Science.gov

Sample records for alcyonacean soft corals

  1. Direct and indirect effects of a new disease of alcyonacean soft corals

    NASA Astrophysics Data System (ADS)

    Slattery, M.; Renegar, D. A.; Gochfeld, D. J.

    2013-09-01

    Alcyonacean soft corals form major components of the biomass and biodiversity on many shallow Indo-Pacific reefs. In spite of the observed increase in marine diseases worldwide, disease has rarely been reported from this taxonomic group. Here, we describe a chronic tissue loss disease affecting soft corals of the genus Sinularia on reefs in Guam. The disease presents as a diffuse wrinkling of the otherwise smooth fingers, followed by tissue sloughing, necrosis, and disintegration. Until a cause has been confirmed, we propose the name Sinularia Tissue Loss Disease. This disease was first observed at low prevalence (<1 %) in 2001 affecting Sinularia polydactyla and it was later found in Sinularia maxima and the hybrid S. maxima x polydactyla. Disease prevalence is now significantly greater in the hybrid (11-12 %) than in either parent species (2-3 %). Histological examination of healthy and affected tissues of hybrid soft corals demonstrates a loss of structural integrity, increased densities of amoebocytes and inclusion of unidentified foreign eukaryotic cells that resemble oocysts, in the diseased tissues. The presence of disease is associated with reduced concentrations of cellular protein levels, although lipids and carbohydrates were unaffected. Results from a common garden transplant experiment indicate that disease also has an indirect effect on hybrid soft corals by increasing rates of butterflyfish predation over the levels found on healthy hybrids or on healthy and diseased parent species. Our results indicate that interactions between the parent and hybrid soft coral populations are more dynamic than previously reported. Loss of hybrid soft corals on already degraded back-reefs of Guam could have significant repercussions for these reef communities.

  2. Lipophilic defenses from Alcyonium soft corals of Antarctica.

    PubMed

    Núñez-Pons, Laura; Carbone, Marianna; Vázquez, Jennifer; Gavagnin, Margherita; Avila, Conxita

    2013-05-01

    Alcyonacean soft corals lack physical or skeletal defenses and their nematocyst system is weak, leading to the conclusion that soft corals mainly rely on chemistry for protection from predators and microbes. Defensive chemicals of primary and secondary metabolic origin are exuded in the mucus surface layer, explaining the general lack of heavy fouling and predation in corals. In Antarctic ecosystems, where generalist predation is intense and mainly driven by invertebrate consumers, the genus Alcyonium is represented by eight species. Our goal was to investigate the understudied chemical ecology of Antarctic Alcyonium soft corals. We obtained six samples belonging to five species: A. antarcticum, A. grandis, A. haddoni, A. paucilobulatum, and A. roseum, and assessed the lipid-soluble fractions for the presence of defensive agents in these specimens. Ethyl ether extracts were tested in feeding bioassays with the sea star Odontaster validus and the amphipod Cheirimedon femoratus as putative sympatric predators. Repellent activities were observed towards both consumers in all but one of the samples assessed. Moreover, three of the extracts caused inhibition to a sympatric marine bacterium. The ether extracts afforded characteristic illudalane sesquiterpenoids in two of the samples, as well as particular wax esters subfractions in all the colonies analyzed. Both kinds of metabolites displayed significant deterrent activities demonstrating their likely defensive role. These results suggest that lipophilic chemicals are a first line protection strategy in Antarctic Alcyonium soft corals against predation and bacterial fouling. PMID:23536231

  3. Structural Elucidation and Structure-Anti-inflammatory Activity Relationships of Cembranoids from Cultured Soft Corals Sinularia sandensis and Sinularia flexibilis.

    PubMed

    Tsai, Tsung-Chang; Chen, Hsueh-Yu; Sheu, Jyh-Horng; Chiang, Michael Y; Wen, Zhi-Hong; Dai, Chang-Feng; Su, Jui-Hsin

    2015-08-19

    New cembranoids 4-carbomethoxyl-10-epigyrosanoldie E (1), 7-acetylsinumaximol B (2), diepoxycembrene B (6), dihydromanaarenolide I (8), and isosinulaflexiolide K (9), along with 11 known related metabolites, were isolated from cultured soft corals Sinularia sandensis and Sinularia flexibilis. The structures were elucidated by means of infrared, mass spectrometry, and nuclear magnetic resonance techniques, and the absolute configurations of 1, 4, 9, and 15 were further confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of these coral metabolites and comparison with known analogues showed that one hypothesis (that cembrane diterpenes possessing an absolute configuration of an isopropyl group at C1 obtained from Alcyonacean soft corals belong to the α series, whereas analogues isolated from Gorgonacean corals belong to the β series) is not applicable for a small number of cembranoids. An in vitro anti-inflammatory study using LPS-stimulated macrophage-like cell line RAW 264.7 revealed that compounds 9-14 significantly suppressed the accumulation of pro-inflammatory proteins, iNOS and COX-2. Structure-activity relationship analysis indicated that cembrane-type compounds with one seven-membered lactone moiety at C-1 are potential anti-inflammatory agents. This is the first culture system in the world that has successfully been used to farm S. sandensis. PMID:26260702

  4. Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on selected scleractinian corals

    NASA Astrophysics Data System (ADS)

    Sammarco, P. W.; Coll, J. C.; La Barre, S.; Willis, B.

    1983-09-01

    A striking retardation of grwoth was observed in the scleractinian coral Pavona cactus (Coelenterata: Scleractinia) growing in the vicinity of the soft coral Sinularia flexibilis (Coelenterata: Alcyonacea). More extensive field observations of naturally occurring interactions between soft corals and scleractinian corals suggested that members of the former group can be the more effective competitors for space on hard substrate. To test this hypothesis, colonies of three soft corals, Lobophytum pauciflorum, Sinularia pavida, and Xenia sp. aff. danae, were relocated next to stands of two hard corals, Pavona cactus and Porites andrewsi (=Porites cylindrica), and compared with undisturbed control areas. In areas where soft corals and scleractinian corals were in direct contact, significantly high levels of local mortality in the latter occurred in three of the six interaction pairs. One soft coral, L. pauciflorum, also caused extensive and significant mortality in Porites andrewsi in a non-contact situation. The scleractinian corals had no effect on the soft corals considered here. These results indicate that soft corals can effectively compete for space against hard corals. Furthermore, it is inferred that toxic exudates from the soft coral might be responsible for causing localized mortality in hard corals, since extensive mortality occurred in certain cases in the absence of contact. Competitive abilities of soft corals in interactions with hard corals varied in a species-specific manner. Susceptibility of hard corals to competitive mechanisms utilized by soft corals, particularly allelopathic ones, likewise varied species-specifically. It is commonly believed that the adaptive value of toxic compounds in soft corals stems from their effectiveness as a chemical defence mechanism in predator-prey interactions. This study has demonstrated their further role as allelopathic agents in interspecific competitive interactions.

  5. Robustness of size measurement in soft corals

    NASA Astrophysics Data System (ADS)

    Hellström, M.; Benzie, J. A. H.

    2011-09-01

    Accurate colony size measurement in soft-bodied sessile aquatic invertebrates is more difficult than in hard corals because of the variable state of the hydroskeleton in the former. The present study examined variation in colony height, oral disc diameter and basal circumference in three species of soft coral of different morphological types ( Sarcophyton elegans, Sinularia flexibilis and Dendronephthya sp.) over a 24-h period. Individual colonies changed considerably in size over this period. Coefficients of variation for height measurements and oral disc were 0.09-0.36 and 0.08-0.28, respectively, but were only 0.02-0.09 for basal circumference, in all three species. Measurements of basal circumference in the field showed the highest correlation with colony biomass (volume after water displacement in formalin) confirming basal circumference to be a sound measure of colony size in repeated measurement studies.

  6. Benefit of pulsation in soft corals

    PubMed Central

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-01-01

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral–water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral’s photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral’s resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis–respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes. PMID:23610420

  7. New Diterpenoids from Soft Coral Sarcophyton ehrenbergi

    PubMed Central

    Wang, Shang-Kwei; Hsieh, Mu-Keng; Duh, Chang-Yih

    2013-01-01

    Continuing chemical investigation on the acetone extracts of the soft coral Sarcophyton ehrenbergi collected off the coast of San-hsian-tai, Taitong County, Taiwan led to the isolation of two new diterpenoids, ehrenbergol C and acetyl ehrenberoxide B (1 and 2). The structures of these isolated metabolites were elucidated through extensive spectroscopic analyses. Moreover, in vitro tests show that compounds 1 and 2 displayed antiviral activity towards human cytomegalovirus, with EC50 of 20 and 8.0 µg/mL, respectively. PMID:24177676

  8. Novel cytotoxic cembranoids from the soft coral Sinularia flexibilis.

    PubMed

    Duh, C Y; Wang, S K; Tseng, H K; Sheu, J H; Chiang, M Y

    1998-06-26

    Three new cytotoxic cembranoid diterpenes, sinuflexolide (1), dihydrosinuflexolide (2), and sinuflexibilin (3), have been isolated from the soft coral Sinularia flexibilis. The structures of compounds 1-3 were determined by spectral and X-ray crystallographic analysis. PMID:9644083

  9. Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals.

    PubMed

    Barneah, O; Benayahu, Y; Weis, V M

    2006-01-01

    The symbiotic association between corals and photosynthetic unicellular algae is of great importance in coral reef ecosystems. The study of symbiotic relationships is multidisciplinary and involves research in phylogeny, physiology, biochemistry, and ecology. An intriguing phase in each symbiotic relationship is its initiation, in which the partners interact for the first time. The examination of this phase in coral-algae symbiosis from a molecular point of view is still at an early stage. In the present study we used 2-dimensional polyacrylamide gel electrophoresis to compare patterns of proteins synthesized in symbiotic and aposymbiotic primary polyps of the Red Sea soft coral Heteroxenia fuscescens. This is the first work to search for symbiosis-specific proteins during the natural onset of symbiosis in early host ontogeny. The protein profiles reveal changes in the host soft coral proteome through development, but surprisingly virtually no changes in the host proteome as a function of symbiotic state. PMID:16059755

  10. Changes in coral assemblages during an outbreak of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995-1999)

    NASA Astrophysics Data System (ADS)

    Pratchett, M. S.

    2010-09-01

    Population outbreaks of crown-of-thorns starfish ( Acanthaster planci L.) represent one of the most significant biological disturbances on tropical coral reefs and have the potential to devastate coral communities, thereby altering the biological and physical structure of reef habitats. This study reports on changes in area cover, species diversity and taxonomic composition of corals during an outbreak of A. planci at Lizard Island, in the northern Great Barrier Reef, Australia. Mean coral cover declined by 28.8% across ten locations studied. However, densities of A. planci, and their effects on local coral assemblages, were very patchy. Declines in coral cover were mostly due to the selective removal of certain coral taxa (mainly Acropora and Pocilloporidae corals); such that the greatest coral loss occurred at locations with highest initial cover of preferred coral prey. Most notably, coral assemblages in back-reef locations were transformed from topographically complex staghorn Acropora-dominated habitats, to relatively depauperate assemblages dominated by alcyonacean soft corals. Although coral loss was greatest among formerly dominant taxa (especially Acropora), effects were sufficiently widespread across different coral taxa, such that overall coral diversity tended to decline. Clearly, moderate outbreaks of A. planci have the potential to greatly alter community structure of coral communities even if they do not devastate live corals. Recovery in this instance is expected to be very rapid given that all coral taxa persisted, and effects were greatest among fast growing corals.

  11. Patterns of distribution of calcite crystals in soft corals sclerites.

    PubMed

    Tentori, Ernestina; van Ofwegen, Leen P

    2011-05-01

    The gross morphology of soft coral surface sclerites has been studied for taxonomic purposes for over a century. In contrast, sclerites located deep in the core of colonies have not received attention. Some soft coral groups develop massive colonies, in these organisms tissue depth can limit light penetration and circulation of internal fluids affecting the physiology of coral tissues and their symbiotic algae; such conditions have the potential to create contrasting calcifying conditions. To test this idea, we analyzed the crystal structure of sclerites extracted from different colony regions in selected specimens of zooxanthellate and azooxanthellate soft corals with different colony morphologies, these were: Sarcophyton mililatensis, Sinularia capillosa, Sinularia flexibilis, Dendronephthya sp. and Ceeceenus levis. We found that the crystals that constitute polyp sclerites differ from those forming stalk sclerites. We also observed different crystals in sclerites located at various depths in the stalk including signs of sclerite breakdown in the stalk core region. These results indicate different modes of calcification within each colonial organism analyzed and illustrate the complexity of organisms usually regarded as repetitive morphological and functional units. Our study indicates that soft corals are ideal material to study natural gradients of calcification conditions. PMID:21433054

  12. New 19-Oxygenated Steroids from the Soft Coral Nephthea chabrolii

    PubMed Central

    Wang, Shang-Kwei; Puu, Shyh-Yueh; Duh, Chang-Yih

    2012-01-01

    In order to search for novel bioactive substances from marine organisms, we investigated the acetone extract of the soft coral Nephthea chabrolii collected at San-Hsian-Tai, Taitong County, Taiwan. From this extract three new 19-oxygenated steroids, nebrosteroids N–P (1–3) were isolated. The structures of these compounds were elucidated by extensive spectroscopic analyses. PMID:22822372

  13. New Cytotoxic Cembranolides from the Soft Coral Lobophytum michaelae

    PubMed Central

    Wang, Shang-Kwei; Duh, Chang-Yih

    2012-01-01

    Six new cembranolides, michaolides L–Q (1–6), and a known cembranolide, lobomichaolide (7) were isolated from the CH2Cl2 extract of the soft coral Lobophytum michaelae. Their structures were established by extensive spectral analysis. The anti-HCMV (human cytomegalovirus) activity of 1–7 and their cytotoxicity against selected cell lines were evaluated. PMID:22412802

  14. Prenylbicyclogermacrane diterpenoids from the formosan soft coral Nephthea elongata.

    PubMed

    El-Gamal, Ali Ali Hassan; Wang, Shang-Kwei; Duh, Chang-Yih

    2007-06-01

    Seven new prenylbicyclogermacrane diterpenoids, pacificins K--Q (1--7), were isolated from the methylene chloride solubles of the Formosan soft coral Nephthea elongata. Their structures were elucidated by extensive spectroscopic analysis and their cytotoxicity against selected cancer cells was measured in vitro. PMID:17541187

  15. New cytotoxic steroids from the soft coral Clavularia viridis.

    PubMed

    Duh, Chang-Yih; Lo, I-Wen; Wang, Shang-Kwei; Dai, Chang-Feng

    2007-06-01

    Ten new cytotoxic steroids, stoloniferones H-Q (1-10) were isolated from the methylene chloride solubles of the soft coral Clavularia viridis. The structures of the metabolites were elucidated on the basis of spectroscopic (IR, MS, and 1D and 2D NMR) analysis and their cytotoxicity against selected cancer cells was measured in vitro. PMID:17485104

  16. Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

    PubMed Central

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. PMID:22272344

  17. Soft coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) species diversity and chemotypes.

    PubMed

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. PMID:22272344

  18. New Steroids from the Soft Coral Nephthea chabrolii

    PubMed Central

    Wang, Shang-Kwei; Puu, Shyh-Yueh; Duh, Chang-Yih

    2013-01-01

    A new cytotoxic 19-oxygenated steroid, nebrosteroid Q (1) and two new cytotoxic 19-norergosterols, nebrosteroids R and S (2 and 3) were isolated from the soft coral Nephthea chabrolii collected at San-Hsian-Tai. The structures of nebrosteroids Q–S (1–3) were elucidated by spectral analysis, and their cytotoxicity against selected cancer cells as well as antiviral activity against human cytomegalovirus (HCMV) were measured in vitro. PMID:23434799

  19. Five New Diterpenoids from an Okinawan Soft Coral, Cespitularia sp.

    PubMed Central

    Roy, Prodip K.; Maarisit, Wilmar; Roy, Michael C.; Taira, Junsei; Ueda, Katsuhiro

    2012-01-01

    Five new diterpenoids 1–5 were isolated from an Okinawan soft coral, Cespitularia sp., together with the known diterpenoid, alcyonolide (6). New diterpenoid structures were elucidated by spectroscopic methods and by comparison of their NMR data with those of related compounds. Alcyonolide (6) was cytotoxic against HCT 116 cells (IC50 5.85 μM), while these new diterpenoids 1–5 were much less active (IC50 28.2–91.4 μM). PMID:23201595

  20. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    PubMed Central

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-01-01

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation. PMID:24686560

  1. Three new cembranoids from the Bornean soft coral Nephthea sp.

    PubMed

    Ishii, Takahiro; Kamada, Takashi; Vairappan, Charles S

    2016-05-01

    Three new cembranoid diterpenes, 10-hydroxy-nephthenol acetate (1), 7,8-epoxy-10-hydroxy-nephthenol acetate (2), and 6-acetoxy-7,8-epoxy-10-hydroxy-nephthenol acetate (3), along with a known compound, 6-acetoxy-7,8-epoxy-nephthenol acetate (4), were isolated from the Bornean soft coral Nephthea sp. Antibacterial and anticancer activities were exhibited by compounds 1 and 2 against Staphylococcus aureus (ATCC 6538)/Escherichia coli (ATCC 13311) and Hela/MCF-7, respectively. PMID:26983053

  2. Three New Cembranoids from the Taiwanese Soft Coral Sarcophyton ehrenbergi

    PubMed Central

    Wang, Shang-Kwei; Hsieh, Mu-Keng; Duh, Chang-Yih

    2012-01-01

    In order to search for new bioactive substances from marine organisms, we have investigated the acetone extracts of the soft coral Sarcophyton ehrenbergi collected at San-Hsian-Tai, Taitong County, Taiwan. Chromatographic fractionation of the extracts of the octocoral S. ehrenbergi led to the isolation of three new cembranoids, (+)-12-ethoxycarbonyl-11Z-sarcophine (1), ehrenbergol A and B (2 and 3). The structures of these isolated metabolites were elucidated through extensive spectroscopic analyses. Moreover, metabolites 1–3 were evaluated in vitro for their cytotoxicity towards selected cancer cell lines and antiviral activity against human cytomegalovirus (HCMV). PMID:22851917

  3. Cembranoids from the Dongsha Atoll Soft Coral Lobophytum crassum

    PubMed Central

    Lin, Shih-Tseng; Wang, Shang-Kwei; Duh, Chang-Yih

    2011-01-01

    Chemical investigation of the Dongsha Atoll soft coral Lobophytum crassum has afforded four new cembranoids, crassumols A–C (1–3) and 13-acetoxysarcophytoxide (4). The structures of these isolated compounds were elucidated by extensive NMR and HRESIMS experiments. The cytotoxicity and anti-HCMV (Human cytomegalovirus) activities of 1–4 were evaluated in vitro. Compound 4 exhibited cytotoxicity against A-549 (human lung carcinoma) cell line with an ED50 of 3.6 μg/mL. PMID:22363246

  4. Bioactive Cembranoids from the Dongsha Atoll Soft Coral Sarcophyton crassocaule

    PubMed Central

    Lin, Wan-Yu; Lu, Yi; Su, Jui-Hsin; Wen, Zhi-Hong; Dai, Chang-Feng; Kuo, Yao-Haur; Sheu, Jyh-Horng

    2011-01-01

    Seven new cembranoids, sarcocrassocolides F–L (1–7), have been isolated from a soft coral Sarcophyton crassocaule. Their structures were determined by extensive spectroscopic analysis. Most new compounds exhibited significant cytotoxic activity against a limited panel of cancer cell lines, and the structure–activity relationship was studied. Compounds 1–7 were found to display significant in vitro anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells by inhibiting the expression of the iNOS protein. Compound 4 was also found to effectively reduce the level of COX-2 protein. PMID:21747744

  5. Oxygenated Cembranoids from the Soft Coral Sinularia flexibilis

    PubMed Central

    Su, Ching-Chyuan; Wong, Bing-Sang; Chin, Chuen; Wu, Yu-Jen; Su, Jui-Hsin

    2013-01-01

    Chemical examination of the Taiwanese soft coral Sinularia flexibilis led to the isolation of five cembrane-based diterpenoids 1–5, including two new metabolites, 11-acetylsinuflexolide (1) and 11-acetyldihydrosinuflexolide (2). The structures of the new metabolites were determined based on extensive spectroscopic analysis, particularly mass spectrometry and 2D NMR (1H–1H COSY, HMQC, HMBC, and NOESY) spectroscopy. Metabolites 1, 3 and 4 exhibited moderate to weak cytotoxicity to human tumor cell lines, HeLa, HEp-2, MCF-7 and MDA-MB-231. PMID:23429272

  6. Oxygenated Cembranoids from the Soft Coral Sinularia flexibilis.

    PubMed

    Su, Ching-Chyuan; Wong, Bing-Sang; Chin, Chuen; Wu, Yu-Jen; Su, Jui-Hsin

    2013-01-01

    Chemical examination of the Taiwanese soft coral Sinularia flexibilis led to the isolation of five cembrane-based diterpenoids 1-5, including two new metabolites, 11-acetylsinuflexolide (1) and 11-acetyldihydrosinuflexolide (2). The structures of the new metabolites were determined based on extensive spectroscopic analysis, particularly mass spectrometry and 2D NMR (1H-1H COSY, HMQC, HMBC, and NOESY) spectroscopy. Metabolites 1, 3 and 4 exhibited moderate to weak cytotoxicity to human tumor cell lines, HeLa, HEp-2, MCF-7 and MDA-MB-231. PMID:23429272

  7. New Cembrane Diterpenoids from a Hainan Soft Coral Sinularia sp

    PubMed Central

    Yang, Bin; Zhou, Xuefeng; Huang, Hui; Yang, Xian-Wen; Liu, Juan; Lin, Xiuping; Li, Xiubao; Peng, Yan; Liu, Yonghong

    2012-01-01

    Five new cembrane diterpenoids, named sinuflexibilins A–E (1–5), along with nine other known diterpenoids (6–14), have been isolated from the organic extract of a Hainan soft coral Sinularia sp. Their structures were determined on the basis of extensive spectroscopic analyses and by comparison of their spectral data with those of related metabolites. Compound 13, flexibilide, exhibited significant inhibitory activity of NF-κB activation using the cell-based HEK293 NF-κB luciferase reporter gene assay. PMID:23118718

  8. Tetrahydrofuran Cembranoids from the Cultured Soft Coral Lobophytum crassum

    PubMed Central

    Lee, Nai-Lun; Su, Jui-Hsin

    2011-01-01

    Three new cembranoids, culobophylins A–C (1–3), along with two known compounds (4 and 5) were isolated from the cultured soft coral Lobophytum crassum. The structures of these compounds were elucidated on the basis of their spectroscopic data and comparison of the NMR data with those of known analogues. Among these metabolites, 2 is rarely found in cembranoids possessing an isopropyl moiety with an epoxide group. Compound 1 exhibited significant cytotoxic activity against HL60 and DLD-1 cancer cell lines. PMID:22363238

  9. Steroid Constituents from the Soft Coral Sinularia nanolobata.

    PubMed

    Ngoc, Ninh Thi; Huong, Pham Thi Mai; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Thung, Do Cong; Kiem, Phan Van; Minh, Chau Van

    2016-09-01

    Six steroids (1-6), including the two new compounds 3β,4α-dihydroxyergosta-5,24(28)-diene (1) and 24(S),28-epoxyergost-5-ene-3β,4α-diol (2), were isolated from the methanol extract of the Vietnamese soft coral Sinularia nanolobata. Their structures were elucidated by spectroscopic methods including one and two dimensional (1D- and 2D)-NMR, Fourier transform ion cyclotron resonance (FT-ICR)-MS, and circular dichroism (CD). Compound 2 exhibited moderate cytotoxicity against the acute leukemia (HL-60) cell line with IC50 value of 33.53±4.25 µM and weak effect on the hepatoma cancer (HepG2) and colon adenocarcinoma (SW480) cell lines with IC50 values of 64.35±7.00 and 71.02±4.00 µM, respectively. PMID:27321426

  10. Cytotoxic Biscembranoids from the Soft Coral Sarcophyton pauciplicatum.

    PubMed

    Nam, Nguyen Hoai; Tung, Pham The; Ngoc, Ninh Thi; Hanh, Tran Thi Hong; Thao, Nguyen Phuong; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Thao, Do Thi; Huong, Tran Thu; Thung, Do Cong; Kiem, Phan Van; Kim, Young Ho; Minh, Chau Van

    2015-01-01

    Ten biscembranoids (1-10), including the two new compounds sarcophytolides M and N (1 and 2), were isolated from the methanol extract of the Vietnamese soft coral Sarcophyton pauciplicatum. Their structures were elucidated by spectroscopic methods including one dimensional (1D)- and 2D-NMR, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and circular dichroism (CD). The in vitro cytotoxic activity of all isolated compounds against a panel of eight human cancer cell lines including HepG2 (hepatoma cancer), HL-60 (acute leukemia), KB (epidermoid carcinoma), LNCaP (prostate cancer), LU-1 (lung cancer), MCF7 (breast cancer), SK-Mel2 (melanoma), and SW480 (colon adenocarcinoma) was evaluated using the sulforhodamine B colorimetric assay. Among the isolated biscembranoids, 1, 3, 4, 7, 9, and 10 exhibited significant cytotoxic effects and may be selected for further studies of their anticancer activity. PMID:26235170

  11. Cubitanoids and Cembranoids from the Soft Coral Sinularia nanolobata.

    PubMed

    Chao, Chih-Hua; Wu, Chia-Yun; Huang, Chiung-Yao; Wang, Hui-Chun; Dai, Chang-Feng; Wu, Yang-Chang; Sheu, Jyh-Horng

    2016-01-01

    Two new cubitanoids, nanoculones A and B (1 and 2), and three new cembranoids, nanolobols A-C (3-5), as well as six known compounds, calyculone I (6), sinulariuol A (7), sinulariols C, D, H, and J (8-11), were isolated from the soft coral Sinularia nanolobata, collected off the coast of the eastern region of Taiwan. Their structures were elucidated on the basis of extensive spectroscopic analysis. Cytotoxicity of compounds 1-11 was evaluated. The nitric oxide (NO) inhibitory activity of selected compounds was further measured by assay of lipopolysaccharide (LPS)-stimulated NO production in activated RAW264.7 cells. The results showed that none of 1-11 exhibited cytotoxicity against the tested cancer cell lines, whereas compound 8 was found to significantly reduce NO production. PMID:27517938

  12. New Lobane and Cembrane Diterpenes from Two Comorian Soft Corals

    PubMed Central

    Bonnard, Isabelle; Jhaumeer-Laulloo, Sabina B.; Bontemps, Nataly; Banaigs, Bernard; Aknin, Maurice

    2010-01-01

    Preliminary biological investigation of a collection of Comorian soft corals resulted in the selection of two specimens, one of Sarcophyton and the other of Lobophytum, on the basis of their toxicity on larvae of the brine shrimp (Artemia salina) and inhibition of acetylcholinesterase, respectively. Bioassay-guided fractionations provided a known antitumor promoter cembrane diterpenoid, (+)-sarcophytol-A (1), along with a new lobane diterpenoid, carbomethoxyfuscol (2), from Sarcophyton sp., and a new cembranoid, crassumolide E (3), from Lobophytum sp. The structures of compounds 1–3 were determined by spectroscopic analysis and by comparison of the spectral data with previously reported values. The cembranoid 3 was found to exhibit a moderate inhibitory effect on acetylcholinesterase. PMID:20390110

  13. Cubitanoids and Cembranoids from the Soft Coral Sinularia nanolobata

    PubMed Central

    Chao, Chih-Hua; Wu, Chia-Yun; Huang, Chiung-Yao; Wang, Hui-Chun; Dai, Chang-Feng; Wu, Yang-Chang; Sheu, Jyh-Horng

    2016-01-01

    Two new cubitanoids, nanoculones A and B (1 and 2), and three new cembranoids, nanolobols A–C (3–5), as well as six known compounds, calyculone I (6), sinulariuol A (7), sinulariols C, D, H, and J (8–11), were isolated from the soft coral Sinularia nanolobata, collected off the coast of the eastern region of Taiwan. Their structures were elucidated on the basis of extensive spectroscopic analysis. Cytotoxicity of compounds 1–11 was evaluated. The nitric oxide (NO) inhibitory activity of selected compounds was further measured by assay of lipopolysaccharide (LPS)-stimulated NO production in activated RAW264.7 cells. The results showed that none of 1–11 exhibited cytotoxicity against the tested cancer cell lines, whereas compound 8 was found to significantly reduce NO production. PMID:27517938

  14. A New Spatane Diterpenoid from the Cultured Soft Coral Sinularia leptoclados

    PubMed Central

    Tsai, Tsung-Chang; Wu, Yu-Jen; Su, Jui-Hsin; Lin, Wei-Tung; Lin, Yun-Sheng

    2013-01-01

    A new spatane diterpenoid, leptoclalin A (1), along with two previously reported known norcembranoid diterpenes (2 and 3), were isolated from a cultured soft coral Sinularia leptoclados. The structures were determined by extensive spectroscopic analyses and by comparison with the spectral data of related known compounds. Metabolite 1 is rarely found in spatane skeletons reported from soft corals. In addition, compound 1 exhibited weak cytotoxicity towards human tumor cell lines T-47 D and K-562. PMID:23306171

  15. Phytoplankton: a significant trophic source for soft corals?

    NASA Astrophysics Data System (ADS)

    Widdig, Alexander; Schlichter, Dietrich

    2001-08-01

    Histological autoradiographs and biochemical analyses show that 14C-labelled microalgae (diatoms, chlorophytes and dinoflagellates) are used by the soft coral Dendronephthya sp. Digestion of the algae took place at the point of exit of the pharynx into the coelenteron. Ingestion and assimilation of the labelled algae depended on incubation time, cell density, and to a lesser extent on species-specificity. 14C incorporation into polysaccharides, proteins, lipids and compounds of low molecular weight was analysed. The 14C-labelling patterns of the four classes of substances varied depending on incubation time and cell density. 14C incorporation was highest into lipids and proteins. Dissolved labelled algal metabolites, released during incubation into the medium, contributed between 4% and 25% to the total 14C activity incorporated. The incorporated microalgae contributed a maximum of 26% (average of the four species studied) to the daily organic carbon demand, as calculated from assimilation rates at natural eucaryotic phytoplankton densities and a 1 h incubation period. The calculated contribution to the daily organic carbon demand decreased after prolonged incubation periods to about 5% after 3 h and to 1-3% after 9 h. Thus the main energetic demand of Dendronephthya sp. has to be complemented by other components of the seston.

  16. Steroid constituents from the soft coral Sinularia microspiculata.

    PubMed

    Thanh, Nguyen Van; Ngoc, Ninh Thi; Anh, Hoang Le Tuan; Thung, Do Cong; Thao, Do Thi; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Minh, Chau Van

    2016-10-01

    A methanol extract of the soft coral Sinularia microspiculata revealed five sterols, including two new compounds. Using combined chromatographic and spectroscopic experiments, the new compounds were found to be 7-oxogorgosterol (1) and 16α-hydroxysarcosterol (2). Their structures were determined on the basis of spectroscopic data ((1)H and (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, NOESY, and FT-ICR-MS) and by comparing obtained results to the values indicated in previous studies. Among the isolated compounds, 3 showed weak cytotoxic effects against HL-60 (IC50  =  89.02  ±  9.93 μM) cell line, whereas 5 was weakly active against HL-60 (IC50  =  82.80  ±  13.65 μM) and SK-Mel2 (IC50  =  72.32  ±  1.30 μM) cell lines. PMID:27151101

  17. Spatial and temporal patterns of scleractinian coral, soft coral, and zoanthid disease on a remote, near-pristine coral reef (Palmyra Atoll, central Pacific).

    PubMed

    Williams, Gareth J; Knapp, Ingrid S; Aeby, Greta S; Davy, Simon K

    2011-04-01

    There is an urgent need for accurate baselines of coral disease prevalence across our oceans in order for sudden or unnatural changes to be recognized. Palmyra Atoll allows us to study disease dynamics under near-pristine, functionally intact conditions. We examined disease prevalence among all known species of scleractinian coral, soft coral and zoanthid (Palythoa) at a variety of coral reef habitats at Palmyra over a 2 yr period. In 2008, overall disease prevalence across the atoll was low (0.33%), but higher on the shallower backreef (0.88%) and reef terrace (0.80%) than on the deeper forereef (0.09%). Scleractinian coral disease prevalence was higher (0.30%) than were soft coral and zoanthid disease (0.03% combined). Growth anomalies (GAs) were the most commonly encountered lesions, with scleractinian species in the genera Astreopora (2.12%), Acropora (1.30%), and Montipora (0.98%) showing the highest prevalence atoll-wide. Discoloration necrosis (DN) was most prevalent in the zoanthid Palythoa tuberculosa (1.18%), although the soft coral Sinulana and Montipora also had a prevalence of 0.44 and 0.01%, respectively. Overall disease prevalence within permanently marked transects increased from 0.65% in 2008 to 0.79% in 2009. Palythoa DN contributed most to this increased prevalence, which coincided with rising temperatures during the 2009 El Niño. GAs on the majority of susceptible genera at Palmyra increased in number over time, and led to tissue death. Host distribution and environmental factors (e.g., temperature) appear to be important for determining spatiotemporal patterns of disease at Palmyra. More sophisticated analyses are required to tease apart the likely inter-correlated proximate drivers of disease occurrence on remote, near-pristine reefs. PMID:21648237

  18. Cell cultures from the symbiotic soft coral Sinularia flexibilis.

    PubMed

    Khalesi, Mohammad K; Vera-Jiménez, N I; Aanen, D K; Beeftink, H H; Wijffels, R H

    2008-01-01

    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cultivation of S. flexibilis cells on different media and cell dissociation methodologies. Mechanical dissociation of coral tissue always yielded the highest number of cells and allowed subsequent cellular growth in all treatments. The best results from chemical dissociation reagents were found with trypsin-ethylene diamine tetraacetic acid. Coral cells obtained from spontaneous dissociation did not grow. Light intensity was found to be important for coral cell culture showing an enduring symbiosis between the cultured cells and their intracellular algae. The Grace's insect medium and Grace's modified insect medium were found to be superior substrates. To confirm the similarity of the cultured cells and those in the coral tissue, a molecular test with Internal Transcribed Spacer primers was performed. Thereby, the presence of similar cells of both the coral cells and zooxanthella in different culture media was confirmed. PMID:18661193

  19. Oxygenated cembranoids from the cultured and wild-type soft corals Sinularia flexibilis.

    PubMed

    Su, Jui-Hsin; Lin, Yu-Fang; Lu, Yi; Yeh, Hsiao-Chien; Wang, Wei-Hsien; Fan, Tung-Yung; Sheu, Jyh-Horng

    2009-11-01

    Two new cembranoids, flexibilisolide A (1) and flexibilisin A (2), along with one known combranoid 5 have been isolated from the cultured soft coral Sinularia flexibilis. Furthermore, two new cembranoids, flexibilisolide B (3) and flexibilisin B (4), along with two known combranoids (5, 6), have been isolated from the wild-type soft coral S. flexibilis. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis and by comparison of NMR data with those of known compounds. The metabolites 5 and 6 have been shown to exhibit weak cytotoxic activity against MCF-7 cancer cell line. PMID:19881265

  20. Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals.

    PubMed

    Chen, Yu-Hsin; Kuo, Jimmy; Sung, Ping-Jung; Chang, Yu-Chia; Lu, Mei-Chin; Wong, Tit-Yee; Liu, Jong-Kang; Weng, Ching-Feng; Twan, Wen-Hung; Kuo, Fu-Wen

    2012-12-01

    Bacteria associated with eight field-collected and five cultured soft corals of Briareum sp., Sinularia sp., Sarcophyton sp., Nephtheidae sp., and Lobophytum sp. were screened for their abilities in producing antimicrobial metabolites. Field-collected coral samples were collected from Nanwan Bay in southern Taiwan. Cultured corals were collected from the cultivating tank at National Museum of Marine Biology and Aquarium. A total of 1,526 and 1,138 culturable, heterotrophic bacteria were isolated from wild and cultured corals, respectively; seawater requirement and antimicrobial activity were then assessed. There is no significant difference between the ratio of seawater-requiring bacteria on the wild and cultured corals. The ratio of antibiotic-producing bacteria within the seawater-requiring bacteria did not differ between the corals. Nineteen bacterial strains that showed high antimicrobial activity were selected for 16S rDNA sequencing. Three strains could be assigned at the family level (Rhodobacteraceae). The remaining 16 strains belong to eight genera: Marinobacterium (2 strains), Pseudoalteromonas (1), Vibrio (5), Enterovibrio (1), Tateyamaria (1), Labrenzia (2), and Pseudovibrio (4). The crude extract from bacteria strains CGH2XX was found to have high cytotoxicity against the cancer cell line HL-60 (IC(50) = 0.94 μg/ml) and CCRF-CEM (IC(50) = 1.19 μg/ml). Our results demonstrate that the marine bacteria from corals have great potential in the discovery of useful medical molecules. PMID:22872580

  1. Paralemnolide A, an Unprecedented Bisnorsesquiterpene from the Taiwanese Soft Coral Paralemnalia thyrsoides

    PubMed Central

    Wang, Shang-Kwei; Lee, Yu-Sheng; Duh, Chang-Yih

    2012-01-01

    Paralemnolide A (1), possessing an unprecedented bisnorsesquiterpene skeleton, was isolated from the soft coral Paralemnalia thyrsoides. The structure of paralemnolide A was elucidated by extensive analysis of spectroscopic data. The anti-HCMV (human cytomegalovirus) activity of 1 and its cytotoxicity against selected cell lines were evaluated. PMID:22851923

  2. Beyond Polymaxenolide: Cembrane-Africanane Terpenoids from the Hybrid Soft Coral Sinularia maxima x S. polydactyla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of natural hybridization on secondary metabolite production and diversification have only recently been studied in plants and have essentially been overlooked in marine organisms. Chemical investigation of the hybrid soft coral Sinularia maxima × S. polydactyla resulted in the isolation ...

  3. Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae).

