Alcubierre's warp drive: Problems and prospects
NASA Astrophysics Data System (ADS)
van den Broeck, Chris
2000-01-01
Alcubierre's warp drive geometry seemingly represents the ultimate dream for interstellar travel: there is no speed limit, the passengers are weightless whatever the acceleration, and there is no time dilation. However, in its original form, the proposal suffers from several fatal flaws, such as unreasonably high energies, energy moving in a locally spacelike direction, and a violation of the energy conditions of classical Einstein gravity. I present a possible solution for one of these problems, and I suggest ways to at least soften the others. .
Conformal Gravity and the Alcubierre Warp Drive Metric
NASA Astrophysics Data System (ADS)
Varieschi, Gabriele; Burstein, Zily
2013-04-01
We present an analysis of the classic Alcubierre metric based on conformal gravity, rather than standard general relativity. The main characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, namely that effective super-luminal motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular, the resulting warp drive does not require the use of exotic matter. Therefore, if conformal gravity is a correct extension of general relativity, super-luminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar travel.
Metamaterial-based model of the Alcubierre warp drive
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2011-09-01
Electromagnetic metamaterials are capable of emulating many exotic space-time geometries, such as black holes, rotating cosmic strings, and the big bang singularity. This paper presents a metamaterial-based model of the Alcubierre warp drive and studies its limitations due to available range of material parameters. It appears that the material parameter range introduces strong limitations on the achievable “warp speed” so that ordinary magnetoelectric materials cannot be used. However, newly developed “perfect” bianisotropic nonreciprocal magnetoelectric metamaterials should be capable of emulating the physics of warp drive gradually accelerating up to 1/4c.
The Alcubierre Warp Drive in Higher Dimensional Spacetime
NASA Astrophysics Data System (ADS)
White, H. G.; Davis, E. W.
2006-01-01
The canonical form of the Alcubierre warp drive metric is considered to gain insight into the mathematical mechanism triggering the effect. A parallel with the Chung-Freese spacetime metric is drawn to demonstrate that the spacetime expansion boost can be considered a 3 + 1 on-brane simplification for higher dimensional geometric effects. The implications for baryonic matter of higher dimensional spacetime, in conjunction with the Alcubierre metric, are used to illustrate an equation of state for dark energy. Finally, this combined model will then be used to outline a theoretical framework for negative pressure (an alternative to negative energy) and a conceptual lab experiment is described.
Alcubierre warp drive: On the matter of matter
NASA Astrophysics Data System (ADS)
McMonigal, Brendan; Lewis, Geraint F.; O'Byrne, Philip
2012-03-01
The Alcubierre warp drive allows a spaceship to travel at an arbitrarily large global velocity by deforming the spacetime in a bubble around the spaceship. Little is known about the interactions between massive particles and the Alcubierre warp drive, or the effects of an accelerating or decelerating warp bubble. We examine geodesics representative of the paths of null and massive particles with a range of initial velocities from -c to c interacting with an Alcubierre warp bubble traveling at a range of globally subluminal and superluminal velocities on both constant and variable velocity paths. The key results for null particles match what would be expected of massive test particles as they approach ±c. The increase in energy for massive and null particles is calculated in terms of vs, the global ship velocity, and vp, the initial velocity of the particle with respect to the rest frame of the origin/destination of the ship. Particles with positive vp obtain extremely high energy and velocity and become “time locked” for the duration of their time in the bubble, experiencing very little proper time between entering and eventually leaving the bubble. When interacting with an accelerating bubble, any particles within the bubble at the time receive a velocity boost that increases or decreases the magnitude of their velocity if the particle is moving toward the front or rear of the bubble, respectively. If the bubble is decelerating, the opposite effect is observed. Thus Eulerian matter is unaffected by bubble accelerations/decelerations. The magnitude of the velocity boosts scales with the magnitude of the bubble acceleration/deceleration.
Null geodesics in the Alcubierre warp-drive spacetime: the view from the bridge
NASA Astrophysics Data System (ADS)
Clark, Chad; Hiscock, William A.; Larson, Shane L.
1999-12-01
The null geodesic equations in the Alcubierre warp-drive spacetime are numerically integrated to determine the angular deflection and redshift of photons which propagate through the distortion of the `warp-drive' bubble to reach an observer at the origin of the warp effect. We find that for a starship with an effective warp speed exceeding the speed of light, stars in the forward hemisphere will appear closer to the direction of motion than they would to an observer at rest. This aberration is qualitatively similar to that caused by special relativity. Behind the starship, a conical region forms from within which no signal can reach the starship, an effective `horizon'. Conversely, there is also a horizon-like structure in a conical region in front of the starship, into which the starship cannot send a signal. These causal structures are somewhat analogous to the Mach cones associated with supersonic fluid flow.
LETTER TO THE EDITOR: Quantum effects in the Alcubierre warp-drive spacetime
NASA Astrophysics Data System (ADS)
Hiscock, William A.
1997-11-01
The expectation value of the stress - energy tensor of a free conformally invariant scalar field is computed in a two-dimensional reduction of the Alcubierre `warp-drive' spacetime. Unless the spacetime is in the Hartle - Hawking state at an appropriate temperature, the stress - energy diverges on past and future event horizons which form when the apparent velocity of the spaceship exceeds the speed of light. The likelihood of the spacetime being in this state, whether due to natural evolution or the application of technology, is briefly discussed.
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.
2007-09-01
In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form.
Warp drive with zero expansion
NASA Astrophysics Data System (ADS)
Natário, José
2002-03-01
It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.
NASA Astrophysics Data System (ADS)
Coule, D. H.
1998-08-01
The warp drive spacetime of Alcubierre is impossible to set up without first being able to distribute matter at tachyonic speed, put roughly, you need one to make one! However, over small distances, where the energy conditions possibly can be violated, one can envision opening the light-cones to increase the apparent speed of light.
Fundamental limitations on 'warp drive' spacetimes
NASA Astrophysics Data System (ADS)
Lobo, Francisco S. N.; Visser, Matt
2004-12-01
'Warp drive' spacetimes are useful as 'gedanken-experiments' that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of 'superluminal' communication. After carefully formulating the Alcubierre and Natário warp drive spacetimes, and verifying their non-perturbative violation of the classical energy conditions, we consider a more modest question and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second orders of the warp-bubble velocity, v. Since we take the warp-bubble velocity to be non-relativistic, v Lt c, we are not primarily interested in the 'superluminal' features of the warp drive. Instead we focus on a secondary feature of the warp drive that has not previously been remarked upon—the warp drive (if it could be built) would be an example of a 'reaction-less drive'. For both the Alcubierre and Natário warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. A particularly interesting feature of this construction is that it is now meaningful to think of placing a finite mass spaceship at the centre of the warp bubble, and then see how the energy in the warp field compares with the mass energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp field, since by definition the point at the centre of the warp bubble moves on a geodesic and is 'massless'. That is, in Alcubierre's original formalism and in the Natário formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natário warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship.
The unphysical nature of `warp drive'
NASA Astrophysics Data System (ADS)
Pfenning, M. J.; Ford, L. H.
1997-07-01
We will apply the quantum-inequality-type restrictions to Alcubierre's warp drive metric on a scale in which a local region of spacetime can be considered `flat'. These are inequalities that restrict the magnitude and extent of the negative energy which is needed to form the warp drive metric. From this we are able to place limits on the parameters of the `warp bubble'. It will be shown that the bubble wall thickness is on the order of only a few hundred Planck lengths. Then we will show that the total integrated energy density needed to maintain the warp metric with such thin walls is physically unattainable.
Detailed study of null and timelike geodesics in the Alcubierre warp spacetime
NASA Astrophysics Data System (ADS)
Müller, Thomas; Weiskopf, Daniel
2012-02-01
The geodesic equation of the Alcubierre warp spacetime is converted into its non-affinely parametrized form for a detailed discussion of the motion of particles and the visual effects as observed by a traveller inside the warp bubble or a person looking from outside. To include gravitational lensing for point-like light sources, we present a practical approach using the Jacobi equation and the Sachs bases. Additionally, we consider the dragging and geodesic precession of particles due to the warp bubble.
Warp Drive - From Imagination to Reality
NASA Astrophysics Data System (ADS)
Gardiner, J.
The realisation of warp drive is far beyond current science and technology; nevertheless, setting out a timetable for the realisation of warp drive is instructive as this will set expectations for the progress of future research. It is proposed that a time scale for the realisation of warp drive can be estimated by historical analogy with the development of manned space travel to the Moon, using conventional project estimation techniques. A timeline for space travel to the Moon begins with Cyrano de Bergerac's Voyage dans la Lune in 1657 and culminates with the Apollo 11 Moon landing in 1969, a little over 300 years later. A similar timeline for warp drive begins with John W. Campbell's novel Islands of Space in 1930. Fictional conjecture on the warp drive has given way to serious scientific speculation following publication of Alcubierre's seminal warp drive paper in 1994. It is concluded that the realisation of warp drive might be achieved around the year 2180. A projected timetable for the realisation of warp drive through phases of conjecture , speculation , science , technology and application suggests that the warp drive proposal should enter the science phase around the year 2030.
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.
2000-08-01
In this paper the problem of the quantum stability of the two-dimensional warp drive spacetime moving with an apparent faster than light velocity is considered. We regard as a maximum extension beyond the event horizon of that spacetime its embedding in a three-dimensional Minkowskian space with the topology of the corresponding Misner space. It is obtained that the interior of the spaceship bubble becomes then a multiply connected nonchronal region with closed spacelike curves and that the most natural vacuum allows quantum fluctuations which do not induce any divergent behavior of the renormalized stress-energy tensor, even on the event (Cauchy) chronology horizon. In such a case, the horizon encloses closed timelike curves only at scales close to the Planck length, so that the warp drive satisfies Ford's negative energy-time inequality. Also found is a connection between the superluminal two-dimensional warp drive space and two-dimensional gravitational kinks. This connection allows us to generalize the considered Alcubierre metric to a standard, nonstatic metric which is only describable on two different coordinate patches.
A `warp drive' with more reasonable total energy requirements
NASA Astrophysics Data System (ADS)
Van Den Broeck, Chris
1999-12-01
I show how a minor modification of the Alcubierre geometry can dramatically improve the total energy requirements for a `warp bubble' that can be used to transport macroscopic objects. A spacetime is presented for which the total negative mass needed is of the order of a few solar masses, accompanied by a comparable amount of positive energy. This puts the warp drive in the mass scale of large traversable wormholes. The new geometry satisfies the quantum inequality concerning WEC violations and has the same advantages as the original Alcubierre spacetime.
NASA Astrophysics Data System (ADS)
Long, K. F.
The prospects for a realistic engineered warp drive are currently within the realms of scientific speculation. The pioneering paper by Alcubierre has started a new field of research and in a period of a little over a decade has seen some encouraging developments. This has led to a better definition of the problem using the mathematical tools of general relativity and quantum field theory. Many publications now exist which have identified many technical problems and explored realisable solutions. Some of these ideas may one day make warp drive a genuine contender for breaking the interstellar distance barrier - the biggest obstacle towards the potential interaction of interstellar civilizations. This paper will review the current status of the warp drive since the seminal paper and discuss the tremendous theoretical advances that have been made. The problem definition will be considered in the context of the NASA Horizon mission methodology.
New Lower Bounds for Warp Drive Energy
NASA Astrophysics Data System (ADS)
Gauthier, C.; Gravel, P.; Melanson, J.
The introduction of the warp drive metric by Alcubierre1 has aroused great interest over the past few years. Using an uncertainty-type principle, Ford and Pfenning2 proved that the warp drive transport of a spaceship in a regular bubble having a radius of 100 m is unrealistic. However, Van Den Broeck3 has shown that the situation largely improves when one uses a warp drive bubble with a small surface area and large spatial volume. Putting aside many physics problems related to the realization of the warp drive concept, we show in this paper4 how to modify Van Den Broeck's idea to improve his results. We find new lower bounds for the warp drive energy by working on parameters whose latitude has never been considered before. We also consider micro warp drive bubbles which can be treated as physical entities of their own and could possibly be used to transmit information faster than the speed of light. The conditions prevailing just after the Big Bang allow the spontaneous formation of such micro bubbles which could still be present in our period of time.
NASA Astrophysics Data System (ADS)
Everett, Allen E.
1996-06-01
Alcubierre recently exhibited a spacetime which, within the framework of general relativity, allows travel at superluminal speeds if matter with a negative energy density can exist, and conjectured that it should be possible to use similar techniques to construct a theory containing closed causal loops and, thus, travel backwards in time. We verify this conjecture by exhibiting a simple modification of Alcubierre's model, requiring no additional assumptions, in which causal loops are possible. We also note that this mechanism for generating causal loops differs in essential ways from that discovered by Gott involving cosmic strings.
NASA Astrophysics Data System (ADS)
Swarup, Bob
2008-01-01
Warp drives are a staple of science fiction, transporting the heroes of shows like Star Trek between galaxies in a matter of hours. Now, increasing numbers of cosmologists are wondering whether this technology might eventually become science fact. Dozens of scientific papers on warp drives have appeared since 1994 when Miguel Alcubierre - a theoretical physicist then at the University of Wales in Cardiff - first argued that a warp drive was theoretically possible (Class. Quantum Grav. 11 L73)
NASA Astrophysics Data System (ADS)
Obousy, R. K.; Cleaver, G.
Certain classes of higher dimensional models suggest that the Casimir Effect is a candidate for the cosmological constant. In this paper we demonstrate that a sufficiently advanced civilization could, in principal, manipulate the radius of the extra dimension to locally adjust the value of the cosmological constant. This adjustment could be tuned to generate an expansion/ contraction of spacetime around a spacecraft creating an exotic form of field-propulsion. Due to the fact that spacetime expansion itself is not restricted by relativity, a faster-than-light `warp drive' could be created. Calculations of the energy requirements of such a drive are performed and an `ultimate' speed limit, based on the Planckian limits on the size of the extra dimensions is found.
Supersymmetry Breaking Casimir Warp Drive
Obousy, Richard K.; Cleaver, Gerald
2007-01-30
This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.
Supersymmetry Breaking Casimir Warp Drive
NASA Astrophysics Data System (ADS)
Obousy, Richard K.; Cleaver, Gerald
2007-01-01
This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.
NASA Astrophysics Data System (ADS)
White, H.
This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive "technology" coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a "Chicago Pile" moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.
NASA Technical Reports Server (NTRS)
White, Harold
2011-01-01
This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.
Ray trajectories for Alcubierre spacetime
NASA Astrophysics Data System (ADS)
Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-05-01
The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are continuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a micro- or nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a focusing lens, most notably at high speeds.
Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping
NASA Astrophysics Data System (ADS)
Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.
2013-01-01
Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time
2015-06-10
WarpVisit is an insitu simulation application that integrates the Warp laser plasma accelerator simulation framework with Visit a parallel visualization application. WarpVisit is written in python and supports interactive or live mode where user can connect to Warp with the Visit GUI and batch mode for batch for non-interactive use on high-performance computing resources.
NASA Astrophysics Data System (ADS)
Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Grigore, A.; Simonetti, G.; Soós, C.; Telesca, A.; Vande Vyvre, P.; von Haller, B.
2012-12-01
A Large Ion Collider Experiment (ALICE) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). Since its successful start-up in 2010, the LHC has been performing outstandingly, providing to the experiments long periods of stable collisions and an integrated luminosity that greatly exceeds the planned targets. To fully explore these privileged conditions, we aim at maximizing the experiment's data taking productivity during stable collisions. We present in this paper the evolution of the online systems towards helping us understand reasons of inefficiency and address new requirements. This paper describes the features added to the ALICE Electronic Logbook (eLogbook) to allow the Run Coordination team to identify, prioritize, fix and follow causes of inefficiency in the experiment. Thorough monitoring of the data taking efficiency provides reports for the collaboration to portray its evolution and evaluate the measures (fixes and new features) taken to increase it. In particular, the eLogbook helps decision making by providing quantitative input, which can be used to better balance risks of changes in the production environment against potential gains in quantity and quality of physics data. It will also present the evolution of the Experiment Control System (ECS) to allow on-the-fly error recovery actions of the detector apparatus while limiting as much as possible the loss of integrated luminosity. The paper will conclude with a review of the ALICE efficiency so far and the future plans to improve its monitoring.
Relaxation of Warped Disks: The Case of Pure Hydrodynamics
NASA Astrophysics Data System (ADS)
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-05-01
Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e., with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but more slowly than linearly. The angular momentum fluxes respond to the warp rate after a delay that scales with the square root of the time for sound waves to cross the radial extent of the warp. These behaviors are at variance with a number of the assumptions commonly used in analytic models to describe linear warp dynamics.
Slagter, R. J.
2010-06-23
We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Samani, Joshua; Shaghoulian, Edgar
2014-02-01
We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2, ℝ) × U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a = 1 + δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result.
Generalized Canonical Time Warping.
Zhou, Feng; De la Torre, Fernando
2016-02-01
Temporal alignment of human motion has been of recent interest due to its applications in animation, tele-rehabilitation and activity recognition. This paper presents generalized canonical time warping (GCTW), an extension of dynamic time warping (DTW) and canonical correlation analysis (CCA) for temporally aligning multi-modal sequences from multiple subjects performing similar activities. GCTW extends previous work on DTW and CCA in several ways: (1) it combines CCA with DTW to align multi-modal data (e.g., video and motion capture data); (2) it extends DTW by using a linear combination of monotonic functions to represent the warping path, providing a more flexible temporal warp. Unlike exact DTW, which has quadratic complexity, we propose a linear time algorithm to minimize GCTW. (3) GCTW allows simultaneous alignment of multiple sequences. Experimental results on aligning multi-modal data, facial expressions, motion capture data and video illustrate the benefits of GCTW. The code is available at http://humansensing.cs.cmu.edu/ctw. PMID:26761734
LittleQuickWarp: an ultrafast image warping tool.
Qu, Lei; Peng, Hanchuan
2015-02-01
Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. PMID:25233807
Warped general gauge mediation
NASA Astrophysics Data System (ADS)
McGarrie, Moritz; Thompson, Daniel C.
2010-12-01
We develop the formalism of “general gauge mediation” for five-dimensional theories in a slice of AdS space. A set of current correlators encodes the effect of a supersymmetry breaking hidden sector localized on the IR brane. These current correlators provide a tree-level gaugino mass and loop-level sfermion masses on the UV brane. We also use this formalism to calculate the Casimir energy and masses for bulk hyperscalars. To illustrate this general construction we consider a perturbative hidden sector of generalized messengers coupled to a spurion. For models with large warping, we find that when the AdS warp factor k is less than the characteristic mass scale M of the hidden sector, the whole Kaluza-Klein tower of vector superfields propagate supersymmetry breaking effects to the UV brane. When M is less than k, the zero modes dominate.
Asymmetrically warped spacetimes
Csaki, C.
2001-01-01
We investigate spacetimes in which the speed of light along flat 4D sections varies over the extra dimensions due to different warp factors for the space and the time coordinates ('asymmetrically warped' spacetimes). The main property of such spaces is that while the induced metric is flat, implying Lorentz invariant particle physics on a brane, bulk gravitational effects will cause apparent violations of Lorentz invariance and of causality from the brane observer's point of view. An important experimentally verifiable consequence of this is that gravitational waves may travel with a speed different from the speed of light on the brane, and possibly even faster. We find the most general spacetimes of this sort, which are given by certain types of black hole spacetimes characterized by the m a s and the charge of the black hole. We show how to satisfy the junction conditions and analyze the properties of these space-times.
Warp evidence in precessing galactic bar models
NASA Astrophysics Data System (ADS)
Sánchez-Martín, P.; Romero-Gómez, M.; Masdemont, J. J.
2016-04-01
Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, this way confirming the theoretical results.
Kobayashi, Takeshi; Mukohyama, Shinji
2010-06-23
We present a curvaton model from type IIB string theory compactified on a warped throat with approximate isometries. Considering an (anti-)D3-brane sitting at the throat tip as a prototype standard model brane, we show that the brane's position in the isometry directions can play the role of curvatons. The basic picture is that the fluctuations of the (anti-)D3-brane in the angular isometry directions during inflation eventually turns into the primordial curvature perturbations, and subsequently the brane's oscillation excites other open string modes on the brane and reheat the universe. We find in the explicit case of the KS throat that a wide range of parameters allows a consistent curvaton scenario. It is also shown that the oscillations of branes at throat tips are capable of producing large non-Gaussianity, either through curvature or isocurvature perturbations. Since such setups naturally arise in warped (multi-)throat compactifications and are constrained by observational data, the model can provide tests for compactification scenarios. This work gives an explicit example of string theory providing light fields for generating curvature perturbations. Such mechanisms free the inflaton from being responsible for the perturbations, thus open up new possibilities for inflation models. The discussions in this paper are based on [1].
Kobayashi, Takeshi; Mukohyama, Shinji E-mail: shinji.mukohyama@ipmu.jp
2009-07-01
We present a curvaton model from type IIB string theory compactified on a warped throat with approximate isometries. Considering an (anti-)D3-brane sitting at the throat tip as a prototype standard model brane, we show that the brane's position in the isometry directions can play the role of curvatons. The basic picture is that the fluctuations of the (anti-)D3-brane in the angular isometry directions during inflation eventually turns into the primordial curvature perturbations, and subsequently the brane's oscillation excites other open string modes on the brane and reheat the universe. We find in the explicit case of the KS throat that a wide range of parameters allows a consistent curvaton scenario. It is also shown that the oscillations of branes at throat tips are capable of producing large non-Gaussianity, either through curvature or isocurvature perturbations. Since such setups naturally arise in warped (multi-)throat compactifications and are constrained by observational data, the model can provide tests for compactification scenarios. This work gives an explicit example of string theory providing light fields for generating curvature perturbations. Such mechanisms free the inflaton from being responsible for the perturbations, thus open up new possibilities for inflation models.
A breathing mode for warped compactifications
NASA Astrophysics Data System (ADS)
Underwood, Bret
2011-10-01
In general warped compactifications, non-trivial backgrounds for the warp factor and the dilaton break D-dimensional diffeomorphism invariance, so that dilaton fluctuations can be gauged away completely and eaten by the metric. More specifically, the warped volume modulus and the dilaton are not independent, but combine into a single gauge-invariant degree of freedom in the lower dimensional effective theory, the warped breathing mode. This occurs for all strengths of the warping, even the weakly warped limit. This warped breathing mode appears as a natural zero mode deformation of backgrounds sourced by p-branes and affects the identification of the independent degrees of freedom of flux compactifications.
Local and global dynamics of warped astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.; Latter, Henrik N.
2013-08-01
Astrophysical discs are warped whenever a misalignment is present in the system, or when a flat disc is made unstable by external forces. The evolution of the shape and mass distribution of a warped disc is driven not only by external influences but also by an internal torque, which transports angular momentum through the disc. This torque depends on internal flows driven by the oscillating pressure gradient associated with the warp, and on physical processes operating on smaller scales, which may include instability and turbulence. We introduce a local model for the detailed study of warped discs. Starting from the shearing sheet of Goldreich and Lynden-Bell, we impose the oscillating geometry of the orbital plane by means of a coordinate transformation. This warped shearing sheet (or box) is suitable for analytical and computational treatments of fluid dynamics, magnetohydrodynamics, etc., and it can be used to compute the internal torque that drives the large-scale evolution of the disc. The simplest hydrodynamic states in the local model are horizontally uniform laminar flows that oscillate at the orbital frequency. These correspond to the non-linear solutions for warped discs found in previous work by Ogilvie, and we present an alternative derivation and generalization of that theory. In a companion paper, we show that these laminar flows are often linearly unstable, especially if the disc is nearly Keplerian and of low viscosity. The local model can be used in future work to determine the non-linear outcome of the hydrodynamic instability of warped discs, and its interaction with others such as the magnetorotational instability.
Time Warp Operating System (TWOS)
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.
1993-01-01
Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.
Time-Warped Geodesic Regression
Hong, Yi; Singh, Nikhil; Kwitt, Roland; Niethammer, Marc
2016-01-01
We consider geodesic regression with parametric time-warps. This allows, for example, to capture saturation effects as typically observed during brain development or degeneration. While highly-flexible models to analyze time-varying image and shape data based on generalizations of splines and polynomials have been proposed recently, they come at the cost of substantially more complex inference. Our focus in this paper is therefore to keep the model and its inference as simple as possible while allowing to capture expected biological variation. We demonstrate that by augmenting geodesic regression with parametric time-warp functions, we can achieve comparable flexibility to more complex models while retaining model simplicity. In addition, the time-warp parameters provide useful information of underlying anatomical changes as demonstrated for the analysis of corpora callosa and rat calvariae. We exemplify our strategy for shape regression on the Grassmann manifold, but note that the method is generally applicable for time-warped geodesic regression. PMID:25485368
Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin
2011-04-01
We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for {mu}{yields}e{gamma} using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the {mu}{yields}e{gamma} bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Hartman, Thomas; Hofman, Diego M.
2012-12-01
We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the partition function, which is used to derive a universal formula for the asymptotic density of states. For an application we turn to the holographic description of black holes in quantum gravity, motivated by the fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the gravity theory.
Wireless Augmented Reality Prototype (WARP)
NASA Technical Reports Server (NTRS)
Devereaux, A. S.
1999-01-01
Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.
Cultural Warping of Childbirth, Revisited
Budin, Wendy C.
2007-01-01
In this column, the editor of The Journal of Perinatal Education revisits Doris Haire's classic 1972 article, “The Cultural Warping of Childbirth,” and describes the birth culture of today. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth.
Warping the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne
2016-08-01
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
Atlas warping for brain morphometry
NASA Astrophysics Data System (ADS)
Machado, Alexei M. C.; Gee, James C.
1998-06-01
In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.
Warped circumbinary disks in active galactic nuclei
Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya
2014-07-20
We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.
Warped Circumbinary Disks in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya
2014-07-01
We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.
Hydrodynamic instability in warped astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.; Latter, Henrik N.
2013-08-01
Warped astrophysical discs are usually treated as laminar viscous flows, which have anomalous properties when the disc is nearly Keplerian and the viscosity is small: fast horizontal shearing motions and large torques are generated, which cause the warp to evolve rapidly, in some cases at a rate that is inversely proportional to the viscosity. However, these flows are often subject to a linear hydrodynamic instability, which may produce small-scale turbulence and modify the large-scale dynamics of the disc. We use a warped shearing sheet to compute the oscillatory laminar flows in a warped disc and to analyse their linear stability by the Floquet method. We find widespread hydrodynamic instability deriving from the parametric resonance of inertial waves. Even very small, unobservable warps in nearly Keplerian discs of low viscosity can be expected to generate hydrodynamic turbulence, or at least wave activity, by this mechanism.
Design of Warped Stretch Transform.
Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram
2015-01-01
Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal's envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458
Design of Warped Stretch Transform
Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram
2015-01-01
Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458
Design of Warped Stretch Transform
NASA Astrophysics Data System (ADS)
Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram
2015-11-01
Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.
Disk Galaxy Warp Formation via Close Encounters
NASA Astrophysics Data System (ADS)
Kim, Jeonghwan; Peirani, S.; Kim, S.; Yoon, S.
2012-01-01
Warped disks appear to be ubiquitous among spiral galaxies. We present a new scenario for the warp formation, in which galactic fly-by encounters are main drivers of the warp structure. Based on N-body simulation using a publicly available code Gadget2, we investigate morphological and kinematical structures of disk galaxies while the galaxies are undergoing fly-by encounters with adjacent dark matter halos. In this study, we find that warps can be excited by impulsive encounters and sustained for a few billion years. We also find that encounters cause the initially spherical halos to deform into intricate shape halos at the inner regions where warps are generated. Most of the warps from the simulation show inclination angles that are comparable to the observations. The creation of warps, their inclination and their lifetimes are governed primarily by the following three parameters: the impact parameter (the minimum distance between two halos), the mass ratio between two galaxies, and the incoming angle of the intruder. We discuss pros and cons about our alternative scenario in comparison with existing explanations.
Decaying hidden dark matter in warped compactification
Chen, Xingang
2009-09-01
The recent PAMELA and ATIC/Fermi/HESS experiments have observed an excess of electrons and positrons, but not anti-protons, in the high energy cosmic rays. To explain this result, we construct a decaying hidden dark matter model in string theory compactification that incorporates the following two ingredients, the hidden dark matter scenario in warped compactification and the phenomenological proposal of hidden light particles that decay to the Standard Model. In this model, on higher dimensional warped branes, various warped Kaluza-Klein particles and the zero-mode of gauge field play roles of the hidden dark matter or mediators to the Standard Model.
Thermal excitations of warped membranes.
Košmrlj, Andrej; Nelson, David R
2014-02-01
We explore thermal fluctuations of thin planar membranes with a frozen spatially varying background metric and a shear modulus. We focus on a special class of D-dimensional "warped membranes" embedded in a d-dimensional space with d ≥ D + 1 and a preferred height profile characterized by quenched random Gaussian variables {h(α)(q)}, α = D + 1,...,d, in Fourier space with zero mean and a power-law variance h(α)(q(1))h(β)(q(2)) ∼ δ(α,β)δ(q(1),-q(2))q(1)(-d(h)). The case D = 2, d = 3, with d(h) = 4 could be realized by flash-polymerizing lyotropic smectic liquid crystals. For D < max{4,d(h)} the elastic constants are nontrivially renormalized and become scale dependent. Via a self-consistent screening approximation we find that the renormalized bending rigidity increases for small wave vectors q as κ(R) ∼ q(-η(f)), while the in-hyperplane elastic constants decrease according to λ(R),μ(R) ∼ q(+η(u)). The quenched background metric is relevant (irrelevant) for warped membranes characterized by exponent d(h) > 4-η(f)((F)) (d(h) < 4-η(f)((F))), where η(f)((F)) is the scaling exponent for tethered surfaces with a flat background metric, and the scaling exponents are related through η(u) + η(f) = d(h) -D (η(u) + 2η(f) = 4-D). PMID:25353441
Hydrodynamics in type B warped spacetimes
Carot, J.; Nunez, L.A.
2005-10-15
We discuss certain general features of type B warped spacetimes which have important consequences on the material content they may admit and its associated dynamics. We show that, for warped B spacetimes, if shear and anisotropy are nonvanishing, they have to be proportional. We also study some of the physics related to the warping factor and of the underlying decomposable metric. Finally we explore the only possible cases compatible with a type B warped geometry which satisfy the dominant energy conditions. As an example of the above mentioned consequences we consider a radiating fluid and two nonspherically symmetric metrics which depend upon an arbitrary parameter a, such that for a=0 spherical symmetry is recovered.
Warped Disks and Inclined Rings around Galaxies
NASA Astrophysics Data System (ADS)
Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.
2006-11-01
Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.
Warped Disks and Inclined Rings around Galaxies
NASA Astrophysics Data System (ADS)
Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.
1991-05-01
Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.
Speed limits in general relativity
NASA Astrophysics Data System (ADS)
Low, Robert J.
1999-02-01
Some standard results on the initial value problem of general relativity in matter are reviewed. These results are applied first to show that in a well defined sense, finite perturbations in the gravitational field travel no faster than light, and second to show that it is impossible to construct a warp drive as considered by Alcubierre (1994 The warp drive: hyper-fast travel within general relativity Class. Quantum Grav. 11 L73-7) in the absence of exotic matter.
Diphoton portal to warped gravity
NASA Astrophysics Data System (ADS)
Falkowski, Adam; Kamenik, Jernej F.
2016-07-01
The diphoton excess around mX=750 GeV observed by ATLAS and CMS can be interpreted as coming from a massive spin-2 excitation. We explore this possibility in the context of warped five-dimensional models with the Standard Model (SM) fields propagating in the bulk of the extra dimension. The 750 GeV resonance is identified with the first Kaluza-Klein (KK) excitation of the five-dimensional graviton that is parametrically lighter than KK resonances of SM fields. Our setup makes it possible to realize nonuniversal couplings of the spin-2 resonance to matter, and thus to explain nonobservation of the 750 GeV resonance in leptonic channels. Phenomenological predictions of the model depend on the localization of fields in the extra dimension. If, as required by naturalness arguments, the zero modes of the Higgs and top fields are localized near the IR brane, one expects large branching fractions to t t ¯, h h , W+W- and Z Z final states. Decays to Z γ can also be observable when the KK graviton couplings to the SM gauge fields are nonuniversal.
Observing the geometry of warped compactification via cosmic inflation.
Shiu, Gary; Underwood, Bret
2007-02-01
Using Dirac-Born-Infeld inflation as an example, we demonstrate that the detailed geometry of warped compactification can leave an imprint on the cosmic microwave background. We compute cosmic microwave background observables for Dirac-Born-Infeld inflation in a generic class of warped throats and find that the results (such as the sign of the tilt of the scalar perturbations and its running) depend sensitively on the precise shape of the warp factor. In particular, we analyze the warped deformed conifold and find that the results can differ from those of other warped geometries, even when these geometries approximate well the exact metric of the warped deformed conifold. PMID:17358841
Density of States for Warped Energy Bands
Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco
2016-01-01
Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest. PMID:26905029
Density of States for Warped Energy Bands
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco
2016-02-01
Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.
