashley E.

    2011-01-01

    Objective: Among college students, several studies have found a positive relationship between physical activity and alcohol use. The current study tested gender, Greek status, and ethnicity as potential moderators of the physical activity-alcohol use relationship. Participants: Participants were college freshmen (n = 310) endorsing alcohol/drug…

  6. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS): tetramic, tetronic acids and dihydropyridin-2-ones.

    PubMed

    Peukert, Stefan; Sun, Yingchuan; Zhang, Rui; Hurley, Brian; Sabio, Mike; Shen, Xiaoyu; Gray, Christen; Dzink-Fox, JoAnn; Tao, Jianshi; Cebula, Regina; Wattanasin, Sompong

    2008-03-15

    Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided.

  7. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase.

    PubMed

    LaPorte, Matthew G; Draper, Tandy L; Miller, Lori E; Blackledge, Charles W; Leister, Lara K; Amparo, Eugene; Hussey, Alison R; Young, Dorothy C; Chunduru, Srinivas K; Benetatos, Christopher A; Rhodes, Gerry; Gopalsamy, Ariamala; Herbertz, Torsten; Burns, Christopher J; Condon, Stephen M

    2010-05-01

    We describe the structure-activity relationship of the C1-group of pyrano[3,4-b]indole based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compound 12.

  8. Design, synthesis and insight into the structure-activity relationship of 1,3-disubstituted indazoles as novel HIF-1 inhibitors.

    PubMed

    An, Hongchan; Kim, Nam-Jung; Jung, Jong-Wha; Jang, Hannah; Park, Jong-Wan; Suh, Young-Ger

    2011-11-01

    Design, synthesis and insight into the structure-activity relationship (SAR) of 1,3-disubstituted indazoles as novel HIF-1 inhibitors are described. In particular, the substituted furan moiety on indazole skeleton as well as its substitution pattern turns out crucial for the high HIF-1 inhibition.

  9. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  10. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.

    PubMed

    Zvinavashe, Elton; Du, Tingting; Griff, Tamas; van den Berg, Hans H J; Soffers, Ans E M F; Vervoort, Jacques; Murk, Albertinka J; Rietjens, Ivonne M C M

    2009-06-01

    Within the REACH regulatory framework in the EU, quantitative structure-activity relationships (QSAR) models are expected to help reduce the number of animals used for experimental testing. The objective of this study was to develop QSAR models to describe the acute toxicity of organothiophosphate pesticides to aquatic organisms. Literature data sets for acute toxicity data of organothiophosphates to fish and one data set from experiments with 15 organothiophosphates on Daphniamagna performed in the present study were used to establish QSARs based on quantum mechanically derived molecular descriptors. The logarithm of the octanol/water partition coefficient, logK(ow,) the energy of the lowest unoccupied molecular orbital, E(lumo), and the energy of the highest occupied molecular orbital, E(homo) were used as descriptors. Additionally, it was investigated if toxicity data for the invertebrate D. magna could be used to build a QSAR model to predict toxicity to fish. Suitable QSAR models (0.80

  11. SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways

    PubMed Central

    Tovmasyan, Artak; Roberts, Emily R. H.; Vujaskovic, Zeljko; Leong, Kam W.; Spasojevic, Ivan

    2014-01-01

    Abstract Significance: Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·−; no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. Recent Advances: Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·−) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. Critical Issues: Although log kcat(O2·−) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. Future Directions: Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs. Antioxid. Redox Signal. 20, 2372–2415. PMID:23875805

  12. 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure-activity relationships.

    PubMed

    Wang, Lan-Zhi; Li, Xiao-Qing; An, Ying-Shuang

    2015-05-21

    36 Novel 1,5-benzodiazepine derivatives were rationally designed and synthesized according to the principle of superposition of bioactive substructures by the combination of 1,5-benzodiazepines, thiophene or thiazole and ester group. The structures of the target compounds have been characterized by IR, (1)H NMR, (13)C NMR, MS and elemental analysis. The structure of 1v was further determined using X-ray single crystal diffraction. All synthesized 1,5-benzodiazepine derivatives were evaluated for their in vitro antimicrobial activity against C. neoformans, C. neoformans clinical isolates, C. albicans, E. coli and S. aureus. The bioactive assay results revealed that most of the 1,5-benzodiazepine derivatives exhibited considerable potency against all of the tested strains. In particular, compounds 1v and 1w (MIC: 2-6 μg mL(-1), MFC: 10-14 μg mL(-1)) exhibited excellent antifungal activity and were found to be 32-64 and 9-12.8 times more potent than the reference drugs against C. neoformans, respectively. Moreover, compound (MIC: 40 μg mL(-1)) displayed equipotent antibacterial activity against E. coli and S. aureus compared to the reference drugs. The most potent of the synthesized compounds 1v and 1w were further studied by evaluating their cytotoxicities, and the results showed that they had relatively low level cytotoxicity for BV2 cell. A preliminary study of the structure-activity relationship revealed that substituents in the phenyl ring and the thiophene ring had a great effect on the antimicrobial activity of these compounds. In addition, the thiazole ring at C2 may be a pharmacophore of these compounds and COOC2H5 group at C3 is the best substituent for the maintenance of antimicrobial activities at low concentrations (1.5625 μg per disc).

  13. Acaricidal toxicity of 2'-hydroxy-4'-methylacetophenone isolated from Angelicae koreana roots and structure-activity relationships of its derivatives.

    PubMed

    Oh, Min Seok; Yang, Ji-Yeon; Lee, Hoi Seon

    2012-04-11

    The acaricidal activities of 2'-hydroxy-4'-methylacetophenone derived from Angelica koreana roots and its derivatives against Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae were examined by vapor phase and contact toxicity bioassays. In the vapor phase toxicity bioassay, 2'-methylacetophenone (1.25 μg/cm(2)) was 8.0 times more toxic against D. farinae than benzyl benzoate (10.00 μg/cm(2)), followed by 3'-methylacetophenone (1.26 μg/cm(2)), 4'-methylacetophenone (1.29 μg/cm(2)), 2'-hydroxy-4'-methylacetophenone (1.75 μg/cm(2)), and 2'-hydroxy-5'-methylacetophenone (1.96 μg/cm(2)). In the contact toxicity bioassay, 3'-methylacetophenone (0.58 μg/cm(2)) was 17.24 times more effective against D. farinae than benzyl benzoate (7.52 μg/cm(2)), followed by 2'-methylacetophenone (0.64 μg/cm(2)), 2'-hydroxy-4'-methylacetophenone (0.76 μg/cm(2)), 4'-methylacetophenone (0.77 μg/cm(2)), and 2'-hydroxy-5'-methylacetophenone (1.16 μg/cm(2)). The acaricidal activities of 2'-hydroxy-4'-methylacetophenone derivatives against D. pteronyssinus and T. putrescentiae were similar to those against D. farinae. In terms of structure-activity relationships, acaricidal activity against the three mite species changed with the introduction of hydroxyl and methyl functional groups onto the acetophenone skeleton. Furthermore, some of 2'-hydroxy-4'-methylacetophenone derivatives could be useful for natural acaricides against three mite species.

  14. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae.

    PubMed

    Badawy, Mohamed E I; El-Arami, Sailan A A; Abdelgaleil, Samir A M

    2010-11-01

    The acaricidal activity of 12 monoterpenes against the two-spotted spider mite, Tetranychus urticae Koch, was examined using fumigation and direct contact application methods. Cuminaldehyde and (-)-linalool showed the highest fumigant toxicity with LC(50) = 0.31 and 0.56 mg/l, respectively. The other monoterpenes exhibited a strong fumigant toxicity, the LC(50) values ranging from 1.28 to 8.09 mg/l, except camphene, which was the least effective (LC(50) = 61.45 mg/l). Based on contact activity, the results were rather different: menthol displayed the highest acaricidal activity (LC(50) = 128.53 mg/l) followed by thymol (172.0 mg/l), geraniol (219.69 mg/l) and (-)-limonene (255.44 mg/l); 1-8-cineole, cuminaldehyde and (-)-linalool showed moderate toxicity. At 125 mg/l, (-)-Limonene and (-)-carvone caused the highest egg mortality among the tested compounds (70.6 and 66.9% mortality, respectively). In addition, the effect of molecular descriptors was also analyzed using the quantitative structure activity relationship (QSAR) procedure. The QSAR model showed excellent agreement between the estimated and experimentally measured toxicity parameter (LC(50)) for the tested monoterpenes and the fumigant activity increased significantly with the vapor pressure. Comparing the results of the fumigant and contact toxicity assays of monoterpenes against T. urticae with the results of acetylcholinesterase (AChE) inhibitory effect revealed that some of the tested compounds showed a strong acaricidal activity and a potent AChE inhibitory activity, such as cuminaldehyde, (-)-linalool, (-)-limonene and menthol. However, other compounds such as (-)-carvone revealed a strong fumigant activity but a weak AChE inhibitory activity.

  15. A structure-activity relationship study on antiosteoclastogenesis effect of triterpenoids from the leaves of loquat (Eriobotrya japonica).

    PubMed

    Tan, Hui; Ashour, Ahmed; Katakura, Yoshinori; Shimizu, Kuniyoshi

    2015-04-15

    Our previous results elucidated that the leaves of Eriobotrya japonica possessed the potential to suppress ovariectomy-induced bone mineral density deterioration, and ursolic acid, the major bioactive component in these leaves, suppressed the osteoclast differentiation. The aim of this study was to discover more candidates for development of novel antiosteoclastogenesis agents from the leaves of E. japonica. Phytochemical analysis following a cell-based osteoclastic tartrate-resistant acid phosphatase (TRAP) activity assay revealed 11 more compounds with a potent antiosteoclastogenesis effect. The potency of ursane-type triterpenoids from the leaves of E. japonica prompted us to investigate the structure-activity relationships underlying their antiosteoclastogenesis. The results revealed that both the hydroxyl group at C-3 and the carboxylic group at C-17 played indispensable roles in the antiosteoclastogenesis activity of ursane-type triterpenoids. The configuration at C-3 (a beta-form of the hydroxyl group) was found to be important for this activity. While introducing a hydroxyl group at C-19 increased the inhibitory activity of ursane-type triterpenoids carrying an alpha-form hydroxyl group at C-3. The bioactivity analyses of ursolic acid and oleanolic acid demonstrated that the antiosteoclastogenesis effect of ursolic acid may be related to different positions of the C-29 and C-30 methyl groups on the E-ring, since oleanolic acid showed limited activity. The addition of a hydroxyl group at C-2 would dramatically improve the inhibition of oleanane-type triterpenoids. Collectively, these findings could provide important clues for the improvement of multi-targeted antiosteoclastogenesis agents from the leaves of E. japonica.

  16. Synthesis and quantitative structure-activity relationship (QSAR) study of novel isoxazoline and oxime derivatives of podophyllotoxin as insecticidal agents.

    PubMed

    Wang, Yi; Shao, Yonghua; Wang, Yangyang; Fan, Lingling; Yu, Xiang; Zhi, Xiaoyan; Yang, Chun; Qu, Huan; Yao, Xiaojun; Xu, Hui

    2012-08-29

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, 33 isoxazoline and oxime derivatives of podophyllotoxin modified in the C and D rings were synthesized and their structures were characterized by Proton nuclear magnetic resonance ((1)H NMR), high-resolution mass spectrometry (HRMS), electrospray ionization-mass spectrometry (ESI-MS), optical rotation, melting point (mp), and infrared (IR) spectroscopy. The stereochemical configurations of compounds 5e, 5f, and 9f were unambiguously determined by X-ray crystallography. Their insecticidal activity was evaluated against the pre-third-instar larvae of northern armyworm, Mythimna separata (Walker), in vivo. Compounds 5e, 9c, 11g, and 11h especially exhibited more promising insecticidal activity than toosendanin, a commercial botanical insecticide extracted from Melia azedarach . A genetic algorithm combined with multiple linear regression (GA-MLR) calculation is performed by the MOBY DIGS package. Five selected descriptors are as follows: one two-dimensional (2D) autocorrelation descriptor (GATS4e), one edge adjacency indice (EEig06x), one RDF descriptor (RDF080v), one three-dimensional (3D) MoRSE descriptor (Mor09v), and one atom-centered fragment (H-052) descriptor. Quantitative structure-activity relationship studies demonstrated that the insecticidal activity of these compounds was mainly influenced by many factors, such as electronic distribution, steric factors, etc. For this model, the standard deviation error in prediction (SDEP) is 0.0592, the correlation coefficient (R(2)) is 0.861, and the leave-one-out cross-validation correlation coefficient (Q(2)loo) is 0.797.

  17. Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl)acetohydrazones as potential antibacterial agents.

    PubMed

    El-Kilany, Yeldez; Nahas, Nariman M; Al-Ghamdi, Mariam A; Badawy, Mohamed E I; El Ashry, El Sayed H

    2015-01-01

    Ethyl (benzimidazol-1-yl)acetate was subjected to hydrazinolysis with hydrazine hydrate to give (benzimidazol-1-yl)acetohydrazide. The latter was reacted with various aromatic aldehydes to give the respective arylidene (1H-benzimidazol-1-yl)acetohydrazones. Solutions of the prepared hydrazones were found to contain two geometric isomers. Similarly (2-methyl-benzimidazol-1-yl)acetohydrazide was reacted with various aldehydes to give the corresponding hydrazones. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens (A. tumefaciens), Erwinia carotovora (E. carotovora), Corynebacterium fascians (C. fascians) and Pseudomonas solanacearum (P. solanacearum). MIC result demonstrated that salicylaldehyde(1H-benzimidazol-1-yl)acetohydrazone (4) was the most active compound (MIC = 20, 35, 25 and 30 mg/L against A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively). Quantitative structure activity relationship (QSAR) investigation using Hansch analysis was applied to find out the correlation between antibacterial activity and physicochemical properties. Various physicochemical descriptors and experimentally determined MIC values for different microorganisms were used as independent and dependent variables, respectively. pMICs of the compounds exhibited good correlation (r = 0.983, 0.914, 0.960 and 0.958 for A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively) with the prediction made by the model. QSAR study revealed that the hydrophobic parameter (ClogP), the aqueous solubility (LogS), calculated molar refractivity, topological polar surface area and hydrogen bond acceptor were found to have overall significant correlation with antibacterial activity. The statistical results of training set, correlation coefficient (r and r (2)), the ratio between regression and residual variances (f, Fisher's statistic), the standard error of estimates and

  18. Structure-activity relationship of dihydroxy-4-methylcoumarins as powerful antioxidants: correlation between experimental & theoretical data and synergistic effect.

    PubMed

    Kancheva, Vessela D; Saso, Luciano; Boranova, Petya V; Khan, Abdullah; Saroj, Manju K; Pandey, Mukesh K; Malhotra, Shashwat; Nechev, Jordan Z; Sharma, Sunil K; Prasad, Ashok K; Georgieva, Maya B; Joseph, Carleta; DePass, Anthony L; Rastogi, Ramesh C; Parmar, Virinder S

    2010-09-01

    The chain-breaking antioxidant activities of eight coumarins [7-hydroxy-4-methylcoumarin (1), 5,7-dihydroxy-4-methylcoumarin (2), 6,7-dihydroxy-4-methylcoumarin (3), 6,7-dihydroxycoumarin (4), 7,8-dihydroxy-4-methylcoumarin (5), ethyl 2-(7,8-dihydroxy-4-methylcoumar-3-yl)-acetate (6), 7,8-diacetoxy-4-methylcoumarin (7) and ethyl 2-(7,8-diacetoxy-4-methylcoumar-3-yl)-acetate (8)] during bulk lipid autoxidation at 37 degrees C and 80 degrees C in concentrations of 0.01-1.0 mM and their radical scavenging activities at 25 degrees C using TLC-DPPH test have been studied and compared. It has been found that the o-dihydroxycoumarins 3-6 demonstrated excellent activity as antioxidants and radical scavengers, much better than the m-dihydroxy analogue 2 and the monohydroxycoumarin 1. The substitution at the C-3 position did not have any effect either on the chain-breaking antioxidant activity or on the radical scavenging activity of the 7,8-dihydroxy- and 7,8-diacetoxy-4-methylcoumarins 6 and 8. The comparison with DL-alpha-tocopherol (TOH), caffeic acid (CA) and p-coumaric acid (p-CumA) showed that antioxidant efficiency decreases in the following sequence: TOH>CA>3>4>6>5>2>1=7=8=p-CumA. Theoretical calculations and the "Lipinski's Rule of Five" were used for explaining the structure-activity relationships and pharmacokinetic behavior. A higher TGSO oxidation stability was observed in the presence of equimolar (1:1) binary mixtures of coumarins with TOH (1+TOH, 3+TOH and 5+TOH). However, the synergism (14%) was observed only for the binary mixture of 5 + TOH.

  19. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    PubMed

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.

  20. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    PubMed

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  1. Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: Plasmodium Falciparum cysteine proteases inhibitors

    NASA Astrophysics Data System (ADS)

    Teixeira, Cátia; Gomes, José R. B.; Couesnon, Thierry; Gomes, Paula

    2011-08-01

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model ( q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields ( q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.

  2. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations.

  3. Design, synthesis, and structure-activity relationship studies of fluorescent inhibitors of cycloxygenase-2 as targeted optical imaging agents.

    PubMed

    Uddin, Md Jashim; Crews, Brenda C; Ghebreselasie, Kebreab; Marnett, Lawrence J

    2013-04-17

    Cycloxygenase-2 (COX-2) is an attractive target for molecular imaging because it is an inducible enzyme that is expressed in response to inflammatory and proliferative stimuli. Recently, we reported that conjugation of indomethacin with carboxy-X-rhodamine dyes results in the formation of effective, targeted, optical imaging agents able to detect COX-2 in inflammatory tissues and premalignant and malignant tumors (Uddin et al. Cancer Res. 2010, 70, 3618-3627). The present paper summarizes the details of the structure-activity relationship (SAR) studies performed for lead optimization of these dyes. A wide range of fluorescent conjugates were designed and synthesized, and each of them was tested for the ability to selectively inhibit COX-2 as the purified protein and in human cancer cells. The SAR study revealed that indomethacin conjugates are the best COX-2-targeted agents compared to the other carboxylic acid-containing nonsteroidal anti-inflammatory drugs (NSAIDs) or COX-2-selective inhibitors (COXIBs). An n-butyldiamide linker is optimal for tethering bulky fluorescent functionalities onto the NSAID or COXIB cores. The activity of conjugates also depends on the size, shape, and electronic properties of the organic fluorophores. These reagents are taken up by COX-2-expressing cells in culture, and the uptake is blocked by pretreatment with a COX inhibitor. In in vivo settings, these reagents become highly enriched in COX-2-expressing tumors compared to surrounding normal tissue, and they accumulate selectively in COX-2-expressing tumors as compared with COX-2-negative tumors grown in mice. Thus, COX-2-targeted fluorescent inhibitors are useful for preclinical and clinical detection of lesions containing elevated levels of COX-2.