    PubMed

    Piccinetti, Chiara C; Ricci, Roberta; Pennesi, Chiara; Radaelli, Giuseppe; Totti, Cecilia; Norici, Alessandra; Giordano, Mario; Olivotto, Ike

    2016-01-01

    Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature. PMID:26951778

  4. Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae)

    PubMed Central

    Piccinetti, Chiara C.; Ricci, Roberta; Pennesi, Chiara; Radaelli, Giuseppe; Totti, Cecilia; Norici, Alessandra; Giordano, Mario; Olivotto, Ike

    2016-01-01

    Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature. PMID:26951778

  5. Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae)

    NASA Astrophysics Data System (ADS)

    Piccinetti, Chiara C.; Ricci, Roberta; Pennesi, Chiara; Radaelli, Giuseppe; Totti, Cecilia; Norici, Alessandra; Giordano, Mario; Olivotto, Ike

    2016-03-01

    Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature.

  6. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem

    PubMed Central

    Pelin, Marco; Brovedani, Valentina; Sosa, Silvio; Tubaro, Aurelia

    2016-01-01

    Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential. PMID:26861356

  7. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem.

    PubMed

    Pelin, Marco; Brovedani, Valentina; Sosa, Silvio; Tubaro, Aurelia

    2016-02-01

    Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential. PMID:26861356

  8. Gross and microscopic pathology of hard and soft corals in New Caledonia

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.; Lasne, Gregory; Tribollet, Aline

    2014-01-01

    We surveyed the reefs of Grande Terre, New Caledonia, for coral diseases in 2010 and 2013. Lesions encountered in hard and soft corals were systematically described at the gross and microscopic level. We sampled paired and normal tissues from 101 and 65 colonies in 2010 and 2013, respectively, comprising 51 species of corals from 27 genera. Tissue loss was the most common gross lesion sampled (40%) followed by discoloration (28%), growth anomalies (13%), bleaching (10%), and flatworm infestation (1%). When grouped by gross lesions, the diversity of microscopic lesions as measured by Shannon–Wiener index was highest for tissue loss, followed by discoloration, bleaching, and growth anomaly. Our findings document an extension of the range of certain diseases such as Porites trematodiasis and endolithic hypermycosis (dark spots) to the Western Pacific as well as the presence of a putative cnidarian endosymbiont. We also expand the range of species infected by cell-associated microbial aggregates, and confirm the trend that these aggregates predominate in dominant genera of corals in the Indo-Pacific. This study highlights the importance of including histopathology as an integral component of baseline coral disease surveys, because a given gross lesion might be associated with multiple potential causative agents.

  9. New Cembrane-Type Diterpenoids from the South China Sea Soft Coral Sarcophyton ehrenbergi.

    PubMed

    Tang, Gui-Hua; Sun, Zhang-Hua; Zou, Yi-Hong; Yin, Sheng

    2016-01-01

    Chemical investigation on the soft coral Sarcophyton ehrenbergi collected from the Xisha Islands of the South China Sea have led to the isolation of eight cembranoids including five new ones, sarcophytonoxides A-E (1-5). The structures of new cembranoids (1-5) were determined by spectroscopic analysis and comparison of the NMR data with those of related analogues. The cytotoxicities of compounds 1-8 against human ovarian cancer cell line A2780 were also evaluated. PMID:27153054

  10. New cytotoxic constituents from the Red Sea soft coral Nephthea sp.

    PubMed

    Hegazy, Mohamed-Elamir F; Gamal-Eldeen, Amira M; Mohamed, Tarik A; Alhammady, Montaser A; Hassanien, Abuzeid A; Shreadah, Mohamed A; Abdelgawad, Ibrahim I; Elkady, Eman M; Paré, Paul W

    2016-06-01

    Nephthea are soft coral species rich in sesquiterpenoids and steroids. An organic extract of Nephthea sp. resulted in the isolation of a new steroid (1), as well as several previously reported metabolites (2-9). Structures were elucidated by employing NMR and HR-EI-MS analyses. The total extract, fractions and purified compounds exhibited differential cytotoxicity against the breast cancer MCF-7 cell line. PMID:26165402

  11. Numerosol A–D, New Cembranoid Diterpenes from the Soft Coral Sinularia numerosa

    PubMed Central

    Tseng, Yen-Ju; Yang, Yuan-Chien; Wang, Shang-Kwei; Duh, Chang-Yih

    2014-01-01

    Four new cembrane-type diterpenes; numerosol A–D (1–4); along with a known steroid; gibberoketosterol (5); were isolated from the Taiwanese soft coral Sinularia numerosa. The structures of these metabolites were determined by extensive analysis of spectroscopic data. Gibberoketosterol (5) exhibited cytotoxicity against P-388 (mouse lymphocytic leukemia) cell line with an ED50 of 6.9 μM. PMID:24897385

  12. Flexibilins A–C, New Cembrane-Type Diterpenoids from the Formosan Soft Coral, Sinularia flexibilis

    PubMed Central

    Hu, Li-Chung; Su, Jui-Hsin; Chiang, Michael Yen-Nan; Lu, Mei-Chin; Hwang, Tsong-Long; Chen, Yung-Husan; Hu, Wan-Ping; Lin, Nai-Cheng; Wang, Wei-Hsien; Fang, Lee-Shing; Kuo, Yueh-Hsiung; Sung, Ping-Jyun

    2013-01-01

    Three new cembrane-type diterpenoids, flexibilins A–C (1–3), along with a known cembrane, (−)-sandensolide (4), were isolated from the soft coral, Sinularia flexibilis. The structures of cembranes 1–4 were elucidated by spectroscopic methods. The structure of 4, including its absolute stereochemistry, was further confirmed by single-crystal X-ray diffraction analysis. Cembrane 2 displayed a moderate inhibitory effect on the release of elastase by human neutrophils. PMID:23752355

  13. Flexibilins A-C, new cembrane-type diterpenoids from the Formosan soft coral, Sinularia flexibilis.

    PubMed

    Hu, Li-Chung; Su, Jui-Hsin; Chiang, Michael Yen-Nan; Lu, Mei-Chin; Hwang, Tsong-Long; Chen, Yung-Husan; Hu, Wan-Ping; Lin, Nai-Cheng; Wang, Wei-Hsien; Fang, Lee-Shing; Kuo, Yueh-Hsiung; Sung, Ping-Jyun

    2013-06-01

    Three new cembrane-type diterpenoids, flexibilins A-C (1-3), along with a known cembrane, (-)-sandensolide (4), were isolated from the soft coral, Sinularia flexibilis. The structures of cembranes 1-4 were elucidated by spectroscopic methods. The structure of 4, including its absolute stereochemistry, was further confirmed by single-crystal X-ray diffraction analysis. Cembrane 2 displayed a moderate inhibitory effect on the release of elastase by human neutrophils. PMID:23752355

  14. Sarcocrassocolides M–O, Bioactive Cembranoids from the Dongsha Atoll Soft Coral Sarcophyton crassocaule

    PubMed Central

    Lin, Wan-Yu; Lu, Yi; Chen, Bo-Wei; Huang, Chiung-Yao; Su, Jui-Hsin; Wen, Zhi-Hong; Dai, Chang-Feng; Kuo, Yao-Haur; Sheu, Jyh-Horng

    2012-01-01

    Three new cembranoids, sarcocrassocolides M–O (1–3), have been isolated from the soft coral Sarcophyton crassocaule. The structures of the metabolites were determined by extensive spectroscopic analysis. Compounds 1–3 were shown to exhibit moderate cytotoxicity toward a limited panel of cancer cell lines and display significant in vitro anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells by inhibiting the expression of the iNOS protein. PMID:22611358

  15. 13-Epi-9-deacetoxyxenicin, a Cytotoxic Diterpene from the Soft Coral Asterospicularia laurae (Alcyonacea)

    PubMed Central

    Bowden, Bruce F.; Cusack, Bernard J.; Dangel, Alissa

    2003-01-01

    An investigation of the soft coral Asterospicularia laurae collected on the Great Barrier Reef, Australia, afforded the cytotoxic diterpene 13-epi-9-deacetoxyxenicin (1) in addition to the known metabolites 13-epi-9-deacetylxenicin (2) and gorgosterol. 13-Epi-9-deacetoxyxenicin readily underwent an autoxidation reaction in solution to afford a single product, the hydroperoxide 3. Structures, stereochemistry, and NMR assignments were established by high resolution NMR spectroscopy and by comparison with published data for known compounds.

  16. Pregnane-type steroids from the Formosan soft coral Scleronephthya flexilis.

    PubMed

    Kuo, Chao-Ying; Juan, Yung-Shun; Lu, Mei-Chin; Chiang, Michael Yen-Nan; Dai, Chang-Feng; Wu, Yang-Chang; Sung, Ping-Jyun

    2014-01-01

    Three pregnane-type steroids, including a new metabolite, 3β-methoxy-5,20-pregnadiene (1) along with two known analogues, 3β-acetoxy-5,20-pregnadiene (2) and 5α-pregna-1,20-dien-3-one (3) were isolated from the soft coral Scleronephthya flexilis. Standard spectroscopic techniques were used to determine the structure of new steroid 1. The absolute stereochemistry of steroid 2 was confirmed by X-ray diffraction analysis. Steroid 3 exhibited potent activity against MOLT-4 tumor cells. PMID:24914763

  17. Secocrassumol, a seco-Cembranoid from the Dongsha Atoll Soft Coral Lobophytum crassum

    PubMed Central

    Cheng, Shi-Yie; Wang, Shang-Kwei; Duh, Chang-Yih

    2014-01-01

    Chemical investigations on the Dongsha Atoll soft coral Lobophytum crassum led to the purification of a new seco-cembranoid, secocrassumol. The structural elucidation was established by extensive NMR, HRESIMS and CD data. The absolute configuration at C-12 was determined as S using a modified Mosher’s acylation. Secocrassumol differs from previously known marine seco-cembranoid in that it possesses an unprecedented skeleton functionalized at C11-C12 bond cleavage. Secocrassumol showed antiviral activity against human cytomegalovirus (HCMV) with an IC50 value of 5.0 μg/mL. PMID:25522315

  18. New Anti-Inflammatory Cembranes from the Cultured Soft Coral Nephthea columnaris

    PubMed Central

    Hsiao, Ting-Hsi; Sung, Chun-Sung; Lan, Yu-Hsuan; Wang, Yi-Chen; Lu, Mei-Chin; Wen, Zhi-Hong; Wu, Yang-Chang; Sung, Ping-Jyun

    2015-01-01

    Two new cembranes, columnariols A (1) and B (2), were isolated from the cultured soft coral Nephthea columnaris. The structures of cembranes 1 and 2 were elucidated by spectroscopic methods. In the anti-inflammatory effects test, cembranes 1 and 2 were found to significantly inhibit the accumulation of the pro-inflammatory iNOS and COX-2 protein of the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Compound 1 exhibited moderate cytotoxicity toward LNCaP cells with an IC50 value of 9.80 μg/mL. PMID:26035022

  19. Flexibilisquinone, a new anti-inflammatory quinone from the cultured soft coral Sinularia flexibilis.

    PubMed

    Lin, Yu-Fang; Kuo, Chao-Ying; Wen, Zhi-Hong; Lin, Yen-You; Wang, Wei-Hsien; Su, Jui-Hsin; Sheu, Jyh-Horng; Sung, Ping-Jyun

    2013-01-01

    A new quinone derivative, flexibilisquinone (1), was isolated from the cultured soft coral Sinularia flexibilis, originally distributed in the waters of Taiwan. The structure of quinone 1 was established by extensive spectroscopic methods, particularly 1D and 2D NMR experiments. In the in vitro anti-inflammatory effects test, quinone 1 was found to significantly inhibit the accumulation of the pro-inflammatory iNOS and COX-2 proteins of the LPS-stimulated RAW264.7 macrophage cells. PMID:23846756

  20. Cembrane derivatives from the soft corals, Sinularia gaweli and Sinularia flexibilis.

    PubMed

    Hu, Li-Chung; Yen, Wei-Hsuan; Su, Jui-Hsin; Chiang, Michael Yen-Nan; Wen, Zhi-Hong; Chen, Wu-Fu; Lu, Ting-Jang; Chang, Yu-Wei; Chen, Yung-Husan; Wang, Wei-Hsien; Wu, Yang-Chang; Sung, Ping-Jyun

    2013-06-01

    A new norcembranoidal diterpene, 1-epi-sinulanorcembranolide A (1), and a new cembranoidal diterpene, flexibilin D (2), were isolated from the soft corals, Sinularia gaweli and Sinularia flexibilis, respectively. The structures of new metabolites 1 and 2 were elucidated by spectroscopic methods, and compound 2 was found to significantly inhibit the accumulation of the pro-inflammatory iNOS and COX-2 proteins of the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In addition, S. flexibilis yielded a known cembrane, 5-dehydrosinulariolide (3); the structure, including its absolute stereochemistry, was further confirmed by single-crystal X-ray diffraction analysis. PMID:23774887

  1. Cembrane Derivatives from the Soft Corals, Sinularia gaweli and Sinularia flexibilis

    PubMed Central

    Hu, Li-Chung; Yen, Wei-Hsuan; Su, Jui-Hsin; Chiang, Michael Yen-Nan; Wen, Zhi-Hong; Chen, Wu-Fu; Lu, Ting-Jang; Chang, Yu-Wei; Chen, Yung-Husan; Wang, Wei-Hsien; Wu, Yang-Chang; Sung, Ping-Jyun

    2013-01-01

    A new norcembranoidal diterpene, 1-epi-sinulanorcembranolide A (1), and a new cembranoidal diterpene, flexibilin D (2), were isolated from the soft corals, Sinularia gaweli and Sinularia flexibilis, respectively. The structures of new metabolites 1 and 2 were elucidated by spectroscopic methods, and compound 2 was found to significantly inhibit the accumulation of the pro-inflammatory iNOS and COX-2 proteins of the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In addition, S. flexibilis yielded a known cembrane, 5-dehydrosinulariolide (3); the structure, including its absolute stereochemistry, was further confirmed by single-crystal X-ray diffraction analysis. PMID:23774887

  2. 5,8-Epidioxysterols and related derivatives from a Chinese soft coral Sinularia flexibilis.

    PubMed

    Yu, Shanjiang; Deng, Zhiwei; van Ofwegen, Leen; Proksch, Peter; Lin, Wenhan

    2006-11-01

    Chromatographic separation of the methanolic extract of the marine soft coral, Sinularia flexibilis, resulted in the isolation and characterization of four new sterols, 5alpha,8alpha-epidioxygorgosta-6-en-3beta-ol (1), 5alpha,8alpha-epidioxygorgosta-6,9(11)-dien-3beta-ol (2), 22alpha,28-epidioxycholesta-5,23(E)-dien-3beta-ol (3) and its C-22 epimer (4), along with nine known sterols. The structures of the new compounds were determined on the basis of extensive spectroscopic data (IR, MS, 1H and 13C NMR, HMQC, HMBC, and NOESY) analyses. PMID:16930652

  3. Sinulolides A–H, New Cyclopentenone and Butenolide Derivatives from Soft Coral Sinularia sp.

    PubMed Central

    Yang, Bin; Wei, Xiaoyi; Huang, Jingxia; Lin, Xiuping; Liu, Juan; Liao, Shengrong; Wang, Junfeng; Zhou, Xuefeng; Wang, Lishu; Liu, Yonghong

    2014-01-01

    Eight new compounds, sinulolides A–H (1–8), along with two known compounds, α-methoxy-2,3-dimethyl-butenolide (9) and sinularone D (10), were isolated from the soft coral Sinularia sp. The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis. The absolute configurations were determined on the basis of electronic circular dichroism (ECD) data analysis. Compounds 5 and 10 exhibited moderate effects for the inhibition of NF-κB activation. PMID:25342460

  4. Bisdioxycalamenene: A Bis-Sesquiterpene from the Soft Coral Rhytisma fulvum fulvum

    PubMed Central

    Trifman, Yuval J.; Aknin, Maurice; Gauvin-Bialecki, Anne; Benayahu, Yehuda; Carmeli, Shmuel; Kashman, Yoel

    2016-01-01

    A dichloromethane extract of the soft coral Rhytisma fulvum fulvum collected in Madagascar afforded a novel compound possessing an unprecedented pentacyclic skeleton, bisdioxycalamenene (1), as well as seven known sesquiterpenes. The structures of the compounds were elucidated using 1D and 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of 1 was determined using X-ray diffraction analysis and anomalous dispersion effects. The structure elucidation and a possible biogenesis of the compound are discussed. PMID:26907302

  5. Endoperoxy and hydroperoxy cadinane-type sesquiterpenoids from an Okinawan soft coral, Sinularia sp.

    PubMed

    Roy, Prodip K; Ashimine, Runa; Miyazato, Haruna; Taira, Junsei; Ueda, Katsuhiro

    2016-06-01

    Three cadinane-type sesquiterpenoids, endoperoxide (1) and hydroperoxides (2, 3) together with three known sesquiterpenoids (4-6) were isolated from an Okinawan soft coral, Sinularia species. Structures of these isolates were elucidated by spectroscopic analyses (NMR, IR and MS) and molecular modeling. In addition, the isolates 1-3 as new compounds were examined for biological activities, resulting that they have antibacterial activity and weak cytotoxicity against HCT116 cells as well as anti-inflammatory effect on LPS/IFN-γ-stimulated RAW 264.7 macrophage cells. PMID:27230778

  6. Bioactive terpenes from the soft coral Heteroxenia sp. from Mindoro, Philippines.

    PubMed

    Edrada, R A; Wray, V; Witte, L; van Ofwegen, L; Proksch, P

    2000-01-01

    A marine soft coral species of the genus Heteroxenia collected from Mindoro Island, Philippines yielded two cadinene sesquiterpenes, (+)-alpha-muurolene (1) and a novel derivative (+)-6-hydroxy-alpha-muurolene (2), as well as the biologically active polyhydroxysterol, sarcoaldosterol A (3). The structure of the novel compound was unambiguously established on the basis of NMR spectroscopic (1H, 13C, COSY, 1H-detected direct and long range 13C-1H correlations) and mass spectrometric (EIMS) data. All compounds were active against the phytopathogenic fungus Cladosporium cucumerinum. The isolated terpenes were also active in the brine shrimp lethality test. PMID:10739105

  7. Eunicellin-Based Diterpenoids, Hirsutalins S–V, from the Formosan Soft Coral Cladiella hirsuta

    PubMed Central

    Huang, Tzu-Zin; Chen, Bo-Wei; Huang, Chiung-Yao; Hwang, Tsong-Long; Uvarani, Chokkalingam; Dai, Chang-Feng; Sung, Ping-Jyun; Su, Jui-Hsin; Sheu, Jyh-Horng

    2015-01-01

    Four new eunicellin-type hirsutalins S–V (1–4), along with a known compound (–)-6α-hydroxy polyanthellin A (5), were isolated from the soft coral Cladiella hirsuta. The structures of the metabolites were determined by extensive spectroscopic analysis. Cytotoxity of compounds 1–5 against the proliferation of a limited panel of cancer cell lines was measured. Anti-inflammatory activity of compounds 1–5 was evaluated by measuring their ability in suppressing superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils. PMID:25942094

  8. New cytotoxic and anti-inflammatory steroids from the soft coral Klyxum flaccidum.

    PubMed

    Tseng, Wan-Ru; Huang, Chiung-Yao; Tsai, Yi-Ying; Lin, Yun-Sheng; Hwang, Tsong-Long; Su, Jui-Hsin; Sung, Ping-Jyun; Dai, Chang-Feng; Sheu, Jyh-Horng

    2016-07-15

    Four new steroids, namely klyflaccisteroids G-J (1-4) were isolated from the Formosan soft coral Klyxum flaccidum. The structures of compounds 1-4 were established by spectral data analysis (IR, MS, 1D and 2D NMR) and comparison of spectral data with those of the related known compounds. Cytotoxicity assay revealed that 4 exhibited inhibition activity against the growth of HT-29, P388 and K562 cancer cell lines, whereas 2 showed selective cytotoxicity toward P388 cells. Compound 4 was also found to display significant anti-inflammatory activity for suppressing superoxide anion generation (O2(-)) and elastase release. PMID:27256910

  9. Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29.

    PubMed

    Zhu, Meilin; Gao, Huquan; Wu, Chongming; Zhu, Tianjiao; Che, Qian; Gu, Qianqun; Guo, Peng; Li, Dehai

    2015-09-01

    Two new C12 polyketides, cladospolides E and F (1 and 2), together with four known derivatives seco-patulolides A and C (3 and 4), 11-hydroxy-γ-dodecalactone (5) and iso-cladospolide B (6), were isolated from a soft coral-derived fungus Cladosporium sp. TZP-29. Their structures, including the absolute configurations, were elucidated by spectroscopic analysis, modified Mosher's method, and the analysis of their biogenesis. All compounds were non-cytotoxic while compounds 1 and 3-5 showed potent lipid-lowering activity in HepG2 hepatocytes. PMID:26169125

  10. New Casbane and Cembrane Diterpenoids from an Okinawan Soft Coral, Lobophytum sp.

    PubMed

    Roy, Prodip K; Ashimine, Runa; Miyazato, Haruna; Taira, Junsei; Ueda, Katsuhiro

    2016-01-01

    A new rare casbane-type diterpenoid 1 and two new cembrane diterpenoids 2, 3 were isolated from an Okinawan soft coral, Lobophytum sp., together with four known cembrane diterpenoids 4-7. Their structures were elucidated by extensive analysis of spectroscopic data (1D and 2D NMR, IR, and MS) and a molecular modeling study. The new isolates showed weak anti-bacterial activity, mild cytotoxicity against HCT116 cells, and anti-inflammatory effect in LPS/IFN-γ-stimulated RAW 264.7 macrophage cells. PMID:27223275

  11. Cembranoids from a Chinese Collection of the Soft Coral Lobophytum crassum

    PubMed Central

    Zhao, Min; Cheng, Shimiao; Yuan, Weiping; Xi, Yiyuan; Li, Xiubao; Dong, Jianyong; Huang, Kexin; Gustafson, Kirk R.; Yan, Pengcheng

    2016-01-01

    Ten new cembrane-based diterpenes, locrassumins A–G (1–7), (–)-laevigatol B (8), (–)-isosarcophine (9), and (–)-7R,8S-dihydroxydeepoxysarcophytoxide (10), were isolated from a South China Sea collection of the soft coral Lobophytum crassum, together with eight known analogues (11–18). The structures of the new compounds were determined by extensive spectroscopic analysis and by comparison with previously reported data. Locrassumin C (3) possesses an unprecedented tetradecahydrobenzo[3,4]cyclobuta[1,2][8]annulene ring system. Compounds 1, 7, 12, 13, and 17 exhibited moderate inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production with IC50 values of 8–24 μM. PMID:27271640

  12. Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bastidas, C.; Benzie, J.; Fabricius, K.

    2002-09-01

    The contribution of sexual and asexual reproduction, the spatial patterns of genetic structure, and the potential gene flow among populations were determined for the soft coral Clavularia koellikeri (Octocorallia: Alcyonacea, Clavulariidae) at ten sites among six reefs from two well-separated regions of the Great Barrier Reef (GBR), Australia. Eight allozyme loci indicated that colonies of C. koellikeri separated ≥3 m were produced sexually. Genetic diversity was lower in the southern (18°S) compared with the northern (10°S) populations, suggesting that reefs closer to the southernmost limit of the distribution of C. koellikeri within the GBR (19°S) may represent a more marginal habitat for this species. High levels of genetic differentiation were significant at all spatial scales (sites within reefs, reefs, and regions) from <4 km up to 1,000 km, indicating that C. koellikeri has restricted dispersal, consistent with having brooded larvae.

  13. Bioactive Cembranoids, Sarcocrassocolides P–R, from the Dongsha Atoll Soft Coral Sarcophyton crassocaule

    PubMed Central

    Lin, Wan-Yu; Chen, Bo-Wei; Huang, Chiung-Yao; Wen, Zhi-Hong; Sung, Ping-Jyun; Su, Jui-Hsin; Dai, Chang-Feng; Sheu, Jyh-Horng

    2014-01-01

    New cembranoids, sarcocrassocolides P–R (1–3) and four known compounds (4–7) were isolated from the soft coral Sarcophyton crassocaule. The structures of the metabolites were determined by extensive spectroscopic analysis. Compounds 3–5 and 7 were shown to exhibit cytotoxicity toward a limited panel of cancer cell lines and all compounds 1–7 displayed potent in vitro anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells by inhibiting the expression of inducible nitric oxide synthase (iNOS) protein. Compound 7 also showed significant activity in reducing the accumulation of cyclooxygenase-2 (COX-2) protein in the same macrophage cells. PMID:24477285

  14. Sinulaflexiolides A-K, cembrane-type diterpenoids from the chinese soft coral Sinularia flexibilis.

    PubMed

    Wen, Ting; Ding, Yi; Deng, Zhiwei; van Ofwegen, Leen; Proksch, Peter; Lin, Wenhan

    2008-07-01

    A bioassay-guided fractionation and chemical examination of the soft coral Sinularia flexibilis resulted in the isolation and characterization of sinulaflexiolides A-K (1-11), along with sinulariolone (12), 5-dehydrosinularolide (13), capillolide (14), sinulariolide (15), 5,8-epoxy-9-acetoxysinulariolide (16), flexibilide (17), dihydroflexibilide (18), and the enantiomer of 14-deoxycrassin (19). Their structures were determined on the basis of extensive spectroscopic (IR, MS, 2D NMR) data analysis and by comparison with spectroscopic data reported in the literature. Sinulaflexiolides D and E showed selective inhibitory activity against the gastric gland carcinoma cell line BGC-823 at 8.5 and 0.12 microM, respectively. PMID:18553926

  15. Gersemiols A-C and Eunicellol A, Diterpenoids from the Arctic Soft Coral Gersemia fruticosa.

    PubMed

    Angulo-Preckler, Carlos; Genta-Jouve, Grégory; Mahajan, Nipun; de la Cruz, Mercedes; de Pedro, Nuria; Reyes, Fernando; Iken, Katrin; Avila, Conxita; Thomas, Olivier P

    2016-04-22

    Three new diterpenes named gersemiols A-C (1-3) and a new eunicellane diterpene, eunicellol A (4), have been isolated together with the known sesquiterpene (+)-α-muurolene (5) from the Arctic soft coral Gersemia fruticosa. The name gersemiane was assigned to the rare and unnamed diterpene skeleton of compounds 1-3 corresponding to 4-isopropyl-1,5,8a-trimethyltetradecahydrophenanthrene. The chemical structures were elucidated on the basis of extensive spectroscopic analysis (HR-ESIMS, 1D and 2D NMR) as well as coupling constant calculations for the determination of the relative configurations. All compounds were tested for their antimicrobial activity against several bacteria and fungi and eunicellol A was found to exhibit moderate and selective antibacterial activity. PMID:26894524

  16. Pentacyclic hemiacetal sterol with antifouling and cytotoxic activities from the soft coral Nephthea sp.

    PubMed

    Zhang, Jun; Li, Liang-Chun; Wang, Kai-Ling; Liao, Xiao-Jian; Deng, Zhou; Xu, Shi-Hai

    2013-02-15

    A novel unusual pentacyclic hemiacetal sterol nephthoacetal (1), was isolated from soft coral Nephthea sp. The structure of this sterol was inferred from its two acetyl derivatives (2) and (3), by means of spectroscopic methods, and quantum chemical calculations. Anti-fouling activity of compounds 1-3 against Bugula neritina larvae was evaluated, sterol (1) exhibited significant inhibitory effect with EC(50) value of 2.5 μg/mL, while having low toxicity with LC(50)>25.0 μg/mL. The in vitro cytotoxic activity of compounds 1-3 against HeLa cells was also evaluated, all of them exhibited moderate cytotoxicity with IC(50) values of 12.3 (1), 10.1 (2), and 19.6 μg/mL (3), respectively. PMID:23294699

  17. Merosesquiterpenoids and ten-membered macrolides from a soft coral-derived Lophiostoma sp. fungus.

    PubMed

    Zheng, Cai-Juan; Shao, Chang-Lun; Chen, Min; Niu, Zhi-Gang; Zhao, Dong-Lin; Wang, Chang-Yun

    2015-09-01

    One new merosesquiterpenoid, craterellin D (1), along with one known analog, craterellin A (2), and five known ten-membered macrolides, 3-7, were isolated from a soft coral-derived Lophiostoma sp. fungus. The absolute configuration of 1 was established based on biogenetic consideration with the co-isolated analog 2, whose configuration was determined by modified Mosher's method and single-crystal X-ray diffraction analysis using CuKα radiation. The absolute configuration of 3 was determined by X-ray diffraction analysis using CuKα radiation. Compounds 2 and 3 showed antibacterial activities against Bacillus cereus with a MIC value of 3.12 μM. PMID:26363884

  18. Glaucumolides A and B, Biscembranoids with New Structural Type from a Cultured Soft Coral Sarcophyton glaucum

    PubMed Central

    Huang, Chiung-Yao; Sung, Ping-Jyun; Uvarani, Chokkalingam; Su, Jui-Hsin; Lu, Mei-Chin; Hwang, Tsong-Long; Dai, Chang-Feng; Wu, Shwu-Li; Sheu, Jyh-Horng

    2015-01-01

    Glaucumolides A (1) and B (2), novel biscembranes composed of an unprecedented α,β-unsaturated ε-lactone, along with the known metabolites ximaolide A (3) and isosarcophytonolide D (4), were isolated from the cultured soft coral Sarcophyton glaucum. The structures of the new metabolites were determined by extensive spectroscopic analyses. Compounds 1 and 2 were shown to exhibit cytotoxicity against a limited panel of cancer cell lines. In anti-inflammation assay, compounds 1 and 2 displayed strong inhibition of superoxide anion generation and elastase release in human neutrophils stimulated by fMLP/CB. Furthermore, both 1 and 2 were shown to significantly inhibit the accumulation of the pro-inflammatory inducible nitric oxide synthase protein, and compounds 1−3 were found to effectively reduce the expression of cyclooxygenase-2 protein, in lipopolysaccharide-stimulated RAW264.7 macrophage cells. PMID:26531161

  19. Mode of Action of Diterpene and Characterization of Related Metabolites from the Soft Coral, Xenia elongata

    PubMed Central

    Andrianasolo, Eric H.; Haramaty, Liti; White, Eileen; Lutz, Richard; Falkowski, Paul

    2014-01-01

    Chemical and biological investigation of the cultured marine soft coral Xenia elongata led to the isolation of two new diterpenes (2, 3). Their structures were elucidated using a combination of NMR and mass spectrometry. Biological evaluations and assessments were determined using the specific apoptosis induction assay based on genetically engineered mammalian cell line D3 deficient in Bak and Bax and derived from a mouse epithelial cell. The diterpenes induce apoptosis in low micromolar concentrations. The results indicate that the previously isolated compound (1) affects cell in a manner similar to that of HSP90 and HDAC inhibitors and in a manner opposite of PI3 kinase/mTOR inhibitors. Compound (3) inhibits selectively HDAC6 in high micromolar concentrations. PMID:24562393

  20. Mode of action of diterpene and characterization of related metabolites from the soft coral, Xenia elongata.

    PubMed

    Andrianasolo, Eric H; Haramaty, Liti; White, Eileen; Lutz, Richard; Falkowski, Paul

    2014-02-01

    Chemical and biological investigation of the cultured marine soft coral Xenia elongata led to the isolation of two new diterpenes (2, 3). Their structures were elucidated using a combination of NMR and mass spectrometry. Biological evaluations and assessments were determined using the specific apoptosis induction assay based on genetically engineered mammalian cell line D3 deficient in Bak and Bax and derived from a mouse epithelial cell. The diterpenes induce apoptosis in low micromolar concentrations. The results indicate that the previously isolated compound (1) affects cell in a manner similar to that of HSP90 and HDAC inhibitors and in a manner opposite of PI3 kinase/mTOR inhibitors. Compound (3) inhibits selectively HDAC6 in high micromolar concentrations. PMID:24562393

  1. Cembranoids from a Chinese Collection of the Soft Coral Lobophytum crassum.

    PubMed

    Zhao, Min; Cheng, Shimiao; Yuan, Weiping; Xi, Yiyuan; Li, Xiubao; Dong, Jianyong; Huang, Kexin; Gustafson, Kirk R; Yan, Pengcheng

    2016-01-01

    Ten new cembrane-based diterpenes, locrassumins A-G (1-7), (-)-laevigatol B (8), (-)-isosarcophine (9), and (-)-7R,8S-dihydroxydeepoxysarcophytoxide (10), were isolated from a South China Sea collection of the soft coral Lobophytum crassum, together with eight known analogues (11-18). The structures of the new compounds were determined by extensive spectroscopic analysis and by comparison with previously reported data. Locrassumin C (3) possesses an unprecedented tetradecahydrobenzo[3,4]cyclobuta[1,2][8]annulene ring system. Compounds 1, 7, 12, 13, and 17 exhibited moderate inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production with IC50 values of 8-24 μM. PMID:27271640

  2. Cytotoxic Cembranes from Indonesian Specimens of the Soft Coral Nephthea sp

    PubMed Central

    Januar, Hedi Indra; Chasanah, Ekowati; Motti, Cherie A.; Tapiolas, Dianne M.; Liptrot, Catherine H.; Wright, Anthony D.

    2010-01-01

    Methanol extracts of two specimens of the soft coral Nephthea sp. collected from the Seribu Islands, Indonesia, were active in an anticancer bioassay. One new (1) and four known diterpenes (2–5) based on the cembrane carbon skeleton were isolated from these extracts, as was arachidonic acid (8). The structures of all compounds were elucidated using NMR, including 1,1-ADEQUATE and 1D gradient selective NOESY where applicable to determine the relative stereochemistry. Spectroscopic data, including 1H and 13C NMR, UV, IR and optical rotations are reported when enough material was available and where this has not been done previously. Inhibition assays employing three cancer cell lines; SF-268 (CNS), MCF-7 (breast), and H460 (lung) were used to guide the isolation of all compounds. PMID:20714428

  3. Bioactive Isoprenoid-Derived Natural Products from a Dongsha Atoll Soft Coral Sinularia erecta.

    PubMed

    Huang, Chiung-Yao; Tseng, Yen-Ju; Chokkalingam, Uvarani; Hwang, Tsong-Long; Hsu, Chi-Hsin; Dai, Chang-Feng; Sung, Ping-Jyun; Sheu, Jyh-Horng

    2016-05-27

    Four new isoprenoids, including two norcembranoids sinulerectols A and B (1 and 2), a cembranoid sinulerectol C (3), and a degraded cembranoid sinulerectadione (4), along with three known isoprenoids, an unnamed norcembrene (5), sinularectin (6), and ineleganolide (7), and a known nitrogen-containing compound (Z)-N-[2-(4-hydroxyphenyl)ethyl]-3-methyldodec-2-enamide (8), were isolated from an extract of the marine soft coral Sinularia erecta. The structure of sinularectin (6) was revised, too. Compounds 3, 4, and 8 exhibited inhibitory activity against the proliferation of a limited panel of cancer cell lines, whereas 1, 2, and 8 displayed potent anti-inflammatory activity in fMLP/CB-stimulated human neutrophils. PMID:27142697

  4. Anti-Protozoal Activities of Cembrane-Type Diterpenes from Vietnamese Soft Corals.

    PubMed

    Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Brun, Reto; Kaiser, Marcel; Van Kiem, Phan; Van Minh, Chau; Schmidt, Thomas J; Kang, Jong Seong; Kim, Young Ho

    2015-01-01

    Based on our previous finding that certain cembranoid diterpenes possess selective toxicity against protozoan pathogens of tropical diseases such as Trypanosoma and Plasmodium, we have subjected a series of 34 cembranes isolated from soft corals living in the Vietnamese sea to an in vitro screening for anti-protozoal activity against Trypanosoma brucei rhodesiense (Tbr), T. cruzi (Tc), Leishmania donovani (Ld), and Plasmodium falciparum (Pf). Twelve of the tested compounds displayed significant activity against at least one of the parasites. Specifically, 7S,8S-epoxy-1,3,11-cembratriene-16-oic methyl ester (1), (1R,4R,2E,7E,11E)-cembra-2,7,11-trien-4-ol (2), crassumol D (12), crassumol E (13), and (1S,2E,4S,6E,8S,11S)-2,6,12(20)-cembrantriene-4,8,11-triol (16) from Lobophytum crassum, L. laevigatum, and Sinularia maxima showed the highest level of inhibitory activity against T. b. rhodesiense, with IC50 values of about 1 µM or less. Lobocrasol A (6) and lobocrasol C (8) from L. crassum and L. laevigatum exhibited particularly significant inhibitory effects on L. donovani with IC50 values < 0.2 µM. The best antiplasmodial effect was exerted by laevigatol A (10), with an IC50 value of about 3.0 µM. The cytotoxicity of the active compounds on L6 rat skeletal myoblast cell was also assessed and found to be insignificant in all cases. This is the first report on anti-protozoal activity of these compounds, and points out the potential of the soft corals in discovery of new anti-protozoal lead compounds. PMID:26184133

  5. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein.

    PubMed

    Rahman, M Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-09-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called "calcite and aragonite seas." Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that -OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  6. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    PubMed Central

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  7. Ulcerated yellow spot syndrome: implications of aquaculture-related pathogens associated with soft coral Sarcophyton ehrenbergi tissue lesions.