Density of States for Warped or non-Warped Energy Bands
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco
The goal of this talk is to investigate when band warping affects density-of-states effective mass. Further, band ``corrugation,'' a form of band warping referring to energy dispersions that deviate ``more severely'' from being twice-differentiable at isolated critical points, may also correlate in different ways with density-of-states effective masses and other band warping parameters. In this talk, an angular effective mass formalism is developed and used to study the electronic density of states of warped and non-warped energy bands towards an application in thermoelectric transport design. We demonstrate effects of band warping and prove the superiority of the angular effective mass treatment for valence energy bands in cubic materials. We explore examples that can also be critical to precisely distinguish the contributions due to band warping and to band non-parabolicity in non-degenerate bands of thermoelectric materials that have a consequent practical interest. The presenter wished to thank the Vitreous State Laboratory.
Bouncing Brane Cosmologies from Warped String Compactifications
Kachru, Shamit
2002-08-08
We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.
Origin of the warped heliospheric current sheet
NASA Astrophysics Data System (ADS)
Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.
1980-08-01
The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.
Agitating mass transfer with a warped disc's shadow
NASA Astrophysics Data System (ADS)
Cambier, H.
2015-10-01
For compact objects fed by Roche lobe overflow, accretion-generated X-rays irradiating the donor star can alter gas flow towards the Lagrange point thus varying mass transfer. The latest work specific to this topic consists of simple yet insightful two-dimensional hydrodynamics simulations stressing the role of global flow. To explore how a time-varying disc shadow affects mass transfer, I generalize the geometry, employ a robust hydrodynamics solver, and use phase space analysis near the nozzle to include coriolis lift there. Without even exposing the nozzle, a warped disc's shadow can drive mass transfer cycles by shifting the equatorial edges of the irradiation patches in turns: drawing in denser ambient gas before sweeping it into the nozzle. Other important effects remain missing in two-dimensional models, which I discuss along with prospects for more detailed yet efficient models.
Rollback Hardware For Time Warp Multiprocessor Systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1996-01-01
Rollback Chip (RBC) module is computer circuit board containing special-purpose memory circuits for use in multiprocessor computer system. Designed to help realize speedup potential of parallel processing for simulation of discrete events by use of Time Warp operating system.
Needle bar for warp knitting machines
Hagel, Adolf; Thumling, Manfred
1979-01-01
Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.
Radiation-Driven Warping. 2; Nonisothermal Disks
NASA Technical Reports Server (NTRS)
Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.
1998-01-01
Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge
Brane modeling in warped extra-dimension
NASA Astrophysics Data System (ADS)
Ahmed, Aqeel; Grzadkowski, Bohdan
2013-01-01
Five-dimensional scenarios with infinitesimally thin branes replaced by appropriate configurations of a scalar field were considered. A possibility of periodic extra dimension was discussed in the presence on non-minimal scalar-gravity coupling and a generalized Gibbons-Kallosh-Linde sum rule was found. In order to avoid constraints imposed by periodicity, a non-compact spacial extra dimension was introduced. A five dimensional model with warped geometry and two thin branes mimicked by a scalar profile was constructed and discussed. In the thin brane limit the model corresponds to a set-up with two positive-tension branes. The presence of two branes allows to address the issue of the hierarchy problem which could be solved by the standard warping of the four dimensional metric provided the Higgs field is properly localized. Stability of the background solution was discussed and verified in the presence of the most general perturbations of the metric and the scalar field.
Entanglement entropy in warped conformal field theories
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil
2016-02-01
We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL (2, ℝ) × U (1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.
Image Stitching with Perspective-Preserving Warping
NASA Astrophysics Data System (ADS)
Xiang, Tianzhu; Xia, Gui-Song; Zhang, Liangpei
2016-06-01
Image stitching algorithms often adopt the global transform, such as homography, and work well for planar scenes or parallax free camera motions. However, these conditions are easily violated in practice. With casual camera motions, variable taken views, large depth change, or complex structures, it is a challenging task for stitching these images. The global transform model often provides dreadful stitching results, such as misalignments or projective distortions, especially perspective distortion. To this end, we suggest a perspective-preserving warping for image stitching, which spatially combines local projective transforms and similarity transform. By weighted combination scheme, our approach gradually extrapolates the local projective transforms of the overlapping regions into the non-overlapping regions, and thus the final warping can smoothly change from projective to similarity. The proposed method can provide satisfactory alignment accuracy as well as reduce the projective distortions and maintain the multi-perspective view. Experimental analysis on a variety of challenging images confirms the efficiency of the approach.
Time evolution of a warped cosmic string
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2014-06-01
The time evolution of a self-gravitating U(1) cosmic string on a warped five-dimensional (5D) axially symmetric spacetime is numerically investigated. Although cosmic strings are theoretically predicted in four-dimensional (4D) general relativistic models, there is still no observational evidence of their existence. From recent observations of the cosmic microwave background (CMB), it is concluded that these cosmic strings cannot provide a satisfactory explanation for the bulk of density perturbations. They even could not survive inflation. It is conjectured that only in a 5D warped braneworld model there will be observable imprint of these so-called cosmic superstrings on the induced effective 4D brane metric for values of the symmetry breaking scale larger than the grand unified theory (GUT) values. The warp factor makes these strings consistent with the predicted mass per unit length on the brane. However, in a time-dependent setting, it seems that there is a wavelike energy-momentum transfer to infinity on the brane, a high-energy braneworld behavior. This in contrast to earlier results in approximation models. Evidence of this information from the bulk geometry could be found in the gravitational cosmic background radiation via gravitational wave energy-momentum affecting the brane evolution. Fluctuations of the brane when there is a U(1) gauge field present, are comparable with the proposed brane tension fluctuations, or branons, whose relic abundance can be a dark matter candidate. We briefly made a connection with the critical behavior at the threshold of black hole formation found by Choptuik several decades ago in self-gravitating time-dependent scalar field models. The critical distinction between dispersion of the scalar waves and singular behavior fade away when a time-dependent warp factor is present.
Lorentz Violation in Warped Extra Dimensions
Rizzo, Thomas G.; /SLAC
2011-08-11
Higher dimensional theories which address some of the problematic issues of the Standard Model(SM) naturally involve some form of D = 4 + n-dimensional Lorentz invariance violation (LIV). In such models the fundamental physics which leads to, e.g., field localization, orbifolding, the existence of brane terms and the compactification process all can introduce LIV in the higher dimensional theory while still preserving 4-d Lorentz invariance. In this paper, attempting to capture some of this physics, we extend our previous analysis of LIV in 5-d UED-type models to those with 5- d warped extra dimensions. To be specific, we employ the 5-d analog of the SM Extension of Kostelecky et al. which incorporates a complete set of operators arising from spontaneous LIV. We show that while the response of the bulk scalar, fermion and gauge fields to the addition of LIV operators in warped models is qualitatively similar to what happens in the flat 5-d UED case, the gravity sector of these models reacts very differently than in flat space. Specifically, we show that LIV in this warped case leads to a non-zero bulk mass for the 5-d graviton and so the would-be zero mode, which we identify as the usual 4-d graviton, must necessarily become massive. The origin of this mass term is the simultaneous existence of the constant non-zero AdS{sub 5} curvature and the loss of general co-ordinate invariance via LIV in the 5-d theory. Thus warped 5-d models with LIV in the gravity sector are not phenomenologically viable.
Industrial applications of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Kaufmann, James R.
1992-01-01
Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.
KK parity in warped extra dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine
2008-04-01
We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.
WARPED IONIZED HYDROGEN IN THE GALAXY
Cersosimo, J. C.; Figueroa, N. Santiago; Velez, S. Figueroa; Soto, C. Lozada; Mader, S.; Azcarate, D.
2009-07-01
We report observations of the H166{alpha} ({nu} = 1424.734 MHz) radio recombination line (RRL) emission from the Galactic plane in the longitude range l = 267 deg. - 302 deg. and latitude range b = -3.{sup 0}0 to +1.{sup 0}5. The line emission observed describes the Carina arm in the Galactic azimuth range from {theta} = 260 deg. to 190 deg. The structure is located at negative latitudes with respect to the formal Galactic plane. The observations are combined with RRL data from the first Galactic quadrant. Both quadrants show the signature of the warp for the ionized gas, but an asymmetry of the distribution is noted. In the fourth quadrant, the gas is located between Galactic radii R {approx} 7 and 10 kpc, and the amplitude of the warp is seen from the midplane to z {approx} -150 pc. In the first quadrant, the gas is found between R {approx} 8 and 13-16 kpc, and flares to z {approx} +350 pc. We confirm the warp of the ionized gas near the solar circle. The distribution of the ionized gas is compared with the maximum intensity H I emission (0.30 < n{sub HI} < 0.45 cm{sup -3}) at intervals of the Galactic ring. The ionized material is correlated with the H I maximum intensity in both quadrants, and both components show the same tilted behavior with respect to the mid-Galactic plane.
Circular orbits on a warped spandex fabric
NASA Astrophysics Data System (ADS)
Middleton, Chad A.; Langston, Michael
2014-04-01
We present a theoretical and experimental analysis of circular-like orbits made by a marble rolling on a warped spandex fabric. We show that the mass of the fabric interior to the orbital path influences the motion of the marble in a nontrivial way and can even dominate the orbital characteristics. We also compare a Kepler-like expression for such orbits to similar expressions for orbits about a spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
Characterization of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.
1991-01-01
The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.
Warped flavor symmetry predictions for neutrino physics
NASA Astrophysics Data System (ADS)
Chen, Peng; Ding, Gui-Jun; Rojas, Alma D.; Vaquera-Araujo, C. A.; Valle, J. W. F.
2016-01-01
A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Δ(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
Radio frequency and infrared drying of sized textile warp yarns
Ruddick, H.G. )
1990-11-01
Drying sized textile warp yarns without contacting the warp is easily accomplished by either radio frequency or infrared techniques. Although the process is more expensive than conventional drying, the substantial savings accrued during subsequent weaving and finishing of the cloth can help keep the US textile industry competitive and support electrical load. 5 refs., 8 figs., 14 tabs.
Warp Characteristics of Spiral Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Bae, Hyun-Jin; Chung, A.; Kim, S. S.; Jozsa, G. I. G.; Yoon, S.
2012-01-01
We present the warp characteristics of 22 spiral galaxies in the Virgo cluster based on their VLA HI datacubes with unprecedented precision. The tilted-ring modeling method is used to examine kinematic properties of the HI disks including the inclination and position angle. The main results are as follows. First, 17 out of the 19 (89.5 %) successfully-modeled galaxies exhibit either weak or strong warps, indicating that the warps are very common not only galaxies in isolation but ones in dense environments. Second, the warp strength decreases with increasing dynamical mass, supporting the notion that the warps are primarily controlled by dark matter halos. Last, the warp characteristics in our sample are distinct from those of isolated galaxies, in that the warps in our sample varies a great deal in inclination, but little in position angle. This implies that in dense environments, the main driver of the disk warps is most likely the galactic tidal interaction, rather than other explanations such as the cosmic infall scenario.
A non-uniform warping theory for beams
NASA Astrophysics Data System (ADS)
El Fatmi, Rached
2007-08-01
This Note proposes a non-uniform warping beam theory including the effects of torsion and shear forces. Based on a displacement model using three warping parameters associated to three St Venant warping functions corresponding to torsion and shear forces, this theory is free from the classical assumptions on the warpings or on the shears, and is valid for any kind of homogeneous elastic and isotropic cross-section. The result on the structural behavior of the beam specifies the effect of the non-symmetry of the cross-section, and the closed form results obtained for the stresses show the contribution of each internal force. Comparison with St Venant beam theory highlights the additional effects due to the non-uniformity of the warping. To cite this article: R. El Fatmi, C. R. Mecanique 335 (2007).
Warped de Sitter Solutions in the Scalar-Tensor Theory
NASA Astrophysics Data System (ADS)
Flachi, Antonino; Minamitsuji, Masato; Uzawa, Kunihito
2015-01-01
We consider a class of higher dimensional theories consisting of D-dimensional gravity coupled to a scalar dilaton and a form field propagating over a warped higher dimensional spacetime. In the simplest set-up, the models are characterized by two moduli: one related to the volume of the internal space, the other to the modulus of the warp factor. While the volume-modulus can be fixed by appropriately tuning the gauge field strength, curvature of the internal space, and cosmological constant, the same mechanism cannot work for the warp modulus. Here, we will present a stabilizing mechanism for the warp modulus and its mass in terms of quantum fluctuations from both moduli. We will show that, while quantum effects from the modulus associated to the warp modulus can only provide a stabilization mechanism of the mass scale in a restricted region of the parameter space, quantum effects from the volume modulus offer an efficient mechanism of stabilization.
Faster-Than-Light Space Warps, Status and Next Steps
NASA Astrophysics Data System (ADS)
Davis, E. W.
Implementation of faster-than-light (FTL) interstellar travel via traversable wormholes or warp drives requires the engineering of spacetime into very specialized local geometries. The analysis of these via Einstein's General Theory of Relativity demonstrates that such geometries require the use of ``exotic'' matter. One can appeal to quantum field theory to find both natural and phenomenological sources of exotic matter. Such quantum fields are disturbed by the curved spacetime geometry they produce, so their energy-momentum tensor can be used to probe the back-reaction of the field effects upon the dynamics of the FTL spacetime, which has implications on the construction and control of FTL spacetimes. Also, the production, detection, and deployment of natural exotic quantum fields are seen to be key technical challenges in which basic first steps can be taken to experimentally probe their properties. FTL spacetimes also possess features that challenge the notions of momentum conservation and causality. The status of these important issues is addressed in this report, and recommended next steps for further theoretical investigations are identified in an effort to clear up a number of technical uncertainties in order to progress the present state-of-the-art in FTL spacetime physics.
Broken discs: warp propagation in accretion discs
NASA Astrophysics Data System (ADS)
Nixon, Christopher J.; King, Andrew R.
2012-04-01
We simulate the viscous evolution of an accretion disc around a spinning black hole. In general, any such disc is misaligned, and warped by the Lense-Thirring effect. Unlike previous studies, we use effective viscosities constrained to be consistent with the internal fluid dynamics of the disc. We find that non-linear fluid effects, which reduce the effective viscosities in warped regions, can promote breaking of the disc into two distinct planes. This occurs when the Shakura & Sunyaev dimensionless viscosity parameter α is ≲0.3 and the initial angle of misalignment between the disc and hole is ≳45°. The break can be a long-lived feature, propagating outwards in the disc on the usual alignment time-scale, after which the disc is fully co-aligned or counter-aligned with the hole. Such a break in the disc may be significant in systems where we know the inclination of the outer accretion disc to the line of sight, such as some X-ray binaries: the inner disc, and so any jets, may be noticeably misaligned with respect to the orbital plane.
Warped seesaw mechanism is physically inverted
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Hong, Sungwoo; Vecchi, Luca
2016-07-01
Warped extra dimensions can address both the Planck-weak and flavor hierarchies of the Standard Model (SM). In this paper we discuss the SM neutrino mass generation in a scenario in which a SM singlet bulk fermion—coupled to the Higgs and the lepton doublet near the IR brane—is given a Majorana mass of order the Planck scale on the UV brane. Despite the resemblance to a type I seesaw mechanism, a careful investigation based on the mass basis for the singlet four-dimensional modes reveals a very different picture. Namely, the SM neutrino masses are generated dominantly by the exchange of the TeV-scale mass eigenstates of the singlet, that are pseudo-Dirac and have a sizable Higgs-induced mixing with the SM doublet neutrino; remarkably, in warped five-dimensional (5D) models the anticipated type I seesaw morphs into a natural realization of the so-called "inverse" seesaw. This understanding uncovers an intriguing and direct link between neutrino mass generation (and possibly leptogenesis) and TeV-scale physics. We also perform estimates using the dual conformal field theory picture of our framework, which back up our 5D calculation.
Towards establishing the spin of warped gravitons
NASA Astrophysics Data System (ADS)
Antipin, Oleg; Soni, Amarjit
2008-10-01
We study the possibility of experimental verification of the spin=2 nature of the Kaluza-Klein (KK) graviton which is predicted to exist in the extra-dimensional Randal-Sundrum (RS) warped models. The couplings of these gravitons to the particles located on or near the TeV brane is the strongest as the overlap integral of their profiles in the extra-dimension is large. Among them are unphysical Higgses (W±L and ZL) and KK excitations of the Standard Model (SM) gauge bosons. We consider the possibility to confirm the spin-2 nature of the first KK mode of the warped graviton (G1) based on the angular distribution of the Z bozon in the graviton rest frame in the gg → G1 → WKK(ZKK)W(Z) → WWZ, gg → G1 → ZZ and gg → G1 → ZKKZ → ZZH decay channels. Using Wigner D-matrix properties, we derive the relationship between the graviton spin, signal angular distribution peak value, and other theoretically calculable quantities. We then study the LHC signals for these decay modes and find that with 1000 fb-1 of data, spin of the RS graviton up to ~ 2 TeV may be confirmed in the pp → WKK(ZKK)W(Z) → WWZ → 3 leptons + jet + \\slashed{E}_T and pp → ZZ → 4 leptons decay modes.
NASA's Wireless Augmented Reality Prototype (WARP)
NASA Astrophysics Data System (ADS)
Agan, Martin; Voisinet, Leeann; Devereaux, Ann
1998-01-01
The objective of Wireless Augmented Reality Prototype (WARP) effort is to develop and integrate advanced technologies for real-time personal display of information relevant to the health and safety of space station/shuttle personnel. The WARP effort will develop and demonstrate technologies that will ultimately be incorporated into operational Space Station systems and that have potential earth applications such as aircraft pilot alertness monitoring and in various medical and consumer environments where augmented reality is required. To this end a two phase effort will be undertaken to rapidly develop a prototype (Phase I) and an advanced prototype (Phase II) to demonstrate the following key technology features that could be applied to astronaut internal vehicle activity (IVA) and potentially external vehicle activity (EVA) as well: 1) mobile visualization, and 2) distributed information system access. Specifically, Phase I will integrate a low power, miniature wireless communication link and a commercial biosensor with a head mounted display. The Phase I design will emphasize the development of a relatively small, lightweight, and unobtrusive body worn prototype system. Phase II will put increased effort on miniaturization, power consumption reduction, increased throughput, higher resolution, and ``wire removal'' of the subsystems developed in Phase I.
Symmetric time warping, Boltzmann pair probabilities and functional genomics.
Clote, Peter; Straubhaar, Jürg
2006-07-01
Given two time series, possibly of different lengths, time warping is a method to construct an optimal alignment obtained by stretching or contracting time intervals. Unlike pairwise alignment of amino acid sequences, classical time warping, originally introduced for speech recognition, is not symmetric in the sense that the time warping distance between two time series is not necessarily equal to the time warping distance of the reversal of the time series. Here we design a new symmetric version of time warping, and present a formal proof of symmetry for our algorithm as well as for one of the variants of Aach and Church [1]. We additionally design quadratic time dynamic programming algorithms to compute both the forward and backward Boltzmann partition functions for symmetric time warping, and hence compute the Boltzmann probability that any two time series points are aligned. In the future, with the availability of increasingly long and accurate time series gene expression data, our algorithm can provide a sense of biological significance for aligned time points - e.g. our algorithm could be used to provide evidence that expression values of two genes have higher Boltzmann probability (say) in the G1 and S phase than in G2 and M phases. Algorithms, source code and web interface, developed by the first author, are made publicly available via the Boltzmann Time Warping web server at bioinformatics.bc.edu/clotelab/. PMID:16791652
The WARP Code: Modeling High Intensity Ion Beams
Grote, D P; Friedman, A; Vay, J L; Haber, I
2004-12-09
The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.
DigiWarp: a method for deformable mouse atlas warping to surface topographic data
Joshi, Anand A; Chaudhari, Abhijit J; Li, Changqing; Dutta, Joyita; Cherry, Simon R; Shattuck, David W; Toga, Arthur W; Leahy, Richard M
2011-01-01
For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L2 pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder. PMID:20885019
Some examples of image warping for low vision prosthesis
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Loshin, David S.
1988-01-01
NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.
Warped Unification, Proton Stability, and Dark Matter
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Servant, Géraldine
2004-12-01
We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryonnumber and is related to the top quark within the higher-dimensional GUT. A combination of baryonnumber and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10GeV few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.
The Geodesic Motion Near Hypersurfaces in the Warped Products Spacetime
NASA Astrophysics Data System (ADS)
Choi, Jaedong; Kim, Yong-Wan; Park, Young-Jai
2013-09-01
In the framework of Lorentzian multiply warped products we study the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) spacetime near hypersurfaces in the interior of the event horizon. We also investigate the geodesic motion in hypersurfaces.
Star Trek's Lt. Uhura's Warp-Speed Visit to Dryden
Actress Nichelle Nichols warped to many worlds as Lt. Uhura in the 1960s Star Trek TV show. However, her real-life adventures have taken her to where no one has gone before in advocacy for NASA and...
Accelerating Universes from Compactification on a Warped Conifold
Neupane, Ishwaree P.
2007-02-09
We find a cosmological solution corresponding to the compactification of 10D supergravity on a warped conifold that easily circumvents the ''no-go'' theorem given for a warped or flux compactification, providing new perspectives for the study of supergravity or superstring theory in cosmological backgrounds. With fixed volume moduli of the internal space, the model can explain a physical Universe undergoing an accelerated expansion in the 4D Einstein frame, for a sufficiently long time. The solution found in the limit that the warp factor dependent on the radial coordinate y is extremized (giving a constant warping) is smooth and it supports a flat four-dimensional Friedmann-Robertson-Walker cosmology undergoing a period of accelerated expansion with slowly rolling or stabilized volume moduli.
Accelerating universes from compactification on a warped conifold.
Neupane, Ishwaree P
2007-02-01
We find a cosmological solution corresponding to the compactification of 10D supergravity on a warped conifold that easily circumvents the "no-go" theorem given for a warped or flux compactification, providing new perspectives for the study of supergravity or superstring theory in cosmological backgrounds. With fixed volume moduli of the internal space, the model can explain a physical Universe undergoing an accelerated expansion in the 4D Einstein frame, for a sufficiently long time. The solution found in the limit that the warp factor dependent on the radial coordinate y is extremized (giving a constant warping) is smooth and it supports a flat four-dimensional Friedmann-Robertson-Walker cosmology undergoing a period of accelerated expansion with slowly rolling or stabilized volume moduli. PMID:17358928
Cosmic string dynamics and evolution in warped spacetime
Avgoustidis, A.
2008-07-15
We study the dynamics and evolution of Nambu-Goto strings in a warped spacetime, where the warp factor is a function of the internal coordinates giving rise to a ''throat'' region. The microscopic equations of motion for strings in this background include potential and friction terms, which attract the strings towards the bottom of the warping throat. However, by considering the resulting macroscopic equations for the velocities of strings in the vicinity of the throat, we note the absence of enough classical damping to guarantee that the strings actually reach the warped minimum and stabilize there. Instead, our classical analysis supports a picture in which the strings experience mere deflections and bounces around the tip, rather than strongly damped oscillations. Indeed, 4D Hubble friction is inefficient in the internal dimensions and there is no other classical mechanism known, which could provide efficient damping. These results have potentially important implications for the intercommuting probabilities of cosmic superstrings.
Namaste (counterbalancing) technique: Overcoming warping in costal cartilage
Agrawal, Kapil S.; Bachhav, Manoj; Shrotriya, Raghav
2015-01-01
Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage. PMID:26424973
Time Warp Operating System, Version 2.5.1
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; Younger, Herbert C.
1993-01-01
Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.
Electroweak constraints on warped geometry in five dimensions and beyond
NASA Astrophysics Data System (ADS)
Archer, Paul R.; Huber, Stephan J.
2010-10-01
Here we consider the tree level corrections to electroweak (EW) observables from standard model (SM) particles propagating in generic warped extra dimensions. The scale of these corrections is found to be dominated by three parameters, the Kaluza-Klein (KK) mass scale, the relative coupling of the KK gauge fields to the Higgs and the relative coupling of the KK gauge fields to fermion zero modes. It is found that 5D spaces that resolve the hierarchy problem through warping typically have large gauge-Higgs coupling. It is also found in D> 5 where the additional dimensions are warped the relative gauge-Higgs coupling scales as a function of the warp factor. If the warp factor of the additional spaces is contracting towards the IR brane, both the relative gauge-Higgs coupling and resulting EW corrections will be large. Conversely EW constraints could be reduced by finding a space where the additional dimension’s warp factor is increasing towards the IR brane. We demonstrate that the Klebanov Strassler solution belongs to the former of these possibilities.
Three-dimensional warping registration of the pelvis and prostate
NASA Astrophysics Data System (ADS)
Fei, Baowei; Kemper, Corey; Wilson, David L.
2002-05-01
We are investigating interventional MRI guided radio- frequency (RF) thermal ablation for the minimally invasive treatment of prostate cancer. Among many potential applications of registration, we wish to compare registered MR images acquired before and immediately after RF ablation in order to determine whether a tumor is adequately treated. Warping registration is desired to correct for potential deformations of the pelvic region and movement of the prostate. We created a two-step, three-dimensional (3D) registration algorithm using mutual information and thin plate spline (TPS) warping for MR images. First, automatic rigid body registration was used to capture the global transformation. Second, local warping registration was applied. Interactively placed control points were automatically optimized by maximizing the mutual information of corresponding voxels in small volumes of interest and by using a 3D TPS to express the deformation throughout the image volume. Images were acquired from healthy volunteers in different conditions simulating potential applications. A variety of evaluation methods showed that warping consistently improved registration for volume pairs whenever patient position or condition was purposely changed between acquisitions. A TPS transformation based on 180 control points generated excellent warping throughout the pelvis following rigid body registration. The prostate centroid displacement for a typical volume pair was reduced from 3.4 mm to 0.6 mm when warping was added.
Warped Kaluza-Klein reduction from string duality
NASA Astrophysics Data System (ADS)
Schulz, Michael; Tammaro, Elliott
2014-03-01
Virtually all phenomenologically relevant string theory compactifications are of warped type, in which the overall scale factor of 4D spacetime varies over the internal dimensions. However, the procedure for Kaluza-Klein (KK) reduction is more poorly understood for warped compactifications than for standard compactifications. The simplest standard compactifications are compactifications on tori, and the simplest warped compactifications differ from these by the addition of parallel D-branes and O-branes. It is astonishing that a direct derivation of the dimensionally reduced action does not exist even for these simple warped compactifications (which are T-dual to Type I), although the answer is known on supersymmetry grounds. We fill this void. We derive the procedure for the KK reduction of a simple Type IIA warped compactification with D6 branes and O6 planes, via its lift to the standard compactification of M-theory on K3. Our derivation utilizes an approximate K3 metric of Gibbons-Hawking form, which is exactly equivalent to the classical type IIA supergravity description of the warped compactification. This material is based upon work supported by the National Science Foundation under Grant Nos. PHY09-12219 and PHY11-25915.
The curious case of null warped space
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Compère, Geoffrey; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica
2010-11-01
We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second — a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for the entropy of the black holes via Cardy's formula. Finally, we note that the black hole spectrum is chiral and prove a Birkoff theorem showing that there are no other stationary axisymmetric black holes with the specified asymptotics. We extend most of the analysis to a larger family of pp-wave black holes which are related to Schrödinger spacetimes with critical exponent z.
Diphoton resonance from a warped extra dimension
NASA Astrophysics Data System (ADS)
Bauer, Martin; Hörner, Clara; Neubert, Matthias
2016-07-01
We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) < 0 .1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.
Flavor structure of warped extra dimension models
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2005-01-01
We recently showed that warped extra-dimensional models with bulk custodial symmetry and few TeV Kaluza-Klein (KK) masses lead to striking signals at B factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B physics. We also briefly study other new physics signatures that arise in rare K decays (K→πνν), in rare top decays [t→cγ(Z,gluon)], and the possibility of CP asymmetries in D0 decays to CP eigenstates such as KSπ0 and others. Finally we demonstrate that with light KK masses, ˜3 TeV, the above class of models with anarchic 5D Yukawas has a “CP problem” since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal.
CERN LHC signals from warped extra dimensions
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph
2008-01-01
We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton’s constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG≲4TeV, 100fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic “top-jets.” We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z'), due to their “light-fermion-phobic” nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.
Flavor Structure of Warped Extra Dimension Models
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2004-08-10
We recently showed, in hep-ph/0406101, that warped extra dimensional models with bulk custodial symmetry and few TeV KK masses lead to striking signals at B-factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B-physics. We also briefly study other NP signatures that arise in rare K decays (K {yields} {pi}{nu}{nu}), in rare top decays [t {yields} c{gamma}(Z, gluon)] and the possibility of CP asymmetries in D{sup 0} decays to CP eigenstates such as K{sub s}{pi}{sup 0} and others. Finally we demonstrate that with light KK masses, {approx} 3 TeV, the above class of models with anarchic 5D Yukawas has a ''CP problem'' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal.
LHC Signals from Warped Extra Dimensions
Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.
2006-12-06
We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie
2015-05-01
Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.
Frame Shift/warp Compensation for the ARID Robot System
NASA Technical Reports Server (NTRS)
Latino, Carl D.
1991-01-01
The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.
Warped document image correction method based on heterogeneous registration strategies
NASA Astrophysics Data System (ADS)
Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan
2013-03-01
With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.
Constraining the age of the NGC 4565 H I disk WARP: Determining the origin of gas WARPS
Radburn-Smith, David J.; Dalcanton, Julianne J.; Stilp, Adrienne M.; De Jong, Roelof S.; Streich, David; Bell, Eric F.; Monachesi, Antonela; Dolphin, Andrew E.; Holwerda, Benne W.; Bailin, Jeremy
2014-01-01
We have mapped the distribution of young and old stars in the gaseous H I warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ∼300 Myr ago relative to the surrounding regions, is (6.3{sub −1.5}{sup +2.5})×10{sup −5} M {sub ☉} yr{sup –1} kpc{sup –2}. This implies a ∼60 ± 20 Gyr depletion time of the H I warp, similar to the timescales calculated for the outer H I disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color-magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of H I warps and the gas fueling of disk galaxies.
Warping of unsymmetric cross-ply graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Hahn, H. T.
1981-01-01
Warping in unsymmetric graphite/epoxy laminates was studied with particular attention given to the change of residual stresses resulting from long term environmental exposure. Square, cured prepreg sheets were measured for edge deflection with a cathetometer, then quartered and remeasured. Two postcuring durations were then used, 7.5 and one hr at 177 C; varying cooldown rates after curing were used for other samples, and one set was stored in vacuum at 75 C. Maximum deflections and weight changes were measured periodically at room temperature. Average curvatures, the effect of postcure, and the effect of long-term exposure were determined. Larger panels exhibited cylindrical warping and smaller panels underwent anticlastic warping. The deflections were related to weight changes, i.e. moisture absorption, and the lower the moisture content, the higher the deflection. Relaxation of residual stresses at 75 C was neglibible after 220 days.
Holographic entropy of Warped-AdS3 black holes
NASA Astrophysics Data System (ADS)
Donnay, Laura; Giribet, Gaston
2015-06-01
We study the asymptotic symmetries of three-dimensional Warped Anti-de Sitter (WAdS) spaces in three-dimensional New Massive Gravity (NMG). For a specific choice of asymptotic boundary conditions, we find that the algebra of charges is infinite dimensional and coincides with the semidirect sum of Virasoro algebra with non-vanishing central charge and an affine û(1) k Kač-Moody algebra. We show that the WAdS black hole configurations organize in terms of two commuting Virasoro algebras. We identify the Virasoro generators that expand the associated representations in the dual Warped Conformal Field Theory (WCFT) and, by applying the Warped version of the Cardy formula, we prove that the microscopic WCFT computation exactly reproduces the entropy of black holes in WAdS space.
Aspects of warped AdS3/CFT2 correspondence
NASA Astrophysics Data System (ADS)
Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang
2013-04-01
In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.
Two Virasoro symmetries in stringy warped AdS3
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Guica, Monica; Rodriguez, Maria J.
2014-12-01
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS3. Consequently, for each consistent choice of boundary conditions in AdS3, we can define a consistent phase space in warped AdS3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS3; two different types of Virasoro × Kač-Moody symmetries are also consistent alternatives.
A twisted disk equation that describes warped galaxy disks
NASA Technical Reports Server (NTRS)
Barker, K.
1994-01-01
Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.
Torsion of Flanged Members with Cross Sections Restrained Against Warping
NASA Technical Reports Server (NTRS)
Hill, H N
1943-01-01
The longitudinal stresses and the stiffness of flange members - I-beams, channels, and Z-bars - were investigated when these members were subjected to torque with constraint against cross-sectional warping. Measured angles of rotation agreed with corresponding calculated values in which the torsion bending factor of the cross section was involved; the agreement was better for the I-beam and the Z-bar than for the channel. Longitudinal stresses measured at the mid-span were found to agree with the calculated values that involved unit warping as well as the torsion-bending factors: the channel showed the greatest discrepancy between measured and calculated values. When commonly given expressions for rotations and maximum longitudinal stresses in a twisted I-beam were applied to the channel and to the Z-bar, values were obtained that were in reasonably good agreement with values obtained by the method of torsion-bending constant and unit warping.