  4. Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

    PubMed

    Murphy, C S; Parker, C J; McCague, R; Jordan, V C

    1991-03-01

    The antiestrogen tamoxifen [(Z)-1(p-beta-dimethylaminoethoxy-phenyl)-1,2-diphenylbut-1-ene] is an effective anticancer agent against estrogen receptor (ER)-positive breast cancer. The alkylaminoethane side chain is essential for antiestrogenic activity, but the potency of the antiestrogen can be increased by para hydroxylation of the phenyl ring on carbon 1 of but-1-ene. This compound, 4-hydroxytamoxifen, is a metabolite of tamoxifen and has a very high binding affinity for ER [J. Endocrinol. 75:305-316 (1977)] because the hydroxyl is located in the equivalent position as the 3-phenolic hydroxyl of 17 beta-estradiol. In this study, we have examined the relationship between the relative positions of the hydroxyl and the alkyl-aminoethane side chain and the pharmacological activity of the ligand. A fixed seven-membered ring derivative of the triphenylethylene was used to prevent isomerization. All compounds were tested, with and without 17 beta-estradiol, for their effects on the growth of estrogen-responsive T47D and MCF-7 human breast cancer cells in vitro. The growth of MDA-MB-231 ER-negative breast cancer cells was not affected by any of the compounds tested, at a concentration (1 microM) that had a profound estrogenic or antiestrogenic action in ER-positive cell lines. The relative binding affinity of the compounds was determined using rat uterine ER and was found to be consistent with the observed potencies in vitro. The compounds found to be antiestrogens in vitro were antiestrogenic against estradiol (0.08 micrograms daily) in the 3-day immature rat uterine weight test. All compounds were partial agonists in vivo. In general, the estrogenic and antiestrogenic results obtained in vivo were consistent with the potency estimates obtained with the breast cancer cells in vitro. The results of this extensive structure-activity relationship study demonstrate that the substitution for 4-hydroxytamoxifen appears to be optimal to produce a potent antiestrogen; all

  5. Relationship of Age of First Drink to Alcohol-Related Consequences among College Students with Unhealthy Alcohol Use

    ERIC Educational Resources Information Center

    Rothman, Emily F.; Dejong, William; Palfai, Tibor; Saitz, Richard

    2008-01-01

    This study investigated the relationship between age of first drink (AFD) and a broad range of negative alcohol-related outcomes among college students exhibiting unhealthy alcohol use. We conducted an anonymous on-line survey to collect self-report data from first-year college students at a large northeastern university. Among 1,792 respondents…

  6. Exploring the Relationship between Experiential Avoidance, Alcohol Use Disorders, and Alcohol-Related Problems among First-Year College Students

    ERIC Educational Resources Information Center

    Levin, Michael E.; Lillis, Jason; Seeley, John; Hayes, Steven C.; Pistorello, Jacqueline; Biglan, Anthony

    2012-01-01

    Objective: This study explored the relationship of experiential avoidance (eg, the tendency to avoid, suppress, or otherwise control internal experiences even when doing so causes behavioral harm) to alcohol use disorders and alcohol-related problems. Participants: Cross-sectional data were collected from 240 undergraduate college students in…

  7. Genetic and environmental influences on the relationship between peer alcohol use and own alcohol use in adolescents

    PubMed Central

    Fowler, Tom; Shelton, Katherine; Lifford, Kate; Rice, Frances; McBride, Andrew; Nikolov, Ivan; Neale, Michael C; Harold, Gordon; Thapar, Anita; van den Bree, Marianne B M

    2007-01-01

    Aims Genetically influenced aspects of adolescent behaviour can play a role in alcohol use and peer affiliation. We explored the correlations between friends' alcohol use and adolescent own use with a genetically sensitive design. Design Genetic and environmental factors were estimated on adolescent reports of their friends' alcohol use and their own use and problem use of alcohol. The correlations between the genetic and environmental factors that influence friends' alcohol use and adolescent own alcohol use and problem use were also estimated. Participants A total of 862 twin pairs aged 11–17 years sampled from the UK population-based Cardiff Study of All Wales and North-west of England Twins (CaStANET). Measurements Data on adolescent own alcohol use and problem use and the alcohol use of their three best friends were obtained using self-report questionnaires. Findings A significant genetic influence was found on adolescent friends' alcohol use (about 30%). Significant correlations of 0.60 and 0.70 were found between the genetic influences on friends' alcohol use and adolescents' own use and problem use of alcohol. Common environmental influences were almost completely correlated for friends' alcohol use and adolescents' own alcohol use and problem use (0.91 and 0.94). Conclusions There is considerable overlap in the common environmental and genetic factors that contribute to the relationship between adolescents' own alcohol use and that of their friends. These findings contribute to understanding of the mechanisms by which friends' alcohol use influences adolescent drinking behaviour. PMID:17523983

  8. Investigation on quantitative structure activity relationships and pharmacophore modeling of a series of mGluR2 antagonists.

    PubMed

    Zhang, Meng-Qi; Zhang, Xiao-Le; Li, Yan; Fan, Wen-Jia; Wang, Yong-Hua; Hao, Ming; Zhang, Shu-Wei; Ai, Chun-Zhi

    2011-01-01

    MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson's disease and schizophrenia. Herein, we report the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of a series of 1,3-dihydrobenzo[ b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of [(3)H]-LY354740; activity II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q(2) of 0.513, R(2) (ncv) of 0.868, R(2) (pred) = 0.876, while the CoMSIA model yielded a Q(2) of 0.450, R(2) (ncv) = 0.899, R(2) (pred) = 0.735. For activity II study, CoMFA model yielded statistics of Q(2) = 0.5, R(2) (ncv) = 0.715, R(2) (pred) = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R(7), R(3) and position A benefit activity I of the antagonists, but decrease it when projected in R(8) and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an H-acceptor atom and an H-donor site. The second model shares all features of the first one and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity

  9. Structure-activity relationships of new 4-hydroxy bis-coumarins as radical scavengers and chain-breaking antioxidants.

    PubMed

    Kancheva, Vessela D; Boranova, Petya V; Nechev, Jordan T; Manolov, Ilia I

    2010-09-01

    The main antioxidant properties of five new 4-hydroxy-bis-coumarins during bulk lipid autoxidation at 80 degrees C and 0.1 mM and 1.0 mM concentrations were studied and compared with 4-hydroxy-2H-chromen-2-one (1). These compounds are: 3,3'-((3,4-dihydroxy-phenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (2), 3,3'-((3,4-dimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (3), 3,3'-((4-hydroxy-3,5-dimethoxy-phenyl) methylene) bis(4-hydroxy-2H-chromen-2-one) (4) 3,3'-((3,4,5- trimethoxyphenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (5) 3,3'-((4-hydroxy-3-methoxy-5-nitrophenyl) methylene) bis (4-hydroxy-2H-chromen-2-one) (6), It was found that compound 2 with a catecholic structure in the aromatic nucleus showed the strongest antioxidant activity. Compound 4 showed a moderate antioxidant activity, and all the other compounds didn't show any capacity as chain-breaking antioxidants. Both 4-hydroxy-bis-coumarins (2 and 4) demonstrated also stronger radical scavenging activity towards DPPH radical by using TLC DPPH rapid test, than compound 1. The other compounds (3, 5, 6) didn't show any capacity as radical scavengers. The structure-activity relationship was discussed on the base of comparable kinetic analysis of studied 4-hydroxy-bis-coumarins with the known and standard antioxidants as alpha-tocopherol (TOH), caffeic acid (CA), sinapic acid (SA), ferulic acid (FA), and p-coumaric acid (p-CumA). In order to study the possible synergism between two phenolic antioxidants, the antioxidant efficiency and reactivity of two equimolar binary mixtures of coumarins and TOH (2+TOH and 4+TOH) and of corresponding cinnamic acid with TOH (CA+TOH and SA+TOH) were also tested and compared. The oxidation stability of the lipid substrate in presence of binary mixtures CA+TOH, SA+TOH and 2+TOH appeared to be higher than that of the individual antioxidants. However, no synergism was obtained for all tested binary mixtures.

  10. Alcohol Availability and Neighborhood Poverty and Their Relationship to Binge Drinking and Related Problems among Drinkers in Committed Relationships

    ERIC Educational Resources Information Center

    McKinney, Christy M.; Chartier, Karen G.; Caetano, Raul; Harris, T. Robert

    2012-01-01

    The authors examined the relationship of alcohol outlet density (AOD) and neighborhood poverty with binge drinking and alcohol-related problems among drinkers in married and cohabitating relationships and assessed whether these associations differed across sex. A U.S. national population couples survey was linked to U.S. Census data on AOD and…

  11. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS

    EPA Science Inventory

    The demonstrated ability of a variety of structurally diverse chemicals to bind to the estrogen receptor has raised the concern that chemicals in the environment may be causing adverse effects through interference with nuclear receptor pathways. Many structure-activity relationsh...

  12. The Relationship between Alcohol Use and Sexual Assault Incidents in Educational Settings.

    ERIC Educational Resources Information Center

    Colon, Enid S.; Wells, Julian; Chambliss, Catherine

    A comparative study was conducted on the relationship between the frequency of sexual assault incidents and the relative accessibility of alcohol on two small liberal arts colleges and one larger public university. The alcohol policy varied among the colleges in that one was an alcohol free campus and another permitted drinking for students who…

  13. Relationships between Age, Sex, Self-Esteem and Attitudes towards Alcohol Use amongst University Students

    ERIC Educational Resources Information Center

    Collison, Daniel; Banbury, Samantha; Lusher, Joanne

    2016-01-01

    It has been found that self-esteem is related to alcohol consumption, with the majority of research finding that low self-esteem is associated with high levels of alcohol use and high self-esteem is associated with low levels of alcohol use. The present study examined this relationship among 100 university students aged 18-25 years. Further,…

  14. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  15. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.

    PubMed

    Rizzo, Stefano; Cavalli, Andrea; Ceccarini, Luisa; Bartolini, Manuela; Belluti, Federica; Bisi, Alessandra; Andrisano, Vincenza; Recanatini, Maurizio; Rampa, Angela

    2009-04-01

    Structure-activity relationship studies on acetylcholinesterase (AChE) inhibitors were extended to newly synthesized compounds derived from the lead compound xantostigmine (1). The xanthone ring of compound 1 was replaced with several different scaffolds based on the benzopyran skeleton, linked to the tertiary amino nitrogen through an heptyloxy chain. These modifications resulted in 19 new compounds, most of them showing activity in the nanomolar-subnanomolar range. Docking and molecular dynamics simulations were carried out to both define a new computational protocol for the simulation of pseudo-irreversibile AChE covalent inhibitors, and to acquire a better understanding of the structure-activity relationships of the present series of compounds. The results of this computational work prompted us to to evaluate the ability of compounds 5 and 13 to inhibit acetylcholinesterase-induced Abeta aggregation.

  16. Synthesis, structure-activity relationships, and in vivo evaluation of N3-phenylpyrazinones as novel corticotropin-releasing factor-1 (CRF1) receptor antagonists.

    PubMed

    Hartz, Richard A; Ahuja, Vijay T; Arvanitis, Argyrios G; Rafalski, Maria; Yue, Eddy W; Denhart, Derek J; Schmitz, William D; Ditta, Jonathan L; Deskus, Jeffrey A; Brenner, Allison B; Hobbs, Frank W; Payne, Joseph; Lelas, Snjezana; Li, Yu-Wen; Molski, Thaddeus F; Mattson, Gail K; Peng, Yong; Wong, Harvey; Grace, James E; Lentz, Kimberley A; Qian-Cutrone, Jingfang; Zhuo, Xiaoliang; Shu, Yue-Zhong; Lodge, Nicholas J; Zaczek, Robert; Combs, Andrew P; Olson, Richard E; Bronson, Joanne J; Mattson, Ronald J; Macor, John E

    2009-07-23

    Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.

  17. Antifeedant activity of neo-clerodane diterpenes from Baccharis flabellata Hook & Arn var. flabellata toward Tribolium castaneum Herbst: structure-activity relationships.

    PubMed

    Juan Hikawczuk, Virgina E; López Verrilli, María A; Borkowski, Eduardo J; Sosa, Marta E; Giordano, Oscar S; Saad, José R; Tonn, Carlos E

    2006-07-20

    In order to establish structure-activity relationships, nine neo-clerodane diterpenes isolated from the acetone extract of aerial parts of Baccharis flabellata Hook & Arn var. fabellata were assayed for antifeedant activity against Tribolium castaneum (Coleoptera: Tenebrionidae). Compounds exhibiting maximal antifeedant activities showed an alpha,beta-unsaturated carbonyl group on the decalin portion and a furan ring at the side chain. Stereoelectronic studies indicate that the distance between the furan heteroatom and the more electrophilic carbon of the decaline moiety, as well as the electrostatic charge on that atom, were important features for antifeedant activity. Compounds possesing an alpha,beta,gamma,delta-unsaturated carbonyl group or an acetoxyl group at C-2, were inactive. Theoretical calculations were performed in order to find some structure-activity relationships.

  18. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes

    PubMed Central

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  19. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    PubMed

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  20. Design, synthesis and structure--activity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents.

    PubMed

    Sajith, Ayyiliath M; Abdul Khader, K K; Joshi, Nithin; Reddy, Manchala Nageswar; Syed Ali Padusha, M; Nagaswarupa, H P; Nibin Joy, M; Bodke, Yadav D; Karuvalam, Ranjith P; Banerjee, Rinti; Muralidharan, A; Rajendra, P

    2015-01-07

    Drug resistance to chemotherapeutic agents paved the way to develop novel synthetic molecules which are active on MDR cancer cell lines. Regio-isomeric imidazo[4,5-b]pyridine analogues were synthesized and evaluated for their cytotoxic activity against a range of cancer cell lines. The structure-activity relationship (SAR) studies of the imidazopyridine analogues are also described. Analogue 6b displayed strong cytotoxicity and good microsomal stability.

  1. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships.

    PubMed Central

    Zhorov, B S; Bregestovski, P D

    2000-01-01

    the rounded end trimmed by ether and carbonyl oxygens. In the optimal binding mode to alpha(1) GlyR and rho(1) GABAR, the rounded end of PTX accepts several H-bonds from Thr(6')s, while the elongated end enters ring R(2'). The lack of H-bond donors on the side chains of Phe(6')s (beta GlyR) and Met(6')s (rho(2) GABAR) deteriorates the binding. The hydrophilic elongated end of picrotin does not fit the hydrophobic ring of Pro(2')s/Ala(2')s in GABARs, but fit a more hydrophilic ring with Gly(2')s in GlyRs. This analysis provides explanations for structure-activity relationships of noncompetitive agonists and predicts a narrow pore of LGICs in agreement with experimental data on the permeation of organic cations. PMID:10733960

  2. Design, synthesis and structure-activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes.

    PubMed

    Roman, Bart I; De Coen, Laurens M; Thérèse F C Mortier, Séverine; De Ryck, Tine; Vanhoecke, Barbara W A; Katritzky, Alan R; Bracke, Marc E; Stevens, Christian V

    2013-09-01

    In our ongoing exploration of the structure-activity landscape of anti-invasive chalcones, we have prepared and evaluated a number of structurally related (E)- and (Z)-stilbenes. These molecules exhibited an extraordinary high in vitro potency in the chick heart invasion assay, being active up to 10nmolL(-1), a concentration level a 100-fold lower than the lowest effective doses that have been reported for natural analogues. Furthermore, they possess an interesting pharmacological profile in silico.

  3. DNA damage and repair in mutagenesis and carcinogenesis: implications of structure-activity relationships for cross-species extrapolation.

    PubMed

    Vogel, E W; Nivard, M J; Ballering, L A; Bartsch, H; Barbin, A; Nair, J; Comendador, M A; Sierra, L M; Aguirrezabalaga, I; Tosal, L; Ehrenberg, L; Fuchs, R P; Janel-Bintz, R; Maenhaut-Michel, G; Montesano, R; Hall, J; Kang, H; Miele, M; Thomale, J; Bender, K; Engelbergs, J; Rajewsky, M F

    1996-06-12

    Previous studies on structure-activity relationships (SARs) between types of DNA modifications and tumour incidence revealed linear positive relationships between the log TD50 estimates and s-values for a series of mostly monofunctional alkylating agents. The overall objective of this STEP project was to further elucidate the mechanistic principles underlying these correlations, because detailed knowledge on mechanisms underlying the formation of genotoxic damage is an absolute necessity for establishing guidance values for exposures to genotoxic agents. The analysis included: (1) the re-calculation and further extension of TD50 values in mmol/kg body weight for chemicals carcinogenic in rodents. This part further included the checking up data for Swain-Scott s-values and the use of the covalent binding index (CBI); (2) the elaboration of genetic toxicity including an analysis of induced mutation spectra in specific genes at the DNA level, i.e., the vermilion gene of Drosophila, a plasmid system (pX2 assay) and the HPRT gene in cultured mammalian cells (CHO-9); and (3) the measurement of specific DNA alkylation adducts in animal models (mouse, rat, hamster) and mammalian cells in culture. The analysis of mechanisms controlling the expression of mammalian DNA repair genes (alkyltransferases, glycosylases) as a function of the cell type, differentiation stage, and cellular microenvironment in mammalian cells. The 3 classes of genotoxic carcinogens selected for the project were: (1) chemicals forming monoalkyl adducts upon interaction with DNA; (2) genotoxins capable of forming DNA etheno-adducts; and (3) N-substituted aryl compounds forming covalent adducts at the C8 position of guanine in DNA. In general, clear SARs and AARs (activity-activity relationships) between physiochemical parameters (s-values, O6/N7-alkylguanine ratios, CBI), carcinogenic potency in rodents and several descriptors of genotoxic activity in germ cells (mouse, Drosophila) became apparent when

  4. Alcohol availability and neighborhood poverty and their relationship to binge drinking and related problems among drinkers in committed relationships.

    PubMed

    McKinney, Christy M; Chartier, Karen G; Caetano, Raul; Harris, T Robert

    2012-09-01

    The authors examined the relationship of alcohol outlet density (AOD) and neighborhood poverty with binge drinking and alcohol-related problems among drinkers in married and cohabitating relationships and assessed whether these associations differed across sex. A U.S. national population couples survey was linked to U.S. Census data on AOD and neighborhood poverty. The 1,784 current drinkers in the survey reported on their binge drinking, alcohol-related problems, and other covariates. AOD was defined as the number of alcohol outlets per 10,000 persons and was obtained at the zip code level. Neighborhood poverty was defined as having a low (<20%) or high (≥20%) proportion of residents living in poverty at the census tract level. We used logistic regression for survey data to estimate odds ratios and 95% confidence intervals and tested for differences of associations by sex. Associations of neighborhood poverty with binge drinking were stronger for male than for female drinkers. The association of neighborhood poverty with alcohol-related problems was also stronger for men than for women. We observed no relationships between AOD and binge drinking or alcohol-related problems in this couples survey. Efforts to reduce binge drinking or alcohol-related problems among partners in committed relationships may have the greatest impact if targeted to male drinkers living in high-poverty neighborhoods. Binge drinking and alcohol-related problems, as well as residence in an impoverished neighborhood are risk factors for intimate partner violence (IPV) and other relationship conflicts.

  5. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives.

  6. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired.

  7. Quantitative structure-activity relationships of insecticides and plant growth regulators: comparative studies toward understanding the molecular mechanism of action.

    PubMed Central

    Iwamura, H; Nishimura, K; Fujita, T

    1985-01-01

    Emphasis was put on the comparative quantitative structure-activity approaches to the exploration of action mechanisms of structurally different classes of compounds showing the same type of activity as well as those of the same type of compounds having different actions. Examples were selected from studies performed on insecticides and plant growth regulators, i.e., neurotoxic carbamates, phosphates, pyrethroids and DDT analogs, insect juvenile hormone mimics, and cytokinin agonistic and antagonistic compounds. Similarities and dissimilarities in structures required to elicit activity between compounds classes were revealed in terms of physicochemical parameters, provoking further exploration and evoking insights into the molecular mechanisms of action which may lead to the development of new structures having better qualities. PMID:3905379

  8. Perceptions of partners' problematic alcohol use affect relationship outcomes beyond partner self-reported drinking: alcohol use in committed romantic relationships.

    PubMed

    Rodriguez, Lindsey M; Øverup, Camilla S; Overup, Camilla S; Neighbors, Clayton

    2013-09-01

    Alcohol use is prevalent among college students, including those who are in committed romantic relationships. Individuals' perceptions of their partner's alcohol use may have significant effects on how they view both their partner and their relationship. The current study examines the effect of one's perception of one's romantic partner's drinking as problematic on one's relationship satisfaction and commitment, and whether this varies as a function of one's partner's drinking. Both partners in romantic heterosexual relationships (N = 78 dyads) completed an online survey assessing alcohol use and problems, relationship satisfaction and commitment, and the perception that their partner's drinking was problematic. Analyses using Actor-Partner Interdependence Models (APIMs) revealed a partner-moderated actor interaction, such that partner self-reported drinking significantly moderated the association between the actor's perception of their partner's drinking as problematic and actor relationship outcomes. Results indicated that when partners drank at higher levels, perceiving their drinking as problematic did not have an effect. These individuals were less satisfied regardless of their perceptions. However, when partners drank at lower levels, perceiving their drinking as problematic was negatively associated with relationship outcomes. Furthermore, for alcohol consumption, three-way interactions with gender emerged, indicating that this effect was stronger for males. Results extend the literature on drinking in relationships and on interpersonal perception. Implications and future directions are discussed.

  9. Relationship between Alcohol Dependence, Escape Drinking, and Early Neural Attention to Alcohol-Related Cuess

    PubMed Central

    Dickter, Cheryl L.; Forestell, Catherine A.; Hammett, Patrick J.; Young, Chelsie M.