    PubMed

    Cervino, James M; Hauff, Briana; Haslun, Joshua A; Winiarski-Cervino, Kathryn; Cavazos, Michael; Lawther, Pamela; Wier, Andrew M; Hughen, Konrad; Strychar, Kevin B

    2012-12-27

    We introduce a new marine syndrome called ulcerated yellow spot, affecting the soft coral Sarcophyton ehrenbergi. To identify bacteria associated with tissue lesions, tissue and mucus samples were taken during a 2009 Indo-Pacific research expedition near the Wakatobi Island chain, Indonesia. Polymerase chain reaction targeting the 16S rDNA gene indicated associations with the known fish-disease-causing bacterium Photobacterium damselae, as well as multiple Vibrio species. Results indicate a shift toward decreasing diversity of bacteria in lesioned samples. Photobacterium damselae ssp. piscicida, formerly known as Pasteurella piscicida, is known as the causative agent of fish pasteurellosis and in this study, was isolated solely in lesioned tissues. Globally, fish pasteurellosis is one of the most damaging fish diseases in marine aquaculture. Vibrio alginolyticus, a putative pathogen associated with yellow band disease in scleractinian coral, was also isolated from lesioned tissues. Lesions appear to be inflicting damage on symbiotic zooxanthellae (Symbiodinium sp.), measurable by decreases in mitotic index, cell density and photosynthetic efficiency. Mitotic index of zooxanthellae within infected tissue samples was decreased by ~80%, while zooxanthellae densities were decreased by ~40% in lesioned tissue samples compared with healthy coral. These results provide evidence for the presence of known aquaculture pathogens in lesioned soft coral and may be a concern with respect to cross-species epizootics in the tropics. PMID:23269388

  8. Variability of terpene content in the soft coralSinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications.

    PubMed

    Maida, M; Carroll, A R; Coll, J C

    1993-10-01

    Colonies of the soft coralSinularia flexibilis (Quoy & Gaimard) (Coelenterata, Octocorallia) were collected at Lizard Island (14°40'S and 145°28'E) Research Station. Extraction of the corals and quantitative chemical analysis for the three major diterpene components, flexibilide, dihydroflexibilide, and sinulariolide, afforded average ratios of 4∶3∶1 respectively. Colonies, sized on the basis of the sterile stalk circumference, were analyzed for possible correlations between size and chemical composition. The major metabolite, flexibilide, was inversely correlated with colony size, while sinulariolide concentration showed a direct correlation. The concentration of dihydroflexibilide was independent of colony size. Samples were further analyzed with respect to site of collection. Colonies were collected at three distinct reefal sites. One was characterized by large monospecific stands ofParites cylindrica, a second was a sandy bottom site with a mixed community of soft corals and occasional scleractinians, while the third site was a very diverse reef community with many species of scleractinian corals.Sinularia flexibilis was well represented at each site, and the concentration of flexibilide and sinulariolide varied significantly among sites. The concentration of flexibilide was significantly higher at the third, highly competitive site, while the concentration of sinulariolide was highest at thePorites-dominated site. Dihydroflexibilide levels were independent of site. It seems likely that concentrations of flexibilide, a highly cytotoxic molecule involved in interference competition, and sinulariolide, a known algicide probably responsible for colony maintenance, may be influenced by their environments. PMID:24248576

  9. Anti-Inflammatory Activities of Natural Products Isolated from Soft Corals of Taiwan between 2008 and 2012

    PubMed Central

    Wei, Wen-Chi; Sung, Ping-Jyun; Duh, Chang-Yih; Chen, Bo-Wei; Sheu, Jyh-Horng; Yang, Ning-Sun

    2013-01-01

    This review reports details on the natural products isolated from Taiwan soft corals during the period 2008–2012 focusing on their in vitro and/or in vivo anti-inflammatory activities. Chemical structures, names, and literature references are also reported. This review provides useful and specific information on potent anti-inflammatory marine metabolites for future development of immune-modulatory therapeutics. PMID:24152566

  10. Cembranoids with 3,14-Ether Linkage and a Secocembrane with Bistetrahydrofuran from the Dongsha Atoll Soft Coral Lobophytum sp.

    PubMed Central

    Hegazy, Mohamed Elamir F.; Su, Jui-Hsin; Sung, Ping-Jyun; Sheu, Jyh-Horng

    2011-01-01

    Four new cembranoids, lobophylins A–D (1–4), and one novel secocembrane, lobophylin E (5) were isolated from a soft coral Lobophytum sp. The structures of new metabolites were elucidated on the basis of extensive spectroscopic methods. Among these metabolites, 1–4 are rarely found cembranoids possessing a tetrahydrofuran moiety with a 3,14-ether linkage. In addition, 5 is the first secocembrane possessing two tetrahydrofuran moieties with 3,14- and 4,7-ether linkages. PMID:21822414

  11. Cespitulones A and B, Cytotoxic Diterpenoids of a New Structure Class from the Soft Coral Cespitularia taeniata

    PubMed Central

    Lin, Yu-Chi; Wang, Shih-Sheng; Chen, Chung-Hsiung; Kuo, Yao-Haur; Shen, Ya-Ching

    2014-01-01

    Two novel diterpenoids, cespitulones A (1) and B (2), were isolated from extracts of the soft coral Cespitularia taeniata. Both compounds possess an unprecedented bicyclo [10.3.1] ring system with C-C bond connections between C-10 and C-20, and between C-20 and C-11. Their structures were elucidated on the basis of extensive spectroscopic analyses. Compound 1 exhibited significant cytotoxicity against human medulloblastoma and colon adenocarcinoma cancer cells. PMID:24905485

  12. Solution and laser ablation inductively coupled plasma-mass spectrometry measurements of Br, I, Pb, Mn, Cd, Zn, and B in the organic skeleton of soft corals and black corals

    NASA Astrophysics Data System (ADS)

    Williams, B.; Grottoli, A. G.

    2011-03-01

    Proxy records can be derived from soft corals and black corals using minor and trace element measurements of the organic skeleton of these corals. Here, concentrations of Br, I, Pb, Mn, Cd, Zn, and B in the organic skeleton were determined using solution inductively coupled plasma-mass spectrometry (ICP-MS) in one black coral from 5 m depth and two soft corals from 85 and 105 m depth collected from a reef offshore of Palau in the western tropical Pacific. Solution ICP-MS results indicate that concentrations of some elements vary as expected with depth (Cd and Mn) while others are taxa specific (I) or colony specific (Br, Pb, Zn, and B). The intensities of the same elements normalized to 13C were also measured at high resolution using laser ablation (LA) ICP-MS along radial transects covering the lifespan of the colonies. The results here indicate that high-resolution LA ICP-MS elemental records in black corals could be more fully developed for paleoceanographic reconstructions. In contrast, results of the laser transects from the two soft corals were not reproducible for any of the elements, and no discernible patterns were detected that could be developed into reliable proxy records using the current LA ICP-MS method.

  13. Persistence of Pristine Deep-Sea Coral Gardens in the Mediterranean Sea (SW Sardinia)

    PubMed Central

    Bo, Marzia; Bavestrello, Giorgio; Angiolillo, Michela; Calcagnile, Lucio; Canese, Simonepietro; Cannas, Rita; Cau, Alessandro; D’Elia, Marisa; D’Oriano, Filippo; Follesa, Maria Cristina; Quarta, Gianluca; Cau, Angelo

    2015-01-01

    Leiopathes glaberrima is a tall arborescent black coral species structuring important facies of the deep-sea rocky bottoms of the Mediterranean Sea that are severely stifled by fishing activities. At present, however, no morphological in vivo description, ecological characterization, age dating and evaluation of the possible conservation actions have ever been made for any population of this species in the basin. A dense coral population was reported during two Remotely Operated Vehicle (ROV) surveys conducted on a rocky bank off the SW coasts of Sardinia (Western Mediterranean Sea). L. glaberrima forms up to 2 m-tall colonies with a maximal observed basal diameter of nearly 7 cm. The radiocarbon dating carried out on a colony from this site with a 4 cm basal diameter revealed an approximately age of 2000 years. Considering the size-frequency distribution of the colonies in the area it is possible to hypothesize the existence of other millennial specimens occupying a supposedly very stable ecosystem. The persistence of this ecosystem is likely guaranteed by the heterogeneous rocky substrate hosting the black coral population that represents a physical barrier against the mechanical impacts acted on the surrounding muddy areas, heavily exploited as trawling fishing grounds. This favorable condition, together with the existence of a nursery area for catsharks within the coral ramifications and the occurrence of a meadow of the now rare soft bottom alcyonacean Isidella elongata in small surviving muddy enclaves, indicates that this ecosystem have to be considered a pristine Mediterranean deep-sea coral sanctuary that would deserve special protection. PMID:25790333

  14. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia).

    PubMed

    Bo, Marzia; Bavestrello, Giorgio; Angiolillo, Michela; Calcagnile, Lucio; Canese, Simonepietro; Cannas, Rita; Cau, Alessandro; D'Elia, Marisa; D'Oriano, Filippo; Follesa, Maria Cristina; Quarta, Gianluca; Cau, Angelo

    2015-01-01

    Leiopathes glaberrima is a tall arborescent black coral species structuring important facies of the deep-sea rocky bottoms of the Mediterranean Sea that are severely stifled by fishing activities. At present, however, no morphological in vivo description, ecological characterization, age dating and evaluation of the possible conservation actions have ever been made for any population of this species in the basin. A dense coral population was reported during two Remotely Operated Vehicle (ROV) surveys conducted on a rocky bank off the SW coasts of Sardinia (Western Mediterranean Sea). L. glaberrima forms up to 2 m-tall colonies with a maximal observed basal diameter of nearly 7 cm. The radiocarbon dating carried out on a colony from this site with a 4 cm basal diameter revealed an approximately age of 2000 years. Considering the size-frequency distribution of the colonies in the area it is possible to hypothesize the existence of other millennial specimens occupying a supposedly very stable ecosystem. The persistence of this ecosystem is likely guaranteed by the heterogeneous rocky substrate hosting the black coral population that represents a physical barrier against the mechanical impacts acted on the surrounding muddy areas, heavily exploited as trawling fishing grounds. This favorable condition, together with the existence of a nursery area for catsharks within the coral ramifications and the occurrence of a meadow of the now rare soft bottom alcyonacean Isidella elongata in small surviving muddy enclaves, indicates that this ecosystem have to be considered a pristine Mediterranean deep-sea coral sanctuary that would deserve special protection. PMID:25790333

  15. Bioactive Cembrane Derivatives from the Indian Ocean Soft Coral, Sinularia kavarattiensis

    PubMed Central

    Lillsunde, Katja-Emilia; Festa, Carmen; Adel, Harshada; De Marino, Simona; Lombardi, Valter; Tilvi, Supriya; Nawrot, Dorota A.; Zampella, Angela; D’Souza, Lisette; D’Auria, Maria Valeria; Tammela, Päivi

    2014-01-01

    Marine organisms and their metabolites represent a unique source of potential pharmaceutical substances. In this study, we examined marine-derived substances for their bioactive properties in a cell-based Chikungunya virus (CHIKV) replicon model and for in vitro anti-inflammatory activity. In the screening of a marine sample library, crude extracts from the Indian soft coral, Sinularia kavarattiensis, showed promising activity against the CHIKV replicon. Bioassay-guided chemical fractionation of S. kavarattiensis resulted in the isolation of six known norcembranoids (1–6) and one new compound, named kavaranolide (7). The structures were elucidated on the basis of NMR and MS spectroscopic data. Compounds 1–3 and 5–7 were evaluated for their replicon-inhibiting potential in the CHIKV model by using a luminescence-based detection technique and live cell imaging. Compounds 1 and 2 showed moderate inhibition of the CHIKV replicon, but imaging studies also revealed cytotoxic properties. Moreover, the effects of the isolated compounds on primary microglial cells, an experimental model for neuroinflammation, were evaluated. Compound 2 was shown to modulate the immune response in microglial cells and to possess potential anti-inflammatory properties by dose-dependently reducing the release of pro- and anti-inflammatory cytokines. PMID:25056629

  16. Structurally Diverse Metabolites from the Soft Coral Sinularia verruca Collected in the South China Sea.

    PubMed

    Yuan, Weiping; Cheng, Shimiao; Fu, Weitao; Zhao, Min; Li, Xiubao; Cai, Yuepiao; Dong, Jianyong; Huang, Kexin; Gustafson, Kirk R; Yan, Pengcheng

    2016-04-22

    Nineteen metabolites with diverse structures, including the rare pyrroloindoline alkaloid verrupyrroloindoline (1), the unprecedented highly fused benzosesquiterpenoid verrubenzospirolactone (2), the new asteriscane-type sesquiterpenoid 10-deoxocapillosanane D (3), and the two new cyclopentenone derivatives (4S*,5S*)-4-hydroxy-5-(hydroxymethyl)-2,3-dimethyl-4-pentylcyclopent-2-en-1-one (4) and (S)-4-hydroxy-5-methylene-2,3-dimethyl-4-pentylcyclopent-2-en-1-one (5), were isolated from a South China Sea collection of the soft coral Sinularia verruca. Eleven previously described marine metabolites (7-15, 18, and 19) were also obtained as well as three new EtOH-adduct artifacts (6, 16, and 17). The structures of the new compounds were elucidated by extensive spectroscopic analysis and by comparison with previously reported data. Compounds 4, 5, and 16 showed protection against the cytopathic effects of HIV-1 infection with EC50 values of 5.8-34 μM, and 4, 6, and 16 exhibited inhibition against LPS-induced NO production with IC50 values of 24-28 μM. PMID:27010413

  17. New cembranolide analogues from the formosan soft coral Sinularia flexibilis and their cytotoxicity.

    PubMed

    Hsieh, Pei-Wen; Chang, Fang-Rong; McPhail, Andrew T; Lee, Kuo-Hsiung; Wu, Yang-Chang

    2003-12-01

    Using a bioactivity-guided fractionation procedure, five cembranolides, 11-epi-sinulariolide acetate (1), 11-dehydrosinulariolide (2), sinulariolide (3), dihydrosinularin (4), and 3,4:8,11-bisepoxy-7-acetoxycembra-15(17)-en-1,12-olide (5), along with two nucleosides, 2'-deoxyadenosine and thymidine, were isolated from the Formosan soft coral Sinularia flexibilis. Moreover, 7,8-epoxy-11-epi-sinulariolide acetate (1a), 11-sinulariolide acetate (3a), dihydrosinulariolide (3b), 3,4:8,11-bisepoxy-7-hydroxycembra-15(17)-en-1,12-olide (3c), 11-acetoxyl-15(17)-dihydrosinulariolide (3d), 7,8-epoxy-11-sinulariolide acetate (3e), and 3,4:8,11-bisepoxy-7-hydroxycembra-15(17)-dihydro-1,12-olide (3f) were derived from compounds 1 and 3, respectively. These structures were deduced on the basis of physical and chemical evidence. Among them, 1a, 3d, 3e, and 3f are new cembranolide analogues. The structure of compound 1 was further confirmed by X-ray analysis. In addition, the isolated cembranolides and the analogues under went a cytotoxicity assay, and the structure-activity relationship (SAR) of these compounds was studied. PMID:14577690

  18. Four new bioactive lobane diterpenes of the soft coral Lobophytum pauciflorum from Mindoro, Philippines.

    PubMed

    Edrada, R A; Proksch, P; Wray, V; Witte, L; van Ofwegen, L

    1998-03-01

    The marine soft coral Lobophytum pauciflorum collected from Mindoro Island, Philippines, yielded four new lobane diterpene derivatives: the acetate congeners of epoxylobatrienol and lobatrienediol (2 and 7, respectively), a methoxyl congener of lobatetraene (10), and an oxepin congener of lobatrienetriol (11), and six known derivatives (1, 3-6, and 8). The structures of the new compounds were unambiguously established on the basis of NMR spectroscopic (1H, 13C, COSY, 1H-detected direct, and long-range 13C-1H correlations) and mass spectrometric (EIMS) data. All of the compounds were active against the phytopathogenic fungus Cladosporium cucumerinum. Compound 1 was found to be active against the Gram-positive bacteria Bacillus subtilis and the yeast Saccharomyces cerevisiae. The isolated lobane diterpenes were also active in the brine shrimp lethality test. In the latter bioassay, compounds 8 and 10 were the most active congeners with LC50's of 0.64 and 4.18 micrograms/mL, respectively. PMID:9548875

  19. NF-κB inhibitory activity of polyoxygenated steroids from the Vietnamese soft coral Sarcophyton pauciplicatum.

    PubMed

    Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Sun, Ya Nan; Song, Seok Bean; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Kim, Young Ho; Minh, Chau Van

    2014-07-01

    Chromatographic purification of the methanolic extract from the soft coral Sarcophyton pauciplicatum led to the isolation of three polyhydroxylated steroids 1-3, including a new compound, sarcopanol A (1). Their structures were elucidated by spectroscopic analysis and by comparison of the spectroscopic data with those of similar compounds previously reported in literature. The anti-inflammatory effects of isolated compounds were evaluated using nuclear factor kappa B (NF-κB) luciferase and reverse transcription polymerase chain reaction (RT-PCR). The effect of isolated compounds on cell growth was evaluated by MTS assays. Compounds 1 and 2 significantly inhibited TNFα/INFγ-induced NF-κB transcriptional activity in human keratinocyte (HaCaT) cells in a dose-dependent manner, with EC50 values of 8.27±3.28 and 26.07±5.59 μM, respectively. Furthermore, the transcriptional inhibition of these compounds was confirmed by a decrease in cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) gene expression levels in HaCaT cells. PMID:24852121

  20. Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans

    PubMed Central

    Zheng, Cai-Juan; Shao, Chang-Lun; Wu, Lu-Yong; Chen, Min; Wang, Kai-Ling; Zhao, Dong-Lin; Sun, Xue-Ping; Chen, Guang-Ying; Wang, Chang-Yun

    2013-01-01

    One new phenylalanine derivative 4′-OMe-asperphenamate (1), along with one known phenylalanine derivative (2) and two new cytochalasins, aspochalasin A1 (3) and cytochalasin Z24 (4), as well as eight known cytochalasin analogues (5–12) were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12) were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus. PMID:23752358

  1. Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum

    PubMed Central

    Ellithey, Mona S.; Lall, Namrita; Hussein, Ahmed A.; Meyer, Debra

    2013-01-01

    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24(28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 µM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 µM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned. PMID:24336129

  2. Molecular phylogenetic relationships between prostanoid-containing Okinawan soft coral ( Clavularia viridis) and nonprostanoid-containing Clavularia species based on ribosomal ITS sequence.

    PubMed

    Fujiwara, Shoko; Yasui, Kazuyuki; Watanabe, Kinzo; Wakabayashi, Takako; Tsuzuki, Mikio; Iguchi, Kazuo

    2003-01-01

    To study phylogenetic relationships among Okinawan soft corals of the genus Clavularia, the ribosomal internal transcribed spacer sequences of host corals and the 18S rDNA sequences of symbiotic algae were analyzed. The molecular phylogenetic trees of hosts showed that a prostanoid-containing species, Clavularia viridis, is deeply diverged from other species of Clavularia which do not biosynthesize the prostanoids as the main secondary metabolites. Comparison of their trees suggested poor phylogenetic concordance between hosts and symbionts. PMID:14719169

  3. Cold-water coral distributions in the drake passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, R.G.; Scanlon, K.M.; Robinson, L.F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Coldwater corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features

  4. A new genus of soft coral (Cnidaria, Octocorallia) from the Republic of Congo (Pointe-Noire Region)

    PubMed Central

    Van Ofwegen, Leen P.; Aurelle, Didier; Sartoretto, Stéphane

    2014-01-01

    Abstract A new genus of soft coral from the Republic of Congo is described, Complexum gen. n. Nine West African octocoral species previously described in the genus Alcyonium by Tixier-Durivault (1955) are referred to this new genus, and a new species is described and figured, Complexum pusillum sp. n. The new species is characterized by having encrusting growth form and abundant spiny clubs in the surface of the polyparium. It colonizes shallow calcareous rocky banks (5 to 20 m depth) existing in coastal water of the region of Pointe-Noire. Based on molecular phylogeny this new genus is well separated from Alcyonium species. PMID:25589850

  5. Analysis of the Proteinaceous Components of the Organic Matrix of Calcitic Sclerites from the Soft Coral Sinularia sp.

    PubMed Central

    Rahman, M. Azizur; Shinjo, Ryuichi; Oomori, Tamotsu; Wörheide, Gert

    2013-01-01

    An organic matrix consisting of a protein-polysaccharide complex is generally accepted as an important medium for the calcification process. While the role this “calcified organic matrix” plays in the calcification process has long been appreciated, the complex mixture of proteins that is induced and assembled during the mineral phase of calcification remains uncharacterized in many organisms. Thus, we investigated organic matrices from the calcitic sclerites of a soft coral, Sinularia sp., and used a proteomic approach to identify the functional matrix proteins that might be involved in the biocalcification process. We purified eight organic matrix proteins and performed in-gel digestion using trypsin. The tryptic peptides were separated by nano-liquid chromatography (nano-LC) and analyzed by tandem mass spectrometry (MS/MS) using a matrix-assisted laser desorption/ionization (MALDI) – time-of-flight-time-of-flight (TOF-TOF) mass spectrometer. Periodic acid Schiff staining of an SDS-PAGE gel indicated that four proteins were glycosylated. We identified several proteins, including a form of actin, from which we identified a total of 183 potential peptides. Our findings suggest that many of those peptides may contribute to biocalcification in soft corals. PMID:23527022

  6. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    PubMed Central

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  7. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    PubMed

    Waller, Rhian G; Scanlon, Kathryn M; Robinson, Laura F

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated

  8. Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species.

    PubMed

    Farag, Mohamed A; Porzel, Andrea; Al-Hammady, Montasser A; Hegazy, Mohamed-Elamir F; Meyer, Achim; Mohamed, Tarik A; Westphal, Hildegard; Wessjohann, Ludger A

    2016-04-01

    Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via (1)H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC-MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC-MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids. PMID:26892921

  9. Mutagenicity, genotoxicity, and scavenging activities of extracts from the soft coral Chromonephthea braziliensis: a possibility of new bioactive compounds.

    PubMed

    Carpes, R M; Fleury, B G; Lages, B G; Pinto, A C; Aiub, C A F; Felzenszwalb, I

    2013-01-01

    Coral reefs are diverse ecosystems that have a high density of biodiversity leading to intense competition among species. These species may produce unknown substances, many with pharmacological value. Chromonephthea braziliensis is an invasive soft coral from the Indo-Pacific Ocean that is possibly transported by oil platforms and whose presence can be a threat to a region's biodiversity. This species produces secondary metabolites that are responsible for inducing damage to the local ecosystem. In the present study, extracts were prepared from dried colonies of C. braziliensis (solvents: hexane, dichloromethane, ethyl acetate, and methanol). We evaluated their mutagenicity using the Salmonella reverse mutation assay (TA97, TA98, TA100, and TA102 strains), their genotoxicity using the DNA breakage analysis and micronucleus assay, and scavenging activity using the 1,1-diphenyl-2-picrylhydrazyl-free radical assay. Cytotoxicity and mutagenicity were not observed for any of the extracts. Genotoxicity was observed for the dichloromethane, ethyl acetate, and methanol extracts at high concentrations, but no DNA damage was observed in the micronucleus assay. Scavenging activity was not detected. PMID:24085422

  10. Nitric oxide and heat shock protein 90 co-regulate temperature-induced bleaching in the soft coral Eunicea fusca

    NASA Astrophysics Data System (ADS)

    Ross, Cliff

    2014-06-01

    Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates ( Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90-NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.

  11. Light-dependency of growth and secondary metabolite production in the captive zooxanthellate soft coral Sinularia flexibilis.

    PubMed

    Khalesi, Mohammad K; Beeftink, H H; Wijffels, R H

    2009-01-01

    The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (micro day(-1)) and the physiological response to a range of light intensities (10-1,000 micromol quanta m(-2) s(-1)) was studied for 12 weeks. Although a range of irradiances from 100 to 400 micromol quanta m(-2) s(-1) was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 micromol quanta m(-2) s(-1) was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 micromol quanta m(-2) s(-1). The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200-600 micromol quanta m(-2) s(-1)). PMID:19048343

  12. Sinularones A–I, New Cyclopentenone and Butenolide Derivatives from a Marine Soft Coral Sinularia sp. and Their Antifouling Activity

    PubMed Central

    Shi, Haiyan; Yu, Shanjiang; Liu, Dong; van Ofwegen, Leen; Proksch, Peter; Lin, Wenhan

    2012-01-01

    Nine new compounds, namely sinularones A–I (1–9), characterized as cyclopentenone and butenolide-type analogues, were isolated from a soft coral Sinularia sp., together with a known butenolide (10). Their structures were elucidated by means of spectroscopic (IR, MS, 1D and 2D NMR, CD) analysis. The absolute configurations were determined on the basis of CD and specific rotation data in association with the computed electronic circular dichroism (ECD) by time dependent density functional theory (TD DFT) at 6-31+G(d,p)//DFT B3LYP/6-31+G(d,p) level. Compounds 1–2 and 7–10 showed potent antifouling activities against the barnacle Balanus amphitrite. PMID:22822376

  13. 9,11-Secosteroids and polyhydroxylated steroids from two South China Sea soft corals Sarcophyton trocheliophorum and Sinularia flexibilis.

    PubMed

    Chen, Wen-Ting; Liu, Hai-Li; Yao, Li-Gong; Guo, Yue-Wei

    2014-12-01

    A new 9,11-secosteroid, 25(26)-dehydrosarcomilasterol (1), two new polyhydroxylated steroids, 7α-hydroxy-crassarosterol A (2) and 11-acetoxy-7α-hydroxy-crassarosterol A (3), together with three known related ones (4-6), were isolated from the South China Sea soft corals Sarcophyton trocheliophorum and Sinularia flexibilis, respectively. The structures of the new steroids were elucidated on the basis of extensive spectroscopic analyses, comparison with the literature data and chemical correlation. Compound 2 exhibited a moderate protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 33.05μM. Compounds 1-3 showed weak in vitro cytotoxicities against the tumor cell lines K562 and HL-60. PMID:25262997

  14. An Investigation into the Cytotoxic Effects of 13-Acetoxysarcocrassolide from the Soft Coral Sarcophyton crassocaule on Bladder Cancer Cells

    PubMed Central

    Su, Ching-Chyuan; Su, Jui-Hsin; Lin, Jen-Jie; Chen, Cheng-Chi; Hwang, Wen-Ing; Huang, Han Hsiang; Wu, Yu-Jen

    2011-01-01

    Active compounds from natural products have been widely studied. The anti-tumor effects of 13-acetoxysarcocrassolide isolated from Formosan soft coral Sarcophyton crassocaule on bladder cancer cells were examined in this study. An MTT assay showed that 13-acetoxysarcocrassolide was cytotoxic to bladder female transitional cancer (BFTC) cells. We determined that the BFTC cells underwent cell death through apoptosis by flow cytometry. Due to the highly-migratory nature of the BFTC cells, the ability of 13-acetoxysarcocrassolide to stop their migration was assessed by a wound healing assay. To determine which proteins were affected in the BFTC cells upon treatment, a comparative proteomic analysis was performed. By LC-MS/MS analysis, we identified that 19 proteins were up-regulated and eight were down-regulated. Seven of the proteins were confirmed by western blotting analysis. This study reveals clues to the potential mechanism of the cytotoxic effects of 13-acetoxysarcocrassolide on BFTC cells. Moreover, it suggests that PPT1 and hnRNP F could be new biomarkers for bladder cancer. The results of this study are also helpful for the diagnosis, progression monitoring and therapeutic strategies of transitional cell tumors. PMID:22363243

  15. Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the physical environment

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.

    1997-07-01

    The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35-55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear "sub

  16. Hard- and soft-bottom thanatofacies from the Santa Maria di Leuca deep-water coral province, Mediterranean

    NASA Astrophysics Data System (ADS)

    Rosso, A.; Vertino, A.; Di Geronimo, I.; Sanfilippo, R.; Sciuto, F.; Di Geronimo, R.; Violanti, D.; Corselli, C.; Taviani, M.; Mastrototaro, F.; Tursi, A.

    2010-03-01

    Thanatofacies and the skeletonized components of the living facies, from which they originate have been studied from the Santa Maria di Leuca (SML) deep-water coral mound province. Faunal analysis was carried out by means of bottom sampling and underwater video observations, taking into account all benthic taxonomic groups, mostly corals, molluscs, serpulids, bryozoans, ostracods, foraminifers and barnacles, which permitted recognition of six different facies. These thanatofacies are easily distinguishable and appear to be largely corresponding and overlapping with related living facies. Some occur in mound areas, others in the intermound ones. They are as follows: the Framework-building Coral facies (FC), characterised by colonial corals, mostly Madrepora oculata; the Coral Rubble facies (CR), with proximal and distal aspects, characterised by large- to small-sized and densely to loosely packed coral fragments; the Solitary Coral facies (SC), dominated by different species depending on the availability and dimensions of hard exploitable surfaces; the Gryphus and Isidella facies (GI) in relatively coarse-grained bottoms; the Mollusc Mud facies (MM) and the Foraminifer Mud facies (FM) in comparably homogeneous silty bottoms. Facies distribution and spatial variability are discussed, in relation to hydrology and sea-floor topography. Furthermore, the SML facies are compared with living facies from the present-day Mediterranean and Pleistocene sediments of the same area. Data on bioclastic assemblages can serve for comparison with other recent aphotic, non-tropical carbonates.

  17. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam).

    PubMed

    Imbs, Andrey B; Dang, Ly P T; Rybin, Viacheslav G; Svetashev, Vasily I

    2015-06-01

    The soft corals of the genus Xenia are common for Indo-Pacific reef ecosystems. Lipid class, fatty acid (FA), phospho- and phosphonolipid molecular species compositions were identified for the first time in the soft coral Xenia sp. from Vietnam. Total lipids consisted predominantly of waxes, monoalkyl diacylglycerols, triacylglycerols, sterols, and polar lipids (21.4, 7.7, 14.2, 10.5, and 36.7 %, respectively). Sesquiterpene alcohol, valerenenol, was found. Acids 16:0, 18:3n-6, 20:4n-6, and 20:5n-3 dominated in total FA. The markers of zooxanthellae (18:4n-3 and 18:5n-3) and octocorals (24:5n-6 and 24:6n-3) were detected. Acids 18:5n-3, 20:4n-6, 22:4n-6, and 24:5n-6 concentrated in FA of polar lipids, whereas 14:0, 16:0, 16:1n-7, 18:2n-6, and 18:3n-6 were the major FA of neutral lipids. ChoGpl, EtnGpl, SerGpl, CAEP, PtdIns, and lyso ChoGpl constituted 39.5, 20.8, 20.5, 9.7, 4.3, and 5.3 %, respectively, of the sum of phospho- and phosphonolipids. Thirty-two molecular species of phospholipids and ceramide aminoethylphosphonate (CAEP) were determined by high resolution tandem mass spectrometry. Lyso 18:0e PakCho (4.1 %), 18:0e/20:4 PakCho (20.5 %), 18:1e/20:4 PlsEtn (18.0 %), 18:0e/24:5 PakSer (14.0 %), and 16:0 CAEP (9.6 %) were the major molecular species. EtnGpl and PtdIns mainly consisted of alkenyl acyl and diacyl forms, respectively. Alkyl acyl forms predominated in ChoGpl and SerGpl. Acid 24:5n-6 was a principal FA in SerGpl, whereas 20:4n-6 was more abundant in ChoGpl and EtnGpl. PtdIns contained various C20-24 PUFA. In the context of chemotaxonomy of corals, Xenia sp. has the lipid composition typical for soft corals and the FA profile similar to that of alcyonarians with the high level of 18:3n-6. PMID:25916238

  18. The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest pacific region

    NASA Astrophysics Data System (ADS)

    Bostock, Helen C.; Tracey, Dianne M.; Currie, Kim I.; Dunbar, Gavin B.; Handler, Monica R.; Mikaloff Fletcher, Sara E.; Smith, Abigail M.; Williams, Michael J. M.

    2015-06-01

    Habitat-forming deep-sea scleractinian and alcyonacean corals from around the southwest Pacific were analysed for their calcium carbonate mineralogy. Scleractinian coral species Solenosmilia variabilis, Enallopsammia rostrata, Goniocorella dumosa, Madrepora oculata and Oculina virgosa were all found to be 100% aragonitic, while some members of the alcyonacean taxa Keratoisis spp., Lepidisis spp., and Paragorgia spp. were determined to be high magnesium (Mg) calcite (with 8-11 mol% MgCO3) and Primnoa sp. is bimineralic with both aragonite and Mg calcite. The majority of these habitat-forming deep-sea corals are found at intermediate depths (800-1200 m) in the Antarctic Intermediate Waters (AAIW) with low salinities (~34.5), temperatures of 4-8 °C and high oxygen concentrations (>180 μmol/kg) and currently sitting above the aragonite saturation horizon (ASH). However, habitat-forming corals have been recorded from greater depths, in cooler waters (2-4 °C) that are undersaturated with respect to aragonite (Ωaragonite<1), but with oxygen levels still >160 μmol/kg. To address the sampling depth bias the coral records were normalised by the number of benthic stations (sampling effort) in the same depth range. This shows that the highest number of corals per sampling effort is between 1000 and 1400 m with corals present in over 5% of the stations at these depths. The normalised records and Boot Strap analyses suggests that scleractinian corals, especially S. variabilis should be present in >1% of stations down to 1800 m water depth, with E. rostrata, M. oculata and G. dumosa slightly shallower. While alcyonacean corals are found in >1% down to 2600 m, with Keratoisis spp. the deepest down to 2600 m, while Lepidisis spp. and Paragorgia spp. found down to 1800 m. This suggests that most species can probably tolerate some undersaturation of aragonite (Ωaragonite=0.8-0.9), with several species/genera (S. variabilis; Keratoisis spp.) even more tolerant of lower carbonate

  19. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Jamieson, Robyn E.; Edinger, Evan N.; Wareham, Vonda E.

    2008-10-01

    With the aim of understanding of the trophic ecology of cold-water corals, this paper explores the tissue δ13C and δ15N values of 11 'coral' species (8 alcyonacean, 1 antipatharian, 1 pennatulacean, 1 scleractinian) collected along the Newfoundland and Labrador continental slope. Isotopic results delimit species along continua of trophic level and food lability. With an isotopic signature similar to macrozooplankton, Paragorgia arborea occupies the lowest trophic level and most likely feeds on fresh phytodetritus. Primnoa resedaeformis occupies a slightly higher trophic level, likely supplementing its diet with microzooplankton. Bathypathes arctica, Pennatulacea and other alcyonaceans ( Acanella arbuscula, Acanthogorgia armata, Anthomastus grandiflorus, Duva florida, Keratoisis ornata, Paramuricea sp.) had higher δ13C and δ15N values, suggesting these species feed at higher trophic levels and on a greater proportion of more degraded POM. Flabellum alabastrum had an isotopic signature similar to that of snow crab, indicating a primarily carnivorous diet. Isotopic composition did not vary significantly over a depth gradient of 50-1400 m. Coral δ13C increased slightly (<1‰) from the Hudson Strait to the southern Grand Banks, but δ15N did not. By modulating the availability and quality of suspended foods, substrate likely exerts a primary influence on the feeding habits of cold-water corals.

  20. Induction of apoptosis by sinulariolide from soft coral through mitochondrial-related and p38MAPK pathways on human bladder carcinoma cells.

    PubMed

    Neoh, Choo-Aun; Wang, Robert Y-L; Din, Zhong-Hao; Su, Jui-Hsin; Chen, Yu-Kuei; Tsai, Feng-Jen; Weng, Shun-Hsiang; Wu, Yu-Jen

    2012-12-01

    Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow cytometry, respectively. Sinulariolide inhibited the growth and migration of bladder carcinoma cells in a dose-dependent manner, as well as induced both early and late apoptosis as determined by the flow cytometer. Also, the sinulariolide-induced apoptosis is related to the mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C, activation of caspase-3/-9, Bax and Bad, as well as suppression of Bcl-2/Bcl-xL/Mcl-1. Detection of the PARP-1 cleaved product suggested the partial involvement of caspase-independent pathways. Moreover, inhibition of p38MAPK activity leads to the rescue of the cell cytotoxicity of sinulariolide-treated TSGH cells, indicating that the p38MAPK pathway is also involved in the sinulariolide-induced cell apoptosis. Altogether, these results suggest that sinulariolide induces apoptosis against bladder cancer cells through mitochondrial-related and p38MAPK pathways. PMID:23249971

  1. Induction of Apoptosis by Sinulariolide from Soft Coral through Mitochondrial-Related and p38MAPK Pathways on Human Bladder Carcinoma Cells

    PubMed Central

    Neoh, Choo-Aun; Wang, Robert Y.-L.; Din, Zhong-Hao; Su, Jui-Hsin; Chen, Yu-Kuei; Tsai, Feng-Jen; Weng, Shun-Hsiang; Wu, Yu-Jen

    2012-01-01

    Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow cytometry, respectively. Sinulariolide inhibited the growth and migration of bladder carcinoma cells in a dose-dependent manner, as well as induced both early and late apoptosis as determined by the flow cytometer. Also, the sinulariolide-induced apoptosis is related to the mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C, activation of caspase-3/-9, Bax and Bad, as well as suppression of Bcl-2/Bcl-xL/Mcl-1. Detection of the PARP-1 cleaved product suggested the partial involvement of caspase-independent pathways. Moreover, inhibition of p38MAPK activity leads to the rescue of the cell cytotoxicity of sinulariolide-treated TSGH cells, indicating that the p38MAPK pathway is also involved in the sinulariolide-induced cell apoptosis. Altogether, these results suggest that sinulariolide induces apoptosis against bladder cancer cells through mitochondrial-related and p38MAPK pathways. PMID:23249971

  2. Flexibilide Obtained from Cultured Soft Coral Has Anti-Neuroinflammatory and Analgesic Effects through the Upregulation of Spinal Transforming Growth Factor-β1 in Neuropathic Rats

    PubMed Central

    Chen, Nan-Fu; Huang, Shi-Ying; Lu, Ching-Hsiang; Chen, Chun-Lin; Feng, Chien-Wei; Chen, Chun-Hong; Hung, Han-Chun; Lin, Yen-You; Sung, Ping-Jyun; Sung, Chun-Sung; Yang, San-Nan; Wang, Hui-Min David; Chang, Yu-Chia; Sheu, Jyh-Horng; Chen, Wu-Fu; Wen, Zhi-Hong

    2014-01-01

    Chronic neuroinflammation plays an important role in the development and maintenance of neuropathic pain. The compound flexibilide, which can be obtained from cultured soft coral, possesses anti-inflammatory and analgesic effects in the rat carrageenan peripheral inflammation model. In the present study, we investigated the antinociceptive properties of flexibilide in the rat chronic constriction injury (CCI) model of neuropathic pain. First, we found that a single intrathecal (i.t.) administration of flexibilide significantly attenuated CCI-induced thermal hyperalgesia at 14 days after surgery. Second, i.t. administration of 10-μg flexibilide twice daily was able to prevent the development of thermal hyperalgesia and weight-bearing deficits in CCI rats. Third, i.t. flexibilide significantly inhibited CCI-induced activation of microglia and astrocytes, as well as the upregulated proinflammatory enzyme, inducible nitric oxide synthase, in the ipsilateral spinal dorsal horn. Furthermore, flexibilide attenuated the CCI-induced downregulation of spinal transforming growth factor-β1 (TGF-β1) at 14 days after surgery. Finally, i.t. SB431542, a selective inhibitor of TGF-β type I receptor, blocked the analgesic effects of flexibilide in CCI rats. Our results suggest that flexibilide may serve as a therapeutic agent for neuropathic pain. In addition, spinal TGF-β1 may be involved in the anti-neuroinflammatory and analgesic effects of flexibilide. PMID:24979268

  3. A Soft Coral-Derived Compound, 11-epi-Sinulariolide Acetate Suppresses Inflammatory Response and Bone Destruction in Adjuvant-Induced Arthritis

    PubMed Central

    Lee, Hsin-Pai; Chen, Wu-Fu; Sun, Yu-Min; Su, Jui-Hsin; Lu, Yi; Huang, Shi-Ying; Hung, Han-Chun; Sung, Ping-Jyun; Sheu, Jyh-Horng; Wen, Zhi-Hong

    2013-01-01

    In recent years, a significant number of metabolites with potent anti-inflammatory properties have been discovered from marine organisms, and several of these compounds are now under clinical trials. In the present study, we isolated 11-epi-sinulariolide acetate (Ya-s11), a cembrane-type compound with anti-inflammatory effects, from the Formosa soft coral Sinularia querciformis. Preliminary screening revealed that Ya-s11 significantly inhibited the expression of the proinflammatory proteins induced nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated murine macrophages. We also examined the therapeutic effects of Ya-s11 on adjuvant-induced arthritis (AIA) in female Lewis rats, which demonstrate features similar to human rheumatoid arthritis (RA). Animal experiments revealed that Ya-s11 (subcutaneously 9 mg/kg once every 2 days from day 7 to day 28 postimmunization) significantly inhibited AIA characteristics. Moreover, Ya-s11 also attenuated protein expression of cathepsin K, matrix metalloproteinases-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), and tumor necrosis factor-α (TNF-α) in ankle tissues of AIA-rats. Based on its attenuation of the expression of proinflammatory proteins and disease progression in AIA rats, the marine-derived compound Ya-s11 may serve as a useful therapeutic agent for the treatment of RA. PMID:23675440

  4. A second, cryptic species of the soft coral genus Incrustatus (Anthozoa: Octocorallia: Clavulariidae) from Tierra del Fuego, Argentina, revealed by DNA barcoding

    NASA Astrophysics Data System (ADS)

    McFadden, Catherine S.; van Ofwegen, Leen P.