What causes the warp in the heliospheric current sheet
NASA Technical Reports Server (NTRS)
Wilcox, J. M.; Scherrer, P. H.
1981-01-01
A comparative discussion of the warp in the heliospheric current sheet is presented. Pioneer 10 and 11 data of the interplanetary magnetic field compared with earlier data (Helios 1 and 2) show a good agreement on the phenomenon of the warp; however, the interpretations differ. One theory (Thomas and Smith, 1980) proposes that fast solar wind streams associated with interaction regions may move the current sheet higher to heliospheric latitudes, thus causing the warp; while the earlier theory (1976) adequately explained the phenomenon by using the observed photospheric magnetic field and the Zeeman effect but omitted the solar wind dynamical considerations as part of the computations. It is shown that the Helios data of the polarity of the interplanetary magnetic field are in good agreement with the computed location of the current sheet, confirming the earlier theory.
Human low vision image warping - Channel matching considerations
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Smith, Alan T.; Loshin, David S.
1992-01-01
We are investigating the possibility that a video image may productively be warped prior to presentation to a low vision patient. This could form part of a prosthesis for certain field defects. We have done preliminary quantitative studies on some notions that may be valid in calculating the image warpings. We hope the results will help make best use of time to be spent with human subjects, by guiding the selection of parameters and their range to be investigated. We liken a warping optimization to opening the largest number of spatial channels between the pixels of an input imager and resolution cells in the visual system. Some important effects are not quantified that will require human evaluation, such as local 'squashing' of the image, taken as the ratio of eigenvalues of the Jacobian of the transformation. The results indicate that the method shows quantitative promise. These results have identified some geometric transformations to evaluate further with human subjects.
Some Examples Of Image Warping For Low Vision Prosthesis
NASA Astrophysics Data System (ADS)
Juday, Richard D.; Loshin, David S.
1988-08-01
NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.
A look at dynamic time warping in seismology
NASA Astrophysics Data System (ADS)
Mikesell, T. D.; Malcolm, A. E.; Mordret, A.; Bozdag, E.
2015-12-01
Dynamic time warping (DTW) is a method used to compare two time series. The idea is to search for a warping function that minimizes the misfit between the two time series. In seismology we can use DTW to measure arrival time differences in seismic traces or spatial differences in seismic images. Here we give an overview of the method and applications in seismology. We focus on a coda wave interferometry example and a waveform inversion example. We will cover the advantages of dynamic time warping; for example, DTW has been shown to outperform windowed-cross correlation when the signal-to-noise ratio is low. Finally, we will highlight new directions in which this method may find more application in seismology.
Design of a reading test for low vision image warping
NASA Technical Reports Server (NTRS)
Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.
1993-01-01
NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.
VME rollback hardware for time warp multiprocessor systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1992-01-01
The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.
Validation of a dose warping algorithm using clinically realistic scenarios
Dehghani, H; Green, S; Webster, G J
2015-01-01
Objective: Dose warping following deformable image registration (DIR) has been proposed for interfractional dose accumulation. Robust evaluation workflows are vital to clinically implement such procedures. This study demonstrates such a workflow and quantifies the accuracy of a commercial DIR algorithm for this purpose under clinically realistic scenarios. Methods: 12 head and neck (H&N) patient data sets were used for this retrospective study. For each case, four clinically relevant anatomical changes have been manually generated. Dose distributions were then calculated on each artificially deformed image and warped back to the original anatomy following DIR by a commercial algorithm. Spatial registration was evaluated by quantitative comparison of the original and warped structure sets, using conformity index and mean distance to conformity (MDC) metrics. Dosimetric evaluation was performed by quantitative comparison of the dose–volume histograms generated for the calculated and warped dose distributions, which should be identical for the ideal “perfect” registration of mass-conserving deformations. Results: Spatial registration of the artificially deformed image back to the planning CT was accurate (MDC range of 1–2 voxels or 1.2–2.4 mm). Dosimetric discrepancies introduced by the DIR were low (0.02 ± 0.03 Gy per fraction in clinically relevant dose metrics) with no statistically significant difference found (Wilcoxon test, 0.6 ≥ p ≥ 0.2). Conclusion: The reliability of CT-to-CT DIR-based dose warping and image registration was demonstrated for a commercial algorithm with H&N patient data. Advances in knowledge: This study demonstrates a workflow for validation of dose warping following DIR that could assist physicists and physicians in quantifying the uncertainties associated with dose accumulation in clinical scenarios. PMID:25791569
The origin of the warped heliospheric current sheet
NASA Astrophysics Data System (ADS)
Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.
1980-03-01
The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.
The origin of the warped heliospheric current sheet
NASA Technical Reports Server (NTRS)
Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.
1980-01-01
The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.
The dynamical settling of warped disks and angular momentum transport in galaxies
NASA Technical Reports Server (NTRS)
Fisher, P.
1994-01-01
We present results of three-dimensional, hydrodynamic models of gaseous disks settling in a nonspherical potential. As the gas settles, differential precession creates a warped disk similar to the warps seen in spiral galaxies. A logarithmic potential, indicative of a massive halo, seems to induce warps more extreme than those produced by a l/r potential with a quadrupole distortion.
iDriving (Intelligent Driving)
2012-09-17
iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less
iDriving (Intelligent Driving)
Malikopoulos, Andreas
2012-09-17
iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.
The warped product approach to magnetically charged GMGHS spacetime
NASA Astrophysics Data System (ADS)
Choi, Jaedong
2014-11-01
In the framework of Lorentzian multiply warped products we study the magnetically charged Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) interior spacetime in the string frame. We also investigate geodesic motion in various hypersurfaces, and compare their solutions of geodesic equations with the ones obtained in the Einstein frame.
Self-dual warped AdS3 black holes
NASA Astrophysics Data System (ADS)
Chen, Bin; Ning, Bo
2010-12-01
We study a new class of solutions of three-dimensional topological massive gravity. These solutions can be taken as nonextremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS3 along the U(1)L isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge cL=(4νℓ)/(G(ν2+3)), with which the Cardy formula reproduces the black hole entropy. We compute the real-time correlators of scalar perturbations and find a perfect match with the dual conformal field theory (CFT) predictions. Our study provides a novel example of warped AdS/CFT correspondence: the self-dual warped AdS3 black hole is dual to a CFT with nonvanishing left central charge. Moreover, our investigation suggests that the quantum topological massive gravity asymptotic to the same spacelike warped AdS3 in different consistent ways may be dual to different two-dimensional CFTs.
Wing Warping and Its Impact on Aerodynamic Efficiency
NASA Astrophysics Data System (ADS)
Loh, Ben; Jacob, Jamey
2007-11-01
Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.
10. View of Draper darby chain loom from warp beam ...
10. View of Draper darby chain loom from warp beam end, patent date 1913, made by Drpaer Corporation, Hopedale, Massachusetts. Acquired ca. 1941. Note Draper-Northrop name on automatic spindle changer. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL
... Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people ... Driving: A Threat to Everyone (October 2011) Additional Data Drunk Driving State Data and Maps Motor Vehicle ...
... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...
Chromatographic peak alignment using derivative dynamic time warping.
Bork, Christopher; Ng, Kenneth; Liu, Yinhan; Yee, Alex; Pohlscheidt, Michael
2013-01-01
Chromatogram overlays are frequently used to monitor inter-batch performance of bioprocess purification steps. However, the objective analysis of chromatograms is difficult due to peak shifts caused by variable phase durations or unexpected process holds. Furthermore, synchronization of batch process data may also be required prior to performing multivariate analysis techniques. Dynamic time warping was originally developed as a method for spoken word recognition, but shows potential in the objective analysis of time variant signals, such as manufacturing data. In this work we will discuss the application of dynamic time warping with a derivative weighting function to align chromatograms to facilitate process monitoring and fault detection. In addition, we will demonstrate the utility of this method as a preprocessing step for multivariate model development. PMID:23292764
Warped black holes in 3D general massive gravity
NASA Astrophysics Data System (ADS)
Tonni, Erik
2010-08-01
We study regular spacelike warped black holes in the three dimensional general massive gravity model, which contains both the gravitational Chern-Simons term and the linear combination of curvature squared terms characterizing the new massive gravity besides the Einstein-Hilbert term. The parameters of the metric are found by solving a quartic equation, constrained by an inequality that imposes the absence of closed timelike curves. Explicit expressions for the central charges are suggested by exploiting the fact that these black holes are discrete quotients of spacelike warped AdS 3 and a known formula for the entropy. Previous results obtained separately in topological massive gravity and in new massive gravity are recovered as special cases.
A method and apparatus for sizing and separating warp yarns
Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.
1997-12-01
A slashing process for preparing warp yarns for weaving operations includes the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.
Dynamic time warp pattern matching using an integrated multiprocessing array
Weste, N.; Burr, D.J.; Ackland, B.D.
1983-08-01
Dynamic time warping is a well-established technique for time alignment and comparison of speech and image patterns. This paper describes the architecture, algorithms and design of a CMOS integrated processing array used for computing the dynamic time warp algorithm. Emphasis is placed on speech recognition applications because of the real-time constraints imposed by isolated and continuous speech recognition. High throughput is obtained through the use of extensive pipelining, parallel computation and simultaneous matching of multiple patterns. A realistic speech recognition application based on 40 nine-component linear predictor coefficient (LPC) vectors per word permits 20000 isolated word comparisons per second or, equivalently, real time recognition of a 20000 word vocabulary. The paper also illustrates a trend in IC design in which the architecture of the system leads to an embodiment which far outperforms solutions based on current design methodologies. 27 references.
Development of Warp Yarn Tension During Shedding: A Theoretical Approach
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Chary, Prabhakara; Roy, Sukumar
2015-10-01
Theoretical investigation on the process of development of warp yarn tension during weaving for tappet shedding is carried out, based on the dynamic nature of shed geometry. The path of warp yarn on a weaving machine is divided into four different zones. The tension developed in each zone is estimated for every minute rotation of the bottom shaft. A model has been developed based on the dynamic nature of shed geometry and the possible yarn flow from one zone to another. A computer program, based on the model of shedding process, is developed for predicting the warp yarn tension variation during shedding. The output of the model and the experimental values of yarn tension developed in zone-D i.e. between the back rest and the back lease rod are compared, which shows a good agreement between them. The warp yarn tension values predicted by the model in zone-D are 10-13 % lesser than the experimentally measured values. By analyzing the theoretical data of the peak value of developed yarn tension at four zones i.e. zone-A, zone-B, zone-C and zone-D, it is observed that the peak yarn tension value of A, B, C-zones are much higher than the peak tension near the back rest i.e. at zone-D. It is about twice or more than the yarn tension near the back rest. The study also reveals that the developed yarn tension peak values are different for the extreme positions of a heald. The impact of coefficient of friction on peak value of yarn tension is nominal.
Of warps and woofs: the tapestry of medical education.
Friedman, C P
1993-06-01
The author likens some major aspects of academic medical centers to tightly and carefully woven tapestries. The metaphor is intended to highlight the complexity of medical centers and to help those who are working to promote meaningful and sustainable innovations in medical education. Underlying the presentation is the premise that there already exist several "good ideas" to improve medical education, and that deeper understanding of the barriers to change can promote adoption of these ideas and others. Three tapestries are presented. Each has a vertical "warp" representing one dimension of an academic medical center, and each has a horizontal "woof" representing an interrelated dimension. (In one tapestry, for example, departmental resources constitute the warp and the faculty functions of teaching, research, and service constitute the woof.) In each tapestry, the warp is presently the dominant feature. In each, strengthening or empowering the woof is seen as a step that would facilitate change. Because educational change is a difficult and inevitably slow process, those who work for change are counseled to be patient and have realistic expectations. PMID:8507322
Effective fermion couplings in warped 5D Higgsless theories
NASA Astrophysics Data System (ADS)
Bechi, J.; Casalbuoni, R.; de Curtis, S.; Dominici, D.
2006-11-01
We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the γ3 parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the γ3 parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.
Effective fermion couplings in warped 5D Higgsless theories
Bechi, J.; Casalbuoni, R.; De Curtis, S.; Dominici, D.
2006-11-01
We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the {epsilon}{sub 3} parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the {epsilon}{sub 3} parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.
A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
NASA Technical Reports Server (NTRS)
1987-01-01
Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.
Computer Tensor Codes to Design the War Drive
NASA Astrophysics Data System (ADS)
Maccone, C.
To address problems in Breakthrough Propulsion Physics (BPP) and design the Warp Drive one needs sheer computing capabilities. This is because General Relativity (GR) and Quantum Field Theory (QFT) are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in GR and QFT. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the design of the Warp Drive. It is thus suggested that NASA would be a suitable organization to establish standards in symbolic tensor calculus and anyone working in BPP should adopt these standards. Alternatively other institutions, like CERN in Europe, might consider the challenge of starting the preliminary implementation of a Universal Tensor Code to design the Warp Drive.
Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators
NASA Astrophysics Data System (ADS)
Niu, Hai-Qiang; Zhang, Ren-He; Li, Zheng-Lin; Guo, Yong-Gang; He, Li
2013-08-01
The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.
Evaluation of the Intel iWarp parallel processor for space flight applications
NASA Technical Reports Server (NTRS)
Hine, Butler P., III; Fong, Terrence W.
1993-01-01
The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.
Reduced warp in torsion of reticulated foam due to Cosserat elasticity: experiment
NASA Astrophysics Data System (ADS)
Lakes, Roderic S.
2016-06-01
Warp of cross sections of square section bars in torsion is reduced in Cosserat elasticity in comparison with classical elasticity. Warp is observed experimentally to be substantially reduced, by about a factor of four compared with classical elasticity, in an open-cell polymer foam for which Cosserat elastic constants were previously determined. The observed warp in the foam is consistent with a prediction based on Cosserat elasticity. Concentration of strain in the foam is therefore reduced in comparison with classical elasticity.
Generalized warping effect in the dynamic analysis of beams of arbitrary cross section
NASA Astrophysics Data System (ADS)
Dikaros, I. C.; Sapountzakis, E. J.; Argyridi, A. K.
2016-05-01
In this paper a general formulation for the nonuniform warping dynamic analysis of beams of arbitrary simply or multiply connected cross section, under arbitrary external loading and general boundary conditions is presented taking into account the effects of rotary and warping inertia. The nonuniform warping distributions are taken into account by employing four independent warping parameters multiplying a shear warping function in each direction and two torsional warping functions, respectively, which are obtained by solving the corresponding boundary value problems, formulated exploiting the longitudinal local equilibrium equation. A shear stress "correction" is also performed in order to improve the stress field arising from the employed kinematical considerations. Ten initial boundary value problems are formulated with respect to the displacement and rotation components as well as to the independent warping parameters and solved using the Analog Equation Method, a Boundary Element Method based technique in combination with an appropriate time integration scheme. The warping functions and the geometric constants including the additional ones due to warping are evaluated employing a pure BEM approach.
Surface states in a 3D topological insulator: The role of hexagonal warping and curvature
Repin, E. V.; Burmistrov, I. S.
2015-09-15
We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field is drastically modified.
Formation of warped disks by galactic flyby encounters. I. Stellar disks
Kim, Jeonghwan H.; An, Sung-Ho; Yoon, Suk-Jin; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae
2014-07-01
Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the 'flyby scenario' of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called 'S'-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.
Stone, Wesley W.; Gilliom, Robert J.
2012-01-01
Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.
NASA Astrophysics Data System (ADS)
Casassus, S.; Marino, S.; Pérez, S.; Roman, P.; Dunhill, A.; Armitage, P. J.; Cuadra, J.; Wootten, A.; van der Plas, G.; Cieza, L.; Moral, Victor; Christiaens, V.; Montesinos, Matías
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6-5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.
NASA Astrophysics Data System (ADS)
Hayasaki, K.; Sohn, B. W.; Okazaki, A. T.; Jung, T.; Zhao, G.; Naito, T.
2015-07-01
We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/rlesssim0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ~10-2 pc for 107 Msolar black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.
... combines all three types of distraction. 3 How big is the problem? Deaths In 2013, 3,154 ... European countries. More A CDC study analyzed 2011 data on distracted driving, including talking on a cell ...
... stay safe with a cell phone in the car. ... for Disease Control and Prevention Injury Prevention & Control. Motor Vehicle Safety. www.cdc.gov/motorvehiclesafety/distracted_driving . Accessed May ...
... drivers’ flexibility and coordination, and reduced driving errors. S l Hand grip strengthening to help you hold on to the steering wheel l Shoulder and upper arm flexibility exercises to make ...
Warped dipole completed, with a tower of Higgs bosons
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Azatov, Aleksandr; Cui, Yanou; Randall, Lisa; Son, Minho
2015-06-01
In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation.
Performance of resin transfer molded multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor
TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1
NASA Technical Reports Server (NTRS)
Bellenot, S. F.
1994-01-01
The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed
Orientifolds of warped throats from toric Calabi-Yau singularities
NASA Astrophysics Data System (ADS)
Retolaza, Ander; Uranga, Angel
2016-07-01
We study the complex deformations of orientifolds of D3-branes at toric CY singularities, using their description in terms of dimer diagrams. We describe orientifold quotients that have fixed lines or fixed points in the dimer, and characterize the possibilities to deform them in terms of the behaviour of zig-zag paths under the orientifold symmetry. The resulting models are holographic duals to warped throats with orientifold planes. Our systematic construction provides a general class of configurations which includes models recently appeared in the context of de Sitter uplift by nilpotent goldstino or dynamical supersymmetry breaking.
Evanescent gravitons in warped anti-de Sitter space
NASA Astrophysics Data System (ADS)
Giribet, Gaston; Vásquez, Yerko
2016-01-01
Besides black holes, the phase space of three-dimensional massive gravity about warped anti-de Sitter space contains solutions that decay exponentially in time. They describe evanescent graviton configurations that, while governed by a wave equation with nonvanishing effective mass, do not carry net gravitational energy. Explicit examples of such solutions have been found in the case of topologically massive gravity; here, we generalize them to a much more general ghost-free massive deformation, with the difference being that the decay rate gets corrected due to the presence of higher-order terms.
DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly
DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly
3D volume reconstruction of a mouse brain histological sections using warp filtering
Ju, Tao; Warren, Joe; Carson, James P.; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor
2006-09-30
Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.
Mechanical Analyses of Real Time Warp Yarn Tensions in Size-Free Weaving
Technology Transfer Automated Retrieval System (TEKTRAN)
A 100% cotton, size-less common warp was used to study the real-time tensions of single strands of the warp during weaving on a high-speed weaving machine. The machine was operated under almost mill-like conditions. In order to investigate the independent effects of the weaving speed and fabric cons...
Warping error analysis and reduction for depth-image-based rendering in 3DTV
NASA Astrophysics Data System (ADS)
Do, Luat; Zinger, Sveta; de With, Peter H. N.
2011-03-01
Interactive free-viewpoint selection applied to a 3D multi-view video signal is an attractive feature of the rapidly developing 3DTV media. In recent years, significant research has been done on free-viewpoint rendering algorithms which mostly have similar building blocks. In our previous work, we have analyzed the principal building blocks of most recent rendering algorithms and their contribution to the overall rendering quality. We have discovered that the first step, Warping determines the basic quality level of the complete rendering chain. In this paper, we have analyzed the warping step in more detail since it leads to ways for improvement. We have observed that the accuracy of warping is mainly determined by two factors which are sampling and rounding errors when performing pixel-based warping and quantization errors of depth maps. For each error factor, we have proposed a technique that can reduce the errors and thus increase the warping quality. Pixel-based warping errors are reduced by employing supersampling at the reference and virtual images and we decrease depth map errors by creating depth maps with more quantization levels. The new techniques are evaluated with two series of experiments using real-life and synthetic data. From these experiments, we have observed that reducing warping errors may increases the overall rendering quality and that the impact of errors due to pixel-based warping is much larger than that of errors due to depth quantization.
Stone, Wesley W.; Gilliom, Robert J.
2011-01-01
The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.
NASA Technical Reports Server (NTRS)
Boyer, K. L.; Wuescher, D. M.; Sarkar, S.
1991-01-01
Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.
Adverse effects of template-based warping on spatial fMRI analysis
NASA Astrophysics Data System (ADS)
Ng, Bernard; Abugharbieh, Rafeef; McKeown, Martin J.
2009-02-01
Conventional voxel-based group analysis of functional magnetic resonance imaging (fMRI) data typically requires warping each subject's brain images onto a common template to create an assumed voxel correspondence. The implicit assumption is that aligning the anatomical structures would correspondingly align the functional regions of the subjects. However, due to anatomical and functional inter-subject variability, mis-registration often occurs. Moreover, wholebrain warping is likely to distort the spatial patterns of activation, which have been shown to be important markers of task-related activation. To reduce the amount of mis-registration and distortions, warping at the brain region level has recently been proposed. In this paper, we investigate the effects of both whole-brain and region-level warping on the spatial patterns of activation statistics within certain regions of interests (ROIs). We have chosen to examine the bilateral thalami and cerebellar hemispheres during a bulb-squeezing experiment, as these regions are expected to incur taskrelated activation changes. Furthermore, the appreciable size difference between the thalamus and cerebellum allows for exploring the effects of warping on various ROI sizes. By applying our recently proposed 3D moment-based invariant spatial features to characterize the spatial pattern of fMRI activation statistics, we demonstrate that whole-brain warping generally reduced discriminability of task-related activation differences. Applying the same spatial analysis to ROIs warped at the region level showed some improvements over whole-brain warping, but warp-free analysis resulted in the best performance. We hence suggest that spatial analysis of fMRI data that includes spatial warping to a common space must be interpreted with caution.
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
Particle Motion and Perturbed Dynamical System in Warped Product Spacetimes
NASA Astrophysics Data System (ADS)
Bhattacharya, Pinaki; Guha, Sarbari
2016-07-01
In this paper we have used the dynamical systems analysis to study the dynamics of a five-dimensional universe in the form of a warped product spacetime with a spacelike dynamic extra dimension. We have decomposed the geodesic equations to get the motion along the extra dimension and have studied the associated dynamical system when the cross-diagonal element of the Einstein tensor vanishes, and also when it is non-vanishing. Introducing the concept of an energy function along the phase path in terms of the extra-dimensional coordinate, we have examined how the energy function depends on the warp factor. The energy function serves as a measure of the amount of perturbation of geodesic paths along the extra dimension in the region close to the brane. Then we studied the geodesic motion under a conventional metric perturbation in the form of homothetic motion and conformal motion and examined the nature of critical points for a Mashhoon-Wesson-type metric, for timelike and null geodesics when the cross-diagonal term of the Einstein tensor vanishes. Finally we investigated the motion for null and timelike geodesics under the condition when the cross-diagonal element of the Einstein tensor is non-vanishing and examined the effects of perturbation on the critical points of the dynamical system.
Time warp operating system version 2.7 internals manual
NASA Technical Reports Server (NTRS)
1992-01-01
The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.
Emission Line Profiles of Warped Disks in a Kerr Spacetime
NASA Astrophysics Data System (ADS)
Yang, X. L.; Wang, J. C.
2013-11-01
The computations of emission line profiles of a warped disk around a Kerr black hole are discussed in this paper, which can be divided into two parts. In the first part, the geodesic motion in a Kerr spacetime and its equations with integral forms are presented. The equations are solved with the Weierstrass' elliptic functions and integrals. Making use of the elliptic functions, the Boyer-Lindquist (B-L) coordinates and the affine parameter σ are expressed semi-analytically as the functions of the parameter p. Then a code named ynogk (Yunnan Observatory Geodesic Kerr) is introduced based on the above discussions to calculate the null geodesics fast in a Kerr spacetime. In the second part of the paper, as an application of ynogk, the emission line profiles of a warped disk are investigated in detail. Here the structure model of the disk is specified according to the results of Bardeen and Petterson in 1975, and the line profiles are computed with the ray-tracing method. Finally, the discussions and conclusions of the computing results are presented, which indicate that the line profiles are dependent mainly on the inclination and azimuthal angles of the observer and the index of emissivity, and have the three-horn even multiple-horn structures comparing to those of a standard thin accretion disk.
Warped conformal field theory as lower spin gravity
NASA Astrophysics Data System (ADS)
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Dynamics of warped flux compactifications with backreacting antibranes
NASA Astrophysics Data System (ADS)
Junghans, Daniel
2014-06-01
We revisit the effective low-energy dynamics of the volume modulus in warped flux compactifications with anti-D3-branes in order to analyze the prospects for metastable de Sitter vacua and brane inflation along the lines of KKLT/KKLMMT. At the level of the ten-dimensional supergravity solution, antibranes in flux backgrounds with opposite charge are known to source singular terms in the energy densities of the bulk fluxes, which led to a debate on the consistency of such constructions in string theory. A straightforward yet nontrivial check of the singular solution is to verify that its dimensional reduction in the large-volume limit reproduces the four-dimensional low-energy dynamics expected from known results where the antibranes are treated as a probe. Taking into account the antibrane backreaction in the effective scalar potential, we find that both the volume scaling and the coefficient of the antibrane uplift term are in exact agreement with the probe potential if the singular fluxes satisfy a certain near-brane boundary condition. This condition can be tested explicitly and may thus help to decide whether flux singularities should be interpreted as pathological or benign features of flux compactifications with antibranes. Throughout the paper, we also comment on a number of subtleties related to the proper definition of warped effective field theory with antibranes.
Survival of scalar zero modes in warped extra dimensions
George, Damien P.
2011-05-15
Models with an extra dimension generally contain background scalar fields in a nontrivial configuration, whose stability must be ensured. With gravity present, the extra dimension is warped by the scalars, and the spin-0 degrees of freedom in the metric mix with the scalar perturbations. Where possible, we formally solve the coupled Schroedinger equations for the zero modes of these spin-0 perturbations. When specializing to the case of two scalars with a potential generated by a superpotential, we are able to fully solve the system. We show how these zero modes can be used to construct a solution matrix, whose eigenvalues tell whether a normalizable zero mode exists, and how many negative mass modes exist. These facts are crucial in determining stability of the corresponding background configuration. We provide examples of the general analysis for domain-wall models of an infinite extra dimension and domain-wall soft-wall models. For five-dimensional models with two scalars constructed using a superpotential, we show that a normalizable zero mode survives, even in the presence of warped gravity. Such models, which are widely used in the literature, are therefore phenomenologically unacceptable.
Point-based warping with optimized weighting factors of displacement vectors
NASA Astrophysics Data System (ADS)
Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas
2000-06-01
The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.
Geometric finiteness, holography and quasinormal modes for the warped AdS3 black hole
NASA Astrophysics Data System (ADS)
Gupta, Kumar S.; Harikumar, E.; Sen, Siddhartha; Sivakumar, M.
2010-08-01
We show that there exists a precise kinematical notion of holography for the Euclidean warped AdS3 black hole. This follows from the fact that the Euclidean warped AdS3 black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped AdS3 black hole.
Warped AdS3 , dS3 , and flows from N =(0 ,2 ) SCFTs
NASA Astrophysics Data System (ADS)
O'Colgáin, Eoin
2015-05-01
We present the general form of all timelike supersymmetric solutions to three-dimensional U (1 )3 gauged supergravity, a known consistent truncation of string theory. We uncover a rich vacuum structure, including an infinite class of new timelike-warped AdS3 (Gödel) and timelike-warped dS3 critical points. We outline the construction of supersymmetric flows, driven by irrelevant scalar operators in the SCFT, which interpolate between critical points. For flows from AdS3 to Gödel, the natural candidate for the central charge decreases along the flow. Flows to timelike-warped dS3 exhibit topology change.
Warped AdS3/dipole-CFT duality
NASA Astrophysics Data System (ADS)
Song, Wei; Strominger, Andrew
2012-05-01
String theory contains solutions with {{SL}}( {{2},{R}} ){{R}} × {{U}}{( {1} )_L} -invariant warped AdS3 (WAdS3) factors arising as continuous deformations of ordinary AdS3 factors. We propose that some of these are holographically dual to the IR limits of nonlocal dipole-deformed 2D D-brane gauge theories, referred to as "dipole CFTs". Neither the bulk nor boundary theories are currently well-understood, and consequences of the proposed duality for both sides is investigated. The bulk entropy-area law suggests that dipole CFTs have (at large N) a high-energy density of states which does not depend on the deformation parameter. Putting the boundary theory on a spatial circle leads to closed timelike curves in the bulk, suggesting a relation of the latter to dipole-type nonlocality.
Supersymmetric warped AdS in extended topologically massive supergravity
NASA Astrophysics Data System (ADS)
Deger, N. S.; Kaya, A.; Samtleben, H.; Sezgin, E.
2014-07-01
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS3. This occurs when the coefficient of the Lorentz-Chern-Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves.
B-Factory Signals for a Warped Extra Dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2004-11-01
We study predictions for B physics in a class of warped extra dimension models recently introduced, where few (˜3) TeV Kaluza-Klein masses are consistent with electroweak data due to custodial symmetry. As in the standard model (SM), flavor violations arise due to the heavy top quark leading to striking signals: (i)New physics contributions to ΔF=2 transitions are comparable to the SM, so the success of the SM unitarity triangle fit is a “coincidence.” Thus, clean extractions of unitarity angles are likely to be affected, in addition to O(1) deviation from the SM prediction in Bs mixing. (ii)O(1) deviation from various SM predictions for B→Xsl+l-. (iii)Large mixing-induced CP asymmetry in radiative B decays. Also, the neutron electric dipole moment is roughly 20 times larger than the current bound so that this framework has a “CP problem.”
B-Factory Signals for a Warped Extra Dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh
2005-04-01
I will discuss flavor physics in a warped (curved) extra dimension. In this model, the profiles of fermions in the extra dimension explain hierarchies in fermion masses. Moreover, there is an analog of GIM mechanism with first and second generations resulting in suppressed contributions to flavor changing neutral currents. Just as in the SM, the GIM mechanism is violated by inclusion of the heavy top quark, in turn, leading to striking signals at B-factories such as O(1) effects in semileptonic and radiative B decays and Bsmixing. Remarkably, this model can be interpreted as dual to a 4D composite Higgs model. Thus, the upshot is that a 4D strongly interacting Higgs sector can solve flavor puzzle with suppressed flavor-violation and be tested at B factories.
Warping and interactions of vortices in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Toledo-Solano, M.; Mora-Ramos, M. E.; Figueroa, A.; Rubo, Y. G.
2014-01-01
We investigate the properties of the vortex singularities in two-component exciton-polariton condensates in semiconductor microcavities in the presence of transverse-electric-transverse-magnetic (TE-TM) splitting of the lower polariton branch. This splitting does not change qualitatively the basic (lemon and star) geometry of half-quantum vortices (HQVs), but results in warping of both the polarization field and the supercurrent streamlines around these entities. The TE-TM splitting has a pronounced effect on the HQV energies and interactions, as well as on the properties of integer vortices, especially on the energy of the hedgehog polarization vortex. The energy of this vortex can become smaller than the energies of HQVs. This leads to modification of the Berezinskii-Kosterlitz-Thouless transition from the proliferation of half-vortices to the proliferation of hedgehog-based vortex molecules.
Near-horizon geometry and warped conformal symmetry
NASA Astrophysics Data System (ADS)
Afshar, Hamid; Detournay, Stéphane; Grumiller, Daniel; Oblak, Blagoje
2016-03-01
We provide boundary conditions for three-dimensional gravity including boosted Rindler spacetimes, representing the near-horizon geometry of non-extremal black holes or flat space cosmologies. These boundary conditions force us to make some unusual choices, like integrating the canonical boundary currents over retarded time and periodically identifying the latter. The asymptotic symmetry algebra turns out to be a Witt algebra plus a twisted u(1) current algebra with vanishing level, corresponding to a twisted warped CFT that is qualitatively different from the ones studied so far in the literature. We show that this symmetry algebra is related to BMS by a twisted Sugawara construction and exhibit relevant features of our theory, including matching micro- and macroscopic calculations of the entropy of zero-mode solutions. We confirm this match in a generalization to boosted Rindler-AdS. Finally, we show how Rindler entropy emerges in a suitable limit.
Signals of Warped Extra Dimensions at the LHC
Osland, P.; Pankov, A. A.; Tsytrinov, A. V.; Paver, N.
2010-12-22
We discuss the signatures of the spin-2 graviton excitations predicted by the Randall-Sundrum model with one warped extra dimension, in dilepton and diphoton production at LHC. By using a specific angular analysis, we assess the ranges in mass and coupling constant where such gravitons can be discriminated against competitor spin-1 and spin-0 objects, that potentially could manifest themselves in these processes with the same mass and rate of events. Depending on the value of the coupling constant to quarks and leptons, the numerical results indicate graviton identification mass ranges up to 1.1-2.4 TeV and 1.6-3.2 TeV for LHC nominal energy of 14 TeV and time-integrated luminosity of 10 and 100fb{sup -1}, respectively.
Higgs boson production and decay in 5D warped models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Pourtolami, Nima; Toharia, Manuel
2016-03-01
We calculate the production and decay rates of the Higgs boson at the LHC in the context of general five-dimensional warped scenarios with a spacetime background modified from the usual AdS5 , with Standard Model (SM) fields propagating in the bulk. We extend previous work by considering the full flavor structure of the SM, and thus including all possible flavor effects coming from mixings with heavy fermions. We proceed in three different ways, first by only including two complete Kaluza-Klein (KK) levels (15 ×15 fermion mass matrices), then including three complete KK levels (21 ×21 fermion mass matrices) and finally we compare with the effect of including the infinite (full) KK towers. We present numerical results for the Higgs production cross section via gluon fusion and Higgs decay branching fractions in both the modified metric scenario and in the usual Randall-Sundrum metric scenario.
SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.
2016-01-01
We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.
LHC signals for warped electroweak charged gauge bosons
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Soni, Amarjit
2009-10-01
We study signals at the LHC for the Kaluza-Klein (KK) excitations of electroweak charged gauge bosons in the framework of the standard model (SM) fields propagating in the bulk of a warped extra dimension. Such a scenario can solve both the Planck-weak and flavor hierarchy problems of the SM. There are two such charged states in this scenario with couplings to light quarks and leptons being suppressed relative to those in the SM, whereas the couplings to top/bottom quarks are enhanced, similar to the case of electroweak neutral gauge bosons previously studied. However, unlike the case of electroweak neutral gauge bosons, there is no irreducible QCD background (including pollution from possibly degenerate KK gluons) for decays to top+bottom final states so that this channel is useful for the discovery of the charged states. Moreover, decays of electroweak charged gauge bosons to longitudinal W, Z and Higgs are enhanced just as for the neutral bosons. However, unlike for the neutral gauge bosons, the purely leptonic (and hence clean) decay mode of the WZ is fully reconstructible so that the ratio of the signal to the SM (electroweak) background can potentially be enhanced by restricting to the resonance region more efficiently. We show that such final states can give sensitivity to 2(3) TeV masses with an integrated luminosity of 100(300)fb-1. We emphasize that improvements in discriminating a QCD jet from a highly boosted hadronically decaying W, and a highly boosted top jet from a bottom jet will enhance the reach for these KK particles, and that the signals we study for the warped extra dimensional model might actually be applicable also to a wider class of nonsupersymmetric models of electroweak symmetry breaking.
Electrocardiographic textbooks based on template hearts warped using ultrasonic images.
Arthur, R Martin; Trobaugh, Jason W
2012-09-01
Advances in technology make the application of sophisticated approaches to assessing electrical condition of the heart practical. Estimates of cardiac electrical features inferred from body-surface electrocardiographic (ECG) maps are now routinely found in a clinical setting, but errors in those inverse solutions are especially sensitive to the accuracy of heart model geometry and placement within the torso. The use of a template heart model allows for accurate generation of individualized heart models and also permits effective comparison of inferred electrical features among multiple subjects. A collection of features mapped onto a common template forms a textbook of anatomically specific ECG variability. Our template warping process to individualize heart models based on a template heart uses ultrasonic images of the heart from a conventional, phased-array system. We chose ultrasound because it is nonionizing, less expensive, and more convenient than MR or CT imaging. To find the orientation and position in the torso model of each image, we calibrated the ultrasound probe by imaging a custom phantom consisting of multiple N-fiducials and computing a transformation between ultrasound coordinates and measurements of the torso surface. The template heart was warped using a mapping of corresponding landmarks identified on both the template and the ultrasonic images. Accuracy of the method is limited by patient movement, tracking error, and image analysis. We tested our approach on one normal control and one obese diabetic patient using the mixed-boundary-value inverse method and compared results from both on the template heart. We believe that our novel textbook approach using anatomically specific heart and torso models will facilitate the identification of electrophysiological biomarkers of cardiac dysfunction. Because the necessary data can be acquired and analyzed within about 30 min, this framework has the potential for becoming a routine clinical procedure
Nonlinear spatial warping for between-subjects pedobarographic image registration.
Pataky, T C; Keijsers, N L W; Goulermas, J Y; Crompton, R H
2009-04-01
Foot size and shape vary between individuals and the foot adopts arbitrary stance phase postures, so traditional pedobarographic analyses regionalize foot pressure images to afford homologous data comparison. An alternative approach that does not require explicit anatomical labelling and that is used widely in other functional imaging domains is to register images such that homologous structures optimally overlap and then to compare images directly at the pixel level. Image registration represents the preprocessing cornerstone of such pixel-level techniques, so its performance warrants independent attention. The purpose of this study was to evaluate the performance of four between-subjects warping registration algorithms including: Principal Axes (PA), four-parameter Optimal Scaling (OS4), eight-parameter Optimal Projective (OP8), and locally affine Nonlinear (NL). Fifteen subjects performed 10 trials of self-paced walking, and their peak pressure images were registered within-subjects using an optimal rigid body transformation. The resulting mean images were then registered between-subjects using all four methods in all 210 (15x14) subject combinations. All registration methods improved alignment, and each method performed qualitatively well for certain image pairs. However, only the NL consistently performed satisfactorily because of disproportionate anatomical variation in toe lengths and rearfoot/forefoot width, for example. Using three independent image (dis)similarity metrics, MANOVA confirmed that the NL method yielded superior registration performance (p<0.001). These data demonstrate that nonlinear spatial warping is necessary for robust between-subject pedobarographic image registration and, by extension, robust homologous data comparison at the pixel level. PMID:19112023
A Discussion of Space-Time Metric Engineering
NASA Astrophysics Data System (ADS)
White, Harold G.
2003-11-01
The Alcubierre Warp Drive Metric, wherein a spacecraft can appear to vastly exceed the speed of light without locally ever doing so, derived in [1], is reconsidered. It is shown that the underlying driving physical mechanism (at least in a mathematical sense) is not the expansion/contraction of the space surrounding the spacecraft via the York Time T [2]. Rather, the driving mechanism is a boost that serves as a multiplier of the ship's initial velocity. This effect can in principle be likened to watching a movie in fast-forward. The expansion/contraction of space is merely a side effect of the warp drive's underlying mechanism - that can be viewed as sort of a Doppler effect, or stress/strain on space.
Simulations of the Galactic Centre Stellar Discs In a Warped Disc Origin Scenario
NASA Astrophysics Data System (ADS)
Ulubay-Siddiki, A.; Bartko, H.
2012-07-01
The Galactic Center (GC) hosts a population of young stars some of which seem to form a system of mutually inclined warped discs. While the presence of young stars in the close vicinity of the massive black hole is already problematic, their orbital configuration makes the situation even more puzzling. We present a possible warped disc origin scenario for these stars, which assumes an initially flat accretion disc which develops a warp through Pringle instability, or Bardeen-Petterson Effect. By working out the critical radii and the time scales involved, we argue that disc warping is plausible for GC parameters. We construct time evolution models for such discs considering the discs' self-gravity, and the torques exerted by the surrounding old star cluster. Our simulations suggest that the best agreement for a purely self-gravitating model is obtained for a disc-to-black hole mass ratio of Md/Mbh ~ 0.001.
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Martínez, Cristián; Troncoso, Ricardo
2011-12-01
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the “massive graviton”) is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs
NASA Astrophysics Data System (ADS)
Gammie, Charles F.; Goodman, Jeremy; Ogilvie, Gordon I.
2000-11-01
We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability and investigate its non-linear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the most nearly axisymmetric (low-m) ones. Finally, we offer a simple, somewhat speculative model for the interaction of the parametric instability with the warp. We apply this model to the masing disc in NGC 4258 and show that, provided the warp is not forced too strongly, parametric instability can fix the amplitude of the warp.
X-ray spectropolarimetric signature of a warped disk around a stellar-mass black hole
NASA Astrophysics Data System (ADS)
Cheng, Yifan; Liu, Dan; Nampalliwar, Sourabh; Bambi, Cosimo
2016-06-01
Black holes (BHs) in x-ray binaries are often assumed to be rotating perpendicular to the plane of the accretion disk and parallel to the orbital plane of the binary. While the Bardeen–Petterson effect forces the inner part of the accretion disk to be aligned with the equatorial plane of a spinning BH, the disk may be warped such that the inclination angle of the outer part is different from that of the inner part. In this paper, we identify a possible observational signature of a warped accretion disk in the spectrum of the polarization degree of the continuum. Such a signature would provide direct evidence for the presence of a warped disk and, potentially, even a measure of the warp radius, which, in turn, could be used to infer the viscosity parameter of the disk.
Stone, Wesley W.; Gilliom, Robert J.
2009-01-01
Regression models for predicting atrazine concentrations in streams were updated by incorporating refined annual atrazine-use estimates and by adding an explanatory variable representing annual precipitation characteristics. The updated Watershed Regressions for Pesticides (WARP) models enable improved predictions of specific pesticide-concentration statistics for unmonitored streams. for unmonitored streams. Separate WARP regression models were derived for selected percentiles (5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th and 95th), annual mean, annual maximum, and annual maximum moving-average (21-, 60-, and 90-day durations) concentration statistics. Development of the regression models involved the same model-development data, model-validation data, and regression methods as those used in the original development of WARP. The original WARP models were based on atrazine-use estimates from either 1992 or 1997. This update of the WARP models incorporates annual atrazine-use estimates. In addition, annual precipitation data were evaluated as potential explanatory variables. as potential explanatory variables. The updated WARP models include the same five explanatory variables and transformations that were used in the original WARP models, including the new annual atrazine-use data. The models also include a sixth explanatory variable, total precipitation during May and June of the year of sampling. The updated WARP models account for as much as 82 percent of the variability in the concentration statistics among the 112 sites used for model development, whereas previous WARP models accounted for no more than 77 percent. Concentration statistics predicted by the 95th percentile, annual mean, annual maximum and annual maximum moving-average concentration models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports
NASA Technical Reports Server (NTRS)
Jefferson, David; Beckman, Brian
1986-01-01
This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.
Theoretical analysis of warping operators for non-ideal shallow water waveguides.
Niu, Haiqiang; Zhang, Renhe; Li, Zhenglin
2014-07-01
Signals propagating in waveguides can be decomposed into normal modes that exhibit dispersive characteristics. Based on the dispersion analysis, the warping transformation can be used to improve the modal separability. Different from the warping transformation defined using an ideal waveguide model, an improved warping operator is presented in this paper based on the beam-displacement ray-mode (BDRM) theory, which can be adapted to low-frequency signals in a general shallow water waveguide. For the sake of obtaining the warping operators for the general waveguides, the dispersion formula is first derived. The approximate dispersion relation can be achieved with adequate degree of accuracy for the waveguides with depth-dependent sound speed profiles (SSPs) and acoustic bottoms. Performance and accuracy of the derived formulas for the dispersion curves are evaluated by comparing with the numerical results. The derived warping operators are applied to simulations, which show that the non-linear dispersion structures can be well compensated by the proposed warping operators. PMID:24993195
On the characterization of the Galactic warp in the Gaia era
NASA Astrophysics Data System (ADS)
Abedi, H.; Figueras, F.; Aguilar, L.; Mateu, C.; Romero-Gomez, M.; Lopez-Corredoira, M.; Garzon Lopez, F.
2014-07-01
We explore the possibility of detecting and characterising the warp of the stellar disc of our Galaxy using the synthetic Gaia data and the UCAC4 proper motion catalogue. We develop a new kinematic model for the galactic warp. We generate random realisations of test particles which evolve in a realistic Galactic potential warped adiabatically to various final configurations. The Gaia selection function, its errors model and a realistic 3D extinction map are applied to mimic three tracer populations: OB, A and Red Clump stars. A family of Great Circle Cell Counts (GC3) methods is used. They are ideally suited to find the tilt and twist of a collection of rings, which allow us to detect and measure the warp parameters. Moreover, We look for the kinematic signature of the warp in the μb proper motions of stars as a function of galactic longitude. Using the UCAC4 proper motions, we do not obtain a similar trend as the one we expect from our warp model. We explore a possible source of this discrepancy in terms of systematics caused by a residual spin of the Hipparcos celestial reference frame (HCRF) with respect to the extra-galactic inertial one.
The Warped Plane of the Classical Kuiper Belt
NASA Astrophysics Data System (ADS)
Chiang, Eugene; Choi, Hyomin
2008-07-01
By numerically integrating the orbits of the giant planets and of test particles over a period of four billion years, we follow the evolution of the location of the midplane of the Kuiper belt. The Classical Kuiper belt conforms to a warped sheet that precesses with a 1.9 Myr period. The present-day location of the Kuiper belt plane can be computed using linear secular perturbation theory: the local normal to the plane is given by the theory's forced inclination vector, which is specific to every semimajor axis. The Kuiper belt plane does not coincide with the invariable plane, but deviates from it by up to a few degrees in stable zones. For example, at a semimajor axis of 38 AU, the local Kuiper belt plane has an inclination of 1.9 degrees and a longitude of ascending node of 149.9 degrees when referred to the mean ecliptic and equinox of J2000. At a semimajor axis of 43 AU, the local plane has an inclination of 1.9 degrees and a nodal longitude of 78.3 degrees. Only at infinite semimajor axis does the Kuiper belt plane merge with the invariable plane, whose inclination is 1.6 degrees and nodal longitude is 107.7 degrees. A Classical Kuiper belt object keeps its inclination relative to the Kuiper belt plane nearly constant, even while the plane departs from the trajectory predicted by linear theory. The constancy of relative inclination reflects the undamped amplitude of free oscillation; that is, the homogeneous solution to the forced harmonic oscillator equation retains constant amplitude, even while the inhomogeneous solution cannot be written down accurately because the planetary forcing terms are chaotic. Current observations of Classical Kuiper belt objects are consistent with the plane being warped by the giant planets alone, but the sample size will need to increase by a few times before confirmation exceeds 3σ in confidence. In principle, differences between the theoretically expected plane and the observed plane could be used to infer as yet unseen
HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the
... not drive at times of the day when traffic is heaviest. Do not drive when the weather is bad. Do not drive long distances. Drive only on roads the person is used to. Caregivers should try to lessen ...
Geometric-optical studies for metamaterial representations of curved spacetime
NASA Astrophysics Data System (ADS)
Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-10-01
Metamaterials offer opportunities to explore curved-spacetime scenarios which would otherwise be impractical or impossible to study. These opportunities arise from the formal analogy that exists between light propagation in vacuous curved spacetime and in a certain nonhomogeneous bianisotropic medium, called a Tamm medium. As the science and technology of nanostructured metamaterials continues its rapid development, the practical realization of Tamm mediums is edging ever closer. We considered two particular curved spacetimes associated with: (a) spinning cosmic strings, and (b) the Alcubierre drive. For both examples, a Tamm medium formulation was developed which is asymptotically identical to vacuum and is therefore amenable to physical realization. A study of ray trajectories for both Tamm mediums was undertaken, within the geometric optics regime. For the spinning cosmic string, it was observed that: (i) rays do not cross the string's boundary; (ii) evanescent waves are supported in regions of phase space that correspond to those regions of the string's spacetime wherein closed timelike curves may arise; and (iii) a non-spinning string is nearly invisible whereas a spinning string may be rather more visible. For the Alcubierre drive, it was observed that: (i) ray trajectories are highly sensitive to the magnitude and direction of the warp bubble's velocity, but less sensitive to the thickness of the transition zone between the warp bubble and its background; and (ii) the warp bubble acts as a focusing lens for rays which travel in the same direction as the bubble, especially at high speeds.
Higgs phenomenology in warped extra dimensions with a fourth generation
Frank, Mariana; Korutlu, Beste; Toharia, Manuel
2011-10-01
We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z{yields}bb or Z{yields}{mu}{sup +}{mu}{sup -}. On the other hand, {Delta}F=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b{yields}s{gamma} and {mu}{yields}e{gamma} put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.
Higgs phenomenology in warped extra dimensions with a fourth generation
NASA Astrophysics Data System (ADS)
Frank, Mariana; Korutlu, Beste; Toharia, Manuel
2011-10-01
We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z→bb¯ or Z→μ+μ-. On the other hand, ΔF=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b→sγ and μ→eγ put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.
Axion monodromy inflation with warped KK-modes
NASA Astrophysics Data System (ADS)
Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.
2016-03-01
We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.
Generalized Gravitational Entropy for Warped Anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS3 ) in a consistent truncation of string theory, the so-called S -dual dipole theory. It turns out that the generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3 . Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.
Warped Supersymmetric Unification with Non-Unified Superparticle Spectrum
Nomura, Yasunori; Tucker-Smith, David; Tweedie, Brock
2004-03-16
We present a new supersymmetric extension of the standard model. The model is constructed in warped space, with a unified bulk symmetry broken by boundary conditions on both the Planck and TeV branes. In the supersymmetric limit, the massless spectrum contains exotic colored particles along with the particle content of the minimal supersymmetric standard model (MSSM). Nevertheless, the model still reproduces the MSSM prediction for gauge coupling unification and does not suffer from a proton decay problem. The exotic states acquire masses from supersymmetry breaking, making the model completely viable, but thereis still the possibility that these states will be detected at the LHC. The lightest of these states is most likely A_5^XY, the fifth component of the gauge field associated with the broken unified symmetry. Because supersymmetry is broken on the SU(5)-violating TeV brane, the gaugino masses generated at the TeV scale are completely independent of one another. We explore some of the unusual features that the superparticle spectrum might have as a consequence.
Warped gravitons at the CERN LHC and beyond
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Davoudiasl, Hooman; Perez, Gilad; Soni, Amarjit
2007-08-01
We study the production and decay of Kaluza-Klein (KK) gravitons at the CERN Large Hadron Collider (LHC), in the framework of a warped extra dimension in which the standard model (SM) fields propagate. Such a scenario can provide solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM. In this scenario, the production via qq¯ annihilation and decays to the conventional photon and lepton channels are highly suppressed. However, we show that graviton production via gluon fusion followed by decay to longitudinal Z/W can be significant; vector boson fusion is found to be a subdominant production mode. In particular, the golden ZZ decay mode offers a distinctive 4-lepton signal that could lead to the observation at the LHC with 300fb-1 (SLHC with 3ab-1) of a KK graviton with a mass up to ˜2 (˜3) TeV for the ratio of the AdS5 curvature to the Planck scale modestly above unity. We argue that (contrary to the lore) such a size of the curvature scale can still be within the regime of validity of the framework. Upgrades beyond the SLHC luminosity are required to discover gravitons heavier than ˜4TeV, as favored by the electroweak and flavor precision tests in the simplest such models.
Time-warp invariant pattern detection with bursting neurons
NASA Astrophysics Data System (ADS)
Gollisch, Tim
2008-01-01
Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression.
Overview of WARP: A particle code for heavy ion fusion
NASA Astrophysics Data System (ADS)
Friedman, Alex; Grote, David P.; Callahan, Debra A.; Langdon, A. Bruce; Haber, Irving
1993-02-01
The beams in a heavy ion beam driven inertial fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus, a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3D package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL's planned ILSE experiments, to various 'recirculator' configurations, and to the study of equilibria and equilibration processes. Applications of the 3D package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.
Overview of WARP, a particle code for heavy ion fusion
NASA Astrophysics Data System (ADS)
Friedman, Alex; Grote, David P.; Callahan, Debra A.; Langdon, A. Bruce; Haber, Irving
1993-12-01
The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL's planned ILSE experiments, to various ``recirculator'' configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.
Overview of WARP, a particle code for Heavy Ion Fusion
Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B.; Haber, I.
1993-02-22
The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code`s 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL`s planned ILSE experiments, to various ``recirculator`` configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.
Warped gravitons at the CERN LHC and beyond
Agashe, Kaustubh; Davoudiasl, Hooman; Soni, Amarjit; Perez, Gilad
2007-08-01
We study the production and decay of Kaluza-Klein (KK) gravitons at the CERN Large Hadron Collider (LHC), in the framework of a warped extra dimension in which the standard model (SM) fields propagate. Such a scenario can provide solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM. In this scenario, the production via qq annihilation and decays to the conventional photon and lepton channels are highly suppressed. However, we show that graviton production via gluon fusion followed by decay to longitudinal Z/W can be significant; vector boson fusion is found to be a subdominant production mode. In particular, the golden ZZ decay mode offers a distinctive 4-lepton signal that could lead to the observation at the LHC with 300 fb{sup -1} (SLHC with 3 ab{sup -1}) of a KK graviton with a mass up to {approx}2 ({approx}3) TeV for the ratio of the AdS{sub 5} curvature to the Planck scale modestly above unity. We argue that (contrary to the lore) such a size of the curvature scale can still be within the regime of validity of the framework. Upgrades beyond the SLHC luminosity are required to discover gravitons heavier than {approx}4 TeV, as favored by the electroweak and flavor precision tests in the simplest such models.
Generalized Gravitational Entropy for Warped Anti-de Sitter Space.
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS_{3}) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the generalized gravitational entropy in WAdS_{3} is captured by the least action of a charged particle in WAdS_{3} space, or equivalently, by the geodesic length in an auxiliary AdS_{3}. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS_{3}/CFT_{2} correspondence. PMID:27419559
Ultravisible warped model from flavor triviality and improved naturalness
Delaunay, Cedric; Gedalia, Oram; Lee, Seung J.; Perez, Gilad; Ponton, Eduardo
2011-06-01
A warped extra-dimensional model, where the standard model Yukawa hierarchy is set by UV physics, is shown to have a sweet spot of parameters with improved experimental visibility and possibly naturalness. Upon marginalizing over all the model parameters, a Kaluza-Klein scale of 2.1 TeV can be obtained at 2{sigma} (95.4% C.L.) without conflicting with electroweak precision measurements. Fitting all relevant parameters simultaneously can relax this bound to 1.7 TeV. In this bulk version of the Rattazzi-Zaffaroni shining model, flavor violation is also highly suppressed, yielding a bound of 2.4 TeV. Nontrivial flavor physics at the LHC in the form of flavor gauge bosons is predicted. The model is also characterized by a depletion of the third-generation couplings--as predicted by the general minimal flavor violation framework--which can be tested via flavor precision measurements. In particular, sizable CP violation in {Delta}B=2 transitions can be obtained, and there is a natural region where B{sub s} mixing is predicted to be larger than B{sub d} mixing, as favored by recent Tevatron data. Unlike other proposals, the new contributions are not linked to Higgs or any scalar exchange processes.
Weaving and bonding method to prevent warp and fill distortion
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.
B-factory signals for a warped extra dimension
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2004-08-24
We study predictions for B-physics in a class of models, recently introduced, with a non-supersymmetric warped extra dimension. In these models few ({approx} 3) TeV Kaluza-Klein masses are consistent with electroweak data due to bulk custodial symmetry. Furthermore, there is an analog of GIM mechanism which is violated by the heavy top quark (just as in SM) leading to striking signals at B-factories: (1) New Physics (NP) contributions to {Delta}F = 2 transitions are comparable to SM. This implies that, within this NP framework, the success of the SM unitarity triangle fit is a ''coincidence''. Thus, clean extractions of unitarity angles via e.g. B {yields} {pi}{pi}, {rho}{pi}, {rho}{rho}, DK are likely to be affected, in addition to O(1) deviation from SM prediction in Bs mixing. (2) O(1) deviation from SM predictions for B {yields} X{sub s}{ell}{sup +}{ell}{sup -} in rate as well as in forward-backward and direct CP asymmetry. (3) Large mixing-induced CP asymmetry in radiative B decays, wherein the SM unambiguously predicts very small asymmetries. Also, with KK masses 3 TeV or less, and with anarchic Yukawa masses, contributions to electric dipole moments of the neutron are roughly 20 times larger than the current experimental bound so that this framework has a ''CP problem''.
Wobbling and Precessing Jets from Warped Disks in Binary Systems
NASA Astrophysics Data System (ADS)
Sheikhnezami, Somayeh; Fendt, Christian
2015-12-01
We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion-ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star-disk-jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.
Dynamic Time Warping for coda wave interferometry studies
NASA Astrophysics Data System (ADS)
Mikesell, D.; Malcolm, A. E.; Haney, M. M.; Yang, D.
2014-12-01
Accurate time-shift estimation between arrivals in two seismic traces before and after a small velocity change is crucial for estimating the location and amplitude of the velocity change. Windowed crosscorrelation and trace stretching are two time-domain techniques commonly used to estimate local time shifts between multiply scattered coda signals. These methods can both fail when the induced changes in the scattered wavefield are not simple time shifts. Cycle skipping is an example of one such obstacle. A common approach to mitigate such problems is to choose only part of the coda to analyze. In the work presented here, we implement Dynamic Time Warping (DTW) to search for the time shift at each time sample that globally minimizes the misfit between two seismic traces. We show that DTW is considerably less susceptible to errors in time-shift estimates caused by cycle skipping or disappearance of coda phases due to changes in the physical scattering properties. Our approach provides a new tool to estimate small time shifts in coda and has wide application across many disciplines of seismic monitoring and imaging.
Conserved charges in timelike warped AdS3 spaces
NASA Astrophysics Data System (ADS)
Donnay, L.; Fernández-Melgarejo, J. J.; Giribet, G.; Goya, A.; Lavia, E.
2015-06-01
We consider the timelike version of warped anti-de Sitter space (WAdS), which corresponds to the three-dimensional section of the Gödel solution of four-dimensional cosmological Einstein equations. This geometry presents closed timelike curves (CTCs), which are inherited from its four-dimensional embedding. In three dimensions, this type of solution can be supported without matter provided the graviton acquires mass. Here, among the different ways to consistently give mass to the graviton in three dimensions, we consider the parity-even model known as new massive gravity (NMG). In the bulk of timelike WAdS3 space, we introduce defects that, from the three-dimensional point of view, represent spinning massive particlelike objects. For this type of source, we investigate the definition of quasilocal gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning particlelike defects and compare the result with the one obtained by means of the quasilocal stress tensor. We apply these methods to special limits in which the WAdS3 solutions coincide with locally AdS3 and locally AdS2×R spaces. Finally, we make some comments about the asymptotic symmetry algebra of asymptotically WAdS3 spaces in NMG.
A Defect Localization Procedure Based on Warped Lamb Waves
NASA Astrophysics Data System (ADS)
De Marchi, L.; Marzani, A.; Caporale, S.; Speciale, N.
Passive defect location procedures based on ultrasonic guided waves are widely used for structural health monitoring purposes of plate-like structures. Approaches based on the measured time-of-flight delay of propagating waves recorded at different locations are generally adopted. In these approaches, uncertainties are due to the fixed speed assumed for the incoming waves to convert their time delay in distances. These distances are next used to solve a triangulation scheme that leads to the defect location. In this paper, this inconvenient is avoided by processing the time transient measurements acquired at the different locations with a "Warped Frequency Transform" (WFT) that is capable to reveal the distance travelled by dispersive waves. In fact, by means of the WFT the recorded time waveform is converted into the incipient pulse at a distance from the origin which is proportional to the distance travelled by a mode within the signal, thus fully compensating its dispersive effect. Then, the processed time waveforms recorded from simple sensors can be used for locating defects by means of classical triangulation procedures.
Quantum interest in (3+1)-dimensional Minkowski space
Abreu, Gabriel; Visser, Matt
2009-03-15
The so-called 'quantum inequalities', and the 'quantum interest conjecture', use quantum field theory to impose significant restrictions on the temporal distribution of the energy density measured by a timelike observer, potentially preventing the existence of exotic phenomena such as 'Alcubierre warp drives' or 'traversable wormholes'. Both the quantum inequalities and the quantum interest conjecture can be reduced to statements concerning the existence or nonexistence of bound states for a certain one-dimensional quantum mechanical pseudo-Hamiltonian. Using this approach, we shall provide a simple variational proof of one version of the quantum interest conjecture in (3+1)-dimensional Minkowski space.
Radiation-driven warping of circumbinary disks around eccentric young star binaries
Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya
2014-12-10
We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ☉}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.
Radiation-driven Warping of Circumbinary Disks around Eccentric Young Star Binaries
NASA Astrophysics Data System (ADS)
Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya
2014-12-01
We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ⊙, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.
NASA Astrophysics Data System (ADS)
More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.
2016-01-01
We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.
Evaluation and application of 3D lung warping and registration model using HRCT images
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Chang W.; Reinhardt, Joseph M.; Hoffman, Eric A.
2001-05-01
Image-based study of structure-function relationships is a challenging problem in that the structure or region of interest may vary in position and shape on images captured over time. Such variation may be caused by the change in body posture or the motion of breathing and heart beating. Therefore, the structure or region of interest should be registered before any further regional study can be carried out. In this paper, we propose a novel approach to study the structure-function relationship of ventilation using a previously developed 3D lung warping and registration model. First, we evaluate the effectiveness of the lung warping and registration model using a set of criteria, including apparent lung motion patterns and ground truths. Then, we study the ventilation by integrating the warping model with air content calibration. The warping model is applied to three CT lung data sets, obtained under volume control of FRC, 40% and 75% vital capacity (VC). Dense displacement fields are obtained to represent deformation between different lung volume steps. For any specific region of interest, we first register it between images over time using the dense displacement, and then estimate the corresponding regional inspired air content. Assessments include change of regional volume during inspiration, change of regional air content, and the distribution of regional ventilation. This is the first time that 3D warping of lung images is applied to assess clinically significant pulmonary functions.
Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms
NASA Astrophysics Data System (ADS)
Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien
2014-10-01
Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.
Theory of Band Warping and its Effects on Thermoelectronic Transport Properties
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco
2015-03-01
Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.
Probing the presence of planets in transition discs' cavities via warps: the case of TW Hya
NASA Astrophysics Data System (ADS)
Facchini, Stefano; Ricci, Luca; Lodato, Giuseppe
2014-08-01
We are entering the era in which observations of protoplanetary disc's properties can indirectly probe the presence of massive planets or low-mass stellar companions interacting with the disc. In particular, the detection of warped discs can provide important clues to the properties of the star-disc system. In this paper, we show how observations of warped discs can be used to infer the dynamical properties of the systems. We concentrate on circumbinary discs, where the mass of the secondary can be planetary. First, we provide some simple relations that link the amplitude of the warp in the linear regime to the parameters of the system. Secondly, we apply our method to the case of TW Hya, a transition disc for which a warp has been proposed based on spectroscopic observations. Assuming values for the disc and stellar parameters from observations, we conclude that, in order for a warp induced by a planetary companion to be detectable, the planet mass should be large (Mp ≈ 10-14MJ) and the disc should be viscous (α ≈ 0.15-0.25). We also apply our model to LkCa 15 and T Cha, where a substellar companion has been detected within the central cavity of the transition discs.
Alignment of Quasar Polarizations on Large Scales Explained by Warped Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
The recently discovered alignment of quasar polarizations on very large scales could possibly explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don't fade away during the expansion of the universe. From a non-linear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a "back-reaction" term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order for the metric components and scalar-gauge fields contain $\\varphi$-dependent terms, so the approximate wave solutions are no longer axially symmetric. The disturbances, amplified by the warp factor, can possess extremal values for fixed polar angles. This could explain the two preferred polarization vectors mod $(\\varphi, 90^o)$.
Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation
Rajaratnam, Krishan McLenaghan, Raymond G.
2014-01-15
We study Killing tensors in the context of warped products and apply the results to the problem of orthogonal separation of the Hamilton-Jacobi equation. This work is motivated primarily by the case of spaces of constant curvature where warped products are abundant. We first characterize Killing tensors which have a natural algebraic decomposition in warped products. We then apply this result to show how one can obtain the Killing-Stäckel space (KS-space) for separable coordinate systems decomposable in warped products. This result in combination with Benenti's theory for constructing the KS-space of certain special separable coordinates can be used to obtain the KS-space for all orthogonal separable coordinates found by Kalnins and Miller in Riemannian spaces of constant curvature. Next we characterize when a natural Hamiltonian is separable in coordinates decomposable in a warped product by showing that the conditions originally given by Benenti can be reduced. Finally, we use this characterization and concircular tensors (a special type of torsionless conformal Killing tensor) to develop a general algorithm to determine when a natural Hamiltonian is separable in a special class of separable coordinates which include all orthogonal separable coordinates in spaces of constant curvature.
A sinogram warping strategy for pre-reconstruction 4D PET optimization.
Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido
2016-03-01
A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction. PMID:26126871
CERN LHC signals for warped electroweak neutral gauge bosons
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Perez, Gilad; Si, Zong-Guo; Soni, Amarjit
2007-12-01
We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z' cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2)L×SU(2)R×U(1)X gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to ˜2(3)TeV KK scale with an integrated luminosity of ˜100fb-1 (˜1ab-1). Since current theoretical framework(s) favor KK masses ≳3TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.
Ring Dynamics at Saturn: Wakes, Resonances, Warps and Orbital Migration
NASA Astrophysics Data System (ADS)
Nicholson, Philip D.; Hedman, M. M.; Tiscareno, M. S.; Burns, J. A.; French, R. G.; French, R. G.; Marouf, E. A.; Colwell, J. E.