    2014-01-01

    Rationale Previous work has indicated that implicit attentional biases to alcohol-related cues are indicative of susceptibility to alcohol dependence and escape drinking, or drinking to avoid dysphoric mood or emotions. Objective The goal of the current study was to examine whether alcohol dependence and escape drinking were associated with early neural attentional biases to alcohol cues. Methods EEG data were recorded from 54 college students who reported that they regularly drank alcohol, while they viewed alcohol and control pictures that contained human content (active) or no human content (inactive). Results Those who were alcohol dependent showed more neural attentional bias to the active alcohol-related stimuli than to the matched control stimuli early in processing, as indicated by N1 amplitude. Escape drinkers showed greater neural attention to the active alcohol cues than non-escape drinkers, as measured by larger N2 amplitudes. Conclusions While alcohol dependence is associated with enhanced automatic attentional biases early in processing, escape drinking is associated with more controlled attentional biases to active alcohol cues during a relatively later stage in processing. These findings reveal important information about the time-course of attentional processing in problem drinkers and have important implications for addiction models and treatment. PMID:24292342

  10. Jatrophane diterpenes as P-glycoprotein inhibitors. First insights of structure-activity relationships and discovery of a new, powerful lead.

    PubMed

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Taglialatela-Scafati, Orazio; Appendino, Giovanni; Ballero, Mauro; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2003-07-17

    The Mediterranean spurge Euphorbia dendroides L. afforded a series of 10 closely related jatrophane polyesters, nine of which are new, which served as a base for the establishment of structure-activity relationships within this class of P-glycoprotein inhibitors. The results, while pointing to the general role of lipophilicity for activity, also highlighted the relevance of the substitution pattern at the positions 2, 3, and 5, suggesting the involvement of this fragment in binding. The most powerful compound of the series, euphodendroidin D (4), outperformed cyclosporin by a factor of 2 to inhibit Pgp-mediated daunomycin transport.

  11. Synthesis and structure-activity relationship studies on a novel series of naphthylidinoylureas as inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT).

    PubMed

    Ohnuma, Satoshi; Muraoka, Masami; Ioriya, Katsuhisa; Ohashi, Naohito

    2004-03-08

    The synthesis and structure-activity relationships of N-phenyl-N'-[3-(4-phenylnaphthylidinoyl)]urea derivatives 3 as a novel structural class of potent ACAT inhibitors is described. A 3-methoxy group substituted on the naphthylidinone 4-phenyl ring, together with a 1-N-(n)butyl substitution, SM-32504 (3m), gave a potent ACAT inhibitor, in vitro, respectively. The most potent compound, SM-32504 (3m), decreased the serum cholesterol level significantly in a high fat and high cholesterol-fed mouse model.

  12. The structure-activity relationship study on 2-, 5-, and 6-position of the water soluble 1,4-dihydropyridine derivatives blocking N-type calcium channels.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Ohno, Seiji; Tokumasu, Munetaka; Masuzawa, Yoko; Nakanishi, Chika; Nakajo, Akira; Onishi, Tomoyuki; Koganei, Hajime; Fujita, Shin-Ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Shoji, Masataka

    2008-09-01

    In order to find an injectable and selective N-type calcium channel blocker, we have performed the structure-activity relationship (SAR) study on the 2-, 5-, and 6-position of 1,4-dihydropyridine-3-carboxylate derivative APJ2708 (2), which is a derivative of Cilnidipine and has L/N-type calcium channel dual inhibitory activities. As a consequence of the optimization, 6-dimethylacetal derivative 7 was found to have an effective inhibitory activity against N-type calcium channels with more than 170-fold lower activity for L-type channel compared to that of APJ2708.

  13. Novel structurally varied N-alkyl 1,4-dihydropyridines as ABCB1 inhibitors: structure-activity relationships, biological activity and first bioanalytical evaluation.

    PubMed

    Hilgeroth, Andreas; Baumert, Christiane; Coburger, Claudius; Seifert, Marianne; Krawczyk, Sören; Hempel, Cornelius; Neubauer, Felix; Krug, Martin; Molnár, Josef; Lage, Hermann

    2013-06-01

    Series of structurally varied N-alkyl 1,4-dihydropyridines and novel benzo-annelated derivatives as 1,4- dihydroquinolines have been characterized as ABCB1 inhibitors. Structure-activity relationships (SARs) are discussed. Cytotoxic activities of selected compounds have been determined. A first bioanalysis of ABCB1 substrate properties has been carried out in a cell-based model. Compounds with highest ABCB1 inhibiting activities were no substrates of ABCB1 and not transported by the efflux pump, thus profiling the new ABCB1 inhibitors.

  14. The relationship between the density of alcohol outlets and parental supply of alcohol to adolescents.

    PubMed

    Rowland, B; Toumbourou, J W; Satyen, L; Livingston, M; Williams, J

    2014-12-01

    This study investigated whether the number of alcohol outlets per 10,000 population in a given area (density) influenced parental supply of alcohol to adolescents; differences in Australian born and acculturating parents were also examined. A state-representative student survey in Victoria identified that the majority of adolescents (55%) reported that they had used alcohol in the past 12months; 34 % of those who had consumed alcohol reported that it had been supplied by their parents. Multilevel modelling identified that there were no overall effects of density, however there were different effects based on parent country of birth and type of license. Specifically, each unit increase in the density of takeaway liquor stores increased the likelihood by 2.03 that children with both Australian-born parents would be supplied alcohol. Adolescents with both migrant parents on the other hand, had a 1.36 increased risk of being supplied alcohol as the density of outlets requiring at-venue consumption increased. The findings of this study suggest that in Australia, alcohol outlet density is associated with parental supply of alcohol to children, with this effect moderated by the cultural background of the parent and type of outlet density. Future research should investigate the association between the density of alcohol outlets and public approval of parents supplying alcohol to adolescents.

  15. The relationship between parental alcoholism and adolescent psychopathology: a systematic examination of parental comorbid psychopathology.

    PubMed

    Ohannessian, Christine McCauley; Hesselbrock, Victor M; Kramer, John; Kuperman, Samuel; Bucholz, Kathleen K; Schuckit, Marc A; Nurnberger, John I

    2004-10-01

    The relationship between parental alcohol dependence (with and without comorbid psychopathology) and adolescent psychopathology was examined in a sample of 665 13-17 year-old adolescents and their parents. Results indicated that adolescents who had parents diagnosed with alcohol dependence only did not significantly differ from adolescents who had parents with no psychopathology in regard to any of the measures of psychological symptomatology (substance use, conduct disorder, and depression) or clinical diagnoses (alcohol dependence, marijuana dependence, conduct disorder, or depression) assessed. In contrast, adolescents who had parents diagnosed with alcohol dependence and either comorbid drug dependence or depression were more likely to exhibit higher levels of psychological symptomatology. In addition, adolescents who had parents diagnosed with alcohol dependence, depression, and drug dependence were most likely to exhibit psychological problems. These findings underscore the importance of considering parental comorbid psychopathology when examining the relationship between parental alcoholism and offspring adjustment.

  16. Development of a new Structure-Activity Relationship (SAR) for gas-phase reactions of NO3 radicals with organic compounds

    NASA Astrophysics Data System (ADS)

    Kerdouci, J.; Picquet-Varrault, B.; Doussin, J.

    2010-12-01

    The nitrate radical (NO3) has long been recognized as the dominant night-time oxidant of organic species, in particular of unsaturated compounds. More recently, it has been shown that it can contribute significantly to the oxidation of very reactive VOC (e.g. terpenes) even during the day[1]. Volatile organic compounds are widely emitted into the atmosphere by both anthropogenic and biogenic sources. When released into the troposphere, they can undergo either photolysis or oxidation by OH and NO3 radicals and by ozone. These chemical processes are known to be responsible for the formation of photooxidants and SOA which are involved in photochemical smog events. Hence, to estimate their impact on the tropospheric chemistry, it is necessary to know their reactivity towards the atmospheric oxidants. But because of huge number of VOCs, it is impossible to perform kinetic experiments for all of them. For this reason, estimation methods have been developed to predict rate constants. A number of methods for the estimation of rate constants have been proposed. Many of them utilize the physical or chemical properties of the organic compounds such as the ionization energy[2] or the energy of molecular orbital[3]. However, these methods are restricted in their use because of the limited database concerning molecular properties and the discrepancies between the different molecular models used to calculate these parameters. For this reason, a structure-activity relationship has been developed by Atkinson[4] to predict rate constants of the OH-oxidation of VOCs. This kind of SAR is very easy to use and has been successfully integrated in chemical models[5, 6]. Concerning the reactivity of organic compounds with NO3 radicals, it has long been considered that the number of experimental data was not sufficient to use the approach proposed by Atkinson. But during the last decade, many experimental studies, in particular on the unsaturated oxygenated compounds, have enhanced the

  17. Structure-activity relationships of 4-position diamine quinoline methanols as intermittent preventative treatment (IPT) against Plasmodium falciparum.

    PubMed

    Milner, Erin; Gardner, Sean; Moon, Jay; Grauer, Kristina; Auschwitz, Jennifer; Bathurst, Ian; Caridha, Diana; Gerena, Lucia; Gettayacamin, Montip; Johnson, Jacob; Kozar, Michael; Lee, Patricia; Leed, Susan; Li, Qigui; McCalmont, William; Melendez, Victor; Roncal, Norma; Sciotti, Richard; Smith, Bryan; Sousa, Jason; Tungtaeng, Anchalee; Wipf, Peter; Dow, Geoffrey

    2011-09-22

    A library of diamine quinoline methanols were designed based on the mefloquine scaffold. The systematic variation of the 4-position amino alcohol side chain led to analogues that maintained potency while reducing accumulation in the central nervous system (CNS). Although the mechanism of action remains elusive, these data indicate that the 4-position side chain is critical for activity and that potency (as measured by IC(90)) does not correlate with accumulation in the CNS. A new lead compound, (S)-1-(2,8-bis(trifluoromethyl)quinolin-4-yl)-2-(2-(cyclopropylamino)ethylamino)ethanol (WR621308), was identified with single dose efficacy and substantially lower permeability across MDCK cell monolayers than mefloquine. This compound could be appropriate for intermittent preventative treatment (IPTx) indications or other malaria treatments currently approved for mefloquine.

  18. Relationships among aging, IQ, and intracranial volume in alcoholics and control subjects.

    PubMed

    Schottenbauer, Michele A; Momenan, Reza; Kerick, Michael; Hommer, Daniel W

    2007-05-01

    The current article examined the relationships among aging, intelligence, intracranial volume, and brain shrinkage in alcoholics and nonalcoholic controls. Magnetic resonance imaging was used to measure intracranial and cerebral volumes in 146 subjects with alcohol use disorders and 42 comparison subjects who were not alcoholic. The authors' findings show that performance on Block Design decreases as alcoholics age, and this decrease is predicted by brain shrinkage. This is consistent with a process of cumulative brain damage related to alcohol use. However, the authors' data also show that vocabulary does not decrease with age and is correlated with premorbid brain size as measured by intracranial volume, suggesting that lower verbal ability precedes heavy alcohol use and may be a risk factor for alcoholism.

  19. Understanding the relationship between religiousness, spirituality, and underage drinking: the role of positive alcohol expectancies.

    PubMed

    Sauer-Zavala, Shannon; Burris, Jessica L; Carlson, Charles R

    2014-02-01

    Research has consistently found that religiousness and spirituality are negatively associated with underage drinking. However, there is a paucity of research exploring the mechanisms by which these variables influence this important outcome. With 344 underage young adults (ages 18-20; 61 % women), we investigated positive alcohol expectancies as a mediator between religiousness and spirituality (measured separately) and underage alcohol use. Participants completed the Religious Commitment Inventory-10, Daily Spiritual Experiences Scale, Alcohol Expectancies Questionnaire, and Drinking Styles Questionnaire. Results indicate less positive alcohol expectancies partially mediate the relationship between both religiousness and spirituality and underage alcohol use. This suggests religiousness and spirituality's protective influence on underage drinking is partly due to their influence on expectations about alcohol's positive effects. Since underage drinking predicts problem drinking later in life and places one at risk for serious physical and mental health problems, it is important to identify specific points of intervention, including expectations about alcohol that rise from religious and spiritual factors.

  20. Relationships among depressive mood symptoms and parent and peer relations in collegiate children of alcoholics.

    PubMed

    Kelley, Michelle L; Braitman, Abby; Henson, James M; Schroeder, Valarie; Ladage, Jessica; Gumienny, Leslie

    2010-04-01

    Relationships among adult children of alcoholics (ACOAs) and parent and peer relations and depressive mood were examined among 136 ACOAs and 436 non-ACOAs. As compared to non-ACOAs, ACOAs reported less positive relationships to mothers, fathers, and peers, and more depressive mood; however, more positive relationships to parents and peers significantly reduced the strength of the association between ACOA categorization and depressive mood. Examination of data from ACOAs alone revealed that maternal alcoholism was related to less positive relationships to their mothers and to their peers; however, paternal alcoholism did not predict the quality of the relationship to fathers, mothers, or peers. Attachment to parents and peers and the gender of the alcohol-abusing parent were associated with depressive symptoms among ACOAs.

  1. Structure-activity relationship of ochratoxin A and synthesized derivatives: importance of amino acid and halogen moiety for cytotoxicity.

    PubMed

    Rottkord, Ulrike; Röhl, Christopher; Ferse, Ines; Schulz, Marie-Christin; Rückschloss, Uwe; Gekle, Michael; Schwerdt, Gerald; Humpf, Hans-Ulrich

    2017-03-01

    The enigma why the mycotoxin ochratoxin A (OTA) impairs cell and organ function is still not solved. However, an interaction with target molecules is a prerequisite for any observed adverse effect. This interaction depends on characteristics of the target molecule as well as on the OTA molecule itself. OTA has different structural moieties which may be relevant for these interrelations including a halogen (chlorine) and an amino acid group (phenylalanine). To test their importance for the impact of OTA, detailed structure-activity studies with various OTA derivatives were performed. For this, 23 OTA derivatives were available, which were modified by either an exchange of the halogen moiety against another halogen (fluorine, iodine or bromine) or by the amino acid moiety against another one (tyrosine or alanine) or a combination of both. Additionally, the configuration of the 3R carbon atom was changed to 3S. These derivatives were tested in human renal cells for their ability to induce cell death (cytotoxicity, apoptosis, necrosis), their impact on collagen protein secretion and for their influence on gene expression. It turned out that the substitution of the amino acid moiety against tyrosine or alanine almost completely prevented the adverse effects of OTA. The exchange of the halogen moiety had minor effects and the inversion of the stereochemistry at C3 did not prevent the effects of OTA. Therefore, we conclude that the amino acid moiety of OTA is indispensable for the interaction of OTA with its target molecules.

  2. Extending the structure-activity relationship study of marine natural ningalin B analogues as P-glycoprotein inhibitors.

    PubMed

    Yang, Chao; Wong, Iris L K; Peng, Kai; Liu, Zhen; Wang, Peng; Jiang, Tingfu; Jiang, Tao; Chow, Larry M C; Wan, Sheng Biao

    2017-01-05

    In the present study, a total of 25 novel ningalin B analogues were synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Preliminary structure-activity study shows that A ring and its two methoxy groups are important pharmacophores for P-gp inhibiting activity. Among all derivatives, 23 is the most potent P-gp modulator with EC50 of 120-165 nM in reversing paclitaxel, DOX, vinblastine and vincristine resistance. It is relatively safe to use with selective index at least greater than 606 compared to verapamil. Mechanistic study demonstrates that compound 23 reverses P-gp mediated drug resistance by inhibiting transport activity of P-gp, thereby restoring intracellular drug accumulation. In summary, our study demonstrates that ningalin B analogue 23 is a non-cytotoxic and effective P-gp chemosensitizer that can be used in the future for reversing P-gp mediated clinical cancer drug resistance.

  3. Thinking in Terms of Structure-Activity-Relationships (T-SAR): A Tool to Better Understand Nanofiltration Membranes

    PubMed Central

    Fernández, José F.; Jastorff, Bernd; Störmann, Reinhold; Stolte, Stefan; Thöming, Jorg

    2011-01-01

    A frontier to be conquered in the field of membrane technology is related to the very limited scientific base for the rational and task-specific design of membranes. This is especially true for nanofiltration membranes with properties that are based on several solute-membrane interaction mechanisms. “Thinking in terms of Structure-Activity-Relationships” (T-SAR) is a methodology which applies a systematic analysis of a chemical entity based on its structural formula. However, the analysis become more complex with increasing size of the molecules considered. In this study, T-SAR was combined with classical membrane characterization methods, resulting in a new methodology which allowed us not only to explain membrane characteristics, but also provides evidence for the importance of the chemical structure for separation performance. We demonstrate an application of the combined approach and its potential to discover stereochemistry, molecular interaction potentials, and reactivity of two FilmTec nanofiltration membranes (NF-90 and NF-270). Based on these results, it was possible to predict both properties and performance in the recovery of hydrophobic ionic liquids from aqueous solution. PMID:24957730

  4. The Energy Relationships of Corn Production and Alcohol Fermentation.

    ERIC Educational Resources Information Center

    Van Koevering, Thomas E.; And Others

    1987-01-01

    Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…

  5. The Relationship among Alcohol Consumption, Tailgating, and Negative Consequences

    ERIC Educational Resources Information Center

    Lawrence, Shawn A.; Hall, Thomas; Lancey, Patrice

    2012-01-01

    Tailgating has been associated with both problem drinking and high-risk behaviors. The purpose of this study was to determine if student participation in game day on-campus tailgating activities is associated with increased alcohol consumption. Employing a convenience sample of 567 university students, the authors compared the alcohol use patterns…

  6. Relationship between Women's Alcohol Problems and Experiences of Childhood Violence.

    ERIC Educational Resources Information Center

    Miller, Brenda A.; And Others

    The effects of childhood physical and sexual abuse on the development of alcoholism in women was examined by comparing 127 alcoholic women in treatment with two comparison groups. One comparison group was comprised of 83 nonalcoholic women in mental health treatment or receiving services for battering. The second comparison group consisted of 92…

  7. Romantic relationships and alcohol use: A long-term, developmental perspective.

    PubMed

    Rauer, Amy J; Pettit, Gregory S; Samek, Diana R; Lansford, Jennifer E; Dodge, Kenneth A; Bates, John E

    2016-08-01

    This study considers the developmental origins of alcohol use in young adulthood. Despite substantial evidence linking committed romantic relationships to less problematic alcohol use in adulthood, the uniformity of these protective benefits across different romantic relationships is unclear. Further, the extent to which the establishment and maintenance of these romantic relationships is preceded by earlier adolescence alcohol use remains unknown. To address these gaps in the literature, the current study utilized multitiple-dimensional, multiple-informant data spanning 20 years on 585 individuals in the Child Development Project. Findings from both variable- and person-centered analyses support a progression of associations predicting adolescent alcohol use (ages 15-16), drinking, and romantic relationships in early adulthood (ages 18-25), and then problematic young adult alcohol use (age 27). Although adolescent alcohol use predicted greater romantic involvement and turnover in early adulthood, romantic involvement, but not turnover, appeared to reduce the likelihood of later problematic drinking. These findings remained robust even after accounting for a wide array of selection and socialization factors. Moreover, characteristics of the individuals (e.g., gender) and of their romantic relationships (e.g., partner substance use problems and romantic relationship satisfaction) did not moderate these findings. Findings underscore the importance of using a developmental-relational perspective to consider the antecedents and consequences of alcohol use early in the life span.

  8. The Relationship between Adolescent Alcohol Use and Delinquent and Violent Behaviors.

    ERIC Educational Resources Information Center

    Komro, Kelli A.; Williams, Carolyn L.; Forster, Jean L.; Perry, Cheryl L.; Farbakhsh, Kian; Stigler, Melissa H.

    1999-01-01

    Study analyzed the relationship between alcohol use, psychological risk, and delinquent and violent behaviors using self-reported data from eighth and ninth grade students from a small, rural town population. Results suggest that alcohol use is an independent risk factor for delinquent and violent behaviors among young people (Author/JDM)

  9. Alcohol, Tobacco, and Marijuana Use: Relationships to Undergraduate Students' Creative Achievement.

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.; Dana, Robert Q.