    2013-03-01

    The encrusting soft coral Incrustatus comauensis is a common denizen of hard substrates in the shallow sub-tidal zone from the central Chilean fjords to the Cape Horn region of southern South America. DNA barcoding of specimens collected from the Beagle Channel, Tierra del Fuego, Argentina, revealed the presence of a second, cryptic species of Incrustatus that is syntopic with I. comauensis. We describe Incrustatus niarchosi, a new species that can be distinguished morphologically from I. comauensis by differences in the microscopic ornamentation of the coenenchymal sclerites. To date, I. niarchosi n. sp. is known only from the Beagle Channel. A population of I. comauensis discovered in the intertidal zone in eastern Tierra del Fuego represents a new record of the species for that habitat and geographic region. Although the intertidal population is also distinct genetically, it is morphologically indistinguishable from sub-tidal Chilean populations of I. comauensis, and at present, there is insufficient evidence to support its status as a separate species.

  5. Softly, Softly

    ERIC Educational Resources Information Center

    Diamond, Abigail

    2008-01-01

    The term "soft skills" encompasses a cluster of personality traits, language abilities, personal habits and, ultimately, values and attitudes. Soft skills complement "harder", more technical, skills, such as being able to read or type a letter, but they also have a significant impact on the ability of people to do their jobs and on their…

  6. Coral microbiology

    USGS Publications Warehouse

    Rosenberg, Eugene; Kellogg, Christina A.; Rohwer, Forest

    2007-01-01

    In the last 30 years, there has been approximately a 30% loss of corals worldwide, largely due to emerging diseases (Harvell et al., 2002, 2007; Hughes et al., 2003). Coral microbiology is a new field, driven largely by a desire to understand the interactions between corals and their symbiotic microorganisms and to use this knowledge to eventually prevent the spread of coral diseases.

  7. Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Johns, K. A.; Osborne, K. O.; Logan, M.

    2014-09-01

    Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembly). The processes underlying such changes are not well understood due to a scarcity of long-term studies with sufficient taxonomic resolution. We assessed the trajectories and time frames for coral recovery and reassembly of coral communities following disturbances, using modeled trajectories based on data from a broad spatial and temporal monitoring program. We studied coral communities at six reefs that suffered substantial coral loss and subsequently regained at least 50 % of their pre-disturbance coral cover. Five of the six communities regained their coral cover and the rates were remarkably consistent, taking 7-10 years. Four of the six communities reassembled to their pre-disturbance composition in 8-13 years. The coral communities at three of the reefs both regained coral cover and reassembled ten years. The trajectories of two communities suggested that they were unlikely to reassemble and the remaining community did not regain pre-disturbance coral cover. The communities that regained coral cover and reassembled had high relative abundance of tabulate Acropora spp. Coral communities of this composition appear likely to persist in a regime of pulse disturbances at intervals of ten years or more. Communities that failed to either regain coral cover or reassemble were in near-shore locations and had high relative abundance of Porites spp. and soft corals. Under current disturbance regimes, these communities are unlikely to re-establish their pre-disturbance community composition.

  8. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Braga-Henriques, A.; Porteiro, F. M.; Ribeiro, P. A.; de Matos, V.; Sampaio, Í.; Ocaña, O.; Santos, R. S.

    2013-06-01

    Cold-water corals are widely considered as important structural components of benthic habitats, potentially enhancing local abundance in a variety of fish and invertebrate species. Yet, current knowledge of the taxonomic diversity and distribution patterns of these vulnerable, slow-growing organisms is scarce and fragmented, limiting the effectiveness of spatial management and conservation measures. We have conducted an exhaustive compilation of records of alcyonaceans, antipatharians, scleractinians and stylasterids available through present day to assess the diversity, distribution and spatial structure of coral assemblages in the Azores exclusive economic zone (EEZ). The resulting database comprises 2501 entries concerning historical oceanographic expeditions and other published sources, as well as unpublished data from bottom longline by-catch. Our taxonomic inventory appears to be fairly complete for the explored habitats, accounting for 164 species (79 alcyonaceans, 58 scleractinians, 18 antipatharians and 9 stylasterids), nine of which were documented for the first time. The Azores EEZ harbours a mixed coral fauna with several zoogeographic origins, showing the closest affinity with the Lusitanian-Mediterranean region. Very few apparent endemics were found (14%), and only in part supported by consistent sampling. Coral diversity is particularly high between 300 and 900 m depths, in areas recognized as traditional fishing grounds or exploitable fish habitat within the 100-mile limit of the EEZ. The composition of coral assemblages shows significant geographical structure among longitudinal sections of the study area at comparable depths (100-1500 m). There is no evidence of a possible role of the Mid-Atlantic Ridge or latitudinal effects underlying this pattern, which suggests that it may instead reflect assemblage variability among features. Stronger changes in species composition were found along the bathymetric gradient. Notwithstanding the mix of

  9. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Braga-Henriques, A.; Porteiro, F. M.; Ribeiro, P. A.; de Matos, V.; Sampaio, Í.; Ocaña, O.; Santos, R. S.

    2013-01-01

    Cold-water corals are widely considered as important structural components of benthic habitats, potentially enhancing local abundance in a variety of fish and invertebrate species. Yet, current knowledge of the taxonomic diversity and distribution patterns of these vulnerable, slow-growing organisms is scarce and fragmented, limiting the effectiveness of spatial management and conservation measures. We have conducted an exhaustive compilation of records of alcyonaceans, antipatharians, scleractinians and stylasterids available until the present day to assess the diversity, distribution, and spatial structure of coral assemblages in the Azores Exclusive Economic Zone (EEZ). The resulting database comprises 2501 entries concerning historical oceanographic expeditions and other published sources, as well as recent data from longline bycatch. Our taxonomic inventory appears to be fairly complete for the explored habitats, accounting for 164 species (79 alcyonaceans, 58 scleractinians, 18 antipatharians and 9 stylasterids), nine of which were new records. The Azores EEZ harbours a mixed coral fauna with several zoogeographic origins, showing the closest affinity with the Lusitanian-Mediterranean region. Very few apparent endemics were found (14%), and only in part supported by consistent sampling. Coral diversity is particularly high between 300 and 900 m depths, in areas recognized as traditional fishing grounds or exploitable fish habitat within the 100-mile limit of the EEZ. The composition of coral assemblages shows significant geographical structure among longitudinal sections of the study area at comparable depths (100-1500 m). There is no evidence of a possible role of the Mid-Atlantic Ridge or latitudinal effects underlying this pattern, which suggests that it may instead reflect assemblage variability among features. Stronger changes in species composition were found along the bathymetric gradient. Notwithstanding the mix of partially overlapping steno- and

  10. Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211™ in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers.

    PubMed

    Cima, Francesca; Ferrari, Giulia; Ferreira, Nuno G C; Rocha, Rui J M; Serôdio, João; Loureiro, Susana; Calado, Ricardo

    2013-02-01

    Sea-Nine 211™ is a new biocide specifically formulated for antifouling paints and being considered to have a low environmental impact. Even with a short environmental half-life, this compound can cause toxic effects on marine organisms. This study used PAM fluorometry and biomarkers of oxidative stress (GST, CAT and LPO) to monitor potential toxic effects of Sea-Nine 211™ on fragments of the soft coral Sarcophyton cf. glaucum. After exposure to concentrations of 1-100 μg l(-1) for 72 h, CAT activity was inhibited under the two highest concentrations, being in accordance with the activity of GST. LPO activity (as TBARS) and photosynthetic efficiency of endosymbiotic zooxanthellae were not significantly affected. These results show that PAM fluorometry alone cannot detect the full effects of Sea-Nine 211™ on Sarcophyton cf. glaucum and should be used together with other biomarkers. This holobiont driven approach to evaluate chemical toxicity in photosynthetic corals is therefore recommended for biocides which are not photosystem II inhibitors. PMID:23174086

  11. Coral choreography

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Viewers clicking onto the Waikiki Aquarium's “Coral Research Cam” any time during daylight hours in Hawaii can catch the latest action of three species of living corals (Acropora sp., Acropora elseyi,and Montipora digitata) and the yellow tang and blue tang fish swimming amongst them in an outdoor aquarium.Waikiki Aquarium Director Bruce Carlson says the camera is part of a new exhibit, “Corals Are Alive!,” which encourages people to view living corals close-up at the aquarium or via the Internet, in order to gain a better appreciation of the corals. “Hopefully through education and awareness, people will be more interested and willing to help with conservation efforts to preserve coral reefs,” says Carlson.

  12. Coral feeding on microalgae assessed with molecular trophic markers.

    PubMed

    Leal, Miguel C; Ferrier-Pagès, Christine; Calado, Ricardo; Thompson, Megan E; Frischer, Marc E; Nejstgaard, Jens C

    2014-08-01

    Herbivory in corals, especially for symbiotic species, remains controversial. To investigate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodomonas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders. PMID:24112432

  13. A new genus of soft coral of the family Alcyoniidae (Cnidaria, Octocorallia) with re-description of a new combination and description of a new species

    PubMed Central

    Benayahu, Yehuda; McFadden, Catherine S.

    2011-01-01

    Abstract A new genus, Aldersladum (family Alcyoniidae), is established to accommodate a previously described species, Efflatounaria sodwanae Benayahu, 1993 (family Xeniidae) from Sodwana Bay, South Africa that was wrongly assigned to the latter genus. This species is redescribed and a second new species, Aldersladum jengi from Penghu Is., Taiwan, is described. The diagnostic features of the new genus include the presence of only figure-eight shaped platelets in all parts of the colony, thus differentiating it from all known genera of the Alcyoniidae. Based on examination of additional material from other localities, the zoogeographical distribution of the genus is confirmed to include the coral reefs of South Africa, Kenya, Gulf of Oman, Taiwan and Japan. Phylogenetic analyses of two mitochondrial genes strongly support its placement in the family Alcyoniidae. PMID:21594162

  14. Localized outbreak of attached diatoms on the coral Montipora due to low-temperature stress

    PubMed Central

    Yamashiro, Hideyuki; Mikame, Yurika; Suzuki, Hidekazu

    2012-01-01

    A short-term, localized outbreak of diatoms attached to live corals was observed along the coast of Sesoko Island, Okinawa, Japan in February, 2011. Diatoms are recognized as brown patches in the initial stage, becoming fluffy encrustations and resulting in complete or partial coral death. Attached diatoms, including Licmophora, Climacosphenia, Ardissonea and others, attached and overgrew exclusively Montipora corals, which are dominant corals in some parts of Sesoko reef. Heavily-covered colonies or branches died. The rate of affected corals reached 80% in the worst-affected area. Microscopic observation showed that most diatoms settled directly with polysaccharide stalks or pads onto the partly-bared skeleton of coral branches, although some settled on coral soft tissues. Although no similar phenomenon was reported from other areas of Japan, cold-water events might have important roles in coral weakening, as a consequence, enabling diatom attachment on corals, thus leading to coral death in this area. PMID:22870381

  15. Localized outbreak of attached diatoms on the coral Montipora due to low-temperature stress.

    PubMed

    Yamashiro, Hideyuki; Mikame, Yurika; Suzuki, Hidekazu

    2012-01-01

    A short-term, localized outbreak of diatoms attached to live corals was observed along the coast of Sesoko Island, Okinawa, Japan in February, 2011. Diatoms are recognized as brown patches in the initial stage, becoming fluffy encrustations and resulting in complete or partial coral death. Attached diatoms, including Licmophora, Climacosphenia, Ardissonea and others, attached and overgrew exclusively Montipora corals, which are dominant corals in some parts of Sesoko reef. Heavily-covered colonies or branches died. The rate of affected corals reached 80% in the worst-affected area. Microscopic observation showed that most diatoms settled directly with polysaccharide stalks or pads onto the partly-bared skeleton of coral branches, although some settled on coral soft tissues. Although no similar phenomenon was reported from other areas of Japan, cold-water events might have important roles in coral weakening, as a consequence, enabling diatom attachment on corals, thus leading to coral death in this area. PMID:22870381

  16. The determination of substrate conditions from the orientations of solitary rugose corals

    SciTech Connect

    Bolton, J.C.; Driese, S.G. )

    1990-10-01

    The substrate conditions of mudstone strata formed in ancient epicontinental settings may be determined from taphonomic assemblages of solitary rugose corals. Equal-area plots on the orientations of preserved corals can be used to infer whether subsequent hydrodynamic conditions affected any post-mortem reworking of the corals. Mechanically stable positions for curved corals can be determined. Curved corals preserved in mechanically stable positions are interpreted to have been deposited on firm or hard substrates. Curved corals preserved in mechanically unstable positions were probably embedded in soft or soupy substrates.

  17. Shapes and textures for rendering coral

    SciTech Connect

    Max, N.L. ); Wyvill, G. )

    1990-10-18

    A growth algorithm has been developed to build coral shapes out of a tree of spheres. A volume density defined by the spheres is contoured to give a soft object.'' The resulting contour surfaces are rendered by ray tracing, using a generalized volume texture to produce shading and bump mapped'' normal perturbations. 16 refs., 8 figs.

  18. ROLE OF CORAL DISEASES AND ANTHROPOGENIC STRESSORS ON TROPIC MARINE CORAL REEFS

    EPA Science Inventory

    Stony (scleractinian) and soft (octocorals) corals throughout the Western Atlantic have been affected by several fatal diseases in the last two decades. In many locations the communities have not recovered from these diseases and the ecosystem has permanently changed. Several hyp...

  19. ASSESSMENT OF CORAL CONDITION

    EPA Science Inventory

    Complex reef structures formed by calcified coral skeletons provide a physical habitat that produces highly-valued ecosystem services, including shoreline protection and a high diversity and abundance of marine organisms that support lucrative fishing and tourism. Yet, coral reef...

  20. Decadal trends in a coral community and evidence of changed disturbance regime

    NASA Astrophysics Data System (ADS)

    Wakeford, M.; Done, T. J.; Johnson, C. R.

    2008-03-01

    A 23 year data set (1981 2003 inclusive) and the spatially explicit individual-based model “Compete©” were used to investigate the implications of changing disturbance frequency on cover and taxonomic composition of a shallow coral community at Lizard Island, Australia. Near-vertical in situ stereo-photography was used to estimate rates of coral growth, mortality, recruitment and outcomes of pair-wise competitive interactions for 17 physiognomic groups of hard and soft corals. These data were used to parameterise the model, and to quantify impacts of three acute disturbance events that caused significant coral mortality: 1982—a combination of coral bleaching and Crown-of-Thorns starfish; 1990—cyclone waves; and 1996—Crown-of-Thorns starfish. Predicted coral community trajectories were not sensitive to the outcomes of competitive interactions (probably because average coral cover was only 32% and there was strong vertical separation among established corals) or to major changes in recruitment rates. The model trajectory of coral cover matched the observed trajectory accurately until the 1996 disturbance, but only if all coral mortality was confined to the 3 years of acute disturbance. Beyond that date (1997 2003), when the observed community failed to recover, it was necessary to introduce annual chronic background mortality to obtain a good match between modelled and observed coral cover. This qualitative switch in the model may reflect actual loss of resilience in the real community. Simulated over a century, an 8 year disturbance frequency most closely reproduced the mean community composition observed in the field prior to major disturbance events. Shorter intervals between disturbances led to reduced presence of the dominant hard coral groups, and a gradual increase in the slow growing, more resilient soft corals, while longer intervals (up to 16 years) resulted in monopolization by the fastest growing table coral, Acropora hyacinthus.

  1. Corals diseases are a major cause of coral death

    EPA Science Inventory

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  2. Corals as climate recorders

    USGS Publications Warehouse

    Flannery, Jennifer A.; Poore, Richard Z.

    2010-01-01

    The U.S. Geological Survey (USGS) Coral Reef Ecosystem Studies (CREST) Project is analyzing corals from various sites in the Caribbean region, Dry Tortugas National Park, Biscayne National Park, other areas of the Florida Keys, and the Virgin Islands. The objective of this project is to develop records of past environmental change to better our understanding of climate variability. The records are being used to document changes over the last few centuries and to determine how corals and coral reefs have responded to any changes.

  3. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea.

    PubMed

    Yang, Shan; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-10-01

    To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis. PMID:23564007

  4. Microbiota of Healthy Corals Are Active against Fungi in a Light-Dependent Manner

    PubMed Central

    2015-01-01

    Coral reefs are intricate ecosystems that harbor diverse organisms, including 25% of all marine fish. Healthy corals exhibit a complex symbiosis between coral polyps, endosymbiotic alga, and an array of microorganisms, called the coral holobiont. Secretion of specialized metabolites by coral microbiota is thought to contribute to the defense of this sessile organism against harmful biotic and abiotic factors. While few causative agents of coral diseases have been unequivocally identified, fungi have been implicated in the massive destruction of some soft corals worldwide. Because corals are nocturnal feeders, they may be more vulnerable to fungal infection at night, and we hypothesized that the coral microbiota would have the capability to enhance their defenses against fungi in the dark. A Pseudoalteromonas sp. isolated from a healthy octocoral displayed light-dependent antifungal properties when grown adjacent to Penicilliumcitrinum (P. citrinum) isolated from a diseased Gorgonian octocoral. Microbial MALDI-imaging mass spectrometry (IMS) coupled with molecular network analyses revealed that Pseudoalteromonas produced higher levels of antifungal polyketide alteramides in the dark than in the light. The alteramides were inactivated by light through a photoinduced intramolecular cyclization. Further NMR studies led to a revision of the stereochemical structure of the alteramides. Alteramide A exhibited antifungal properties and elicited changes in fungal metabolite distributions of mycotoxin citrinin and citrinadins. These data support the hypothesis that coral microbiota use abiotic factors such as light to regulate the production of metabolites with specialized functions to combat opportunistic pathogens at night. PMID:25058318

  5. Draft Genome Sequence of Vibrio sp. Strain Evh12, a Bacterium Retrieved from the Gorgonian Coral Eunicella verrucosa

    PubMed Central

    Franco, Telma; Califano, Gianmaria; Gonçalves, Ana C. S.; Cúcio, Catarina

    2016-01-01

    To shed light on the associations established between Vibrio species and soft corals in coastal ecosystems, we report here the draft genome sequence of Vibrio sp. strain Evh12, a bacterium that has been isolated from the gorgonian coral Eunicella verrucosa and that shows antagonistic activity against Escherichia coli. PMID:26868405

  6. The CORALS Connection

    ERIC Educational Resources Information Center

    Plankis, Brian; Klein, Carolyn

    2010-01-01

    The Ocean, Reefs, Aquariums, Literacy, and Stewardship (CORALS) research program helps students connect global environmental issues to local concerns and personal choices. During the 18-week program, students strengthen their understanding of coral reef decline through a classroom aquarium activity, communicate with science experts, and create…

  7. Phage therapy for Florida corals?

    USGS Publications Warehouse

    Kellogg, Christina A.

    2007-01-01

    Coral disease is a major cause of reef decline in the Florida Keys. Bacterium has been defined as the most common pathogen (disease-causing organism). Although much is being done to catalog coral diseases, map their locations, determine the causes of disease, or measure the rates of coral demise, very little research has been directed toward actually preventing or eliminating the diseases affecting coral and coral reef decline.

  8. Bridging the Reef gaps: first evidence for corals surviving under low pH conditions

    NASA Astrophysics Data System (ADS)

    Tchernov, D.; Fine, M.

    2007-12-01

    Following two major extinction events, the late Permian and Triassic/Jurassic, there is a long absence of corals from the geological record followed by a recurrence coral fossils. This unusual disappearance and reappearance, referred to commonly as 'reef gaps', was explained as a failure in sampling effort, and/or the movement of these species into geographic 'refugia' that have not been found. Because the phylogeny of recent corals suggests their origin in the pre-Permian-extinction , an alternative explanation for reef gaps hypothesized that corals have a means of alternating between soft bodies and fossilizing forms. This study supports this hypothesis. Thirty coral fragments from 5 coral colonies of the scleractinian Mediterranean corals Oculina patagonica (encrusting) and Madracis pharencis (bulbous) were subjected to pH 7.4-7.6 (in accordance with the pH projected by the IPCC for the year 2300) and 30 fragments to pH 8.0-8.3 (ambient) over a period of 12 months. 100% of the colonies in the experiment and 90% of all polyps survived to the end the experiment. The corals grown in acidified conditions, where skeleton-building conditions were absent, maintained basic life functions as a solitary skeleton-less ecophenotype resembling a sea anemone. On an evolutionary scale, these results provide a possible explanation to coral survival over major extinction events such as the Permian/Triassic and Triassic/Jurassic events. It is important to note that these results only demonstrate that corals can persist as soft bodied ecophoenotypes, but the loss of reef framework has major ramifications to the entire structure and function of coral reef ecosystems, ultimately impacting the services they provide to human society.

  9. Coral Bleaching: Coral 'refugia' amid heating seas

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken

    2013-05-01

    The Earth is getting hotter as carbon dioxide, predominantly from the burning of fossil fuels, continues to accumulate in the atmosphere. It is widely recognized that increasing temperatures pose a threat to coral reefs, but just how large a risk are these reefs facing?

  10. Disease of coral and coral reef fishes

    USGS Publications Warehouse

    Panek, Frank

    2008-01-01

    The Department of the Interior protects sensitive habitats amounting to about 3,600,000 acres of coral reefs and other submerged lands. These reefs are important ecosystems in 13 National Wildlife Refuges, 10 National Parks and in certain territorial waters such as the Wake Atoll.

  11. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  12. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water and that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.

  13. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  14. Coral bleaching: Thermal adaptation in reef coral symbionts

    NASA Astrophysics Data System (ADS)

    Rowan, Rob

    2004-08-01

    Many corals bleach as a result of increased seawater temperature, which causes them to lose their vital symbiotic algae (Symbiodinium spp.) - unless these symbioses are able to adapt to global warming, bleaching threatens coral reefs worldwide. Here I show that some corals have adapted to higher temperatures, at least in part, by hosting specifically adapted Symbiodinium. If other coral species can host these or similar Symbiodinium taxa, they might adapt to warmer habitats relatively easily.

  15. Coral reefs: Turning back time

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.

    2016-03-01

    An in situ experiment finds that reducing the acidity of the seawater surrounding a natural coral reef significantly increases reef calcification, suggesting that ocean acidification may already be slowing coral growth. See Letter p.362

  16. Investigating coral hyperspectral properties across coral species and coral state using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Smith, Dustin K.; Smith, Shane W.; Strychar, Kevin B.; McLauchlan, Lifford

    2013-09-01

    Coral reefs are one of the most diverse and threatened ecosystems in the world. Corals worldwide are at risk, and in many instances, dying due to factors that affect their environment resulting in deteriorating environmental conditions. Because corals respond quickly to the quality of the environment that surrounds them, corals have been identified as bioindicators of water quality and marine environmental health. The hyperspectral imaging system is proposed as a noninvasive tool to monitor different species of corals as well as coral state over time. This in turn can be used as a quick and non-invasive method to monitor environmental health that can later be extended to climate conditions. In this project, a laboratory-based hyperspectral imaging system is used to collect spectral and spatial information of corals. In the work presented here, MATLAB and ENVI software tools are used to view and process spatial information and coral spectral signatures to identify differences among the coral data. The results support the hypothesis that hyperspectral properties of corals vary among different coral species, and coral state over time, and hyperspectral imaging can be a used as a tool to document changes in coral species and state.

  17. Coral Mortality and Bleaching Output

    EPA Science Inventory

    COMBO is a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from...

  18. Telomere length of the colonial coral Galaxea fascicularis at different developmental stages

    NASA Astrophysics Data System (ADS)

    Tsuta, H.; Hidaka, M.

    2013-06-01

    The ability to estimate coral age using soft tissue would be useful for population biology or aging studies on corals. In this study, we investigated whether telomere length can be used to estimate coral age. We applied single telomere length analysis to a colonial coral, Galaxea fascicularis, and estimated telomere lengths of specific coral chromosomes at different developmental stages. If the telomere shortened at each cell division, the telomere length of the coral would be longest in sperm and shortest in adult colonies. However, the mean telomere length of sperm, planula larvae, and polyps was approximately 4 kb, with no significant differences among the developmental stages. The telomerase restriction fragment (TRF) analysis also showed no significant difference in the mean TRF length among the developmental stages. Our results suggested that telomere length is maintained during developmental stages and that estimating the age of colonial coral based on telomere length may not be possible. However, our findings can be used to examine avoidance of aging and rejuvenation during regeneration and asexual reproduction in colonial corals.

  19. Effects of juvenile coral-feeding butterflyfishes on host corals

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Pratchett, M. S.

    2011-09-01

    Corals provide critical settlement habitat for a wide range of coral reef fishes, particularly corallivorous butterflyfishes, which not only settle directly into live corals but also use this coral as an exclusive food source. This study examines the consequences of chronic predation by juvenile coral-feeding butterflyfishes on their specific host corals. Juvenile butterflyfishes had high levels of site fidelity for host corals with 88% (38/43) of small (<30 mm) juveniles of Chaetodon plebeius feeding exclusively from a single host colony. This highly concentrated predation had negative effects on the condition of these colonies, with tissue biomass declining with increasing predation intensity. Declines were consistent across both field observations and a controlled experiment. Coral tissue biomass declined by 26.7, 44.5 and 53.4% in low, medium and high predation intensity treatments. Similarly, a 41.7% difference in coral tissue biomass was observed between colonies that were naturally inhabited by juvenile butterflyfish compared to uninhabited control colonies. Total lipid content of host corals declined by 29-38% across all treatments including controls and was not related to predation intensity; rather, this decline coincided with the mass spawning of corals and the loss of lipid-rich eggs. Although the speed at which lost coral tissue is regenerated and the long-term consequences for growth and reproduction remain unknown, our findings indicate that predation by juvenile butterflyfishes represents a chronic stress to these coral colonies and will have negative energetic consequences for the corals used as settlement habitat.

  20. Chronic coral consumption by butterflyfishes

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Lawton, R. J.; Pratchett, M. S.; Wilson, S. K.

    2011-03-01

    Interactions between predators and prey organisms are of fundamental importance to ecological communities. While the ecological impact that grazing predators can have in terrestrial and temperate marine systems are well established, the importance of coral grazers on tropical reefs has rarely been considered. In this study, we estimate the biomass of coral tissue consumed by four prominent species of corallivorous butterflyfishes. Sub-adult butterflyfishes (60-70 mm, 6-11 g) remove between 0.6 and 0.9 g of live coral tissue per day, while larger adults (>110 mm, ~40-50 g) remove between 1.5 and 3 g of coral tissue each day. These individual consumption rates correspond to the population of coral-feeding butterflyfishes at three exposed reef crest habitats at Lizard Island, Great Barrier Reef, consuming between 14.6 g (±2.0) and 19.6 g (±3.9) .200 m-2 day-1 of coral tissue. When standardised to the biomass of butterflyfishes present, a combined reefwide removal rate of 4.2 g (±1.2) of coral tissue is consumed per 200 m-2 kg-1 of coral-feeding butterflyfishes. The quantity of coral tissue removed by these predators is considerably larger than previously expected and indicates that coral grazers are likely to play an important role in the transfer of energy fixed by corals to higher consumers. Chronic coral consumption by butterflyfishes is expected to exact a large energetic cost upon prey corals and contribute to an increased rate of coral loss on reefs already threatened by anthropogenic pressure and ongoing climate change.

  1. Corals from Space

    NASA Technical Reports Server (NTRS)

    Patzert, William C.

    1999-01-01

    The goal of this research is to monitor the health and vigor of coral reef ecosystems, and their sensitivity to natural and anthropogenic climate changes. To achieve these lofty goals, this research is investigating the feasibility of using spaceborne high-resolution spectrometers (on the US Landsat, French Systeme Probatoire pour l'Observation de la Terre [SPOT] and/or the Indian Resources Satellite [IRS 1C & 1D] spacecraft) to first map the aerial extent of coral reef systems, and second separate the amount of particular corals. If this is successful, we could potentially provide a quantum leap in our understanding of coral reef systems, as well as provide much needed baseline data to measure future changes in global coral reef ecosystems. In collaboration with Tomas Tomascik, Yann Morel, and other colleagues, a series of experiments were planned to coordinate in situ coral observations, high-resolution spaceborne imagery (from Landsat, SPOT, and, possibly, IRS IC spacecraft), and NASA Space Shuttle photographs and digital images. Our eventual goal is to develop "coral health algorithms" that can be used to assess time series of imagery collected from satellite sensors (Landsat since 1972, SPOT since 1986) in concert with in situ observations. The bad news from last year was that from 1997 to mid- 1998, the extreme cloudiness over southeast Asia due to prolonged smoke from El Nino-related fires and the economic chaos in this region frustrated both our space and reef-based data collection activities. When this volatile situation stabilizes, we will restart these activities. The good news was that in collaboration with Al Strong at the National Oceanic and Atmospheric Administration (NOAA) we had an exciting year operationally using the NOAA's Advanced Very High Resolution Radiometer sensor derived sea surface temperature products to warn of coral "bleaching" at many locations throughout the tropics. Data from NOAA's satellites showed that during the El Nino of

  2. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  3. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  4. CORAL REEF BIOCRITERIA

    EPA Science Inventory

    Coral reefs worldwide are experiencing the greatest decline of their known existence and few tools are available to offset the growing impacts of human coastal and watershed activities. Biocriteria are a potentially effective means to evaluate and restore impaired waters, but are...

  5. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  6. The evolution of modern corals and their early history

    NASA Astrophysics Data System (ADS)

    Stanley, George D.

    2003-02-01

    Scleractinians are a group of calcified anthozoan corals, many of which populate shallow-water tropical to subtropical reefs. Most of these corals calcify rapidly and their success on reefs is related to a symbiotic association with zooxanthellae. These one-celled algal symbionts live in the endodermal tissues of their coral host and are thought responsible for promoting rapid calcification. The evolutionary significance of this symbiosis and the implications it holds for explaining the success of corals is of paramount importance. Scleractinia stands out as one of the few orders of calcified metazoans that arose in Triassic time, long after a greater proliferation of calcified metazoan orders in the Paleozoic. The origin of this coral group, so important in reefs of today, has remained an unsolved problem in paleontology. The idea that Scleractinia evolved from older Paleozoic rugose corals that somehow survived the Permian mass extinction persists among some schools of thought. Paleozoic scleractiniamorphs also have been presented as possible ancestors. The paleontological record shows the first appearance of fossils currently classified within the order Scleractinia to be in the Middle Triassic. These earliest Scleractinia provide a picture of unexpectedly robust taxonomic diversity and high colony integration. Results from molecular biology support a polyphyletic evolution for living Scleractinia and the molecular clock, calibrated against the fossil record, suggests that two major groups of ancestors could extend back to late Paleozoic time. The idea that Scleractinia were derived from soft-bodied, "anemone-like" ancestors that survived the Permian mass extinction, has become a widely considered hypothesis. The 14-million year Mesozoic coral gap stands as a fundamental obstacle to verification of many of these ideas. However, this obstacle is not a barrier for derivation of scleractinians from anemone-like, soft-bodied ancestors. The hypothesis of the

  7. Ecological intereactions of reef building corals

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  8. To understand coral disease, look at coral cells.

    PubMed

    Work, Thierry; Meteyer, Carol

    2014-12-01

    Diseases threaten corals globally, but 40 years on their causes remain mostly unknown. We hypothesize that inconsistent application of a complete diagnostic approach to coral disease has contributed to this slow progress. We quantified methods used to investigate coral disease in 492 papers published between 1965 and 2013. Field surveys were used in 65% of the papers, followed by biodetection (43%), laboratory trials (20%), microscopic pathology (21%), and field trials (9%). Of the microscopic pathology efforts, 57% involved standard histopathology at the light microscopic level (12% of the total investigations), with the remainder dedicated to electron or fluorescence microscopy. Most (74%) biodetection efforts focused on culture or molecular characterization of bacteria or fungi from corals. Molecular and immunological tools have been used to incriminate infectious agents (mainly bacteria) as the cause of coral diseases without relating the agent to specific changes in cell and tissue pathology. Of 19 papers that declared an infectious agent as a cause of disease in corals, only one (5%) used microscopic pathology, and none fulfilled all of the criteria required to satisfy Koch's postulates as applied to animal diseases currently. Vertebrate diseases of skin and mucosal surfaces present challenges similar to corals when trying to identify a pathogen from a vast array of environmental microbes, and diagnostic approaches regularly used in these cases might provide a model for investigating coral diseases. We hope this review will encourage specialists of disease in domestic animals, wildlife, fish, shellfish, and humans to contribute to the emerging field of coral disease. PMID:24723160

  9. To understand coral disease, look at coral cells

    USGS Publications Warehouse

    Work, Thierry M.; Meteyer, Carol

    2014-01-01

    Diseases threaten corals globally, but 40 years on their causes remain mostly unknown. We hypothesize that inconsistent application of a complete diagnostic approach to coral disease has contributed to this slow progress. We quantified methods used to investigate coral disease in 492 papers published between 1965 and 2013. Field surveys were used in 65% of the papers, followed by biodetection (43%), laboratory trials (20%), microscopic pathology (21%), and field trials (9%). Of the microscopic pathology efforts, 57% involved standard histopathology at the light microscopic level (12% of the total investigations), with the remainder dedicated to electron or fluorescence microscopy. Most (74%) biodetection efforts focused on culture or molecular characterization of bacteria or fungi from corals. Molecular and immunological tools have been used to incriminate infectious agents (mainly bacteria) as the cause of coral diseases without relating the agent to specific changes in cell and tissue pathology. Of 19 papers that declared an infectious agent as a cause of disease in corals, only one (5%) used microscopic pathology, and none fulfilled all of the criteria required to satisfy Koch’s postulates as applied to animal diseases currently. Vertebrate diseases of skin and mucosal surfaces present challenges similar to corals when trying to identify a pathogen from a vast array of environmental microbes, and diagnostic approaches regularly used in these cases might provide a model for investigating coral diseases. We hope this review will encourage specialists of disease in domestic animals, wildlife, fish, shellfish, and humans to contribute to the emerging field of coral disease.

  10. Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience

    PubMed Central

    Bonaldo, Roberta M.; Hay, Mark E.

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70–80% lower, macroalgal cover 4–9 fold higher, macroalgal-coral contacts 5–15 fold more frequent and 23–67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51–68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals. PMID:24465707

  11. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    PubMed

    Bonaldo, Roberta M; Hay, Mark E

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals. PMID:24465707

  12. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  13. In Brief: Coral ecosystems plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-08-01

    With climate change, unsustainable fishing practices, and disease ``transforming coral communities at regional to global scales,'' a 30 July report from the U.S. Geological Survey outlines a strategy for conducting research on coral ecosystems. The report indicates that USGS coral ecosystem research will focus on three major themes during the next five years, as funding permits: reef structure, ecological integrity, and the role of marine reserves; land-based and local impacts; and responses to global change.

  14. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  15. Distribution of cold-water corals in the Whittard Canyon, NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Morris, Kirsty J.; Tyler, Paul A.; Masson, Doug G.; Huvenne, Veerle I. A.; Rogers, Alex D.

    2013-08-01

    The deep-sea floor occupies about 60% of the surface of the planet and is covered mainly by fine sediments. Most studies of deep-sea benthic fauna therefore have concentrated on soft sediments with little sampling of hard substrata, such as rocky outcrops in submarine canyons. Here we assess the distribution and abundance of cold-water corals within the Whittard Canyon (NE Atlantic) using video footage from the ROV Isis. Abundances per 100 m of video transect were calculated and mapped using ArcGIS. The data were separated into five substratum types, 'Sediment', 'Mixed Sediment and Rock', 'Sediment Slope', 'Lophelia reef' and 'Lophelia and rock'. Abundance and community structure were compared. A maximum abundance of 855 coral colonies per 100 m of ROV transect were observed with 31 coral types identified. Highest taxon richness was observed along a 'Lophelia reef' area, although a larger richness of Octocorallia was observed away from the 'Lophelia reef' areas. 'Lophelia reef' and 'Lophelia and rock' areas were found to have a different coral community structure from the other substratum types. We suggest this is the result of Lophelia outcompeting other coral types because there is increased coral taxon richness in areas without Lophelia. We also hypothesise that the hydrodynamic regime within the Whittard Canyon results in differences in organic matter input including higher quality food, in comparison with other deep-water environments, leading to changes in the coral communities.

  16. Soft electronics for soft robotics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  17. Evaluation of Stony Coral Indicators for Coral Reef Management.