2012-01-01
In addition to their incomparable beauty in a small telescope, the rings of Saturn have long provided astronomers with a nearby laboratory for developing and testing theories of disk dynamics. After seven years of successful operations, the Cassini orbiter has greatly increased our knowledge of this system, and revealed many new and unexpected phenomena. Ring thicknesses of as little as 5-10 meters are inferred from particle velocity dispersions and from the ubiquitous `self-gravity wakes'. The latter are close cousins of the trailing structures seen in simulations of self-gravitating stellar disks in the 1980s. Two of the 15 or so narrow gaps in the rings are maintained by km-size embedded moonlets; the others remain unexplained though several have edges defined by Lindblad resonances with larger, external satellites. Many gap and ringlet edges are noncircular, exhibiting a surprisingly wide range of perturbations which seem to reflect multiple `normal modes' excited within the rings. Images taken near the Saturnian equinox in mid-2009 under conditions of grazing solar illumination reveal a spiral-shaped warp which extends all the way across the C and D rings. Models of this structure strongly suggest that it is due to an impact on the rings of a cloud of interplanetary debris in September 1983, perhaps due to a disrupted comet like Shoemaker-Levy 9. Although even Cassini is unable to image individual ring particles, the highest resolution images of the A ring show intriguing structures known as `propellers' which appear to be the gravitational signature of large embedded objects, perhaps 100 m in size. Long-term tracking of the largest propellers shows clear evidence for non-keplerian motion, possibly akin to the orbital migration predicted for protoplanets embedded in circumstellar disks.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
Theoretical natural frequencies of the first three modes of torsional vibration of pretwisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.
Effective Hamiltonian for surface states of topological insulator thin films with hexagonal warping
NASA Astrophysics Data System (ADS)
Siu, Zhuo Bin; Tan, Seng Ghee; Jalil, Mansoor B. A.
2016-05-01
The effective Hamiltonian of the surface states on semi-infinite slabs of the topological insulators (TI) Bi2Te3 and Bi2Se3 require the addition of a cubic momentum hexagonal warping term on top of the usual Dirac fermion Hamiltonian in order to reproduce the experimentally measured constant energy contours at intermediate values of Fermi energy. In this work, we derive the effective Hamiltonian for the surface states of a Bi2Se3 thin film incorporating the corresponding hexagonal warping terms. We then calculate the dispersion relation of the effective Hamiltonian and show that the hexagonal warping leads distorts the equal energy contours from the circular cross sections of the Dirac cones.
Design of a reading test for low-vision image warping
NASA Astrophysics Data System (ADS)
Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane
1993-08-01
NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.
The Origin of Warped, Precessing Accretion Disks in X-ray Binaries
NASA Technical Reports Server (NTRS)
Maloney, Philip R.; Begelman, Mitchell C.
1997-01-01
The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.
The WARPS Survey - VIII. Evolution of the galaxy cluster X-ray Luminosity Function
NASA Astrophysics Data System (ADS)
Koens, L. A.; Maughan, B. J.; Jones, L. R.; Ebeling, H.; Horner, D. J.; Perlman, E. S.; Phillipps, S.; Scharf, C. A.
2013-11-01
We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 × 10-14 erg cm-2 s-1, with members out to redshift z ˜ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high-luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ≈ 1.1, as expected in a low-density universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95 per cent level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ≈ 2 × 1043 erg s-1 compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.
Theory of band warping and its effects on thermoelectronic transport properties
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco
2014-04-01
Optical and transport properties of materials depend heavily upon features of electronic band structures in proximity of energy extrema in the Brillouin zone (BZ). Such features are generally described in terms of multidimensional quadratic expansions and corresponding definitions of effective masses. Multidimensional quadratic expansions, however, are permissible only under strict conditions that are typically violated when energy bands become degenerate at extrema in the BZ. Even for energy bands that are nondegenerate at critical points in the BZ there are instances in which multidimensional quadratic expansions cannot be correctly performed. Suggestive terms such as "band warping," "fluted energy surfaces," or "corrugated energy surfaces" have been used to refer to such situations and ad hoc methods have been developed to treat them. While numerical calculations may reflect such features, a complete theory of band warping has not hitherto been developed. We define band warping as referring to band structures that do not admit second-order differentiability at critical points in k space and we develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass. Our theory also accounts for effects of band nonparabolicity and anisotropy, which hitherto have not been precisely distinguished from, if not utterly confused with, band warping. Based on our theory, we develop precise procedures to evaluate band warping quantitatively. As a benchmark demonstration, we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with previous semiempirical models. As an application of major significance to thermoelectricity, we use our theory and angular effective masses to generalize derivations of tensorial transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. From that
Killing-Yano forms and Killing tensors on a warped space
NASA Astrophysics Data System (ADS)
Krtouš, Pavel; KubizÅák, David; Kolář, Ivan
2016-01-01
We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.
Warped AdS3 black holes in higher derivative gravity theories
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Douxchamps, Laure-Anne; Ng, Gim Seng; Zwikel, Céline
2016-06-01
We consider warped AdS3 black holes in generic higher derivatives gravity theories in 2+1 dimensions. The asymptotic symmetry group of the phase space containing these black holes is the semi-direct product of a centrally extended Virasoro algebra and an affine u(1) Kac-Moody algebra. Previous works have shown that in some specific theories, the entropy of these black holes agrees with a Cardy-like entropy formula derived for warped conformal field theories. In this paper, we show that this entropy matching continues to hold for the most general higher derivative theories of gravity. We also discuss the existence of phase transitions.
An arc-length warping algorithm for gesture recognition using quaternion representation.
Cifuentes, Jenny; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio; Boulanger, Pierre
2013-01-01
This paper presents a new algorithm, called Dynamic Arc-Length Warping algorithm (DALW) for hand gesture recognition based on the orientation data. In this algorithm, after calculating the quaternion for each orientation measurement, we use DALW algorithm to obtain a similarity measure between different trajectories. We present the benefits of using quaternion alongside the implementation of Dynamic Arc Length Warping to present an optimized tool for gesture recognition.We show the advantages of this approach compared with other techniques. This tool can be used to distinguish similar and different gestures. An experimental validation is carried out to classify a series of simple human gestures. PMID:24111168
Torsional stresses in box beams with cross sections partially restrained against warping
NASA Technical Reports Server (NTRS)
Ebner, Hans
1934-01-01
The present report gives a method for computing the torsion of boxes with thin shear-resistant or simply tension-resistant walls under any torsional load, support and dimension. The final stress condition is developed from that of a principal system with unconstrained sectional warping corresponding to Bredt's formula and an additional stress condition due to constrained cross-sectional warping. This is computed by means of the deflection condition of the principal system from a statically indeterminate calculation. Conformably, the torsional rigidity of the final system is derived from that of the principal system with unconstrained sectional buckling.
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2016-06-01
We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.
Induced inflation from a 5D purely kinetic scalar field formalism on warped product spaces
NASA Astrophysics Data System (ADS)
Madriz Aguilar, J. E.
2008-01-01
Considering a separable and purely kinetic 5D scalar field we investigate the induction of 4D scalar potentials on a 4D constant foliation on the class of 5D warped product space-times. We obtain a quantum confinement of the inflaton modes given naturally from the model for at least a class of warping factors. We can recover a 4D inflationary scenario where the inflationary potential is geometrically induced from 5D and the effective equation of state in 4D that includes the effect of the inflaton field and the induced matter is Peff≃-ρeff.
Moens, Vince
2014-06-08
The purpose of this guide is to help successive students handle WARP. It outlines the installation of WARP on personal computers as well as super-computers and clusters. It furthermore teaches the reader how to handle the WARP environment and run basic scripts. Lastly it outlines how to execute the current Hollow Electron Beam Lens scripts.
Extended Driving Impairs Nocturnal Driving Performances
Sagaspe, Patricia; Taillard, Jacques; Åkerstedt, Torbjorn; Bayon, Virginie; Espié, Stéphane; Chaumet, Guillaume; Bioulac, Bernard; Philip, Pierre
2008-01-01
Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3–5am, 1–5am and 9pm–5am) on open highway. Fourteen young healthy men (mean age [±SD] = 23.4 [±1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3–5am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1–5am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9pm–5am) driving session. Compared to the reference session (9–10pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited. PMID:18941525
2D warp-and-woof interwoven networks constructed by helical chains with different chirality.
Feng, Yuhua; Guo, Yang; OuYang, Yan; Liu, Zhanquan; Liao, Daizheng; Cheng, Peng; Yan, Shiping; Jiang, Zonghui
2007-09-21
Two unprecedented 2D entangled layers of warp-and-woof threads interwoven by left- and right-handed helical chains, {[Mn(salen)Au(CN)2]4(H2O)}n (salen = N,N'-ethylenebis(salicylideneaminato)) and {Mn(acacen)Ag(CN)2}n (acacen = N,N'-ethylenebis(acetylacetonylideneiminate)) 2, have been synthesized and characterized. PMID:17728880
NASA Astrophysics Data System (ADS)
Cofie, Emmanuel
1993-04-01
A finite element stiffness matrix technique for analyzing thin-walled open isotropic sections subjected to torsional loading is considered in this paper. Such beam sections are widely used for structural components and stiffeners in aerospace and civil engineering applications. The torsional stiffness term in a stiffness matrix for a 12 degree-of-freedom (d.o.f.) beam element called a 'warping superelement' is developed using the differential equation derived by Vlasov. This stiffness matrix term which implicitly includes the effects of warping, is used in the region of the beam where warping is considered critical. The length of this region, which determines the length of the superelement, depends on the geometrical and mechanical properties of the section. Elements outside of this region are considered as conventional Euler-Bernoulli beam elements (with St. Venant torsion). Numerical examples of several thin-walled beams with different torsional restraints are presented. Results obtained using the proposed superelement procedure are compared with theoretical results based on Vlasov, St. Venant, and 2-D finite element analysis. The results indicate good agreement with the Vlasov, and 2-D finite element analysis results, which account for warping.
Effect of perturbative hexagonal warping on quantum capacitance in ultra-thin topological insulators
NASA Astrophysics Data System (ADS)
Menon, Anirudha; Chowdhury, Debashree; Basu, Banasri
2016-04-01
Ultra-thin 3D topological insulators provide a stage to study the surface physics of such materials by minimizing the bulk contribution. Further, the experimentally verified snowflake like structure of the Fermi surface leads to a hexagonal warping term, and this shows it to be a perturbation in the presence of a magnetic field. We find that there are corrections to both energy dispersion and eigenstates which in turn alter the density of states in the presence of a magnetic field. Both the quantum capacitance and the Hall coefficient are evaluated analytically and it is shown here that we recover their established forms along with small corrections which preserve the object of treating hexagonal warping perturbatively. In our approach, the established Hall conductivity expression develops several minute correction terms and thus its behavior remains largely unaffected due to warping. The zero-temperature quantum capacitance exhibits Shubnikov-de Haas oscillations with reduced frequencies, with a lowered average capacitance with increased warping of the Fermi surface, while maintaining the usual amplitudes.
Koh, Yeong Jun; Lee, Chulwoo; Kim, Chang-Su
2015-12-01
We propose a video stabilization algorithm, which extracts a guaranteed number of reliable feature trajectories for robust mesh grid warping. We first estimate feature trajectories through a video sequence and transform the feature positions into rolling-free smoothed positions. When the number of the estimated trajectories is insufficient, we generate virtual trajectories by augmenting incomplete trajectories using a low-rank matrix completion scheme. Next, we detect feature points on a large moving object and exclude them so as to stabilize camera movements, rather than object movements. With the selected feature points, we set a mesh grid on each frame and warp each grid cell by moving the original feature positions to the smoothed ones. For robust warping, we formulate a cost function based on the reliability weights of each feature point and each grid cell. The cost function consists of a data term, a structure-preserving term, and a regularization term. By minimizing the cost function, we determine the robust mesh grid warping and achieve the stabilization. Experimental results demonstrate that the proposed algorithm reconstructs videos more stably than the conventional algorithms. PMID:26394425
NASA Technical Reports Server (NTRS)
Springer, P.
1993-01-01
This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.
Characterizing the Galactic warp with Gaia - I. The tilted ring model with a twist
NASA Astrophysics Data System (ADS)
Abedi, Hoda; Mateu, Cecilia; Aguilar, Luis A.; Figueras, Francesca; Romero-Gómez, Mercè
2014-08-01
We explore the possibility of detecting and characterizing the warp of the stellar disc of our Galaxy using synthetic Gaia data. The availability of proper motions and, for the brightest stars radial velocities, adds a new dimension to this study. A family of Great Circle Cell Counts methods is used. They are ideally suited to find the tilt and twist of a collection of rings, which allow us to detect and measure the warp parameters. To test them, we use random realizations of test particles which evolve in a realistic Galactic potential warped adiabatically to various final configurations. In some cases a twist is introduced additionally. The Gaia selection function, its errors model and a realistic 3D extinction map are applied to mimic three tracer populations: OB, A and red clump stars. We show how the use of kinematics improves the accuracy in the recovery of the warp parameters. The OB stars are demonstrated to be the best tracers determining the tilt angle with accuracy better than ˜0.5 up to Galactocentric distance of ˜16 kpc. Using data with good astrometric quality, the same accuracy is obtained for A-type stars up to ˜13 kpc and for red clump up to the expected stellar cut-off. Using OB stars the twist angle is recovered to within <3° for all distances.
Electrical drive for automobile
Fobbs, H.
1980-09-16
Electrical apparatus for driving an automobile is described that is comprised of a dc motor operationally connected to the rear axle through a drive shaft with the motor energized from storage batteries and recharged from alternators coupled to the drive shaft adjacent a clutch at the rear end of the automobile through an auxiliary drive shaft.
NASA Technical Reports Server (NTRS)
Brissette, R.
1983-01-01
Harmonic drives allow redundancy and high out put torque in small package. If main drive fails, standby drive takes over and produces torque along same axis as main drive. Uses include power units in robot for internal pipeline inspection, manipulators in deep submersible probes or other applications in which redundancy protects against costly failures.
NASA Technical Reports Server (NTRS)
Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.
1976-01-01
A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.
Li, Zhi-Yun; Zhao, Bo; Krasnopolsky, Ruben; Shang, Hsien
2014-10-01
The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores with aligned magnetic fields and rotation axes. A promising way to resolve this so-called 'magnetic braking catastrophe' is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases the rates of angular momentum removal from the pseudodisk by both magnetic torque and outflow, making it easier to form a rotationally supported disk. More importantly, the warping of the pseudodisk out of the disk-forming, equatorial plane greatly reduces the amount of magnetic flux threading the circumstellar, disk-forming region, further promoting disk formation. The beneficial effects of pseudodisk warping can also be achieved by a misalignment between the magnetic field and rotation axis. These two mechanisms of disk formation, enabled by turbulence and field-rotation misalignment respectively, are thus unified. We find that the disks formed in turbulent magnetized cores are rather thick and significantly magnetized. Implications of these findings, particularly for the thick young disk inferred in L1527, are briefly discussed.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo
2014-10-01
The formation of rotationally supported protostellar disks is suppressed in ideal MHD in non-turbulent cores with aligned magnetic fields and rotation axes. A promising way to resolve this so-called "magnetic braking catastrophe" is through turbulence. The reason for the turbulence-enabled disk formation is usually attributed to the turbulence-induced magnetic reconnection, which is thought to reduce the magnetic flux accumulated in the disk-forming region. We advance an alternative interpretation, based on magnetic decoupling-triggered reconnection of severely pinched field lines close to the central protostar and turbulence-induced warping of the pseudodisk of Galli and Shu. Such reconnection weakens the central split magnetic monopole that lies at the heart of the magnetic braking catastrophe under flux freezing. We show, through idealized numerical experiments, that the pseudodisk can be strongly warped, but not completely destroyed, by a subsonic or sonic turbulence. The warping decreases the rates of angular momentum removal from the pseudodisk by both magnetic torque and outflow, making it easier to form a rotationally supported disk. More importantly, the warping of the pseudodisk out of the disk-forming, equatorial plane greatly reduces the amount of magnetic flux threading the circumstellar, disk-forming region, further promoting disk formation. The beneficial effects of pseudodisk warping can also be achieved by a misalignment between the magnetic field and rotation axis. These two mechanisms of disk formation, enabled by turbulence and field-rotation misalignment respectively, are thus unified. We find that the disks formed in turbulent magnetized cores are rather thick and significantly magnetized. Implications of these findings, particularly for the thick young disk inferred in L1527, are briefly discussed.
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
Quasinormal modes of self-dual warped AdS3 black hole in topological massive gravity
NASA Astrophysics Data System (ADS)
Li, Ran; Ren, Ji-Rong
2011-03-01
We consider the scalar, vector and spinor field perturbations in the background of self-dual warped AdS3 black hole of topological massive gravity. The corresponding exact expressions for quasinormal modes are obtained by analytically solving the perturbation equations and imposing the vanishing Dirichlet boundary condition at asymptotic infinity. It is expected that the quasinormal modes agree with the poles of retarded Green’s functions of the CFT dual to self-dual warped AdS3 black hole. Our results provide a quantitative test of the warped AdS/CFT correspondence.
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
Driving and neurodegenerative diseases.
Uc, Ergun Y; Rizzo, Matthew
2008-09-01
The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573
NASA Technical Reports Server (NTRS)
Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)
2011-01-01
A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.
NASA Technical Reports Server (NTRS)
Carter, Edward L. (Inventor)
1987-01-01
The driving and driven members of a magnetic drive are separated by en enlarged gap to provide clearance for a conduit or other member. Flux pins in the gap maintain the torque transmitting capability of the drive. The spacing between two of the flux pins is increased to provide space for the conduit.
NASA Technical Reports Server (NTRS)
Carter, Edward L. (Inventor)
1989-01-01
The driving (30) and driven (32) members of a magnetic drive (20) are separated by an enlarged gap (35) to provide clearance for a conduit (23) or other member. Flux pins (40) in the gap (35) maintain the torque transmitting capability of the drive (20). The spacing between two of the flux pins is increased to provide space for the conduit (23).
Sequential Dependencies in Driving
ERIC Educational Resources Information Center
Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.
2012-01-01
The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…
ERIC Educational Resources Information Center
Rosenblatt, Paul C.
2004-01-01
Secondary analysis of data from 84 people in 2 interview studies shows that some bereaved people grieve actively while driving. The grief can be intense, even years after a death. Grief while driving may erupt spontaneously or be set off by a wide range of reminders. Some bereaved people seem to save their grieving for times when they drive,…
Dawson, Rebekah I.; Murray-Clay, Ruth A.; Fabrycky, Daniel C.
2011-12-10
The vertical warp in the debris disk {beta} Pictoris-an inclined inner disk extending into a flat outer disk-has long been interpreted as the signpost of a planet on an inclined orbit. Direct images spanning 2004-2010 have revealed {beta} Pictoris b, a planet with a mass and orbital distance consistent with this picture. However, it was recently reported that the orbit of planet b is aligned with the flat outer disk, not the inclined inner disk, and thus lacks the inclination to warp the disk. We explore three scenarios for reconciling the apparent misalignment of the directly imaged planet {beta} Pictoris b with the warped inner disk of {beta} Pictoris: observational uncertainty, an additional planet, and damping of planet b's inclination. We find that, at the extremes of the uncertainties, the orbit of {beta} Pictoris b has the inclination necessary to produce the observed warp. We also find that if planet b were aligned with the flat outer disk, it would prevent another planet from creating a warp with the observed properties; therefore planet b itself must be responsible for the warp. Finally, planet b's inclination could have been damped by dynamical friction and still produce the observed disk morphology, but the feasibility of damping depends on disk properties and the presence of other planets. More precise observations of the orbit of planet b and the position angle of the outer disk will allow us to distinguish between the first and third scenarios.
Warp of the ionized gas layer in the outer Galaxy, traced by recombination line observations
NASA Astrophysics Data System (ADS)
Azcárate, I. N.; Cersosimo, J. C.
We report results of H166α recombination line observations from the outer Galaxy in both the Northern and Southern Galactic Plane. The Southern observations were made with the 30 m antenna of the Instituto Argentino de Radioastronomía in Villa Elisa, Buenos Aires, Argentina, and the Northern ones ( more sensitive, high quality observations, performed with an ``state of the art'' receiver) with the 43 m antenna of the National Radio Astronomy Observatory, in Green Bank, West Virginia, USA. >From the two sets of observations we obtain evidence of the warp of the low-density ionized gas layer, traced by the H166α emission in the outer Milky Way, towards positive galactic latitudes in the Northern and towards negative latitudes in the Southern Galaxy. The warp of this tracer qualitatively agrees with that of the HI.
Near-infrared imaging polarimetry of LkCa 15: A possible warped inner disk†
NASA Astrophysics Data System (ADS)
Oh, Daehyeon; Hashimoto, Jun; Tamura, Motohide; Wisniewski, John; Akiyama, Eiji; Currie, Thayne; Mayama, Satoshi; Takami, Michihiro; Thalmann, Christian; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takato, Naruhisa; Terada, Hiroshi; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori
2016-04-01
We present high-contrast H-band polarized intensity images of the transitional disk around the young solar-like star LkCa 15. By utilizing Subaru/HiCIAO for polarimetric differential imaging, the angular resolution and the inner working angle reach 0{^''.}07 and r = 0{^''.}1, respectively. We obtained a clearly resolved gap (width ≲ 27 au) at ˜48 au from the central star. This gap is consistent with images reported in previous studies. We also confirmed the existence of a bright inner disk with a misaligned position angle of 13° ± 4° with respect to that of the outer disk, i.e., the inner disk is possibly warped. The large gap and the warped inner disk both point to the existence of a multiple planetary system with a mass of ≲ 1 MJup.
Stability of warped AdS3 black holes in topologically massive gravity under scalar perturbations
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2013-06-01
We demonstrate that the warped AdS3 black hole solutions of topologically massive gravity are classically stable against massive scalar field perturbations by analyzing the quasinormal and bound state modes of the scalar field. In particular, it is found that although classical superradiance is present it does not give rise to superradiant instabilities. The stability is shown to persist even when the black hole is enclosed by a stationary mirror with Dirichlet boundary conditions. This is a surprising result in view of the similarity between the causal structure of the warped AdS3 black hole and the Kerr spacetime in 3+1 dimensions. This work provides the foundations for the study of quantum field theory in this spacetime.
Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX Experiments
Friedman, A; Cohen, R H; Grote, D P; Vay, J
2007-12-14
This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.
WARP-10; A numerical simulation model for the cylindrical reconnection launcher
Widner, M.M. )
1991-01-01
In this paper a fully self-consistent computer simulation code called WARP-10, used for modelling the Reconnection Launcher, is described. WARP-10 has been compared with various experiments with good agreement for performance and heating. Simulations predict that it is possible to obtain nearly uniform acceleration with high efficiency and low armature heating. There does not appear to be an armature heating limit to velocity provided the armature mass can be sufficiently large. Simulation results are presented which show it is possible to obtain conditions needed for Earth-to-Orbit (ETO) launch applications (4.15 km/s and a 850 kg launch mass). This 3100-stage launcher has an efficiency of 47.2% and a final ohmic energy/kinetic energy - .00146. The mode of launcher operation is similar to a traveling wave induction launcher and is produced by properly timed and tuned discrete stages. Further optimization and much higher velocities appear possible.
Method and apparatus for sizing and separating warp yarns using acoustical energy
Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.
1998-01-01
A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.
Warped Self-Gravitating U(1) Gauge Cosmic Strings in 5D
NASA Astrophysics Data System (ADS)
Slagter, Reinoud J.
2015-01-01
We present a U(1) gauge cosmic string solution on a warped 5-dimensional space time, where we solved the effective 4-dimensional equations modified by the projection of the Weyl tensor on the brane together with the junction and boundary conditions. Where the mass per unit length of the string in the bulk can be of order of the Planck scale, in the brane it will be warped down to unobservable GUT scale. It turns out that the induced 4-dimensional space time does not show asymptotic conical behavior as in the 4D counterpart model. So there is no angle deficit and the space time seems to be unphysical at finite distance from the core of the string. This could explain the absence of observational evidence of the lensing effect cosmic strings would produce and could have consequences for the (2+1)-dimensional related models.
Method and apparatus for sizing and separating warp yarns using acoustical energy
Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.
1998-05-19
A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.
About the automated pattern creation of 3D jacquard double needle bed warp knitted structures
NASA Astrophysics Data System (ADS)
Renkens, W.; Kyosev, Y.
2016-07-01
Three dimensional structures can be produced on jacquard warp knitting machines with double needle bed. This work presents theoretical considerations about the modelling and simulation of these structures. After that a method is described, how to obtain production parameters from the simulation data. The analysis demonstrates, that the automated pattern creation of 3D structures is not always possible and not all mathematical solutions of the problem can be knittable.
NASA Astrophysics Data System (ADS)
Quillen, Alice C.
2016-05-01
Sub-structures such as warps and streams in the vertical distribution of gas and dust can manifest as spiral shaped structures, twists in the velocity field, vertical streaming motions, X-shapes, and quasiperiodic dips in light curves. I will review and contrast physical mechanisms for lifting material out of the mid-plane in galactic and circumstellar disks including instabilities, resonant mechanisms and tidal excitations.
Dirac and scalar particles tunnelling from topological massive warped-AdS3 black hole
NASA Astrophysics Data System (ADS)
Gecim, G.; Sucu, Y.
2015-06-01
We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We show that the tunnelling process may occur, for both Dirac and scalar particles.
Electric versus hydraulic drives
Not Available
1983-01-01
This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.
Robotti, Elisa; Marengo, Emilio; Demartini, Marco
2016-01-01
Hierarchical grid transformation is a powerful hierarchical approach to 2-D map warping, able to model both global and local deformations. The algorithm can be stopped when a desired degree of accuracy in the images alignment is obtained. The deformed image is warped and aligned to the target image using a grid where the number of nodes increases in each step of the algorithm. The numerical optimization of the position of the nodes of the grid can be efficiently solved by genetic algorithms, ensuring the achievement of the optimal position of the nodes with a low computational cost with respect to other methods. Here, the optimization of the position of the nodes is carried out by GENOCOP (genetic algorithm for numerical optimization of constrained problems), refined by the following conjugate gradient optimization step. The modeling of the warped space is then achieved by a spline model where some constraints are introduced in the choice of the nodes that are moved. The whole procedure can be intended as an evolutionary method that models the deformation of the gel map at different levels of detail. PMID:26611415
Strong Field Effects on Emission Line Profiles: Kerr Black Holes and Warped Accretion Disks
NASA Astrophysics Data System (ADS)
Wang, Yan; Li, Xiang-Dong
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Strong Field Effects On Emission Line Profiles: Kerr Black Holes And Warped Accretion Disks
NASA Astrophysics Data System (ADS)
Wang, Yan; Li, X.
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetry of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole. This work was supported by the Natural Science Foundation of China (under grant number 10873008), and the National Basic Research Program of China (973 Program 2009CB824800).
STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS
Wang Yan; Li Xiangdong
2012-01-10
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Preliminary design concepts for command and control modeling using Time Warp/hypercube
NASA Astrophysics Data System (ADS)
Laskowski, S. J.; Nugent, R. O.; Sokol, L. M.
1985-08-01
The objective of this task was to develop and evaluate preliminary design concepts for modeling command and control (C2) on the hypercube parallel processing computer architecture using the associated Time Warp operating system. MITRE performed this task in support of the Army Model Improvement Program (AMIP) Management Office (AMMO) systems research and planning efforts required as part of the development of a new family of Army models. Command and control can be thought of as large complex system of facilities, equipment, communications, procedures, and personnel through which command and control of forces and resources is exercised in performing the missions and functions assigned to them. Modeling C2 provides a means of analyzing the process and the effects of alternative doctrine, tactics, and C2 systems. The size and complexity of the command and control decision process make it difficult to model; simulation is one means of making the modeling problem tractable. The objective of this effort was to develop and evaluate design concepts for modeling command and control on the hypercube parallel processing computer architecture using the associated Time Warp operating system. In particular, the evaluation was to be responsive to two basic questions: Can Time Warp on a hypercub e architecture be used in conjunction with object-oriented techniques to significantly speed up the processing time associated with command and control modeling?
Effective Hamiltonian for surface states of Bi2Te3 nanocylinders with hexagonal warping
NASA Astrophysics Data System (ADS)
Siu, Zhuo Bin; Jalil, Mansoor B. A.; Ghee Tan, Seng
2016-06-01
The three-dimensional topological insulator \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} differs from other topological insulators in the \\text{B}{{\\text{i}}2}\\text{S}{{\\text{e}}3} family in that the effective Hamiltonian of its surface states on a flat semi-infinite slab requires the addition of a cubic momentum hexagonal warping term in order to reproduce the experimentally measured constant energy contours. In this work, we derive the appropriate effective Hamiltonian for the surface states of a \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} cylinder incorporating the corresponding hexagonal warping terms in a cylindrical geometry. We show that at the energy range where the surface states dominate, the effective Hamiltonian adequately reproduces the dispersion relation obtained from a full four-band Hamiltonian which describes both the bulk and surface states. As an example application of our effective Hamiltonian, we study the transmission between two collinear \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} cylinders magnetized in different directions perpendicular to their axes. We show that the hexagonal warping term results in a transmission profile between the cylinders which may be of utility in a multiple state magnetic memory bit.
Kaluza-Klein graviton phenomenology for warped compactifications, and the 750 GeV diphoton excess
NASA Astrophysics Data System (ADS)
Giddings, Steven B.; Zhang, Hao
2016-06-01
A generic prediction of scenarios with extra dimensions accessible in TeV-scale collisions is the existence of Kaluza-Klein excitations of the graviton. For a broad class of strongly warped scenarios one expects to initially find an isolated resonance, whose phenomenology in the simplest cases is described by a simplified model with two parameters, its mass, and a constant Λ with units of mass parametrizing its coupling to the Standard Model stress tensor. These parameters are in turn determined by the geometrical configuration of the warped compactification. We explore the possibility that the 750 GeV excess recently seen in 13 TeV data at ATLAS and CMS could be such a warped Kaluza-Klein graviton, and find a best-fit value Λ ≈60 TeV . We find that while there is some tension between this interpretation and data from 8 TeV and from the dilepton channel at 13 TeV, it is not strongly excluded. However, in the simplest scenarios of this kind, such a signal should soon become apparent in both diphoton and dilepton channels.
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training. PMID:23428447
Motion estimation and compensation based on region-constrained warping prediction
NASA Astrophysics Data System (ADS)
Chang, Dong-Il; Sung, Joon H.; Kim, Jeong K.; Lee, ChoongWoong
1998-01-01
The visually annoying artifacts resulting form block matching algorithm (BMA), blocky artifacts, become noticeable in applications for low bit rates. Warping prediction (WP) based schemes can remove the blocky artifacts of BMA successfully, but they also produce severe prediction errors around the boundaries of moving objects. Since the errors around the boundaries of objects are visually sensitive, they may sometimes look more annoying than blocky artifacts. The lack of ability of modeling motion discontinuities is the major reason of the errors from WP. Motion discontinuities usually exist in practical video sequences, so that it is required to develop a more reliable motion estimation and usually exist in practical video sequences, so that it is required to develop a more reliable motion estimation and compensation scheme for low bit rate applications. In this paper, we propose a new WP scheme, named region constrained warping prediction (RCWP), which places motion discontinuities according to the segmentation results. In RCWP, there is mutual dependency between estimated motion field and segmentation mask. Because of the mutual dependency, an iterative refinement process is also introduced. Experimental results have shown that the proposed algorithm can provide much better subjective and objective performance than the BMA and the conventional warping prediction.
Dressel, Michael O.
1979-01-01
A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.
Magnetostrictive roller drive motor
NASA Astrophysics Data System (ADS)
Vranish, John M.
1992-01-01
A magnetostrictive drive motor is disclosed which has a rotary drive shaft in the form of a drum which is encircled by a plurality of substantially equally spaced roller members in the form of two sets of cones which are in contact with the respective cam surfaces on the inside surface of an outer drive ring. The drive ring is attached to sets of opposing pairs of magnetostrictive rods. Each rod in a pair is mutually positioned end to end within respective energizing coils. When one of the coils in an opposing pair is energized, the energized rod expands while the other rod is caused to contract, causing the drive ring to rock, i.e., rotate slightly in either the clockwise or counterclockwise direction, depending upon which rod in a pair is energized. As the drive ring is activated in repetitive cycles in either direction, one set of drive cones attempts to roll up their respective cam surface but are pinned between the drive shaft drum and the drive ring. As the frictional force preventing sliding builds up, the cones become locked, setting up reaction forces including a tangential component which is imparted to the drive shaft drum to provide a source of motor torque. Simultaneously the other set of cones are disengaged from the drive shaft drum. Upon deactivation of the magnetostrictive rod coils, the force on the drive cones is released, causing the system to return to an initial rest position. By repetitively cycling the energization of the magnetostrictive rods, the drive shaft drum indexes in microradian rotational steps.
Inkster, B; Frier, B M
2013-09-01
The principal safety concern for driving for people treated with insulin or insulin secretagogues is hypoglycaemia, which impairs driving performance. Other complications, such as those causing visual impairment and peripheral neuropathy, are also relevant to medical fitness to drive. Case control studies have suggested that drivers with diabetes pose a modestly increased but acceptable and measurable risk of motor vehicle accidents compared to non-diabetic drivers, but many studies are limited and of poor quality. Factors which have been shown to increase driving risk include previous episodes of severe hypoglycaemia, previous hypoglycaemia while driving, strict glycaemic control (lower HbA1c) and absence of blood glucose monitoring before driving. Impaired awareness of hypoglycaemia may be counteracted by frequent blood glucose testing. The European Union Third directive on driving (2006) has necessitated changes in statutory regulations for driving licences for people with diabetes in all European States, including the UK. Stricter criteria have been introduced for Group 1 vehicle licences while those for Group 2 licences have been relaxed. Insulin-treated drivers can now apply to drive Group 2 vehicles, but in the UK must meet very strict criteria and be assessed by an independent specialist to be issued with a 1-year licence. PMID:23350766
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the
Horrey, William J.; Hoffman, Joshua D.