    1998-01-01

    The relationship between creativity and the use of alcohol and other drugs is examined using the Creative Behavior Inventory and the Core Alcohol and Drug Survey. The age at which students (N=176) first used specific drugs was negatively or negligibly related to creative achievement. Limited evidence for a social expectancy effect was…

  10. The Relationship between Victim's/Perpetrator's Alcohol Use and Spousal Violence.

    ERIC Educational Resources Information Center

    Miller, Brenda A.; And Others

    This study examined the relationships between alcohol abuse and spousal violence for 96 women in alcoholism treatment as compared to these comparison groups: 78 women receiving mental health treatment; 98 women receiving services for family violence; 91 women from a random sample of households; and 100 women in a driver education program following…

  11. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  12. Structure-Activity Relationships of Membrane-Targeting Cationic Ligand on Silver Nanoparticle Surface in the Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay.

    PubMed

    Dai, Xiaomei; Chen, Xuelei; Zhao, Jing; Zhao, Yu; Guo, Qianqian; Zhang, Tianqi; Chu, Chunli; Zhang, Xinge; Li, Chaoxing

    2017-04-06

    To explore structure-activity relationship of membrane-targeting cationic ligand on silver nanoparticle surface in the antibiotic-resistant antibacterial and antibiofilm activity, a series of functionalized silver nanocomposites were synthesized. Tuning of the structural configuration, molecular weight and side chain length of cationic ligand on the nanoparticle surface provided silver nanocomposites effectively antibacterial activity against both antibiotic-resistant Gram-negative and -positive bacteria, including bacterial biofilms. These silver nanocomposites did not trigger hemolytic activity. Significantly, the bacteria did not develop resistance to the obtained nanocomposites even after 30 generations. Study of the antibacterial mechanism confirmed that these nanocomposites could irreversibly disrupt the membrane structure of bacteria and effectively inhibited intracellular enzyme activity, ultimately led to bacterial death. The silver nanocomposites (64 μg/mL) could eradicate 80% of established antibiotic-resistant bacterial biofilms. The strong structure-activity relationship in antibacterial and antibiofilm activity suggests that variation in conformational property of functional ligand could be valuable in the discovery of the new nano-antibacterial agent for treating pathogenic bacterial infections.

  13. Synthesis and Structure-Activity Relationships of Small Molecule Inhibitors of the Simian Virus 40 T Antigen Oncoprotein, an Anti-Polyomaviral Target

    PubMed Central

    Gupta, Tushar; Seguin, Sandlin P.; Liang, Mary; Resnick, Lynn; Goldberg, Margot T.; Manos-Turvey, Alexandra; Pipas, James M.; Wipf, Peter; Brodsky, Jeffrey L.

    2014-01-01

    Polyomavirus infections are common and relatively benign in the general human population but can become pathogenic in immunosuppressed patients. Because most treatments for polyomavirus-associated diseases nonspecifically target DNA replication, existing treatments for polyomavirus infection possess undesirable side effects. However, all polyomaviruses express Large Tumor Antigen (T Ag), which is unique to this virus family and may serve as a therapeutic target. Previous screening of pyrimidinone-peptoid hybrid compounds identified MAL2-11B and a MAL2-11B tetrazole derivative as inhibitors of viral replication and T Ag ATPase activity (IC50 of ~20-50μM). To improve upon this scaffold and to develop a structure-activity relationship for this new class of antiviral agents, several iterative series of MAL2-11B derivatives were synthesized. The replacement of a flexible methylene chain linker with a benzyl group or, alternatively, the addition of an ortho-methyl substituent on the biphenyl side chain in MAL2-11B yielded analogs with modestly improved IC50s (~15 μM), which retained antiviral activity. After combining both structural motifs, a new lead compound was identified that inhibited T Ag ATPase activity with an IC50 of ~5 μM. We suggest that the knowledge gained from the structure-activity relationship and a further refinement cycle of the MAL2-11B scaffold will provide a specific, novel therapeutic treatment option for polyomavirus infections and their associated diseases. PMID:25440730

  14. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?

    PubMed

    Aurbek, Nadine; Herkert, Nadja M; Koller, Marianne; Thiermann, Horst; Worek, Franz

    2010-09-06

    The repeated misuse of highly toxic organophosphorus compound (OP) based chemical warfare agents in military conflicts and terrorist attacks poses a continuous threat to the military and civilian sector. The toxic symptomatology of OP poisoning is mainly caused by inhibition of acetylcholinesterase (AChE, E.C. 3.1.1.7) resulting in generalized cholinergic crisis due to accumulation of the neurotransmitter acetylcholine (ACh) in synaptic clefts. Beside atropine as competitive antagonist of ACh at muscarinic ACh receptors oximes as reactivators of OP-inhibited AChE are a mainstay of standard antidotal treatment. However, human AChE inhibited by certain OP is rather resistant to oxime-induced reactivation. The development of more effective oxime-based reactivators may fill the gaps. To get more insight into a potential structure-activity relationship between human AChE, OPs and oximes in vitro studies were conducted to investigate interactions of different tabun and sarin analogues with human AChE and the oximes obidoxime and HI 6 by determination of various kinetic constants. Rate constants for the inhibition of human AChE by OPs, spontaneous dealkylation and reactivation as well as reactivation by obidoxime and HI 6 of OP-inhibited human AChE were determined. The recorded kinetic data did not allow a general statement concerning a structure-activity relationship between human AChE, OP and oximes.

  15. Structure-activity relationships in hydroxy-2,3-diarylxanthone antioxidants. Fast kinetics spectroscopy as a tool to evaluate the potential for antioxidant activity in biological systems.

    PubMed

    Santos, Clementina M M; Silva, Artur M S; Filipe, Paulo; Santus, René; Patterson, Larry K; Mazière, Jean-Claude; Cavaleiro, José A S; Morlière, Patrice

    2011-05-21

    A structure-activity relationship has been established for eight hydroxy-2,3-diarylxanthones (XH) bearing hydroxy groups on the two aryl rings. One-electron oxidation by superoxide radical-anions (˙O(2)(-)) and ˙Trp radicals as well as reaction with ˙CCl(3)O(2) and ˙CHCl(2)O(2) radicals demonstrates that two OH groups are required for efficient antioxidant reactivity in cetyltrimethylammonium bromide micelles. Hydroxy groups at the meta and para positions on either of the two phenyl rings confer enhanced reactivity, but XH bearing an OH at the para position of either phenyl ring is unreactive. While oxidation is favoured by OH in both meta and para positions of 2-aryl xanthone substituents, addition of a third and/or fourth OH enhances electron-donating capacity. In Cu(2+)-induced lipid peroxidation of human LDL, the lag period preceding the commencement of lipid peroxidation in the presence of XH bearing OH at meta and para positions on the 3-phenyl ring is extended to twice that observed with a comparable concentration of quercetin, a reference antioxidant. These antioxidants are also superior to quercetin in protecting human skin keratinocytes against tert-butylhydroperoxide-induced oxidative stress. While XH antioxidant activity in model biological systems is consistent with the structure-activity relationship, their response is also modulated by the localization of XH and by structural factors.

  16. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  17. Identification of Lilial as a fragrance sensitizer in a perfume by bioassay-guided chemical fractionation and structure-activity relationships.

    PubMed

    Arnau, E G; Andersen, K E; Bruze, M; Frosch, P J; Johansen, J D; Menné, T; Rastogi, S C; White, I R; Lepoittevin, J P

    2000-12-01

    Fragrance materials are among the most common causes of allergic contact dermatitis. The aim of this study was to identify in a perfume fragrance allergens not included in the fragrance mix, by use of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships (SARs). The basis for the investigation was a 45-year-old woman allergic to her own perfume. She had a negative patch test to the fragrance mix and agreed to participate in the study. Chemical fractionation of the perfume concentrate was used for repeated patch testing and/or repeated open application test on the pre-sensitized patient. The chemical composition of the fractions giving a positive patch-test response and repeated open application test reactions was obtained by gas chromatography-mass spectrometry. From the compounds identified, those that contained a "structural alert" in their chemical structure, indicating an ability to modify skin proteins and thus behave as a skin sensitizer, were tested on the patient. The patient reacted positively to the synthetic fragrance p-t-butyl-alpha-methylhydrocinnamic aldehyde (Lilial), a widely used fragrance compound not present in the fragrance mix. The combination of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships seems to be a valuable tool for the investigation of contact allergy to fragrance materials.

  18. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies.

  19. Developmental alcohol-specific parenting profiles in adolescence and their relationships with adolescents' alcohol use.

    PubMed

    Koning, Ina M; van den Eijnden, Regina J J M; Verdurmen, Jacqueline E E; Engels, Rutger C M E; Vollebergh, Wilma A M

    2012-11-01

    Previous studies on general parenting have demonstrated the relevance of strict parenting within a supportive social context for a variety of adolescent behaviors, such as alcohol use. Yet, alcohol-specific parenting practices are generally examined as separate predictors of adolescents' drinking behavior. The present study examined different developmental profiles of alcohol-specific parenting (rule-setting, quality and frequency of communication about alcohol use) and how these patterns relate to the initiation and growth of adolescents' drinking. A longitudinal sample of 883 adolescents (47 % female) including four measurements (between ages 12 and 16) was used. Latent class growth analysis revealed that five classes of parenting could be distinguished. Communication about alcohol appeared to be fairly stable over time in all parenting classes, whereas the level of rule-setting declined in all subgroups of parents as adolescents grow older. Strict rule-setting in combination with a high quality and frequency of communication was associated with the lowest amount of drinking; parents scoring low on all these behaviors show to be related to the highest amount of drinking. This study showed that alcohol-specific rule-setting is most effective when it coincides with a good quality and frequency of communication about alcohol use. This indicates that alcohol-specific parenting behaviors should be taken into account as an alcohol-specific parenting context, rather than single parenting practices. Therefore, parent-based alcohol interventions should not only encourage strict rule setting, the way parents communicate with their child about alcohol is also of major importance.

  20. Novel anti-tumour barringenol-like triterpenoids from the husks of Xanthoceras sorbifolia Bunge and their three dimensional quantitative structure activity relationships analysis.

    PubMed

    Wang, Da; Su, Dan; Yu, Bin; Chen, Chuming; Cheng, Li; Li, Xianzhe; Xi, Ronggang; Gao, Huiyuan; Wang, Xiaobo

    2017-01-01

    The high edible oil content of Xanthoceras sorbifolia Bunge seeds contributes to its economic value. In this study, we analysed the barrigenol-like triterpenoids derived from X. sorbifolia husks. We also identified anti-tumour agents that could enhance the health benefits and medicinal value of X. sorbifolia. We isolated 10 barrigenol triterpenoids, including six new compounds (1-6) and four known compounds (7-10). New compounds 3 and 5 showed significant inhibitory activity against the proliferation of three human tumour cell lines, namely, HepG2, HCT-116 and U87-MG. We determined the relationship between the structures and inhibitory activity of 25 barrigenol triterpenoids and 15 penta-cyclic triterpenoids through analysis of three-dimensional quantitative structure activity relationships (3D-QSAR). The isolation of novel barrigenol derivatives with anti-tumour activity from X. sorbifolia implied that husks of this plant may be a good source of anti-tumour agents.

  1. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.

    PubMed

    Banfi, Stefano; Caruso, Enrico; Buccafurni, Loredana; Murano, Roberto; Monti, Elena; Gariboldi, Marzia; Papa, Ester; Gramatica, Paola

    2006-06-01

    The synthesis of a panel of seven nonsymmetric 5,10,15,20-tetraarylporphyrins, 13 symmetric and nonsymmetric 5,15-diarylporphyrins, and one 5,15-diarylchlorin is described. In vitro photodynamic activities on HCT116 human colon adenocarcinoma cells were evaluated by standard cytotoxicity assays. A predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, of a series of 34 tetrapyrrolic photosensitizers (PSs), including the 24 compounds synthesized in this work, was developed to describe the relationship between structural features and photodynamic activity. The present study demonstrates that structural features significantly influence the photodynamic activity of tetrapyrrolic derivatives: diaryl compounds were more active with respect to the tetraarylporphyrins, and among the diaryl derivatives, hydroxy-substituted compounds were more effective than the corresponding methoxy-substituted ones. Furthermore, three monoarylporphyrins, isolated as byproducts during diarylporphyrin synthesis, were considered for both photodynamic and QSAR studies; surprisingly they were found to be particularly active photosensitizers.

  2. Developmental Alcohol-Specific Parenting Profiles in Adolescence and Their Relationships with Adolescents' Alcohol Use

    ERIC Educational Resources Information Center

    Koning, Ina M.; van den Eijnden, Regina J. J. M.; Verdurmen, Jacqueline E. E.; Engels, Rutger C. M. E.; Vollebergh, Wilma A. M.

    2012-01-01

    Previous studies on general parenting have demonstrated the relevance of strict parenting within a supportive social context for a variety of adolescent behaviors, such as alcohol use. Yet, alcohol-specific parenting practices are generally examined as separate predictors of adolescents' drinking behavior. The present study examined different…

  3. The relationship between motivational structure, sense of control, intrinsic motivation and university students' alcohol consumption.

    PubMed

    Shamloo, Zohreh Sepehri; Cox, W Miles

    2010-02-01

    The aim of this study was to determine how sense of control and intrinsic motivation are related to university students' motivational structure and alcohol consumption. Participants were 94 university students who completed the Personal Concerns Inventory, Shapiro Control Inventory, Helplessness Questionnaire, Intrinsic-Extrinsic Aspirations Scale, and Alcohol Use Questionnaire. Results showed that sense of control and intrinsic motivation were positively correlated with adaptive motivation and negatively correlated with alcohol consumption. Mediational analyses indicated that adaptive motivation fully mediated the relationship between sense of control/intrinsic motivation and alcohol consumption.

  4. Interactive Relationships between Sex-Related Alcohol Expectancies and Delay Discounting on Risky Sex

    PubMed Central

    Celio, Mark A.; MacKillop, James; Caswell, Amy J.; Mastroleo, Nadine R.; Kahler, Christopher W.; Barnett, Nancy P.; Colby, Suzanne M.; Operario, Don; Monti, Peter M.

    2015-01-01

    Background Sex-related alcohol expectancies reflect the degree to which a person believes alcohol will affect her or his sexual behavior. Sex-related alcohol expectancies have been found to be predictors of drinking in sexual situations and engagement in risky sexual behavior after drinking. However, less is known about individual characteristics that may moderate these associations. Building upon recent evidence that steep delay discounting is associated with alcohol-related sexual risk taking, this study aimed to test the hypothesis that the associations between sex-related alcohol expectancies and alcohol-related sexual risk taking would be stronger among individuals who discount delayed rewards more steeply. Methods The current sample comprised 126 Emergency Department patients (Mage=27.37; 55% male) who reported high-risk alcohol use and sexual behavior during the past three months. Sex-related alcohol expectancies were assessed in three behavioral domains: increased riskiness, decreased nervousness, and enhanced sexuality. Results All three expectancy domains were associated with quantity and frequency of alcohol use, as well as percentage of alcohol-related condomless sex. Delay discounting moderated two of these relationships, such that the associations between expectancies for alcohol-induced sexual risk taking and the enhancement of sexuality and percentage of alcohol-related sexual risk-taking were significantly stronger in individuals who exhibited steeper delay discounting. Conclusions These findings suggest that individuals who both discount delayed rewards more steeply and hold strong sex-related alcohol expectancies are a particularly high-risk population. Such individuals may benefit from a combination of novel preventive strategies targeting sex-related alcohol expectancies and impulsive decision making. PMID:26891345

  5. The Relationship of Appetitive, Reproductive and Posterior Pituitary Hormones to Alcoholism and Craving in Humans

    PubMed Central

    Kenna, George A.; Swift, Robert M.; Hillemacher, Thomas; Leggio, Lorenzo

    2012-01-01

    A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder. PMID:22772772

  6. The relationship of appetitive, reproductive and posterior pituitary hormones to alcoholism and craving in humans.

    PubMed

    Kenna, George A; Swift, Robert M; Hillemacher, Thomas; Leggio, Lorenzo

    2012-09-01

    A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder.

  7. Self-Reported Alcohol and Drug Problems Among Internal Medicine Outpatients: Relationships With Criminal Behavior

    PubMed Central

    Lam, Charlene; Wiederman, Michael W.

    2011-01-01

    Objective: Previous research indicates relationships between alcohol/substance misuse and criminal behavior, but past studies have restricted investigations to atypical samples and/or utilized limited assessments of illegal behavior. In the present study, we explored relationships between alcohol/drug problems and charges for 27 criminal behaviors in a primary care sample. Method: Participants were a cross-sectional sample of 376 consecutive men and women, aged 18 years or older, being seen for nonemergent medical care at an outpatient internal medicine clinic staffed predominantly by residents and located in a midsized, midwestern city in October 2010. Using a self-report survey methodology, we examined relationships between alcohol and drug problems (“Have you ever had a problem with alcohol?” and “Have you ever had a problem with drugs?”) and 27 illegal behaviors as delineated by the categories used by the US Federal Bureau of Investigation. Results: Men with alcohol or drug problems statistically exhibited the greatest number of charges for different forms of illegal behavior (P < .001). These charges were directly related to alcohol/drug misuse (eg, driving under the influence of alcohol or drugs) and otherwise (eg, aggravated assault, simple assault, gambling, larceny-theft). Conclusions: In primary care settings, men with alcohol/drug problems may also have a history of illegal behaviors—a finding that is relevant in terms of social and legal implications. PMID:22454803

  8. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  9. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  10. Alcohol Use in College: The Relationship Between Religion, Spirituality, and Proscriptive Attitudes Toward Alcohol.

    PubMed

    Kathol, Nicole; Sgoutas-Emch, Sandra

    2017-04-01

    Developing interventions to address the problem of college drinking requires the identification of contributing factors to drinking behavior. It is believed that religion and spirituality (R/S) play a role, but the mechanism is unclear. Using a multi-dimensional R/S measure, an alcohol behavior inventory, and a religious affiliation proscription question, this study was designed to dive deeper into this connection. This study found that religious singing/chanting and reading sacred text were the best predictors of lower alcohol consumption. Furthermore, participants who perceive their religious tradition to be proscriptive reported less alcohol consumption and higher religious/spiritual profiles.

  11. The relationship between parent and student religious coping and college alcohol use.

    PubMed

    Harrell, Zaje A T; Powell, Kandace

    2014-06-01

    The present study examined social support and alcohol norms as mediators of the relationship between religious coping and college drinking (e.g., frequency and heavy drinking). The sample consisted of college students (n = 129) and their parents (n = 113). Religious coping (parent and student) was associated with less frequent alcohol use and less heavy drinking. Using a path model to test direct and indirect effects, the mediators were entered simultaneously and allowed to correlate with each other. Alcohol norms mediated the relationship between religious coping and drinking outcomes. Social support was not a significant mediator. Broader protective implications of religious coping are discussed.

  12. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  13. The effect of nano confinement on the C-h activation and its corresponding structure-activity relationship.

    PubMed

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-27

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  14. Steric structure-activity relationship of cyproheptadine derivatives as inhibitors of histone methyltransferase Set7/9.

    PubMed

    Fujiwara, Takashi; Ohira, Kasumi; Urushibara, Ko; Ito, Akihiro; Yoshida, Minoru; Kanai, Misae; Tanatani, Aya; Kagechika, Hiroyuki; Hirano, Tomoya

    2016-09-15

    Set7/9 is a histone lysine methyltransferase, but it is also thought to be involved in a wide variety of pathophysiological functions. We previously identified cyproheptadine, which has a characteristic butterfly-like molecular conformation with bent tricyclic dibenzosuberene and chair-form N-methylpiperidine moieties, as a Set7/9 inhibitor. In this work, we synthesized several derivatives in order to examine the steric structure-inhibitory activity relationship. We found that even a small change of molecular shape due to reduction or replacement of the 10,11-olefinic bond of the tricyclic ring generally resulted in a drastic decrease of the inhibitory activity. Our results should be useful not only for development of more potent and selective inhibitors, but also for the construction of novel inhibitor scaffolds.