    EPA Science Inventory

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  18. Deep Coral Oases in the South Tyrrhenian Sea

    PubMed Central

    Bo, Marzia; Canese, Simonepietro; Spaggiari, Costanza; Pusceddu, Antonio; Bertolino, Marco; Angiolillo, Michela; Giusti, Michela; Loreto, Maria Filomena; Salvati, Eva; Greco, Silvestro; Bavestrello, Giorgio

    2012-01-01

    A Mediterranean “roche du large” ecosystem, represented by four rocky shoals, located a few miles apart on a muddy bottom at 70–130 m depth in the gulf of St. Eufemia (Calabria, South Tyrrhenian Sea), was studied by means of Remotely Operated Vehicle (ROV) photo imaging. The shoals host highly diversified coral communities, mainly composed of arborescent colonies of gorgonians (Callogorgia verticillata, Paramuricea clavata, Paramuricea macrospina, Bebryce mollis, Villogorgia bebrycoides, Corallium rubrum, and Leptogorgia sarmentosa), and antipatharians (Antipathella subpinnata, Antipathes dichotoma and Parantipathes larix). The coral colonies reach high densities (up to ca. 17 colonies m−2) and large sizes, such as the over 1.5 m wide antipatharian colonies. We hypothesized that the abundance and composition of the coral assemblages differed significantly among the rocky shoals and with respect to the surrounding soft bottoms. Various environmental variables were tested as possible explanatory factors of the observed differences. Moreover, due to their off-coast localization, we report here that these unique ecosystems are potentially subjected to a strong pressure from the local fishing activities, which were tentatively characterized. The recorded coral β-diversity among the shoals supports the hypothesis that these habitats behave like small oases of hard substrata interspersed in a muddy bottom. Because of their intrinsic beauty and rarity and their biological and ecological value, we stress the need of specific actions aimed at the urgent protection of these oases of biodiversity. PMID:23185468

  19. Deep coral oases in the South Tyrrhenian Sea.

    PubMed

    Bo, Marzia; Canese, Simonepietro; Spaggiari, Costanza; Pusceddu, Antonio; Bertolino, Marco; Angiolillo, Michela; Giusti, Michela; Loreto, Maria Filomena; Salvati, Eva; Greco, Silvestro; Bavestrello, Giorgio

    2012-01-01

    A Mediterranean "roche du large" ecosystem, represented by four rocky shoals, located a few miles apart on a muddy bottom at 70-130 m depth in the gulf of St. Eufemia (Calabria, South Tyrrhenian Sea), was studied by means of Remotely Operated Vehicle (ROV) photo imaging. The shoals host highly diversified coral communities, mainly composed of arborescent colonies of gorgonians (Callogorgia verticillata, Paramuricea clavata, Paramuricea macrospina, Bebryce mollis, Villogorgia bebrycoides, Corallium rubrum, and Leptogorgia sarmentosa), and antipatharians (Antipathella subpinnata, Antipathes dichotoma and Parantipathes larix). The coral colonies reach high densities (up to ca. 17 colonies m(-2)) and large sizes, such as the over 1.5 m wide antipatharian colonies. We hypothesized that the abundance and composition of the coral assemblages differed significantly among the rocky shoals and with respect to the surrounding soft bottoms. Various environmental variables were tested as possible explanatory factors of the observed differences. Moreover, due to their off-coast localization, we report here that these unique ecosystems are potentially subjected to a strong pressure from the local fishing activities, which were tentatively characterized. The recorded coral β-diversity among the shoals supports the hypothesis that these habitats behave like small oases of hard substrata interspersed in a muddy bottom. Because of their intrinsic beauty and rarity and their biological and ecological value, we stress the need of specific actions aimed at the urgent protection of these oases of biodiversity. PMID:23185468

  20. A new alcyonacean octocoral (Cnidaria, Anthozoa, Octocorallia) from Chilean fjords.

    PubMed

    Breedy, Odalisca; Cairns, Stephen D; Häussermann, Verena

    2015-01-01

    A new species, Swiftia comauensis, is described from Chile. It occurs in shallow waters from 18 to 59 m in the Patagonian fjord region and seems to be endemic to the northern part of the region. The species is characterized by having straggly colonies with sparse branching and long drooping branches, prominent polyp mounds, and long, thin spindles; the colonies are bright orange with pale yellow polyp mounds. A sharp decline in colony abundance was observed between 2003 and 2013, and in January 2014 a proposal was submitted to the IUCN for the addition of this taxon to the Red List of Threatened Species. PMID:25781130

  1. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  2. Coral can have growth anomalies

    EPA Science Inventory

    Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...

  3. STONY CORAL RAPID BIOASSESSMENT PROTOCOL

    EPA Science Inventory

    At a time when coral reefs worldwide are in the greatest decline of their known existence, and despite the enormous value of coral reef ecosystem services, there are relatively few tools available to resource managers to offset the growing impact of human activities. However, we...

  4. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  5. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach

    NASA Astrophysics Data System (ADS)

    Imbs, A. B.; Yakovleva, I. M.

    2012-03-01

    Coral bleaching induces changes in lipid and fatty acid composition that result in low lipid content, reducing the likelihood of coral survival. Species-specific differences in the metabolism of lipid reserves may contribute to the differential resistance of corals under acute heat exposures. Here, we examined the dynamics of lipids and fatty acid abundance in corals subjected to short-term heat stress. The stony corals Acropora intermedia, Montipora digitata, and the soft coral Sinularia capitalis all showed a 60-75% decline in both storage and structural lipids. However, S. capitalis and M. digitata exhibited no significant change in the percentages of structural lipids (i.e., polar lipids and sterols) until they had lost 90-95% of their endosymbionts, whereas A. intermedia showed a rapid decline in structural lipids after a 50% loss of symbionts. After a 90-95% loss of symbionts under heat stress, all three corals showed a relative depletion of polyunsaturated fatty acids that had symbiont biomarkers, suggesting that polyunsaturated fatty acids were translocated from the symbiont to the coral host tissue.

  6. Coral reef bleaching: ecological perspectives

    NASA Astrophysics Data System (ADS)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  7. Fungi and their role in corals and coral reef ecosystems.

    PubMed

    Raghukumar, Chandralata; Ravindran, J

    2012-01-01

    Fungi in coral reefs exist as endoliths, endobionts, saprotrophs and as pathogens. Although algal and fungal endoliths in corals were described way back in 1973, their role in microboring, carbonate alteration, discoloration, density banding, symbiotic or parasitic association was postulated almost 25 years later. Fungi, as pathogens in corals, have become a much discussed topic in the last 10 years. It is either due to the availability of better tools for investigations or greater awareness among the research communities. Fungi which are exclusive as endoliths (endemic) in corals or ubiquitous forms seem to play a role in coral reef system. Fungi associated with sponges and their role in production or induction of secondary metabolites in their host is of primary interest to various pharmaceutical industries and funding agencies. Fungal enzymes in degradation of coral mucus, and plant detritus hold great promise in biotechnological applications. Unravelling fungal diversity in corals and associated reef organisms using culture and culture-independent approaches is a subject gaining attention from research community world over. PMID:22222828

  8. Coral reproduction in Western Australia

    PubMed Central

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of

  9. Coral reproduction in Western Australia.

    PubMed

    Gilmour, James; Speed, Conrad W; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia's remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of the

  10. Coral reef protection

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration announced the establishment on 13 November of the first U.S. zone to protect a sensitive coral reef area from potential damage by ships.The Florida Keys' Particularly Sensitive Sea Area, just one of a handful of such areas globally, has been designated by the International Maritime Organization, a specialized agency of the United Nations. The area protects a zone of more than 3,000 square nautical miles stretching from the Biscayne National Park to the Dry Tortugas.

  11. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro.

    PubMed

    Helman, Yael; Natale, Frank; Sherrell, Robert M; Lavigne, Michèle; Starovoytov, Valentin; Gorbunov, Maxim Y; Falkowski, Paul G

    2008-01-01

    The evolution of multicellularity in animals required the production of extracellular matrices that serve to spatially organize cells according to function. In corals, three matrices are involved in spatial organization: (i) an organic ECM, which facilitates cell-cell and cell-substrate adhesion; (ii) a skeletal organic matrix (SOM), which facilitates controlled deposition of a calcium carbonate skeleton; and (iii) the calcium carbonate skeleton itself, which provides the structural support for the 3D organization of coral colonies. In this report, we examine the production of these three matrices by using an in vitro culturing system for coral cells. In this system, which significantly facilitates studies of coral cell physiology, we demonstrate in vitro excretion of ECM by primary (nondividing) tissue cultures of both soft (Xenia elongata) and hard (Montipora digitata) corals. There are structural differences between the ECM produced by X. elongata cell cultures and that of M. digitata, and ascorbic acid, a critical cofactor for proline hydroxylation, significantly increased the production of collagen in the ECM of the latter species. We further demonstrate in vitro production of SOM and extracellular mineralized particles in cell cultures of M. digitata. Inductively coupled plasma mass spectrometry analysis of Sr/Ca ratios revealed the particles to be aragonite. De novo calcification was confirmed by following the incorporation of (45)Ca into acid labile macromolecules. Our results demonstrate the ability of isolated, differentiated coral cells to undergo fundamental processes required for multicellular organization. PMID:18162537

  12. New Xenia diterpenoids from the Indonesian soft coral Xenia sp.

    PubMed

    Anta, Cristina; González, Noemí; Santafé, Gilmar; Rodríguez, Jaime; Jiménez, Carlos

    2002-05-01

    Two new xeniolides, xeniolide-F (1) and 9-hydroxyxeniolide-F (2), along with isoxeniolide-A (3) and 7,8-oxido-isoxeniolide-A (4), have been isolated from Xenia sp. and their structures established on the basis of extensive NMR and MS studies. PMID:12027764

  13. Biology and ecology of the hydrocoral millepora on coral reefs.

    PubMed

    Lewis, John B

    2006-01-01

    Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along

  14. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  15. Coral chronometers: seasonal growth bands in reef corals.

    PubMed

    Knutson, D W; Buddemeier, R W; Smith, S V

    1972-07-21

    Autoradiagraphs and x-radiographs have been made of vertical sections through the centers of reef corals from Eniwetok. Radioactivity bands in the coral structure are caused by strontium-90 and are related to specific series of nuclear tests, thus making possible calculation of long-term growth rates. These data indicate that the cyclic variations in radial density revealed by x-radiography are annual. PMID:17815626

  16. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens

    PubMed Central

    Casey, Jordan M.; Connolly, Sean R.; Ainsworth, Tracy D.

    2015-01-01

    By cultivating turf algae and aggressively defending their territories, territorial damselfishes in the genus Stegastes play a major role in shaping coral-algal dynamics on coral reefs. The epilithic algal matrix (EAM) inside Stegastes’ territories is known to harbor high abundances of potential coral disease pathogens. To determine the impact of territorial grazers on coral microbial assemblages, we established a coral transplant inside and outside of Stegastes’ territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. As compared to outside damselfish territories, Stegastes were associated with a higher rate of mortality of transplanted corals. However, 16S rDNA sequencing revealed that territorial grazers do not differentially impact the microbial assemblage of corals exposed to the EAM. Regardless of Stegastes presence or absence, coral transplantation resulted in a shift in the coral-associated microbial community and an increase in coral disease associated potential pathogens. Further, transplanted corals that suffer low to high mortality undergo a microbial transition from a microbiome similar to that of healthy corals to that resembling the EAM. These findings demonstrate that coral transplantation significantly impacts coral microbial communities, and transplantation may increase susceptibility to coral disease. PMID:26144865

  17. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens.

    PubMed

    Casey, Jordan M; Connolly, Sean R; Ainsworth, Tracy D

    2015-01-01

    By cultivating turf algae and aggressively defending their territories, territorial damselfishes in the genus Stegastes play a major role in shaping coral-algal dynamics on coral reefs. The epilithic algal matrix (EAM) inside Stegastes' territories is known to harbor high abundances of potential coral disease pathogens. To determine the impact of territorial grazers on coral microbial assemblages, we established a coral transplant inside and outside of Stegastes' territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. As compared to outside damselfish territories, Stegastes were associated with a higher rate of mortality of transplanted corals. However, 16S rDNA sequencing revealed that territorial grazers do not differentially impact the microbial assemblage of corals exposed to the EAM. Regardless of Stegastes presence or absence, coral transplantation resulted in a shift in the coral-associated microbial community and an increase in coral disease associated potential pathogens. Further, transplanted corals that suffer low to high mortality undergo a microbial transition from a microbiome similar to that of healthy corals to that resembling the EAM. These findings demonstrate that coral transplantation significantly impacts coral microbial communities, and transplantation may increase susceptibility to coral disease. PMID:26144865

  18. Coral Patch seamount (NE Atlantic) - a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys

    NASA Astrophysics Data System (ADS)

    Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

    2013-05-01

    The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer

  19. Coral Patch seamount (NE Atlantic) - a sedimentological and macrofaunal reconnaissance based on video and hydroacoustic surveys

    NASA Astrophysics Data System (ADS)

    Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

    2012-12-01

    The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the south-western summit area of Coral Patch seamount (area: ~ 8 km2, water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area, and thus, offer suitable habitat for settlement by benthic organisms, the macrofauna shows rather low abundance and diversity. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (area: 560 km2; water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, also these data predict most of the summit area to be dominated by

  20. Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Prouty, Nancy G.; Fisher, Charles R.; Demopoulos, Amanda W. J.; Druffel, Ellen R. M.

    2016-01-01

    The impact of the April 2010 Deepwater Horizon (DWH) spill on deep-sea coral communities in the Gulf of Mexico (GoM) is still under investigation, as is the potential for these communities to recover. Impacts from the spill include observation of corals covered with flocculent material, with bare skeleton, excessive mucous production, sloughing tissue, and subsequent colonization of damaged areas by hydrozoans. Information on growth rates and life spans of deep-sea corals is important for understanding the vulnerability of these ecosystems to both natural and anthropogenic perturbations, as well as the likely duration of any observed adverse impacts. We report radiocarbon ages and radial and linear growth rates based on octocorals (Paramuricea spp. and Chrysogorgia sp.) collected in 2010 and 2011 from areas of the DWH impact. The oldest coral radiocarbon ages were measured on specimens collected 11 km to the SW of the oil spill from the Mississippi Canyon (MC) 344 site: 599 and 55 cal yr BP, suggesting continuous life spans of over 600 years for Paramuricea biscaya, the dominant coral species in the region. Calculated radial growth rates, between 0.34 μm yr−1 and 14.20 μm yr−1, are consistent with previously reported proteinaceous corals from the GoM. Anomalously low radiocarbon (Δ14C) values for soft tissue from some corals indicate that these corals were feeding on particulate organic carbon derived from an admixture of modern surface carbon and a low 14C carbon source. Results from this work indicate fossil carbon could contribute 5–10% to the coral soft tissue Δ14C signal within the area of the spill impact. The influence of a low 14C carbon source (e.g., petro-carbon) on the particulate organic carbon pool was observed at all sites within 30 km of the spill site, with the exception of MC118, which may have been outside of the dominant northeast-southwest zone of impact. The quantitatively assessed extreme longevity and slow growth rates documented

  1. Advancing Ocean Monitoring Near Coral Reefs

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  2. Soft Mappings Space

    PubMed Central

    Ozturk, Taha Yasin; Bayramov, Sadi

    2014-01-01

    Various soft topologies are being introduced on a given function space soft topological spaces. In this paper, soft compact-open topology is defined in functional spaces of soft topological spaces. Further, these functional spaces are studied and interrelations between various functional spaces with soft compact-open topology are established. PMID:25374936

  3. Coral Sr-U thermometry

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Gaetani, Glenn A.; Cohen, Anne L.; Foster, Gavin L.; Alpert, Alice E.; Stewart, Joseph A.

    2016-06-01

    Coral skeletons archive past climate variability with unrivaled temporal resolution. However, extraction of accurate temperature information from coral skeletons has been limited by "vital effects," which confound, and sometimes override, the temperature dependence of geochemical proxies. We present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. DeCarlo et al. (2015a) investigated temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater and modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, which we refer to hereafter as the Sr-U thermometer. Here we test the model predictions with measured Sr/Ca and U/Ca ratios of 14 Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. By calibrating to instrumental temperature records, we show that Sr-U captures 93% of mean annual temperature variability (26-30°C) and has a standard deviation of prediction of 0.5°C, compared to 1°C using Sr/Ca alone. The Sr-U thermometer may offer significantly improved reliability for reconstructing past ocean temperatures from coral skeletons.

  4. Microbial Regulation in Gorgonian Corals

    PubMed Central

    Hunt, Laura R.; Smith, Stephanie M.; Downum, Kelsey R.; Mydlarz, Laura D.

    2012-01-01

    Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS) signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL) biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists. PMID:22822369

  5. Coral reef resilience through biodiversity

    USGS Publications Warehouse

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  6. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  7. Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs

    NASA Astrophysics Data System (ADS)

    McClanahan, T.; Muthiga, N.; Mangi, S.

    2001-05-01

    Interaction between the El Niño and Indian Ocean dipole ocean-atmosphere quasi-periodic oscillations produced one of the warmest seawater temperatures on record in 1998. During the warm northeast monsoon in March and April, Kenya's shallow coral reefs experienced water temperatures between 30 and 31 °C and low winds. This caused large-scale bleaching of hard and soft corals at the end of March, which extended into the cooler months of May and June. Direct observations of coloration in the Mombasa Marine National Park found that the coral genera Acropora, Millepora, Pocillopora, branching Porites and Stylophora showed rapid bleaching and high mortality by the end of May 1998. Other hard coral genera that bleached significantly included Echinopora, Favia, Favites, Galaxea, Hydnophora, Goniopora, Leptoria, Montipora, Platygyra and massive Porites, but mortality was variable among these genera. Astreopora, Coscinarea, Cyphastrea and Pavona were the least responsive genera, with some paling, but little evidence of full bleaching or significant mortality. We compared changes in reef ecology in four national parks (protected from fishing) with four non-park areas (heavy fishing) to determine how coral mortality and herbivory interact under the two management regimes. Benthic studies using line transects in 16 sites spread across ~150 km of coastline were completed before and 6 to 13 months after the bleaching event and found that the cover of nine hard coral genera including Acropora, Alveopora, Favites, Goniopora, Platygyra, Pocillopora, branching Porites, Stylophora and Tubipora decreased significantly ( p<0.04) after the event, usually by >85%, and soft coral cover decreased by ~75%. One year after the bleaching, sites in the national parks experienced 88 and 115% increases in turf and fleshy algal cover, respectively, while reefs outside the parks had a 220% increase in fleshy algal cover with no appreciable change in turf-forming algal cover. There was, however

  8. Coral calcification and ocean acidification

    USGS Publications Warehouse

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  9. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    EPA Science Inventory

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  10. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  11. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... the bacteria Streptococcus pyogenes , which is sometimes called "flesh-eating bacteria." Necrotizing soft tissue infection develops when ...

  12. Ocean acidification worse in coral reefs

    NASA Astrophysics Data System (ADS)

    Betz, Eric O.

    2014-12-01

    The rate of ocean acidification in coral reefs outpaces the rise in carbon dioxide (CO2) in Earth's atmosphere, indicating that anthropogenic carbon emissions alone are not to blame for the threat to coral reefs, a new study shows.

  13. CORAL DISEASE & HEALTH CONSORTIUM: FINDING SOLUTIONS

    EPA Science Inventory

    The National Oceanic Atmospheric Administration (NOAA), the Environmental Protection Agency (EPA), and the Department of Interior (DOI) developed the framework for a Coral Disease and Health Consortium (CDHC) for the United States Coral Reef Task Force (USCRTF) through an interag...

  14. Coral calcification in a changing ocean

    USGS Publications Warehouse

    Kuffner, Ilsa B.

    2010-01-01

    One of the goals of the Coral Reef Ecosystem Studies (CREST) project is to examine how calcification rates in reef-building corals and encrusting coralline algae are changing in response to changes in the ocean environment.

  15. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    PubMed

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  16. Applying New Methods to Diagnose Coral Diseases

    USGS Publications Warehouse

    Kellogg, Christina A.; Zawada, David G.

    2009-01-01

    Coral disease, one of the major causes of reef degradation and coral death, has been increasing worldwide since the 1970s, particularly in the Caribbean. Despite increased scientific study, simple questions about the extent of disease outbreaks and the causative agents remain unanswered. A component of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is focused on developing and using new methods to approach the complex problem of coral disease.

  17. The secret lives of corals: Climate records from coral chemistry

    SciTech Connect

    Beck, J.W.; Smoker, M.; Burr, G.

    1995-12-01

    Corals can provide archives of a diverse suite of information about the ocean surface mixed layer, including records of ocean surface temperature (via coral Sr/Ca or U/Ca measurements), salinity (via {gamma}{sup 18}O measurements), biologic activity (via {gamma}{sup 13}C measurements), and ocean/atmosphere CO{sub 2} exchange rates (via {sup 14}C/{sup 12}C measurements). Recently, it has been shown that corals record evidence of large seasonal oscillations in {sup 14}C concentration of the ocean surface mixed layer, and that such oscillations are modulated by ENSO. These oscillations are related to seasonal changes in the surface wind velocity field, changes in the patterns of regional upwelling, as well as seasonal changes in the strength of the thermocline. High frequency AMS {sup 14}C analyses of corals shows that ENSO events can dramatically diminish the annual range in ocean mixed layer {sup 14}C concentration in this region. Our work on a coral from Vanuatu in the western equatorial Pacific also documents large seasonal changes in {sup 14}C concentration (3-5%) as well as ENSO modulation of these variations during the 82-83 ENSO event.

  18. CORAL DISEASE & HEALTH CONSORTIUM; PARTNERS FOR PRESERVATION

    EPA Science Inventory

    Presented at EMAP Symposium 2001: Coastal Monitoring Through Partnerships, 24-27 April 2001, Pensacola Beach, FL.

    The Coral Disease and Health Consortium (CDHC) was one recommendation to the U.S. Coral Reef Task Force (CRTF), to conserve the coral reef ecosystems of the U...

  19. REEF MANAGER'S GUIDE TO CORAL BLEACHING

    EPA Science Inventory

    A Reef Manager's Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) engage in information-sharing in the areas of coral reef science and management for climate change and coral bleaching; and (2) compile a management tool ...

  20. COral Mortality and Bleaching Output (COMBO) Model

    EPA Science Inventory

    COMBO estimates the effects of climate change and ocean acidification on coral reefs at local-to-regional scales. The COMBO model calculates the impacts to coral reefs (change in coral cover) from changes in average SST and CO2 concentrations, and from high temperature mortality ...

  1. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  2. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  3. 50 CFR 223.208 - Corals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Sanctuaries Act 16 U.S.C. 1431 et seq. NOAA, NOS Coral Reef Conservation Act 16 U.S.C. 6406 Commandant, U.S... Management; Coral Reef RestorationFL Statute § 390.0558 Florida Fish and Wildlife Conservation Commission... course of conducting a restoration activity directed at elkhorn or staghorn coral which is authorized...

  4. 50 CFR 223.208 - Corals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Sanctuaries Act 16 U.S.C. 1431 et seq. NOAA, NOS Coral Reef Conservation Act 16 U.S.C. 6406 Commandant, U.S... Management; Coral Reef RestorationFL Statute § 390.0558 Florida Fish and Wildlife Conservation Commission... course of conducting a restoration activity directed at elkhorn or staghorn coral which is authorized...

  5. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  6. 50 CFR 223.208 - Corals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Sanctuaries Act 16 U.S.C. 1431 et seq. NOAA, NOS Coral Reef Conservation Act 16 U.S.C. 6406 Commandant, U.S... Management; Coral Reef RestorationFL Statute § 390.0558 Florida Fish and Wildlife Conservation Commission... course of conducting a restoration activity directed at elkhorn or staghorn coral which is authorized...

  7. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged...

  8. Island Formation: Constructing a Coral Island

    ERIC Educational Resources Information Center

    Austin, Heather; Edd, Amelia

    2009-01-01

    The process of coral island formation is often difficult for middle school students to comprehend. Coral island formation is a dynamic process, and students should have the opportunity to experience this process in a synergistic context. The authors provide instructional guidelines for constructing a coral island. Students play an interactive role…

  9. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    PubMed

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection. PMID:26113720

  10. Global microbialization of coral reefs.

    PubMed

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-01-01

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC. PMID:27572833

  11. Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions

    NASA Astrophysics Data System (ADS)

    Gómez, C. E.; Paul, V. J.; Ritson-Williams, R.; Muehllehner, N.; Langdon, C.; Sánchez, J. A.

    2015-06-01

    Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions.

  12. Twenty-year changes in coral near Muscat, Oman estimated from manta board tow observations.

    PubMed

    Coles, Steve L; Looker, Elayne; Burt, John A

    2015-02-01

    The coastline of Muscat, Oman, contains some of the most extensive and diverse coral reefs in the northeastern Arabian Peninsula. In the past two decades this region has been impacted by expanding coastal development, the largest cyclone ever recorded in the Arabian Sea, and a large-scale harmful algal bloom which resulted in mass mortality of reefs elsewhere in the Gulf of Oman. In 2012 we estimated live and dead coral using manta tow observations on 370 transects at 13 locations along the coastline and nearshore islands of Muscat Oman. We compared these estimates against observations made on 389 transects at the same 13 locations two decades earlier (1993-94) in order to determine long-term changes in benthos along the Muscat coast. Results were mapped and differences in categorical mean values for transect locations were statistically compared between survey years. Live hard and soft coral decreased over the past two decades at most survey sites, and decreases were significant at three exposed coastline sites and one semi-enclosed embayment. One sheltered embayment site showed a significant increase in live hard coral over the study period. Declines in live hard coral were associated with increases in dead coral framework at 8 of the 13 sites, but these changes were non-significant. We attribute these changes primarily to long-term effects of Cyclone Gonu, which struck the Oman coast in June 2007. The study results suggest that the manta tow method can be an effective way to detect long-term changes in coral and other benthic parameters over large areas, despite limitations on its precision. PMID:25460063

  13. Microhabitat and shrimp abundance within a Norwegian cold-water coral ecosystem

    NASA Astrophysics Data System (ADS)

    Purser, A.; Ontrup, J.; Schoening, T.; Thomsen, L.; Tong, R.; Unnithan, V.; Nattkemper, T. W.

    2013-02-01

    Cold-water coral reefs are highly heterogeneous ecosystems comprising of a range of diverse microhabitats. In a typical European cold-water coral reef various biogenic habitats (live colonies of locally common coral species such as Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, dead coral structure, coral rubble) may be surrounded and intermixed with non-biogenic habitats (soft sediment, hardground, gravel/pebbles, steep walls). To date, studies of distribution of sessile fauna across these microhabitats have been more numerous than those investigating mobile fauna distribution. In this study we quantified shrimp densities associated with key CWC habitat categories at the Røst reef, Norway, by analysing image data collected by towed video sled. We also investigated shrimp distribution patterns on the local scale (<40 cm) and how these may vary with habitat. We found shrimp abundances at the Røst reef to be on average an order of magnitude greater in biogenic reef habitats than in non-biogenic habitats. Greatest shrimp densities were observed in association with live Paragorgia arborea habitats (43 shrimp m-2, SD = 35.5), live Primnoa resedaeformis habitats (41.6 shrimp m-2, SD = 26.1) and live Lophelia pertusa habitats (24.4 shrimp m-2, SD = 18.6). In non-biogenic habitats shrimp densities were <2 shrimp m-2. We conclude that CWC reef habitats clearly support greater shrimp densities than the surrounding non-biogenic habitats on the Norwegian margin.

  14. Strontianite in coral skeletal aragonite

    SciTech Connect

    Greegor, R.B.; Pingitore, N.E. Jr.; Lytle, F.W.

    1997-03-07

    An x-ray spectroscopic study of scleractinian coral skeletons indicated that, although some strontium substitutes for calcium in the aragonite structure, at concentrations of about 7500 parts per million, as much as 40 percent of the strontium resides in strontianite (SrCO{sub 3}). A doublet peak in the Fourier transform of the extended x-ray absorption fine structure of the coral correspond to six metal and 13 oxygen neighbors surrounding strontium at about 4.05 angstroms in strontium-substituted aragonite and at about 4.21 angstroms in strontianite. Thus, the mechanism of the temperature-sensitive partitioning of strontium between seawater and coral skeleton used for paleothermometry is unexpectedly complex. 11 refs., 5 figs., 1 tab.

  15. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  16. Miocene reef corals: A review

    SciTech Connect

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefs were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.

  17. Past corals and recent reefs in Indonesia

    NASA Astrophysics Data System (ADS)

    Boekschoten, G. J.; Best, Maya Borel; Oosterbaan, A.; Molenkamp, F. M.

    During the Snellius-II Expedition Lower Pilocene coral material was collected near Salayer, and Quaternary reefs were sampled on Ambon and Sumba. Coral collections from the Pliocene of Nias were also available for study. This new material is presented together with earlier data. Preservation potentials of different coral growth forms are reviewed. The absence of Acropora and Montipora from Quaternary coral faunae is striking. This is interpreted with the model of POTTS (1983), on the disturbance by Pleistocene sea level fluctuations in the reef coral fauna. Diversification within both genera is apparently very recent, which may explain their complex taxonomy. Given the dominant role of Acropora and Montipora in many present day Indonesian reefs, these are better described as transitional assemblages of corals than as established coral communities.

  18. Wave transformation over coral reefs

    NASA Astrophysics Data System (ADS)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  19. Burrowing hard corals occurring on the sea floor since 80 million years ago

    PubMed Central

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-01-01

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic. PMID:27074813

  20. Burrowing hard corals occurring on the sea floor since 80 million years ago.

    PubMed

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-01-01

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic. PMID:27074813

  1. Long-term community changes on a high-latitude coral reef in the Greater St Lucia Wetland Park, South Africa.

    PubMed

    Schleyer, Michael H; Kruger, Alke; Celliers, Louis

    2008-03-01

    South African coral reefs are limited in size but, being marginal, provide a model for the study of many of the stresses to which these valuable systems are being subjected globally. Soft coral cover, comprising relatively few species, exceeds that of scleractinians over much of the reefs. The coral communities nevertheless attain a high biodiversity at this latitude on the East African coast. A long-term monitoring programme was initiated in 1993, entailing temperature logging and image analysis of high resolution photographs of fixed quadrats on representative reef. Sea temperatures rose by 0.15 degrees C p.a. at the site up to 2000 but have subsequently been decreasing by 0.07 degrees C p.a. Insignificant bleaching was encountered in the region during the 1998 El Nino Southern Oscillation (ENSO) event, unlike elsewhere in East Africa, but quantifiable bleaching occurred during an extended period of warming in 2000. Peak temperatures on the South African reefs thus appear to have attained the coral bleaching threshold. While this has resulted in relatively little bleaching thus far, the increased temperatures appear to have had a deleterious effect on coral recruitment success as other anthropogenic influences on the reefs are minimal. Recruitment success diminished remarkably up to 2004 but appears again to be improving. Throughout, the corals have also manifested changes in community structure, involving an increase in hard coral cover and reduction in that of soft corals, resulting in a 5.5% drop in overall coral cover. These "silent" effects of temperature increase do not appear to have been reported elsewhere in the literature. PMID:18206178

  2. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    NASA Astrophysics Data System (ADS)

    Valassi, A.; Bartoldus, R.; Kalkhof, A.; Salnikov, A.; Wache, M.

    2011-12-01

    The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier "CORAL server" deployed close to the database and a tree of "CORAL server proxies", providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farm of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.

  3. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    SciTech Connect

    Valassi, A.; Bartoldus, R.; Kalkhof, A.; Salnikov, A.; Wache, M.; /Mainz U., Inst. Phys.

    2012-04-19

    The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier 'CORAL server' deployed close to the database and a tree of 'CORAL server proxies', providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farm of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.

  4. Quantifying Coral Reef Ecosystem Services

    EPA Science Inventory

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  5. Enumerating viruses in coral mucus.

    PubMed

    Leruste, Amandine; Bouvier, Thierry; Bettarel, Yvan

    2012-09-01

    The distribution of viruses inhabiting the coral mucus remains undetermined, as there is no suitable standardized procedure for their separation from this organic matrix, principally owing to its viscosity and autofluorescence. Seven protocols were tested, and the most efficient separations were obtained from a chemical treatment requiring potassium citrate. PMID:22729548

  6. Evaluating coral reef health in American Samoa

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  7. Characterizing lesions in corals from American Samoa

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, R.A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  8. 15. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3872) Photographer unknown, 1923-25 VIEW OF COUNTRY CLUB PRADO BOULEVARD - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  9. 4. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3686) Photographer unknown, 1923-25 GRANADA ENTRANCE, TAMIAMI TRAIL - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  10. 8. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3829) Photographer unknown, 1923-25 SEGOVIA PLAZA AT NORTH GREENWAY DRIVE - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  11. 7. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3828) Photographer unknown, 1923-25 SEGOVIA PLAZA - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  12. 12. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3110) Photographer unknown, 1923-25 BALBOA PLAZA, DESOTO BOULVARD - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  13. 9. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3812) Photographer unknown, 1923-25 DESOTO PLAZA FOUNTAIN - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  14. 6. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3791) Photographer unknown, 1923-25 ALHAMBRA ENTRANCE (COMMERCIAL ENTRANCE) - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  15. 14. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, CK 109) Photographer unknown, 1923-25 ALHANBRA CIRCLE, VIEW TOWARDS GRANADA PLAZA - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  16. Bottlenecks to coral recovery in the Seychelles

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This

  17. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic; Exempted Fishing Permit AGENCY... Plan (FMP) for the Snapper-Grouper Fishery of the South Atlantic Region and the FMP for Coral,...

  18. Competition between corals and algae on coral reefs: a review of evidence and mechanisms

    NASA Astrophysics Data System (ADS)

    McCook, L.; Jompa, J.; Diaz-Pulido, G.

    2001-05-01

    Despite widespread acceptance that competition between scleractinian corals and benthic algae is important to the structure of coral reef communities, there is little direct experimental evidence that corals and algae do compete, and very little data on the processes and causality of their interactions. Most available evidence is observational or correlative, with intrinsic risks of confounded causality. This paper reviews and categorises the available evidence, concluding that competition between corals and algae probably is widespread on coral reefs, but also that the interaction varies considerably. Widespread replacement of corals by algae may often indicate coral mortality due to external disturbances, rather than competitive overgrowth, but may lead to competitive inhibition of coral recruitment, with consequences for reef recovery. We list eight specific processes by which corals and algae may affect each other, and suggest life history properties that will influence which of these interactions are possible. We propose a matrix for algal effects on corals, which lists the subset of processes possible for each combination of coral life form and algal functional group. This table provides a preliminary framework for improved understanding and interpretation of coral-algal interactions.

  19. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  20. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  1. Live coral repels a common reef fish ectoparasite

    NASA Astrophysics Data System (ADS)

    Artim, J. M.; Sikkel, P. C.

    2013-06-01

    Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.

  2. Population control in symbiotic corals

    SciTech Connect

    Falkowski, P.G. ); Dubinsky, Z. ); Muscatine, L. ); McCloskey, L. )

    1993-10-01

    Stability in symbiotic association requires control of population growth between symbionts. The population density of zooxanthellae per unit surface area of most symbiotic corals is remarkably consistant. How is the population density of zooxanthellae maintained and what happens to the symbiotic association if the balance between algae and host is perturbed. The answers to these question, examined in this paper, provide a framework for understanding how the size of the component populations is controlled in symbiotic associations. The topic areas covered include the following: carbon economy in a symbiotic coral; effects of nutrient enrichment; the chemostat model of population control; the effects of exposure to ammonium levels. Ammonium ions and organic materials are the factors which maintain the density of zooxanthellae. 32 refs., 5 figs.

  3. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral

    PubMed Central

    Gignoux-Wolfsohn, Sarah A.; Vollmer, Steven V.

    2015-01-01

    Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales. PMID:26241853

  4. Competitive interactions between corals and turf algae depend on coral colony form.

    PubMed

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  5. Tumor formations in scleractinian corals

    NASA Astrophysics Data System (ADS)

    Loya, Y.; Bull, G.; Pichon, M.

    1984-03-01

    A highly localized incidence of skeletal malformations (tumors) in the scleractinian corals Platygyra pini and P. sinensis on an inshore fringing reef at Cockle Bay, Magnetic Island within the Great Barrier Reef province is reported. These tumors are typified by a localized area of increased growth rate resulting in roughly circular protuberances extending up to 4.5 cm above the colony's surface. In both species, similar proportions of their populations carried tumors (24.1 % in P. pini and 18.7 % in P. sinensis). Larger colonies (>80 cm in diameter) are at least 7 times more likely to possess tumors than smaller colonies (<40 cm in diameter). X-radiographs of the skeletal malformations indicate a point of origin, presumably from a single budded polyp with subsequent, localized, accelerated growth. The mean radial growth rate of the tumorous area was 29 % greater than that of the surrounding normal regions. In contrast to the normal tissue, the tumorous tissue exhibited proliferation of cells, atrophied gastrodermal cells and mesenterial filaments which were larger and disordered in structure. The environmental conditions at Cockle Bay are relatively extreme with high turbidity, periodic exposure of the reef flat, abrupt changes in salinity during the wet season and mechanical damage to corals caused by unpredictable cyclonic storms. It is suggested that a combination of environmental stresses coupled with an injury inflicted on the corals are possible stimuli that initiate the development of these abnormal growth through either bacterial attack or the development of an aberrant polyp during tissue repair.