2015-01-01
Objective In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. Background Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. Method In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone) followed by an area with low demands. A message was made available shortly before the vehicle entered the demand zone. We manipulated the type of driving demands (baseline, narrow lane, pace clock, combined), message format (no message, paragraph, parsed), and the distance from the demand zone when the message was available (near, far). Results In all conditions, drivers started reading messages (drivers’ first glance to the display) before entering or before leaving the demand zone but tended to wait longer when faced with increased driving demands. While reading messages, drivers looked more or less off road, depending on types of driving demands. Conclusions For task initiation, drivers avoid transitions from low to high demands; however, they are not discouraged when driving demands are already elevated. Drivers adjust time-sharing behavior according to driving demands while performing secondary tasks. Nonetheless, such adjustment may be less effective when total demands are high. Application This study helps us to understand a driver’s role as an active controller in the context of distracted driving and provides insights for developing distraction interventions. PMID:25850162
Treu, C.A. Jr.
1999-08-31
A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.
Treu, Jr., Charles A.
1999-08-31
A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.
NASA Technical Reports Server (NTRS)
Packard, D. T.
1982-01-01
A new class of electromechanical actuators is described. These dual drive actuators were developed for the NASA-JPL Galileo Spacecraft. The dual drive actuators are fully redundant and therefore have high inherent reliability. They can be used for a variety of tasks, and they can be fabricated quickly and economically.
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Zaretsky, E. V.
1985-01-01
Traction drives are among the simplest of all speed-changing mechanisms. Because of their simplicity and their ability to smoothly and continuously adjust speed, they are excellent choices for many drive system applications. They have been used in industrial service for more than 100 years. Today's traction drives have power capacities which rival the best gear and belt drives due to modern traction fluids and highly fatigue-resistant bearing steels. This report summarizes methods to analyze and size traction drives. Lubrication principles, contact kinematics, stress, fatigue life, and performance prediction methods are presented. The effects of the lubricant's traction characteristics on life and power loss are discussed. An example problem is given which illustrates the effects of spin on power loss. Loading mechanism design and the design of nonlubricated friction wheels and rings are also treated.
Anatomic standardization: Linear scaling and nonlinear warping of functional brain images
Minoshima, S.; Koeppe, R.A.; Frey, K.A.
1994-09-01
An automated method was proposed for anatomic standardization of PET scans in three dimensions, which enabled objective intersubject and cross-group comparisons of functional brain images. The method involved linear scaling to correct for individual brain size and nonlinear warping to minimize regional anatomic variations among subjects. In the linear-scaling step, the anteroposterior length and width of the brain were measured on the PET images, and the brain height was estimated by a contour-matching procedure using the midsagittal plane. In the nonlinear warping step, individual gray matter locations were matched with those of a standard brain by maximizing correlation coefficients of regional profile curves determined between predefined stretching centers (predominantly in white matter) and the gray matter landmarks. The accuracy of the brain height estimation was compared with skull x-ray estimations, showing comparable accuracy and better reproducibility. Linear-scaling and nonlinear warping methods were validated using ({sup 18}F)fluorodeoxyglucose and ({sup 15}O)water images. Regional anatomic variability on the glucose images was reduced markedly. The statistical significance of activation foci in paired water images was improved in both vibratory and visual activation paradigms. A group versus group comparison following the proposed anatomic standardization revealed highly significant glucose metabolic alterations in the brains of patients with Alzheimer`s disease compared with those of a normal control group. These results suggested that the method is well suited to both research and clinical settings and can facilitate pixel-by-pixel comparisons of PET images. 26 refs., 9 figs., 1 tab.
Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-12-15
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.
Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping
NASA Astrophysics Data System (ADS)
Zhu, Chunmei; Liu, Baojun; Li, Ping
Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.
NASA Astrophysics Data System (ADS)
Chen, Liang; Chang, Kai
We use a variation of the Lifshitz formula to calculate the anisotropic Casimir energy density between two topological insulators in the vacuum. We find that the hexagonal warping effect can induce a Casimir torque between the two topological insulators, Tc ~ sin (6 θ) with twisted angle θ. The maximal Casimir torque at θ = π / 12 is estimated to be ~10-19 N . m / rad for Bi2Te3 on the [111] surface when the distance between the two topological insulators is about 20 nm and the surface areas are taken to be ~ 1 cm2 .
Wave-like warp propagation in circumbinary discs - I. Analytic theory and numerical simulations
NASA Astrophysics Data System (ADS)
Facchini, Stefano; Lodato, Giuseppe; Price, Daniel J.
2013-08-01
In this paper we analyse the propagation of warps in protostellar circumbinary discs. We use these systems as a test environment in which to study warp propagation in the bending-wave regime, with the addition of an external torque due to the binary gravitational potential. In particular, we want to test the linear regime, for which an analytic theory has been developed. In order to do so, we first compute analytically the steady-state shape of an inviscid disc subject to the binary torques. The steady-state tilt is a monotonically increasing function of radius, but misalignment is found at the disc inner edge. In the absence of viscosity, the disc does not present any twist. Then, we compare the time-dependent evolution of the warped disc calculated via the known linearized equations both with the analytic solutions and with full 3D numerical simulations. The simulations have been performed with the PHANTOM smoothed particle hydrodynamics (SPH) code using two million particles. We find a good agreement both in the tilt and in the phase evolution for small inclinations, even at very low viscosities. Moreover, we have verified that the linearized equations are able to reproduce the diffusive behaviour when α > H/R, where α is the disc viscosity parameter. Finally, we have used the 3D simulations to explore the non-linear regime. We observe a strongly non-linear behaviour, which leads to the breaking of the disc. Then, the inner disc starts precessing with its own precessional frequency. This behaviour has already been observed with numerical simulations in accretion discs around spinning black holes. The evolution of circumstellar accretion discs strongly depends on the warp evolution. Therefore, the issue explored in this paper could be of fundamental importance in order to understand the evolution of accretion discs in crowded environments, when the gravitational interaction with other stars is highly likely, and in multiple systems. Moreover, the evolution of
On lateral buckling of end-loaded cantilevers, including the effect of warping stiffness
NASA Astrophysics Data System (ADS)
Reissner, E.; Reissner, J. E.; Wan, F. Y. M.
1987-06-01
We investigate the numerical consequences of the presence of certain non-linear terms in the expressions for the components of transverse shearing strain which occur in the derivation of one-dimensional equations for small finite deflections of straight beams from three-dimensional finite elasticity through use of the principle of minimum potential energy. While particular emphasis is placed on the effect of warping stiffness, the paper also includes results of interest in connection with the classical Michell-Prandtl-analysis of lateral buckling of endloaded cantilevers. Comprehensive numerical results are obtained for the entire range of the relevant dimensionless parameters, using power series, asymptotic expansion and modern numerical methods procedures.
3 users abandon plastic rooftop-sprinkler systems: say sun warps and cracks pipes
Galvin, C.
1982-05-03
Cold temperature and exposure to the sun have cracked and warped plastic piping used for rooftop sprinklers and caused some users to remove the systems they hoped would reduce cooling costs. Manufacturers of the polyvinyl chloride (PVC) pipe, however, claim the cracking was due to improper draining. Copper tubing can be used, but at a 20 to 50% increase in cost. Chemical treatment to repel ultraviolet rays must be used on PVC piping to withstand sunlight. Several users report their experiences with rooftop sprinkling systems. (DCK)
Time-dependent gravitating solitons in five-dimensional warped space-times
Giovannini, Massimo
2007-12-15
Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for a fixed value of the conformal time coordinate. Time-dependent solutions containing both topological and nontopological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multisoliton solutions may describe time-dependent kink-antikink system000.
Radiative corrections to the lightest neutral Higgs mass in warped supersymmetry
Bhattacharyya, Gautam; Ray, Tirtha Sankar
2008-10-01
We compute radiative correction to the lightest neutral Higgs mass (m{sub h}) induced by the Kaluza-Klein (KK) towers of fermions and sfermions in a minimal supersymmetric scenario embeded in a 5-dimensional warped space. The Higgs is confined to the TeV brane. The KK spectra of matter supermultiplets is tied to the explanation of the fermion mass hierarchy problem. We demonstrate that for a reasonable choice of extra-dimensional parameters, the KK-induced radiative correction can enhance the upper limit on m{sub h} by as much as 100 GeV beyond the 4d limit of 135 GeV.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
NASA Astrophysics Data System (ADS)
Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.
2016-09-01
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
NASA Astrophysics Data System (ADS)
Fedorova , E.; Vasylenko, A.; Hnatyk, B. I.; Zhdanov, V. I.
2016-02-01
We analyze the X-ray properties of the Compton-thick Seyfert 1.9 radio quiet AGN in NGC 1194 using INTEGRAL (ISGRI), XMM-Newton (EPIC), Swift (BAT and XRT), and Suzaku (XIS) observations. There is a set of Fe-K lines in the NGC 1194 spectrum with complex relativistic profiles that can be considered as a sign of either a warped Bardeen-Petterson accretion disk or double black hole. We compare our results on NGC 1194 with two other megamaser warped disk candidates, NGC 1068 and NGC 4258, to trace out the other properties which can be typical for AGNs with warped accretion disks. To finally confirm or disprove the double black-hole hypotheses, further observations of the iron lines and their evolution of their shape with time are necessary. Based on obsrvations made with INTEGRAL, XMM-Newton, Swift, Suzaku.
Buckley, Christopher D
2012-01-01
The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211
Buckley, Christopher D.
2012-01-01
The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS
Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander
2013-12-16
To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.
NASA Technical Reports Server (NTRS)
Vanderspiegel, Jan
1994-01-01
This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.
Owsley, Cynthia; McGwin, Gerald
2010-01-01
Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907
NASA Technical Reports Server (NTRS)
Calvert, J. A. (Inventor)
1980-01-01
A drive system characterized by a base supporting a pair of pillars arranged in spaced parallelism, a shaft extended between and supported by the pillars for rotation about the longitudinal axis thereof, a worm gear affixed to the shaft and supported in coaxial relation therewith is described. A bearing housing of a sleeve like configuration is concentrically related to the shaft and is supported thereby for free rotation. A first and a second quiescent drive train, alternatively activatable, is provided for imparting rotation into said bearing housing. Each of the drive trains is characterized by a selectively energizable motor connected to a spur gear.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.
... getting more dangerous include: Getting lost on familiar roads Reacting more slowly in traffic Driving too slowly ... attention to traffic signs Taking chances on the road Drifting into other lanes Getting more agitated in ...
Hawke, Basil C.
1986-01-01
A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.
NASA Technical Reports Server (NTRS)
Graham, S.
1979-01-01
The program description and user's guide for the Downlist Requirement Integrated Verification and Evaluation (DRIVE) program is provided. The program is used to compare existing telemetry downlist files with updated downlist requirements.
... drivers. Do not use cell phones for talking, texting, or email when you are driving. Mobile phones ... pull off of the road before answering or texting. Other tips include: Avoid putting on makeup while ...
Chilton, Sven H.
2008-04-15
The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.
Chilton, Sven H.
2008-03-01
The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Servant, Géraldine
2005-02-01
In the past year, a new non-supersymmetric framework for electroweak symmetry breaking (with or without Higgs) involving SU(2)L × SU(2)R × U(1)B-L in higher dimensional warped geometry has been suggested. In this work, we embed this gauge structure into a GUT such as SO(10) or Pati Salam. We showed recently (in hep-ph/0403143) that in a warped GUT, a stable Kaluza Klein fermion can arise as a consequence of imposing proton stability. Here, we specify a complete realistic model where this particle is a weakly interacting right-handed neutrino, and present a detailed study of this new dark matter candidate, providing relic density and detection predictions. We discuss phenomenological aspects associated with the existence of other light ({\\lesssim }\\mathrm {TeV} ) KK fermions (related to the neutrino), whose lightness is a direct consequence of the top quark's heaviness. The AdS/CFT interpretation of this construction is also presented. Most of our qualitative results do not depend on the nature of the breaking of the electroweak symmetry provided that it happens near the TeV brane.
Novel methods in the Particle-In-Cell accelerator Code-Framework Warp
Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.
2012-12-26
The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.
A nonlinear theory for spinning anisotropic beams using restrained warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1993-01-01
A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.
Scalar field localization on 3-branes placed at a warped resolved conifold
Silva, J. E. G.; Almeida, C. A. S.
2011-10-15
We have studied the localization of a scalar field on a 3-brane embedded in a six-dimensional warped bulk of the form M{sub 4}xC{sub 2}, where M{sub 4} is a 3-brane and C{sub 2} is a 2-cycle of a six-dimensional resolved conifold C{sub 6} over a T{sup 1,1} space. Since the resolved conifold is singularity-free in r=0 depending on a resolution parameter a, we have analyzed the behavior of the localization of a scalar field when we vary the resolution parameter. On one hand, this enables us to study the effects that a singularity has on the field. On the other hand we can use the resolution parameter as a fine-tuning between the bulk Planck mass and 3-brane Planck mass and so it opens a new perspective to extend the hierarchy problem. Using a linear and a nonlinear warp factor, we have found that the massive and massless modes are trapped to the brane even in the singular cone (a{ne}0). We have also compared the results obtained in this geometry and those obtained in other six-dimensional models, such as stringlike geometry and cigarlike universe geometry.
Gravitational backreaction of anti-D branes in the warped compactification
NASA Astrophysics Data System (ADS)
Koyama, Kayoko; Koyama, Kazuya
2005-09-01
We derive a low-energy effective theory for gravity with anti-D branes, which are essential to get de Sitter solutions in the type IIB string-warped compactification, by taking account of gravitational backreactions of anti-D branes. In order to see the effects of the self-gravity of anti-D branes, a simplified model is studied where a five-dimensional anti-de Sitter (AdS) spacetime is realized by the bulk cosmological constant and the 5-form flux, and anti-D branes are coupled to the 5-form field by Chern Simon terms. The AdS spacetime is truncated by introducing UV and IR cut-off branes like the Randall Sundrum model. We derive an effective theory for gravity on the UV brane and reproduce the familiar result that the tensions of the anti-D branes give potentials suppressed by the fourth power of the warp factor at the location of the anti-D branes. However, in this simplified model, the potential energy never inflates the UV brane, although the anti-D branes are inflating. The UV brane is dominated by dark radiation coming from the projection of the five-dimensional Weyl tensor, unless the moduli fields for the anti-D branes are stabilized. We comment on the possibility of avoiding this problem in a realistic string theory compactification.
A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces
Tosun, Duygu; Prince, Jerry L.
2008-01-01
Spatial normalization is frequently used to map data to a standard coordinate system by removing inter-subject morphological differences, thereby allowing for group analysis to be carried out. The work presented in this paper is motivated by the need for an automated cortical surface normalization technique that will automatically identify homologous cortical landmarks and map them to the same coordinates on a standard manifold. The geometry of a cortical surface is analyzed using two shape measures that distinguish the sulcal and gyral regions in a multi-scale framework. A multichannel optical flow warping procedure aligns these shape measures between a reference brain and a subject brain, creating the desired normalization. The partial differential equation that carries out the warping is implemented in a Euclidean framework in order to facilitate a multi-resolution strategy, thereby permitting large deformations between the two surfaces. The technique is demonstrated by aligning 33 normal cortical surfaces and showing both improved structural alignment in manually labeled sulci and improved functional alignment in positron emission tomography data mapped to the surfaces. A quantitative comparison between our proposed surface-based spatial normalization method and a leading volumetric spatial normalization method is included to show that the surface-based spatial normalization performs better in matching homologous cortical anatomies. PMID:19033090
Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-09-19
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2007-02-27
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-07-11
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2006-10-10
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Chapellier, R.A.
1960-05-24
BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Moore, E. A.
1987-01-01
The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.
Diels, Cyriel; Bos, Jelte E
2016-03-01
This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels. PMID:26446454
Classen, Sherrilene; Uc, Ergun Y.
2012-01-01
ABSTRACT The growing literature on driving in Parkinson disease (PD) has shown that driving is impaired in PD compared to healthy comparison drivers. PD is a complex neurodegenerative disorder leading to motor, cognitive, and visual impairments, all of which can affect fitness to drive. In this review, we examined studies of driving performance (on-road tests and simulators) in PD for outcome measures and their predictors. We searched through various databases and found 25 (of 99) primary studies, all published in English. Using the American Academy of Neurology criteria, a study class of evidence was assigned (I–IV, I indicating the highest level of evidence) and recommendations were made (Level A: predictive or not; B: probably predictive or not; C: possibly predictive or not; U: no recommendations). From available Class II and III studies, we identified various cognitive, visual, and motor measures that met different levels of evidence (usually Level B or C) with respect to predicting on-road and simulated driving performance. Class I studies reporting Level A recommendations for definitive predictors of driving performance in drivers with PD are needed by policy makers and clinicians to develop evidence-based guidelines. PMID:23150533
Hydraulic drive system prevents backlash
NASA Technical Reports Server (NTRS)
Acord, J. D.
1965-01-01
Hydraulic drive system uses a second drive motor operating at reduced torque. This exerts a relative braking action which eliminates the normal gear train backlash that is intolerable when driving certain heavy loads.
Family Influences and Unconscious Drives.
ERIC Educational Resources Information Center
English, Fanita
2001-01-01
Drives for survival, expression, and quiescence influence early human development and continue to influence career development throughout life. Turmoil may arise when a drive conflicts with others or is suppressed by other drives. (SK)
Paxion, Julie; Galy, Edith; Berthelon, Catherine
2014-01-01
The aim of this review is to identify the most representative measures of subjective and objective mental workload in driving, and to understand how the subjective and objective levels of mental workload influence the performance as a function of situation complexity and driving experience, i.e., to verify whether the increase of situation complexity and the lack of experience increase the subjective and physiological levels of mental workload and lead to driving performance impairments. This review will be useful to both researchers designing an experimental study of mental workload and to designers of drivers’ training content. In the first part, we will broach the theoretical approach with two factors of mental workload and performance, i.e., situation complexity and driving experience. Indeed, a low complex situation (e.g., highways), or conversely a high complex situation (e.g., town) can provoke an overload. Additionally, performing the driving tasks implies producing a high effort for novice drivers who have not totally automated the driving activity. In the second part, we will focus on subjective measures of mental workload. A comparison of questionnaires usually used in driving will allow identifying the most appropriate ones as a function of different criteria. Moreover, we will review the empirical studies to verify if the subjective level of mental workload is high in simple and very complex situations, especially for novice drivers compared to the experienced ones. In the third part, we will focus on physiological measures. A comparison of physiological indicators will be realized in order to identify the most correlated to mental workload. An empirical review will also take the effect of situation complexity and experience on these physiological indicators into consideration. Finally, a more nuanced comparison between subjective and physiological measures will be established from the impact on situation complexity and experience. PMID:25520678
NASA Astrophysics Data System (ADS)
Yin, Shaoyu; Wang, Bin; Mann, Robert; Lee, Chong Oh; Lin, Chi-Yong; Su, Ru-Keng
2010-09-01
We investigate the stability of a new warped black string with nontrivial topologies in five-dimensional anti-de Sitter spacetime. After studying the linear gravitational perturbation, we find that this black string is unstable when the Kaluza-Klein mass falls in a certain range, and the instability exists for all topological spacetimes.
Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.
2013-01-01
Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PET image datasets.wo normal human male subjects were sequentially imaged with PET and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PET images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology.here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains.he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure.his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less
Driving Anger and Driving Behavior in Adults with ADHD
ERIC Educational Resources Information Center
Richards, Tracy L.; Deffenbacher, Jerry L.; Rosen, Lee A.; Barkley, Russell A.; Rodricks, Trisha
2006-01-01
Objective: This study assesses whether anger in the context of driving is associated with the negative driving outcomes experienced by individuals with ADHD. Method: ADHD adults (n = 56) complete measures of driving anger, driving anger expression, angry thoughts behind the wheel, and aggressive, risky, and crash-related behavior. Results are…
Sullman, Mark J M; Stephens, Amanda N; Yong, Michelle
2014-10-01
The present study examined the types of situations that cause Malaysian drivers to become angry. The 33-item version of the driver anger scale (Deffenbacher et al., 1994) was used to investigate driver anger amongst a sample of 339 drivers. Confirmatory factor analysis showed that the fit of the original six-factor model (discourtesy, traffic obstructions, hostile gestures, slow driving, illegal driving and police presence), after removing one item and allowing three error pairs to covary, was satisfactory. Female drivers reported more anger, than males, caused by traffic obstruction and hostile gestures. Age was also negatively related to five (discourtesy, traffic obstructions, hostile gestures, slow driving and police presence) of the six factors and also to the total DAS score. Furthermore, although they were not directly related to crash involvement, several of the six forms of driving anger were significantly related to the crash-related conditions of: near misses, loss of concentration, having lost control of a vehicle and being ticketed. Overall the pattern of findings made in the present research were broadly similar to those from Western countries, indicating that the DAS is a valid measure of driving anger even among non-European based cultures. PMID:24863369
Lemaire-Hurtel, Anne-Sophie; Goullé, Jean-Pierre; Alvarez, Jean-Claude; Mura, Patrick; Verstraete, Alain G
2015-10-01
Some drugs are known to impair driving because they can change the vision or hearing, and/or disrupt the intellectual or motor abilities: impaired vigilance, sedation, disinhibition effect, the coordination of movement disorders and the balance. The doctor during prescribing and the pharmacist during deliverance of drug treatment should inform their patients of the potential risks of drugs on driving or operating machinery. The driver has direct responsibility, who hired him and him alone, to follow the medical advice received. The pictograms on the outer packaging of medicinal products intended to classify substances according to their risk driving: The driver can whether to observe simple precautions (level one "be prudent"), or follow the advice of a health professional (level two "be very careful"), or if it is totally not drive (level three "danger caution: do not drive"). This classification only evaluates the intrinsic danger of drugs but not the individual variability. Medicines should be taken into account also the conditions for which the medication is prescribed. It is important to inform the patient on several points. PMID:25956300
Smale, Charles H.
1981-01-01
A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.
2012-03-16
U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize
Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC
2007-11-02
Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.
NASA Astrophysics Data System (ADS)
Lee, Tzuo-Chang; Chen, Di
1987-01-01
We present in this paper an overview of Optotech's 5984 Optical Disk Drive. Key features such as the modulation code, the disk format, defect mapping scheme and the optical head and servo subsystem will be singled out for discussion. Description of Optotech's 5984 disk drive The Optotech 5984 optical disk drive is a write-once-read-mostly (WORM) rotating optical memory with 200 Megabyte capacity on each side of the disk. It has a 5 1/4 inch form factor that will fit into any personal computer full-height slot. The drive specification highlights are given in Table 1. A perspective view of the drive mechanical assembly is shown in Figure 1. The spindle that rotates the disk has a runout of less than 10 um. The rotational speed at 1200 revolutions per minute (rpm) is held to an accuracy of 10-3. The total angular tolerance from perfect perpendicular alignment between the rotating disk and the incident optical beam axis is held to less than 17 milliradians. The coarse seek is accomplished through a stepping motor driving the optical head with 1.3 milliseconds per step or 32 tracks per step. The analog channels including read/write, the phase lock loop and the servo loops for focus and track control are contained on one surface mount pc board while the digital circuitry that interfaces with the drive and the controller is on a separate pc board. A microprocessor 8039 is used to control the handshake and the sequence of R/W commands. A separate power board is used to provide power to the spindle and the stepping motors. In the following we will discuss some of the salient features in the drive and leave the details to three accompanying Optotech papers. These salient features are derived from a design that is driven by three major considerations. One is precise control of the one micron diameter laser spot to any desired location on the disk. The second consideration is effective management of media defects. Given the state of the art of the Te-based disk technology with
Chapellier, R.A.; Rogers, I.
1961-06-27
Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.
Superluminal subway: The Krasnikov tube
NASA Astrophysics Data System (ADS)
Everett, Allen E.; Roman, Thomas A.
1997-08-01
The ``warp drive'' metric recently presented by Alcubierre has the problem that an observer at the center of the warp bubble is causally separated from the outer edge of the bubble wall. Hence such an observer can neither create a warp bubble on demand nor control one once it has been created. In addition, such a bubble requires negative energy densities. One might hope that elimination of the first problem might ameliorate the second as well. We analyze and generalize a metric, originally proposed by Krasnikov for two spacetime dimensions, which does not suffer from the first difficulty. As a consequence, the Krasnikov metric has the interesting property that, although the time for a one-way trip to a distant star cannot be shortened, the time for a round trip, as measured by clocks on Earth, can be made arbitrarily short. In our four-dimensional extension of this metric, a ``tube'' is constructed along the path of an outbound spaceship, which connects the Earth and the star. Inside the tube spacetime is flat, but the light cones are opened out so as to allow superluminal travel in one direction. We show that, although a single Krasnikov tube does not involve closed timelike curves, a time machine can be constructed with a system of two nonoverlapping tubes. Furthermore, it is demonstrated that Krasnikov tubes, like warp bubbles and traversable wormholes, also involve unphysically thin layers of negative energy density, as well as large total negative energies, and, therefore, probably cannot be realized in practice.
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the
Balaji, S. M.
2015-01-01
Orbital floor reconstruction is the most challenging component in the midfacial trauma management. Most often owing to the complexity of the fractures, the floor reconstruction requires grafts or other substitutes. Literature reveals several sources of autogenous sources of such grafts. Though most of the grafts are well taken and gives an ideal result, at certain instances, owing to the complex nature of the graft, its biochemical nature, reaction to the grafting, biochemical response, a reactionary change may result at late stages. The aim of this manuscript is to present a rare instance of warping of a costochondral graft that was used as a part of the orbital floor reconstruction giving rise to an ophthalmic emergency. The situation was immediately diagnosed and successfully managed. The situation, structural, and biochemical mechanisms behind such a phenomenon are discussed. PMID:26981485
Balaji, S M
2015-01-01
Orbital floor reconstruction is the most challenging component in the midfacial trauma management. Most often owing to the complexity of the fractures, the floor reconstruction requires grafts or other substitutes. Literature reveals several sources of autogenous sources of such grafts. Though most of the grafts are well taken and gives an ideal result, at certain instances, owing to the complex nature of the graft, its biochemical nature, reaction to the grafting, biochemical response, a reactionary change may result at late stages. The aim of this manuscript is to present a rare instance of warping of a costochondral graft that was used as a part of the orbital floor reconstruction giving rise to an ophthalmic emergency. The situation was immediately diagnosed and successfully managed. The situation, structural, and biochemical mechanisms behind such a phenomenon are discussed. PMID:26981485
NASA Astrophysics Data System (ADS)
Yelgel, Celal
2016-04-01
We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC–stacked N–layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.
Thermal comfort of diving dry suit with the use of the warp-knitted fabric
NASA Astrophysics Data System (ADS)
Lenfeldova, I.; Hes, L.; Annayeva, M.
2016-07-01
Achievement of a good level of thermal comfort of under-suits for dry suit diving which enable also the required mobility of the diver in water is inevitable not only for the scuba sport and commercial diving people but also for safety and activities of people who make research under water. The aim of this work is to verify whether selected knitted structures (which are not waterproof) can substitute the currently used textile materials (nonwovens). This dry-suit innovation is intended to increase the properties which correspond to the perception of thermal comfort of the diver in water. To achieve this objective, the Alambeta thermal tester was used in the study for experimental determination of thermal resistance of spacer warp knitted fabric at varying contact pressure. The studied textiles were expected to be very suitable for the intended application due to their low compressibility which yields relatively high thickness a hence increased thermal insulation.
NASA Astrophysics Data System (ADS)
Middleton, Chad A.; Weller, Dannyl
2016-04-01
We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
The use of cross-section warping functions in composite rotor blade analysis
NASA Astrophysics Data System (ADS)
Kosmatka, J. B.
1992-07-01
During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.
Solution to the flavor problem of warped extra-dimension models.
Bauer, Martin; Malm, Raoul; Neubert, Matthias
2012-02-24
A minimal solution to the flavor problem of warped extra-dimension models, i.e., the excessive mixed-chirality contribution to CP violation in K-K ¯ mixing arising from Kaluza-Klein (KK) gluon exchange, is proposed. Extending the strong-interaction gauge group in the bulk by an additional SU(3), and breaking this symmetry to QCD via boundary conditions, the constraints arising from the ε(K) parameter are significantly relaxed. As a result, KK scales M(KK)~2 TeV are consistent with all flavor observables without significant fine-tuning. The model predicts an extended Higgs sector featuring massive color-octet scalars and a tower of KK pseudoaxial gluon resonances, whose existence is not in conflict with recent LHC dijet bounds. PMID:22463516
3D particle simulation of beams using the WARP code: Transport around bends
Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B. ); Haber, I. )
1990-11-30
WARP is a discrete-particle simulation program which was developed for studies of space charge dominated ion beams. It combines features of an accelerator code and a particle-in-cell plasma simulation. The code architecture, and techniques employed to enhance efficiency, are briefly described. Current applications are reviewed. In this paper we emphasize the physics of transport of three-dimensional beams around bends. We present a simple bent-beam PIC algorithm. Using this model, we have followed a long, thin beam around a bend in a simple racetrack system (assuming straight-pipe self-fields). Results on beam dynamics are presented; no transverse emittance growth (at mid-pulse) is observed. 11 refs., 5 figs.
Overview of the WARP code and studies of transverse resonance effects
Friedman, A., LLNL
1998-05-01
Two papers presented at the Shelter Island workshop are very briefly summarized here, in view of recent publications elsewhere The WARP code, developed for Heavy-Ion beam-driven inertial confinement Fusion (HIF) accelerator studies, combines features of a particle-in-cell plasma simulation and an accelerator tracking program. Its methods and architecture have been developed for efficiency both in detailed simulation of individual machine sections and in long-time beam tracking. The transverse ``slice`` model in the code has been applied to the study of transverse resonance effects associated with quadrupole strength errors. These simulations confirm that rapid passage through a resonance can reduce the associated mismatch and emittance growth References to published details and to other sources of information are supplied.
Collider signals of top quark flavor violation from a warped extra dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2007-01-01
We study top quark flavor violation in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. Such a scenario provides solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM without inducing a flavor problem. We find that, generically, tcZ couplings receive a huge enhancement, in particular, the right-handed ones can be O(1%). This results in BR(t→cZ) at or above the sensitivity of the Large Hadron Collider (LHC). At the International Linear Collider (ILC), single top production, via e+e-→tc¯, can be a striking signal for this scenario. In particular, it represents a physics topic of critical importance that can be explored even with a relatively low energy option, close to the tc threshold. At both the LHC and the ILC, angular distributions can probe the above prediction of dominance of right-handed couplings.
Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.
Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H
2015-12-01
Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. PMID:26372033
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.
Motion data classification on the basis of dynamic time warping with a cloud point distance measure
NASA Astrophysics Data System (ADS)
Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad
2016-06-01
The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.
A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation
NASA Astrophysics Data System (ADS)
Pham, Cuong; Plötz, Thomas; Olivier, Patrick
We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.
Translaminar Fracture Toughness of a Composite Wing Skin Made of Stitched Warp-knit Fabric
NASA Technical Reports Server (NTRS)
Masters, John E.
1997-01-01
A series of tests were conducted to measure the fracture toughness of carbon/epoxy composites. The composites were made from warp-knit carbon fabric and infiltrated with epoxy using a resin-film-infusion process. The fabric, which was designed by McDonnell Douglas for the skin of an all-composite subsonic transport wing, contained fibers in the 0 deg, +/-45 deg, and 90 deg directions. Layers of fabric were stacked and stitched together with Kevlar yarn to form a 3-dimensional preform. Three types of test specimens were evaluated: compact tension, center notch tension, and edge notch tension. The effects of specimen size and crack length on fracture toughness were measured for each specimen type. These data provide information on the effectiveness of the test methods and on general trends in the material response. The scope of the investigation was limited by the material that was available.
The use of cross-section warping functions in composite rotor blade analysis
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1992-01-01
During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.
Flavor-changing decays of the top quark in 5D warped models
NASA Astrophysics Data System (ADS)
Díaz-Furlong, Alfonso; Frank, Mariana; Pourtolami, Nima; Toharia, Manuel; Xoxocotzi, Reyna
2016-08-01
We study flavor-changing neutral current decays of the top quark in the context of general warped extra dimensions, where the five-dimensional (5D) metric is slightly modified from 5D anti-de Sitter (AdS5 ). These models address the Planck-electroweak hierarchies of the Standard Model and can obey all the low-energy flavor bounds and electroweak precision tests, while allowing the scale of new physics to be at the TeV level, and thus within the reach of the LHC at Run II. We perform the calculation of these exotic top decay rates for the case of a bulk Higgs, and thus include in particular the effect of the additional Kaluza-Klein (KK) Higgs modes running in the loops, along with the usual KK fermions and KK gluons.
Clinical practice guidelines: the warped incentives in the U.S. healthcare system.