  15. The Effect of Nano Confinement on the C–H Activation and its Corresponding Structure-Activity Relationship

    PubMed Central

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-01-01

    The C–H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C–H activation occurring both on the inner and outer surfaces of the nano channel. The C–O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C–H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement. PMID:25428459

  16. Pilots' knowledge of the relationship between alcohol consumption and levels of blood alcohol concentration.

    PubMed

    Widders, R; Harris, D

    1997-06-01

    The U.K. Civil Aviation Authority is currently proposing that a maximum BAC (Blood Alcohol Concentration) limit of just 0.02% should be imposed on United Kingdom pilots. In this survey of 477 pilots, it was found that a large proportion could not determine when their BAC was likely to fall below this level after drinking alcohol and could, therefore, potentially inadvertently infringe the proposed regulation. Another large proportion of pilots felt that they were safe to fly before their BAC had dropped below 0.02%, which may be indicative of a willingness to infringe the regulations. Estimates of when it was safe to fly also became more inaccurate as the amount drunk increased and varied with the type of alcoholic beverage consumed. It was also found that the conclusions drawn were heavily dependent upon the formula used to estimate BAC. This methodological problem identified has considerable implications for the study of alcohol consumption when flying.

  17. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells.

    PubMed

    Perucca, Paola; Savio, Monica; Cazzalini, Ornella; Mocchi, Roberto; Maccario, Cristina; Sommatis, Sabrina; Ferraro, Daniela; Pizzala, Roberto; Pretali, Luca; Fasani, Elisa; Albini, Angelo; Stivala, Lucia Anna

    2014-11-01

    The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O₂ partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue.

  18. Structure-activity relationships of flavonoids as natural inhibitors against E. coli β-glucuronidase.

    PubMed

    Weng, Zi-Miao; Wang, Ping; Ge, Guang-Bo; Dai, Zi-Ru; Wu, Da-Chang; Zou, Li-Wei; Dou, Tong-Yi; Hou, Jie; Zhang, Tong-Yan; Yang, Ling

    2017-03-24

    Bacterial β-glucuronidases play key roles in the deconjugation of a variety of endogenous and drug glucuronides, thus have been recognized as important targets to modulate the enterohepatic circulation of various glucuronides. In this study, more than 30 natural flavonoids were collected and their inhibitory effects against E. coli β-glucuronidase (EcGUS) were assayed. The results demonstrated that some flavonoids including scutellarein, luteolin, baicalein, quercetin and scutellarin displayed strong to moderate inhibitory effects against EcGUS, with the IC50 values ranging from 5.76 μM to 29.64 μM, while isoflavones and dihydroflavones displayed weak inhibitory effects against EcGUS. Further investigation on inhibition kinetics revealed that scutellarein and luteolin functioned as potent competitive inhibitors against EcGUS-mediated PNPG hydrolysis, with the Ki values less than 3.0 μM. Molecular docking simulations demonstrated that scutellarein and luteolin could be well-docked into the catalytic site of EcGUS, while the binding areas of these two natural inhibitors on EcGUS were highly overlapped with that of PNPG on EcGUS. Additionally, the structure-inhibition relationships of natural flavonoids against EcGUS are also summarized, which will be very helpful for the medicinal chemists to design and develop more potent flavonoid-type inhibitors against EcGUS.

  19. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  20. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna.

    PubMed

    Fan, Deling; Liu, Jining; Wang, Lei; Yang, Xianhai; Zhang, Shenghu; Zhang, Yan; Shi, Lili

    2016-05-01

    The chronic toxicity of anthropogenic molecules such as substituted benzenes to Daphnia magna is a basic eco-toxicity parameter employed to assess their environmental risk. As the experimental methods are laborious, costly, and time-consuming, development in silico models for predicting the chronic toxicity is vitally important. In this study, on the basis of five molecular descriptors and 48 compounds, a quantitative structure-property relationship model that can predict the chronic toxicity of substituted benzenes were developed by employing multiple linear regressions. The correlation coefficient (R (2)) and root-mean square error (RMSE) for the training set were 0.836 and 0.390, respectively. The developed model was validated by employing 10 compounds tested in our lab. The R EXT (2) and RMSE EXT for the validation set were 0.736 and 0.490, respectively. To further characterizing the toxicity mechanism of anthropogenic molecules to Daphnia, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed.

  1. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    PubMed

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.

  2. Relationship between internal phase volume and emulsion stability: the cetyl alcohol/stearyl alcohol system.

    PubMed

    Sepulveda, E; Kildsig, D O; Ghaly, E S

    2003-08-01

    The main objective of this study was to optimize the stability of cetyl alcohol/stearyl alcohol emulsions in terms of percentage of internal phase volume, emulsifier type and concentration, and amount of external phase (water). Creams (o/w emulsions) were prepared by phase inversion and physical properties as particle size of the internal phase, apparent viscosity, and sedimentation volume evaluated. Stability was performed at room temperature, 40 degrees C, 50 degrees C, and under stress conditions. High hydrophilic lipophilic balance (HLB) nonionic surfactants as tween 80, tween 20, Myrj 52, Brij 35, and low HLB span 60 were used as emulsifying agents. The percentage of internal phase components (cetyl alcohol and stearyl alcohol), percentage of emulsifying agents, and percentage of aqueous external phase were varied, and stability was investigated. As the level of emulsifier agent (tween 80 and span 60) increased from 3% to 15%, and the percent of the internal phase remained constant at 30%, the particle size of the internal phase decreased and the cream became more stable. Formulations of the same composition, but prepared using Myrj 53 and tween 20 as emulsifiers, showed a larger particle size than formulations prepared using tween 80 and Brij 35. As the level of the internal phase volume increased and consequently the amount of water decreased, emulsion viscosity increased. The best formulation containing 30% internal phase (50% cetyl alcohol, 35% stearyl alcohol), 15% emulsifying agents (tween 80/span 60 ratio of 3:1), and 70% water was selected, and effects of process temperature and cooling rate on emulsion stability investigated. This formulation was further investigated in terms of stability of a 1% hydrocortisone addition by varying the percentage (30%, 35%, 40%, and 45%) of internal phase and percentage of water (70%, 65%, 60%, and 55%). The best formulation contained 45% internal phase (22.5 g cetyl alcohol, 15.75 g stearyl alcohol, 15% emulsifying

  3. Unraveling the structure-activity relationship of tomatidine, a steroid alkaloid with unique antibiotic properties against persistent forms of Staphylococcus aureus.

    PubMed

    Chagnon, Félix; Guay, Isabelle; Bonin, Marc-André; Mitchell, Gabriel; Bouarab, Kamal; Malouin, François; Marsault, Éric

    2014-06-10

    Staphylococcus aureus (S. aureus) is responsible for difficult-to-treat and relapsing infections and constitutes one of the most problematic pathogens due to its multiple resistances to clinically available antibiotics. Additionally, the ability of S. aureus to develop small-colony variants is associated with a reduced susceptibility to aminoglycoside antibiotics and in vivo persistence. We have recently demonstrated that tomatidine, a steroid alkaloid isolated from tomato plants, possesses anti-virulence activity against normal strains of S. aureus as well as the ability to potentiate the effect of aminoglycoside antibiotics. In addition, tomatidine has shown antibiotic activity against small-colony variants of S. aureus. We herein report the first study of the structure-activity relationship of tomatidine against S. aureus.

  4. Structure-activity relationships for euphocharacins A-L, a new series of jatrophane diterpenes, as inhibitors of cancer cell P-glycoprotein.

    PubMed

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Motti, Riccardo; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2004-07-01

    The Mediterranean spurge Euphorbia characias L. afforded twelve new diterpenes based on a jatrophane skeleton named euphocharacins A-L. Their chemical structures were elucidated by extensive nuclear magnetic resonance and mass spectrometry methods. Euphocharacins A-L were tested as inhibitors of the daunomycin-efflux activity of P-glycoprotein from cancer cells. The results were used to extend the structure-activity relationship established for this class of compounds, highlighting the positive effects of propyl and benzoyl groups at positions 3 and 9, respectively, and evidencing the negative effect of a free hydroxyl group at position 2. Among the tested compounds, euphocharacins C and I showed an activity higher than cyclosporin to inhibit Pgp-mediated daunomycin transport.

  5. Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A.

    PubMed

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Motti, Riccardo; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2004-02-12

    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport.

  6. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  7. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  8. 6-Acylamino-2-aminoquinolines as potent melanin-concentrating hormone 1 receptor antagonists. Identification, structure-activity relationship, and investigation of binding mode.

    PubMed

    Ulven, Trond; Frimurer, Thomas M; Receveur, Jean-Marie; Little, Paul Brian; Rist, Oystein; Nørregaard, Pia K; Högberg, Thomas

    2005-09-08

    Novel 6-acylamino-2-aminoquinoline melanin-concentrating hormone 1 receptor (MCH1R) antagonists were identified by sequential in silico screening with 3D pharmacophore models derived from a series of benzamide antagonists. The structure-activity relationship exploration by synthesis of analogues found structural demands around the western part of the compounds to be quite specific, whereas much structural freedom was found in the eastern part. While these compounds in general suffered from poor solubility properties, the 4-trifluoromethoxyphenoxyacetamide western appendage provided a favorable combination of activity and solubility properties. The amine in the eastern appendage, originally required by the pharmacophore model and believed to interact with Asp123 in transmembrane 3 of MCH1R, could be removed without diminishing affinity or functional activity of the compounds. Docking studies suggested that the Asp123 interacts preferentially with the nitrogen of the central quinoline. Synthesis and testing of specific analogues supported our revised binding mode hypothesis.

  9. Synthesis and structure-activity relationships of 2-substituted-6-(dimethylamino)-9-(4-methylbenzyl)-9H-purines with antirhinovirus activity.

    PubMed

    Kelley, J L; Linn, J A; Selway, J W

    1989-01-01

    A series of 2-substituted-6-(dimethylamino)-9-(4-methylbenzyl)-9H-purines where the 2-substituent was H, F, Cl, CF3, CH3, CH2CH3, NH2, NHCH3, N(CH3)2, SCH3, or SO2CH3 was synthesized and tested for antirhinovirus activity to evaluate the effect of 2-substituents on antiviral activity. Intuitive and quantitative structure-activity relationship (QSAR) analysis showed that optimum antirhinovirus serotype 1B activity was associated with 9-benzylpurines that contained a C-2 lipophilic, electron-withdrawing substituent. The most active compound, 6-(dimethylamino)-9-(4-methylbenzyl)-2-(trifluoromethyl)-9H-purine (14), had an IC50 = 0.03 microM against serotype 1B, but its activity against 18 other serotypes was not uniform; the IC50s ranged over 260-fold.

  10. Structure-activity relationships in the conversion of vitamin K analogues into menaquinone-4. Substrates essential to the synthesis of menaquinone-4 in cultured human cell lines.

    PubMed

    Suhara, Yoshitomo; Wada, Akimori; Tachibana, Yoji; Watanabe, Masato; Nakamura, Kanae; Nakagawa, Kimie; Okano, Toshio

    2010-05-01

    To reveal an essential biological role of menaquinone-4, we have clarified that dietary PK was converted to menaquinone-4 (MK-4) in animal tissues using deuterated vitamin K analogues. However, the kinds of analogue converted into MK-4 have not been elucidated. In this study, we examined structure-activity relationships in the conversion of several vitamin K analogues, with a substituted side chain, into MK-4 using cultured human cell lines. The results differed with the side chain of the analogues, that is, (1) the length of the isoprene unit and (2) the number of double bonds in the side chain. These findings would be useful for clarifying the mechanism of conversion of other vitamin K homologs into MK-4 as well as related enzymes.

  11. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects.

    PubMed

    Liu, Fudong; Yu, Yunbo; He, Hong

    2014-08-11

    Selective catalytic reduction of NOx using NH3 or hydrocarbons (NH3-SCR or HC-SCR) in oxygen-rich exhaust from diesel engines remains a major challenge in environmental catalysis. The development of highly efficient, stable and environmentally-benign catalysts for SCR processes is very important for practical use. In this feature article, the structure-activity relationship of vanadium-free catalysts in the NH3-SCR reaction is discussed in detail, including Fe-, Ce-based oxide catalysts and Fe-, Cu-based zeolite catalysts, which is beneficial for catalyst redesign and activity improvement. Based on our research, a comprehensive mechanism contributing to the performance of Ag/Al2O3 in HC-SCR is provided, giving a clue to the design of a catalytic system with high efficiency.

  12. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  13. Using quantitative structure activity relationship models to predict an appropriate solvent system from a common solvent system family for countercurrent chromatography separation.

    PubMed

    Marsden-Jones, Siân; Colclough, Nicola; Garrard, Ian; Sumner, Neil; Ignatova, Svetlana

    2015-06-12

    Countercurrent chromatography (CCC) is a form of liquid-liquid chromatography. It works by running one immiscible solvent (mobile phase) over another solvent (stationary phase) being held in a CCC column using centrifugal force. The concentration of compound in each phase is characterised by the partition coefficient (Kd), which is the concentration in the stationary phase divided by the concentration in the mobile phase. When Kd is between approximately 0.2 and 2, it is most likely that optimal separation will be achieved. Having the Kd in this range allows the compound enough time in the column to be separated without resulting in a broad peak and long run time. In this paper we report the development of quantitative structure activity relationship (QSAR) models to predict logKd. The QSAR models use only the molecule's 2D structure to predict the molecular property logKd.

  14. 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 2. Reduction of hERG activity, observed species selectivity, and structure-activity relationships.

    PubMed

    Slee, Deborah H; Moorjani, Manisha; Zhang, Xiaohu; Lin, Emily; Lanier, Marion C; Chen, Yongsheng; Rueter, Jaimie K; Lechner, Sandra M; Markison, Stacy; Malany, Siobhan; Joswig, Tanya; Santos, Mark; Gross, Raymond S; Williams, John P; Castro-Palomino, Julio C; Crespo, María I; Prat, Maria; Gual, Silvia; Díaz, José-Luis; Jalali, Kayvon; Sai, Yang; Zuo, Zhiyang; Yang, Chun; Wen, Jenny; O'Brien, Zhihong; Petroski, Robert; Saunders, John

    2008-03-27

    Previously we have described a series of novel A 2A receptor antagonists with excellent water solubility. As described in the accompanying paper, the antagonists were first optimized to remove an unsubstituted furyl moiety, with the aim of avoiding the potential metabolic liabilities that can arise from the presence of an unsubstituted furan. This effort identified a series of potent and selective methylfuryl derivatives. Herein, we describe the further optimization of this series to increase potency, maintain selectivity for the human A 2A vs the human A 1 receptor, and minimize activity against the hERG channel. In addition, the observed structure-activity relationships against both the human and the rat A 2A receptor are reported.

  15. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Grootaert, Charlotte; Zotti, Moises; Raes, Katleen; Van Camp, John

    2015-05-01

    Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.

  16. Nontargeted multicomponent analytical screening of plastic food contact materials using fast interpretation of deliverables via expert structure-activity relationship software.

    PubMed

    Rothenbacher, Thorsten; Schwack, Wolfgang

    2009-01-01

    Plastic packaging materials may release compounds into packed foodstuffs. To identify potential migrants of toxicological concern, resins, and multilayer foils (mainly polyethylene) intended for the production of food contact materials were extracted and analyzed by GC/mass spectrometry. To identify even compounds of low concentrations, AMDIS software was used and data evaluation was safeguarded by the Kovats retention index (RI) system. In this way, 46 compounds were identified as possible migrants. The expert structure-activity relationship software DEREK for Windows was utilized to evaluate all identified substances in terms of carcinogenicity, genotoxicity, thyroid toxicity, and miscellaneous endpoints for humans. Additionally, a literature search for these compounds was performed with Sci-Finder, but relevant data were missing for 28 substances. Seven compounds with adverse toxicological effects were identified. In addition, the RIs of 24 commercial additive standards, measured with a GC capillary column of intermediate polarity, are given.

  17. Synthesis of the antiproliferative agent hippuristanol and its analogues from hydrocortisone via Hg(II)-catalyzed spiroketalization: structure-activity relationship.

    PubMed

    Somaiah, Ragam; Ravindar, Kontham; Cencic, Regina; Pelletier, Jerry; Deslongchamps, Pierre

    2014-03-27

    An efficient synthesis of hippuristanol (1), a marine-derived highly potent antiproliferative steroidal natural product, and nine closely related analogues has been accomplished from the commercially available hydrocortisone utilizing Hg(II)-catalyzed spiroketalization of 3-alkyne-1,7-diol motif as a key strategy. This practical synthetic sequence furnished 1 in 11% overall yield from hydrocortisone in 15 linear steps. Modifications to the parent molecule 1 encompassed changing the functional groups on rings A and E. Each analogue was screened for their effects on inhibition of cap-dependent translation, and the assay results were used to establish structure-activity relationships. These results suggest that the stereochemistry and all substituents of spiroketal portion (rings E and F) and C3-α and C11-β hydroxyl functional groups on rings A and C, respectively, are critical for the inhibitory activity of natural product 1.

  18. Structure-activity relationship study of human liver microsomes-catalyzed hydrolysis rate of ester prodrugs of MENT by comparative molecular field analysis (CoMFA).

    PubMed

    Bursi, Roberta; Grootenhuis, Arijan; van der Louw, Jaap; Verhagen, Jos; de Gooyer, Marcel; Jacobs, Peter; Leysen, Dirk

    2003-03-01

    A series of MENT esters (3-71) was designed, prepared and tested to study the structure-activity relationship (SAR) of the hydrolysis rate with human liver microsomes of these prodrugs. Compounds were obtained covering a wide range of metabolic stability. The results are useful for the proper selection of prodrugs for different pharmaceutical formulations to deliver the potent and prostate-sparing androgen MENT. The MENT esters can especially be administered for male hormone replacement therapy and male contraception. Comparative molecular field analysis (CoMFA) was applied to a dataset of 28 esters, for which ED50 values could be obtained. The CoMFA model where the electrostatic and H-bond molecular fields were combined turned out to be most predictive. Despite the limited size of the dataset, CoMFA can help to rationalize the SAR of the ester hydrolysis rate of ester prodrugs of MENT.

  19. Structure--activity relationship and mode of action of N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters: novel organometallic anticancer compounds.

    PubMed

    Mooney, Aine; Tiedt, Rachel; Maghoub, Thamir; O'Donovan, Norma; Crown, John; White, Blánaid; Kenny, Peter T M

    2012-06-14

    In this article, we report the findings of a comprehensive structure-activity relationship study of N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters, in which novel analogues were designed, synthesized, and evaluated in vitro for antiproliferative effect. Two new compounds, 2 and 16, showed potent nanomolar activity in the H1299 NSCLC cell line, with exceptional IC(50) values of 0.13 and 0.14 μM, respectively. These compounds were also found to have significant activity in the Sk-Mel-28 malignant melanoma cell line (IC(50) values of 1.10 and 1.06 μM, respectively). Studies were also conducted to elucidate the mode of action of these novel organometallic anticancer compounds. Cell cycle analysis in the H1299 cell line suggests these compounds induce apoptosis, while guanine oxidation studies confirm that 2 is capable of generating oxidative damage via a ROS-mediated mechanism.

  20. Synthesis and structure-activity relationships of guaiane-type sesquiterpene lactone derivatives with respect to inhibiting NO production in lipopolysaccharide-induced RAW 264.7 macrophages.

    PubMed

    Chen, Hao; Chen, Bing-Yang; Liu, Chun-Ting; Zhao, Zeng; Shao, Wen-Hao; Yuan, Hu; Bi, Kai-Jian; Liu, Jiang-Yun; Sun, Qing-Yan; Zhang, Wei-Dong

    2014-08-18

    A guaiane framework was scaffolded by photochemical rearrangement reactions using α-santonin 1 as a starting material. Then, using a series of reactions, we synthesized the guaiane-type sesquiterpene lactone 5 in high yield. The inhibitory activities of compound 5 and of a series of derivatives on nitric oxide (NO) release were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Compounds 6g, 7h, 7i, 7k and 8g, exhibited significant inhibitory effects on NO production, with IC50 values of 14.8, 22.3, 18.3, 17.4 and 7.0 μM, respectively. Their cytotoxicities were also estimated using an MTT assay. The structure-activity relationships of these compounds were also discussed.

  1. Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents.

    PubMed

    Abdel Rahman, Doaa Ezzat

    2013-01-01

    Synthesis of 2,5-disubstituted-1,3,4-oxadiazole (2a-c), 3-substituted aminomethyl-5-substituted-1,3,4-oxadiazole-2(3H)-thione (4a-m) and 2-substituted thio-5-substituted-1,3,4-oxadiazole (5a, b) had been described. All the synthesized derivatives were screened for anticancer activity against HT29 and MCF7 cancer cell lines using Sulfo-Rodamine B (SRB) standard method. Most of the tested compounds exploited potent antiproliferative activity against HT29 cancer cell line rather than MCF7 cancer cell line. Compounds 2a-c, 4f and 5a exhibited potent cytotoxicity (IC(50) 1.3-2.0 µM) and selectivity against HT29 cancer cell line. Quantitative structure-activity relationship (QSAR) study was applied to find a correlation between the experimental antiproliferative activities of the newly synthesized oxadiazole derivatives with their physicochemical parameter and topological index.