  6. Quantification of coral sperm collected during a synchronous spawning event.

    PubMed

    Teo, Aaron; Guest, James R; Neo, Mei Lin; Vicentuan, Kareen; Todd, Peter A

    2016-01-01

    Most studies of coral reproductive biology to date have focused on oocyte numbers and sizes. Only one (ex situ) study has enumerated sperm numbers, even though these data have multiple potential applications. We quantified total coral sperm and eggs per gamete bundle collected from six species in situ during a synchronous spawning event in Singapore. Egg-sperm bundles were captured midwater as they floated towards the surface after being released by the colony. For each sample, a semi-transparent soft plastic bottle was squeezed and released to create a small suction force that was used to 'catch' the bundles. This technique provided several advantages over traditional methods, including low cost, ease of use, no diving prior to the night of collection needed, and the ability to target specific areas of the colony. The six species sampled were Echinophyllia aspera, Favites abdita, F. chinensis, Merulina ampliata, M. scabricula and Platygyra pini. The mean number of sperm packaged within one egg-sperm bundle ranged from 2.04 × 10(6) to 1.93 × 10(7). The mean number of eggs per egg-sperm bundle ranged from 26.67 (SE ± 3.27) to 85.33 (SE ± 17.79). These data are critical for fertilisation success models, but the collection technique described could also be applied to studies requiring in situ spawning data at the polyp level. PMID:27478697

  7. Quantification of coral sperm collected during a synchronous spawning event

    PubMed Central

    Teo, Aaron; Guest, James R.; Neo, Mei Lin; Vicentuan, Kareen

    2016-01-01

    Most studies of coral reproductive biology to date have focused on oocyte numbers and sizes. Only one (ex situ) study has enumerated sperm numbers, even though these data have multiple potential applications. We quantified total coral sperm and eggs per gamete bundle collected from six species in situ during a synchronous spawning event in Singapore. Egg-sperm bundles were captured midwater as they floated towards the surface after being released by the colony. For each sample, a semi-transparent soft plastic bottle was squeezed and released to create a small suction force that was used to ‘catch’ the bundles. This technique provided several advantages over traditional methods, including low cost, ease of use, no diving prior to the night of collection needed, and the ability to target specific areas of the colony. The six species sampled were Echinophyllia aspera, Favites abdita, F. chinensis, Merulina ampliata, M. scabricula and Platygyra pini. The mean number of sperm packaged within one egg-sperm bundle ranged from 2.04 × 106 to 1.93 × 107. The mean number of eggs per egg-sperm bundle ranged from 26.67 (SE ± 3.27) to 85.33 (SE ± 17.79). These data are critical for fertilisation success models, but the collection technique described could also be applied to studies requiring in situ spawning data at the polyp level. PMID:27478697

  8. Corals and Their Potential Applications to Integrative Medicine

    PubMed Central

    Cooper, Edwin L.; Hirabayashi, Kyle; Strychar, Kevin B.; Sammarco, Paul W.

    2014-01-01

    Over the last few years, we have pursued the use and exploitation of invertebrate immune systems, most notably their humoral products, to determine what effects their complex molecules might exert on humans, specifically their potential for therapeutic applications. This endeavor, called “bioprospecting,” is an emerging necessity for biomedical research. In order to treat the currently “untreatable,” or to discover more efficient treatment modalities, all options and potential sources must be exhausted so that we can provide the best care to patients, that is, proceed from forest and ocean ecosystems through the laboratory to the bedside. Here, we review current research findings that have yielded therapeutic benefits, particularly as derived from soft and hard corals. Several applications have already been demonstrated, including anti-inflammatory properties, anticancer properties, bone repair, and neurological benefits. PMID:24757491

  9. CORAL REEF RESPONSES TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Increased emissions of greenhouse gases and synthetic compounds are related to rising sea temperatures and increased penetration of ultraviolet radiation (UVR), two factors that are consistently linked to bleaching and disease of corals. Coral reefs play a major role in the envir...

  10. 50 CFR 223.208 - Corals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... paragraphs (1) through (6): (1) Permitted scientific research and enhancement. Any export or take of elkhorn or staghorn corals resulting from conducting scientific research or enhancement directed at elkhorn... or staghorn coral. (3) Section 10 scientific and enhancement permits. The Assistant Administrator...

  11. EFFECTS OF TEMPERATURE AND UVR ON CORALS

    EPA Science Inventory

    The effect of UVR on coral bleaching will be evaluated via both field and laboratory experiments. Laboratory studies will test UVR effects using a solar simulator as the irradiation source, and various cutoff filters to control UVR doses. Laboratory studies will include corals c...

  12. PhyloChip Tackles Coral Disease

    SciTech Connect

    DeSantis, Todd

    2009-01-01

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  13. PhyloChip Tackles Coral Disease

    ScienceCinema

    DeSantis, Todd

    2013-05-29

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  14. Ecology of the south Florida coral reefs: a community profile

    SciTech Connect

    Jaap, W.C.

    1984-08-01

    An overview of coral reef research in southern Florida is provided as a prelude to a genuine description of the coral reef ecosystem in the Florida Keys and surrounding environments. Coral reef community types, reef benthos, plankton and reef fish are given specific treatment. Coral reef ecology and management are described. 27 figs., 31 tabs.

  15. 13. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3327) Photographer unknown, 1923-25 LE JEUNE PLAZA, VIEW FROM CORAL WAY - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  16. 11. Photocopy of Photograph (original Print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of Photograph (original Print in the Coral Gables Public Library, Fishbaugh Collection, M 3809) Photographer unknown, 1923-25 PONCE DE LEON PLAZA, FROM CORAL WAY AND GRANADA BOULEVARD - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  17. 5. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3292) Photographer unknown, 1923-25 AERIAL VIEW OF CORAL GABLES BUSINESS SECTION - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  18. Support for a 'Center of Origin' in the Coral Triangle: cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota).

    PubMed

    Tornabene, Luke; Valdez, Samantha; Erdmann, Mark; Pezold, Frank

    2015-01-01

    The Coral Triangle is widely regarded as the richest marine biodiversity hot-spot in the world. One factor that has been proposed to explain elevated species-richness within the Coral Triangle is a high rate of in situ speciation within the region itself. Dwarfgobies (Gobiidae: Eviota) are a diverse genus of diminutive cryptobenthic reef fishes with limited dispersal ability, and life histories and ecologies that increase potential for speciation. We use molecular phylogenetic and biogeographic data from two clades of Eviota species to examine patterns, processes and timing associated with species origination within the Coral Triangle. Sequence data from mitochondrial and nuclear DNA were used to generate molecular phylogenies and median-joining haplotype networks for the genus Eviota, with emphasis on the E. nigriventris and E. bifasciata complexes - two species groups with distributions centered in the Coral Triangle. The E. nigriventris and E. bifasciata complexes both contain multiple genetically distinct, geographically restricted color morphs indicative of recently-diverged species originating within the Coral Triangle. Relaxed molecular-clock dating estimates indicate that most speciation events occurred within the Pleistocene, and the geographic pattern of genetic breaks between species corresponds well with similar breaks in other marine fishes and sessile invertebrates. Regional isolation due to sea-level fluctuations may explain some speciation events in these species groups, yet other species formed with no evidence of physical isolation. The timing of diversification events and present day distributions of Eviota species within the Coral Triangle suggest that both allopatric speciation (driven by ephemeral and/or 'soft' physical barriers to gene flow) and sympatric speciation (driven by niche partitioning and assortative mating) may be driving diversification at local scales within the Coral Triangle. The presence of multiple young, highly

  19. A microsampling method for genotyping coral symbionts

    NASA Astrophysics Data System (ADS)

    Kemp, D. W.; Fitt, W. K.; Schmidt, G. W.

    2008-06-01

    Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.

  20. Simple Ontology Format (SOFT)

    SciTech Connect

    Sorokine, Alexandre

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layout system using customized styles.

  1. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  2. Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs

    NASA Astrophysics Data System (ADS)

    Brandl, S. J.; Hoey, A. S.; Bellwood, D. R.

    2014-06-01

    Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor ( Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.

  3. Competitive interactions between corals and turf algae depend on coral colony form

    PubMed Central

    Vermeij, Mark JA

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  4. Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce

    NASA Astrophysics Data System (ADS)

    Stella, J. S.; Munday, P. L.; Jones, G. P.

    2011-09-01

    Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.

  5. Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using μ-XRF/XAS speciation mapping.

    PubMed

    Tamenori, Yusuke; Yoshimura, Toshihiro; Luan, Nguyen Trong; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka; Iwasaki, Nozomu

    2014-05-01

    The distributions and chemical forms of sulfur compounds in the skeleton of Japanese pink coral (Corallium elatius) were investigated using X-ray spectroscopic techniques combined with micro-focused soft X-ray radiation. Microscopic X-ray fluorescence/soft X-ray photoabsorption (μ-XRF/XAS) speciation mapping clarified that sulfate is the primary species in the coral skeleton, with minor amounts of organic sulfur, whereas both sulfate and organic sulfur coexist in coenenchyme. Analysis of the post-edge region of the XAS spectra confirmed that sulfate ions in the coral skeleton are mainly in the form of gypsum-like inorganic sulfate substituting for the carbonate ions in the calcite skeleton. The sulfate concentration was negatively correlated with the magnesium concentration and positively correlated with that of phosphorus. Speciation mapping of sulfate in the coral skeleton showed clear fluctuations with sulfate concentrations being higher at dark bands, whereas the small amount of organic sulfur had unclear dark/bright bands. These results suggest that the little organic sulfur that is present is contained in the organic matter embedded in the biocrystal of coral skeleton. PMID:24727132

  6. The condition of coral reefs in South Florida (2000) using Coral disease and bleaching as indicators.

    PubMed

    Santavy, Deborah L; Summers, J Kevin; Engle, Virginia D; Harwell, Linda C

    2005-01-01

    The destruction of coral reef habitats has occurred at unprecedented levels during the last three decades. Coral disease and bleaching in the Caribbean and South Florida have caused extensive coral mortality with limited recovery, often coral reefs are being replaced with turf algae. Acroporids were once dominant corals and have diminished to the state where they are being considered as endangered species. Our survey assessed the condition of reef corals throughout South Florida. A probability-based design produced unbiased estimates of the spatial extent of ecological condition, measured as the absence or presence and frequency or prevalence of coral diseases and bleaching intensity over large geographic regions. This approach allowed us to calculate a quantifiable level of uncertainty. Coral condition was estimated for 4100 hectares (ha) (or 41.0 km2) of coral reefs in South Florida, including reefs in the Florida Keys National Marine Sanctuary (FKNMS), New Grounds, Dry Tortugas National Park (DTNP), and Biscayne National Park (BNP). The absence or presence of coral disease, 'causal' coral bleaching, partial bleaching and coral paling were not good indicators of overall coral condition. It was more useful to report the prevalence of anomalies that indicated a compromised condition at both the population and community levels. For example, 79% of the area in South Florida had less than 6% of the coral colonies diseased, whereas only 2.2% (97.15 ha) of the sampled area had a maximum prevalence of 13% diseased coral colonies at any single location. The usefulness of 'causal bleaching' might be more important when considering the prevalence of each of the three different states at a single location. For example, paling was observed over the entire area, whereas bleaching and partial bleaching occurred at 19 and 41% of the area, respectively. An index for coral reef condition might integrate the prevalence and species affected by each bleaching state at individual

  7. Carbonate mound evolution and coral diagenesis viewed by U-series dating of deep water corals

    NASA Astrophysics Data System (ADS)

    Frank, N.; Ricard, E.; Blamart, D.; van der Land, C.; Colin, C.; Foubert, A.; van Rooij, D.; van Weering, T.

    2007-12-01

    U-series dating of constructional deep sea corals is a powerful tool to reconstruct the evolution of carbonate mound sediments driven by coral growth, sediment trapping and diagenesis. Here we have investigated in great detail the time framework of constructional corals such as L. pertusa and M. oculata on 5 different mounds of the eastern North Atlantic (on Rockall Bank and in Porcupine Seabight) taken at variable depth and location (610 to 880m water depth). Periods favorable for coral growth are the Holocene and prior interglacials such as marine isotope stage 5 and 7, while glacial coral growth seems inhibited or extremely reduced. Coral development is almost continuous throughout the Holocene since mound re-colonization about 10,500 years ago. Mound accumulation rates vary between 20 and 220 cm/kyr determined from the coral age - depth relationship in each core. Those changes are most likely driven by changes between horizontal and vertical mound accumulation, food supply and ocean circulation. In addition, coral dating allowed to identify an important erosional event recorded in core MD01-2455G from Rockall Bank. Here a 1m thick sediment layer containing ancient corals likely from the start of Holocene re-colonization was displaced (collapsed) from further upslope on top of younger corals of ~2500 to 3000 years age. Prior to the initiation of coral growth diagenesis occurred frequently resulting in (1) the construction of so called carbonate hardgrounds and/or (2) the dissolution of the pre-Holocene coral framework. Solely, the deepest selected core in Porcupine Seabight (MD01-2463G at 880m depth) reveals coral re-colonization on an undisturbed ancient reef structure that dates back to 250,000 years. Diagenesis of earlier coral reef generations leading to coral dissolution leads to a loss of magnetic susceptibility and open system behavior of the coral skeletons with respect to U-series dating. While the processes causing such diagenetic layers are barely

  8. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    NASA Astrophysics Data System (ADS)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  9. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships

    NASA Astrophysics Data System (ADS)

    Wicks, L. C.; Sampayo, E.; Gardner, J. P. A.; Davy, S. K.

    2010-12-01

    Obligate symbiotic dinoflagellates ( Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral ( Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.

  10. Coral Larvae Move toward Reef Sounds

    PubMed Central

    Vermeij, Mark J. A.; Marhaver, Kristen L.; Huijbers, Chantal M.; Nagelkerken, Ivan; Simpson, Stephen D.

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  11. Generating viral metagenomes from the coral holobiont.

    PubMed

    Weynberg, Karen D; Wood-Charlson, Elisha M; Suttle, Curtis A; van Oppen, Madeleine J H

    2014-01-01

    Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available) the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis. PMID:24847321

  12. Coral larvae move toward reef sounds.

    PubMed

    Vermeij, Mark J A; Marhaver, Kristen L; Huijbers, Chantal M; Nagelkerken, Ivan; Simpson, Stephen D

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to observe in situ and are therefore largely unknown. Here, we show that coral larvae respond to acoustic cues that may facilitate detection of habitat from large distances and from upcurrent of preferred settlement locations. Using in situ choice chambers, we found that settling coral larvae were attracted to reef sounds, produced mainly by fish and crustaceans, which we broadcast underwater using loudspeakers. Our discovery that coral larvae can detect and respond to sound is the first description of an auditory response in the invertebrate phylum Cnidaria, which includes jellyfish, anemones, and hydroids as well as corals. If, like settlement-stage reef fish and crustaceans, coral larvae use reef noise as a cue for orientation, the alleviation of noise pollution in the marine environment may gain further urgency. PMID:20498831

  13. New directions in coral reef microbial ecology.

    PubMed

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. PMID:21955796

  14. Generating viral metagenomes from the coral holobiont

    PubMed Central

    Wood-Charlson, Elisha M.; Suttle, Curtis A.; van Oppen, Madeleine J. H.

    2014-01-01

    Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available) the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis. PMID:24847321

  15. Evidence of photosymbiosis in Palaeozoic tabulate corals

    PubMed Central

    Zapalski, Mikołaj K.

    2014-01-01

    Coral reefs form the most diverse of all marine ecosystems on the Earth. Corals are among their main components and owe their bioconstructing abilities to a symbiosis with algae (Symbiodinium). The coral–algae symbiosis had been traced back to the Triassic (ca 240 Ma). Modern reef-building corals (Scleractinia) appeared after the Permian–Triassic crisis; in the Palaeozoic, some of the main reef constructors were extinct tabulate corals. The calcium carbonate secreted by extant photosymbiotic corals bears characteristic isotope (C and O) signatures. The analysis of tabulate corals belonging to four orders (Favositida, Heliolitida, Syringoporida and Auloporida) from Silurian to Permian strata of Europe and Africa shows these characteristic carbon and oxygen stable isotope signatures. The δ18O to δ13C ratios in recent photosymbiotic scleractinians are very similar to those of Palaeozoic tabulates, thus providing strong evidence of such symbioses as early as the Middle Silurian (ca 430 Ma). Corals in Palaeozoic reefs used the same cellular mechanisms for carbonate secretion as recent reefs, and thus contributed to reef formation. PMID:24307674

  16. Does seaweed-coral competition make seaweeds more palatable?

    NASA Astrophysics Data System (ADS)

    Longo, G. O.; Hay, M. E.

    2015-03-01

    Seaweed-coral interactions are increasingly common on modern coral reefs, but the dynamics, processes, and mechanisms affecting these interactions are inadequately understood. We investigated the frequency and effect of seaweed-coral contacts for common seaweeds and corals in Belize. Effects on corals were evaluated by measuring the frequency and extent of bleaching when contacted by various seaweeds, and effects on a common seaweed were evaluated by assessing whether contact with coral made the seaweed more palatable to the sea urchin Diadema antillarum. Coral-seaweed contacts were particularly frequent between Agaricia corals and the seaweed Halimeda opuntia, with this interaction being associated with coral bleaching in 95 % of contacts. Pooling across all coral species, H. opuntia was the seaweed most commonly contacting corals and most frequently associated with localized bleaching at the point of contact. Articulated coralline algae, Halimeda tuna and Lobophora variegata also frequently contacted corals and were commonly associated with bleaching. The common corals Agaricia and Porites bleached with similar frequency when contacted by H. opuntia (95 and 90 %, respectively), but Agaricia experienced more damage than Porites when contacted by articulated coralline algae or H. tuna. When spatially paired individuals of H. opuntia that had been in contact with Agaricia and not in contact with any coral were collected from the reefs and offered to D. antillarum, urchins consumed about 150 % more of thalli that had been competing with Agaricia. Contact and non-contact thalli did not differ in nutritional traits (ash-free-dry-mass, C or N concentrations), suggesting that Halimeda chemical defenses may have been compromised by coral-algal contact. If competition with corals commonly enhances seaweed palatability, then the dynamics and nuances of small-scale seaweed-coral-herbivore interactions at coral edges are deserving of greater attention in that such

  17. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues.

    PubMed

    Brooker, Rohan M; Brandl, Simon J; Dixson, Danielle L

    2016-01-01

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance. PMID:26725835

  18. Cryptic effects of habitat declines: coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues

    PubMed Central

    Brooker, Rohan M.; Brandl, Simon J.; Dixson, Danielle L.

    2016-01-01

    Seaweed-dominated coral reefs are becoming increasingly common as environmental conditions shift away from those required by corals and toward those ideal for rampant seaweed growth. How coral-associated organisms respond to seaweed will not only impact their fate following environmental change but potentially also the trajectories of the coral communities on which they rely. However, behavioral responses by coral-associated organisms to seaweeds are poorly understood. This study examined interactions between a guild of obligate and opportunistic coral-feeding butterflyfishes (Chaetodontidae) and scleractinian corals to determine whether fishes continue to interact with corals in contact with seaweed or if they are avoided. Under natural conditions, all species interacted almost exclusively with seaweed-free corals. In a controlled patch reef experiment, fishes avoided corals in physical contact with seaweed, irrespective of dietary preferences. When visual seaweed cues were removed, butterflyfish continued to avoid corals that had been in contact with the allelopathic Galaxaura filamentosa, suggesting that chemical cues produced by coral-seaweed interactions are repellent. These findings suggest that, due to deleterious visual and chemical cues produced by coral-seaweed interactions, coral-associated organisms may struggle to locate resources as seaweed-free corals decline in abundance. PMID:26725835

  19. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    NASA Astrophysics Data System (ADS)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  20. Soft Pion Processes

    DOE R&D Accomplishments Database

    Nambu, Y.

    1968-01-01

    My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.

  1. USGS research on Atlantic coral reef ecosystems

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.

    2015-01-01

    Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.

  2. Helium-uranium dating of corals.

    NASA Technical Reports Server (NTRS)

    Bender, M. L.

    1973-01-01

    Fanale and Schaeffer (1965) determined He/U ages of corals and other aragonitic fossils, and found that the results generally agreed with independent age estimates. As a more extensive and rigorous test of the reliability of He/U ages of fossil corals, I have determined He/U ages of forty-five independently dated Cenozoic corals. Uranium and thorium isotope compositions and Rn-222 retentivities were also determined as consistency checks. The results indicate that reliable ages are obtained when certain consistency tests are met and specified corrections are made.

  3. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  4. Corals Like It Waxed: Paraffin-Based Antifouling Technology Enhances Coral Spat Survival

    PubMed Central

    Tebben, Jan; Guest, James R.; Sin, Tsai M.; Steinberg, Peter D.; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation. PMID:24489936

  5. Density-associated recruitment mediates coral population dynamics on a coral reef

    NASA Astrophysics Data System (ADS)

    Bramanti, Lorenzo; Edmunds, Peter J.

    2016-06-01

    Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.

  6. River discharge reduces reef coral diversity in Palau.

    PubMed

    Golbuu, Yimnang; van Woesik, Robert; Richmond, Robert H; Harrison, Peter; Fabricius, Katharina E

    2011-04-01

    Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs. PMID:21251680

  7. The Urgent Need for Robust Coral Disease Diagnostics

    PubMed Central

    Pollock, F. Joseph; Morris, Pamela J.; Willis, Bette L.; Bourne, David G.

    2011-01-01

    Coral disease has emerged over recent decades as a significant threat to coral reef ecosystems, with declines in coral cover and diversity of Caribbean reefs providing an example of the potential impacts of disease at regional scales. If similar trends are to be mitigated or avoided on reefs worldwide, a deeper understanding of the factors underlying the origin and spread of coral diseases and the steps that can be taken to prevent, control, or reduce their impacts is required. In recent years, an increased focus on coral microbiology and the application of classic culture techniques and emerging molecular technologies has revealed several coral pathogens that could serve as targets for novel coral disease diagnostic tools. The ability to detect and quantify microbial agents identified as indicators of coral disease will aid in the elucidation of disease causation and facilitate coral disease detection and diagnosis, pathogen monitoring in individuals and ecosystems, and identification of pathogen sources, vectors, and reservoirs. This information will advance the field of coral disease research and contribute knowledge necessary for effective coral reef management. This paper establishes the need for sensitive and specific molecular-based coral pathogen detection, outlines the emerging technologies that could serve as the basis of a new generation of coral disease diagnostic assays, and addresses the unique challenges inherent to the application of these techniques to environmentally derived coral samples. PMID:22028646

  8. The urgent need for robust coral disease diagnostics.

    PubMed

    Pollock, F Joseph; Morris, Pamela J; Willis, Bette L; Bourne, David G

    2011-10-01

    Coral disease has emerged over recent decades as a significant threat to coral reef ecosystems, with declines in coral cover and diversity of Caribbean reefs providing an example of the potential impacts of disease at regional scales. If similar trends are to be mitigated or avoided on reefs worldwide, a deeper understanding of the factors underlying the origin and spread of coral diseases and the steps that can be taken to prevent, control, or reduce their impacts is required. In recent years, an increased focus on coral microbiology and the application of classic culture techniques and emerging molecular technologies has revealed several coral pathogens that could serve as targets for novel coral disease diagnostic tools. The ability to detect and quantify microbial agents identified as indicators of coral disease will aid in the elucidation of disease causation and facilitate coral disease detection and diagnosis, pathogen monitoring in individuals and ecosystems, and identification of pathogen sources, vectors, and reservoirs. This information will advance the field of coral disease research and contribute knowledge necessary for effective coral reef management. This paper establishes the need for sensitive and specific molecular-based coral pathogen detection, outlines the emerging technologies that could serve as the basis of a new generation of coral disease diagnostic assays, and addresses the unique challenges inherent to the application of these techniques to environmentally derived coral samples. PMID:22028646

  9. Additional record of Rayllianassa amboinensis (de Man, 1888) from Japan, and description of a new species from Okinawa Island, Ryukyu Islands (Crustacea: Decapoda: Axiidea: Callianassidae).

    PubMed

    Komai, Tomoyuki; Fujita, Yoshihisa; Maenosono, Tadafumi

    2014-01-01

    Two species referred to the callianassid ghost shrimp genus Rayllianassa Komai & Tachikawa, 2008 are reported herewith. Additional locality records from Japan are provided for R. amboinensis (de Man, 1888), and the synonymy of Callianassa ngochoae Sakai, 1999 with R. amboinensis is discussed. It is shown that R. amboinensis is associated with sponges or alcyonacean soft corals, representing unusual habitats for callianassids. Rayllianassa rudisulcus n. sp. is described on the basis of a single ovigerous female from shallow soft sediment in Ohura Bay, Okinawa Island, Ryukyu Islands. The new species is distinguished from R. amboinensis by the absence of a dorsal oval on the carapace, the antennal peduncle being longer than the antennular peduncle, and the different shape of the third maxilliped. The status of Rayllianassa is also briefly discussed. PMID:25081469

  10. Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan.

    PubMed

    Nakajima, Yuichi; Zayasu, Yuna; Shinzato, Chuya; Satoh, Noriyuki; Mitarai, Satoshi

    2016-03-01

    Population connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast-spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean. Two types (soft and hard types) of nematocyst morphology are known in G. fascicularis and are significantly correlated with the length of a mitochondrial DNA noncoding sequence (soft type: mt-L; hard type: mt-S type). Using microsatellites, significant genetic differentiation was detected between the mitochondrial DNA sequence types in all regions. We also found a third genetic cluster (mt-L+), and this unexpected type may be a cryptic species of Galaxea. High clonal diversity was detected in both mt-L and mt-S types. Significant genetic differentiation, which was found among regions within a given type (F ST = 0.009-0.024, all Ps ≤ 0.005 in mt-L; 0.009-0.032, all Ps ≤ 0.01 in mt-S), may result from the shorter larval development than in other broadcast-spawning corals, such as the genus Acropora. Nevertheless, intraspecific genetic diversity and connectivity have been maintained, and with both sexual and asexual reproduction, this species appears to have a potential for the recovery of populations after disturbance. PMID:27087925

  11. Seismic refraction profile in coral sea basin.

    PubMed

    Shor, G G

    1967-11-17

    A refraction profile near the south edge of Coral Sea Basin shows sediments, "second layer," and oceanic crust all thicker than normal for an oceanic station; normal mantle lies at a depth of 19 kilometers. PMID:17753600

  12. PhyloChip Tackles Coral Disease

    ScienceCinema

    Todd DeSantis

    2010-01-08

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  13. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    EPA Science Inventory

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  14. Modeling Reef Hydrodynamics to Predict Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Bird, James; Steinberg, Craig; Hardy, Tom

    2005-11-01

    The aim of this study is to use environmental physics to predict water temperatures around and within coral reefs. Anomalously warm water is the leading cause for mass coral bleaching; thus a clearer understanding of the oceanographic mechanisms that control reef water temperatures will enable better reef management. In March 1998 a major coral bleaching event occurred at Scott Reef, a 40 km-wide lagoon 300 km off the northwest coast of Australia. Meteorological and coral cover observations were collected before, during, and after the event. In this study, two hydrodynamic models are applied to Scott Reef and validated against oceanographic data collected between March and June 2003. The models are then used to hindcast the reef hydrodynamics that led up to the 1998 bleaching event. Results show a positive correlation between poorly mixed regions and bleaching severity.

  15. PhyloChip Tackles Coral Disease

    SciTech Connect

    Todd DeSantis

    2009-01-30

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  16. Marine biology: The coral disease triangle

    NASA Astrophysics Data System (ADS)

    Bruno, John F.

    2015-04-01

    The underlying causes of biodiversity loss can be numerous and difficult to identify. Now evidence suggests that disease outbreaks triggered by warming oceans are a primary cause of the disappearance of Caribbean coral reefs.

  17. Lithifying Microbes Associated to Coral Rubbles

    NASA Astrophysics Data System (ADS)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  18. New protection initiatives announced for coral reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  19. EPA Field Manual for Coral Reef Assessments

    EPA Science Inventory

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  20. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects [review article

    NASA Astrophysics Data System (ADS)

    McManus, John W.; Polsenberg, Johanna F.

    2004-02-01

    This paper briefly reviews coral-algal phase shifts on coral reefs, with particular regard to summarizing the exogenous and endogenous factors in support of a proposed conceptual model, and to identifying critical information gaps. A phase shift occurs on a coral reef when the cover of a substrate by scleractinian corals is reduced in favor of macroalgal dominance, and resilience of the former condition is retarded because of ecological processes and/or environmental conditions. The change is often, but not always, associated with a perturbation such as coral bleaching, outbreaks of a coral-eating species, or storm damage. The new state is generally associated with some combination of reduced herbivory (from disease and/or fishing) and nutrient enrichment, although the relative importance of these factors is under debate and may vary among locations and even across single reefs. Disturbances that result in a state of generally low biotic three-dimensional structural complexity often precede a phase shift. Following such a disturbance, the system will pass to a state of higher biotic structural complexity, with either macroalgae or coral dominating. As the community progresses towards larger and more three-dimensionally complex corals or macroalgae, it exhibits greater resistance to shifting dominance from one state to the other. Studies of the phase-shift phenomena have been generally conducted at scales that are small relative to the sizes and inherent variability of whole coral reefs and systems of reefs. There is an urgent need for studies aimed at quantifying and simulating cause and effect aspects of the phase shift, including human-environment coupling, particularly in support of coral reef decision-making.

  1. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns.

    PubMed

    Williams, Gareth J; Smith, Jennifer E; Conklin, Eric J; Gove, Jamison M; Sala, Enric; Sandin, Stuart A

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54-86% cover), namely hard corals (20-74%) and crustose coralline algae (CCA) (10-36%). While turf algae were relatively common at both locations (8-22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7-9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra's backreef and Kingman's patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman's patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman's forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized

  2. Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns

    PubMed Central

    Conklin, Eric J.; Gove, Jamison M.; Sala, Enric; Sandin, Stuart A.

    2013-01-01

    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of

  3. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed. PMID:26611927

  4. Simple Ontology Format (SOFT)

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layoutmore » system using customized styles.« less

  5. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  6. Coral photobiology: new light on old views.

    PubMed

    Iluz, David; Dubinsky, Zvy

    2015-04-01

    The relationship between reef-building corals and light-harvesting pigments of zooxanthellae (Symbiodinium sp.) has been acknowledged for decades. The photosynthetic activity of the algal endocellular symbionts may provide up to 90% of the energy needed for the coral holobiont. This relationship limits the bathymetric distribution of coral reefs to the upper 100 m of tropical shorelines. However, even corals growing under high light intensities have to supplement the photosynthates translocated from the algae by predation on nutrient-rich zooplankton. New information has revealed how the fate of carbon acquired through photosynthesis differs from that secured by predation, whose rates are controlled by light-induced tentacular extension. The Goreau paradigm of "light-enhanced calcification" is being reevaluated, based on evidence that blue light stimulates coral calcification independently from photosynthesis rates. Furthermore, under dim light, calcification rates were stoichiometrically uncoupled from photosynthesis. The rates of photosynthesis of the zooxanthellae exhibit a clear endogenous rhythmicity maintained by light patterns. This daily pattern is concomitant with a periodicity of all the antioxidant protective mechanisms that wax and wane to meet the concomitant fluctuation in oxygen evolution. The phases of the moon are involved in the triggering of coral reproduction and control the spectacular annual mass-spawning events taking place in several reefs. The intensity and directionality of the underwater light field affect the architecture of coral colonies, leading to an optimization of the exposure of the zooxanthellae to light. We present a summary of major gaps in our understanding of the relationship between light and corals as a roadmap for future research. PMID:25467066

  7. Mass Spawning in Tropical Reef Corals

    NASA Astrophysics Data System (ADS)

    Harrison, Peter L.; Babcock, Russell C.; Bull, Gordon D.; Oliver, James K.; Wallace, Carden C.; Willis, Bette L.

    1984-03-01

    Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.

  8. High prevalence of obligate coral-dwelling decapods on dead corals in the Chagos Archipelago, central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Head, Catherine E. I.; Bonsall, Michael B.; Koldewey, Heather; Pratchett, Morgan S.; Speight, Martin; Rogers, Alex D.

    2015-09-01

    Small and cryptic organisms that live within the interstices of reef habitats contribute greatly to coral reef biodiversity, but are poorly studied. Many species of cryptofauna have seemingly obligate associations with live coral and are therefore considered to be very vulnerable to coral mortality. Here we report the unanticipated prevalence of obligate coral-dwelling decapod crustaceans on dead colonies of branching corals in the Chagos Archipelago (British Indian Ocean Territory) in the central Indian Ocean. A total of 205 obligate coral-dwelling decapods, including Trapezia crabs, were recorded from 43 (out of 54) dead coral colonies of Acropora and Pocillopora collected across five different atolls. Trapezia individuals found on dead corals were mainly juveniles, and the few adults were almost exclusively male. Among the shrimps (Pontoniinae), however, it was predominantly adult females found on dead corals. Obligate coral-dwelling species that typically occur only on live Pocillopora hosts (e.g., Trapezia spp.) were recorded on dead Acropora. These findings suggests that these obligate coral-dwelling decapods are not simply persisting on coral hosts that have died, but may be explicitly recruiting to or moving to dead coral hosts at certain stages in their life cycle. Variation in the abundance of live coral among sites had no affect on the presence or abundance of obligate coral-dwelling decapods on dead corals. This study shows that habitat associations of obligate coral-dwelling organisms, and their reliance on different habitat types, are complex and further work is required to establish their vulnerability to widespread habitat degradation on coral reefs.

  9. Fluorescence lifetime imaging of coral fluorescent proteins.

    PubMed

    Cox, Guy; Matz, Mikhail; Salih, Anya

    2007-03-01

    Corals, like many other coelenterates, contain fluorescent pigments that show considerable homology with the well known green fluorescent protein of the jellyfish Aequoria. In corals, unlike jellyfish, multiple proteins are present and the range of excitations and emissions suggest the possibility of energy transfer. The occurrence of Förster resonant energy transfer (FRET) between fluorescent proteins in corals has already been reported and time-resolved spectra have shown the effect on fluorescent lifetime, but without any spatial resolution. Lifetime confocal microscopy offers lower time resolution but excellent spatial resolution. Lifetimes of the isolated A. millepora pigments amilFP490, amilFP504, and amilFP593 (names indicate emission peaks) were 2.8, 2.9, and 2.9 ns, respectively. In the coral sample, imaging the entire emission spectrum from 420 nm, the mean lifetime was reduced to 1.5 ns, implying that FRET was occurring. Looking just at the fluorescence from FRET donors the lifetime was even shorter, at 1.3 ns, supporting this interpretation. In contrast, no reduction in lifetime is seen in the coral Euphyllia ancora, where the pigment distribution also suggests that the pigments are unlikely to be involved in photoprotection. This study set out to determine the extent of FRET between pigments in two corals, Acropora millepora and Euphyllia, ancora which differ in the arrangement of their pigments and hence possibly in pigment function. PMID:17279514

  10. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  11. Very Soft Sculpture.

    ERIC Educational Resources Information Center

    deGrassi, Jennifer

    1979-01-01

    Instructions are provided for making dolls, or soft people sculptures, by stuffing nylons with cotton and shaping the result with stitching and decoration. This article is one of seven in this issue on fiber arts. (SJL)

  12. Chemically rich seaweeds poison corals when not controlled by herbivores

    PubMed Central

    Rasher, Douglas B.; Hay, Mark E.

    2010-01-01

    Coral reefs are in dramatic global decline, with seaweeds commonly replacing corals. It is unclear, however, whether seaweeds harm corals directly or colonize opportunistically following their decline and then suppress coral recruitment. In the Caribbean and tropical Pacific, we show that, when protected from herbivores, ~40 to 70% of common seaweeds cause bleaching and death of coral tissue when in direct contact. For seaweeds that harmed coral tissues, their lipid-soluble extracts also produced rapid bleaching. Coral bleaching and mortality was limited to areas of direct contact with seaweeds or their extracts. These patterns suggest that allelopathic seaweed-coral interactions can be important on reefs lacking herbivore control of seaweeds, and that these interactions involve lipid-soluble metabolites transferred via direct contact. Seaweeds were rapidly consumed when placed on a Pacific reef protected from fishing but were left intact or consumed at slower rates on an adjacent fished reef, indicating that herbivory will suppress seaweeds and lower frequency of allelopathic damage to corals if reefs retain intact food webs. With continued removal of herbivores from coral reefs, seaweeds are becoming more common. This occurrence will lead to increasing frequency of seaweed-coral contacts, increasing allelopathic suppression of remaining corals, and continuing decline of reef corals. PMID:20457927

  13. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  14. INDICATORS OF UV EXPOSURE IN CORALS: RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    Increased exposure to solar UV radiation and elevated water temperatures are believed to play a role in the bleaching of corals. To provide additional tools for evaluating the role of UV radiation, we have examined UV-specific effects in coral and have characterized factors that ...

  15. Coral-Bacterial Communities before and after a Coral Mass Spawning Event on Ningaloo Reef

    PubMed Central

    Ceh, Janja; Raina, Jean-Baptiste; Soo, Rochelle M.; van Keulen, Mike; Bourne, David G.

    2012-01-01

    Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction. PMID:22629343

  16. RESISTANCE AND RESILIENCE TO CORAL BLEACHING: IMPLICATIONS FOR CORAL REEF CONSERVATION AND MANAGEMENT

    EPA Science Inventory

    The massive scale of the 1997-1998 El Nino-associated coral bleaching event underscores the need for strategies to mitigate biodiversity losses resulting from temperature-induced coral mortality. As baseline sea surface temperatures continue to rise, climate change may represent ...

  17. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  18. INDICATORS OF UV EXPOSURE IN CORAL AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Bleaching can destroy large areas of a reef with limited recovery or recruitment, and it may be induced by a variety of stressors ranging from exposure to temperature and salinity extrem...

  19. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  20. INDICATORS OF UV EXPOSURE IN CORALS AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Through interactions with other factors such as sedimentation, pollution, and bacterial infection, bleaching can impact large areas of a reef with limited recovery, and it might be induc...

  1. Monitoring Growth of Hard Corals as Performance Indicators for Coral Reefs

    ERIC Educational Resources Information Center

    Crabbe, M. James; Karaviotis, Sarah; Smith, David J.

    2004-01-01

    Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity, and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica.…

  2. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  3. Arrecifes de Coral: Una Coleccion de Actividades en Espanol para Estudiantes de Escuela Intermedia (Coral Reefs: A Spanish Compilation of Activities for Middle School Students).

    ERIC Educational Resources Information Center

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book for middle school students on coral reefs is divided into 10 sections. Section 1 is the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 describes where coral reefs are found, and section 5 describes life on a coral reef. Section 6 describes the…

  4. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  5. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    PubMed

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. PMID:22462739

  6. Pigmentation and Spectral Absorbance Signatures in Deep-Water Corals from the Trondheimsfjord, Norway

    PubMed Central

    Elde, Anette C.; Pettersen, Ragnhild; Bruheim, Per; Järnegren, Johanna; Johnsen, Geir

    2012-01-01

    The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g−1 wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400–700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals. PMID:22822381

  7. Toxic coral gobies reduce the feeding rate of a corallivorous butterflyfish on Acropora corals

    NASA Astrophysics Data System (ADS)

    Dirnwoeber, M.; Herler, J.