Avraham, Ronen
2011-01-01
The healthcare system is sick. The players are incentivized to maximize their own benefit and externalize their costs onto the other parties. This paper examines the warped incentives that underlie the system. The tort system, lacking expertise and slow to adapt, is unable to overcome cognitive biases to adequately solve the problems. Clinical practice guidelines could pose a solution, but not as they are currently developed. Guidelines promulgated by healthcare associations are infected by a web of conflicts of interest with every player in the industry. Government agencies, and their revolving doors, are underfunded and also subject to the industry's web of conflicts. Even if adequate guidelines could consistently be produced, state legislatures and courts have been unwilling and unable to substantially incorporate guidelines into the legal landscape. Lastly, this article proposes a private regulation regime that could be a solution which would align all of the players' incentives to society's interests. PMID:21614994
Fermion creation in 5D space-time with a warped extra dimension
NASA Astrophysics Data System (ADS)
Chekireb, R.; Haouat, S.
2015-05-01
The phenomenon of fermion production in a 5D FRW space-time with a warped extra dimension is studied by considering the canonical method based on Bogoliubov transformation connecting the "in" with the "out" states. For an exactly solvable model, two sets of exact solution are expressed in terms of Bessel functions. Studying the semiclassical Hamilton-Jacobi equation, the "in" and "out" states are identified. The pair creation probability and the mean number of created particles are calculated from the Bogoliubov coefficients. It is shown that the particle creation probability and the number density of created particles depend on the ratio of the scale factors associated with the ordinary space {x} and the extra dimension. It is also shown that the contraction of the extra dimension induces particle creation like the ordinary space expansion.
Quintessential Inflation from 5d Warped Product Spaces on a Dynamical Foliation
NASA Astrophysics Data System (ADS)
da Silva, Lucio Fabio P.; Aguilar, José Edgar Madriz
Assuming the existence of a 5D purely kinetic scalar field on the class of warped product spaces we investigate the possibility of mimic both an inflationary and a quintessential scenarios on 4D hypersurfaces, by implementing a dynamical foliation on the fifth coordinate instead of a constant one. We obtain that an induced chaotic inflationary scenario with a geometrically induced scalar potential and an induced quasi-vacuum equation of state on 4D dynamical hypersurfaces is possible. While on a constant foliation, the universe can be considered as matter-dominated today, in a family of 4D dynamical hypersurfaces, the universe can be passing period of accelerated expansion with a deceleration parameter nearly -1. This effect of the dynamical foliation results negligible at the inflationary epoch allowing for a chaotic inflationary scenario and becomes considerable at the present epoch allowing a quintessential scenario.
NASA Astrophysics Data System (ADS)
Arun, Mathew Thomas; Choudhury, Debajyoti
2016-04-01
Generalizing the Randall-Sundrum scenario to higher dimensions with nested warpings has been shown to avoid the constraints besetting the former. In the first paper of this series [ JHEP 09 (2015) 202], the Standard Model gauge and fermion fields were extended into such a six-dimensional bulk and the construction was shown to have several interesting and welcome features. In this paper, we discuss the electroweak symmetry breaking, presenting a novel Higgs localization mechanism that leads to interesting phenomenology in the Higgs sector. Localizing the Higgs modifies the Z μ and W μ boson wavefunctions, which leads to tree level changes in the oblique parameters. Using these as well as the correction to low-energy four-Fermi operators, we derive the constraints on our model and also discuss the gauge coupling evolution therein. Amusingly, the model can naturally incorporate a Higgs resonance in the 700-800 GeV range.
Canonical structure of BHT massive gravity in warped AdS3 sector
NASA Astrophysics Data System (ADS)
Mahdavian Yekta, Davood
2016-08-01
We investigate the asymptotic structure of the three dimensional Warped Anti-de Sitter (WAdS3) black holes in the Bergshoeff-Hohm-Townsend (BHT) massive gravity using the canonical Hamiltonian formalism. We define the canonical asymptotic gauge generators, which produce the conserved charges and the asymptotic symmetry group for the WAdS3 black holes. The attained symmetry group is described by a semi-direct sum of a Virasoro and a Kač-Moody algebra. Using the Sugawara construction, we obtain a direct sum of two Virasoro algebras. We show that not only the asymptotic conserved charges satisfy the first law of black hole thermodynamics, but also they lead to the expected Smarr formula for the WAdS3 black holes. We also show that the black hole's entropy obeys the Cardy formula of the dual conformal field theory (CFT).
Recognition of Manual Actions Using Vector Quantization and Dynamic Time Warping
NASA Astrophysics Data System (ADS)
Martin, Marcel; Maycock, Jonathan; Schmidt, Florian Paul; Kramer, Oliver
The recognition of manual actions, i.e., hand movements, hand postures and gestures, plays an important role in human-computer interaction, while belonging to a category of particularly difficult tasks. Using a Vicon system to capture 3D spatial data, we investigate the recognition of manual actions in tasks such as pouring a cup of milk and writing into a book. We propose recognizing sequences in multidimensional time-series by first learning a smooth quantization of the data, and then using a variant of dynamic time warping to recognize short sequences of prototypical motions in a long unknown sequence. An experimental analysis validates our approach. Short manual actions are successfully recognized and the approach is shown to be spatially invariant. We also show that the approach speeds up processing while not decreasing recognition performance.
Higgs-gluon coupling in warped extra dimensional models with brane kinetic terms
NASA Astrophysics Data System (ADS)
Dey, Ujjal Kumar; Ray, Tirtha Sankar
2016-01-01
Warped models with the Higgs confined to the weak brane and the gauge and matter fields accessing the AdS5 bulk provide a viable setting to address the gauge hierarchy problem. Brane kinetic terms for the bulk fields are known to ease some of the tensions of these models with precision electroweak observables and flavor constraints. We study the loop-driven Higgs coupling to the gluons that are relevant to the Higgs program at the LHC, in this scenario. We demonstrate a partial cancellation in the contribution of the fermionic Kaluza-Klein (KK) towers within such framework relatively independent of the 5D parameters. The entire dependence of this coupling on the new physics arises from the mixing between the Standard Model states and the KK excitations. We find that the present precision in measurement of these couplings can lead to a constraint on the KK scale up to 1.2 TeV at 95% confidence level.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; Robitaille, Thomas
2012-01-01
We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Astrophysical implications of a visible dark matter sector from a custodially warped GUT
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Blum, Kfir; Lee, Seung J.; Perez, Gilad
2010-04-01
We explore, within the warped extra dimensional framework, the possibility of finding antimatter signals in cosmic rays (CRs) from dark matter (DM) annihilation. We find that exchange of order 100 GeV radion, an integral part of this class of models, generically results in a sizable Sommerfeld enhancement of the annihilation rate for DM mass at the TeV scale. No ad hoc dark sector is required to obtain boosted annihilation cross sections and hence signals. Such a mild hierarchy between the radion and DM masses can be natural due to the pseudo-Goldstone boson nature of the radion. We study the implications of a Sommerfeld enhancement specifically in warped grand unified theory (GUT) models, where proton stability implies a DM candidate. We show, via a partially unified Pati-Salam group, how to incorporate a custodial symmetry for Z→bb¯ into the GUT framework such that a few TeV Kaluza-Klein (KK) mass scale is allowed by electroweak precision tests. Among such models, the one with the smallest SO(10) (fully unified) representation, with SU(5) hypercharge normalization, allows us to decouple the DM from the electroweak gauge bosons. Thus, a correct DM relic density can be obtained and direct detection bounds are satisfied. Looking at robust CR observables, we find a possible future signal in the p¯/p flux ratio consistent with current constraints. Using a different choice of representations, we show how to embed in this GUT model a similar custodial symmetry for the right-handed tau, allowing it to be strongly coupled to KK particles. Such a scenario might lead to an observed signal in CR positrons; however, the DM candidate in this case cannot constitute all of the DM in the Universe. As an aside and independent of the GUT or DM model, the strong coupling between KK particles and tau’s can lead to striking LHC signals.
Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis
NASA Astrophysics Data System (ADS)
Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif
2012-06-01
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.
Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier
Islam, Md. Shafiqul; Hannan, M.A.; Basri, Hassan; Hussain, Aini; Arebey, Maher
2014-02-15
Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas
2012-01-01
We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Analysis of warping deformation modes using higher order ANCF beam element
NASA Astrophysics Data System (ADS)
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
ERIC Educational Resources Information Center
Sturgeon, Julie
2008-01-01
Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…
2014-08-30
DrivePy is physics-based drivetrain model that sizes drivetrain components based on aerodynamic and operational loads for use in a systems engineering model. It also calculates costs based on empirical data collected by NREL's National Wind Technology Center.
ERIC Educational Resources Information Center
Zirkel, Perry A.
2001-01-01
Discusses basis for Kentucky appellate court decision that state's no-pass, no-drive statute did not violate due-process and equal-protection clauses of the Kentucky and federal constitutions, but did violate the federal Family Education Rights and Privacy Act, but nevertheless did not invalidate the statute. Explains why the decision is…
ERIC Educational Resources Information Center
Coggins, Celine; Diffenbaugh, P. K.
2013-01-01
For students in U.S. classrooms today, the odds of being assigned to an inexperienced teacher are higher than they have ever been because so many teachers, some in the top 20 percent of effectiveness are leaving the classroom in their first five years. Coggins and Diffenbaugh turn to Daniel Pink's work on drive to determine how to motivate…
Adam, Claude
2015-10-01
Epilepsy contributes little to road traffic accidents (0.25% of accidents) compared, for instance, to alcohol abuse (at least 30 times higher). Current factors, such as age and sex, or other chronic medical conditions also increase the risk of road traffic accidents but do not carry driving restrictions. So, the European Commission fairly established rules permitting individuals having experienced one or more epileptic seizures to drive if their road accident risk is low. Road accident risk related to epileptic seizures in various clinical situations is evaluated by the driving license commission, mainly with the aid of criteria based on seizure-free periods. A person who has had an epileptic seizure should notify the authorities. He should be advised by treating physician not to drive before. In case of an authorisation, any new relevant event should be notified to the authorities in the course of legal follow-up. Improvements of the current regulations by European data registries are under way. PMID:26482490
ERIC Educational Resources Information Center
Carter, Margie
2010-01-01
In this article, the author discusses how the early childhood field's approach to staff training reflects the drive-through, fast-food culture. Year after year directors send their teachers to workshops to get some quick refresher techniques. The author suggests that rather than focusing professional development on topics, focus on observing…
Driving skills after whiplash.
Gimse, R; Bjørgen, I A; Straume, A
1997-09-01
Previous studies have shown that some persons with longlasting problems after whiplash have changed eye movements. These changes have been related to disturbance of the posture control system. The question raised in the present study is whether such disturbances can influence daily life functions connected with balance, position and external movements, such as car driving. A group of 23 persons with disturbed eye movements due to whiplash injury, was tested in a driving simulator, together with a closely matched control group. The results revealed significant differences between the two groups with respect to response times to the traffic signs presented, identification of type of sign, as well as steering precision while the subjects' attention was directed to the process of identifying the signs. Alternative explanations such as driving experience, pain, medication or malingering are at least partly controlled for, but cannot completely be ruled out. A distorted posture control system leading to disturbance of eye movements seems to be the most likely primary causative factor, but these disturbances are most certainly complexly determined. Reduced attention capacity is considered to be a mediating secondary factor. Registration of eye movements may be a useful diagnostic tool to evaluate driving skill after whiplash. PMID:9309948
ERIC Educational Resources Information Center
Brick, John
Alcohol intoxication increases the risk of highway accidents, the relative risk of crash probability increasing as a function of blood alcohol content (BAC). Because alcohol use is more prevalent than use of other drugs, more is known about the relationship between alcohol use and driving. Most states presume a BAC of .10% to be evidence of drunk…
[Driving ability with multiple sclerosis].
Küst, J; Dettmers, C
2014-07-01
Driving is an important issue for young patients, especially for those whose walking capacity is impaired. Driving might support the patient's social and vocational participation. The question as to whether a patient with multiple sclerosis (MS) is restricted in the ability to drive a car depends on neurological and neuropsychological deficits, self-awareness, insight into deficits and ability to compensate for loss of function. Because of the enormous variability of symptoms in MS the question is highly individualized. A practical driving test under supervision of a driving instructor (possibly accompanied by a neuropsychologist) might be helpful in providing both patient and relatives adequate feedback on driving abilities. PMID:24906536
Narvaez, Julia; Endicott-Popovsky, Barbara E.; Seifert, Christian; Aval, Chiraag U.; Frincke, Deborah A.
2010-02-01
Abstract: Drive-by-downloads are malware that push, and then execute, malicious code on a client system without the user's consent. The purpose of this paper is to introduce a discussion of the usefulness of antivirus software for detecting the installation of such malware, providing groundwork for future studies. Client honeypots collected drive-by malware which was then evaluated using common antivirus products. Initial analysis showed that most of such antivirus products identified less than 70% of these highly polymorphic malware programs. Also, it was observed that the antivirus products tested, even when successfully detecting this malware, often failed to classify it, leading to the conclusion that further work could involve not only developing new behavioral detection technologies, but also empirical studies that improve general understanding of these threats. Toward that end, one example of malicious code was analyzed behaviorally to provide insight into next steps for the future direction of this research.
Magnetostrictive direct drive motors
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1990-01-01
Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.
NASA Technical Reports Server (NTRS)
Obler, H. D. (Inventor)
1983-01-01
A variable speed drive wherein a first embodiment is comprised of a pivotally mounted prime mover coupled to a rotary fluid output device, such as a fan or pump, through a variable and fixed pulley drive arrangement is described. The pivotal position of the prime mover and accordingly the pitch diameter of variable pulley means is controlled in accordance with fluid motor means coupled to the prime mover. This is actuated in response to a fluid feedback control signal derived from a sensed output of the rotary fluid output device. The pivotal motion of the prime mover imparts an arcuate motion to the variable pulley means which effects a speed variation of the rotary fluid output device in accordance with the variation of the pitch diameter ratio of opposing variable and fixed pulley means.
Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine
2015-02-01
Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548
Forces Driving Chaperone Action.
Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C A
2016-07-14
It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188
NASA Technical Reports Server (NTRS)
Ehsani, M.; Tchamdjou, A.
1997-01-01
This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.
NASA Technical Reports Server (NTRS)
1982-01-01
Philadelphia Gear Corporation used two COSMIC computer programs; one dealing with shrink fit analysis and the other with rotor dynamics problems in computerized design and test work. The programs were used to verify existing in-house programs to insure design accuracy by checking its company-developed computer methods against procedures developed by other organizations. Its specialty is in custom units for unique applications, such as Coast Guard ice breaking ships, steel mill drives, coal crusher, sewage treatment equipment and electricity.
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, Apollo 16 mission commander, drives the 'Rover', Lunar Roving Vehicle (LRV) to its final parking place near the end of the third extravehicular activity (EVA-3) at the Descartes landing site. Astronaut Charles M. Duke Jr., Lunar Module pilot, took this photograph looking southward. The flank of Stone Mountain can be seen on the horizon at left. The shadow of the Lunar Module 'Orion' is visible in the foreground.
Variable reluctance drive system
Lipo, T.A.; Liang, F.
1995-10-17
A variable reluctance drive system including a motor and corresponding converter for improved current commutation is described. The motor incorporates a salient pole rotor and a salient pole stator having one or more full pitch windings which operate by mutual inductance to transfer the current from the active short pitch winding following phase alignment. This increases output torque and/or speed and permits a number of simple and economical converter circuits. 17 figs.
[Automobile driving capacity in dementia].
Seeger, Rolf
2015-04-01
Dementia influences at an early stage the driving aptitude of motor vehicle steering persons. Every year in Switzerland, around 16'000 driving permit holders suffer newly from dementia; therefore the driving aptitude is questioned, especially because of possibly limited executive functions. Individuals with early-stage dementia often may show a dangerous driving stile. However, a mild dementia does not a priori exclude the driving aptitude, and less than half of these drivers can continue driving for another 1 - 3 years. In contrast, there is no further driving aptitude in presence of moderate dementia. In the assessment of driving aptitude, the underlying cause of dementia is always taken into account. Cognitive short tests such as the Mini-Mental Status Exam, Clock Drawing Test and Trail-Making Test are not suitable to make reliable statements about the aptitude to drive, but these tests are very important for the initial diagnosis of dementia in primary care practice and can lead the way for further examination concerning driving aptitude. The legally prescribed regular check-up for motorists aged over 70 years in Switzerland provides an ideal opportunity for early detection of incipient dementia. The practical procedure for the assessment of aptitude to drive in the primary care practice is presented. The physician-guided on-road driving test represents a meaningful, practical and relatively cost-effective tool for the evaluation of driving aptitude in cases of doubt. PMID:25791047
Who's Driving Home?: Assessing Adolescent Drinking and Driving.
ERIC Educational Resources Information Center
Swisher, John D.; Bibeau, Daniel
1987-01-01
Data from 13,998 students revealed that high percentages of students drank often and that many of these students reported being drunk often. While most students indicated they would prefer not to drive home after drinking, approximately one-third of driving age students indicated they would drive under the influence of alcohol or would ride with…
NASA Astrophysics Data System (ADS)
Yao, Weiping; Chen, Songbai; Jing, Jiliang
2011-06-01
We have studied the quasinormal modes of a massive scalar field coupling to Einstein’s tensor in the spacelike stretched AdS3 black hole spacetime. We find that both the right-moving and left-moving quasinormal frequencies depend not only on the warped parameter v of the black hole, but also on the coupling between the scalar field and Einstein’s tensor. Moreover, we also discuss the warped AdS/CFT correspondence from the quasinormal modes and probe the effects of the coupling on the left and right conformal weights hL and hR of the operators dual to the scalar field in the boundary.
From accelerating and Poincaré coordinates to black holes in spacelike warped AdS3, and back
NASA Astrophysics Data System (ADS)
Jugeau, Frederic; Moutsopoulos, George; Ritter, Patricia
2011-02-01
We first review spacelike stretched warped AdS3 and we describe its black hole quotients by using accelerating and Poincaré coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space (TR, TL). This is done by requiring that the identification vector ∂θ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincaré coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS3 with a periodic proper time identification.
Warp or lag? The ionized and neutral hydrogen gas in the edge-on dwarf galaxy UGC 1281
NASA Astrophysics Data System (ADS)
Kamphuis, P.; Peletier, R. F.; van der Kruit, P. C.; Heald, G. H.
2011-07-01
The properties of gas in the haloes of galaxies constrain global models of the interstellar medium. Kinematical information is of particular interest since it is a clue to the origin of the gas. Until now mostly massive galaxies have been investigated for their halo properties. Here we report on deep H I and Hα observations of the edge-on dwarf galaxy UGC 1281 in order to determine the existence of extraplanar gas and the kinematics of this galaxy. This is the first time a dwarf galaxy is investigated for its gaseous halo characteristics. We have obtained Hα integral field spectroscopy using PPAK at Calar Alto and deep H I observations with the Westerbork Synthesis Radio Telescope (WSRT) of this edge-on dwarf galaxy. These observations are compared to 3D models in order to determine the distribution of H I in the galaxy. We find that UGC 1281 has Hα emission up to 25 arcsec (655 pc) in projection above the plane and in general a low Hα flux. Compared to other dwarf galaxies UGC 1281 is a normal dwarf galaxy with a slowly rising rotation curve that flattens off at 60 km s-1 and a central depression in its H I distribution. Its H I extends 70 arcsec (1.8 kpc) in projection from the plane. This gas can be explained by either a warp partially in the line-of-sight or a purely edge-on warp with rotational velocities that decline with a vertical gradient of 10.6 ± 3.7 km s-1 kpc-1. The line-of-sight warp model is the preferred model as it is conceptually simpler. In either model the warp starts well within the optical radius.
WARPED DISK MAY INDICATE PRESENCE OF PLANET AROUND THE STAR BETA PICTORIS
NASA Technical Reports Server (NTRS)
2002-01-01
This image from NASA's Hubble Space Telescope shows for the first time the inner region of a 200-billion mile diameter dust disk around the star Beta Pictoris. This region has long been hidden from ground-based telescopes because of the glare from the central star. The disk is slightly warped. If the warp were there when the star formed, it would long since have flattened out, unless it is produced and maintained by the gravitational pull of a planet. The suspected planet would dwell inside a five-billion mile diameter clear zone inside the inner edge of the disk. Top This is a visible light image of the disk, which appears spindle-like because it is tilted nearly edge-on to our view. The disk is made up of microscopic dust grains of ices and silicate particles, and shines by reflected light from the star. This image indicates that the central clearing is occupied by one or more planets which agglomerated out of the disk and then swept out smaller particles. The bright star, which lies at the center of the disk, is blocked out in this image. Bottom False-color is applied through image processing to accentuate details in the disk structure. Hubble reveals that the pink-white inner edge of the disk is slightly tilted from the plane of the outer disk (red-yellow-green) as identified by a dotted line. A simple explanation is that a large planet is pulling on the disk. It is not possible to see the planet directly because it is close to the star, and perhaps a billion-times fainter. This image was taken with the Wide Field Planetary Camera 2 in January 1995. The star is located 50 light-years away in the southern constellation Pictor (Painter's Easel). Beta Pictoris is a main sequence star, slightly hotter than our Sun. Credit: Chris Burrows, Space Telescope Science Institute (STScI) the European Space Agency (ESA), J. Krist (STScI), the WFPC2 IDT team, and NASA
Drive alignment pays maintenance dividends
Fedder, R.
2008-12-15
Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.
Drive Diagnostic Filter Wheel Control
2007-07-17
DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.
NASA Astrophysics Data System (ADS)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-02-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
Chen, Lihong; Reddy, Narendra; Yang, Yiqi
2013-05-01
We report the development of wheat gluten as an environmentally friendly sizing agent that can replace poly(vinyl alcohol) (PVA) and make the textile industry more environmentally friendly. Wheat gluten applied onto polyester/cotton (P/C) and polyester as warp sizing agent provided sizing performance and biodegradability in activated sludge necessary to substitute poly(vinyl alcohol) (PVA). PVA is one of the most widely used sizing agents and provides excellent sizing performance to synthetic fibers and their blends but is expensive and difficult to degrade in textile wastewater treatment plants. Although considerable efforts have been made to replace PVA, it has not been possible to develop a warp sizing chemical that can match the sizing performance of PVA and at the same time be cost-effective and biodegrade in effluent treatment plants. At similar % add-on, wheat gluten provided similar cohesion to P/C but much higher abrasion resistance to polyester fabrics compared to PVA. With a biochemical oxygen demand (BOD) to chemical oxygen demand (COD) ratio of 0.7 compared to 0.01 for PVA, wheat gluten was readily degradable in activated sludge. Wheat gluten has the ability to replace PVA for textile warp sizing applications. PMID:23551198
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-01-12
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
Warp or Lag? The Ionized and Neutral Hydrogen Gas in the Edge-on Dwarf Galaxy UGC 1281
NASA Astrophysics Data System (ADS)
Kamphuis, P.; Peletier, R. F.; van der Kruit, P. C.; Heald, G. H.
The properties of gas in the halos of galaxies tell us something about the properties of the interstellar medium. Here we report on deep HI and Hα observations of UGC 1281 in order to determine the existence of extra planar gas and its kinematics. This is the first time the halo characteristics of a dwarf galaxy have been investigated. These observations are compared to 3D models in order to determine the distribution of HI in the galaxy. We find that UGC 1281 has Hα emission up to 25 '' (655 pc,˜0.6 Hα hR) in projection above the plane and in general a low Hα flux. Its HI extends 70 '' (1.8 kpc,˜1.5 HI hR) in projection from the plane. This neutral extra-planar gas can be explained by either a line-of-sight warp or a thick disk with rotational velocities that decline with a vertical gradient of 10.6±3.7 km s-1 kpc-1. The line-of-sight warp model is the preferred model as it is conceptually simpler. In either model the warp starts well within the optical radius.
Hyper-fast interstellar travel via a modification of spacetime geometry
Kheyfets, A.; Miller, W.A.
1997-08-01
We analyze difficulties with proposals for hyper-fast interstellar travel via modifying the spacetime geometry, using as illustrations the Alcubierre warp drive and the Krasnikov tube. As it is easy to see, no violations of local causality or any other known physical principles are involved as far as motion of spacecrafts is concerned. However, the generation and support of the appropriate spacetime geometry configurations does create problems, the most significant of which are a violation of the weak energy condition, a violation of local causality, and a violation of the global causality protection. The violation of the chronology protection is the most serious of them as it opens a possibility of time travel. We trace the origin of the difficulties to the classical nature of the gravity field. This strongly indicates that hyper-fast interstellar travel should be transferred to the realm of a fully quantized gravitational theory. We outline an approach to further the research in this direction.
Weak Energy Condition Violation and Superluminal Travel
NASA Astrophysics Data System (ADS)
Lobo, Francisco; Crawford, Paulo
Recent solutions to the Einstein Field Equations involving negative energy densities, i.e., matter violating the weak-energy-condition, have been obtained, namely traversable wormholes, the Alcubierre warp drive and the Krasnikov tube. These solutions are related to superluminal travel, although locally the speed of light is not surpassed. It is difficult to define faster-than-light travel in generic space-times, and one can construct metrics which apparently allow superluminal travel, but are in fact flat Minkowski space-times. Therefore, to avoid these difficulties it is important to provide an appropriate definition of superluminal travel.We investigate these problems and the relationship between weak-energy-condition violation and superluminal travel.
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2010-01-01
The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.
Lange, A.C.
1995-04-04
An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.
Modular droplet actuator drive
NASA Technical Reports Server (NTRS)
Pollack, Michael G. (Inventor); Paik, Philip (Inventor)
2011-01-01
A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.
Lange, Arnold C.
1995-01-01
An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).
Advances in traction drive technology
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.
1983-01-01
Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.
Collider Signals Of Top Quark Flavor Violation From A Warped ExtraDimension
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2006-08-29
We study top quark flavor violation in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. Such a scenario provides solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM without inducing a flavor problem. We find that, generically, tcZ couplings receive a huge enhancement, in particular the right handed ones can be {Omicron}(1%). This results in BR (t {yields} cZ) at or above the sensitivity of the Large Hadron Collider (LHC). At the International Linear Collider (ILC), single top production, via e{sup +}e{sup -} {yields} t{bar c}, can be a striking signal for this scenario. In particular, it represents a physics topic of critical importance that can be explored even with a relatively low energy option, close to the tc threshold. At both the LHC and the ILC, angular distributions can probe the above prediction of dominance of right-handed couplings.
Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun
2016-06-01
Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach. PMID:25966490
Dermitzakis, Konstantinos; Arieta, Alejandro Hernandez; Pfeifer, Rolf
2011-01-01
One of the significant challenges in the upper-limb-prosthetics research field is to identify appropriate interfaces that utilize the full potential of current state-of-the-art neuroprostheses. As the new generation of such prostheses paces towards approximating the human physiological performance in terms of movement dexterity and sensory feedback, it is clear that current non-invasive interfaces are still severely limited. Surface electromyography, the interface ubiquitously used in the field, is riddled with several shortcomings. Gesture recognition, an interface pervasively used in wearables and mobile devices, shows a strong potential as a non-invasive upper-limb prosthetic interface. This study aims at showcasing its potential in the field by using gyroscope sensors. To this end, we (1) explore the viability of Dynamic Time Warping as a classification method for upper-limb prosthetics and (2) look for appropriate sensor locations on the body. Results indicate an optimal classification rate of 97.53%, σ = 8.74 using a sensor located proximal to the endpoint performing a gesture. PMID:22255345
Area spectrum of extremal black holes with warped AdS near-horizon geometry
NASA Astrophysics Data System (ADS)
Wen, Wen-Yu
2014-06-01
In this paper, we provide an alternative method to study the area spectrum of certain classes of extremal black holes which have near-horizon geometry as warped AdS. We argue that previous methods which are based on the existence of quasinormal modes may not be applicable in the extremal limit. The topology difference of the near-horizon geometry between non-extremal and extremal black holes implies a separate treatment is needed to study the area discreteness in the extremal limit. To be specific, we will study area spectrum of supersymmetric BMPV black holes/black rings and Reissner-Nordström (RN) black holes at the extremal limit. Inspired by the recently established Kerr/CFT and RN/CFT correspondence, we propose a new way to quantize the area regardless of the (non-)existence of quasinormal modes or zero Hawking temperature. At last, we propose a dilute gas model and harmonic oscillator model which have same degrees of freedom as the dual CFT.
Tan, Lee N; Alwan, Abeer; Kossan, George; Cody, Martin L; Taylor, Charles E
2015-03-01
Annotation of phrases in birdsongs can be helpful to behavioral and population studies. To reduce the need for manual annotation, an automated birdsong phrase classification algorithm for limited data is developed. Limited data occur because of limited recordings or the existence of rare phrases. In this paper, classification of up to 81 phrase classes of Cassin's Vireo is performed using one to five training samples per class. The algorithm involves dynamic time warping (DTW) and two passes of sparse representation (SR) classification. DTW improves the similarity between training and test phrases from the same class in the presence of individual bird differences and phrase segmentation inconsistencies. The SR classifier works by finding a sparse linear combination of training feature vectors from all classes that best approximates the test feature vector. When the class decisions from DTW and the first pass SR classification are different, SR classification is repeated using training samples from these two conflicting classes. Compared to DTW, support vector machines, and an SR classifier without DTW, the proposed classifier achieves the highest classification accuracies of 94% and 89% on manually segmented and automatically segmented phrases, respectively, from unseen Cassin's Vireo individuals, using five training samples per class. PMID:25786922
Gauge-Higgs unification, neutrino masses, and dark matter in warped extra dimensions
Carena, Marcela; Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.
2009-05-01
Gauge-Higgs unification in warped extra dimensions provides an attractive solution to the hierarchy problem. The extension of the standard model gauge symmetry to SO(5)xU(1){sub X} allows the incorporation of the custodial symmetry SU(2){sub R} plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza-Klein excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. The extension of the model to the lepton sector has several interesting features. We discuss the conditions necessary to obtain realistic charged lepton and neutrino masses. After the addition of an exchange symmetry in the bulk, we show that the odd neutrino Kaluza-Klein modes provide a realistic dark-matter candidate, with a mass of the order of 1 TeV, which will be probed by direct dark-matter detection experiments in the near future.
Warped AdS 6 × S 2 in Type IIB supergravity I: local solutions
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Gutperle, Michael; Karch, Andreas; Uhlemann, Christoph F.
2016-08-01
We investigate the existence of solutions with 16 residual supersymmetries to Type IIB supergravity on a space-time of the formc AdS 6× S 2 warped over a two-dimensional Riemann surface Σ. The SO(2 , 5) × SO(3) isometry extends to invariance under the exceptional Lie superalgebra F (4). In the present paper, we construct the general Ansatz compatible with these symmetries, derive the corresponding reduced BPS equations, and obtain their complete local solution in terms of two locally holomorphic functions {A}_{± } on Σ, subject to certain positivity and regularity conditions. Globally, ( {A}+ , {A}- ) are allowed to be multiple-valued on Σ and be holomorphic sections of a holomorphic bundle over Σ with structure group contained in SU(1,1)× C . Globally regular solutions are expected to provide the near-horizon geometry of ( p, q) 5-brane and 7-brane webs which are holographic duals to five-dimensional conformal field theories. A preliminary analysis of the positivity and regularity conditions will be presented here, leaving the construction of globally regular solutions to a subsequent paper.
Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods.
Giskeødegård, Guro F; Bloemberg, Tom G; Postma, Geert; Sitter, Beathe; Tessem, May-Britt; Gribbestad, Ingrid S; Bathen, Tone F; Buydens, Lutgarde M C
2010-12-17
The peaks of magnetic resonance (MR) spectra can be shifted due to variations in physiological and experimental conditions, and correcting for misaligned peaks is an important part of data processing prior to multivariate analysis. In this paper, five warping algorithms (icoshift, COW, fastpa, VPdtw and PTW) are compared for their feasibility in aligning spectral peaks in three sets of high resolution magic angle spinning (HR-MAS) MR spectra with different degrees of misalignments, and their merits are discussed. In addition, extraction of information that might be present in the shifts is examined, both for simulated data and the real MR spectra. The generic evaluation methodology employs a number of frequently used quality criteria for evaluation of the alignments, together with PLS-DA to assess the influence of alignment on the classification outcome. Peak alignment greatly improved the internal similarity of the data sets. Especially icoshift and COW seem suitable for aligning HR-MAS MR spectra, possibly because they perform alignment segment-wise. The choice of reference spectrum can influence the alignment result, and it is advisable to test several references. Information from the peak shifts was extracted, and in one case cancer samples were successfully discriminated from normal tissue based on shift information only. Based on these findings, general recommendations for alignment of HR-MAS MRS data are presented. Where possible, observations are generalized to other data types (e.g. chromatographic data). PMID:21094376
Electrical Motor Current Signal Analysis using a Dynamic Time Warping Method for Fault Diagnosis
NASA Astrophysics Data System (ADS)
Zhen, D.; Alibarbar, A.; Zhou, X.; Gu, F.; Ball, A. D.