  2. The insulin secretory action of novel polycyclic guanidines: discovery through open innovation phenotypic screening, and exploration of structure-activity relationships.

    PubMed

    Shaghafi, Michael B; Barrett, David G; Willard, Francis S; Overman, Larry E

    2014-02-15

    We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 1-3, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure-activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner.

  3. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    PubMed

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  4. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway.

    PubMed

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A; Johnson, Jeffrey A

    2013-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate cytoprotective genes which may be useful in the treatment of neurodegenerative disease. In order to better understand the structure activity relationship of phenolic diterpenes from Salvia officinalis L., we isolated carnosic acid, carnosol, epirosmanol, rosmanol, 12-methoxy-carnosic acid, sageone, and carnosaldehyde using polyamide column, centrifugal partition chromatography, and semi-preparative high performance liquid chromatography. Isolated compounds were screened in vitro for their ability to active the Nrf2 and general cellular toxicity using mouse primary cortical cultures. All compounds except 12-methoxy-carnosic acid were able to activate the antioxidant response element. Furthermore both carnosol and carnoasldehyde were able to induce Nrf2-dependent gene expression as well as protect mouse primary cortical neuronal cultures from H(2)O(2) induced cell death.

  5. Loratadine and analogues: discovery and preliminary structure-activity relationship of inhibitors of the amino acid transporter B(0)AT2.

    PubMed

    Cuboni, Serena; Devigny, Christian; Hoogeland, Bastiaan; Strasser, Andrea; Pomplun, Sebastian; Hauger, Barbara; Höfner, Georg; Wanner, Klaus T; Eder, Matthias; Buschauer, Armin; Holsboer, Florian; Hausch, Felix

    2014-11-26

    B(0)AT2, encoded by the SLC6A15 gene, is a transporter for neutral amino acids that has recently been implicated in mood and metabolic disorders. It is predominantly expressed in the brain, but little is otherwise known about its function. To identify inhibitors for this transporter, we screened a library of 3133 different bioactive compounds. Loratadine, a clinically used histamine H1 receptor antagonist, was identified as a selective inhibitor of B(0)AT2 with an IC50 of 4 μM while being less active or inactive against several other members of the SLC6 family. Reversible inhibition of B(0)AT2 was confirmed by electrophysiology. A series of loratadine analogues were synthesized to gain insight into the structure-activity relationships. Our studies provide the first chemical tool for B(0)AT2.

  6. Discovery and structure-activity relationships of ent-Kaurene diterpenoids as potent and selective 11β-HSD1 inhibitors: potential impact in diabetes.

    PubMed

    Deng, Xu; Shen, Yu; Yang, Jing; He, Juan; Zhao, Yu; Peng, Li-Yan; Leng, Ying; Zhao, Qin-Shi

    2013-07-01

    The biological screening of a collection of nature occurring diterpenoids against 11β-HSD1 resulted in the discovery of the lead compound 1b, which pointed to the therapeutic potential for type 2 diabetes. Subsequently, an optimization project was initiated. Starting from compound 1b and its counterpart 2, the hemi-synthesis was performed on kaurenic acid scaffolds yielding 36 derivatives. Further evaluations on both human and mouse 11β-HSD revealed that seven urea derivatives exhibited significant improved potency and selectivity. Especially, the urea 19a has an IC50 (human 11β-HSD1) = 9.4 nM and selectivity index (human 11β-HSD) > 10,649. The 2D and 3D binding models of the complex 19a/11β-HSD1 were generated using docking simulations. Based on the results, the structural-activity relationships (SARs) of compounds 1b and 2 were also discussed.

  7. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae.

    PubMed

    Faizi, Shaheen; Fayyaz, Shahina; Bano, Samina; Iqbal, Erum Yawar; Lubna; Siddiqi, Humaira; Naz, Aneela

    2011-09-14

    Bioassay-guided isolation studies on the extracts of yellow flowers of Tagetes patula L. against the Heterodera zeae were carried out to identify phytochemicals lethal to this economically important cyst nematode. In vitro investigation of a polar extract and fractions showing activity led to the isolation of phenolic compounds (flavonoids and phenolic acids). In the nonpolar extract, a few fatty acids, their methyl esters, and thiophenes (including α-terthienyl) were detected. In studies of compounds obtained commercially, α-terthienyl and gallic and linoleic acids showed 100% mortality at concentrations of 0.125% after 24 h. Assessment of structure-activity relationships revealed that an increase in the number of hydroxyl groups in phenolic acids increased the activity; with fatty acids, activity depended on chain length and the number and position of double bonds. Crude extracts of the flowers of different colors also have promising activity.

  8. Synthesis and structure-activity relationships of new carbonyl guanidine derivatives as novel dual 5-HT2B and 5-HT7 receptor antagonists.

    PubMed

    Moritomo, Ayako; Yamada, Hiroyoshi; Watanabe, Toshihiro; Itahana, Hirotsune; Akuzawa, Shinobu; Okada, Minoru; Ohta, Mitsuaki

    2013-12-15

    To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure-activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki=1.8 nM and Ki=17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.

  9. Docking and quantitative structure-activity relationship studies for sulfonyl hydrazides as inhibitors of cytosolic human branched-chain amino acid aminotransferase.

    PubMed

    Caballero, Julio; Vergara-Jaque, Ariela; Fernández, Michael; Coll, Deysma

    2009-11-01

    We have performed the docking of sulfonyl hydrazides complexed with cytosolic branched-chain amino acid aminotransferase (BCATc) to study the orientations and preferred active conformations of these inhibitors. The study was conducted on a selected set of 20 compounds with variation in structure and activity. In addition, the predicted inhibitor concentration (IC(50)) of the sulfonyl hydrazides as BCAT inhibitors were obtained by a quantitative structure-activity relationship (QSAR) method using three-dimensional (3D) vectors. We found that three-dimensional molecule representation of structures based on electron diffraction (3D-MoRSE) scheme contains the most relevant information related to the studied activity. The statistical parameters [cross-validate correlation coefficient (Q(2) = 0.796) and fitted correlation coefficient (R(2) = 0.899)] validated the quality of the 3D-MoRSE predictive model for 16 compounds. Additionally, this model adequately predicted four compounds that were not included in the training set.

  10. In Vitro and in Vivo Structure-Activity Relationships of Novel Androgen Receptor Ligands with Multiple Substituents in the B-Ring

    PubMed Central

    Chen, Jiyun; Hwang, Dong Jin; Chung, Kiwon; Bohl, Casey E.; Fisher, Scott J.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    We recently reported two nonsteroidal androgen receptor (AR) ligands that demonstrate tissue-selective pharmacological activity, identifying these S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide analogs as the first members of a new class of drugs known as selective androgen receptor modulators. The purpose of these studies was to explore additional structure-activity relationships of selective androgen receptor modulators to enhance their AR binding affinity, AR-mediated transcriptional activation, and in vivo pharmacological activity. The AR binding affinity (Ki) of 29 novel synthetic AR ligands was determined by a radioligand competitive binding assay and ranged from 1.0–51 nm. Compounds with electron-withdrawing substituents at the para- and meta-positions of the B-ring demonstrated the highest AR binding affinity. The AR-mediated transcriptional activation was determined using a cotransfection assay in CV-1 cells. Most compounds with two substituents in the B-ring maintained or improved their functional activity in vitro. However, compounds with three halogen substituents exhibited significant regioselectivity. Fifteen compounds were selected to examine their pharmacological activity in castrated rats. In vivo pharmacological activity and selectivity were significantly changed by structural modification in the B-ring. Compounds with halogen groups at the para- and meta-positions of the B-ring displayed the highest pharmacological activity. Incorporating substituents at the ortho-position of the B-ring resulted in poor pharmacological activity. In vitro and in vivo agonist activities were partially correlated. In conclusion, novel selective androgen receptor modulators with improved in vivo pharmacological activity can be designed and synthesized based on the structure-activity relationship identified in these studies. PMID:16166218

  11. Structure-activity relationships for chemical and glutathione S-transferase-catalysed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes.

    PubMed Central

    Van der Aar, E M; Bouwman, T; Commandeur, J N; Vermeulen, N P

    1996-01-01

    Glutathione S-transferases (GSTs) constitute an important class of phase II (de)toxifying enzymes, catalysing the conjugation of glutathione (GSH) with electrophilic compounds. In the present study, Km, kcat and kcat/Km values for the rat GST 1-1-, 3-3-, 4-4- and 7-7-catalysed conjugation reactions between GSH and a series of 10 different 2-substituted 1-chloro-4-nitrobenzenes, and the second-order rate constants (ks) of the corresponding base-catalysed reactions, were correlated with nine classical physicochemical parameters (electronic, steric and lipophilic) of the substituents and with 16 computer-calculated molecular parameters of the substrates and of the corresponding Meisenheimer complexes with MeS- as a model nucleophile for GS- (charge distributions and several energy values), giving structure-activity relationships. On the basis of an identical dependence of the base-catalysed as well as the GST 1-1- and GST 7-7-catalysed reactions on electronic parameters (among others, Hammett substituent constant sigma p and charge on p-nitro substituents), and the finding that the corresponding reactions catalysed by GSTs 3-3 and 4-4 depend to a significantly lesser extent on these parameters, it was concluded that the Mu-class GST isoenzymes have a rate-determining transition state in the conjugation reaction between 2-substituted 1-chloro-4-nitrobenzenes and GSH which is different from that of the other two GSTs. Several alternative rate-limiting transition states for GST 3-3 and 4-4 are discussed. Furthermore, based on the obtained structure-activity relationships, it was possible to predict the kcat/Km values of the four GST isoenzymes and the ks of the base-catalysed GSH conjugation of 1-chloro-4-nitrobenzene. PMID:8973562

  12. Potential of 2-Hydroxy-3-Phenylsulfanylmethyl-[1,4]-Naphthoquinones against Leishmania (L.) infantum: Biological Activity and Structure-Activity Relationships

    PubMed Central

    Schmidt, Thomas J.; Borborema, Samanta E. T.; Ferreira, Vitor F.; Rocha, David R.; Tempone, Andre G.

    2014-01-01

    Naphtoquinones have been used as promising scaffolds for drug design studies against protozoan parasites. Considering the highly toxic and limited therapeutic arsenal, the global negligence with tropical diseases and the elevated prevalence of co-morbidities especially in developing countries, the parasitic diseases caused by various Leishmania species (leishmaniasis) became a significant public health threat in 98 countries. The aim of this work was the evaluation of antileishmanial in vitro potential of thirty-six 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones obtained by a three component reaction of lawsone, the appropriate aldehyde and thiols adequately substituted, exploiting the in situ generation of o-quinonemethides (o-QM) via the Knoevenagel condensation. The antileishmanial activity of the naphthoquinone derivatives was evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum and their cytotoxicity was verified in mammalian cells. Among the thirty-six compounds, twenty-seven were effective against promastigotes, with IC50 values ranging from 8 to 189 µM; fourteen compounds eliminated the intracellular amastigotes, with IC50 values ranging from 12 to 65 µM. The compounds containing the phenyl groups at R1 and R2 and with the fluorine substituent at the phenyl ring at R2, rendered the most promising activity, demonstrating a selectivity index higher than 15 against amastigotes. A QSAR (quantitative structure activity relationship) analysis yielded insights into general structural requirements for activity of most compounds in the series. Considering the in vitro antileishmanial potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones and their structure-activity relationships, novel lead candidates could be exploited in future drug design studies for leishmaniasis. PMID:25171058

  13. Structure-activity relationships: analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication.

    PubMed

    King, P J; Ma, G; Miao, W; Jia, Q; McDougall, B R; Reinecke, M G; Cornell, C; Kuan, J; Kim, T R; Robinson, W E

    1999-02-11

    The dicaffeoylquinic acids (DCQAs) and dicaffeoyltartaric acids (DCTAs) are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase. They also inhibit HIV-1 replication at nontoxic concentrations. Since integrase is an excellent target for anti-HIV therapy, structure-activity relationships were employed to synthesize compounds with: (1) improved potency against HIV-1 integrase, (2) improved anti-HIV effect in tissue culture, and (3) increased selectivity as indicated by low cellular toxicity. Thirty-four analogues of the DCTAs and DCQAs were synthesized and tested for cell toxicity, anti-HIV activity, and inhibition of HIV-1 integrase. Seventeen of the 34 analogues had potent activity against HIV-1 integrase ranging from 0. 07 to >10 microM. Seventeen analogues that were synthesized or purchased had no inhibitory activity against integrase at concentrations of 25 microM. Of the biologically active analogues, 7 of the 17 inhibited HIV replication at nontoxic concentrations. The most potent compounds were D-chicoric acid, meso-chicoric acid, bis(3,4-dihydroxydihydrocinnamoyl)-L-tartaric acid, digalloyl-L-tartaric acid, bis(3,4-dihydroxybenzoyl)-L-tartaric acid, dicaffeoylglyceric acid, and bis(3, 4-dihydroxyphenylacetyl)-L-tartaric acid. Anti-HIV activity of the active compounds in tissue culture ranged from 35 to 0.66 microM. Structure-activity relationships demonstrated that biscatechol moieties were absolutely required for inhibition of integrase, while at least one free carboxyl group was required for anti-HIV activity. These data demonstrate that analogues of the DCTAs and the DCQAs can be synthesized which have improved activity against HIV integrase.

  14. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  15. Relationship between neighborhood context, family management practices and alcohol use among urban, multi-ethnic, young adolescents.

    PubMed

    Tobler, Amy L; Komro, Kelli A; Maldonado-Molina, Mildred M

    2009-12-01

    We examined relationships between alcohol-related neighborhood context, protective home and family management practices, and alcohol use among urban, racial/ethnic minority, adolescents. The sample comprised 5,655 youth who were primarily low SES (72%), African American (43%) and Hispanic (29%). Participants completed surveys in 2002-2005 (ages 11-14 years). Items assessed alcohol use, accessibility of alcohol at home and parental family management practices. Neighborhood context measures included: (1) alcohol outlet density; (2) commercial alcohol accessibility; (3) alcohol advertisement exposure; and (4) perceived neighborhood strength, reported by parents and community leaders. Structural equation modeling was used to assess direct and indirect relationships between alcohol-related neighborhood context at baseline, home alcohol access and family management practices in seventh grade, and alcohol use in eighth grade. Neighborhood strength was negatively associated with alcohol use (beta = -0.078, p < or = 0.05) and exposure to alcohol advertisements was positively associated with alcohol use (beta = 0.043, p < or = 0.05). Neighborhood strength and commercial alcohol access were associated with home alcohol access (beta = 0.050, p alcohol access showed a positive association with alcohol use (beta = 0.401, p < or = 0.001). Tests for indirect effects suggest that home alcohol access may partially mediate the relationship between neighborhood strength and alcohol use (beta = 0.025, p < 0.062). Results suggest inner-city parents respond to environmental risk, such that as neighborhood risk increases, so also do protective home and family management practices. Parent engagement in restricting alcohol access and improving family management practices may be key to preventive efforts to reduce

  16. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships.

    PubMed

    Lucia, Alejandro; Zerba, Eduardo; Masuh, Hector

    2013-12-01

    The relationships between physicochemical parameters of majority components of Eucalyptus essential oils and their insecticide effect were evaluated on Aedes aegypti (L.) (Diptera: Culicidae). The octanol-water partition coefficients of the monoterpenes were estimated by the atom/fragment contribution method and the vapor pressures were determined by our laboratory in previous studies. The larvicidal activity (LC50 (ppm)) and knockdown effect (KT50 (min)) of each component was determined. The results show that the toxicity of EOs main components of Eucalyptus on adults and larvae of A. aegypti is strongly related to their physicochemical properties (vapor pressure and Log P). However, the interaction of both variables (vapor pressure * Log P) explains the toxicological phenomenon more precisely. The regression models were expressed as follows: KT 50(min) =  - 10.9 + 3.7 * Log P + 1.9 * 1/Pvapor (R(2) = 0.80; F = 42.5) and LC 50(ppm) =  - 94.3 + 438.6 *  1/Log P + 2.8 *  1/Pvapor (F = 57.8; R(2) = 0.85). The six evaluated components present different functional groups. Therefore, it was considered to evaluate the monoterpenes as a group and separated in two groups: oxygenated monoterpenes (α-terpineol, 4-terpineol, and 1,8-cineole) and terpene hydrocarbons (γ-terpinene, p-cymene, and α-pinene). The results show the regression models for each group as follows: (A) oxygenated terpenes: KT 50(min) = - 515.3 + 1613.2 * 1/Log P + 5, 2 * 1/Pvapor (F = 3176.7 R(2) = 0.99) and LC 50(ppm)  =  - 1679.4 + 5402.1 * 1/Log P + 12.7 *  1/Pvapor (F = 282.9; R(2) = 0.99). (B) Hydrocarbons terpenes: KT 50(min) = 18.2 - 58.3 * 1/Log P + 2.7 * 1/Pvapor (F = 171.7;  R(2) = 0.97) and LC 50(ppm) = - 21.1 + 174.9 * 1/Log P - 14.3 * 1/Pvapor (F = 410.0; R(2) = 0.99). The association between

  17. Investigation on Quantitative Structure Activity Relationships and Pharmacophore Modeling of a Series of mGluR2 Antagonists

    PubMed Central

    Zhang, Meng-Qi; Zhang, Xiao-Le; Li, Yan; Fan, Wen-Jia; Wang, Yong-Hua; Hao, Ming; Zhang, Shu-Wei; Ai, Chun-Zhi

    2011-01-01

    MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson’s disease and schizophrenia. Herein, we report the three-dimensional quantitative structure–activity relationship (3D-QSAR) studies of a series of 1,3-dihydrobenzo[ b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of [3H]-LY354740; activity II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q2 of 0.513, R2 ncv of 0.868, R2 pred = 0.876, while the CoMSIA model yielded a Q2 of 0.450, R2 ncv = 0.899, R2 pred = 0.735. For activity II study, CoMFA model yielded statistics of Q2 = 0.5, R2 ncv = 0.715, R2 pred = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R7, R3 and position A benefit activity I of the antagonists, but decrease it when projected in R8 and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an H-acceptor atom and an H-donor site. The second model shares all features of the first one and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity. This work is the first report on 3

  18. The Relationship between Prenatal Care, Personal Alcohol Abuse and Alcohol Abuse in the Home Environment

    ERIC Educational Resources Information Center

    Grekin, Emily R.; Ondersma, Steven J.

    2009-01-01

    Aims: Nearly one-fourth of African-American women receive no prenatal care during the first trimester of pregnancy. The aim of the current study is to identify factors that underlie inadequate prenatal care among African-American women. Maternal alcohol abuse has been examined as one risk factor for inadequate prenatal care, but findings have been…

  19. Social Support and Relationship Satisfaction as Moderators of the Stress-Mood-Alcohol Link Association in US Navy Members.

    PubMed

    Kelley, Michelle L; Milletich, Robert J; Hollis, Brittany F; Veprinsky, Anna; Robbins, Allison T; Snell, Alicia K

    2017-02-01

    The present study examined associations between stress and problematic alcohol use among US Navy members anticipating deployment, whether depressive symptoms mediated the stress-alcohol link, and whether social support and relationship satisfaction moderated associations between stress, depressive symptoms, and problematic alcohol use. Participants were 108 US Navy members assigned to an Arleigh Burke-class destroyer anticipating an 8-month deployment after Operational Enduring Freedom/Operation Iraqi Freedom. Stress was indirectly related to problematic alcohol use such that higher levels of stress were associated with higher levels of depressive symptoms, which were further associated with higher levels of alcohol use. The indirect effect of stress to problematic alcohol use via depressive symptoms was tested at different levels of social support and relationship satisfaction. At higher levels of social support and relationship satisfaction, the association between stress and problematic alcohol use via depressive symptoms decreased. Results help identify targets for alcohol prevention efforts among current military members.

  20. Non-dioxin-like PCBs inhibit [(3)H]WIN-35,428 binding to the dopamine transporter: a structure-activity relationship study.