    2013-03-01

    The obligate coral-dwelling gobiid genus Gobiodon inhabits Acropora corals and has developed various physiological, morphological and ethological adaptations towards this life habit. While the advantages of this coral-fish association are well documented for Gobiodon, possible fitness-increasing factors for the host coral are unknown. This study examines the influence of coral-dwelling gobies on the feeding behaviour of obligate corallivorous butterflyfishes. In an aquarium experiment using video observation, the corallivorous butterflyfish Chaetodon austriacus fed significantly less on corals inhabited by two Gobiodon species compared to unoccupied coral colonies of similar size. The more agonistic species G. histrio, which mostly displayed directed movements towards butterflyfishes, decreased butterflyfish bite rate by 62-98 % compared to uninhabited colonies. For Gobiodon sp. 3, which mostly displayed undirected movements in response to visits by C. austriacus, bite rate reduction was 64-68 %. The scale-less skin of Gobiodon spp. is covered by mucus that is toxic and multi-functional by reducing predation as well as affecting parasite attachment. A choice flume experiment suggests that the highly diluted skin mucus of Gobiodon spp. also functions as a corallivore repellent. This study demonstrates that Gobiodon spp. exhibit resource defence against coral-feeding butterflyfishes and also that coral colonies without resident Gobiodon suffer higher predation rates. Although the genus Gobiodon is probably a facultative corallivore, this study shows that by reducing predation on inhabited colonies by other fishes, these obligate coral-dwellers either compensate for their own fitness-decreasing impact on host colonies or live in a mutualistic association with them.

  8. Toxic coral gobies reduce the feeding rate of a corallivorous butterflyfish on Acropora corals.

    PubMed

    Dirnwoeber, M; Herler, J

    2013-03-01

    The obligate coral-dwelling gobiid genus Gobiodon inhabits Acropora corals and has developed various physiological, morphological and ethological adaptations towards this life habit. While the advantages of this coral-fish association are well documented for Gobiodon, possible fitness-increasing factors for the host coral are unknown. This study examines the influence of coral-dwelling gobies on the feeding behaviour of obligate corallivorous butterflyfishes. In an aquarium experiment using video observation, the corallivorous butterflyfish Chaetodon austriacus fed significantly less on corals inhabited by two Gobiodon species compared to unoccupied coral colonies of similar size. The more agonistic species G. histrio, which mostly displayed directed movements towards butterflyfishes, decreased butterflyfish bite rate by 62-98 % compared to uninhabited colonies. For Gobiodon sp. 3, which mostly displayed undirected movements in response to visits by C. austriacus, bite rate reduction was 64-68 %. The scale-less skin of Gobiodon spp. is covered by mucus that is toxic and multi-functional by reducing predation as well as affecting parasite attachment. A choice flume experiment suggests that the highly diluted skin mucus of Gobiodon spp. also functions as a corallivore repellent. This study demonstrates that Gobiodon spp. exhibit resource defence against coral-feeding butterflyfishes and also that coral colonies without resident Gobiodon suffer higher predation rates. Although the genus Gobiodon is probably a facultative corallivore, this study shows that by reducing predation on inhabited colonies by other fishes, these obligate coral-dwellers either compensate for their own fitness-decreasing impact on host colonies or live in a mutualistic association with them. PMID:24443641

  9. Marine biology: Coral animals combat stress with sulphur

    NASA Astrophysics Data System (ADS)

    Jones, Graham

    2013-10-01

    Photosynthetic algal symbionts of corals produce sulphur substances that are involved in the regulation of ocean temperatures. In a twist to the tale, it emerges that coral animals produce the same compounds. See Letter p.677

  10. Unseen players shape benthic competition on coral reefs.

    PubMed

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. PMID:22944243

  11. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, VIEW FACING SOUTHEAST. - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  12. Coral reef formation theory may apply to oil, gas exploration

    SciTech Connect

    Not Available

    1990-12-10

    This paper reports a coral reef formation theory that has implications for hydrocarbon exploration. The theory states that many coral reefs and carbonate buildups from at and are dependent upon nutrient rich fluids seeping through the seabed.

  13. 1. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3810) Photographer unknown, 1923-25 GRANADA PLAZA AND GRANADA BOULEVARD - Granada Plaza, Coral Gables, Miami-Dade County, FL

  14. Comparing Deep-Sea Fish Fauna between Coral and Non-Coral “Megahabitats” in the Santa Maria di Leuca Cold-Water Coral Province (Mediterranean Sea)

    PubMed Central

    D'Onghia, Gianfranco; Maiorano, Porzia; Carlucci, Roberto; Capezzuto, Francesca; Carluccio, Angela; Tursi, Angelo; Sion, Letizia

    2012-01-01

    Two experimental longline surveys were carried out in the Santa Maria di Leuca (SML) cold-water coral province (Mediterranean Sea) during May–June and September–October 2010 to investigate the effect of corals on fish assemblages. Two types of “megahabitat” characterized by the virtual absence of fishing were explored. One was characterized by complex topography including mesohabitats with carbonate mounds and corals. The other type of megahabitat, although characterized by complex topographic features, lacks carbonate mounds and corals. The fishing vessel was equipped with a 3,000 m monofilament longline with 500 hooks and snoods of 2.5 m in length. A total of 9 hauls, using about 4,500 hooks, were carried out both in the coral megahabitat and in the non-coral megahabitat during each survey. The fish Leucoraja fullonica and Pteroplatytrygon violacea represent new records for the SML coral province. The coral by-catch was only obtained in the coral megahabitat in about 55% of the stations investigated in both surveys. The total catches and the abundance indices of several species were comparable between the two habitat typologies. The species contributing most to the dissimilarity between the two megahabitat fish assemblages were Pagellus bogaraveo, Galeus melastomus, Etmopterus spinax and Helicolenus dactylopterus for density and P. bogaraveo, Conger conger, Polyprion americanus and G. melastomus for biomass. P. bogaraveo was exclusively collected in the coral megahabitat, whereas C. conger, H. dactylopterus and P. americanus were found with greater abundance in the coral than in the non-coral megahabitat. Differences in the sizes between the two megahabitats were detected in E. spinax, G. melastomus, C. conger and H. dactylopterus. Although these differences most probably related to the presence-absence of corals, both megahabitats investigated play the role of attraction-refuge for deep-sea fish fauna, confirming the important role of the whole SML coral

  15. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria.

    PubMed

    Lema, Kimberley A; Willis, Bette L; Bourne, David G

    2012-05-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  16. Hyperspectral and Physiological Analyses of Coral-Algal Interactions

    PubMed Central

    Barott, Katie; Smith, Jennifer; Dinsdale, Elizabeth; Hatay, Mark; Sandin, Stuart; Rohwer, Forest

    2009-01-01

    Space limitation leads to competition between benthic, sessile organisms on coral reefs. As a primary example, reef-building corals are in direct contact with each other and many different species and functional groups of algae. Here we characterize interactions between three coral genera and three algal functional groups using a combination of hyperspectral imaging and oxygen microprofiling. We also performed in situ interaction transects to quantify the relative occurrence of these interaction on coral reefs. These studies were conducted in the Southern Line Islands, home to some of the most remote and near-pristine reefs in the world. Our goal was to determine if different types of coral-coral and coral-algal interactions were characterized by unique fine-scale physiological signatures. This is the first report using hyperspectral imaging for characterization of marine benthic organisms at the micron scale and proved to be a valuable tool for discriminating among different photosynthetic organisms. Consistent patterns emerged in physiology across different types of competitive interactions. In cases where corals were in direct contact with turf or macroalgae, there was a zone of hypoxia and altered pigmentation on the coral. In contrast, interaction zones between corals and crustose coralline algae (CCA) were not hypoxic and the coral tissue was consistent across the colony. Our results suggest that at least two main characteristic coral interaction phenotypes exist: 1) hypoxia and coral tissue disruption, seen with interactions between corals and fleshy turf and/or some species of macroalgae, and 2) no hypoxia or tissue disruption, seen with interactions between corals and some species of CCA. Hyperspectral imaging in combination with oxygen profiling provided useful information on competitive interactions between benthic reef organisms, and demonstrated that some turf and fleshy macroalgae can be a constant source of stress for corals, while CCA are not. PMID

  17. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  18. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  19. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  20. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  1. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  2. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  3. Light gradients and optical microniches in coral tissues.

    PubMed

    Wangpraseurt, Daniel; Larkum, Anthony W D; Ralph, Peter J; Kühl, Michael

    2012-01-01

    Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts. PMID:22969755

  4. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  5. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  6. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  7. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  8. Developing a multi-stressor gradient for coral reefs

    EPA Science Inventory

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  9. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    PubMed Central

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-01-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef. PMID:27506875

  10. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  11. Unprecedented Disease-Related Coral Mortality in Southeastern Florida.

    PubMed

    Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert

    2016-01-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef. PMID:27506875

  12. Light gradients and optical microniches in coral tissues

    PubMed Central

    Wangpraseurt, Daniel; Larkum, Anthony W. D.; Ralph, Peter J.; Kühl, Michael

    2012-01-01

    Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts. PMID:22969755

  13. 10. Photocopy of Photograph (original print in the Coral Gables ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of Photograph (original print in the Coral Gables Public Library, Fishbaugh Collection, M 3109) Photographer unknown, 1923-25 COLUMBUS PLAZA, COLUMBUS STREET AND INDIAN MOUNTAIN TRAIL - Coral Gables (Entrances, Streets, Gates, & Squares), Coral Gables, Miami-Dade County, FL

  14. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the...

  15. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the...

  16. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the...

  17. 43 CFR 9266.4 - Viable coral communities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Viable coral communities. 9266.4 Section... § 9266.4 Viable coral communities. (a) Requirement for a permit. No person shall engage in any operation which directly causes damage or injury to a viable coral community that is located on the...

  18. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef... of public comment. SUMMARY: Notice is hereby given of a public meeting of the U.S. Coral Reef Task.../uscrtf-registration-form . Commenters may address the meeting, the role of the USCRTF, or general...

  19. Coral Reefs: A Gallery Program, Grades 7-12.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  20. Environmental controls on uranium in reef corals

    NASA Astrophysics Data System (ADS)

    Shen, Glen T.; Dunbar, Robert B.

    1995-05-01

    A survey of corals from a variety of tropical settings reveals previously unseen seasonal variations in skeletal U/Ca. Based upon two corals from the Galapagos Islands, a comparison of U/Ca with δ180 suggests a possible temperature dependence of +3-4% per degree centigrade cooling. An overall range in U/Ca of 1.03-1.37 μmol U/mol Ca (2.45-3.25 ppm) between corals from warm and cool water settings supports this interpretation. An alternative control, however, cannot be ruled out. Changes in the carbonate ion content of surface waters are sufficient to drive comparable variations, provided uranium is incorporated as UO 22+ or a carbonate complex thereof. In addition to these possible controls, we identify a probable salinity influence on coral U/Ca which suggests that uranium uptake depends upon [U] seawater and not [ U/Ca] seawater. Within individual corals, artifacts associated with "vital" influences appear minimal. Extension/calcification rate effects as assessed via comparisons of contemporaneous growth trajectories in individual colonies appear small relative to typical seasonal U/Ca variations of 10-20%. Excluding corals from the Galápagos cool regime, five species from warmer tropical settings exhibit remarkably little variability in mean U/Ca (1.03-1.09 μmol U/mol Ca). Our findings suggest that the range of U/Ca in modern corals defined by published data reflects a combination of interspecific variability and environmental control. The possibility that coral U/Ca is associated with temperature, alkalinity, and salinity suggests many uses for this new paleotracer. Rapid and precise measurement of uranium by isotope dilution ICP-MS will expedite future development and application. Key among the next steps must be studies to isolate the influences of the above mentioned environmental parameters. Additionally, potential microsampling artifacts (e.g., caused by drilling) and an apparent 6% "leachable" uranium fraction in a single test coral should be

  1. Exploration and Discovery of Hydrocarbon Seeps, Coral Ecosystems, and Shipwrecks in the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Hsing, P.; Carney, R. S.; Herrera, S.; Heyl, T.; Munro, C.; Bors, E.; Kiene, W.; Vecchione, M.; Evans, A.; Irion, J.; Warren, D.; Malik, M.; Lobecker, M.; Potter, J.

    2012-12-01

    Between March 20 and April 6, 2012, the NOAA Ship Okeanos Explorer served as a platform for ship-board and shore-side scientists to explore the deep Gulf of Mexico, targeting the northern West Florida Escarpment, DeSoto Canyon, the vicinity (within 11km) of the Deepwater Horizon (DWH) well, and deepwater shipwrecks. We systematically explored and discovered natural hydrocarbon seeps, diverse coral ecosystems, wooden and iron-hulled shipwrecks more than 100 years old colonized by coral communities, and sperm whale habitat between 600 and 1200m. A total of sixteen dives took advantage of new and recent maps to explore and groundtruth both hard and soft-bottom habitats, from cretaceous carbonates to mounds of coral rubble. The final ROV dive successfully groundtruthed expected methane-release areas imaged by the ship's mapping systems up to 1150m above the seafloor. The source of the mapping imagery was a stream of bubbles issuing from beneath thriving seep mussel communities. We visited five sites in the Mississippi Canyon (MC) area (lease blocks MC294, MC297, MC388, MC255, and MC036; the DWH incident took place in MC252). These sites were 11.3 km SW, 6.8 km SW, 7.6 km SW, 25.7 km E, and 27.4 km to the NE of the DWH, respectively. We used high-definition imaging systems on the Little Hercules ROV and Seirios camera platform to document more than 130 coral colonies and over 400 associated individual animals to continue to assessing the impact of the Deepwater Horizon oil spill. All of these efforts were conducted to provide fundamental knowledge of unknown and poorly known regions, ecosystems, and items of historical significance in the deep Gulf of Mexico.

  2. Growth study of branching coral Acropora formosa between natural reef habitats and in situ coral nurseries

    NASA Astrophysics Data System (ADS)

    Xin, Loke Hai; Hyde, Julian; Cob, Zaidi Che; Adzis, Kee Alfian Abdul

    2013-11-01

    Being a common reef building coral in Malaysian waters, growth of Acropora Formosa in natural reef habitat and coral nursery condition had been studied in aspects of extension growth, survival and proto-branch generation. The study sites took place at two separate islands with different environment conditions. In this study, A. formosa samples of natural reefs at Pangkor Island turbid waters recorded better growth in average extension rate (0.71 ±0.48 cm/month) and higher proto-branch generation rate (up to 52% after 6 months) than Tioman Island samples (0.38 ±0.34 cm/month, highest 17% after 6 months). However, Tioman Island natural reef samples maintained 100% survival throughout the study period. Then, branch fragments or nubbins of A. formosa were transplanted into two coral nursery sites at Tioman Island. Among these two coral nurseries, the Tekek site had better growth in all three aspects than Air Batang site. This was believed due to Tekek nursery had been setup with nubbins for more than 6 months before Air Batang nursery, thus the Tekek samples were conditioned long enough for growing in the coral nursery environment. The results of this study documented the growth of this particular coral species in two islands of Peninsular Malaysia, and demonstrated the potential application of A. Formosa for coral transplant, in situ nursery and active reef restoration.

  3. Coral diseases are major contributors to coral mortality in Shingle Island, Gulf of Mannar, southeastern India.

    PubMed

    Thinesh, T; Diraviya Raj, K; Mathews, G; Patterson Edward, J K

    2013-09-24

    The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 ± 1.0 and 0.6 ± 0.5 cm mo-1 over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R2 = 0.75, p < 0.001) and WBD (R2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics. PMID:24062554

  4. Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks

    PubMed Central

    Bruno, John F; Selig, Elizabeth R; Casey, Kenneth S; Page, Cathie A; Willis, Bette L; Harvell, C. Drew; Sweatman, Hugh; Melendy, Amy M

    2007-01-01

    Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant. PMID:17488183

  5. Recognizing diversity in coral symbiotic dinoflagellate communities.

    PubMed

    Apprill, Amy M; Gates, Ruth D

    2007-03-01

    A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals. PMID:17391401

  6. Coral Skeletons Defend against Ultraviolet Radiation

    PubMed Central

    Reef, Ruth; Kaniewska, Paulina; Hoegh-Guldberg, Ove

    2009-01-01

    Background Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage. Methodology/Principal Findings By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation. Conclusions/Significance Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life. PMID:19946361

  7. Soft and Ultra-soft Elastomers

    NASA Astrophysics Data System (ADS)

    Daniel, William; Burdynska, Joanna; Kirby, Sam; Zhou, Yang; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei; UNC-MIRT Team

    2014-03-01

    Polymeric networks are attractive engineering materials utilized for various mechanically demanding applications. As such, much attention has been paid to reinforcement of polymer mechanical properties with little interest in how to make softer elastomers to address numerous biomedical applications including implants and cell differentiation. Without swelling in a solvent, it is challenging to obtain materials with a modulus below ca.105 Pa, which is dictated by chain entanglements. Here we present two methodologies for the creation of soft and ultra-soft dry elastomeric compounds. The first method utilizes polymer capsules as temperature responsive filler. Depending on volume fraction of microcapsules this method is capable of fine tuning modulus within an order of magnitude. The second technique uses the densely grafted molecular brush architecture to create solvent-free polymer melts and elastomers with plateau moduli in the range one hundred to ten hundred Pa. Such compounds may find uses in biomedical applications including reconstructive surgery and cell differentiation. National Science Foundation DMR-1122483.

  8. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  9. Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral.

    PubMed

    Yoshimura, Toshihiro; Tanimizu, Masaharu; Inoue, Mayuri; Suzuki, Atsushi; Iwasaki, Nozomu; Kawahata, Hodaka

    2011-11-01

    High-precision Mg isotope measurements by multiple collector inductively coupled plasma mass spectrometry were applied for determinations of magnesium isotopic fractionation of biogenic calcium carbonates from seawater with a rapid Mg purification technique. The mean δ(26)Mg values of scleractinian corals, giant clam, benthic foraminifera, and calcite deep-sea corals were -0.87‰, -2.57‰, -2.34‰, and -2.43‰, suggesting preferential precipitation of light Mg isotopes to produce carbonate skeleton in biomineralization. Mg isotope fractionation in deep-sea coral, which has high Mg calcite skeleton, showed a clear temperature (T) dependence from 2.5 °C to 19.5 °C: 1,000 × ln(α) = -2.63 (±0.076) + 0.0138 (±0.0051) × T(R(2) = 0.82, p < 0.01). The δ(26)Mg values of large benthic foraminifera, which are also composed of a high-Mg calcite skeleton, can be plotted on the same regression line as that for deep-sea coral. Since the precipitation rates of deep-sea coral and benthic foraminifera are several orders of magnitude different, the results suggest that kinetic isotope fractionation may not be a major controlling factor for high-Mg calcite. The Mg isotope fractionation factors and the slope of temperature dependence from deep-sea corals and benthic foraminifera are similar to that for an inorganically precipitated calcite speleothem. Taking into account element partitioning and the calcification rate of biogenic CaCO(3), the similarity among inorganic minerals, deep-sea corals, and benthic foraminiferas may indicate a strong mineralogical control on Mg isotope fractionation for high-Mg calcite. On the other hand, δ(26)Mg in hermatypic corals composed of aragonite has been comparable with previous data on biogenic aragonite of coral, sclerosponges, and scaphopad, regardless of species differences of samples. PMID:21805065

  10. Tensional acoustomechanical soft metamaterials

    PubMed Central

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  11. Tensional acoustomechanical soft metamaterials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tianjian

    2016-06-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  12. Tensional acoustomechanical soft metamaterials.

    PubMed

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  13. Introductory physics going soft

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Livne, Shelly; Safran, Samuel A.; Yerushalmi, Edit

    2012-01-01

    We describe an elective course on soft matter at the level of introductory physics. Soft matter physics serves as a context that motivates the presentation of basic ideas in statistical thermodynamics and their applications. It also is an example of a contemporary field that is interdisciplinary and touches on chemistry, biology, and physics. We outline a curriculum that uses the lattice gas model as a quantitative and visual tool, initially to introduce entropy, and later to facilitate the calculation of interactions. We demonstrate how free energy minimization can be used to teach students to understand the properties of soft matter systems such as the phases of fluid mixtures, wetting of interfaces, self-assembly of surfactants, and polymers. We discuss several suggested activities in the form of inquiry projects which allow students to apply the concepts they have learned to experimental systems.

  14. Gene Expression of Corals in Response to Macroalgal Competitors

    PubMed Central

    Shearer, Tonya L.; Snell, Terry W.; Hay, Mark E.

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  15. Macroalgal terpenes function as allelopathic agents against reef corals

    PubMed Central

    Rasher, Douglas B.; Stout, E. Paige; Engel, Sebastian; Kubanek, Julia; Hay, Mark E.

    2011-01-01

    During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal–coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal–coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs. PMID:22006333

  16. Gene expression of corals in response to macroalgal competitors.

    PubMed

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  17. Lower bathyal and abyssal distribution of coral in the axial volcanic ridge of the Mid-Atlantic Ridge at 45°N

    NASA Astrophysics Data System (ADS)

    Morris, Kirsty; Tyler, Paul A.; Murton, Bramley; Rogers, Alex D.

    2012-04-01

    The deep-sea floor below 3000 m occupies 50% of the surface of the planet and is composed mainly of fine sediments. Most studies of deep-sea benthic fauna have concentrated on soft sediments with little sampling in rocky areas and even less on non-vent mid-ocean ridges. To assess the distribution and abundance of coral between 2500 m and 3500 m depths, video footage from the ROV Isis taken during a cruise to the Axial Volcanic Ridge (AVR) of the Mid-Atlantic Ridge at approx 45°30' N was analysed. Abundances per 100 m were calculated and mapped using Arc GIS, with a maximum of 59 being observed. 20 putative species were identified. Scleractinia were absent from the observed area and the coral fauna was dominated by Octocorallia. The data were separated into four substratum types, sediment, sloped rock, flat rock and mixed substratum, with both abundance and community being compared. Sedimented and rocky areas had different coral communities with sediment having a higher occurrence of Pennatulidae and Chrysogorgidae than rock. Sloped rock had the highest abundance of corals. We suggest that this increase in abundance reflects higher food availability as well as the solid substratum on which coral larvae settle.

  18. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  19. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    PubMed Central

    Hoey, Andrew S.; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32′S, 159°04′E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m−2), however, were 5–200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha−1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. PMID:21991366

  20. Potential role of viruses in white plague coral disease

    PubMed Central

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne MS; Smith, Tyler B; Thurber, Rebecca Vega

    2014-01-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline. PMID:23949663

  1. Coral-associated bacterial communities on Ningaloo Reef, Western Australia.

    PubMed

    Ceh, Janja; Van Keulen, Mike; Bourne, David G

    2011-01-01

    Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity. PMID:21044100

  2. Dynamic Stability of Coral Reefs on the West Australian Coast

    PubMed Central

    Speed, Conrad W.; Babcock, Russ C.; Bancroft, Kevin P.; Beckley, Lynnath E.; Bellchambers, Lynda M.; Depczynski, Martial; Field, Stuart N.; Friedman, Kim J.; Gilmour, James P.; Hobbs, Jean-Paul A.; Kobryn, Halina T.; Moore, James A. Y.; Nutt, Christopher D.; Shedrawi, George; Thomson, Damian P.; Wilson, Shaun K.

    2013-01-01

    Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs. PMID:23922829

  3. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline. PMID:23949663

  4. Symbiotic crabs maintain coral health by clearing sediments

    NASA Astrophysics Data System (ADS)

    Stewart, Hannah L.; Holbrook, Sally J.; Schmitt, Russell J.; Brooks, Andrew J.

    2006-11-01

    Stony corals are the foundation of coral reef ecosystems and form associations with other reef species. Many of these associations may be ecologically important and play a role in maintaining the health and diversity of reef systems, rendering it critical to understand the influence of symbiotic organisms in mediating responses to perturbation. This study demonstrates the importance of an association with trapeziid crabs in reducing adverse effects of sediments deposited on corals. In a field experiment, mortality rates of two species of branching corals were significantly lowered by the presence of crabs. All outplanted corals with crabs survived whereas 45-80% of corals without crabs died within a month. For surviving corals that lacked crabs, growth was slower and tissue bleaching and sediment load were higher. Laboratory experiments revealed that corals with crabs shed substantially more of the sediments deposited on coral surfaces, but also that crabs were most effective at removing grain sizes that were most damaging to coral tissues. The mechanism underlying this symbiotic relationship has not been recognized previously, and its role in maintaining coral health is likely to become even more critical as reefs worldwide experience increasing sedimentation.

  5. Ciliates associated with signs of disease on two Caribbean corals

    NASA Astrophysics Data System (ADS)

    Randall, Carly J.; Jordán-Garza, Adán G.; van Woesik, Robert

    2015-03-01

    Coral diseases have contributed significantly to the decline in coral cover in the Caribbean. As many as twenty diseases have been described for Caribbean corals, but few have known etiologies. Here we report on disease signs that were accompanied by high densities of motile, holotrich ciliates, on two species of Caribbean corals, Orbicella faveolata and Siderastrea siderea, which were field collected and maintained in aquaria. A visually estimated increase in ciliate density in the tissue of the coral colonies reflected a putative progression of three `different' disease signs: white-plague-like, brown-band-like, and brown-jelly-like signs. The latter two diseases have previously only been described for corals in the Indo-Pacific, and in aquaria, respectively. Although it remains unclear whether these ciliates are primary pathogens or secondary opportunists, increasing evidence suggests that motile ciliates may play a role in Caribbean-coral diseases.

  6. Improved zircon iron corals for the 1990s

    SciTech Connect

    Decker, C. )

    1992-03-01

    CIBA-GEIGY/Drakenfeld Colors is dedicated to the research and development of consistent and cost-effective ceramic stains for the whitewares industry. After identifying the trends in color for the 1990s. CIBA-GEIGY/Drakenfeld Colors initiated an extensive R D project to improve zircon ion corals for the whitewares industry. These color trends indicated a need for stronger and cleaner zircon iron corals. This paper discusses the chemistry and crystal structure of zircon iron corals. A historical review of Drakenfeld corals will also be presented. The most recent development in Drakenfeld corals will then be compared to other commercially available zircon iron corals. Taking into consideration these comparisons, conclusions will be drawn suggesting the coral of choice for the 1990s.

  7. Are coral reefs victims of their own past success?

    PubMed Central

    Renema, Willem; Pandolfi, John M.; Kiessling, Wolfgang; Bosellini, Francesca R.; Klaus, James S.; Korpanty, Chelsea; Rosen, Brian R.; Santodomingo, Nadiezhda; Wallace, Carden C.; Webster, Jody M.; Johnson, Kenneth G.

    2016-01-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs’ ability to provide ecosystem services. PMID:27152330

  8. Corals concentrate dissolved inorganic carbon to facilitate calcification.

    PubMed

    Allison, Nicola; Cohen, Itay; Finch, Adrian A; Erez, Jonathan; Tudhope, Alexander W

    2014-01-01

    The sources of dissolved inorganic carbon (DIC) used to produce scleractinian coral skeletons are not understood. Yet this knowledge is essential for understanding coral biomineralization and assessing the potential impacts of ocean acidification on coral reefs. Here we use skeletal boron geochemistry to reconstruct the DIC chemistry of the fluid used for coral calcification. We show that corals concentrate DIC at the calcification site substantially above seawater values and that bicarbonate contributes a significant amount of the DIC pool used to build the skeleton. Corals actively increase the pH of the calcification fluid, decreasing the proportion of DIC present as CO2 and creating a diffusion gradient favouring the transport of molecular CO2 from the overlying coral tissue into the calcification site. Coupling the increases in calcification fluid pH and [DIC] yields high calcification fluid [CO3(2-)] and induces high aragonite saturation states, favourable to the precipitation of the skeleton. PMID:25531981

  9. Nitrogen fixation in the mucus of Red Sea corals.

    PubMed

    Grover, Renaud; Ferrier-Pagès, Christine; Maguer, Jean-François; Ezzat, Leila; Fine, Maoz

    2014-11-15

    Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not permit assessment of the amount of nitrogen incorporated into the different compartments of the coral holobiont. In the present study, the (15)N2 technique was applied for the first time on three Red Sea coral species. Significant (15)N enrichment was measured in particles released by corals to the surrounding seawater. N2 fixation rates were species specific and as high as 1.6-2 ng N day(-1) l(-1). However, no significant enrichment was measured in the symbiotic dinoflagellates or the coral host tissues, suggesting that corals do not benefit from diazotrophic N2 fixation. PMID:25278474

  10. Are coral reefs victims of their own past success?

    PubMed

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services. PMID:27152330

  11. Does coral bleaching mean global warming

    SciTech Connect

    Miller, J.A.

    1991-02-01

    This article discusses the implications of global warming on the marine ecosystems. In recent hearings of the US Senate Committee on Commerce, Science and Transportation, plans were made to introduce legislation for control of greenhouse-gas emissions, conservation of biological diversity, forest conservation, world population planning, sustainable economic development , increased fuel efficiency, and increased research into Earth-system processes. Research is required to ascertain the meaning of coral bleaching, which is the mass expulsion of symbiotic algae, called zooxanthellae, which gives the coral its color. Many scientists think that the death of the algae is an early indicator for massive destruction of the marine ecosystem.

  12. Coral Reefs: An English Compilation of Activities for Middle School Students.

    ERIC Educational Resources Information Center

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book on coral reefs for middle school students is divided into 10 sections. Section 1 contains the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 discusses where coral reefs are found and section 5 describes life on a coral reef. Section 6 discusses the…

  13. Adult soft tissue sarcoma

    MedlinePlus

    ... free at 5 years. Most people who survive 5 years can expect to be cancer-free at 10 years. ... most soft tissue sarcomas, and there is no way to prevent it. ... them can increase your chance of surviving this type of cancer.

  14. Forms of Soft Sculpture

    ERIC Educational Resources Information Center

    Tucker, Dorothy

    1978-01-01

    For the past several years, students at Madison Senior High School in San Diego have responded to the tactile texture and draping quality of soft materials. They experimented enthusiastically with three-dimensional forms made out of foam rubber. Here is the result of their efforts and experimentation. (Author/RK)

  15. The preparation of the rice coral Montipora capitata nubbins for application in coral-reef ecotoxicology.

    PubMed

    Vijayavel, K; Richmond, R H

    2012-04-01

    Securing adequate and appropriate source material for coral-reef ecotoxicology studies is a significant impediment to conducting various experiments supporting the goal of conserving coral-reef ecosystems. Collecting colonies from wild stocks may be counter to protecting coral reef populations. To address this issue the rice coral Montipora capitata was used to generate sufficient genetically identical nubbins for research purposes. Growth and survival rates of these laboratory-prepared M. capitata nubbins were studied over a period of 90 days. The resulting data support the conclusion that the laboratory-prepared M. capitata nubbins showed successful growth and survival rates and are the best solution to solve the source material issue for lab experimentation. This paper describes the laboratory method used for the preparation and maintenance of these M. capitata nubbins and discusses the benefits and difficulties of using these nubbins in ecotoxicity studies. PMID:22218977

  16. Coral Settlement on a Highly Disturbed Equatorial Reef System

    PubMed Central

    Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of

  17. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    NASA Astrophysics Data System (ADS)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  18. Calcification by juvenile corals under heterotrophy and elevated CO2

    NASA Astrophysics Data System (ADS)

    Drenkard, E. J.; Cohen, A. L.; McCorkle, D. C.; de Putron, S. J.; Starczak, V. R.; Zicht, A. E.

    2013-09-01

    Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 μatm) or significantly elevated (1,311 μatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 μatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; ∆ calcification/∆Ω was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

  19. Responses to high seawater temperatures in zooxanthellate octocorals.

    PubMed

    Sammarco, Paul W; Strychar, Kevin B

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980's, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death - apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals - Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the Cnidaria

  20. Responses to High Seawater Temperatures in Zooxanthellate Octocorals

    PubMed Central

    Sammarco, Paul W.; Strychar, Kevin B.

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980’s, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death – apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals – Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the

  1. Soft Decision Analyzer and Method

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2015-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  2. Selective Impact of Disease on Coral Communities: Outbreak of White Syndrome Causes Significant Total Mortality of Acropora Plate Corals

    PubMed Central

    Hobbs, Jean-Paul A.; Frisch, Ashley J.; Newman, Stephen J.; Wakefield, Corey B.

    2015-01-01

    Coral diseases represent a significant and increasing threat to coral reefs. Among the most destructive diseases is White Syndrome (WS), which is increasing in distribution and prevalence throughout the Indo-Pacific. The aim of this study was to determine taxonomic and spatial patterns in mortality rates of corals following the 2008 outbreak of WS at Christmas Island in the eastern Indian Ocean. WS mainly affected Acropora plate corals and caused total mortality of 36% of colonies across all surveyed sites and depths. Total mortality varied between sites but was generally much greater in the shallows (0–96% of colonies at 5 m depth) compared to deeper waters (0–30% of colonies at 20 m depth). Site-specific mortality rates were a reflection of the proportion of corals affected by WS at each site during the initial outbreak and were predicted by the initial cover of live Acropora plate cover. The WS outbreak had a selective impact on the coral community. Following the outbreak, live Acropora plate coral cover at 5 m depth decreased significantly from 7.0 to 0.8%, while the cover of other coral taxa remained unchanged. Observations five years after the initial outbreak revealed that total Acropora plate cover remained low and confirmed that corals that lost all their tissue due to WS did not recover. These results demonstrate that WS represents a significant and selective form of coral mortality and highlights the serious threat WS poses to coral reefs in the Indo-Pacific. PMID:26147291

  3. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    PubMed Central

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  4. Selective Impact of Disease on Coral Communities: Outbreak of White Syndrome Causes Significant Total Mortality of Acropora Plate Corals.

    PubMed

    Hobbs, Jean-Paul A; Frisch, Ashley J; Newman, Stephen J; Wakefield, Corey B

    2015-01-01

    Coral diseases represent a significant and increasing threat to coral reefs. Among the most destructive diseases is White Syndrome (WS), which is increasing in distribution and prevalence throughout the Indo-Pacific. The aim of this study was to determine taxonomic and spatial patterns in mortality rates of corals following the 2008 outbreak of WS at Christmas Island in the eastern Indian Ocean. WS mainly affected Acropora plate corals and caused total mortality of 36% of colonies across all surveyed sites and depths. Total mortality varied between sites but was generally much greater in the shallows (0-96% of colonies at 5 m depth) compared to deeper waters (0-30% of colonies at 20 m depth). Site-specific mortality rates were a reflection of the proportion of corals affected by WS at each site during the initial outbreak and were predicted by the initial cover of live Acropora plate cover. The WS outbreak had a selective impact on the coral community. Following the outbreak, live Acropora plate coral cover at 5 m depth decreased significantly from 7.0 to 0.8%, while the cover of other coral taxa remained unchanged. Observations five years after the initial outbreak revealed that total Acropora plate cover remained low and confirmed that corals that lost all their tissue due to WS did not recover. These results demonstrate that WS represents a significant and selective form of coral mortality and highlights the serious threat WS poses to coral reefs in the Indo-Pacific. PMID:26147291

  5. Hong Kong Corals: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Goodkin, N.; Yang, T.; Yeung, R.; Bryan, S. P.; Hughen, K. A.

    2012-12-01

    High-resolution paleoclimate records are in demand as we increase the need for understanding and predicting sub-annual climate interactions. The geographical footprint of these records must also expand in order to improve spatially diverse reconstructions of climate systems including the Asian monsoon and el Nino among others. The south China coast within the South China Sea has been one location investigated for paleo-climate coral reconstructions, with a focus on the relatively pristine waters of Hai Nan Island. But, records are limited and are often confounded by Sr/Ca signals which differ from instrumental records of SST. In this study, we evaluate the slow-growing (~2-7mm/year on average) Porites corals of Hong Kong Island to investigate the reliability of the Sr/Ca proxy from a coastal environment. Sr/Ca-SST proxies are developed for 6 coral colonies, utilizing 10-years of monthly hydrographic data from more than 45 marine stations around Hong Kong. Seasonal resolution slopes range from -0.03 mmol/mol/°C to -0.06 mmol/mol/°C within the range of previously published slopes from the very slow-growing Diploria corals of the North Atlantic (Cardinal et al. 2000, Goodkin et al. 2005) as well as Porites corals with growth rates >1cm per year. While there is a trend for the absolute value of the slopes to increase with increasing average colony growth rate, no statistically significant growth relationship has been found. Hong Kong corals are known to grow slowly and annual extension-rates are strongly correlated to environmental conditions including spring-time chlorophyll a, temperature and turbidity as well as summer oxygen concentrations (Yang et al., in preparation). Evidence exists within the Sr/Ca record for significant growth hiatuses particularly during the coldest times of the year (late winter-early spring). Growth-hiatuses generally occur when the El Nino Southern Oscillation is inactive. Whereas an active El Nino or La Nina, tend to correspond to no

  6. Dietary shift in juvenile coral trout ( Plectropomus maculatus) following coral reef degradation from a flood plume disturbance

    NASA Astrophysics Data System (ADS)

    Wen, Colin K. C.; Bonin, Mary C.; Harrison, Hugo B.; Williamson, David H.; Jones, Geoffrey P.

    2016-06-01

    Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species' dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout ( Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010-2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.

  7. Kinetics of photoacclimation in corals.

    PubMed

    Anthony, Kenneth R N; Hoegh-Guldberg, Ove

    2003-01-01

    Traditional models describing the relationship between photosynthesis (P) and irradiance (I) do not account for photoacclimation to short-term variation in irradiance. Here we develop and test a model that predicts the rate of photosynthesis under fluctuating irradiances at the scale of days to weeks. Using oxygen respirometry, we measured the rates of change in the P-I model parameters P(max) (maximum rate of gross photosynthesis) and I(k) (sub-saturation irradiance) of the photo-symbiotic coral Turbinaria mesenterina (Lamarck) following large and small increases and decreases in growth irradiance. We analyse the behaviour of the dynamic P-I model in turbid-water conditions using a dataset of 3-month continuous irradiance as the input variable. In response to upward or downward changes in experimental growth irradiance, I(k) values decreased or increased exponentially, reaching new and stable levels within 5-10 days. I(k) responded 4 times stronger than P(max) to changes in growth irradiance. The kinetics of I(k) did not show hysteresis, and changed in similar ways when irradiance was increased or decreased in small or large amounts. This suggests that mechanisms associated with photo-protection during increases in irradiance, and the maximisation of photosynthetic efficiency during decreases in irradiance, are equally potent. On the scale of months, the dynamic P-I model did not predict higher rates of photosynthesis than the static P-I model, but buffered the variation in photosynthesis during periods of reduced irradiance. Fourier analysis indicated that the kinetics of I(k) closely matches the main periodicities in daily irradiance (1-2 weeks). The recorded kinetics of photoacclimation in the Turbinaria-zooxanthella symbiosis is comparable to that of free-living phytoplankton and faster than that of higher plants. PMID:12647175

  8. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea.