2011-07-01
This paper presents the analysis of phase current signals to identify and quantify common faults from an electrical motor based on dynamic time warping (DTW) algorithm. In condition monitoring, measurements are often taken when the motor undertakes varying loads and speeds. The signals acquired in these conditions show similar profiles but have phase shifts, which do not line up in the time-axis for adequate comparison to discriminate the small changes in machine health conditions. In this study, DTW algorithms are exploited to align the signals to an ideal current signal constructed based on average operating conditions. In this way, comparisons between the signals can be made directly in the time domain to obtain residual signals. These residual signals are then based on to extract features for detecting and diagnosing the faults of the motor and components operating under different loads and speeds. This study provides a novel approach to the analysis of electrical current signal for diagnosis of motor faults. Experimental data sets of electrical motor current signals have been studied using DTW algorithms. Results show that DTW based residual signals highlights more the modulations due to the compressor process. And hence can obtain better fault detection and diagnosis results.
Similarity analysis of voice signals using wavelets with dynamic time warping
NASA Astrophysics Data System (ADS)
Tashakkori, Rahman; Bowers, Courtney
2003-04-01
Accurately recognizing speech is a difficult task. Differences in gender, accent, pace, tone, as well as defects in the recording equipment and environmental noise can disturb a voice signal. Speech recognition systems are commonly studied and implemented by companies trying to alleviate problems, such as illness or injury, or to increase overall efficiency. This research uses wavelet analysis with several traditional methods to study similarities among sound signals. Through a series of seven steps, a similarity analysis of some voice signals from the same speaker as well as from different speakers is performed. The efficiency of four different wavelets (Haar, db2, db4 and Discrete Morlet), different correlation methods developed previously or in this research, and two different Dynamic Time Warping methods are studied in this research. Through several experiments, it will be shown that these techniques produce excellent results for signals by the same speaker. Based on the limited number of cases studied in this research, some evidence will be presented that suggests the proposed methods on this research are more effective for recognizing male voice files than those of females.
Dynamic time warping in phoneme modeling for fast pronunciation error detection.
Miodonska, Zuzanna; Bugdol, Marcin D; Krecichwost, Michal
2016-02-01
The presented paper describes a novel approach to the detection of pronunciation errors. It makes use of the modeling of well-pronounced and mispronounced phonemes by means of the Dynamic Time Warping (DTW) algorithm. Four approaches that make use of the DTW phoneme modeling were developed to detect pronunciation errors: Variations of the Word Structure (VoWS), Normalized Phoneme Distances Thresholding (NPDT), Furthest Segment Search (FSS) and Normalized Furthest Segment Search (NFSS). The performance evaluation of each module was carried out using a speech database of correctly and incorrectly pronounced words in the Polish language, with up to 10 patterns of every trained word from a set of 12 words having different phonetic structures. The performance of DTW modeling was compared to Hidden Markov Models (HMM) that were used for the same four approaches (VoWS, NPDT, FSS, NFSS). The average error rate (AER) was the lowest for DTW with NPDT (AER=0.287) and scored better than HMM with FSS (AER=0.473), which was the best result for HMM. The DTW modeling was faster than HMM for all four approaches. This technique can be used for computer-assisted pronunciation training systems that can work with a relatively small training speech corpus (less than 20 patterns per word) to support speech therapy at home. PMID:26739104
Adaptive image warping for hole prevention in 3D view synthesis.
Plath, Nils; Knorr, Sebastian; Goldmann, Lutz; Sikora, Thomas
2013-09-01
Increasing popularity of 3D videos calls for new methods to ease the conversion process of existing monocular video to stereoscopic or multi-view video. A popular way to convert video is given by depth image-based rendering methods, in which a depth map that is associated with an image frame is used to generate a virtual view. Because of the lack of knowledge about the 3D structure of a scene and its corresponding texture, the conversion of 2D video, inevitably, however, leads to holes in the resulting 3D image as a result of newly-exposed areas. The conversion process can be altered such that no holes become visible in the resulting 3D view by superimposing a regular grid over the depth map and deforming it. In this paper, an adaptive image warping approach as an improvement to the regular approach is proposed. The new algorithm exploits the smoothness of a typical depth map to reduce the complexity of the underlying optimization problem that is necessary to find the deformation, which is required to prevent holes. This is achieved by splitting a depth map into blocks of homogeneous depth using quadtrees and running the optimization on the resulting adaptive grid. The results show that this approach leads to a considerable reduction of the computational complexity while maintaining the visual quality of the synthesized views. PMID:23782807
Phase-compensation-based dynamic time warping for fault diagnosis using the motor current signal
NASA Astrophysics Data System (ADS)
Zhen, D.; Zhao, H. L.; Gu, F.; Ball, A. D.
2012-05-01
Dynamic time warping (DTW) is a time-domain-based method and widely used in various similar recognition and data mining applications. This paper presents a phase-compensation-based DTW to process the motor current signals for detecting and quantifying various faults in a two-stage reciprocating compressor under different operating conditions. DTW is an effective method to align two signals for dissimilarity analysis. However, it has drawbacks such as singularities and high computational demands that limit its application in processing motor current signals for obtaining modulation characteristics accurately in diagnosing compressor faults. Therefore, a phase compensation approach is developed to reduce the singularity effect and a sliding window is designed to improve computing efficiency. Based on the proposed method, the motor current signals measured from the compressor induced with different common faults are analysed for fault diagnosis. Results show that residual signal analysis using the phase-compensation-based DTW allows the fault-related sideband features to be resolved more accurately for obtaining reliable fault detection and diagnosis. It provides an effective and easy approach to the analysis of motor current signals for better diagnosis in the time domain in comparison with conventional Fourier-transform-based methods.
On-line signature verification method by Laplacian spectral analysis and dynamic time warping
NASA Astrophysics Data System (ADS)
Li, Changting; Peng, Liangrui; Liu, Changsong; Ding, Xiaoqing
2013-12-01
As smartphones and touch screens are more and more popular, on-line signature verification technology can be used as one of personal identification means for mobile computing. In this paper, a novel Laplacian Spectral Analysis (LSA) based on-line signature verification method is presented and an integration framework of LSA and Dynamic Time Warping (DTW) based methods for practical application is proposed. In LSA based method, a Laplacian matrix is constructed by regarding the on-line signature as a graph. The signature's writing speed information is utilized in the Laplacian matrix of the graph. The eigenvalue spectrum of the Laplacian matrix is analyzed and used for signature verification. The framework to integrate LSA and DTW methods is further proposed. DTW is integrated at two stages. First, it is used to provide stroke matching results for the LSA method to construct the corresponding graph better. Second, the on-line signature verification results by DTW are fused with that of the LSA method. Experimental results on public signature database and practical signature data on mobile phones proved the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-01-01
New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
NASA Astrophysics Data System (ADS)
Corbett, Elaine A.; Perreault, Eric J.; Körding, Konrad P.
2012-06-01
Neuroprosthetic devices promise to allow paralyzed patients to perform the necessary functions of everyday life. However, to allow patients to use such tools it is necessary to decode their intent from neural signals such as electromyograms (EMGs). Because these signals are noisy, state of the art decoders integrate information over time. One systematic way of doing this is by taking into account the natural evolution of the state of the body--by using a so-called trajectory model. Here we use two insights about movements to enhance our trajectory model: (1) at any given time, there is a small set of likely movement targets, potentially identified by gaze; (2) reaches are produced at varying speeds. We decoded natural reaching movements using EMGs of muscles that might be available from an individual with spinal cord injury. Target estimates found from tracking eye movements were incorporated into the trajectory model, while a mixture model accounted for the inherent uncertainty in these estimates. Warping the trajectory model in time using a continuous estimate of the reach speed enabled accurate decoding of faster reaches. We found that the choice of richer trajectory models, such as those incorporating target or speed, improves decoding particularly when there is a small number of EMGs available.
Glaucoma and Driving: On-Road Driving Characteristics
Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia
2016-01-01
Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221
Experiment study on friction drive
NASA Astrophysics Data System (ADS)
Wang, Guomin; Ma, Lisheng; Yao, Zhengqiu; Li, Guoping
2004-09-01
In the past years, friction drive was developed to overcome the inherent deficiencies in both worm drive and gear drive. No periodical error and free of backlash are the main advantages of friction drive. With the trend towards bigger and bigger aperture of the optical telescopes, there are some reports about friction drive employed to drive the telescopes. However friction drive has its own deficiencies, such as slippage and creepage. This report here describes the study on the friction drive finished in an experiment arranged by LAMOST project. It comprises three main parts. First, it introduces the experiment apparatus and proposes a new kind of measurement and adjustment mechanisms. Secondly, the report gives the analysis of friction drive characteristics theoretically, such as slippage, creepage and gives the results of corresponding experiments. The experiment shows that the lowest stable speed reaches 0.05″/s with precision of 0.009″(RMS), the preload has little influence on the drive precision in the case of constant velocity and the variable velocity when the angle acceleration is less than 5″/s2 with close loop control and the creepage velocity of this experiment system is 1.47″/s. Lastly, the analysis in the second section lists some measures to improve the precision and stability further. These measures have been actually conducted in the testing system and proved to be reliable.
Magnetostrictive direct drive motors
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1992-01-01
A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.
Automatism and driving offences.
Rumbold, John
2013-10-01
Automatism is a rarely used defence, but it is particularly used for driving offences because many are strict liability offences. Medical evidence is almost always crucial to argue the defence, and it is important to understand the bars that limit the use of automatism so that the important medical issues can be identified. The issue of prior fault is an important public safeguard to ensure that reasonable precautions are taken to prevent accidents. The total loss of control definition is more problematic, especially with disorders of more gradual onset like hypoglycaemic episodes. In these cases the alternative of 'effective loss of control' would be fairer. This article explores several cases, how the criteria were applied to each, and the types of medical assessment required. PMID:24112330
Dickson, J.J.
1958-07-01
A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.
Zikovitz, D C; Harris, L R
1999-05-01
In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task. PMID:10722313
Watanabe, M.; Yagasaki, A.; Kawashima, Y.
1986-07-15
An all-wheel-drive vehicle is described which consists of: (a) a body; (b) an engine mounted on the body and having an output shaft; (c) front and rear pairs of wheels drivable by power from the engine, the front and rear wheels being vertically movably suspended from the body; (d) axles coupled to the front and rear wheels; (e) first power transmitting means for transmitting power from the output shaft of the engine to one of the axles of the front and rear wheels; (f) a power output unit mounted on the one axle; and (g) second power transmitting means for transmitting power from the power output unit to the other of the axles of the front and rear wheels.
Kenderdine, Eugene W.
1991-01-01
A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.
Fischer, Mariellen; Barkley, Russell A; Smallish, Lori; Fletcher, Kenneth
2007-01-01
ADHD has been linked to poorer driving abilities and greater adverse outcomes (crashes, citations) in clinic-referred cases of teens and adults with ADHD. No study, however, has focused systematically on ADHD children followed into adulthood. The present paper does so while measuring driving-related cognitive abilities, driving behavior, and history of adverse driving outcomes. A multi-method, multi-source battery of driving measures was collected at the young adult follow-up on hyperactive (H; N=147; mean age=21.1) and community control children (CC; N=71; mean age=20.5) followed for more than 13 years. More of the H than CC groups had been ticketed for reckless driving, driving without a license, hit-and-run crashes, and had their licenses suspended or revoked. Official driving records found more of the H group having received traffic citations and a greater frequency of license suspensions. The cost of damage in their initial crashes was also significantly greater in the H than CC group. Both self-report and other ratings of actual driving behavior revealed less safe driving practices being used by the H group. Observations by driving instructors during a behind-the-wheel road test indicated significantly more impulsive errors. Performance on a simulator further revealed slower and more variable reaction times, greater errors of impulsiveness (false alarms, poor rule following), more steering variability, and more scrapes and crashes of the simulated vehicle against road boundaries in the H than in the CC group. These findings suggest that children growing up with ADHD may either have fewer driving risks or possibly under-report those risks relative to clinic-referred adults with this disorder. Deficits in simulator performance and safe driving behavior, however, are consistent with clinic-referred adults with ADHD suggesting ongoing risks for such adverse driving outcomes in children growing up with ADHD. PMID:16919226
Dimensions of driving anger and their relationships with aberrant driving.
Zhang, Tingru; Chan, Alan H S; Zhang, Wei
2015-08-01
The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. PMID:25984643
Sequenced drive for rotary valves
Mittell, Larry C.
1981-01-01
A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.
Sizing criterial for traction drives
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.
1983-01-01
A simplified traction drive fatigue analysis which was derived from the Lundberg-Palmgren theory is measured and the effects of rotational speed, multiplicity of contacts, and variation in the available traction coefficient on traction drive system life, size, and power capacity was investigated. Simplified equations are provided for determining the 90% survival life rating of steel traction drive contacts of arbitrary geometry. References to life modifying factors for material, lubrication, and traction will be made.
Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz
2014-01-01
Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497
Stephens, A N; Hill, T; Sullman, M J M
2016-03-01
Trait driving anger is often, but not always, found to predict both the intensity of anger while driving and subsequent crash-related behaviours. However, a number of studies have not found support for a direct relationship between one's tendency to become angry and anger reported while driving, suggesting that other factors may mediate this relationship. The present self-report study investigated whether, in anger provoking driving situations, the appraisals made by drivers influence the relationship between trait and state anger. A sample of 339 drivers from Ukraine completed the 33-item version of the Driver Anger Scale (DAS; Deffenbacher et al., 1994) and eight questions about their most recent experience of driving anger. A structural equation model found that the intensity of anger experienced was predicted by the negative evaluations of the situation, which was in turn predicted by trait driving anger. However, trait driving anger itself did not predict anger intensity; supporting the hypothesis that evaluations of the driving situation mediate the relationship between trait and state anger. Further, the unique structure of the DAS required to fit the data from the Ukrainian sample, may indicate that the anger inducing situations in Ukraine are different to those of a more developed country. Future research is needed to investigate driving anger in Ukraine in a broader sample and also to confirm the role of the appraisal process in the development of driving anger in both developed and undeveloped countries. PMID:26710267
Majdak, Piotr; Walder, Thomas; Laback, Bernhard
2013-09-01
Sound localization in the sagittal planes, including the ability to distinguish front from back, relies on spectral features caused by the filtering effects of the head, pinna, and torso. It is assumed that important spatial cues are encoded in the frequency range between 4 and 16 kHz. In this study, in a double-blind design and using audio-visual training covering the full 3-D space, normal-hearing listeners were trained 2 h per day over three weeks to localize sounds which were either band limited up to 8.5 kHz or spectrally warped from the range between 2.8 and 16 kHz to the range between 2.8 and 8.5 kHz. The training effect for the warped condition exceeded that for procedural task learning, suggesting a stable auditory recalibration due to the training. After the training, performance with band-limited sounds was better than that with warped ones. The results show that training can improve sound localization in cases where spectral cues have been reduced by band-limiting or remapped by warping. This suggests that hearing-impaired listeners, who have limited access to high frequencies, might also improve their localization ability when provided with spectrally warped or band-limited sounds and adequately trained on sound localization. PMID:23967945
Higgs production and decay in models of a warped extra dimension with a bulk Higgs
Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias
2015-01-13
Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequencemore » of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less
Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warping
NASA Astrophysics Data System (ADS)
Dupas, Rémi; Tavenard, Romain; Fovet, Ophélie; Gilliet, Nicolas; Grimaldi, Catherine; Gascuel-Odoux, Chantal
2015-11-01
Phosphorus (P) transfer during storm events represents a significant part of annual P loads in streams and contributes to eutrophication in downstream water bodies. To improve understanding of P storm dynamics, automated or semiautomated methods are needed to extract meaningful information from ever-growing water quality measurement data sets. In this paper, seasonal patterns of P storm dynamics are identified in two contrasting watersheds (arable and grassland) through Dynamic Time Warping (DTW) combined with k-means clustering. DTW was used to align discharge time series of different lengths and with differences in phase, which allowed robust application of a k-means clustering algorithm on rescaled P time series. In the arable watershed, the main storm pattern identified from autumn to winter displayed distinct export dynamics for particulate and dissolved P, which suggests independent transport mechanisms for both P forms. Conversely, the main storm pattern identified in spring displayed synchronized export of particulate and dissolved P. In the grassland watershed, the occurrence of synchronized export of dissolved and particulate P forms was not related to the season, but rather to the amplitude of storm events. Differences between the seasonal distributions of the patterns identified for the two watersheds were interpreted in terms of P sources and transport pathways. The DTW-based clustering algorithm used in this study proved useful for identifying common patterns in water quality time series and for isolating unusual events. It will open new possibilities for interpreting the high-frequency and multiparameter water quality time series that are currently acquired worldwide.
Word spotting for handwritten documents using Chamfer Distance and Dynamic Time Warping
NASA Astrophysics Data System (ADS)
Saabni, Raid M.; El-Sana, Jihad A.
2011-01-01
A large amount of handwritten historical documents are located in libraries around the world. The desire to access, search, and explore these documents paves the way for a new age of knowledge sharing and promotes collaboration and understanding between human societies. Currently, the indexes for these documents are generated manually, which is very tedious and time consuming. Results produced by state of the art techniques, for converting complete images of handwritten documents into textual representations, are not yet sufficient. Therefore, word-spotting methods have been developed to archive and index images of handwritten documents in order to enable efficient searching within documents. In this paper, we present a new matching algorithm to be used in word-spotting tasks for historical Arabic documents. We present a novel algorithm based on the Chamfer Distance to compute the similarity between shapes of word-parts. Matching results are used to cluster images of Arabic word-parts into different classes using the Nearest Neighbor rule. To compute the distance between two word-part images, the algorithm subdivides each image into equal-sized slices (windows). A modified version of the Chamfer Distance, incorporating geometric gradient features and distance transform data, is used as a similarity distance between the different slices. Finally, the Dynamic Time Warping (DTW) algorithm is used to measure the distance between two images of word-parts. By using the DTW we enabled our system to cluster similar word-parts, even though they are transformed non-linearly due to the nature of handwriting. We tested our implementation of the presented methods using various documents in different writing styles, taken from Juma'a Al Majid Center - Dubai, and obtained encouraging results.
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2008-09-01
probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital
Particle-in-Cell WARP simulation studies of positron plasmas in micro-Penning-Malmberg traps
NASA Astrophysics Data System (ADS)
Narimannezhad, Alireza; Weber, Marc H.; Lynn, Kelvin G.
2013-10-01
The charged particles storage capacity of microtraps with large length to radius aspect ratios and radii of the order of tens of microns was explored using particle-in-cell WARP code. The new design of the trap consisted of an array of microtraps with substantially lower end electrodes potential than conventional Penning-Malmberg traps, which makes this trap quite portable. It was shown that each microtrap with 50 μm radius immersed in a 7 T uniform, axial magnetic field, stored positrons with a density (1.6E11 cm-3) even higher than that in conventional Penning-Malmberg traps (~ 1E11 cm-3) while the confinement voltage was only 10 V. The trapped density scaled as r-2 down to 3 μm radius. It was presented in this work how to evaluate and lower the numerical noise by controlling the modeling parameters so the simulated plasma can evolve toward computational equilibrium. The local equilibrium distribution was attained in time scales of the simulation for plasmas initialized with a uniform density and Boltzmann energy distribution. The charge clouds developed the expected radial soft edge density distribution and rigid rotation evolved to some extent. To reach global equilibrium (i.e. rigid rotation) longer runs are required. The plasma confinement time and its thermalization were independent of the length. We would like to thank program managers Dr. William Beck and Dr. Parvez Uppal of the ARL who provide funding under contract W9113M-09-C-0075, and program manager Dr. Scott Coombe of the ONR who provide finding under award #N00014-10-1-0543.
Higgs production and decay in models of a warped extra dimension with a bulk Higgs
Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias
2015-01-13
Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS_{5} space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y_{*} of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y_{*}, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.
Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.
2004-01-01
Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most
Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier.
Islam, Md Shafiqul; Hannan, M A; Basri, Hassan; Hussain, Aini; Arebey, Maher
2014-02-01
The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level. PMID:24238802
26. CAN CONVEYOR DRIVE MECHANISM Empty can conveyor driving mechanism, ...
26. CAN CONVEYOR DRIVE MECHANISM Empty can conveyor driving mechanism, second floor above canning area. The belt has been removed from the conveyor, but sections of can conveyor tracks are visible on the floor. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ...
VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ON RIGHT. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves
A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan; Pan, Supriya
2016-03-01
If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.
Shen, Shiqi; Zhu, Zhifeng; Liu, Fengdan
2016-03-15
An attempt has been made to reveal the effect of amphoteric poly(2-acryloyloxyethyl trimethyl ammonium chloride-co-acrylic acid) [P(ATAC-co-AA)] branches grafted onto the backbones of starch upon the adhesion-to-cotton, film properties, and desizability of maize starch for cotton warp sizing. Starch-g-poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid) [S-g-P(ATAC-co-AA)] was prepared by the graft copolymerization of 2-acryloyloxyethyl trimethyl ammonium chloride (ATAC) and acrylic acid (AA) with acid-converted starch (ACS) in aqueous medium using Fe(2+)-H2O2 initiator. The adhesion was evaluated in term of bonding strength according to the FZ/T 15001-2008 whereas the film properties considered included tensile strength, work and percentage elongation at break. The evaluation was undertaken through the comparison of S-g-P(ATAC-co-AA) with ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride). It was found that the amphoteric branch was able to significantly improve the adhesion and mitigate the brittleness of starch film. Zeta potential of cooked S-g-P(ATAC-co-AA) paste, depending on the mole ratio of ATAC to AA units on P(ATAC-co-AA) branches, had substantial effect on the adhesion and desizability. Increasing the mole ratio raised the potential, which favored the adhesion but disfavored the removal of S-g-P(ATAC-co-AA) from sized cotton warps. Electroneutral S-g-P(ATAC-co-AA) was superior to negatively grafted starch in adhesion and to positively grafted starch in desizability. Generally, it showed better sizing property than ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride), and had potential in the application of cotton warp sizing. PMID:26794764
NASA Astrophysics Data System (ADS)
Loredo, A.; Castel, A.
2013-01-01
In this paper, a suitable model for static and dynamic analysis of inhomogeneous anisotropic multilayered plates is described. This model takes into account the variations of the transverse shear strains through the thickness of the plate by means of warping functions. Warping functions are determined by enforcing kinematic and static assumptions at the interfaces. This model leads to: a 10×10 stiffness matrix coupling to each other the membrane strains, the bending and torsion curvatures, and the x and y-derivatives of the transverse shear strains; and a classical 2×2 transverse shear stiffness matrix. This model has been proven to be very efficient, especially when high ratios between the stiffnesses of layers - up to 106 - are present. This work is related to Woodcock's model, so it can be seen as a reformulation of his work. However, it brings several enhancements: the displacement field is made explicit; it is reformulated with commonly used plate notations; laminate equations of motion are fully detailed; the place of this model among other plate models is now easy to see and is discussed; the link between this formulation and the original one is completely written with all necessary proofs; misses and errors have been found in the energy coefficients of the original work and have been corrected; it is now easy to improve or to adapt the model for specific applications with the choice of refined or specific warping functions. Static deflection and natural frequencies for isotropic and anisotropic sandwich plates are given and compared to other models: they show that the present model is very accurate for the simulation of such structures.
Veiga, Catarina Royle, Gary; Lourenço, Ana Mónica; Mouinuddin, Syed; Herk, Marcel van; Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R.
2015-02-15
Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of
Handbook for Driving Knowledge Testing.
ERIC Educational Resources Information Center
Pollock, William T.; McDole, Thomas L.
Materials intended for driving knowledge test development for use by operational licensing and education agencies are presented. A pool of 1,313 multiple choice test items is included, consisting of sets of specially developed and tested items covering principles of safe driving, legal regulations, and traffic control device knowledge pertinent to…
Bidirectional drive and brake mechanism
NASA Technical Reports Server (NTRS)
Swan, Scott A. (Inventor)
1991-01-01
A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.
Students: You... Alcohol and Driving.
ERIC Educational Resources Information Center
Department of Transportation, Washington, DC.
The purpose of this manual is to provide accurate information about alcohol and about drinking and driving, so that the student may make responsible decisions about both. It covers youth drinking, drinking and driving, and the individual's responsibility to others in drinking situations. The booklet consists of eight readings, as well as…
Driving difficulties in Parkinson's disease
Rizzo, Matthew; Uc, Ergun Y; Dawson, Jeffrey; Anderson, Steven; Rodnitzky, Robert
2011-01-01
Safe driving requires the coordination of attention, perception, memory, motor and executive functions (including decision-making) and self-awareness. PD and other disorders may impair these abilities. Because age or medical diagnosis alone is often an unreliable criterion for licensure, decisions on fitness to drive should be based on empirical observations of performance. Linkages between cognitive abilities measured by neuropsychological tasks, and driving behavior assessed using driving simulators, and natural and naturalistic observations in instrumented vehicles, can help standardize the assessment of fitness-to-drive. By understanding the patterns of driver safety errors that cause crashes, it may be possible to design interventions to reduce these errors and injuries and increase mobility. This includes driver performance monitoring devices, collision alerting and warning systems, road design, and graded licensure strategies. PMID:20187237
Giorgio, Marie-Thérèse
2015-09-01
The role of the occupational physician is to prevent occupational accidents and diseases. Therefore, he is the one to decide if a worker is fit to drive in the context of his professional activity, including in cases where no specific driving license is required (e.g. forklift truck, mobile crane). This decision is an important one, as two thirds of fatal occupational accidents occur on the road. The decision is made on the basis of both a medical examination and the regulation, which indicates all contraindications to driving. The physician's responsibility is involved, as is the employer's, as he must ensure that his employee is fit to drive and possesses a valid driving license at all times. PMID:25960440
Quantum gates by periodic driving
Shi, Z. C.; Wang, W.; Yi, X. X.
2016-01-01
Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900
NASA Astrophysics Data System (ADS)
Haff, P. K.
2012-12-01
Technological modification of the earth's surface (e.g., agriculture, urbanization) is an old story in human history, but what about the future? The future of landscape in an accelerating technological world, beyond a relatively short time horizon, lies hidden behind an impenetrable veil of complexity. Sufficiently complex dynamics generates not only the trajectory of a variable of interest (e.g., vegetation cover) but also the environment in which that variable evolves (e.g., background climate). There is no way to anticipate what variables will define that environment—the dynamics creates its own variables. We are always open to surprise by a change of conditions we thought or assumed were fixed or by the appearance of new phenomena of whose possible existence we had been unaware or thought unlikely. This is especially true under the influence of technology, where novelty is the rule. Lack of direct long-term predictability of landscape change does not, however, mean we cannot say anything about its future. The presence of persistence (finite time scales) in a system means that prediction by a calibrated numerical model should be good for a limited period of time barring bad luck or faulty implementation. Short-term prediction, despite its limitations, provides an option for dealing with the longer-term future. If a computer-controlled car tries to drive itself from New York to Los Angeles, no conceivable (or possible) stand-alone software can be constructed to predict a priori the space-time trajectory of the vehicle. Yet the drive is normally completed easily by most drivers. The trip is successfully completed because each in a series of very short (linear) steps can be "corrected" on the fly by the driver, who takes her cues from the environment to keep the car on the road and headed toward its destination. This metaphor differs in a fundamental way from the usual notion of predicting geomorphic change, because it involves a goal—to reach a desired
Electric vehicle drive systems
NASA Astrophysics Data System (ADS)
Appleyard, M.
1992-01-01
New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.
Linear Back-Drive Differentials
NASA Technical Reports Server (NTRS)
Waydo, Peter
2003-01-01
Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2008-09-01
probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital
Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.
NASA Astrophysics Data System (ADS)
Wang, Avery Li-Chun
This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters
NASA Astrophysics Data System (ADS)
Stepinski, T. F.; Netzel, P.; Jasiewicz, J.
2014-12-01
We have developed a novel method for classification and search of climate over the global land surface excluding Antarctica. Our method classifies climate on the basis of the outcome of time series segmentation and clustering. We use WorldClim 30 arc sec. (approx. 1 km) resolution grid data which is based on 50 years of climatic observations. Each cell in a grid is assigned a 12 month series consisting of 50-years monthly averages of mean, maximum, and minimum temperatures as well as the total precipitation. The presented method introduces several innovations with comparison to existing data-driven methods of world climate classifications. First, it uses only climatic rather than bioclimatic data. Second, it employs object-oriented methodology - the grid is first segmented before climatic segments are classified. Third, and most importantly, the similarity between climates in two given cells is performed using the dynamic time warping (DTW) measure instead of the Euclidean distance. The DTW is known to be superior to Euclidean distance for time series, but has not been utilized before in classification of global climate. To account for computational expense of DTW we use highly efficient GeoPAT software (http://sil.uc.edu/gitlist/) that, in the first step, segments the grid into local regions of uniform climate. In the second step, the segments are classified. We also introduce a climate search - a GeoWeb-based method for interactive presentation of global climate information in the form of query-and-retrieval. A user selects a geographical location and the system returns a global map indicating level of similarity between local climates and a climate in the selected location. The results of the search for location: "University of Cincinnati, Main Campus" are presented on attached map. The results of the search for location: "University of Cincinnati, Main Campus" are presented on the map. We have compared the results of our method to Koeppen classification scheme
Gilbertson, T. A.
1984-11-06
An oil well pumping apparatus which includes a submerged reciprocating pump mounted in a tubing arrangement communicating with the wellhead, a sucker rod string extending through the tubing arrangement and connected in driving relation with the pump, and a pumping tee and stuffing box arrangement mounted on the casing of the well at the wellhead and including a sealed drive rod arrangement in the stuffing box connected in driving relation to said sucker rod string, and a pump driving unit. The pump driving unit includes a hydraulic cylinder and support means including a gimbal arrangement for supporting the hydraulic cylinder over the stuffing box with the axis of the cylinder rod aligned with the axis of said stuffing box. A coupling means is provided for coupling the cylinder rod to the sealed drive rod arrangement. A hydraulic drive/control unit is coupled to said in/out fluid line for operating cycle consisting of a hydraulic power upstroke and a gravity power downstroke. An assist cylinder and accumulator combination are provided to counteract part of the weight of the rod string and thus reduce the workload on t
A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas
2010-11-01
Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. PMID:20688383
Li, Baojun; Christensen, Gary E.; Hoffman, Eric A.; McLennan, Geoffrey; Reinhardt, Joseph M.
2008-01-01
Tracking lung tissues during the respiratory cycle has been a challenging task for diagnostic CT and CT-guided radiotherapy. We propose an intensity- and landmark-based image registration algorithm to perform image registration and warping of 3D pulmonary CT image data sets, based on consistency constraints and matching corresponding airway branchpoints. In this paper, we demonstrate the effectivenss and accuracy of this algorithm in tracking lung tissues by both animal and human data sets. In the animal study, the result showed a tracking accuracy of 1.9 mm between 50% functional residual capacity (FRC) and 85% total lung capacity (TLC) for 12 metal seeds implanted in the lungs of a breathing sheep under precise volume control using a pulmonary ventilator. Visual inspection of the human subject results revealed the algorithm’s potential not only in matching the global shapes, but also in registering the internal structures (e.g., oblique lobe fissures, pulmonary artery branches, etc.). These results suggest that our algorithm has significant potential for warping and tracking lung tissue deformation with applications in diagnostic CT, CT-guided radiotherapy treatment planning, and therapeutic effect evaluation. PMID:19175115
Driving Performance Under Alcohol in Simulated Representative Driving Tasks
Kenntner-Mabiala, Ramona; Kaussner, Yvonne; Jagiellowicz-Kaufmann, Monika; Hoffmann, Sonja; Krüger, Hans-Peter
2015-01-01
Abstract Comparing drug-induced driving impairments with the effects of benchmark blood alcohol concentrations (BACs) is an approved approach to determine the clinical relevance of findings for traffic safety. The present study aimed to collect alcohol calibration data to validate findings of clinical trials that were derived from a representative test course in a dynamic driving simulator. The driving performance of 24 healthy volunteers under placebo and with 0.05% and 0.08% BACs was measured in a double-blind, randomized, crossover design. Trained investigators assessed the subjects’ driving performance and registered their driving errors. Various driving parameters that were recorded during the simulation were also analyzed. Generally, the participants performed worse on the test course (P < 0.05 for the investigators’ assessment) under the influence of alcohol. Consistent with the relevant literature, lane-keeping performance parameters were sensitive to the investigated BACs. There were significant differences between the alcohol and placebo conditions in most of the parameters analyzed. However, the total number of errors was the only parameter discriminating significantly between all three BAC conditions. In conclusion, data show that the present experimental setup is suitable for future psychopharmacological research. Thereby, for each drug to be investigated, we recommend to assess a profile of various parameters that address different levels of driving. On the basis of this performance profile, the total number of driving errors is recommended as the primary endpoint. However, this overall endpoint should be completed by a specifically sensitive parameter that is chosen depending on the effect known to be induced by the tested drug. PMID:25689289
Magnetic compression laser driving circuit
Ball, D.G.; Birx, D.; Cook, E.G.
1993-01-05
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Magnetic compression laser driving circuit
Ball, Don G.; Birx, Dan; Cook, Edward G.
1993-01-01
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Driving Speed vs Fuel Efficiency.
ERIC Educational Resources Information Center
Vest, Floyd
1980-01-01
A mathematical treatment of the relationship between driving speed and fuel efficiency is presented. The material involves applications of exponentials, logarithms, and elementary calculus, and is intended to be enrichment material for secondary and lower college mathematics classes. (MP)