    PubMed

    Wigestrand, M B; Stenberg, M; Walaas, S I; Fonnum, F; Andersson, P L

    2013-12-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are neurotoxic compounds with known effects at the dopaminergic system in the brain. In a previous study we demonstrated that NDL-PCBs inhibit uptake of dopamine into rat brain synaptosomes, an effect most likely mediated by inhibition of the dopamine transporter (DAT). Here, using the cocaine analogue [(3)H]WIN-35,428 binding assay and synaptosomes, we directly investigate whether NDL-PCBs act via DAT and explore the structure-activity relationship of this effect. In total, thirty PCBs were investigated, including a previously selected training set of twenty PCBs covering the structural variation within tri- to hepta-chlorinated NDL-PCBs, and an additional set of ten NDL-PCB congeners selected to validate the structure-activity pattern of neurotoxic PCBs. Since previous work has demonstrated that NDL-PCBs can also inhibit the vesicular monoamine transporter 2 (VMAT2), we additionally examined whether some PCB congeners favour an effect on VMAT2 and others on DAT. Our results show that NDL-PCBs are potent inhibitors of [(3)H]WIN-35,428 binding to DAT. In fact, we identify a PCB congener (PCB 110) with similar potency for [(3)H]WIN-35,428 binding inhibition as cocaine. All active congeners were ortho-chlorinated PCBs, and in particular, tetra- and penta-chlorinated with 2-3 chlorine atoms in the ortho position were potent inhibitors of [(3)H]WIN-35,428 binding. Notably, the most active PCBs are highly prevalent in commercial mixtures of PCBs (Aroclor 1242, 1254 and 1260), which indicates that DAT inhibition could be one of the factors contributing to behavioural effects after Aroclor exposure. Derived data correlated well with the recently derived neurotoxic equivalency factors (NEQs), indicating the generality and applicability of the NEQ scheme in risk assessments of PCBs.

  1. A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.

    PubMed

    Pastor, M; Cruciani, G; Watson, K A

    1997-12-05

    Water present in a ligand binding site of a protein has been recognized to play a major role in ligand-protein interactions. To date, rational drug design techniques do not usually incorporate the effect of these water molecules into the design strategy. This work represents a new strategy for including water molecules into a three-dimensional quantitative structure-activity relationship analysis using a set of glucose analogue inhibitors of glycogen phosphorylase (GP). In this series, the structures of the ligand-enzyme complexes have been solved by X-ray crystallography, and the positions of the ligands and the water molecules at the ligand binding site are known. For the structure-activity analysis, some water molecules adjacent to the ligands were included into an assembly which encompasses both the inhibitor and the water involved in the ligand-enzyme interaction. The mobility of some water molecules at the ligand binding site of GP gives rise to differences in the ligand-water assembly which have been accounted for using a simulation study involving force-field energy calculations. The assembly of ligand plus water was used in a GRID/GOLPE analysis, and the models obtained compare favorably with equivalent models when water was excluded. Both models were analyzed in detail and compared with the crystallographic structures of the ligand-enzyme complexes in order to evaluate their ability to reproduce the experimental observations. The results demonstrate that incorporation of water molecules into the analysis improves the predictive ability of the models and makes them easier to interpret. The information obtained from interpretation of the models is in good agreement with the conclusions derived from the structural analysis of the complexes and offers valuable insights into new characteristics of the ligands which may be exploited for the design of more potent inhibitors.

  2. Endochin optimization: structure-activity and structure-property relationship studies of 3-substituted 2-methyl-4(1H)-quinolones with antimalarial activity.

    PubMed

    Cross, R Matthew; Monastyrskyi, Andrii; Mutka, Tina S; Burrows, Jeremy N; Kyle, Dennis E; Manetsch, Roman

    2010-10-14

    Since the 1940s endochin and analogues thereof were known to be causal prophylactic and potent erythrocytic stage agents in avian models. Preliminary screening in a current in vitro assay identified several 4(1H)-quinolones with nanomolar EC(50) against erythrocytic stages of multidrug resistant W2 and TM90-C2B isolates of Plasmodium falciparum. Follow-up structure-activity relationship (SAR) studies on 4(1H)-quinolone analogues identified several key features for biological activity. Nevertheless, structure-property relationship (SPR) studies conducted in parallel revealed that 4(1H)-quinolone analogues are limited by poor solubilities and rapid microsomal degradations. To improve the overall efficacy, multiple 4(1H)-quinolone series with varying substituents on the benzenoid quinolone ring and/or the 3-position were synthesized and tested for in vitro antimalarial activity. Several structurally diverse 6-chloro-2-methyl-7-methoxy-4(1H)-quinolones with EC(50) in the low nanomolar range against the clinically relevant isolates W2 and TM90-C2B were identified with improved physicochemical properties while maintaining little to no cross-resistance with atovaquone.

  3. Relationship between blood alcohol concentration on admission and outcome in dimethoate organophosphorus self-poisoning

    PubMed Central

    Eddleston, Michael; Gunnell, David; von Meyer, Ludwig; Eyer, Peter

    2009-01-01

    AIMS Many patients acutely poisoned with organophosphorus insecticides have co-ingested alcohol. Although clinical experience suggests that this makes management more difficult, the relationship between plasma concentration of alcohol and insecticide is unknown. We aimed to determine whether acute intoxication results in ingestion of larger quantities of insecticide in dimethoate self-poisoning and a worse clinical outcome. METHODS We set up a prospective study of acute dimethoate self-poisoning in Sri Lankan district hospitals. An admission plasma sample was analysed to identify the ingested insecticide; in patients with detectable dimethoate, plasma alcohol was measured. RESULTS Plasma from 37 of 72 (51.4%) dimethoate-poisoned patients had detectable alcohol {median concentration 1.10 g l−1[110 mg dl−1][interquartile range (IQR) 0.78–1.65]} a median of 3 h post ingestion. The median plasma dimethoate concentration was higher in patients who had ingested alcohol [479 µmol l−1 (IQR 268–701) vs. 145 µmol l−1 (IQR 25–337); P < 0.001]. Plasma dimethoate concentration was positively correlated with plasma alcohol (Spearman's ρ= 0.34; P= 0.0032). The median alcohol concentration was higher in the 21 patients who died compared with survivors (0.94 vs. 0.0 g l−1, P= 0.018). Risk of death was greater amongst individuals who consumed alcohol [odds ratio (OR) 4.3, 95% confidence interval (CI) 1.2, 16.4]; this risk was abolished by controlling for dimethoate concentration (OR 0.3, 95% CI 0.0, 8.8), indicating that deaths were not due to the direct toxic effects of alcohol. CONCLUSIONS Alcohol co-ingestion is associated with higher plasma concentrations of dimethoate and increased risk of death. Larger studies are required to assess this finding's generalizability, since efforts to reduce deaths from self-poisoning may benefit from concurrent efforts to reduce alcohol consumption. PMID:20002086

  4. Relationships among alcohol outlet density, alcohol use, and intimate partner violence victimization among young women in the United States.

    PubMed

    Waller, Martha W; Iritani, Bonita J; Christ, Sharon L; Clark, Heddy Kovach; Moracco, Kathryn E; Halpern, Carolyn Tucker; Flewelling, Robert L

    2012-07-01

    Greater access to alcohol has been widely found to be associated with many negative outcomes including violence perpetration. This study examines the relationship between alcohol outlet density, alcohol use, and intimate partner violence (IPV) victimization among young women in the United States. A direct association between alcohol outlet density in one's neighborhood and the likelihood of IPV victimization was examined. Data were from Wave III of the National Longitudinal Study of Adolescent Health (Add Health), which followed a nationally representative sample of adolescents into adulthood. Participants were young adult females age 18 to 26 at Wave III. Of the 4,571 female respondents who reported a current heterosexual relationship and had IPV data, 13.2% reported having been the victim of physical violence only and 6.5% experienced sexual only or physical and sexual violence in the relationship during the past year. In the regression models tested, there was no significant direct association between neighborhood alcohol outlet density and IPV victimization nor was there an association between outlet density and drinking behaviors, thus eliminating the possibility of an indirect association. Results of fully adjusted models indicate females who drank heavily, whether infrequently or frequently, were at significant risk for experiencing sexual only IPV or sexual and physical IPV. Asians and Native Americans were at significantly greater odds of experiencing sexual only or sexual and physical IPV compared with non-Hispanic Whites, while non-Hispanic Blacks were at significantly greater odds for physical only IPV. We conclude that a continuous measure of alcohol outlet density was not associated with IPV in models controlling for individual and other neighborhood characteristics. Young women who drink heavily, whether infrequently or frequently, have greater odds of experiencing sexual only or sexual and physical compared to abstainers. Similar to previous study

  5. The relationship between early drinking contexts of women "coming out" as lesbian and current alcohol use.

    PubMed

    Parks, Cheryl A; Hughes, Tonda L; Kinnison, Kelly E

    2007-01-01

    Several decades of research show that lesbians are at risk for hazardous drinking. Compared with heterosexual women, lesbians are less likely to abstain from drinking, less likely to decrease their alcohol consumption as they age, and more likely to report alcohol-related problems. Stress associated with lesbian identity and reliance on lesbian or gay bars for socialization and support are frequently posited--but largely untested--explanations for lesbians' heightened risk. Results from general population studies indicate that patterns of alcohol use established early in the life-course or during life transitions influence later alcohol use and alcohol-related problems. Further, heavy-drinking peers, availability of alcohol, and drinking in particular social contexts--such as at bars and parties--are believed to contribute to heavier drinking and to alcohol-related problems. To better understand lesbians' risks for hazardous drinking, we examined relationships between retrospective accounts of drinking patterns and drinking contexts in the early stages of lesbian identity development and current drinking outcomes in a large sample of adult lesbians. Findings suggest that early drinking patterns and drinking contexts influence later alcohol use and have important implications for risk reduction and prevention among lesbians.

  6. Alcohol

    MedlinePlus

    ... parents and other adults use alcohol socially — having beer or wine with dinner, for example — alcohol seems ... besides just hanging out in someone's basement drinking beer all night. Plan a trip to the movies, ...

  7. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  8. Drinking Motives Mediate the Relationship between Facets of Mindfulness and Problematic Alcohol Use.

    PubMed

    Vinci, Christine; Spears, Claire A; Peltier, MacKenzie R; Copeland, Amy L

    2016-06-01

    Mindfulness is a multi-faceted construct, and research suggests that certain components (e.g., Acting with Awareness, Nonjudging) are associated with less problematic alcohol use. Recent research has examined whether specific drinking motives mediate the relationship between facets of mindfulness and alcohol use. The current study sought to extend this research by examining whether certain drinking motives would mediate the relationship between facets of mindfulness and problematic alcohol use in a sample of 207 college students classified as engaging in problematic drinking. Participants completed the Five Facet Mindfulness Questionnaire (FFMQ), Drinking Motives Questionnaire-Revised (DMQ-R), and Alcohol Use Disorders Identification Test (AUDIT). Results indicated that lower levels of Coping motives significantly mediated the relationship between greater Acting with Awareness and lower AUDIT score and between greater Nonjudging and lower AUDIT score. Lower levels of Conformity motives significantly mediated the relationship between greater Acting with Awareness and lower AUDIT score. These findings offer insight into specific mechanisms through which mindfulness is linked to less problematic drinking, and also highlight associations among mindfulness, drinking motives, and alcohol use among a sample of problematic college student drinkers. Future research should determine whether interventions that emphasize Acting with Awareness and Nonjudging facets of mindfulness and/or target coping and conformity motives could be effective for reducing problematic drinking in college students.

  9. Multiplex Immunoassay of Plasma Cytokine Levels in Men with Alcoholism and the Relationship to Psychiatric Assessments.

    PubMed

    Manzardo, Ann M; Poje, Albert B; Penick, Elizabeth C; Butler, Merlin G

    2016-03-29

    Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33-58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40-58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p < 0.05). Elevated inflammatory mediators in alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention.

  10. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol

  11. Multiplex Immunoassay of Plasma Cytokine Levels in Men with Alcoholism and the Relationship to Psychiatric Assessments

    PubMed Central

    Manzardo, Ann M.; Poje, Albert B.; Penick, Elizabeth C.; Butler, Merlin G.

    2016-01-01

    Chronic alcohol use alters adaptive immunity and cytokine activity influencing immunological and hormone responses, inflammation, and wound healing. Brain cytokine disturbances may impact neurological function, mood, cognition and traits related to alcoholism including impulsiveness. We examined the relationship between plasma cytokine levels and self-rated psychiatric symptoms in 40 adult males (mean age 51 ± 6 years; range 33–58 years) with current alcohol dependence and 30 control males (mean age 48 ± 6 years; range 40–58 years) with no history of alcoholism using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Log-transformed cytokine levels were analyzed for their relationship with the Symptom Checklist-90R (SCL-90R), Barratt Impulsivity Scales (BIS) and Alcoholism Severity Scale (ASS). Inflammatory cytokines (interferon γ-induced protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); regulated on activation, normal T cell expressed and secreted (RANTES)) were significantly elevated in alcoholism compared to controls while bone marrow-derived hematopoietic cytokines and chemokines (granulocyte-colony stimulating factor (GCSF); soluble CD40 ligand (sCD40L); growth-related oncogene (GRO)) were significantly reduced. GRO and RANTES levels were positively correlated with BIS scales; and macrophage-derived chemokine (MDC) levels were positively correlated with SCL-90R scale scores (p < 0.05). Elevated inflammatory mediators in alcoholism may influence brain function leading to increased impulsiveness and/or phobia. The novel association between RANTES and GRO and impulsivity phenotype in alcoholism should be further investigated in alcoholism and psychiatric conditions with core impulsivity and anxiety phenotypes lending support for therapeutic intervention. PMID:27043532

  12. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol

  13. Dietary protection against free radicals: a case for multiple testing to establish structure-activity relationships for antioxidant potential of anthocyanic plant species.

    PubMed

    Philpott, Martin; Lim, Chiara Cheng; Ferguson, Lynnette R

    2009-03-01

    DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl-radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs). Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh) using three chemical assays (DPPH, TRAP and ORAC), and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0 degrees C, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37 degrees C, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the

  14. Treatment Components and Their Relationships with Drug and Alcohol Abstinence.

    ERIC Educational Resources Information Center

    Orwin, Rob; Ellis, Bruce

    This study evaluates the effect of treatment components through a secondary analysis of data from the National Treatment Improvement Evaluation Study (NTIES). The study examines the relationship between treatment components, client-level factors, and treatment outcomes, and how these relationships vary by treatment modality. It seeks to understand…

  15. Relationship between serum ferritin, alcohol intake, and social status in 2235 Danish men and women.

    PubMed

    Milman, N; Kirchhoff, M

    1996-03-01

    The objective was to examine the relationships between serum ferritin, alcohol intake, and socioeconomic factors (school education, occupational education, occupation, income, marital status, cohabitation status, housing, social class) in a population survey performed in Copenhagen County during 1982-1984. The participants were selected at random from the census register and comprised 2235 healthy Danish individuals, non-blood donors (1044 men, 1191 women) in cohorts being 30, 40, 50, and 60 years old. The participants gave a detailed social and medical history and had a clinical examination including blood samples. In all age-groups, men had significantly higher serum ferritin and alcohol intake than women. In men, there was no relationship between serum ferritin and social class. Significant relationships were observed between ferritin and occupation (unemployed and self-employed men had higher ferritin than those with other occupations) and ferritin and income (in younger men, ferritin displayed a steady increase with income). None of the social variables were related to the prevalence of iron deficiency or iron overload. Alcohol intake was related to occupation and income, but not to social class. In women, none of the social variables showed any significant relationship to ferritin levels or iron overload. The prevalence of small iron stores (serum ferritin < or = 30 micrograms/l) was lower and the intake of alcohol was higher in women from high social classes. In both men and women, serum ferritin displayed highly significant positive correlations with alcohol intake. Likewise, the prevalence of iron overload (serum ferritin > 90th percentile) was closely correlated to alcohol intake. In conclusion, socioeconomic factors per se had a minor influence on serum ferritin levels and iron status in Danes. The distinct association between alcohol intake and serum ferritin levels should be considered in future iron status surveys.

  16. Alcohol Consumption, Dating Relationships, and Preliminary Sexual Outcomes in Collegiate Natural Drinking Groups.

    PubMed

    Devos-Comby, Loraine; Daniel, Jason; Lange, James E

    2013-12-01

    This study tested the effects of committed relationships and presence of dates on alcohol consumption and preliminary sexual outcomes in natural drinking groups (NDGs). Undergraduate drinkers (N = 302) answered an online questionnaire on their most recent participation in a NDG. The interaction between relationship commitment and presence of a date on alcohol consumption was significant. Among students not in committed relationships, those dating within their NDG reported heavier drinking than those not dating. Students in committed relationships drank less than those who were not committed only when their partners were present. The positive correlation between drinking and sexual contact was significant only for those who were not in committed relationships. Implications for future research and interventions are discussed.

  17. The parent–child relationship and adolescent alcohol use: a systematic review of longitudinal studies

    PubMed Central

    2012-01-01

    Background Alcohol use among adolescents has become a major public health problem in the past decade and has large short- and long-term consequences on their health. The aim of this systematic review was to provide an overview of longitudinal cohort studies that have analyzed the association between the parent–child relationship (PCR) and change in alcohol use during adolescence. Methods A search of the literature from 1985 to July 2011 was conducted in Medline, PsycINFO, and EMBASE in order to identify longitudinal, general population studies regarding the influence of the PCR on alcohol use during adolescence. The studies were screened, and the quality of the relevant studies was assessed. A best-evidence synthesis was used to summarize the results. Results Twenty-eight relevant studies were identified. Five studies found that a negative PCR was associated with higher levels of alcohol use. Another seven papers only found this association for certain subgroups such as boys or girls, or a specific age group. The remaining sixteen studies did not find any association. Conclusions We found weak evidence for a prospective association between the PCR and adolescent alcohol use. Further research to the association of the PCR with several types of alcohol use (e.g., initiation or abuse) and to the potential reversed causality of the PCR and alcohol use is required. PMID:23083405

  18. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  19. A New Structure-Activity Relationship (SAR) Model for Predicting Drug-Induced Liver Injury, Based on Statistical and Expert-Based Structural Alerts

    PubMed Central

    Pizzo, Fabiola; Lombardo, Anna; Manganaro, Alberto; Benfenati, Emilio

    2016-01-01

    The prompt identification of chemical molecules with potential effects on liver may help in drug discovery and in raising the levels of protection for human health. Besides in vitro approaches, computational methods in toxicology are drawing attention. We built a structure-activity relationship (SAR) model for evaluating hepatotoxicity. After compiling a data set of 950 compounds using data from the literature, we randomly split it into training (80%) and test sets (20%). We also compiled an external validation set (101 compounds) for evaluating the performance of the model. To extract structural alerts (SAs) related to hepatotoxicity and non-hepatotoxicity we used SARpy, a statistical application that automatically identifies and extracts chemical fragments related to a specific activity. We also applied the chemical grouping approach for manually identifying other SAs. We calculated accuracy, specificity, sensitivity and Matthews correlation coefficient (MCC) on the training, test and external validation sets. Considering the complexity of the endpoint, the model performed well. In the training, test and external validation sets the accuracy was respectively 81, 63, and 68%, specificity 89, 33, and 33%, sensitivity 93, 88, and 80% and MCC 0.63, 0.27, and 0.13. Since it is preferable to overestimate hepatotoxicity rather than not to recognize unsafe compounds, the model's architecture followed a conservative approach. As it was built using human data, it might be applied without any need for extrapolation from other species. This model will be freely available in the VEGA platform. PMID:27920722

  20. Design, synthesis, and structure-activity relationships of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety as potent antitumor agents.

    PubMed

    Ma, Junjie; Chen, Dong; Lu, Kuan; Wang, Lihui; Han, Xiaoqi; Zhao, Yanfang; Gong, Ping

    2014-10-30

    A series of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety were designed and synthesized and their cytotoxic activities against five cancer cell lines (NCI-H226, SK-N-SH, HT29, MKN45, and MDA-MB-231) were screened in vitro. Most of them showed moderate to excellent activity against all the tested cell lines. Among them, compounds 15g (procaspase-3 EC50 = 1.42 μM) and 16b (procaspase-3 EC50 = 0.25 μM) exhibited excellent antitumor activity with IC50 values ranging from 0.14 μM to 0.98 μM against all cancer cell lines, which were 1.8-8.7 times more active than the first procaspase activating compound (PAC-1) (procaspase-3 EC50 = 4.08 μM). The structure-activity relationship (SAR) analyses indicated that the introduction of a lipophilic group (a benzyloxy or heteroaryloxy group) at the 4-position of the 2-hydroxy phenyl ring was beneficial to antitumor activity, and the presence of substituents containing nitrogen that are positively charged at physiological pH could also improve antitumor activity. It was also confirmed that the steric effect of the 4-position substituent of the benzyloxy group had a significant influence on cytotoxic activity.