    PubMed

    Haywood, M D E; Dennis, D; Thomson, D P; Pillans, R D

    2016-04-01

    A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation. PMID:26874890

  9. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    NASA Astrophysics Data System (ADS)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2015-05-01

    Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.

  10. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  11. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    NASA Astrophysics Data System (ADS)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2014-01-01

    Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  12. Effect of shading by the table coral Acropora Hyacinthus on understory corals. [Acropora; Pocillopora

    SciTech Connect

    Stimson, J.

    1985-02-01

    Field surveys at Enewetak Atoll, Marshall Islands, show that coral density and diversity is much lower beneath Acropora table corals than in adjacent unshaded areas. Additionally, the understory community is predominantly composed of massive and encrusting species, while branching Acropora and Pocillopora predominate in unshaded areas. Results of experiments in which coral fragments were transferred to the shade of table Acropora and to adjacent unshaded areas show that shading slows the growth and leads to higher mortality of branching species, while massive and encrusting species are unaffected. Light measurements made beneath table Acropora show that illumination and irradiance values fall to levels at which most hermatypic corals do not occur. The fast-growing but fragile table Acropora are abundant in a wide variety of atoll habitats and grow rapidly to form a canopy approx. = 50 cm above the substrate. However, table Acropora also have high mortality rates, so that there is continuous production of unshaded areas. The growth and death of tables thus create local disturbances, and the resulting patchwork of recently shaded and unshaded areas may enhance coral diversity in areas of high coral cover.

  13. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases.

    PubMed

    Krediet, Cory J; Ritchie, Kim B; Paul, Valerie J; Teplitski, Max

    2013-03-22

    Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is informed by the on-going characterization of other microbiomes, which suggest that metabolic pathways and functional capabilities define the 'core' microbiota more accurately than the taxonomic diversity of its members. Consistent with this hypothesis, there does not appear to be a consensus on the specificity in the interactions of corals with microbial commensals, even though recent studies report potentially beneficial functions of the coral-associated bacteria. They cycle sulphur, fix nitrogen, produce antimicrobial compounds, inhibit cell-to-cell signalling and disrupt virulence in opportunistic pathogens. While their beneficial functions have been documented, it is not certain whether or how these microbes are selected by the hosts. Therefore, understanding the role of innate immunity, signal and nutrient exchange in the establishment of coral microbiota and in controlling its functions will probably reveal ancient, evolutionarily conserved mechanisms that dictate the outcomes of host-microbial interactions, and impact the resilience of the host. PMID:23363627

  14. Teaching Soft Skills Employers Need

    ERIC Educational Resources Information Center

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft…

  15. Soft computing and fuzzy logic

    SciTech Connect

    Zadeh, L.A.

    1994-12-31

    Soft computing is a collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its principal constituents are fuzzy logic, neuro-computing, and probabilistic reasoning. Soft computing is likely to play an increasingly important role in many application areas, including software engineering. The role model for soft computing is the human mind.

  16. Acanthaster planci Outbreak: Decline in Coral Health, Coral Size Structure Modification and Consequences for Obligate Decapod Assemblages

    PubMed Central

    Leray, Matthieu; Béraud, Maxime; Anker, Arthur; Chancerelle, Yannick; Mills, Suzanne C.

    2012-01-01

    Although benthic motile invertebrate communities encompass the vast majority of coral reef diversity, their response to habitat modification has been poorly studied. A variety of benthic species, particularly decapods, provide benefits to their coral host enabling them to cope with environmental stressors, and as a result benefit the overall diversity of coral-associated species. However, little is known about how invertebrate assemblages associated with corals will be affected by global perturbations, (either directly or indirectly via their coral host) or their consequences for ecosystem resilience. Analysis of a ten year dataset reveals that the greatest perturbation at Moorea over this time was an outbreak of the corallivorous sea star Acanthaster planci from 2006 to 2009 impacting habitat health, availability and size structure of Pocillopora spp. populations and highlights a positive relationship between coral head size and survival. We then present the results of a mensurative study in 2009 conducted at the end of the perturbation (A. planci outbreak) describing how coral-decapod communities change with percent coral mortality for a selected coral species, Pocillopora eydouxi. The loss of coral tissue as a consequence of A. planci consumption led to an increase in rarefied total species diversity, but caused drastic modifications in community composition driven by a shift from coral obligate to non-obligate decapod species. Our study highlights that larger corals left with live tissue in 2009, formed a restricted habitat where coral obligate decapods, including mutualists, could subsist. We conclude that the size structure of Pocillopora populations at the time of an A. planci outbreak may greatly condition the magnitude of coral mortality as well as the persistence of local populations of obligate decapods. PMID:22530026

  17. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    PubMed Central

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  18. The diversity of coral associated bacteria and the environmental factors affect their community variation.

    PubMed

    Zhang, Yan-Ying; Ling, Juan; Yang, Qing-Song; Wang, You-Shao; Sun, Cui-Ci; Sun, Hong-Yan; Feng, Jing-Bin; Jiang, Yu-Feng; Zhang, Yuan-Zhou; Wu, Mei-Lin; Dong, Jun-De

    2015-10-01

    Coral associated bacterial community potentially has functions relating to coral health, nutrition and disease. Culture-free, 16S rRNA based techniques were used to compare the bacterial community of coral tissue, mucus and seawater around coral, and to investigate the relationship between the coral-associated bacterial communities and environmental variables. The diversity of coral associated bacterial communities was very high, and their composition different from seawater. Coral tissue and mucus had a coral associated bacterial community with higher abundances of Gammaproteobacteria. However, bacterial community in seawater had a higher abundance of Cyanobacteria. Different populations were also found in mucus and tissue from the same coral fragment, and the abundant bacterial species associated with coral tissue was very different from those found in coral mucus. The microbial diversity and OTUs of coral tissue were much higher than those of coral mucus. Bacterial communities of corals from more human activities site have higher diversity and evenness; and the structure of bacterial communities were significantly different from the corals collected from other sites. The composition of bacterial communities associated with same coral species varied with season's changes, geographic differences, and coastal pollution. Unique bacterial groups found in the coral samples from more human activities location were significant positively correlated to chemical oxygen demand. These coral specific bacteria lead to coral disease or adjust to form new function structure for the adaption of different surrounding needs further research. PMID:25833806

  19. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  20. Photography of Coral Reefs from ISS

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  1. Coral snake mimicry: does it occur?

    USGS Publications Warehouse

    Greene, H.W.; McDiarmid, R.W.

    1981-01-01

    Field observations and experimental evidence refute previous objections to the coral snake mimicry hypothesis. Concordant color pattern variation spanning hundreds of miles and several presumed venemous models strongly suggests that several harmless or mildly venemous colubrid snakes are indeed mimics of highly venemous elapids.

  2. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  3. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  4. 40 CFR 230.44 - Coral reefs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contaminants such as hydrocarbons into the water column, by reducing light penetration through the water, and by increasing the level of suspended particulates. Coral organisms are extremely sensitive to even slight reductions in light penetration or increases in suspended particulates. These adverse effects...

  5. Ciliate communities consistently associated with coral diseases

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Séré, M. G.

    2016-07-01

    Incidences of coral disease are increasing. Most studies which focus on diseases in these organisms routinely assess variations in bacterial associates. However, other microorganism groups such as viruses, fungi and protozoa are only recently starting to receive attention. This study aimed at assessing the diversity of ciliates associated with coral diseases over a wide geographical range. Here we show that a wide variety of ciliates are associated with all nine coral diseases assessed. Many of these ciliates such as Trochilia petrani and Glauconema trihymene feed on the bacteria which are likely colonizing the bare skeleton exposed by the advancing disease lesion or the necrotic tissue itself. Others such as Pseudokeronopsis and Licnophora macfarlandi are common predators of other protozoans and will be attracted by the increase in other ciliate species to the lesion interface. However, a few ciliate species (namely Varistrombidium kielum, Philaster lucinda, Philaster guamense, a Euplotes sp., a Trachelotractus sp. and a Condylostoma sp.) appear to harbor symbiotic algae, potentially from the coral themselves, a result which may indicate that they play some role in the disease pathology at the very least. Although, from this study alone we are not able to discern what roles any of these ciliates play in disease causation, the consistent presence of such communities with disease lesion interfaces warrants further investigation.

  6. Symbiosis increases coral tolerance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  7. Fishing down nutrients on coral reefs

    PubMed Central

    Allgeier, Jacob E.; Valdivia, Abel; Cox, Courtney; Layman, Craig A.

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  8. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  9. 50 CFR 223.208 - Corals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Corals. 223.208 Section 223.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Restrictions Applicable to Threatened Marine and Anadromous Species...

  10. DISEASES OF CORALS: RESEARCH PROGRESS, REEF PROSPECTS

    EPA Science Inventory

    Scleractinian corals have been the subject of intensive research during the past few decades to improve understanding of their role in supporting diverse tropical and subtropical marine communities and to examine factors responsible for their decline and loss of community biodive...

  11. The vermetid gastropod Dendropoma maximum reduces coral growth and survival

    PubMed Central

    Shima, Jeffrey S.; Osenberg, Craig W.; Stier, Adrian C.

    2010-01-01

    Coral reefs are one of the most diverse systems on the planet; yet, only a small fraction of coral reef species have attracted scientific study. Here, we document strong deleterious effects of an often overlooked species—the vermetid gastropod, Dendropoma maximum—on growth and survival of reef-building corals. Our surveys of vermetids on Moorea (French Polynesia) revealed a negative correlation between the density of vermetids and the per cent cover of live coral. Furthermore, the incidence of flattened coral growth forms was associated with the presence of vermetids. We transplanted and followed the fates of focal colonies of four species of corals on natural reefs where we also manipulated presence/absence of vermetids. Vermetids reduced skeletal growth of focal corals by up to 81 per cent and survival by up to 52 per cent. Susceptibility to vermetids varied among coral species, suggesting that vermetids could shift coral community composition. Our work highlights the potential importance of a poorly studied gastropod to coral dynamics. PMID:20484230

  12. The vermetid gastropod Dendropoma maximum reduces coral growth and survival.

    PubMed

    Shima, Jeffrey S; Osenberg, Craig W; Stier, Adrian C

    2010-12-23

    Coral reefs are one of the most diverse systems on the planet; yet, only a small fraction of coral reef species have attracted scientific study. Here, we document strong deleterious effects of an often overlooked species-the vermetid gastropod, Dendropoma maximum-on growth and survival of reef-building corals. Our surveys of vermetids on Moorea (French Polynesia) revealed a negative correlation between the density of vermetids and the per cent cover of live coral. Furthermore, the incidence of flattened coral growth forms was associated with the presence of vermetids. We transplanted and followed the fates of focal colonies of four species of corals on natural reefs where we also manipulated presence/absence of vermetids. Vermetids reduced skeletal growth of focal corals by up to 81 per cent and survival by up to 52 per cent. Susceptibility to vermetids varied among coral species, suggesting that vermetids could shift coral community composition. Our work highlights the potential importance of a poorly studied gastropod to coral dynamics. PMID:20484230

  13. Tropical Archaea: Diversity associated with the surface microlayer of corals

    USGS Publications Warehouse

    Kellogg, C.A.

    2004-01-01

    Recent 16S rDNA studies have focused on detecting uncultivated bacteria associated with Caribbean reef corals in an effort to address the ecological roles of coral-associated microbes. Reports of Archaea associated with fishes and marine invertebrates raised the question of whether Archaea might also be part of the coral-associated microbial community. DNA analysis of mucus from 3 reef-building species of Caribbean corals, Montastraea annularis complex, Diploria strigosa and D. labyrinthiformis in the US Virgin Islands yielded 34 groups of archaeal 16S ribotypes (defined at the level of 97% similarity). The majority (75%) was most closely matched by BLAST searches to sequences derived from marine water column samples, whereas the remaining ribotypes were most similar to sequences isolated from anoxic environments (15%) and hydrothermal vents (9%). Unlike previous 16S studies of coral-associated Bacteria, the results do not suggest specific associations between particular archaeal sequences and individual coral species. Marine Archaea (Groups I, II and III) in addition to Thermoplasma-like, methanogen, and marine benthic crenarchaeote phylotypes, were detected in the mucus of tropical corals. The finding of sequences from coral-associated Archaea that are closely related to strict and facultative anaerobes, as well as to uncultivated Archaea from other types of anoxic environments, suggests that anaerobic micro-niches may exist in coral mucus layers. Archaea, with their unique biogeochemical capabilities, broaden the scope of possible interactions between corals and their associated microbial communities.

  14. Large-amplitude internal waves benefit corals during thermal stress

    PubMed Central

    Wall, M.; Putchim, L.; Schmidt, G. M.; Jantzen, C.; Khokiattiwong, S.; Richter, C.

    2015-01-01

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  15. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  16. In Situ Oxygen Dynamics in Coral-Algal Interactions

    PubMed Central

    Wangpraseurt, Daniel; Weber, Miriam; Røy, Hans; Polerecky, Lubos; de Beer, Dirk; Suharsono; Nugues, Maggy M.

    2012-01-01

    Background Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 µM during the day. At night, the interface was hypoxic (∼70 µM) in coral-turf interactions and close to anoxic (∼2 µM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental

  17. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont. PMID:25615440

  18. Key Ecological Interactions of Reef Building Corals - 11-16-2011

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  19. CHARACTERIZING CORAL CONDITION USING ESTIMATES OF THREE-DIMENSIONAL COLONY SURFACE AREA

    EPA Science Inventory

    Coral reefs provide shoreline protection, biological diversity, fishery harvets, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinianss) construct and maintain the reef through deposition of calcium carbonate. Therefore...

  20. 75 FR 21650 - Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement, Biscayne National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... National Park Service Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement... Availability of the Draft Programmatic Environmental Impact Statement for the Coral Reef Restoration Plan... Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan for Biscayne National Park,...

  1. 76 FR 38618 - Proposed Information Collection; Comment Request; Coral Reef Conservation Program Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Coral... United States (U.S.) jurisdictions containing coral reefs. Specifically, NOAA is seeking information on... collection of social and economic data related to the communities affected by coral reef...

  2. Soft-sediment mullions

    NASA Astrophysics Data System (ADS)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  3. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  4. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  5. Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Reaka-Kudla, M. L.; Feingold, J. S.; Glynn, W.

    1996-06-01

    Experimental carbonate blocks of coral skeleton, Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5 6 m) and deep (11 13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins ( Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites. Porites lobata blocks lost an average of 25.4 kg m-2yr-1 (23.71 m-2yr-1 or 60.5% decrease yr-1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m-2 yr-1 (2.41 m-2 yr-1 or 0.6% decrease yr-1), while external bioeroders removed an average of 22.8 kg m-2 yr-1). (21.31 m-2 yr-1). or 59.9% decrease yr-1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m-2 yr-1). (1.81 m-2 yr-1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m-2 yr-1). (0.31 m-2 yr-1). or 0.7% decrease yr-1). and external bioeroders removed an average of 3.5 kg m-2 yr-1). (1.51 m-2 yr-1). or 3.9% decrease yr-1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm-2 yr-1). versus shallow (35.0 mg cm-2 yr-1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr-1). for hard substrata (represented by LS) and 2.3 cm yr-1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.

  6. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    PubMed

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment. PMID:23063708

  7. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    PubMed

    Rädecker, Nils; Pogoreutz, Claudia; Voolstra, Christian R; Wiedenmann, Jörg; Wild, Christian

    2015-08-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral-algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease. PMID:25868684

  8. Lectins stain cells differentially in the coral, Montipora capitata.

    PubMed

    Work, Thierry M; Farah, Yael

    2014-03-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis. PMID:24518620

  9. Lectins stain cells differentially in the coral, Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  10. Diverse coral communities thrive in acidified western Pacific waters

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-03-01

    Ocean acidification, a growing problem associated with increased carbon dioxide (CO2) emissions, can disrupt the lives of many marine species. Coral reefs are particularly vulnerable because the increased CO2 concentration in seawater—which combines with water to form carbonic acid—makes it hard for corals to grow. Models, observations, and lab studies consistently predict that as the ocean becomes more acidic, coral cover and diversity will decrease.

  11. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover

    PubMed Central

    Page, Christopher A.; Toonen, Robert J.; Vaughan, David

    2015-01-01

    Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm2 per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration. PMID:26500822

  12. Do tabular corals constitute keystone structures for fishes on coral reefs?

    NASA Astrophysics Data System (ADS)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  13. Trapping and dispersion of coral eggs around Bowden Reef, Great Barrier Reef, following mass coral spawning

    NASA Astrophysics Data System (ADS)

    Wolanski, Eric; Burrage, Derek; King, Brian

    1989-05-01

    Bowden Reef is a 5 km long kidney-shaped coral reef with a lagoon, located on the mid-shelf of the central region of the Great Barrier Reef. Field studies were carried out, in November 1986, at the time of mass coral spawning, of the water circulation around Bowden Reef and in the surrounding inter-reefal waters. The near-reef water circulation was strongly three-dimensional although the stratification was weak. In calm weather, coral eggs were aggregated in slicks along topographically controlled fronts. In the absence of a longshore current, water and coral eggs were trapped in the lagoon and in a boundary layer around Bowden Reef, by tidally driven recirculating motions. In the presence of a longshore current, some trapping occurred in the lagoon, but the bulk of the coral eggs was advected away from Bowden Reef and reached downstream reefs in a few days. This implies a likelihood of both self-seeding of reefs, and connectivity between reefs.

  14. The Global Coral Reef Crisis: Trends and Solutions (Coral Reefs: Values, Threats, and the Marine Aquarium Trade)

    SciTech Connect

    Shuman, Craig S.

    2003-02-05

    Second only to tropical rainforests, coral reefs support one of the world's most diverse natural habitats. Over 350 million individuals depend on coral reef resources for food and income. Unfortunately, the Earth is in the midst of a coral reef crisis. Anthropogenic impacts including overfishing, destructive fishing practices, sedimentation and pollution, as well as global climate change, have served to disrupt the natural processes that maintain the health of these ecosystems. Until recently, however, the global extent of the coral reef crisis was unknown. Reef Check was developed in 1996 as a volunteer, community-based monitoring protocol designed to measure the health of coral reefs on a global scale. With goals of education, monitoring, and management, Reef Check has activities in over 60 countries and territories. They have not only provided scientific evidence of the global extent of the coral reef crisis, but have provided the first community based steps to alleviate this urgent situation.

  15. Trophic cascade facilitates coral recruitment in a marine reserve

    PubMed Central

    Mumby, Peter J.; Harborne, Alastair R.; Williams, Jodene; Kappel, Carrie V.; Brumbaugh, Daniel R.; Micheli, Fiorenza; Holmes, Katherine E.; Dahlgren, Craig P.; Paris, Claire B.; Blackwell, Paul G.

    2007-01-01

    Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat. PMID:17488824

  16. Changes to coral health and metabolic activity under oxygen deprivation.

    PubMed

    Murphy, James W A; Richmond, Robert H

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  17. Changes to coral health and metabolic activity under oxygen deprivation

    PubMed Central

    Richmond, Robert H.

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  18. Antibacterial activity of Pseudoalteromonas in the coral holobiont.

    PubMed

    Shnit-Orland, Maya; Sivan, Alex; Kushmaro, Ariel

    2012-11-01

    Corals harbor diverse and abundant prokaryotic populations. Bacterial communities residing in the coral mucus layer may be either pathogenic or symbiotic. Some species may produce antibiotics as a method of controlling populations of competing microbial species. The present study characterizes cultivable Pseudoalteromonas sp. isolated from the mucus layer of different coral species from the northern Gulf of Eilat, Red Sea, Israel. Six mucus-associated Pseudoalteromonas spp. obtained from different coral species were screened for antibacterial activity against 23 tester strains. Five of the six Pseudoalteromonas strains demonstrated extracellular antibacterial activity against Gram-positive-but not Gram-negative-tester strains. Active substances secreted into the cell-free supernatant are heat-tolerant and inhibit growth of Bacillus cereus, Staphylococcus aureus, and of ten endogenous Gram-positive marine bacteria isolated from corals. The Pseudoalteromonas spp. isolated from Red sea corals aligned in a phylogenetic tree with previously isolated Pseudoalteromonas spp. of marine origin that demonstrated antimicrobial activity. These results suggest that coral mucus-associated Pseudoalteromonas may play a protective role in the coral holobiont's defense against potential Gram-positive coral pathogens. PMID:22767125

  19. Coral-the world's most diverse symbiotic ecosystem.

    PubMed

    Blackall, Linda L; Wilson, Bryan; van Oppen, Madeleine J H

    2015-11-01

    Zooxanthellate corals (i.e. those harbouring Symbiodinium) are the main builders of the world's shallow-water marine coral reefs. They represent intimate diverse symbioses between coral animals, single-celled photosynthetic dinoflagellates (Symbiodinium spp.), other microscopic eukaryotes, prokaryotes and viruses. Crabs and other crustaceans, worms, sponges, bivalves and hydrozoans, fishes, sea urchins, octopuses and sea stars are itinerant members of these 'rainforests of the sea'. This review focuses on the biodiversity of scleractinian coral animals and their best studied microscopic epi- and endosymbionts. In relation to coral-associated species diversity, Symbiodinium internal transcribed spacer region sequence types tally 10(2) -10(3) or up to ~15 different operational taxonomic units (OTUs, or putative species at the 97% sequence identity level; this cut-off was chosen based on intragenomic sequence diversity observed in monoclonal cultures) and prokaryotes (mostly bacterial) total 10(2) -10(4) OTUs. We analysed all publically accessible 16S rRNA gene sequence data and found Gammaproteobacteria were extremely abundant, followed by Alphaproteobacteria. Notably, Archaea were poorly represented and 'unassigned OTUs' were abundant in data generated by high-throughput DNA sequencing studies of corals. We outline and compare model systems that could be used in future studies of the coral holobiont. In our future directions, we recommend a global coral sampling effort including substantial attention being paid to method of coral tissue acquisition, which compartments (mucus, tissue, skeleton) to explore, broadening the holobiont members considered and linking biodiversity with functional investigations. PMID:26414414

  20. Inhibition of coral recruitment by macroalgae and cyanobacteria

    USGS Publications Warehouse

    Kuffner, I.B.; Walters, L.J.; Becerro, M.A.; Paul, V.J.; Ritson-Williams, R.; Beach, K.S.

    2006-01-01

    Coral recruitment is a key process in the maintenance and recovery of coral reef ecosystems. While intense competition between coral and algae is often assumed on reefs that have undergone phase shifts from coral to algal dominance, data examining the competitive interactions involved, particularly during the larval and immediate post-settlement stage, are scarce. Using a series of field and outdoor seawater table experiments, we tested the hypothesis that common species of macroalgae and cyanobacteria inhibit coral recruitment. We examined the effects of Lyngbya spp., Dictyota spp., Lobophora variegata (J. V. Lamouroux) Womersley, and Chondrophycus poiteaui (J. V. Lamouroux) Nam (formerly Laurencia poiteaui) on the recruitment success of Porites astreoides larvae. All species but C. poiteaui caused either recruitment inhibition or avoidance behavior in P. astreoides larvae, while L. confervoides and D. menstrualis significantly increased mortality rates of P. astreoides recruits. We also tested the effect of some of these macrophytes on larvae of the gorgonian octocoral Briareum asbestinum. Exposure to Lyngbya majuscula reduced survival and recruitment in the octocoral larvae. Our results provide evidence that algae and cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. On reefs experiencing phase shifts or temporary algal blooms, the restocking of adult coral populations may be slowed due to recruitment inhibition, thereby perpetuating reduced coral cover and limiting coral community recovery. ?? Inter-Research 2006.

  1. Uranium-Series Ages of Pacific Atoll Coral.

    PubMed

    Thurber, D L; Broecker, W S; Blanchard, R L; Potratz, H A

    1965-07-01

    The thorium-230: uranium-234 method of dating corals and oolites has been evaluated in detail for reliability, and various criteria have been established. Reliable ages for extensive coral formations of about 6000 and 120,000 years were obtained. A hiatus in the development of coral between 6000 and 120,000 years ago on the Pactfic atoll of Eniwetok implies that conditions did not permit coral growth during this period. The record prior to 120,000 years ago is not clear, probably because of a lack of unaltered samples. PMID:17737787

  2. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs

    USGS Publications Warehouse

    Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.-P.; Langdon, C.; Opdyke, B.N.

    1999-01-01

    A coral reef represents the net accumulation of calcium carbonate (CaCO3) produced by corals and other calcifying organisms. If calcification declines, then reef-building capacity also declines. Coral reef calcification depends on the saturation state of the carbonate mineral aragonite of surface waters. By the middle of the next century, an increased concentration of carbon dioxide will decrease the aragonite saturation state in the tropics by 30 percent and biogenic aragonite precipitation by 14 to 30 percent. Coral reefs are particularly threatened, because reef-building organisms secrete metastable forms of CaCO3, but the biogeochemical consequences on other calcifying marine ecosystems may be equally severe.

  3. Corals of Madison Group (Mississippian), Williston Basin, North Dakota

    SciTech Connect

    Waters, D.L.; Holland, F.D. Jr.

    1983-08-01

    Coral faunas studied from subsurface cores of the Mississippian Madison Group in the Williston Basin of North Dakota indicate that Sando's coral zones for outcrops in western North America can be extended into the subsurface of North Dakota. Coral zones II and III are recognized as corresponding roughly to lower and upper Mission Canyon strata, respectively. These data were obtained from 12 wells along the northern border of North Dakota in Divide, Burke, Renville, and Bottineau Counties, and two wells near the center of Williston basin in Dunn and McKenzie Counties. Corals found in dark argillaceous crinoid-skeletal wackestones representing deeper waters are robust, and this may infer a hospitable environment for their growth. However, evidence from the coral and lithologic associations refute the pervading dogma that the occurrence of corals is strictly facies controlled. Abundant smaller corals have been found from buff-colored skeletal wackestones and algal mudstones which alternate with subaqueous anhydrites representing a marginal marine environment. In addition, corals have been found in buff-colored skeletal and peloidal grainstones of adjacent shoals and in brown pisolitic-oolitic packstones-wackestones of possible tidal ponds. These latter deposits may represent allochthonous accumulations, but the amount of time involved in transport of corals would not invalidate their usefulness as biostratigraphic tools.

  4. Endolithic algae: an alternative source of photoassimilates during coral bleaching.

    PubMed Central

    Fine, Maoz; Loya, Yossi

    2002-01-01

    Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrations and biomass of endoliths in the skeleton of the encrusting coral Oculina patagonica throughout a bleaching event. During repeated summer bleaching events these endolithic algae receive increased photosynthetically active radiation, increase markedly in biomass, and produce increasing amounts of photoassimilates, which are translocated to the coral. Chlorophyll concentrations and biomass of endoliths were 4.6 +/- 1.57 and 1570 +/- 427 microg cm(-2) respectively, in skeletons of relatively healthy colonies (0-40% bleaching) but up to 14.8 +/- 2.5 and 4036 +/- 764 microg cm(-2) endolith chlorophyll and biomass respectively, in skeletons of bleached colonies (greater than 40% bleaching). The translocation dynamics of (14)C-labelled photoassimilates from the endoliths to bleached coral tissue showed significantly higher 14C activity of the endoliths harboured within the skeletons of bleached corals than that of the endoliths in non-bleached corals. This alternative source of energy may be vital for the survivorship of O. patagonica, allowing gradual recruitment of zooxanthellae and subsequent recovery during the following winter. PMID:12065035

  5. Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals

    NASA Astrophysics Data System (ADS)

    Little, Angela F.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2004-06-01

    The relation between corals and their algal endosymbionts has been a key to the success of scleractinian (stony) corals as modern reef-builders, but little is known about early stages in the establishment of the symbiosis. Here, we show that initial uptake of zooxanthellae by juvenile corals during natural infection is nonspecific (a potentially adaptive trait); the association is flexible and characterized by a change in (dominant) zooxanthella strains over time; and growth rates of experimentally infected coral holobionts are partly contingent on the zooxanthella strain harbored, with clade C-infected juveniles growing two to three times as fast as those infected with clade D.

  6. Lipid biomarkers of thermal stress in scleractinian corals

    NASA Astrophysics Data System (ADS)

    Kneeland, J. M.; Hughen, K.; Cervino, J.; Eglinton, T. I.; Bartels, E.

    2007-12-01

    Lipid content and fatty acid profiles of corals and their symbiotic dinoflagellates are known to vary in response to heat stress and bleaching. To develop lipid biomarkers of heat stress and bleaching response in scleractinian corals, clones of Symbiodinium algae of clade subtypes C1 and D1 were cultured under a range of temperatures. The predominant lipids produced are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs. Other important compounds included a C22 penta-unsaturated fatty acid, which is thought to be a specific dinoflagellate marker, and a variety of sterols. Analysis of lipids extracted from coral skeleton indicated that palmitic and stearic acids were the most abundant compounds. The amount of unsaturated C16 and C18 fatty acids in coral skeleton relative to the saturated versions of those acids was much lower in coral skeleton than in the zooxanthellae tissue. This could indicate the incorporation of lipids from outside the coral host-symbiont system into the coral aragonite, or it could reflect diagenesis. A comparison between the lipids found in cloned zooxanthellae, coral tissue, and aragonitic skeleton will be presented to assess the usefulness of lipid biomarkers as indicators of temperature stress on corals.

  7. African and Asian dust: from desert soils to coral reefs

    USGS Publications Warehouse

    Garrison, Virginia H.; Shinn, Eugene A.; Foreman, William T.; Griffin, Dale W.; Holmes, Charles W.; Kellogg, Christina A.; Majewski, Michael S.; Richardson, Laurie L.; Ritchie, Kim B.; Smith, Garriet W.

    2003-01-01

    Many hypotheses have been proposed to explain the decline of coral reefs throughout the world, but none adequately accounts for the lack of recovery of reefs or the wide geographical distribution of coral diseases. The processes driving the decline remain elusive. Hundreds of millions of tons of dust transported annually from Africa and Asia to the Americas may be adversely affecting coral reefs and other downwind ecosystems. Viable microorganisms, macro- and micronutrients, trace metals, and an array of organic contaminants carried in the dust air masses and deposited in the oceans and on land may play important roles in the complex changes occurring on coral reefs worldwide.

  8. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  9. Quaternary coral reef refugia preserved fish diversity.

    PubMed

    Pellissier, Loïc; Leprieur, Fabien; Parravicini, Valeriano; Cowman, Peter F; Kulbicki, Michel; Litsios, Glenn; Olsen, Steffen M; Wisz, Mary S; Bellwood, David R; Mouillot, David

    2014-05-30

    The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity. PMID:24876495

  10. Investing in sustainability at Coral World

    SciTech Connect

    Jackson, O.

    2000-08-01

    Now open and operational for several years, Coral World offers a unique environmental model for other tourism-related facilities throughout the Caribbean and beyond. The extensive energy conservation program has yielded a 40 to 50% reduction in energy use and costs. The facility's unique on-site storm water absorption system virtually eliminates silt runoff to the coastal waters. The innovative, highly cost-effective series of renewable energy installations include a photovoltaic-powered restaurant kitchen, solar hot water systems and one of the world's first hydroelectric systems that uses wastewater drainage for turbine source waters. The extensive marine environmental conservation program protects fragile local ecosystems while also protecting the owners' investment in tourism. By investing aggressively in sustainability, Coral World's owners are reaping the benefits not only in reduced operating costs and improved profitability, but also in increased visitor volume and satisfaction.

  11. Impacts of the 1998 and 2010 mass coral bleaching events on the Western Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Sutthacheep, Makamas; Yucharoen, Mathinee; Klinthong, Wanlaya; Pengsakun, Sittiporn; Sangmanee, Kanwara; Yeemin, Thamasak

    2013-11-01

    A long-term study of coral reef ecology in the Gulf of Thailand provides a good opportunity to examine the temporal variation on the impact of mass coral bleaching at those reef sites. We compared the bleaching and mortality of corals between the mass bleaching events in 1998 and 2010 at a coral community in the Western Gulf of Thailand. The aim was to identify the coral species which were most likely to suffer from (and to be able to tolerate) changes in seawater temperature. Significant differences in the susceptibility of the coral taxa to bleaching events between the years 1998 and 2010 and among coral species were documented. Bleaching was significantly different between the most dominant corals. Diploastrea heliopora was the most resistant coral to bleaching in both years. Some coral species showed more resistance to bleaching in 2010. The coral mortality following the mass bleaching events in 1998 and 2010 varied significantly between the years and the coral taxa. Mortality of some dominant coral taxa was also lower in 2010. Seven coral species, i.e. Astreopora myriophthalma, Pachyseris rugosa, Turbinaria mesenterina, Goniastrea pectinata, Favia pallida, F. maritima, Favites halicora, Platygyra daedalea and Galaxea fascicularis, were tolerant to the coral bleaching events. An ecosystem-based approach to managing coral reefs in the Gulf of Thailand is needed to identify appropriate marine protected area networks and to strengthen marine and coastal resource policies in order to build coral reef resilience.

  12. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    NASA Astrophysics Data System (ADS)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  13. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    PubMed

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  14. Coral reef metabolism and carbon chemistry dynamics of a coral reef flat

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken

    2015-05-01

    Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.

  15. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    PubMed Central

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements. PMID:26644037

  16. Coral disease and health workshop: Coral Histopathology II, July 12-14, 2005

    USGS Publications Warehouse

    Galloway, S.B.; Woodley, Cheryl M.; McLaughlin, S.M.; Work, T.M.; Bochsler, V.S.; Meteyer, Carol U.; Sileo, Louis; Peters, E.C.; Kramarsky-Winters, E.; Morado, J. Frank; Parnell, P.G.; Rotstein, D.S.; Harely, R.A.; Reynolds, T.L.

    2005-01-01

    An exciting highlight of this meeting was provided by Professor Robert Ogilvie (MUSC Department of Cell Biology and Anatomy) when he introduced participants to a new digital technology that is revolutionizing histology and histopathology in the medical field. The Virtual Slide technology creates digital images of histological tissue sections by computer scanning actual slides in high definition and storing the images for retrieval and viewing. Virtual slides now allow any investigator with access to a computer and the web to view, search, annotate and comment on the same tissue sections in real time. Medical and veterinary slide libraries across the country are being converted into virtual slides to enhance biomedical education, research and diagnosis. The coral health and disease researchers at this workshop deem virtual slides as a significant way to increase capabilities in coral histology and a means for pathology consultations on coral disease cases on a global scale. 

  17. The Effects of Freshwater Dissolution on Coral Geochemistry and Morphology

    NASA Astrophysics Data System (ADS)

    Wiggins, E. B.; Cobb, K. M.; Sayani, H. R.

    2012-12-01

    The aragonite skeletons of massive reef-building corals provide an invaluable high-resolution archive of past climate variability. However, studies have repeatedly shown that alteration of the coral skeleton (diagenesis), occurring as secondary cements and/or dissolution, is fairly prevalent among both modern and fossil corals. While the effects of secondary cements on bulk coral geochemistry and morphology have been extensively documented, the impacts of dissolution remain relatively unconstrained. Given that aragonite is metastable and that most fossil corals are exposed to rainfall for long periods, it follows that dissolution-related artifacts in fossil coral paleoclimate records merit further study. To date, the only study on coral dissolution suggests that dissolution does not significantly impact the oxygen isotopic ratios (δ18O), but leads to an increase of up to +0.06mmol/mol in coral Sr/Ca (equivalent to sea-surface temperature (SST) cooling artifacts of -1.2°C using standard Sr/Ca paleo-temperature conversions) [Hendy et.al., 2007]. Here we investigate the effects of freshwater dissolution on coral geochemistry and morphology by exposing a 2.5cm x 5cm segment of a modern coral from Palmyra Island (6°N, 162°W) to a constant freshwater drip for one week in order to simulate the effects of rainfall. Scanning electron microscope (SEM) images and coral δ18O and Sr/Ca measurements were taken before and after the coral was dissolved to assess the impacts of dissolution. We observe that dissolution occurs both on the surface and within the coral skeleton. Surface coral dissolution results in a "bumpy" surface, while interior dissolution targets centers of calcification. In the heavily-dissolved portions of the coral, nearly 60% of the skeleton surface is dissolved. In these areas δ18O shows a significant decrease of -0.2-0.4‰, which would correspond to an SST increase of +1-2°C in paleotemperature [Epstein, 1953]. Due to the relatively large range of Sr

  18. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  19. Mean circulation of the Coral Sea

    NASA Astrophysics Data System (ADS)

    Kessler, William S.; Cravatte, Sophie

    2013-12-01

    The mean absolute geostrophic circulation of the Coral Sea is constructed from climatological hydrographic data referenced to a 1000 m velocity field derived from Argo float drift. Two branches of the South Equatorial Current (SEC) enter the Coral Sea between New Caledonia and the Solomon Islands: the broad, upper thermocline North Vanuatu Jet (NVJ), and the narrow North Caledonian Jet (NCJ) extending to at least 1500 m. Most of this incoming flow leaves to the Solomon Sea. Four distinct pathways through the Coral Sea are traced by their water properties: (1) The NCJ crosses the Sea to the coast of Australia and turns north at densities sigma 25-27.4 as the main source of the Gulf of Papua (GPC) western boundary current, eventually feeding the New Guinea Coastal Undercurrent; (2) part of the shallow NVJ turns into the Solomon Sea in midbasin, carrying high-salinity water above sigma 25.5; (3) another part of the NVJ continues to Australia, then turns north to join the GPC, extending it to the surface; (4) a shallow finger of NVJ water, traced by low oxygen above sigma 25, turns south along the coast, beginning the East Australian Current (EAC) at 15°S. Total transport from the Coral to the Tasman Sea is small and shallow; instead, most of the EAC is fed from south of New Caledonia, consistent with the Island Rule. However, large transport fractions occur in narrow jets close to coastlines and reefs and are not well sampled, precluding a quantitative estimate of meridional redistribution of the incoming SEC.

  20. Modeling Soft Matter

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.