  1. Quantitative structure-activity relationships predicting the antioxidant potency of 17β-estradiol-related polycyclic phenols to inhibit lipid peroxidation.

    PubMed

    Prokai, Laszlo; Rivera-Portalatin, Nilka M; Prokai-Tatrai, Katalin

    2013-01-11

    The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR) studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP) was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  2. The Discovery of Geranylgeranyltransferase-I Inhibitors with Novel Scaffolds by the Means of Quantitative Structure-Activity Relationship Modeling, Virtual Screening, and Experimental Validation

    PubMed Central

    Peterson, Yuri K.; Wang, Xiang S.; Casey, Patrick J.; Tropsha, Alexander

    2009-01-01

    Geranylgeranylation is critical to the function of several proteins including Rho, Rap1, Rac, Cdc42, and G-protein gamma subunits. Geranylgeranyltransferase type I (GGTase-I) inhibitors (GGTIs) have therapeutic potential to treat inflammation, multiple sclerosis, atherosclerosis, and many other diseases. Following our standard QSAR modeling workflow, we have developed and rigorously validated Quantitative Structure Activity Relationship (QSAR) models for 48 GGTIs using variable selection k nearest neighbor (kNN), automated lazy learning (ALL), and partial least square (PLS) methods. The QSAR models were employed for virtual screening of 9.5 million commercially available chemicals yielding 47 diverse computational hits. Seven of these compounds with novel scaffolds and high predicted GGTase-I inhibitory activities were tested in vitro, and all were found to be bona fide and selective micromolar inhibitors. Notably, these novel hits could not be identified using traditional similarity search. These data demonstrate that rigorously developed QSAR models can serve as reliable virtual screening tools. PMID:19537691

  3. Structure-activity relationship of Au-ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation

    SciTech Connect

    Karwacki, Christopher J; Ganesh, Panchapakesan; Kent, P. R. C.; Gordon, Wesley O; Peterson, Gregory W; Niu, Jun Jie; Gogotsi, Yury G.

    2013-01-01

    The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission Fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m2 g 1) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (>90%) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure activity relationship of both the support and active particles for the design of catalytic materials.

  4. Synthesis and quantitative structure-activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the A and C rings as insecticidal agents.

    PubMed

    He, Shuzhen; Shao, Yonghua; Fan, Lingling; Che, Zhiping; Xu, Hui; Zhi, Xiaoyan; Wang, Juanjuan; Yao, Xiaojun; Qu, Huan

    2013-01-23

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, we have synthesized three series of novel 4-acyloxy compounds derived from podophyllotoxin modified in the A and C rings, which is isolated as the main secondary metabolite from the roots and rhizomes of Podophyllum hexandrum . Their insecticidal activity was preliminarily evaluated against the pre-third-instar larvae of Mythimna separata in vivo. Compound 9g displayed the best promising insecticidal activity. It revealed that cleavage of the 6,7-methylenedioxy group of podophyllotoxin will lead to a less active compound and that the C-4 position of podophyllotoxin was the important modification location. A quantitative structure-activity relationship (QSAR) model was developed by genetic algorithm combined with multiple linear regression (GA-MLR). For this model, the squared correlation coefficient (R(2)) is 0.914, the leave-one-out cross-validation correlation coefficient (Q(2)(LOO)) is 0.881, and the root-mean-square error (RMSE) is 0.024. Five descriptors, BEHm2, Mor14v, Wap, G1v, and RDF020e, are likely to influence the biological activity of these compounds. Among them, two important ones are BEHm2 and Mor14v. This study will pave the way for further design, structural modification, and development of podophyllotoxin derivatives as insecticidal agents.

  5. Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis.

    PubMed

    Rastogi, S C; Lepoittevin, J P; Johansen, J D; Frosch, P J; Menné, T; Bruze, M; Dreier, B; Andersen, K E; White, I R

    1998-12-01

    Deodorants are one of the most frequently-used types of cosmetics and are a source of allergic contact dermatitis. Therefore, a gas chromatography - mass spectrometric analysis of 71 deodorants was performed for identification of fragrance and non-fragrance materials present in marketed deodorants. Futhermore, the sensitizing potential of these molecules was evaluated using structure activity relationships (SARs) analysis. This was based on the presence of 1 or more chemically reactive site(s), in the chemical structure, associated with sensitizing potential. Among the many different substances used to formulate cosmetic products (over 3500), 226 chemicals were identified in a sample of 71 deodorants. 84 molecules were found to contain at least 1 structural alert, and 70 to belong to, or be susceptible to being metabolized into, the chemical group of aldehydes, ketones and alpha,beta-unsaturated aldehydes, ketone or esters. The combination of GC-MS and SARs analysis could be helpful in the selection of substances for supplementary investigations regarding sensitizing properties. Thus, it may be a valuable tool in the management of contact allergy to deodorants and for producing new deodorants with decreased propensity to cause contact allergy.

  6. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast.

    PubMed

    Sim, Gwan-Sub; Lee, Bum-Chun; Cho, Ho Seung; Lee, Jae Woong; Kim, Jin-Hwa; Lee, Dong-Hwan; Kim, Jin-Hui; Pyo, Hyeong-Bae; Moon, Dong Cheul; Oh, Ki-Wan; Yun, Yeo Pyo; Hong, Jin Tae

    2007-03-01

    Collagenase, a matrix metalloproteinases (MMPs), is a key regulator in the photoaging process of skin due to the reactive oxygen species generated after exposure to ultraviolet A (UVA). Flavonoid compounds have been demonstrated to possess antioxidant properties, and could be useful in the prevention of photoaging. In this study, to investigate the structure-activity relationship of flavonoid compounds on their antioxidant property and inhibitory effects against the MMP activity, the effects of several flavonoids; myricetin, quercetin, kaempferol, luteolin, apigenin and chrysin, on the reactive oxygen species scavengering activity and inhibitory effect against the MMP activity were examined in vitro and in human dermal fibroblasts induced by UVA. The relative order of antioxidative efficacy, as determined using the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method and the xanthine/xanthine oxidase system, was as follows; flavones: luteolin > apigenin > chrysin, flavonols: myricetin > quercetin > kaempferol, and correlated with the respective number of OH group on their B-ring. In good correlation with the antioxidant properties, the flavonoids inhibited the collagenase activities, in a dose-dependent manner, and the MMP expression. These results suggested the UVA induced antioxidative activity and inhibitory effects of flavonoids on the collagenase in human dermal fibroblasts depends on the number of OH group in the flavonoid structure, and those with a higher number of OH group may be more useful in the prevention of UV stressed skin aging.

  7. Peptide-based inhibitors of the hepatitis C virus NS3 protease: structure-activity relationship at the C-terminal position.

    PubMed

    Rancourt, Jean; Cameron, Dale R; Gorys, Vida; Lamarre, Daniel; Poirier, Martin; Thibeault, Diane; Llinàs-Brunet, Montse

    2004-05-06

    The structure-activity relationship at the C-terminal position of peptide-based inhibitors of the hepatitis C virus NS3 protease is presented. The observation that the N-terminal cleavage product (DDIVPC-OH) of a substrate derived from the NS5A/5B cleavage site was a competitive inhibitor of the NS3 protease was previously described. The chemically unstable cysteine residue found at the P1 position of these peptide-based inhibitors could be replaced with a norvaline residue, at the expense of a substantial drop in the enzymatic activity. The fact that an aminocyclopropane carboxylic acid (ACCA) residue at the P1 position of a tetrapeptide such as 1 led to a significant gain in the inhibitory enzymatic activity, as compared to the corresponding norvaline derivative 2, prompted a systematic study of substituent effects on the three-membered ring. We report herein that the incorporation of a vinyl group with the proper configuration onto this small cycle produced inhibitors of the protease with much improved in vitro potency. The vinyl-ACCA is the first reported carboxylic acid containing a P1 residue that produced NS3 protease inhibitors that are significantly more active than inhibitors containing a cysteine at the same position.

  8. Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin.

    PubMed

    Kang, L; Yap, C W; Lim, P F C; Chen, Y Z; Ho, P C; Chan, Y W; Wong, G P; Chan, S Y

    2007-07-31

    Terpenes and terpenoids have been used as enhancers in transdermal formulations for facilitating penetration of drugs into human skin. Knowledge of the correlation between the human skin penetration effect (HSPE) and the physicochemical properties of these enhancers is important for facilitating the discovery and development of more enhancers. In this work, the HSPE of 49 terpenes and terpenoids were compared by the in vitro permeability coefficients of haloperidol (HP) through excised human skin. A first-order multiple linear regression (MLR) model was constructed to link the permeability coefficient of the drug to the lipophilicity, molecular weight, boiling point, the terpene type and the functional group of each enhancer. The Quantitative Structure-Activity Relationship (QSAR) model was derived from our data generated by using standardized experimental protocols, which include: HP in propylene glycol (PG) of 3 mg/ml as the donor solution containing 5% (w/v) of the respective terpene, the same composition and volume of receptor solution, similar human skin samples, in the same set of automated flow-through diffusion cells. The model provided a simple method to predict the enhancing effects of terpenes for drugs with physicochemical properties similar to HP. Our study suggested that an ideal terpene enhancer should possess at least one or combinations of the following properties: hydrophobic, in liquid form at room temperature, with an ester or aldehyde but not acid functional group, and is neither a triterpene nor tetraterpene. Possible mechanisms revealed by the QSAR model were discussed.

  9. Quantitative Structure activity Relationship Analysis of Pyridinone HIV-1 Reverse Transcriptase Inhibitors using the k Nearest Neighbor Method and QSAR-based Database Mining

    NASA Astrophysics Data System (ADS)

    Medina-Franco, Jose Luis; Golbraikh, Alexander; Oloff, Scott; Castillo, Rafael; Tropsha, Alexander

    2005-04-01

    We have developed quantitative structure-activity relationship (QSAR) models for 44 non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) of the pyridinone derivative type. The k nearest neighbor ( kNN) variable selection approach was used. This method utilizes multiple descriptors such as molecular connectivity indices, which are derived from two-dimensional molecular topology. The modeling process entailed extensive validation including the randomization of the target property (Y-randomization) test and the division of the dataset into multiple training and test sets to establish the external predictive power of the training set models. QSAR models with high internal and external accuracy were generated, with leave-one-out cross-validated R 2 ( q 2) values ranging between 0.5 and 0.8 for the training sets and R 2 values exceeding 0.6 for the test sets. The best models with the highest internal and external predictive power were used to search the National Cancer Institute database. Derivatives of the pyrazolo[3,4- d]pyrimidine and phenothiazine type were identified as promising novel NNRTIs leads. Several candidates were docked into the binding pocket of nevirapine with the AutoDock (version 3.0) software. Docking results suggested that these types of compounds could be binding in the NNRTI binding site in a similar mode to a known non-nucleoside inhibitor nevirapine.

  10. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors

    PubMed Central

    Chandra De, Utpal; Debnath, Tanusree; Sen, Debanjan; Debnath, Sudhan

    2015-01-01

    Aldose reductase (AR) plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux). A model with partial least squares factor 5, standard deviation 0.2482, R2 = 0.9502 and variance ratio of regression 122 has been found as the best statistical model. PMID:25709964

  11. Development of highly potent phosphodiesterase 4 inhibitors with anti-neuroinflammation potential: Design, synthesis, and structure-activity relationship study of catecholamides bearing aromatic rings.

    PubMed

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Zhong, Qiu-Ping; Huang, Chang; Cheng, Yu-Fang; Yang, Xue-Mei; Wang, Hai-Tao; Xu, Jiang-Ping

    2016-11-29

    In this study, catecholamides (7a-l) bearing different aromatic rings (such as pyridine-2-yl, pyridine-3-yl, phenyl, and 2-chlorophenyl groups) were synthesized as potent phosphodiesterase (PDE) 4 inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4A4, PDE4B1, PDE4C1, and PDE4D7 enzymes, and other PDE family members. Eight of the synthesized compounds were identified as having submicromolar IC50 values in the mid-to low-nanomolar range. Careful analysis on the structure-activity relationship of compounds 7a-l revealed that the replacement of the 4-methoxy group with the difluoromethoxy group improved inhibitory activities. More interesting, 4-difluoromethoxybenzamides 7i and 7j exhibited preference for PDE4 with higher selectivities of about 3333 and 1111-fold over other PDEs, respectively. In addition, compound 7j with wonderful PDE4D7 inhibitory activities inhibited LPS-induced TNF-α production in microglia.

  12. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells.

    PubMed

    Liang, Yongmin; Zhang, Huamin; Tian, Zhiqun; Zhu, Xiaobing; Wang, Xiaoli; Yi, Baolian

    2006-04-20

    A carbon-supported PtRuNi nanocomposite is synthesized via a microwave-irradiated polyol plus annealing synthesis strategy. The catalyst is characterized by transmission electron microscopy, powder X-ray diffraction, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The data are discussed with respect to those for the carbon-supported PtRu nanocomposite prepared following the same way. The characterizations show that the inclusion of Ni in the PtRu system has only a small effect on the particle size, the structure, and the compositional homogeneity. CO-stripping voltammetry and measurements on the single proton exchange membrane fuel cells show that the PtRuNi/C catalyst has an improved activity for CO(ads) electro-oxidation. An accelerated durability test on the catalyst exhibits insignificant loss of activity in acidic media. On the basis of the exploration of the structure-activity relationship, a mechanism for the improved performance of the catalyst is proposed. It is suggested that the improved CO-tolerant performance of the PtRuNi/C nanocomposite should be related to the hydrogen spillover on the catalyst surface, the enhanced oxidation of CO(ads) by nickel hydroxides, and the high proton and electronic conductivity of the hydroxides. The nickel hydroxide passivated surface and/or anchoring of metallic nickel in the platinum lattice may contribute to the durability of the catalyst in acid solution.

  13. Chiral Hydroxylation at the Mononuclear Nonheme Fe(II) Center of 4-(S) Hydroxymandelate Synthase – A Structure-Activity Relationship Analysis

    PubMed Central

    Di Giuro, Cristiana M. L.; Konstantinovics, Cornelia; Rinner, Uwe; Nowikow, Christina; Leitner, Erich; Straganz, Grit D.

    2013-01-01

    (S)-Hydroxymandelate synthase (Hms) is a nonheme Fe(II) dependent dioxygenase that catalyzes the oxidation of 4-hydroxyphenylpyruvate to (S)-4-hydroxymandelate by molecular oxygen. In this work, the substrate promiscuity of Hms is characterized in order to assess its potential for the biosynthesis of chiral α-hydroxy acids. Enzyme kinetic analyses, the characterization of product spectra, quantitative structure activity relationship (QSAR) analyses and in silico docking studies are used to characterize the impact of substrate properties on particular steps of catalysis. Hms is found to accept a range of α-oxo acids, whereby the presence of an aromatic substituent is crucial for efficient substrate turnover. A hydrophobic substrate binding pocket is identified as the likely determinant of substrate specificity. Upon introduction of a steric barrier, which is suspected to obstruct the accommodation of the aromatic ring in the hydrophobic pocket during the final hydroxylation step, the racemization of product is obtained. A steady state kinetic analysis reveals that the turnover number of Hms strongly correlates with substrate hydrophobicity. The analysis of product spectra demonstrates high regioselectivity of oxygenation and a strong coupling efficiency of C-C bond cleavage and subsequent hydroxylation for the tested substrates. Based on these findings the structural basis of enantioselectivity and enzymatic activity is discussed. PMID:23935907

  14. Structure-activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives for potent anti-HIV agents.

    PubMed

    Mizuhara, Tsukasa; Oishi, Shinya; Ohno, Hiroaki; Shimura, Kazuya; Matsuoka, Masao; Fujii, Nobutaka

    2012-11-01

    3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine (PD 404182) is an antiretroviral agent with submicromolar inhibitory activity against human immunodeficiency virus-1 (HIV-1) and HIV-2 infection. In the current study, the structure-activity relationships of accessory groups at the 3- and 9-positions of pyrimido[1,2-c][1,3]benzothiazin-6-imine were investigated for the development of more potent anti-HIV agents. Several different derivatives containing a 9-aryl group were designed and synthesized using Suzuki-Miyaura cross-coupling and Ullmann coupling reactions. Modification of the m-methoxyphenyl or benzo[d][1,3]dioxol-5-yl group resulted in improved anti-HIV activity. In addition, the 2,4-diazaspiro[5.5]undec-2-ene-fused benzo[e][1,3]thiazine derivatives were designed and tested for their anti-HIV activities. The most potent 9-(benzo[d][1,3]dioxol-5-yl) derivative was two-threefold more effective against several strains of HIV-1 and HIV-2 than the parent compound, PD 404182.

  15. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling.

    PubMed

    Gemma, Sandra; Camodeca, Caterina; Sanna Coccone, Salvatore; Joshi, Bhupendra P; Bernetti, Matteo; Moretti, Vittoria; Brogi, Simone; Bonache de Marcos, Maria Cruz; Savini, Luisa; Taramelli, Donatella; Basilico, Nicoletta; Parapini, Silvia; Rottmann, Matthias; Brun, Reto; Lamponi, Stefania; Caccia, Silvio; Guiso, Giovanna; Summers, Robert L; Martin, Rowena E; Saponara, Simona; Gorelli, Beatrice; Novellino, Ettore; Campiani, Giuseppe; Butini, Stefania

    2012-08-09

    Despite recent progress in the fight against malaria, the emergence and spread of drug-resistant parasites remains a serious obstacle to the treatment of infections. We recently reported the development of a novel antimalarial drug that combines the 4-aminoquinoline pharmacophore of chloroquine with that of clotrimazole-based antimalarials. Here we describe the optimization of this class of hybrid drug through in-depth structure-activity relationship studies. Antiplasmodial properties and mode of action were characterized in vitro and in vivo, and interactions with the parasite's 'chloroquine resistance transporter' were investigated in a Xenopus laevis oocyte expression system. These tests indicated that piperazine derivatives 4b and 4d may be suitable for coadministration with chloroquine against chloroquine-resistant parasites. The potential for metabolism of the drugs by cytochrome P450 was determined in silico, and the lead compounds were tested for toxicity and mutagenicity. A preliminary pharmacokinetic analysis undertaken in mice indicated that compound 4b has an optimal half-life.

  16. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products.

    PubMed Central

    Woo, Yin-Tak; Lai, David; McLain, Jennifer L; Manibusan, Mary Ko; Dellarco, Vicki

    2002-01-01

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies. PMID:11834465

  17. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines, and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.

  18. Toxic and antifeedant activities of prenylated flavonoids isolated from Tephrosia apollinea L. against three major coleopteran pests of stored grains with reference to their structure-activity relationship.

    PubMed

    Nenaah, Gomah E

    2014-01-01

    Four prenylated flavonoids, isoglabratephrin, (+)-glabratephrin, tephroapollin-F and lanceolatin-A, were isolated from Tephrosia apollinea L. and tested against three stored grain insects. Using the filter paper bioassay, compounds showed adulticidal activity against Sitophilus oryzae (L), Rhyzopertha dominica (F) and Tribolium castaneum (Herbst) at concentrations of 0.875, 1.75 and 3.5 mg mL(- 1). At 3.5 mg mL(- 1), tephroapollin-F was the most toxic (78.6%, 64.6% and 60.7% mortality was recorded after 10 days exposure of S. oryzae, R. dominica and T. castaneum, respectively). The F1 progeny production of insects was affected after parental exposure to flavonoids, where S. oryzae was the most susceptible. A nutritional bioassay, employing a flour disc and test concentrations of 0.65, 1.3 and 2.6 mg g(- 1), revealed a significant reduction in the relative growth rate, relative consumption rate and efficiency of conversion of ingested food by all insects. The structure-activity relationship among the tested flavonoids was discussed.

  19. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    PubMed Central

    Prokai, Laszlo; Rivera-Portalatin, Nilka M.; Prokai-Tatrai, Katalin

    2013-01-01

    The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR) studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP) was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O–H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration. PMID:23344051

  20. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.